
Stochastic Hybrid Model Predictive Control
using Gaussian Processes for Systems with

Piecewise Residual Dynamics

by

Leroy Joel D’Souza

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2023

© Leroy Joel D’Souza 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Due to their ability to model complex functions with uncertainty estimates, Gaussian
Processes (GPs) have found widespread use to learn residual dynamics that account for the
mismatch between the nominal system model and the true underlying system dynamics.
However, existing literature using GPs for control considers true residual dynamics that
are not piecewise functions differing over regions of the state space. Trying to approximate
such piecewise residuals by a single learnt GP-based residual model leads to inaccurate
dynamics predictions across a horizon when working with a Model Predictive Controller
(MPC) resulting in poor closed-loop performance and constraint violation above a specified
threshold.

In this thesis, I first propose the construction of a hybrid GP learnt from data for
systems operating in environments with piecewise residuals. The procedure to embed such
a model into a Chance-Constrained Model Predictive Controller (CC-MPC) is formulated
as a Mixed Integer Nonlinear Program (MINLP) by introducing a set of constrained discrete
variables. This allows a more accurate propagation of dynamics across a horizon enabled by
switching between different modes of the learnt hybrid residual at each timestep. Through
numerical studies, I demonstrate how the proposed controller outperforms a baseline CC-
MPC (using only a single GP model to capture residual dynamics) in terms of both closed-
loop performance and chance constraint satisfaction.

In general, it is not possible to solve these MINLPs while meeting the control input
frequency demanded by real-time applications like vehicle control. I then propose an
algorithm to convert the MINLP problem into a parametrized Nonlinear Program (NLP)
using a hierarchical planner-controller approach while also specifying other parts of the
optimization that can be relegated to an offline computation block. Simulations show that
the proposed approximate NLP solution displays a reasonable level of performance when
compared to the MINLP solution.

The previous problems involve the assumption that the “regions” where a particular
mode of the residual is active are known in advance. I consider the problem of relaxing
this assumption to allow transfer to new environments in which it is desired to execute
a repetitive task. This is done by leveraging the learnt residual to identify region infor-
mation and train a classifier that can be utilized for predictions for future runs. Finally,
I also propose an approach to improve the classifier training dataset accuracy using an
optimization-based approach based on maximizing distances between distributions pre-
dicted by different modes of the hybrid residual.

iii

Acknowledgements

I am extremely grateful to my supervisor, Yash Pant, for providing me the opportu-
nity to work with the CL2 group at Waterloo and for the many suggestions and fruitful
discussions that have never gone unappreciated. I would also like to thank friends across
the graduate sphere in the ECE, SYDE and MME departments at Waterloo for their help
and support.

iv

Dedication

I dedicate this thesis to my parents, Edward and Rina, without whose unwavering love,
support and guidance, none of this would ever have been possible.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

Dedication v

List of Figures ix

List of Tables xiv

List of Abbreviations xvi

1 Introduction 1

1.1 Literature Review . 2

1.1.1 Data-driven control . 2

1.1.2 Hybrid MPC . 5

1.1.3 Stochastic MPC . 5

1.2 Contributions . 6

vi

2 Background 7

2.1 Gaussian Processes - An Overview . 7

2.2 Introduction to MPC . 11

2.2.1 Tractability of Gaussian Process-based MPC 12

2.2.2 Stochastic Chance-Constrained MPC 13

3 Designing a Hybrid CC-MPC Controller 17

3.1 Introduction . 17

3.1.1 Motivating Example . 18

3.2 Problem Statement . 19

3.3 Learning Hybrid GP residual models . 22

3.4 Demonstrating the benefits of hybrid GP models 24

3.4.1 Effects of discontinuities in residuals. 24

3.4.2 Addressing issues with learnt lengthscales. 27

3.4.3 Residual dynamics with overlapping input spaces. 30

3.5 Designing an SMPC Controller for a model with hybrid piece-wise dynamics 31

3.5.1 Control Policy. 31

3.5.2 Propagating residual dynamics across a horizon. 31

3.5.3 Shrunk chance-constrained sets. 33

3.5.4 Big-M formulation for the hybrid residual model. 33

3.5.5 Cost Function. 36

3.5.6 Hybrid MPC Formulation . 36

3.6 Improving computational speed of a hybrid GP-MPC controller. 37

3.6.1 Cause of slow MINLP solve times. 38

3.6.2 Constructing a parametrized hybrid MPC controller. 38

3.6.3 Planning considerations. 42

3.7 Numerical Simulations . 44

3.7.1 Mixed-Integer GP-MPC Controller. 44

3.7.2 Hybrid NLP GP-MPC Controller. 49

3.8 Conclusion . 54

vii

4 Identifying region locations in unseen environments. 55

4.1 Motivating Example. 55

4.2 Problem Setup and Statement . 56

4.3 Methodology . 60

4.3.1 Training a classifier on a dataset of soft label vectors. 60

4.3.2 Soft vs. Hard label training datasets 64

4.3.3 Terrain mapping planner-controller architecture 67

4.4 Data-efficient mapping of unknown environments. 68

4.4.1 Incorporating optimization results into the nominal controller. . . . 75

4.5 Results . 76

4.5.1 Data-efficient mapping results . 77

4.5.2 Iterative terrain mapping results . 80

4.6 Conclusion . 82

5 Conclusion 84

5.1 Limitations and Future Research Directions 85

5.1.1 MINLP to NLP conversion. 85

5.1.2 Terrain mapping-based control. 86

5.1.3 Online learning and control. 87

5.1.4 Real-World Implementation . 88

References 89

APPENDICES 103

A Dynamics model for a 2-D quadrotor. 104

Glossary 106

viii

List of Figures

2.1 (a) and (c) depict examples of a Gaussian Process with a mean function and
covariance function (illustrated using symmetric 2-σ confidence intervals).
Data samples are depicted in red and the ground truth mean is plotted in
green. Note that (c) has a higher frequency mean than (a). (b) and (d) show
arbitrary function realizations sampled from the GP across the domain of the
input space. (d) clearly extrapolates less from training samples as compared
to (b) due to the smaller learnt lengthscale and hence has higher uncertainty
in regions of low training data density. 8

2.2 A closed-loop MPC controller where the first optimal control action is ap-
plied to the plant. The measured next state is passed back to the controller,
re-parameterizing the initial value constraint and shifting the reference tra-
jectory after which the optimization is re-solved. 12

2.3 A visual demonstration of the workings of gradient-based optimizers 13

2.4 Inspired by [23]. A visual demonstration of how the mean of the state affects
constraint satisfaction for a given variance term. For both distributions, the
means µx

1 , µ
x
2 satisfy the constraint −x ≤ −a(x ≥ a). For the distribution in

green, the left-sided tail does not exceed the specified violation probability
while the distribution in yellow does. Thus the state mean plays a big role
in constraint satisfaction. 15

3.1 A wheeled robot driving over different terrains. The contact dynamics of the

tyres will differ across regions and also within the regions, making it difficult for a

single model to accurately capture the robot dynamics across the entire workspace. 18

ix

3.2 Plots of the residual magnitude (y-axis) vs. the single state variable input to
the GP (x-axis) (a) Plot of the true underlying piece-wise residual dynamics
and the samples generated from it to be used to train the GP. (b) Plot of the
single GP and the learnt covariance function. (c) Plot of the independent
region-specific trained GPs visualized over the entire state space. (d) Plot of
hybrid piece-wise trained GP with mean and variance computed as defined
in (3.8b). (e) Mean function absolute error for single GP approach over
state domain (f) Mean function absolute error for hybrid GP approach over
state domain . 26

3.3 (a) Shows a piecewise residual with a significant discontinuity between its
modes. (b) Shows the output after training a single GP model. The short
learnt lengthscale introduces noise into the mean function and causes un-
certainty to rise sharply in areas of low data density. (c) Shows the output
from a hybrid GP model that is able to extrapolate the high lengthscale
piece-wise mode well in the absence of data. 28

3.4 (a) True sinusoidal residual underlying dynamics with a high frequency si-
nusoid in region 2. (b) A learnt single GP model where hyperparameter
optimization has aligned with the parameters in region 1. (c) A learnt
single GP model where hyperparameter optimization has aligned with the
parameters in region 2. (d) Learnt hybrid GP model with 2 modes that
remedies the issues of the single GP models. 29

3.5 Illustrative example. (a) Visual mapping of different terrains across the
workspace to the corresponding modes of the residual model. (b) A single
GP model which learns a very noisy function due to the low correlation be-
tween the different modes across the input space. (c) The hybrid GP model
that accurately learns the piecewise residual dynamics with an overlapping
input space. 30

3.6 Optimizing over the space of trajectories to get from the start position (red)
to the destination (green) leads to different assignments to the discrete δ
variables at each timestep. These assignments can be element-wise multi-
plied with the vector of residual outputs from the hybrid GP model. As a
simple example, consider the third timestep of the purple path and assume
it belongs to the 2nd region. In this case, since region 2 is the active mode,
the residual term from that region is selected for the dynamics equation. . 34

x

3.7 (a) An example of RRT outputs over multiple runs trying to find paths be-
tween a set of high-level waypoints. (b) An example of a spline-interpolated
trajectory generated from the waypoints output by RRT. This trajectory
can then be discretized as desired to obtain a reference trajectory for the
online controller to track. 43

3.8 Residual dynamics function (g) used for all 3 cases. 45

3.9 Region 1 (peach), region 2 (cyan) and region 3 (green). Baseline GP-MPC (left)

and Proposed Hybrid Piece-wise GP-MPC (right) closed loop trajectories for the

stabilization task. 46

3.10 Baseline GP-MPC (left) and Proposed Hybrid Piece-wise GP-MPC (right)
closed loop trajectories showing constraint violations while tracking a set-
point at the state-space boundary. 47

3.11 Baseline GP-MPC (left) and Proposed Hybrid Piece-wise GP-MPC (right)
closed loop trajectories for tracking a set-point at the boundary of the state
space. 48

3.12 A plot depicting the (a) partition of the workspace into 3 regions (b) the
residual magnitude and noise for each mode of the piece-wise dynamics and
the corresponding region they are active in. 50

3.13 A plot depicting an example of the closed-loop x − z trajectories obtained
for each controller i.e., nominal MPC, nominal MPC with mean residual
dynamics, hybrid GP-MPC with px=0.99, 0.9 and hybrid GP-MPC with
px = 0.9 and “relaxed” shrinking constraints. 51

4.1 A wheeled robot with access to a hybrid residual model. Can it leverage
known information along with measurements to build a “map” of how the
terrains are distributed across the environment it is operating in? 56

4.2 A directed graph showing dependence relations between the different variables

affecting the residual magnitude. 58

4.3 A visual depiction of the process of computing likelihoods that a particular mea-

sured residual was generated by one of the learnt modes of the hybrid model for

a given input. 61

4.4 (a) Trained hybrid GP model. (b) Ground truth regions spread across
workspace. (c)/(d) Example of uniform random sampling and biased sam-
pling across Gin respectively. 64

xi

4.5 Plots depicting the qualitative outputs on a test dataset after training classi-
fiers using the soft (b)/(d) and hard label (a)/(c) approaches when working
with a random sampled dataset. (a)/(b) uses 200 training samples and
(c)/(d) uses 5000 training samples. Row 1 corresponds to the argmax pre-
dictions. Row 2, 3 and 4 correspond to classifier logit outputs for each region
after applying the softmax operator. 65

4.6 Qualitative outputs on a test dataset after training classifiers using the soft
(b) and hard label (c) approaches when working with a biased dataset. . . 66

4.7 A graph showing accuracy with error-bars of both (a) soft and (b) hard label
trained classifiers as a function of the number of training samples ([100, 200,
500, 1000, 3000]). 67

4.8 Terrain locations and corresponding modes of the piecewise residual dynam-
ics active in each of them. 76

4.9 (a) / (c) Output from the simulated annealing optimization with num runs
= 20, top k=10, redundancy radius=0.45, using a Bhattacharya distance
metric that tries to maximize / minimize, respectively, the sum of the pair-
wise distances between the elements of Nset. (b) / (d) Output from the
same optimization but with redundancy radius functionality excluded and
solutions within a 0.1 radius of each other being pruned. 77

4.10 A visualization of the cost function that results after incorporating the ex-
ploration cost Cexpl generated using the array xopt produced by finding points
of maximum distance between the distributions in Nset. (a) depicts the plot
when the redundancy is included and (b) shows the plot when redundancy
is not included. 78

4.11 A qualitative comparison of the closed-loop trajectories obtained for various
assignments parameters in the exploration-based optimization framework.
Row (a) shows x − z trajectories when the redundancy radius is excluded
and (b) shows trajectories where they are included. 79

4.12 Plots demonstrating the training procedure for the iterative mapping-based
classifier and the benefits it yields on closed-loop trajectories over repeated
runs on the repetitive tracking task. 81

4.13 Plots demonstrating the possible application of the framework to iterative
safe exploration under uncertainty. 82

xii

A.1 [146] A 2-D quadrotor model subject to 2 input thrusts T1, T2 with tilt angle
θ operating in the x− z plane. 104

xiii

List of Tables

3.1 Comparison of absolute errors in the mean (eµ) and covariance (eσ) functions for

the hybrid and single GP models over the domains X,R1, R2. Errors computed

over 30 runs using 400 samples to train the model and 120 values across X for

verification to generate the error terms (3.12). 25

3.2 Mean and variance of the closed loop costs between the baseline and proposed

approach over 20 simulation runs for the stabilization task. A lower cost implies

better control performance. 46

3.3 Averages (µ#viol, Vext(µ)) and standard deviation (σ#viol, Vext(σ)) of the num-

ber and extent of state constraint violations with average C.L. cost (µc
cl) for the

baseline and proposed approaches. Computed over 20 simulation runs. 48

3.4 Mean and variance of the closed loop costs between the baseline and proposed

approach over 20 simulation runs for the tracking task. Lower cost represents

better control performance. 49

3.5 Empirically measured average constraint violation for the closed-loop (δ̂x)
trajectory along with mean and variance of the closed-loop cost. Results
in red violate the chance constraints and those highlighted in bold indicate
they are the best in comparison to other approaches. Computed over 50
simulation runs. 52

3.6 Run-time statistics comparison between a nominal MPC controller and the
proposed parametrized NLP GP-MPC controller computed over 25 runs.
µrun, σrun denotes the run-time mean and variance respectively. 53

xiv

4.1 A quantitative comparison between the training dataset accuracy generated
by various parameters in Algorithm 5. α = 0 indicated no exploration and
Red. radius = 0 indicates a deactivation of the redundancy radius feature.
µce indicates the average cross-entropy loss per sample computed between
the generated soft label and the provided ground truth. µargmax is the % of
soft label that match the ground truth after applying the argmax operator
to them. 78

4.2 A comparison of closed-loop performance over repeated runs of the system
on the repetitive tracking task. µc

cl denotes the average closed-loop cost
for a given run number and the +/- signify the minimum and maximum
deviations from the mean computed over 15 simulations. 80

xv

List of Abbreviations

ARD Automatic Relevance Determination 9

BLR Bayesian Linear Regression 4

BNN Bayesian Neural Network 4

CC-MPC Chance-Constrained Model Predictive Controller iii, 17

CDF Cumulative Distribution Function 16, 33, 51

CVaR Conditional Value-at-Risk 6

DARE Discrete Algebraic Riccati Equation 36

DD-MPC Data-Driven MPC 4

GMM Gaussian Mixture Model 6

GP Gaussian Process iii, x, 1–4, 6–10, 12–14, 17, 19, 22–25, 27–35, 38, 40, 44–46, 52, 53,
60–62, 64, 65, 72–74, 76, 82, 84, 86–88

IL Imitation Learning 4

LSTM Long short-term memory 4

MINLP Mixed Integer Nonlinear Program iii, 17, 36–38, 52, 54, 84, 85

ML Machine Learning 1, 5, 12

MLE Maximum Likelihood Estimation 9

xvi

MPC Model Predictive Controller iii, 1, 4–6, 11, 17, 30, 36–38, 42, 44, 45, 50, 52–54, 69,
72, 84, 87, 106

MRAC Model Reference Adaptive Control 1

NLP Nonlinear Program iii, 11, 38, 41, 44, 49, 52–54, 65, 68, 84, 85

NN Neural Network 1, 3, 4, 62–64, 67, 76, 83, 86

OOD Out of Distribution 83

PWM Pulse Width Modulation 105

RBF Radial Basis Function 4

ReLU Rectified Linear Unit 76

RL Reinforcement Learning 3, 4

RNN Recurrent Neural Network 4

SE Squared Exponential 7, 9, 24

TCN Temporal-convolutional 4

xvii

Chapter 1

Introduction

Dealing with issues stemming from unknown system dynamics has been a long-standing
challenge in the domain of control theory. Two main paradigms for addressing these
have revolved around adaptive control [83, 6] that aims to enable system performance in
the presence of uncertain and/or time-varying plant parameters (e.g., Model Reference
Adaptive Control (MRAC) [149], L1 [69]) and robust control [104] that tries to account
for worst-case disturbances that a system might be subject to. Advances in computing
hardware and optimization theory have caused optimal control methods like MPC [119, 54]
to become more common in various control applications and this will be the control method
of focus in this thesis.

Machine Learning (ML) methods have been applied to various parts of the autonomy
stack for decades now, most notably perception tasks. Off-late applications of data-driven
methods for control have started gaining traction in several of the aforementioned con-
trol paradigms [29, 63, 38, 68, 17]. While it is tempting to draw on the significant body
of work relating to Neural Networks (NNs), practical control applications might deal with
comparatively much smaller datasets than other typical NN applications such as trajectory
prediction and object classification. When dealing with safety-critical tasks, it is important
to take into account uncertainty in the learnt model in regions of low data density while also
considering that the true underlying function generating the dataset is not necessarily de-
terministic but rather stochastic due to several sources of noise (e.g., measurement/sensor,
process) that one encounters in practice. As a result, common methods used to learn
models for control in the literature utilize Bayesian approaches such as GPs [61].

One paradigm that has gained popularity [61, 13] in recent literature learns unmodelled
dynamics from data to be used in addition to nominal models learnt from first principles.

1

For this reason, I will refer to these learnt dynamics as residual dynamics for the remainder
of this thesis. A limitation of these approaches is that they consider a single (uni-modal)
GP model when learning model mismatch. This involves the implicit assumption that most
datasets for learning-based models are generated from environments that are homogeneous
and static in nature i.e., where the true underlying model does not change during and
between data collection runs. For example, when learning residual dynamics for a racing
car it is assumed that the data collected from the first run would be generated from the
same dynamics model as that of the nth run. However, there could be changes to the model
either due to changes in the environment (e.g., it started to rain affecting the frictional
coefficient of the track) or due to changes in the system (e.g., wear-and-tire of the tyres).

[34] provides a definitive example of how this can lead to overfitting for a simple bipedal
walker robot when learning a Bayesian residual model during the task of walking in a circle.
Due to the symmetric nature of the system it was expected that the residual model would
be the same for both legs. Instead, they turned out to be phase shifted by 5 degrees from
each other because of the circular path constraint. Using the same model to attempt to
execute other gait patterns might lead to incorrect behaviour as a result of this overfitting,
demonstrating that these learnt residuals might inadvertently overfit to a particular task
being performed or environment that the system is operating in. This can work well
when it is desired to optimize performance on a single unchanging task in a single static
environment where one intends to perform repetitive tasks. However, when trying instead
to design controllers that generalize to different scenarios, this approach might not perform
well.

From a safety perspective, it is beneficial to design controllers using a hybrid model that
consolidates information learnt from multiple scenarios and also identifies which scenario-
specific information to leverage when, particularly when some scenarios require increased
caution than others.

In this thesis, I aim to take steps towards addressing the problem of working with
hybrid models capable of encapsulating information useful for several scenarios/tasks.

1.1 Literature Review

1.1.1 Data-driven control

Review by task.

2

Over the past decade there have been many works that address the problem of learning-
based control schemes to improve control performance while adhering to problem-specific
notions of safety [29, 67, 107]. There are several tasks of interest in the literature and this
section discusses a non-exhaustive list of them.

Efficient exploration for learning Several works in the literature try to address the
problem of efficient online learning of system dynamics under uncertainty. Some methods
utilize Bayesian optimization approaches and acquisition functions [34] to maximize the
probability of improving the model. Others deal with providing robust control guarantees
during the learning procedure which is of particular use in highly safety-critical systems
where the system model can be extremely uncertain outside of a certain range of operating
conditions [19, 81].

Piecewise (hybrid) model identification There has been work that deals with iden-
tifying hybrid models from data. The problem under consideration here involves assigning
labels to samples in a dataset that identifies them as being generated by a particular mode
of the underlying piecewise model. [50, 14] identify piecewise linear models combining
regression and clustering based approaches for data with both continuous quantities and
discrete labels. When it comes to dealing with models under uncertainty, [90] learns modes
of a hybrid GP models under changing system conditions using Bayesian non-parametric
clustering approaches. In this thesis, it is assumed that the data available at our disposal
already has label assignments to various modes for the purpose of hybrid model learning.

Learning quantities to enforce guarantees Many Reinforcement Learning (RL)-
based controllers [57, 118] use NNs to demonstrate significant empirical boosts in per-
formance. However, there exists a significant body of work that tries to use NN-based
methods while retaining the guarantees provided by control theory. Many of these ap-
proaches involve learning Lyapunov functions to guarantee stability e.g., [37] which uses
NNs with smooth non-linear activation functions (e.g., tanh) for which Lie derivatives can
be computed. [138, 12] tries to learn NNs by optimizing over the space of models satisfying
certain apriori specified Lipschitz bounds in order to demonstrate robustness to adversar-
ial perturbations. [58, 112] use NN-based adaptive control methods along with Lyapunov
barrier functions [4] to guarantee properties like tracking error convergence.

Operating under new conditions The work in this thesis serves to demonstrate
improved performance benefits on tasks for which datasets are already present to train
learning-based models on. In constrast, there are works in the literature that leverage
existing data-driven models to operate in previously unseen conditions with possibly new
dynamics. These often involve using fuzzy methods [143] or simply learning a point-wise
weighted computation of the existing models [96].

3

Review by technique.

There have been many techniques used in the literature for data-driven control and
this section covers a non-exhaustive list of them. Some techniques do not learn dynamics
from data but rather iteratively construct safe sets and improved cost metrics [114]. In
contrast, this section will focus on approaches that use data to build more accurate dynam-
ics models. [141, 30] highlights a learning-based approximation to the Koopman operator
that derives from dynamic mode decomposition. [72] deals with identification of sparse
nonlinear models using regression with a library of candidate terms yielding a model that
is easily interpreted. Other classical approaches involves using auto-regressive models to
learn dynamics [2].

When it comes to NN-based approaches, several models have been used in the literature.
These include single [70] and multi-layered [115, 85] NNs, Recurrent Neural Networks
(RNNs) [151, 145, 106], Radial Basis Function (RBF) networks [116] and more recently,
temporal approaches such as Long short-term memory (LSTM) networks [71] and NNs
using Temporal-convolutional (TCN) [99] encoder blocks [13].

In terms of bayesian modelling approaches, GPs [61], Bayesian Linear Regression
(BLR) [91] and more recently Bayesian Neural Networks (BNNs) [11] have been used
in the literature. In this thesis, I choose to focus on GPs which has shown promise in
recently published works [73, 61, 45, 38]

While RL and Imitation Learning (IL)-based data-driven control approaches have
started to become more popular in the literature, they are not included in this review
due to the sheer breadth of research done in this domain as covered by [80, 111, 29].

GP-based constrained optimal control. When considering performance, [129] uses
GP-MPC to learn residual aerodynamic effects to improve tracking performance while
considering input limitations. [100] applies a learnt GP model to a vision-based control
system for a mobile robot to also boost performance on the path-tracking task. In terms
of safety, [28] proposes a novel offline sampling-based approach to constraint tightening to
allow for chance-constraint constraint satisfaction online. [61] proposes a method for online
shrinking of constraint sets to solve the same problem and applies it to an autonomous
racing setup to improve performance while maintaining safety.

Review by domain applications.

Since the applications of data-driven methods to general control paradigms are ex-
tremely vast, I limit my consideration to MPC-based approaches in this section. Data-
Driven MPC (DD-MPC) has been used for power electronics and motor drive control [150],
energy optimization [122, 27, 87], tracking tasks for robotic arms [94, 36], agriculture [33],

4

racing [114, 61], mechanical systems such as turbines and blast furnaces [148, 143], flight
control [72], marine vessels [144, 59] and manufacturing across different domains [142].

1.1.2 Hybrid MPC

In the controls literature, there are several meanings for the term “hybrid” control. Some
refer to controllers that combine physics-based models with ML-based ones and these
are also referred to as “gray-box” approaches [10, 27, 87]. Less frequently, this term is
also used to refer to schemes that use multiple controllers in parallel with some way to
either select between or combine the control signals they produce [44]. In this thesis,
however, the term hybrid will be used to denote systems that deal with both continuous
and discrete variables [16, 15, 35] (although the proposed approach does also come under
the “gray-box” category). A lot of work has been done in the past regarding hybrid system
control [24, 128, 32] with particular applications to aircrafts [95] and traffic control [42, 125],
and highly complex systems dynamical systems like dextrous hands. Some hybrid systems
combine several structures together to achieve greater functionality e.g., [108] builds a
robot capable of both walking and flying. The hybrid nature of the system is intrinsic
to its design. However, the hybrid systems considered in this thesis are those where the
discrete variables that define hybrid characteristics of the system are related to variables
linked to the environment. An example of this would be a mobile robot operating on
rocky surfaces, slippery ice or asphalt depending on where it is in the workspace. To the
best of my knowledge, these models have not been considered in the literature for robotics
and bayesian learning applications up until recently. In terms of the hybrid problem
statement, [96], developed in parallel with the approach presented here, is closest to ours
although they do not consider a chance-constrained formulation for the improved safety
benefits as has been done in this thesis.

1.1.3 Stochastic MPC

Unlike robust control that handles for worst case disturbances, stochastic (chance-constrained)
control approaches accounts for distributions over disturbances particularly ones that have
infinite support. There is a vast body of literature that addresses the problem of stochastic
chance-constrained MPC for both linear and nonlinear systems [1, 92].

When it comes to uncertainty propagation over a horizon for nonlinear systems, there
have been several approaches proposed in the literature to model these distributions. These
include techniques reliant on approximation by dynamic linearization [55], sampling-based

5

approaches like MCMC [74, 28, 133], Gaussian Mixture Models (GMMs) and polynomial
chaos expansions (common in the spacecraft domain) [134].

In this thesis, I consider approaches that deal with approximation approaches that
maintain a time-varying Gaussian uncertainty distribution over the open-loop horizon.
This allows leveraging work that provides deterministic reformulations of probabilistic
chance-constraints involving Gaussian random variables. Several methods have been pro-
posed to achieve this including conservative ellipsoidal bounds [131], computationally in-
tensive sampling approaches [22] and Conditional Value-at-Risk (CVaR) approaches [132].
However in this thesis, I focus on approaches that use Boole’s inequality to convert joint
chance constraints into a collection of individual chance constraints. There are several
variants of these, most notably the ones that consider an optimization-based risk alloca-
tion [98]. However, for simplicity, I will consider a static apriori determined risk allocation
scheme which can be more conservative [23, 61].

1.2 Contributions

In Chapter 3, I introduce the problem of controlling a robotic system in an environment
where the dynamics model the system is subject to varies as a function of the state e.g., a
mobile robot driving in an environment composed of multiple terrains each with their own
frictional coefficient. I construct a procedure to learn a hybrid GP model and then embed
it in an MPC control framework capable of handling for such a model. Next, I propose
an algorithm capable of addressing limitations in the practicality of such controllers that
result from significant computational complexity due to the way the optimization problem
is formulated.

In Chapter 4, I relax a significant assumption that involves knowing the location of the
different regions that divide the state space and consequently determine the active mode
of the hybrid model. I propose an algorithm that leverages the information contained in
the hybrid model to determine the likelihood with which a measured sample was generated
from a particular mode. I then train a classifier capable of utilizing this information to
iteratively improve performance on a repetitive task in an unknown environment. Finally,
I demonstrate an approach capable of addressing the efficiency of data collection measured
in terms of the accuracy of the training dataset.

6

Chapter 2

Background

2.1 Gaussian Processes - An Overview

GPs are an intuitive extension of mean and variance concepts of Gaussian probability
distributions to the function space. In other words, given a set of inputs, a GP outputs
a (multi-variate) Gaussian distribution whose mean and covariance is dependent on the
inputs provided thus characterizing a distribution over functions as illustrated in Figure 2.1.
It is clear, from the large variations in the sampled functions, that there is an increase in
uncertainty about what the true underlying function looks like when moving away from
regions with high data density.

Given a dataset with samples of the form (z,d), the GP models this as a multivariate
Gaussian of the form

p(d | ZD) = N (m(ZD), K(ZD,ZD)) (2.1)

where m(·), K(·, ·) are the prior mean and covariance functions respectively and ZD rep-
resents the set of training inputs. The assumption is usually made that the prior mean
is constantly zero [55] since it is practically not limiting and simplifies calculations. This
assumption will be utilized in this thesis. The form of the covariance kernel can now be
considered.

Choice of covariance kernel. The covariances between outputs are characterized
by covariance functions/kernels evaluated at their corresponding inputs. There are many
kernels used in practice [47] suitable for approximating different types of functions.

The most notable covariance kernel of these is the Squared Exponential (SE) kernel and
is used in this thesis. This function belongs to the family of universal approximators [93]

7

(a) (b)

(c) (d)

Figure 2.1: (a) and (c) depict examples of a Gaussian Process with a mean function and
covariance function (illustrated using symmetric 2-σ confidence intervals). Data samples
are depicted in red and the ground truth mean is plotted in green. Note that (c) has a
higher frequency mean than (a). (b) and (d) show arbitrary function realizations sampled
from the GP across the domain of the input space. (d) clearly extrapolates less from
training samples as compared to (b) due to the smaller learnt lengthscale and hence has
higher uncertainty in regions of low training data density.

and has the form,

Cj(z1, z2) = σ2 exp

(
−1

2
(z1 − z2)TΛ−1(z1 − z2)

)
(2.2)

In the context of applications to control systems, the input vectors z1, z2 come from the
joint state-input space. Defining the state and input constraint sets as X and U this yields
z1, z2 ∈ Z ⊆ X × U .

An important hyperparameter is the GP lengthscale. A longer estimated lengthscale
for the diagonal entry of a given variable implies that correlations that extend over large
distances as shown in Figure 2.1(a)/(b). In contrast, a smaller estimated lengthscale, as in
Figure 2.1(c)/(d), implies that the ability to extrapolate away from training data points is
limited.

8

In general, not all variables in Z contribute to variations in the residual term. The SE kernel
allows for Automatic Relevance Determination (ARD) based on lengthscale magnitude. A
very long lengthscale implies that the function varies minimally across the input domain
for that variable. This indicates that it does not play a role in determining the residual
magnitude. In this thesis, this procedure will be ignored and the following assumption
regarding the GP inputs is made.

Assumption 2.1.1. The variables that are relevant to the space of inputs to the GP are
known apriori allowing us to skip the process of identifying them via ARD.

The following assumption regarding the GP output vectors is also made (applicable
when the dimension of the residual vector is > 1).

Assumption 2.1.2. The residual terms governing different dimensions, {1, . . . , nd}, of
the residual vector, d, are independent of each other.

In light of Assumption 2.1.2, (2.2) can be subscripted by the dimension of the residual
vector, j.

Cse
j (z1, z2) = σ2

j exp

(
−1

2
(z1 − z2)TL−1

j (z1 − z2)
)

(2.3)

The hyperparameters (i.e., the variance σ2
j and the lengthscale Lj) are scalars and Lj = Λjj

for Λ described in (2.2).

Remark 2.1.1. Going forward, the index of the residual vector will no longer be high-
lighted. A GP model, ĝ, that outputs a vector will be assumed to benefit from Assump-
tion 2.1.2 and the statements that are true as a result of it.

When learning real-world functions, there is usually some degree of stochasticity in-
volved and so in addition to the SE kernel parameters, there is also the addition of a
Gaussian i.i.d noise hyperparameter σn which can be learnt from data. As a result of this,
the form of K(·, ·) in (2.1) is,

K(ZD,ZD) = Cse(ZD,ZD) + Iσ2
n (2.4)

There are many approaches that allow learning the parameters of the covariance kernel
used. Maximum Likelihood Estimation (MLE) approaches [55] [140] are most common
and they will be utilized in this thesis.

Making predictions. When dealing with a control problem, the datasets collected
consist of trajectories with samples of the form (xk, uk). To generate a dataset that can be

9

used for GP training, the residuals dk need to be computed as addressed in Chapter 3. D̃
is used to denote this augmented dataset.

Having learnt parameters for the covariance kernel, the GP can predict a outputs, d, for
a new deterministic input, z∗. The resulting distribution of d conditioned on the observed
data points ZD̃ and the new input z∗ is also Gaussian and can be derived as described in
[73],[135] using (2.4).

µd(z∗) = K(z∗,ZD̃)(K(ZD̃,ZD̃) + Iσ2
n)

−1
d (2.5a)

Σd(z∗) = K(z∗, z∗)−K(z∗,ZD̃)(K(ZD̃,ZD̃) + Iσ2
n)

−1
K(ZD̃, z∗) (2.5b)

This distribution over outputs is denoted as,

d = ĝ(zk) ∼ N
(
µĝ(D̃, zk),Σ

ĝ(D̃, zk)
)

(2.6)

The GP learns non-linear functions µĝ and Σĝ to represent the mean and variance respec-
tively of the predicted output. For this thesis, µĝ

k will be used as shorthand for µĝ(D̃, zk),

and Σĝ
k can be similarly defined.

As a result of Assumption 2.1.2, separate GPs can be trained for each output dimension
of the residual vector, stacking the mean outputs and diagonalizing the variance outputs.
Hence, µĝ

k = [µĝ
1,k . . . µ

ĝ
nd,k

]T and Σĝ
k = diag(Σĝ

1,k . . .Σ
ĝ
nd,k

). The probability distribution
in (2.6) can be written as,

N
(
µĝ
k,Σ

ĝ
k

)
=

1

(2π)nd/2 det(Σĝ
k)

1/2
exp

(
−1

2
(xk − µĝ

k)
TΣĝ

k

−1
(xk − µĝ

k)

)
(2.7)

and is axis-aligned by Assumption 2.1.2.

Remark 2.1.2. In this thesis the training inputs (xk, uk) are assumed to be known with
certainty (and hence so is dk by way of computing it from trajectory information as is
formalized in Section 3.3). In practical applications, this will almost never be the case
since there will always be uncertainty in blocks like localization in the autonomy stack.

In light of Remark 2.1.2, GP training that deals with the training inputs themselves be-
ing uncertain distributions (e.g., as might be produced by state estimators such as Kalman
filter) is referred to as “distributional” GP regression. [89] proposes the addition to a
corrective variance term to the posterior predictions to address this issue. Alternate ap-
proaches involve using distance metrics as covariance functions for input distributions [9].
Popular libraries such as [53] support the implementation of such approaches.

10

2.2 Introduction to MPC

The aim with MPC is to control a system optimally over a finite horizon or a short period of
time into the future. Deterministic continuous-time nominal system dynamics of the form
ẋ(t) = f(x(t), u(t)) yield an infinite-dimensional control problem over arbitrary horizons
due to the continuous nature of the optimization variables. The dynamics can be discretized
using a step-size ∆t that yields a tractable NLP of the form,

min
x,u
∥(xN − xrN)∥Q +

N−1∑
k=0

∥(xk − xrk)∥Q + ∥(uk − urk)∥R (2.8a)

subject to xk+1 = xk +∆tf(xt, ut), k ∈ {0, 1, . . . , N − 1} (2.8b)

xk ∈ X, uk ∈ U, k ∈ {0, 1, . . . , N − 1} (2.8c)

x0 = xinit (2.8d)

(2.8a) is representative of the cost of deviating from some trajectory xrk, u
r
k that is

desired to be tracked. In the case of stabilization, xrk = xs ∀ k ∈ {0, 1, . . . , N − 1}. In
this thesis, reference trajectories will be generated by approaches that do not account
for residual dynamics. As such, urk = 0 ∀ k ∈ {0, 1, . . . , N − 1} to provide the online
controller with the flexibility to adjust the input as is necessary. The provided input
trajectory can however be used for warmstarting [139] the online optimization. (2.8b) uses
an Euler discretization scheme to approximate the continuous non-linear dynamics and
enforce constraints regarding the system evolution over the horizon. Going forward, the
discretized nominal dynamics will be denoted using xk+1 = f(xk, uk). (2.8c) defines the
state and input constraint sets X,U respectively. In this thesis, these sets will be assumed
to be box constraints as in most practical applications. Finally, (2.8d) imposes an initial
value constraint on the optimization.

Figure 2.2 depicts a typical MPC paradigm where at each timestep t, an open-loop
optimization over an N step predictive horizon into the future is performed. Then after
applying only the first optimal control action, closed-loop state feedback is introduced
which yields the following benefits,

• Allows finding better solutions in a receding-horizon manner due to the approxima-
tion of an infinite horizon optimal control problem with a finite horizon one for the
purposes of computational tractability.

• Allows deviations from the predicted trajectory, due to uncertain dynamics and noise
encountered in the real-world, to be accounted for.

11

Constrained
Optimization Plant

Figure 2.2: A closed-loop MPC controller where the first optimal control action is applied to
the plant. The measured next state is passed back to the controller, re-parameterizing the
initial value constraint and shifting the reference trajectory after which the optimization
is re-solved.

2.2.1 Tractability of Gaussian Process-based MPC

The need for higher fidelity models and data-driven residuals results from the low fidelity
models considered when working with real systems not being accurate enough for predic-
tions to remain valid over a longer horizon, especially when operating the system at its
limits. However, data-driven approaches trained using libraries external to the optimiza-
tion toolbox of choice are essentially black boxes to the optimizer.

Optimization-based solvers work to try to make sure no constraints are violated while
simultaneously trying to minimize cost. As shown in the diagram, the initialization point
violates the equality constraint and the solver can compute a gradient to push this point in
the direction of the normal to the line hence reducing constraint violation. Since our data-
driven models appear in the dynamics constraints, it is crucial to be able to compute these
gradients efficiently. There are 2 factors that affect the computation of these gradients
particularly when using auto-differentiation frameworks (e.g., [7]).

• Dataset size. When using ML models that rely on inference conditioned on datasets
for their prediction step, the computational cost of the prediction scales with the
number of training points in the dataset. GPs are no exception to this rule. In
this thesis, it is assumed that the dataset size is relatively small (∼100s of points)
although there are several sparse GP approximations [140, 41, 123] that can readily
be incorporated into the proposed frameworks if this is not the case.

• Software implementation. Most, if not all, auto-differentiation engines benefit in
speed from constraints implemented within their native API/framework. Sometimes
provisions are made to allow for black-box constraint terms to be included in the
optimization (e.g., [7] callbacks), although this can significantly affect computation

12

Equality constraint

Cost function minima

Initialization point

Constraint jacobian

Loss jacobian

Constrained minima

Figure 2.3: A visual demonstration of the workings of gradient-based optimizers

time. The prediction step for GPs (2.5) is straightforward to implement in any
optimization framework of choice since it has a simple linear algebraic form. Hence,
computing gradients is quicker in comparison to other bayesian methods where this
prediction step might not be as easy to encode within the optimization framework.

2.2.2 Stochastic Chance-Constrained MPC

Polytopic sets are often used when expressing constraint sets on the state of the system.
One special type of polytope is that of a box constraint. This involves constraints of the

13

form,
xi,lb ≤ xi ≤ xi,ub ∀ i ∈ {0, 1, . . . , nx} (2.9)

where nx denotes the dimension of the state. This can be formulated into a linear constraint
of the form,

Hx ≤ b (2.10a)

H =

[
−I
I

]
(2.10b)

b =

[
−xlb
xub

]
(2.10c)

Polytopes such as (2.10) can be written as a conjunction of half-space constraints,

{x | Hx ≤ b} ≡ {x | ∧Nx
j=1h

T
j x ≤ bj} (2.11)

where j is used to index the jth row and entry of H and b respectively. In the case of the
box constraint, it is clear from (2.10b) that Nx = 2nx.

Assumption 2.2.1. The constraint sets on state and input are of the form described
in (2.10).

When dealing with stochastic systems, there is uncertainty involved at every timestep
of a trajectory prediction across a horizon. Using dynamics models involving terms that
represent stochasticity using probability distributions with infinite support (as is done
in GPs), the hard constraints defined by (2.10) can no longer be enforced with absolute
certainty. Instead, the optimization now deals with probabilistic joint constraint of the
form [92],

P (∧Nx
j=1(h

T
j xk ≤ bj)) ≥ 1−∆k =⇒ P (∨Nx

j=1(h
T
j xk > bj)) ≤ px ∀ k ∈ {0, 1, . . . , N} (2.12)

where ∆k represents the joint probability with which the constraints can be violated at each
timestep and px is the corresponding probability of satisfaction. Using Boole’s inequality
to provide a union bound on the RHS of (2.12) allows us to re-write it as a set of individual
constraints,

P (∧Nx
j=1(h

T
j xk ≤ bj)) ≥ 1−∆k ⇐⇒ ∧Nx

j=1 (P (h
T
j xk ≤ bj) ≥ 1− δjk) (2.13a)

Nx∑
j=1

δjk = ∆k (2.13b)

14

Figure 2.4: Inspired by [23]. A visual demonstration of how the mean of the state affects
constraint satisfaction for a given variance term. For both distributions, the means µx

1 , µ
x
2

satisfy the constraint −x ≤ −a(x ≥ a). For the distribution in green, the left-sided tail
does not exceed the specified violation probability while the distribution in yellow does.
Thus the state mean plays a big role in constraint satisfaction.

Note: The distribution of probability across the horizon has not been shown here but it
can be done in exactly the same manner as has been done for the polytopes at a specific
timestep. This modifies (2.13b) to

∑N
k=1

∑Nx

j=1 δjk =
∑N

k=1 ∆k = ∆.

Remark 2.2.1. The simplest uniform risk allocation strategy is utilized in this thesis ob-
tained by defining ∆k = ∆/N ∀ k ∈ {0, 1, . . . , N}, δjk = ∆k/Nx ∀ j ∈ {0, 1, . . . , Nx}.
However, this can lead to over-conservative constraints [92] and there are better approaches
to identify how to allocate risk across the individual chance constraints [98].

Because of the probabilities involved in the constraints in (2.13), it is not possible
to represent these in a standard optimization framework. When dealing with arbitrary
distributions, several approaches involve using the Cantelli–Chebyshev inequality [88, 92,
103]. However, if P (hTj xk ≤ bj) follows a gaussian distribution, a better (less conservative)
deterministic reformulation of (2.13) is obtained by providing constraints on the mean.

15

Given a multivariate normal distribution over the state vector at timestep k, xk ∼
N (µx

k,Σ
x
k), an error distribution, exk, can be defined as follows,

exk ∼ N (0,Σx
k) (2.14a)

xk = µx
k + exk (2.14b)

Consider now a simple half-space constraint given by hTx ≤ b. The distribution of the
error in the direction of this constraint is hT e ∼ N (0, hTΣxh). The chance-constrained
version of this half-space constraint when x is a random variable of the form specified
in (2.14) can be written using the standard inverse Gaussian Cumulative Distribution
Function (CDF) ϕ−1(pjk) rescaled for the distribution under consideration as follows [92,
79],

Z(Σx) =

{
µx | hTµx ≤ b− ϕ−1(p)

√
hTΣx

kh

}
(2.15)

where p = 1 − δ is the probability of satisfaction of the individual chance constraint and
Z denotes a shrunk version of X that depends on the variance of the random variable x.
Figure 2.4 shows why it is intuitive that the resulting constraint is placed on the mean.

This can now be generalized to the joint chance-constrained version of the problem to
which Boole’s inequality has been applied (2.13). Letting 1j denote the indicator function
for the jth dimension of the state and setting hj = 1j, it follows that,

hTj e
x
k ∼ N (0, hTj Σ

x
khj) (2.16a)

1T
j e

x
k ∼ N (0,1T

j Σ
x
k1j) (2.16b)

exjk ∼ N (0, [Σx
k]j,j) (2.16c)

where [Σx
k]j,j denotes the j

th diagonal element of Σx
k.

It is clear from Figure 2.4 that the inverse CDF is a one-sided condition due to the
integration up from −∞. It is desirable to have a symmetric condition on the error which
can be generated using −1j giving,

Exk =

{
exk |

(
exjk ≤ ϕ−1(pjk)

√
[Σx

k]j,j

)
∧
(
−exjk ≤ ϕ−1(pjk)

√
[Σx

k]j,j

)
∀ j ∈ {0, 1, . . . nx}

}
(2.17a)

= {exk | |exjk| ≤ ϕ−1(pjk)
√
[Σx

k]j,j ∀ j ∈ {0, 1, . . . nx}} (2.17b)

It is apparent that combining the indicator functions and defining the set for all j ∈
{0, 1, . . . nx} yields a box-constrained error set of the form in (2.10). Since there are 2nx

constraints, δjk =
1−px
2nx

and hence pjk = 1− δjk where px is the probability with which the
constraints should be satisfied at each timestep.

16

Chapter 3

Designing a Hybrid CC-MPC
Controller

3.1 Introduction

In this chapter, I consider a CC-MPC control problem for systems subject to “piecewise”
(multi-modal) non-linear residual dynamics. The piecewise nature involves the use of
discrete variables to allow for switching between the different modes of the dynamics.
Conventional approaches neglect the consideration of such discrete variables that involve
a subset of the joint state-input vector. For example, GPs are often trained in practice
while neglecting the workspace variables from the input space. This is necessary to prevent
overfitting and help with data efficiency. However, if the dynamics are piecewise non-linear
over the workspace, then the inclusion of discrete variables, as a separate function of the
workspace variables, allows us to take these switching dynamics into account.

Hence, I consider the case where the joint state-input space is partitioned into different
“regions”, whose locations are known apriori, each of which has a particular mode of the
residual active within it. I design a hybrid GP model and demonstrate its benefits over
a single GP model when approximating piece-wise functions. I then develop a hybrid
controller that leverages these learnt dynamics exhibiting better closed-loop performance
and safety when compared to an existing baseline MPC approach. Since these MINLPs are
NP-hard to solve in general, I propose an algorithm for a hierarchical planner-controller
architecture to reduce the problem complexity, while retaining the benefits, and improve
the application potential to systems that demand low controller sampling times.

17

Asphalt

Snow

Sa
nd

Grass

Figure 3.1: A wheeled robot driving over different terrains. The contact dynamics of the tyres
will differ across regions and also within the regions, making it difficult for a single model to
accurately capture the robot dynamics across the entire workspace.

3.1.1 Motivating Example

Here, I provide an example to practically motivate the problem considered which will
be referred to during the rest of this chapter. Consider a wheeled robot operating in
a workspace with regions consisting of different terrains as shown in Figure 3.1. Given a
nominal model for the robot dynamics, one can learn the unmodeled dynamics or a residual
dynamics model from data collected over several runs. Due to the robot (tyre) dynamics
involved here, that depend on hard to measure environmental factors such as the coefficient
of friction, not all regions possess the same true underlying dynamics.

For example, terrains like asphalt, with higher friction, may have lower in-region vari-

18

ation as opposed to slippery surfaces, like ice for the same value of state variables like
velocity.

The relevance of the piecewise dynamics becomes apparent when considering a reference
path to be tracked containing points belonging to different regions (terrains in this case)
across an open-loop horizon. This necessitates the use of a hybrid residual dynamics model,
to allow for model characteristics to change over regions of the state-input space of a
dynamics model, e.g., over different regions in the workspace of this example.

3.2 Problem Statement

Notation

Continuous system variables. I consider a system with state xk ∈ X ⊂ Rn, input
uk ∈ U ⊆ Rm at timestep k. Vectors in the joint state-input space are defined as zk =
[xTk , u

T
k]

T ∈ Z = X × U . Z is partitioned into a set of “regions”, Rset = {Ri ⊆ Z, i ∈
{1, . . . ,R}}.
True system dynamics. f(xk, uk) : Rn × Rm → Rn is used to denote the known, low-
fidelity model of the dynamics, i.e., the nominal model. g : Rn ×Rm → Rn represents the
unmodeled (residual) dynamics, which is a piecewise varying function over regions Rset.
Each mode of this function is denoted by gr ∀ r ∈ {1, . . . ,R}.
Learnt system dynamics. ĝ is used to denote the learnt approximation to the true
piecewise residual dynamics. The construction formalized here assumes access to full state
information. However, for ease, the projection of zk onto the subspace, Gin, of inputs to
the GP model is defined as yg : Z → Gin, y

g(zk) = Bg,inzk = ygk. Here, Gin ⊆ Rng where
ng is known since Assumption 2.1.1 holds.

Discrete (switching) variables. The discrete variables, that allow switching between the
modes of the piecewise function g, are indexed by region, r, and timestep, k, and denoted
as δr,k. In a similar fashion to ygk, I use y

δ : Rm+n → Rnδ , yδ(zk) = Bδzk = yδk ∈ ∆in to
denote the projection of zk onto the subspace, ∆in, that defines the regions in Rset and
controls the assignments to δr,k. In the context of Example 3.1.1, ∆in is defined by the
workspace variables (x, y) with nδ = 2.

The following assumptions and remarks are made regarding Rset and the elements that
constitute it.

Remark 3.2.1. The variables in ∆in allows Rset to be dependent on either the system (e.g.,
velocity variables) or the environment (e.g., position variables) or both. In Example 3.1.1,

19

it is expected that the locations of the terrains would change with the environment the
system is operating in causing them to be environment-dependent.

Assumption 3.2.1. The elements in Rset are polytopes and the polytopic constraints (of
the form Hyδ ≤ b) that define them are known. These regions are also assumed to be
time-invariant.

Hyδ ≤ b can equivalently be replaced by Hz ≤ b (with slight abuse of notation as the
matrices are no longer of the same dimension but this is down to zero-padding) since the
truth value of the inequality is independent of the assignments to variables in Z \∆in. In
light of Remark 3.2.1, this assumption implies that when dealing with regions defined either
in part or completely by workspace variables, the region locations specific to a particular
environment are known in advance.

Assumption 3.2.2. ∪iRi = ∆in and Ri ∩ Rj = ∅ ∀Ri, Rj ∈ Rset, i ̸= j, i.e., the regions
partition ∆in

The true discrete-time dynamics of the system can be formulated as,

xk+1 = f(xk, uk) + g(xk, uk) + wk (3.1a)

where, g(xk, uk) =
R∑

r=1

δr,kgr(xk, uk) (3.1b)

and, δr,k =

{
1, if{xk, uk} ∈ Rr

0, otherwise
(3.1c)

Here, wk is the process noise which is considered to be of the form,

wr,k ∼ N (0,Σn,r) (3.2a)

wk =
∑
r

δr,kwr,k ∈ Rn (3.2b)

where Σn,r characterizes the noise covariance in region r.

Assumption 3.2.3. Σn,r is a diagonal matrix implying that noise samples are spatially
uncorrelated across all dimensions of the residual.

The following constrained optimal control problem is considered, defined over the sys-
tem in (3.1).

20

Problem 1. Given the system in (3.1) with the unmodeled piecewise dynamics (which is
stochastic due to the assumed probabilistic process noise defined in (3.2)), design a con-
troller to minimize the control objective J =

∑
k Ewk

(||xk−xrefk ||2Q+||uk||2R) while satisfying
constraints Pr(xk ∈ X) ≥ px, P r(uk ∈ U) ≥ pu ∀k ≥ 0. Here, X and U are convex sets,
Q and R are positive semi-definite and positive definite matrices respectively, and px and
pu are user-defined probabilities of constraint satisfaction at each timestep on the state and
input respectively.

Dataset construction using apriori collected samples. Since the piecewise unmod-
eled dynamics g are unknown, I make the following assumption in order to turn the problem
into one for which a hybrid residual dynamics model can be learnt.

Assumption 3.2.4. Access is provided to state and input data D = {xk, uk}Dk=0 generated
by multiple runs of the system (3.1). It is assumed this data is not subject to measurement
noise. The data is rich in the sense that it covers all regions Ri that partition ∆in and the
samples specific to each region are uniform randomly distributed over the domain defined
by Gin.

Given these data samples, the mismatch, dk, can be defined between the actual system
(3.1) and a nominal model where x̄k+1 = f(xk, uk). This information can be encapsulated
in an augmented dataset D̃ defined as,

x̄k+1 = f(xk, uk)

xk+1 = f(xk, uk) +
∑
r

δr,kgr(xk, uk) + wk

dk = xk+1 − x̄k+1

=
∑
r

δr,kgr(xk, uk) + wk (3.3)

D̃ = {zk, dk}Dk=0 (3.4)

Note. For generality here, dk is demonstrated as the difference between the measured
and nominal-predicted state vector, xk+1 and x̄k+1 respectively. However, in the imple-
mentation, it is easier to work with dk = ygk − ȳgk where ȳgk = Bg,inx̄k+1 as a result of
Assumption 2.1.1.

The computation of dk, is facilitated by

• The absence of measurement noise (Assumption 3.2.4) and the provided nominal
model f , allowing us to generate x̄k+1 (the next state as predicted by the nominal
model) from xk, uk.

21

• Access to the true measured next state xk+1 since D̃ is generated after a trajectory
has been executed which allows us to leverage “future” information for the sample
at the kth timestep.

The dataset D̃ can now be used to learn the hybrid residual model as will be further
elucidated in Section 3.3.

Note: When dealing with noise models possessing infinite support (e.g., (3.2a)), learning
probabilistic models for the residuals that capture this behaviour and embedding this into
the controller yields a chance-constrained optimization that approximately solves problem
1.

Problem 2. Given the nominal system dynamics f and the dataset D̃ to learn a model
for the unmodeled piecewise dynamics g, develop a controller for the system (3.1) that
minimizes the expected cost J =

∑
k Ewk

(||xk−xrefk ||2Q+||uk||2R) subject to the approximated
chance-constraints:

Pr(xk ∈ X) ≥ px ∀ k ≥ 0 (3.5a)

Pr(uk ∈ U) ≥ pu ∀ k ≥ 0 (3.5b)

3.3 Learning Hybrid GP residual models

In this section, an approach to train a hybrid GP model is presented. The dataset, D̃,
defined in (3.4), is first partitioned into {D̃1 . . . D̃R} such that

D̃r = {(zk, dk)|(zk, dk) ∈ D̃ & yδk ∈ Rr} ∀ r ∈ {0, . . . ,R} (3.6)

Using Assumption 3.2.2, it follows that D̃i ∩ D̃j = ∅ ∀ i, j ∈ {1, . . . , R}, i ̸= j.

Remark 3.3.1. For simplicity here, D̃r is formalized to be constructed using samples
collected in a particular region Rr. When dealing with an environment-dependent ∆in

(Remark 3.2.1), this procedure can be generalized to any arbitrary environment instead of
just the environment the system is operating in.

In the context of Example 3.1.1, Remark 3.3.1 essentially says that having access to samples
collected on snow in some environment can be used to train a mode of the hybrid GP
model that can then be leveraged in any arbitrary environment where snow is present.

22

Combining the fact the gr(xk, uk) is deterministic ∀r and wr is zero-mean i.i.d noise with
variance Σn,r, (3.6) can be alternatively written as,

D̃r = {(zk, dk)|(zk, dk) ∈ D̃ & dk ∼ N (gr(xk, uk),Σn,r)}

GPs (ĝ1 . . . ĝR) = ĝset can now be trained to try to approximate the piecewise residual
dynamics defined by (g1 . . . gR). This allows prediction of dk as a function of zk by condi-
tioning on datasets (D̃1 . . . D̃R) respectively as outlined in (2.5). The output produced by
each of these GPs is denoted as,

ĝr(xk, uk) ∼ N
(
µĝr(D̃r, zk),Σ

ĝr(D̃r, zk)
)

(3.7a)

= N
(
µĝr
k ,Σ

ĝr
k

)
(3.7b)

Thus the proposed model is obtained to be,

ĝ(xk, uk) ∼ N
(
µĝ
k,Σ

ĝ
k

)
(3.8a)

where, µĝ
k =

∑
r

δr,kµ
ĝr
k ,Σ

ĝ
k =

∑
r

δr,kΣ
ĝr
k (3.8b)

µĝ
k,Σ

ĝ
k represent the residual mean and covariance respectively of the hybrid GP-based

residual model and δr,k is as defined in (3.1c). Assumption 2.1.2 holds for each ĝr ∈ ĝset.
Note. The true noise value sampled from the environment is purely dependent on the
region and hence δr,k dependent on yδk (3.2). In general, the (epistemic) uncertainty in the
learnt GP dynamics due to the possible lack of availability of samples also contributes to
Σĝ

k. This causes the uncertainty term in the hybrid residual dynamics to be dependent on
ygk as well rather than just yδk.

(3.8) is in contrast to the single GP residual model defined as,

ĝb(xk, uk) ∼ N
(
µĝb
k ,Σ

ĝb
k

)
(3.9)

with the non-linear functions µĝb ,Σĝb being dependent on the full dataset D̃.

Remark 3.3.2. When it comes to switching between region-specific modes, ĝr, note that∑
r δr,k = 1 ∀ k as a direct consequence of Assumption 3.2.2. Hence, the system can only

be within one region at any given timestep. Due to this, even though each individual GP
itself has infinite support (or more practically, support across the entire bounded space

23

Gin), the discrete variables defined in the hybrid setup allow the model to switch between
different modes based on the region the system is currently in. In other words, the influ-
ence of a region-specific GP mode on the residual dynamics ends at the boundaries of its
corresponding region.

In summary, the true state dynamics equation (3.1) is approximated as below,

xk+1 = f(xk, uk) + ĝ(xk, uk) (3.10)

with ĝ(xk, uk) as specified by (3.8).

Assumption 3.3.1. f and ĝr are at least 1-time differentiable.

This is not a particularly limiting assumption since the SE kernel (2.3) used is infinitely
differentiable, as are other kernels [47, 110].

3.4 Demonstrating the benefits of hybrid GP models

Firstly, the benefits provided by the hybrid model over a single GP model are demonstrated
by looking at several test cases.

The significance of the problem introduced in Section 3.1.1 is visually elucidated using
several examples of residual dynamics. The capabilities of the hybrid model, proposed in
Section 3.3, to abate the issues faced by a single GP model is demonstrated. Section 3.4.1
provides an in-depth quantitative and qualitative analysis of how a single GP might suffer
from smooth approximations to sharp transitions between dynamics from one region to
another. Section 3.4.2 and 3.4.3 provide qualitative analyses for additional possible residual
cases that might be encountered in practice relating to issues with frequency variation in
the dynamics across regions and when the GP input space overlaps across multiple modes
respectively.

3.4.1 Effects of discontinuities in residuals.

Though GPs are quite expressive, discontinuities in residual dynamics at region bound-
aries are approximated by transition regions of non-infinite slope. As a result, for the case
where a single GP is used to model residuals of the form (3.1b), a large jump in the resid-
ual dynamics between two neighbouring regions can cause a larger region over which the

24

predicted mean dynamics remain highly inaccurate. Tracking values within this transition
region can contribute to inaccuracy in predicting of the residual term over the horizon.
The switching dynamics (3.8b) ingrained in the hybrid GP model proposed solves this
issue relating to transition regions.

As a simple example, a residual that is piece-wise with 2 regions each having indepen-
dent noise covariances can be considered, as seen in Fig. 3.2 (a). In this specific case,
∆in = Gin = X for simplicity. So to generate the dataset D̃, xk is sampled uniform
randomly from X = R1 ∪R2 with R1, R2 as defined below.

R1 = {−2 ≤ x ≤ −0.5} ; Σn,1 = (0.04)2

R2 = {−0.5 < x ≤ 2} ; Σn,1 = (0.01)2

g(xk, uk) is then obtained using (3.1b) and wk is sampled from (3.2a) to generate dk (3.3)
given nominal dynamics xk+1 = 0.5xk + 0.75uk.

With this example, it is intended to show how using a hybrid GP model solves the
transition region issue while learning a more accurate covariance function across the domain
X. For an arbitrary subset S ⊆ X the errors in learnt mean and covariance function from
the hybrid model are defined as,

eµ(S) =

∫
x∈S
|g(x)− µĝ(x)|dx (3.12a)

eσ(S) =

∫
x∈S
|
√
Σn −

√
Σĝ (x)|dx (3.12b)

where µĝ(x),Σĝ(x) are as in (3.8b) and Σn =
∑

r δr,kΣn,r. The same can be used to compute
errors for the single GP case using µĝb(x),Σĝb(x) as in (3.9). ehµ(S), e

h
σ(S) will be used to

refer to errors in the mean and covariance functions for the hybrid model and similarly
ebµ(S), e

b
σ(S) is used for the single GP model.

Method eµ(X) eµ(R1) eµ(R2) eσ(X) eσ(R1) eσ(R2)

Single GP 0.731 0.304 0.426 1.49 0.55 0.934
Hybrid GP 0.345 0.193 0.1519 0.151 0.1 0.05

Table 3.1: Comparison of absolute errors in the mean (eµ) and covariance (eσ) functions for the
hybrid and single GP models over the domains X,R1, R2. Errors computed over 30 runs using
400 samples to train the model and 120 values across X for verification to generate the error
terms (3.12).

25

Figure 3.2: Plots of the residual magnitude (y-axis) vs. the single state variable input
to the GP (x-axis) (a) Plot of the true underlying piece-wise residual dynamics and the
samples generated from it to be used to train the GP. (b) Plot of the single GP and
the learnt covariance function. (c) Plot of the independent region-specific trained GPs
visualized over the entire state space. (d) Plot of hybrid piece-wise trained GP with mean
and variance computed as defined in (3.8b). (e) Mean function absolute error for single
GP approach over state domain (f) Mean function absolute error for hybrid GP approach
over state domain

26

Addressing transition regions and learnt mean functions. Fig. 3.2 (b) clearly
illustrates the transition region issue for the single GP case along with Fig. 3.2 (f) that
shows a spike in mean function error around the region boundary x = 0.5.

Fig. 3.2 (c) shows the mean and covariance functions of the individual GPs ĝr across the
entire state spaceX. However, the switching dynamics 3.8b that result from the introduced
discrete variables allow the hybrid model to only consider the residual as depicted in Fig.
3.2 (d) thus solving the transition region issue as further illustrated by the hybrid GP mean
function error plot in Fig. 3.2 (f). Moreover, the values in Table 3.1 show a significant
reduction in modeling error across the entire state domain, X, as well as the individual
regions, R1, R2 for the hybrid GP model as compared to the single GP.

Addressing errors in estimated covariance function. When dealing with noise mod-
els of the form (3.2), the single GP approach learns a weighted average of the parameters
in different regions. Operating within a region that has a higher true noise covariance
than the one learnt by the GP covariance function leads to shrinking of constraint sets (as
described in Section 2.2.2) in a way that affords a lower degree of conservatism than would
be desired to meet the specified satisfaction probabilities from (3.5) and vice versa.

Remark 3.4.1. There exist GPs capable of modelling “heteroscedastic” noise i.e., noise
that is a function of the input [137, 84, 21]. Their use is not considered here since they
are not only harder to train but also because they are unnecessary when dealing with a
noise model of the form (3.2) which varies only with region and not continuously across
the entirety of the GP input space.

The hybrid model learns separate noise models (and/or parameters) for every region to
address this problem resulting in it significantly outperforming the single GP in estimating
the residual dynamics (3.3) (and uncertainty) as seen in Table 3.1.

Note. The “kink” or discontinuity in the function causes the single GP to learn a
very short lengthscale [47]. Thus, if the data is not dense, the uncertainty grows much
faster for the single GP as opposed to the hybrid model for the same dataset as seen in
Figure 3.3 which deals with a residual similar to Figure 3.2 but with a slightly exacerbated
discontinuity between the piecewise modes.

3.4.2 Addressing issues with learnt lengthscales.

The second case considered is when the residual dynamics models in each region have
varying frequency components. A simple example of this is a sum of sinusoids with varying

27

(c)
(c)

Single GP model Hybrid GP model

Figure 3.3: (a) Shows a piecewise residual with a significant discontinuity between its
modes. (b) Shows the output after training a single GP model. The short learnt lengthscale
introduces noise into the mean function and causes uncertainty to rise sharply in areas of
low data density. (c) Shows the output from a hybrid GP model that is able to extrapolate
the high lengthscale piece-wise mode well in the absence of data.

frequencies. As depicted previously in Figure 2.1, the learnt lengthscale determines how
fast the function varies and is hence related to the frequency components in the underlying
model it is trying to approximate. Figure 3.4 (c) shows the case where the single GP
hyperparameter optimization converges to the smaller lengthscale determined by region 2.
It is clear that the GP starts locally overfitting to noisy samples in region 1 due to this
small learnt lengthscale as evidenced by the high frequency artefacts that seems to appear
on top of the true underlying function in the learnt model over this region. Alternatively,
Figure 3.4 (b) shows the case where the lengthscale convergence is dominated by the
samples in region 2. Here, the larger learnt lengthscale causes the single GP model to
believe the samples collected in region 2 are extremely noisy and “filters” out the high
frequency components here. As a result, the noise parameter learnt by hyperparameter
optimization is very large and generalizes to region 1 as well even though the samples
collected in that region clearly have very little noise.

Remark 3.4.2. It could be possible to use the rational quadratic [47, 110] kernel which
learns a weighted combination of lengthscales (albeit constant across the entire input space)
to partially address this issue for the single GP. Alternatively, kernels with long and short
learnt lengthscales could be combined to ensure that no region is devoid of their true length-
scale but this still means there is inevitably high/low frequency components injected across
the entire space even where they might be undesirable.

28

(a)

(b)

Single GP Model

Hybrid GP Model

(c)

(d)

Figure 3.4: (a) True sinusoidal residual underlying dynamics with a high frequency sinusoid
in region 2. (b) A learnt single GP model where hyperparameter optimization has aligned
with the parameters in region 1. (c) A learnt single GP model where hyperparameter
optimization has aligned with the parameters in region 2. (d) Learnt hybrid GP model
with 2 modes that remedies the issues of the single GP models.

In contrast, the hybrid GP model proposed addresses the possible issues that arise when
using the single GP model as seen in Figure 3.4 (d).

29

(a)

(b) (c)

Figure 3.5: Illustrative example. (a) Visual mapping of different terrains across the
workspace to the corresponding modes of the residual model. (b) A single GP model
which learns a very noisy function due to the low correlation between the different modes
across the input space. (c) The hybrid GP model that accurately learns the piecewise
residual dynamics with an overlapping input space.

3.4.3 Residual dynamics with overlapping input spaces.

The two cases discussed so far have considered examples where the modes of the true
piecewise dynamics have non-overlapping input domains i.e., ∆in = Gin. As indicated in
Example 3.1.1, this is not the case the general.

When the residual dynamics have overlapping input domains, the single GP model
performs significantly worse as has been demonstrated in Figure 3.5 (b). It is clear that
the posterior mean of the learnt single GP across the entire input space is still constantly
zero. If one were to use this in control, it would essentially resemble a nominal MPC
controller with added conservativeness due to the large learnt noise parameter.

In contrast, the hybrid GP model in Figure 3.5 (c) does not suffer from the same issue.

30

3.5 Designing an SMPC Controller for a model with

hybrid piece-wise dynamics

3.5.1 Control Policy.

Since searching over the space of all possible control laws is generally infeasible, one usually
defines a form of control law to optimize over. Here an “indirect” feedback control law [66]
is considered which is defined as,

uk = πk(xk) = K(µx
k − xk) + µu

k (3.13)

The term “indirect” comes from the fact that feedback of the state mean µx
k is not directly

considered as is conventional [92] but rather consider the deviation of the true state from
the mean. [64] compares the two approaches and shows how the indirect feedback law
prevents over-conservatism that might result from using the direct feedback law.

Remark 3.5.1. [62] shows how the controller performs well in a practical application to
miniature race cars even in the absence of the feedback term in the control law (i.e., K=0).

Remark 3.5.1 could be relevant in the case where the discretized uncertainty contributed at
every timestep is not too large thus preventing a rapid compounding growth of uncertainty
over the horizon.

K : Rn → Rm is chosen to be the stabilizing feedback matrix after solving the LQR
problem (using Q, R defined as in Problem 1) that reflects the cost of deviation from a
reference trajectory and actuation effort respectively.

The above control structure defines µu
k as the deterministic control variable while the

actual control input uk itself is stochastic due to its dependence on xk.

3.5.2 Propagating residual dynamics across a horizon.

I now incorporate the proposed hybrid GP, approximating the piecewise residual dynamics,
into the controller design. For reasons that will become clearer over the rest of this section,
the distribution over joint state-input-residual vectors is approximated by a multivariate

31

Gaussian distribution at every timestep.[
xTk uTk ĝTk

]T ∼ N (µk,Σk) (3.14a)

where, µk =
[
(µx

k)
T (µu

k)
T
(
µĝ
k

)T]T
(3.14b)

and, Σk =

Σx
k Σxu

k Σxĝ
k

Σux
k Σu

k Σuĝ
k

Σĝx
k Σĝu

k Σĝ
k

 (3.14c)

where µĝ
k,Σ

ĝ
k are as in (3.8), µu

k as in (3.13) with the matrix, Σk, being symmetric by
definition. The process of obtaining µx

k+1 and the individual terms in (3.14c) is explained
below.

Propagating state mean and covariance. Given nominal system dynamics, a first
order Taylor series approximation can be used to linearize them around the mean. Using the
approximated dynamics (3.10) allows for the propagation of the joint Gaussian distribution,
Σk, through the linearized function while maintaining that the next state (output) remain
a Gaussian as well [61] characterized by the mean and covariance shown below.

µx
k+1(µk) = f(µx

k, µ
u
k) +Bgµ

ĝ
k (3.15a)

Σx
k+1 = [∇f(µx

k, µ
u
k) Bg] Σk[∇f(µx

k, µ
u
k) Bg]

T (3.15b)

Note. The matrix Bg is used to limit the residual terms to specific dimensions of the
state vector and can be useful to neglect learning unnecessary residuals when certain com-
ponents of the dynamics are well known. Here, Bg : Rng → Rn, µĝ

k ∈ Rng ,Σĝ
k ∈ Rng×ng .

Formulations up to this point can be assumed to have used Bg = In×n with µĝ
k ∈ Rn.

Assumption 3.5.1. The initial state is known perfectly, i.e., Σx
0 = 0n×n implying Σu

0 =
0m×m since µx

0 = x0 in (3.13).

Σx
k ∀ k ≥ 1 can then be obtained using (3.15b).

Constructing joint state-input-residual covariance matrix: From (3.13) it is
clear that Σu

k , Σ
xu
k are merely linear transformations of Σx

k computed as Σu
k = KΣx

kK
T ,

Σxu
i = Σx

iK
T . In Section 2.1 the predicted output distribution for a deterministic input

was discussed. However, when dealing with a look-ahead prediction procedure (as in-
troduced in Section 2.2), the input to the GP after the first time step is drawn from
a multivariate Gaussian distribution with covariance BgΣ

ĝ
0B

T
g (using (3.14c) (3.15b) and

Assumption 3.5.1). In general, since the mean function of a GP is nonlinear in general,

32

propagating a Gaussian distribution through it results in a non-Gaussian output distribu-
tion that is intractable to evaluate analytically. While there are sampling based methods
capable of approximating this distribution [76][97], in this thesis I focus on methods that
model the output distributions at each timestep k by a approximate multivariate Gaus-
sians [73][55].

For simplicity, I make use of the mean equivalence approximation for uncertainty prop-
agation which assigns Σxĝ

k := 0n×ng , Σ
uĝ
k := 0m×ng ,Σ

ĝ
k := Σĝ(µx

k, µ
u
k). This has the benefit

of lower computational complexity at the cost of compounding errors in uncertainty over
longer horizons. Other approximations such as Taylor approximation and exact moment-
matching can be found in [73, 52, 55].

3.5.3 Shrunk chance-constrained sets.

The formulation in Section 3.5.2 has yielded equations for Σx
k at every step k over the open-

loop horizon. For a general polytopic constraint set X, the following theorem from [61] can
be used for obtaining shrunk constraint sets based on the box-constrained error sets (2.17)
derived in Section 2.2.2.

Theorem 3.5.1. [61] Given an error set of the form (2.17), the shrunk constraint set for
the state mean, µx

k, can now be obtained using the Pontryagin difference [26] as,

µx
k ∈ Z = X ⊖ Ex(Σx

k) (3.16a)

Z(px,Σx
k) = {µx

k | Hµx
k ≤ b̃(Σx

k)} (3.16b)

with b̃(Σx
k) = b− |H|ϕ−1(p̄)

√
diag(Σx

k), p̄ =
1−px
2nx

and ϕ−1 being the inverse CDF described
in Section 2.2.2. diag(·) yields the vector of diagonal elements and square-root is taken
element-wise.

For an indirect feedback control law with Σu
k = KΣx

kK
T , shrunk constraint sets for the

input can be similarly derived,

µu
k ∈ V = U ⊖ Eu(Σu

k) (3.17)

3.5.4 Big-M formulation for the hybrid residual model.

Given a point belonging to a particular region the optimizer must be provided with a way
of selecting the corresponding mode of the hybrid GP for the dynamics update step. This

33

Figure 3.6: Optimizing over the space of trajectories to get from the start position (red)
to the destination (green) leads to different assignments to the discrete δ variables at each
timestep. These assignments can be element-wise multiplied with the vector of residual
outputs from the hybrid GP model. As a simple example, consider the third timestep of
the purple path and assume it belongs to the 2nd region. In this case, since region 2 is the
active mode, the residual term from that region is selected for the dynamics equation.

34

cannot be done apriori since optimizing over the space of trajectories yields trajectories
that can have differing modes active at different timesteps.

To handle for this, a set of discrete variables is introduced which evaluate to 1 when
a point is within the region and 0 otherwise as exemplified in Figure 3.6. The residual
terms are computed in parallel for all modes of the hybrid model. However, only the term
corresponding to the active (as determined by the assignment to the discrete variables)
mode is selected.

Dealing with polytopic non-overlapping regions (Assumptions 3.2.1 and 3.2.2), the cor-
responding constraint that replicates (3.1c) can be defined as,

Hrzk ≤ b+ M⃗(1− δr,k) (3.18)

where M⃗ ≫ 0 and is of the same dimension as br. Since δz,k ∈ {0, 1} this yields,

(δr,k = 1) =⇒ Hrzk ≤ br =⇒ zk ∈ Rr (3.19a)

(δr,k = 0) =⇒ Hrzk ≤ br + M⃗ (3.19b)

where (3.19b) is always true so long as M⃗ is set to be large enough to encompass Z
and hence reduces to δr,k =⇒ zk ∈ Z. Since Z × V from (3.16a) is already contained
within this set, (3.19b) is essentially a redundant implication that indirectly says ∃r ∈
{1 . . .R} s.t. δr,k = 1 ∀ k. In order to constrain δr,k = 1 only when zk ∈ Rr, I enforce the
additional constraint, ∑

r

δr,k = 1 ∀ k ≥ 0 (3.20)

Thus, combining (3.18) and (3.20) a re-formulation of (3.1c) can be obtained. Note. The
dimension of the array of discrete (binary) variables involved in the formulation is indicated
below,

δ ∈ {0, 1}R×N (3.21)

Remark 3.5.2. The inclusion of these discrete variables at each timestep allows for switch-
ing between modes across the horizon. This is in contrast to [96] which learns a weighted
convex combination of a library of GP models to construct a residual model that remains
constant over the horizon. Whether this is beneficial in practice or not is left for future
work.

35

3.5.5 Cost Function.

Dealing with the stochastic system in (3.1), a quadratic cost function computed as an
expectation over states and inputs [1] can be considered. This is defined as,

E(xk − xrk, uk − urk) =∥µx
k − x

ref
k ∥

2
Q + ∥µu

k − urk∥2R
+ trace(QΣx

k) + trace(RΣu
k)

(3.22)

utilizing Q, R as in 3.5.1. The terminal cost is defined as,

E(xN − xrN) = ∥µx
N − xrN∥2P + trace(PΣx

k) (3.23)

where P is the solution to the Discrete Algebraic Riccati Equation (DARE).

3.5.6 Hybrid MPC Formulation

By bringing together the constructions of the previous sections, the following hybrid MPC
is proposed to solve problem 2.

min
µu
k ,δ

E(xN − xrN) +
N−1∑
k=0

E(xk − xrk, uk − urk)

s.t. Σx
0 = 0n×n , µ

x
0 = x0,

δ = {δr,k}r∈0,...,R,k∈0,...,N−1 ∈ {0, 1}R×N

∀k = {0, . . . , N − 1} : (3.24a)

µĝ
k =

∑
r

δr,kµ
ĝr
k , (3.24b)

Σĝ
k =

∑
r

δr,kΣ
ĝr
k , (3.24c)

µu
k ∈ V(Σu

k),

∀k = {0, . . . , N} :
µx
k+1(µk) = f(µx

k, µ
u
k) +Bgµ

ĝ
k,

Σx
k+1 = [∇f(µx

k, µ
u
k) Bg] Σk[∇f(µx

k, µ
u
k) Bg]

T , (3.24d)

µx
k+1 ∈ Z(Σx

k+1),

where Σk in (3.27a) is obtained as described in Section 3.5.2 and δ is the collection of binary
variables (3.21). Note, this is a MINLP since the mean and covariance update equations

36

are non-linear and δr,k are binary variables, while the control variables µu
k are real valued.

At every timestep, the control input µu
0
∗ is applied as generated by the optimizer. The

problem is then re-solved in a receding horizon manner at the next timestep after obtaining
a new initial state.

Remark 3.5.3. For simplicity in this formalization, it has been assumed that each indi-
vidual region contributes to a “unique” mode of the hybrid model.

In the context of Example 3.1.1 this means that no two disjoint regions across the workspace
share the same underlying terrain. It is however, straightforward to extend the proposed
controller to settings where this is not the case as follows,

• ∀Ri, Rj ∈ Rset s.t. i ̸= j, if the regions have the same underlying mode of the residual
model, ĝt then their augmented datasets D̃i, D̃j are merged. The process can be
repeated for each mode of the hybrid model. Let Rt = {Ri | Ri ∈ Rset & ĝr = ĝt}.

• Let nt denote the number of regions in the workspace that have a particular mode,
t, and Nt denote the total number of modes. Another array of discrete variables
δt ∈ {0, 1}Nt×N can be defined. If δin falls in any of the regions in Rt, then δt = 1
i.e., an additional constraint is now defined in the optimization as follows,

δtk = 1 ⇐⇒
nt∑
i=0

δrk = 1 (3.25a)

• It is the δt array that now gets incorporated into the control formulation for selecting
the mean and covariances in (3.24b) and (3.24c) respectively.

3.6 Improving computational speed of a hybrid GP-

MPC controller.

The results presented in Section 3.7.1 pertaining to the controller proposed in Section 3.5.6
require a large amount of time required to solve the MINLP optimization at each timestep
of the closed-loop simulation. This could be useful for systems like chemical plants or
HVACs with relatively low controller sampling frequencies. However, MPC controllers are
usually expected to operate at a much higher frequency for practical robotic platforms and
this problem is now addressed.

37

3.6.1 Cause of slow MINLP solve times.

MINLPs problem are much harder to solve than NLPs due to the presence of discrete
(integer) variables in MINLP problems which causes the search space over which the op-
timization is performed to suffer from the problem of combinatorial explosion. These
algorithms often use techniques such as branch and bound, relaxations and heuristics to
address the computational tractability of the problem [25]. In contrast, NLP problems that
deal solely with continuous variables rely on comparatively more efficient gradient-based
optimization methods to find (sub-)optimal solutions.

The δ array in Section 3.5.6 has R × N discrete variables as shown in (3.21) where R
is the number of “unique” regions (e.g., terrains) involved in the hybrid GP model. For
robotic platforms, open-loop MPC over a look-ahead horizon of ∼1-2 seconds with a control
sampling frequency of 10-20 Hz is common [16, 77]. The larger horizon is particularly
necessary in the case where terminal constraints are not included in the optimization [56,
18, 3]. This often corresponds to N ∈ [20, 100] ∩ Z. However, increasing N linearly scales
the number of discrete variables and causes the complexity of the resulting optimization
to grow out of hand very quickly. It is desirable to retain a high value of N to benefit from
the longer look-ahead and the increased prediction accuracy as a result of the available
higher fidelity model obtained by incorporating a data-driven dynamics term.

If the δ array is now considered to be parametrized, it is no longer required to search
over the space of assignments to the variables in the δ array. While this can affect the
optimality of the resulting solution, it significantly improves the computational tractability
of the optimization to be solved by the controller.

In order to parametrize the δ array, I propose a hierarchical planner-controller archi-
tecture that allows reduction to a simpler NLP problem while retaining the benefits of
the hybrid formulation. The proposed approach is first elaborated on in Section 3.6.2 and
then considerations that might arise pertaining the planners being used are discussed in
Section 3.6.3.

3.6.2 Constructing a parametrized hybrid MPC controller.

Assumption 3.6.1. Any arbitrary planner can be used so long as it provides assignments
to the variables in yδk ∈ ∆in ∀ k ∈ {0, 1, . . . Nsim} with Nsim = T/∆t with T being the
simulation time and controller sampling frequency being 1/∆t.

Given a plan with such assignments, yδ,refk , it is now possible to directly evaluate yδ,refk ∈
{yδk | Hry

δ
k ≤ br} for each region, r, and assign values to the vectors in the δ array 3.21

38

apriori. Additionally, if assignments to ygk are also provided, it is possible to approximately

shrink the constraint sets apriori as well. This is due to the fact that Σĝ
k can be computed

and propagated through the covariance dynamics equations (3.27a) obtained by linearizing
the dynamics about the nominal trajectory.

Notation. Given a tensor, A, I use the indexing shorthand A[:, i : j, k] = A[:][i : j][k],
where “[:]” selects all the elements along the first axis and “[i : j]” selects elements from
indices i→ j − 1 (limits inclusive) along the second axis. len(·) is an overloaded operator
that returns the number of elements when applied to sets and the number of columns when
applied to 2-D matrices. range(N) is used to denote the set of whole numbers leading up
to (but not including) N i.e., range(N) = {0, 1 . . . N − 1}

Algorithm 1 details how the computation of certain components of the online controller
in Section 3.5.6 can be shifted to an offline block and approximated apriori. I now list the
considerations embedded within the algorithm,

• Consider an online controller operating over Nsim simulation timesteps. Given a
particular simulation step, ksim ∈ range(Nsim), the reference state trajectory over
the N step open-loop horizon at ksim is given by xrefk [:, ksim : ksim+N] and similarly
for the input trajectory. Since the references are required till ksim = Nsim − 1,
len(xref) = len(uref) = Nsim +N = Ntotal as enforced on Line 3.

• Corresponding to each yg,refktotal
with ktotal ∈ range(Ntotal), each mode in ĝ yields a

covariance matrix of size nd × nd (as obtained on Line 14). Since there are R modes
in ĝ, these covariance matrices can be stacked into the tensor, Σĝ

hyb, after iterating
over all regions, range(Rset) = R, and all timesteps, range(Ntotal). As a result the
dimension of Σĝ

hyb is ((nd × nd)×R)×Ntotal), as initialized on Line 9.

• Corresponding to each yδ,refktotal
with ktotal ∈ range(Ntotal), the polytopic inequalities

that define each of the regions in Rset can be evaluated to obtain truth assignments
to discrete variables δref (as done on Lines 15-16). Since there are R modes in ĝ, the
dimension of δref is R)×Ntotal, as initialized on Line 8.

• Given assignments to δref at each timestep ktotal ∈ range(Ntotal), the covariance
of the active mode, r (i.e., r s.t.δrefr,ktotal

= 1), can be selected by element-wise

multiplication of the region-specific covariance matrices with their corresponding δref

variable assignment at the given step ktotal followed by summation as done on Line 17.
As a result, since this computation collapses the “region” axis, Σĝ is of dimension
((nd × nd)×Ntotal) as initialized on Line 10.

39

Algorithm 1 Offline block for hybrid Gaussian-Process based MPC.

Require: ĝ: Hybrid GP model
Require: f : Nominal dynamics model
Require: xref , uref : Reference state and input trajectory generated by a planner
Require: Nsim: Number of simulation timesteps
Require: Bg,in, Bδ: As defined in the notation of Section 3.2
Require: Rset: Set of regions that partition ∆in

Require: K: State feedback control matrix from (3.13)
Require: N : Horizon length
1: procedure HGPMPC Prior
2: Ntotal ← Nsim +N

// Online controller requires a reference over an N step horizon till ksim = Nsim.
3: assert: len(xref) = len(uref) = Ntotal

4: zref ← [xref
T
, uref

T
]T

5: yg,ref ← Bg,inz
ref

6: yδ,ref ← Bδz
ref

7: R ← len(Rset)
// Init. quantities with dimensions dictated by assertion on Line 3.

8: δref ← 0R×Ntotal

9: Σĝ
hyb ← 0nd×nd×R×Ntotal

10: Σĝ ← 0nd×nd×Ntotal

// Init. state uncertainty matrices over N -step horizon at each ksim ∈ range(Nsim)
11: Σx,ref ← 0nx×nx×N×Nsim

12: foreach ktotal ∈ range(Ntotal) do
13: foreach j ∈ range(R) do
14: Σĝ

hyb[:, :, j, ktotal]← Σĝj(yg,refktotal
) ▷ Mode-specific learnt residual covariance.

15: if Hjy
δ,ref
ktotal
− bj ≤ 0 then

16: δrefj,ktotal
← 1 ▷ Otherwise retained at 0.

17: Σĝ[:, :, ktotal]←
∑R

j=0 δ
ref
j,ktotal

Σĝ
hyb[:, :, j, ktotal] ▷ Obtain active mode’s covariance

18: foreach ksim ∈ range(Nsim) do
19: foreach k ∈ range(N) do
20: idx offset ← k + ksim
21: Σĝ

k ← Σĝ[:, :, idx offset]
22: Σx

k ← Σx,ref [:, :, k, ksim]
23: Σk ← JointCovCompute(Σx

k, K,Σ
ĝ
k) ▷ As in Section 3.5.2

24: Σx,ref [:, :, k + 1, ksim]← CovDynProp(f, zrefidx offset,Σk) ▷ As in (3.15b)

25: return δref ,Σx,ref

40

• Finally, I aim to generate approximate state uncertainty matrices, Σx,ref , to be used
for approximate shrinking of the state constraint set, X, for the online controller. At
each simulation step, ksim ∈ range(Nsim), state covariance matrices of shape nx×nx

are required at every step of the open-loop horizon, N , in accordance with 3.16a. As
a result, Σx,ref is of dimension (((nx × nx) × N) × Nsim) as initialized on Line 11.
Σx,ref [:, :, k, ksim] is utilized for shrinking at open-loop timestep, k, and simulation
step, ksim ∈ range(Nsim), for the online controller.

• The information contained in the residual covariances Σĝ[:, :, ksim : ksim +N can be
used to compute Σx,ref [:, :, :, ksim] as done over Lines 18-24. JointCovCompute
on Line 23 is as constructed in Section 3.5.2 and CovDynProp on Line 24 is as
specified in (3.15b).

min
uk

∥µx
N − xrefN ∥Q +

N−1∑
k=0

∥µx
k − xrefk ∥+ ∥uk∥R (3.26a)

s.t. Σx
0 = 0n×n , µx

0 = x0,

∀k = {0, . . . , N − 1} : (3.26b)

µĝ
k =

∑
r

δrefr,k µĝr
k , (3.26c)

uk ∈ U,

∀k = {0, . . . , N} :

µx
k+1(µk) = f(µx

k, µ
u
k) +Bgµ

ĝ
k,

µx
k+1 ∈ Zref (Σx,ref

k+1),

From (3.26a) it is clear that the optimization no longer considers the space of assign-
ments to δ unlike with (3.24) but is now parametrized by a reference δref generated by
Algorithm 1. Moreover, the optimization cost 3.26a no longer includes the expectation but
rather just the deviation of the mean from the reference trajectory. xrefk is pulled from xref

as passed to Algorithm 1 but shifted to the right closed-loop simulation timestep ksim. u
ref

can be used for warmstarting [139] urefk but is not used as a reference for input tracking
since uk is desired to go to 0.

In this NLP-based approach, K is chosen to be 0 based on Remark 3.5.1 implying that
uk = µu

k is a deterministic control input and so U is not subject to set shrinking. Thus,
the only possible non-zero entries in (3.14c) are Σx

k and Σĝ
k (Σxĝ

k = 0 by mean equivalence
approximation).

41

The function to compute shrunk sets that constrain the mean at every timestep is denoted
by Zref and is the same as (3.16a), except computed offline using the Σx,ref tensor returned
by Algorithm 1.

Apriori set shrinking and neglecting the expectation from the cost function altogether
removes the need to compute any covariance matrices online exemplified by the lack of
covariance dynamics equations in (3.26). While this may not seem computationally signifi-
cant, these symbolic matrices can reduce the sparsity [7] of the optimization problem which
makes it harder to solve. As a result, neglecting their inclusion does provide noticeable
speed-up.

Remark 3.6.1. Let Ri be the region active at timestep k (i.e., δrefi,k+ksim
= 1). The controller

in (3.24) does not enforce constraints of the form µx
k ∈ Ri.

Remark 3.6.1 further showcases a limiting property of the resulting controller i.e., there
are no guarantees provided on the true state sampled from the underlying stochastic dy-
namics being in the region specified by xref . Moreover, placing constraints on the mean
alone would be insufficient since the distribution over states should lie within the region
Ri with some probability, pr (different from px, pu), yielding another chance constraint on
the state mean µx

k. While these constraint sets might be approximately computed using
the reference covariance dynamics encapsulated in Σx,ref , it is not something I address in
this thesis. This is because it tightly couples the controller to knowing the constraints
that define the regions (Assumption 3.2.1) which is a limiting assumption and one I try to
alleviate in Chapter 4.

3.6.3 Planning considerations.

Remark 3.6.2. For the experiments in this thesis, the approach will involve using a simple
nominal MPC controller to generate reference trajectories. There are NW high-level way-
points each of which is tracked for the same number of timesteps i.e., Nsim/NW (although
a distance-based weighting might be preferable).

However, other approaches might be better suited to practical applications depending on
the use case.

The granularity of the reference trajectory generated by the planners used becomes
crucial to obtaining reasonable parametrizations of δ. If the distance between two successive
states in the reference trajectory xrefk , xrefk+1 is much larger than what the control constraints
allow the system to reasonably execute, then the controller might significantly deviate

42

(a) (b)

Start/End location

Intermediate waypoints

Figure 3.7: (a) An example of RRT outputs over multiple runs trying to find paths between
a set of high-level waypoints. (b) An example of a spline-interpolated trajectory generated
from the waypoints output by RRT. This trajectory can then be discretized as desired to
obtain a reference trajectory for the online controller to track.

from the expected trajectory and the offline computed shrunk sets and the modes used for
residual mean prediction across the horizon might no longer be accurate.

A practical approach could be using a planner like RRT* or one of its variants [82, 51].
However, with planners such as these the granularity with which they explore the search
space often becomes crucial to obtaining plans quickly. This is usually determined by
parameters that control the radius of exploration around existing nodes in the graph. A
small radius of exploration could lead to large solve times and so a larger radius is often
preferred. Utilizing spline-based methods on top of these high-level plans to generate a
smooth trajectory that can further be subsampled (as in Figure 3.7) with the desired
granularity would be of importance to generate viable reference trajectories.

In the case, where Gin ∩ U = ϕ and the nominal trajectory generated is not operating
at the edge of the input space, if the online controller that takes into account the residual
dynamics is able to find a control sequence, uk, that keeps the trajectory of the state mean
close to xrefk , then the covariance propagation might be more accurate since it is mainly

determined by Σĝ
k. Inaccuracies in the linearization about the reference input ∂f

∂u
become

irrelevant since K = 0 i.e., Σu· = 0. As a result, the only inaccuracies in the uncertainty
propagation would stem from terms involving u in ∂f

∂x
.

43

3.7 Numerical Simulations

3.7.1 Mixed-Integer GP-MPC Controller.

The controller outlined in (3.24) is implemented in Python using Casadi [7] with the
BONMIN MINLP solver [25] and IPOPT [136] as the NLP solver. For comparison, a
baseline GP-based MPC [61] is also implemented that uses a single GP to model the
residual dynamics. The GPs were trained using GPyTorch [53]. The proposed methodology
is tested on 3 cases, namely a stabilization task and 2 cases to track a set-point at the
boundary of the state constraints. For each of the 3 cases, simulations are run from 10
random initial states with 2 runs per initial state (since (3.1) is stochastic), i.e., a total of
20 simulations for both the baseline and proposed method.

Simulation Setup. A planar under-actuated (single input) system is considered for these
simulations. For sake of simplicity and ease of visualization, the residual dynamics and
uncertainty g are limited to affect the first state variable alone (Bg = [1 , 0]T) with the
mean function as depicted in Figure 3.8. The residuals and regions are assumed to be
purely dependent on the 2 state variables x1,k and x2,k in this case. The nominal dynamics
used are of the from f(xk, uk) = Axk +Buk where,

A =

[
0.85 0.2
0 0.95

]
;B =

[
1.25
2

]
(3.27a)

For the state constraint set, X, the box constraint -2 ≤ xj,k ≤ 2 j ∈ {1, 2} ∀ k is
considered. The process noise considered in (3.2a) takes the form wk ∼ (0, δ1,kΣn,1 +
δ2,kΣn,2 + δ3,kΣn,3) where Σn,1,Σn,3,Σn,3 vary with each of the cases as discussed in the
following subsections in order to highlight the benefits of the proposed approach across
various scenarios. Regions R1, R2, R3 are hyper-rectangular partitions of X with bounds
[−2,−2]× [−0.5, 2], [−0.5, 0.5]× [2, 2] and [−0.5,−2]× [2, 0.5] respectively. The desired
(minimum) probability of constraint satisfaction is set to be px = pu = 0.85 (see (3.5)),
unless specified otherwise. The MPC horizon is set to N = 3 (a relatively short horizon
choice and one that has already been discussed in Section 3.6.1).

To compare the baseline approach with the method I propose, I use the closed-loop
(C.L.) cost metric:

C.L. cost =
T−1∑
k=0

(||xk − xrefk ||
2
Q + ||uk||2R) (3.28)

Here xrefk is the pre-defined reference value of the state at time step k. A lower cost
implies better control performance since this is the objective to be minimized. Q and R

44

Figure 3.8: Residual dynamics function (g) used for all 3 cases.

are matrices as defined in the MPC formulation. µc
cl is defined as the empirical mean of

this cost over multiple runs.

Stabilization around the origin

In this setting, xrefk = 0, ∀k. The input constraint set U is −0.4 ≤ uk ≤ 0.4. For
this example the cost matrices R = 0.45, Q = 0.75I2×2 are used for the objective of the
proposed and baseline MPC controllers. 0-mean process noise (3.2) is considered as defined
by {Σn,1,Σn,2,Σn,3} = {0.075, 0.2, 0.15}.
Results. As seen in Figure 3.9, both the baseline and proposed hybrid GP-MPC controller
drive the system state close to the origin. The proposed controller keeps the states in a
neighborhood of the origin. Over multiple simulation runs, the average C.L. costs for
baseline and proposed approach are quite similar as seen in Table 3.2, with the proposed
approach showing a lower variance. For this task, both the controllers do not show any
constraint violations.

Tracking a setpoint in a region of high process noise at the bound-
ary of the constraint

For this task, I consider the case where Σn,2 ≫ Σn,1,Σn,3. The controller must track

45

Figure 3.9: Region 1 (peach), region 2 (cyan) and region 3 (green). Baseline GP-MPC (left) and
Proposed Hybrid Piece-wise GP-MPC (right) closed loop trajectories for the stabilization task.

Method CL Cost Mean (µc
cl) CL Cost Variance

Baseline 11.21 3.85
Proposed Approach 11.06 2.877

Table 3.2: Mean and variance of the closed loop costs between the baseline and proposed ap-
proach over 20 simulation runs for the stabilization task. A lower cost implies better control
performance.

a reference point (here, xref = [2, 2]T ∈ R2) at the boundary of X, which will result
in trajectories which spend most of their time in R2. The aim with this setup is to
validate the premise that in this case a single GP-based residual model over-approximates
shrunk sets in R2 (as introduced in Section 3.4 and demonstrated by Table 3.1) since
it learns Σĝb(D̃, xk, uk) ≪ Σn,2 ∀ (xk, uk) ∈ R2. Consequently, this also compromises the
control performance of the baseline method. Here, the considered process noise uses the
parameters {Σn,1,Σn,2,Σn,3} = {0.05, 0.4, 0.1} and (px, pu) = (0.85, 0.85) in order to realize
this scenario. For a simulation length of 15, this satisfaction probability corresponds to
an allowed number of violations of 0.15 ∗ 15 = 2.25 (time steps) on average. In addition
to recording the number of violations the extent of violation is also measured which is

46

Figure 3.10: Baseline GP-MPC (left) and Proposed Hybrid Piece-wise GP-MPC (right)
closed loop trajectories showing constraint violations while tracking a set-point at the
state-space boundary.

calculated as,

Vext =
∑
k

∑
j

h(|xj,k| − 2) (3.29)

where h denotes heaviside step function.

Results. As shown in Table 3.3, the baseline approach achieves a better closed-loop cost
here but is in violation of the specified satisfaction probability by a significant amount,
indicating that it is not cautious enough and proving the premise. In comparison, the
proposed controller proceeds with the right degree of conservatism exhibiting an average
violation below the 2.25 limit. It also exhibits a significantly lower extent of constraint
violation when compared with the baseline. Figure 3.10 shows one simulation where the
baseline controller results in constraint violations at 5 timesteps as opposed to a single
violation for the proposed approach.

Tracking a setpoint in a region of low process noise at the bound-
ary of the constraint.

For this task, the case where Σn,2 ≪ Σn,1,Σn,3 is considered. Once again, the set-

47

Method µ#viol σ#viol Vext(µ) Vext(σ) µc
cl

Baseline 3.44 1.413 0.219 0.157 57.99
Proposed 1.25 1.14 0.07 0.078 60

Table 3.3: Averages (µ#viol, Vext(µ)) and standard deviation (σ#viol, Vext(σ)) of the number and
extent of state constraint violations with average C.L. cost (µc

cl) for the baseline and proposed
approaches. Computed over 20 simulation runs.

point the controller attempts to track is the same i.e., xref = [2, 2]T ∈ R2. Here it is
demonstrated that the baseline method under-approximates shrunk sets in R2 since it
learns Σĝb(D̃, xk, uk) ≫ Σn,2 ∀ (xk, uk) ∈ R2. For this simulation, the control authority
is increased and U is set such that −0.6 ≤ u ≤ 0.6. The cost of control inputs is also
lowered by setting R = 0.05, and set Q = 2I2×2. This is to ensure that the controller
is not disincentivized from reaching the set point due to the cost of control inputs. The
process noise parameters are set as {Σn,1,Σn,2,Σn,3} = {0.4, 0.05, 0.55} and satisfaction
probabilities (px, pu) = (0.4, 0.4).

Figure 3.11: Baseline GP-MPC (left) and Proposed Hybrid Piece-wise GP-MPC (right)
closed loop trajectories for tracking a set-point at the boundary of the state space.

Results. It can be seen from Figure 3.11 that the baseline method is over-cautious. This
significantly affects the closed-loop tracking cost as seen in Table 3.4 causing the proposed
method to outperform it by 45% on average. For both controllers here, no constraint

48

Method CL Cost Mean CL Cost Variance

Baseline 53.54 10.66
Proposed Approach 29.09 8.64

Table 3.4: Mean and variance of the closed loop costs between the baseline and proposed ap-
proach over 20 simulation runs for the tracking task. Lower cost represents better control per-
formance.

violations are experienced. For the proposed approach this might be due to the fact that
the system is under-actuated (preventing it from tracking the set-point in both dimensions)
along with the hyperparameters learning a slightly larger ground-truth noise parameter for
R2 leading to slightly more conservative set shrinking.

3.7.2 Hybrid NLP GP-MPC Controller.

Even for an extremely short horizon of N = 3, the controller in (3.24) took an average of
51 seconds to produce a control input. In contrast, the results presented in this section are
applied to a more realistic system and significant computational speed-up is demonstrated.
The controller outlined in (3.26) is once again implemented in Python using the Casadi [7]
framework using IPOPT [136] to solve the resulting NLP.

Simulation Setup.

For this more tractable controller, a 2-D quadrotor dynamics model (as described in
Appendix A) is considered for simulation. Here, yδk is chosen to be the workspace variables
(x, z) with ygk = vx and the region partitioning visualized in Figure 3.12 (a). The residual
affects only the x dynamics i.e., Bg is given by the indicator function 1T

1 since x is the
first state variable. The continuous time residual dynamics g and process noise term under
consideration w (with discretized version as described in (3.1b)) used in this simulation are
as depicted in Figure 3.12 (b). The process noise considered in (3.2a) has the parameters
takes the form Σn,R1 = 0.1,Σn,R2 = 0.075,Σn,R3 = 0.125. The cost matrices are chosen to
be Q = diag([5, 1, 5, 1, 1, 1]) (placing importance on tracking the x − z coordinates) and
R = 0.1I2×2.

For the workspace variables, the constraints are assumed to be of the form, 0 ≤ x ≤
7 ; 0 ≤ z ≤ 7. The constraints on the remaining variables in the state vector that define
X are system-specific and defined in Appendix A. The MPC horizon is set to N = 30 and
the discretization time, ∆t, used is 20 ms.

49

x

z

(a)

(b)

Figure 3.12: A plot depicting the (a) partition of the workspace into 3 regions (b) the resid-
ual magnitude and noise for each mode of the piece-wise dynamics and the corresponding
region they are active in.

Unlike with the example in Section 3.7.1 where it is was desired to measure the extent
of constraint violation, in this section I will instead clip any illegal state transitions (i.e.,
transitions to states yδk /∈ ∪Ri=1Ri = ∆in) sampled from the stochastic environment to within
the specified bounds. Hence, only the number of constraint violations are counted. This is
in keeping with practical situations where the original constraints might be indicative of
walls or track boundaries where any violation is bad, regardless of the extent.

Note. Practically, there might be collision / contact / rebound dynamics that must be
modelled in the event of illegal state transitions but for the sake of simplicity these are not
considered here.

The proposed methodology is tested on a boundary tracking case to demonstrate ap-
proximate constraint satisfaction while maximizing closed-loop performance.

Tracking waypoints on the boundary of the workspace

In this task, a set of high-level waypoints W = [(7, 0), (7, 7), (0, 7), (0, 0)] is considered
denoting the vertices of the 2-D quadrotor’s workspace. The closed-loop simulation is run
for Nsim = 200 timesteps determined in advance. In accordance with Remark 3.6.2 nominal
MPC is used to generate a reference trajectory, xref , uref , with the cost defined by shifting
the waypoint in W to be tracked at every Nsim/NW = 200/4 = 50 timesteps. xref , uref

are then utilized to compute the quantities in Algorithm 1 and warmstart [139] the online
controller.

50

(a) (b)

Figure 3.13: A plot depicting an example of the closed-loop x − z trajectories obtained
for each controller i.e., nominal MPC, nominal MPC with mean residual dynamics, hybrid
GP-MPC with px=0.99, 0.9 and hybrid GP-MPC with px = 0.9 and “relaxed” shrinking
constraints.

The approach is demonstrated for px = {0.99, 0.9} (pu is neglected since K = 0 as
described in Section 3.6.2). Also, since Boole’s inequality can yield a conservative ap-
proximation of the joint chance-constraint at every timestep, I also consider the use of a
slightly “relaxed” version of the inverse Gaussian CDF constraint involved in (3.16a). This
utilizes the fact that the residual dynamics in this example are limited to affect x. I make
the assumption that the dynamic coupling between the state variables is small enough for
uncertainty in state variables other than x to be neglected. Hence, I make the choice of
p̄ = 1− 1−px

2
for the individual chance constraints derived from the joint. This test is run

for px = 0.9.

51

A quantitative comparison of the closed-loop cost (3.28) and constraint violation (3.29)
is shown in Table 3.5. A qualitative comparison of the closed loop trajectories in the x− z
plane is shown in Figure 3.13.

Analysis of results. As expected, the controller with only nominal dynamics has bad
closed-loop performance and significantly violates the constraints (regardless of whether
px = 0.99 or px = 0.9) and has large variance between runs. The results for the con-
troller that incorporates only mean dynamics is indicative of how one might expect a
controller using a deterministic (but still hybrid) residual model to perform. It seemingly
demonstrates the best closed-loop cost but this is due to the lack of rebound dynamics.
It also exceeds the constraint violation limits. It can be seen from Figure 3.13 that all
of the proposed NLP-based GP-MPC controllers perform reasonably well and Table 3.5
does confirm the hypothesis that using a “relaxed” version of Boole’s inequality boosts
performance. Moreover, it actually performs better in terms of constraint violation in this
particular scenario. This could be due to the fact that it allows closer tracking of the
provided reference trajectory allowing for the shrunk sets to remain more accurate over
the closed-loop simulations.

Method δ̂x (mean) µc
cl Σc

cl

Nominal MPC 0.178 272.80 1.9× 103

Nominal MPC w/ µĝ
k 0.111 34.46 0.655

Proposed GP-MPC (px = 0.99) 0.010 66.17 6.93
Proposed GP-MPC (px = 0.9) 0.012 54.15 6.52

Proposed GP-MPC (px = 0.99 + “relaxed”) 0.006 48.22 7.54

Table 3.5: Empirically measured average constraint violation for the closed-loop (δ̂x) tra-
jectory along with mean and variance of the closed-loop cost. Results in red violate the
chance constraints and those highlighted in bold indicate they are the best in comparison
to other approaches. Computed over 50 simulation runs.

Run-time comparison

Since the code is implemented in Python, the run-times are slower than what might
be expected of a typical C/C++ implementation generated using a proprietary software
like e.g., FORCESPro [147]. As a result, the run-time of the online controller (3.26) is
compared against a nominal online MPC controller. Simulations were run on a i7-12700H
CPU. As shown in Table 3.6, the runtimes are significantly lower compared to the original
MINLP controller and relatively close to the nominal MPC runtimes.

Remarks.

52

Method µrun (ms) σrun (ms)

Nominal MPC 137.8 4.16
Proposed NLP GP-MPC 176.09 7.9

MINLP GP-MPC Timeout Timeout

Table 3.6: Run-time statistics comparison between a nominal MPC controller and the
proposed parametrized NLP GP-MPC controller computed over 25 runs. µrun, σrun denotes
the run-time mean and variance respectively.

• Comparing (3.26) with a typical nominal MPC controller, it is clear to see that the
increase in run-time is due to the mean dynamics that must be taken into account for
the online GPMPC-based controller. Here, a relatively small dataset of ∼85 points
is used for training for each mode of the hybrid GP model but in practice, sparse
GP methods (Section 2.2.1) would need to be used to be able to expect the speed
benefits demonstrated by the online GP-based NLP controller.

• The results of the controllers depicted here do not let the open-loop optimizations
run to completion. This is because in practice, any added performance benefits are
lost if the controller is unable to keep up with the desired sampling times. The open-
loop optimizations are run for a maximum of 35 iterations but early termination is
allowed if the trajectory obtained is below a constraint violation tolerance of 10−2

over the entire horizon N .

• For the simulations, the default linear solver of MUMPS [5] was used in the opti-
mization. There could be potential speed-up benefits gained from using proprietary
HSL solvers [120].

• In the code implementation, the residual dynamics are computed in parallel for all
modes of the hybrid GP model. Due to this parallel prediction capability, it is not
expected that run-times between the baseline and proposed GP-MPC approaches
differ (except maybe for memory-constrained systems where the parallelization is
not possible). In fact, the baseline could be worse off due to excessive constraint
shrinking in complex tasks yielding more infeasible solves that run to a user-specified
maximum number of iterations before terminating. However, this is not demonstrated
here as the workspace considered here is relatively simple and neglects the inclusion
of obstacles.

53

3.8 Conclusion

The proposed hybrid MPC controller developed using a dataset generated from a piecewise
residual dynamics model is capable of solving Problem 2 while also demonstrating better
performance over a baseline controller. The proposed method generalizes well to cases
where the baseline GP-based modeling and control struggles to trade-off control perfor-
mance and constraint satisfaction across a variety of scenarios. However, it exhibits signif-
icantly restrictive computation times of ∼51 seconds for open-loop optimization solves.

In contrast, the parametrized version of this controller reduces the problem to an NLP
and demonstrates significant speed-up in computation time while still providing perfor-
mance and safety benefits. However, the results indicate that the approach would benefit
from the use of iterative risk allocation methods to reduce the degree of conservatism.
Moreover, the parametrization would affect the optimality and robustness of the solution
on more dynamic challenging tasks. It would beneficial to have multiple parametrized
controllers running in parallel to track varying reference trajectories in order to recover
some of the optimality of the MINLP formulation.

54

Chapter 4

Identifying region locations in unseen
environments.

In Chapter 3, I made the assumption that the region locations in a particular environment
are known. This is quite a limiting assumption when dealing with a system that needs
to be transferred to a new environment where the region locations are apriori unknown.
In this chapter, I deal with systems where the regions are controlled by the workspace
variables and propose a methodology to learn a classifier capable of “mapping” points in
the workspace to a corresponding terrain or mode of the piecewise residual model.

4.1 Motivating Example.

A modification of Example 3.1.1 can be used to motivate the relevance of the problem
considered in this chapter.

Consider a wheeled robot operating in a workspace comprised of several different ter-
rains (e.g., snow, asphalt). Assume that the robot is provided access with a probabilistic
hybrid residual model comprised of modes corresponding to each of the terrains present in
the workspace as depicted in Figure 4.1. Each of these residual models is an approximation
of the unmodeled dynamics in play while operating in that specific terrain.

When initially placed in this workspace, the robot has no information about these
regions. In other words, the unknown specifications are (i) the constraints that define the
location of these regions and (ii) the mode of the hybrid residual model active in each
of these different regions (which in this example corresponds to the terrain assigned to a

55

Figure 4.1: A wheeled robot with access to a hybrid residual model. Can it leverage known
information along with measurements to build a “map” of how the terrains are distributed
across the environment it is operating in?

particular region). This necessitates the use of a “mapping” algorithm to approximately
infer region locations and their terrain assignments. This map information can then be
used in a controller that uses terrain-specific dynamics to predict trajectories over a horizon
into the future.

4.2 Problem Setup and Statement

Notation. In this chapter, I will retain the notation used in Chapter 3. As before
Rset = {R1, R2, . . . RR} partitions ∆in. Here, however, I will make the assumption that the
workspace variables control the region locations. I use Xws ⊆ X to denote the workspace
for a given environment. Hence, ∆in = Xws and as shorthand the projection of the state
onto the workspace is defined as, ψ : X → Xws, ψ(x) = Bδx = xws.

As before the workspace is partitioned into regions but here each region has a corre-
sponding “terrain” assigned to it (similar to the brief discussion in Remark 3.5.6 but this
is further formalized here). The word “terrain” will be used in this context to indicate a
link to a specific mode of the piecewise residual dynamics and does not necessarily need to

56

indicate surfaces like asphalt or snow as in Example 4.1. Rws(·) can be defined as the func-
tion that maps xws ∈ Xws to the index of the region they belong to, i.e., Rws : Xws → Rset.
It is assumed the regions still adhere to Assumption 3.2.2 and hence Rws(·) is defined
∀xws ∈ Xws. Hence, I define a function R : X → Rset, R(x) = Rws ◦ ψ(x).

Assumption 4.2.1. The terrains that might be encountered in the unknown environment
are known in advance. Thus, Tset = {1, 2, . . . , T } can be defined where T is known in
advance and use Ti to denote the terrain type corresponding to the ith index in Tset.

There exists a true underlying function Tcat(·) : Rset → Tset that maps regions to terrain
types for a given environment. Tcat(·) does not need to be surjective i.e., it is possible for
a terrain not to be present in the environment. The function that maps states to terrains
can then be defined as T (·) : X → Tset as,

T (x) = Tcat ◦R(x) (4.1)

With this construction, the subtle differences when compared to the problem setup in
Chapter 3 are as follows,

• The system dynamics under consideration as similar to (3.1) with the discrete vari-
ables in (3.1c) being defined instead as,

δi,k =

{
1, if T (xk) = i

0, otherwise
(4.2)

• The noise model in (3.2) now varies with the terrain index in Tset.

• The datasets collected (3.4) are now terrain-dependent as opposed to region-dependent
allowing us to learn the various modes of the hybrid model as,

ĝset = {ĝ1, ĝ2, . . . , ĝT } (4.3)

Since T (xk) is a function of the environment, δi,k is as well. As a result, when operating
in an unknown environment with workspace Xws, it is required to learn an approximation
of T (xk) as a pre-requisite to approximating the piecewise dynamics defined by (4.2). To
do this, the following assumption is made.

Assumption 4.2.2. The learnt models in ĝset are capable of providing us with likelihoods
with which a measured residual term, dk, was generated by them. In other words, each of
the models in ĝset must be Bayesian and capable of generating p(dk | (xk, uk)&T (xk) = i).

57

Since it is desirable that this approach work in general, i.e., regardless of the structure
of the environment the system is placed in, the following condition on the approximated
residual dynamics is enforced,

Remark 4.2.1. The residual models in ĝset are limited to depend on variables not included
in Xws i.e., Gin ∩Xws = ϕ. Figure 4.2 depicts the dependencies between the variables that
determine the residual magnitude.

Note. While the true residual dynamics in an environment might varying as a function of
the workspace variables, training the models in ĝset to depend on them implies that they
will over-fit to the specific environment where the samples are collected, thus harming
generalization to unknown environments. As a result, Remark 4.2.1 holds practical merit
and is not particularly limiting unless the residual models in gset are desired to be fine-
tuned online to the new environment in a streaming-based [40, 31, 109] fashion (a relevant
problem that is not considered in this thesis).

Figure 4.2: A directed graph showing dependence relations between the different variables af-
fecting the residual magnitude.

By Bayes’ Rule,

p(dk | yδk, y
g
k, T (xk) = i) =

P (T (xk) = i | yδk, y
g
k, dk)P (dk | yδk, y

g
k)

P (T (xk) = i | yδk, y
g
k)

(4.4)

58

P (dk | xk, uk) = P (dk | yδk, y
g
k) (4.5a)

=
T∑
i=0

P (dk | ygk, T (xk) = i)P (T (xk) = i) (4.5b)

which is constant ∀i ∈ Tset.
This yields the posterior update rule,

P (T (xk) = i | (xk, uk), dk) ∝ p(dk | yδk, y
g
k, T (xk) = i)P (T (xk) = i | yδk, y

g
k) (4.6)

where p(dk | yδk, y
g
k, T (xk) = i) indicates the likelihood term and P (T (xk) = i | yδk, y

g
k)

indicates the prior.

Given that Assumption 4.2.2 holds, and given a dataset Dunk = {((xk, uk), dk)}, ob-
tained online in an unknown environment (using the procedure outlined in (3.3)), each
sample can be associated with a vector,

p(T̂ | xk, uk, dk) =

p(T (xk) = 1 | ((xk, uk), dk)
p(T (xk) = 2 | ((xk, uk), dk)

...
p(T (xk) = T | ((xk, uk), dk)

 (4.7)

An augmented dataset can now be defined as,

DT̂ = {(xk , p(T̂ | xk, uk, dk)) | ((xk, uk), dk) ∈ Dunk}

can then be defined. Without loss of generality, it can be assumed that

T∑
i=1

p(T (xk) = i | (xk, uk), dk) = 1 (4.8)

which can be achieved by any normalization technique.

This dataset can be used to train an approximation, T̂ (x), to (4.1). This in turn
approximates the discrete variable mapping (4.2) as,

δ̂i,k =

{
1, if (T̂ (xk)) = i

0, otherwise
(4.9)

Remark 4.2.2. In general, if T̂ (xk) yields a vector that is not a one-hot encoding but
rather logits or a probability distribution, then an argmax operator needs to be applied to
the vector to generate the one-hot encoding.

59

Problem 3. Given data points, Dunk collected in an environment with an unknown distri-
bution of terrains across its workspace, construct an augmented dataset, DT̂ , containing la-

bels as in (4.7). Train a classifier using DT̂ to obtain a learnt approximation, T̂ : X → Tset,
of the true function T (x) in (4.1).

Note. Problem 3 is formulated to directly learn T̂ over the domain, X. This is in contrast
to learning an approximation of each of the two functions that constitute the composition
in (4.7) which necessitates the more restrictive assumption that the number of regions,
R, in the environment is known (and also requires an additional δ array over regions as
described in Remark 3.5.6 and the discussion that follows it).

The true piece-wise residual dynamics for an unknown environment can now be ap-
proximated as,

xk+1 = f(xk, uk) + ĝ(xk, uk) (4.10a)

where, ĝ(xk, uk) =
T∑
i=1

δ̂i,kĝi(xk, uk) (4.10b)

With the approximate learnt dynamics in (4.10), it is desired to solve the following
optimal control problem below.

Problem 4. Given a task defined by a set of high-level waypoints develop an iterative
learning-based planner-controller architecture for the system (3.1) that iteratively collects
trajectory data while trying to track a reference trajectory xref and solves Problem 3 to
improve the estimate of T̂ . The architecture aims to reduce the expected cost J =∑

k Ewk
(||xk − xrefk ||2Q + ||uk||2R) over time while adhering to the chance-constraints in the

limit when T̂ (x)→ T (x) ∀ x ∈ X.

4.3 Methodology

4.3.1 Training a classifier on a dataset of soft label vectors.

When working with GPs, (2.7) tells us that the output for a given set of inputs is a
multivariate Gaussian distribution. For a given terrain-specific mode of the hybrid model,
rewriting (2.7) using a negative log likelihood yields,

L(µĝi
k ,Σ

ĝi
k) =

1

2

[
(xk − µĝi

k)
TΣĝi

k

−1
(xk − µĝi

k) + nd log(2π) + log
(
det(Σĝi

k)
)]

(4.11)

60

Given this, it is relatively straightforward to estimate the likelihood that a measured resid-
ual was generated by each of the modes in the learnt hybrid GP model as depicted in
Figure 4.3.

Assumption 4.3.1. For simplicity, the prior term (p(T (xk) = i | (xk, uk))) in (4.6) is a
static uninformative (uniform) prior across terrains that does not change across successive
iterations of the algorithm.

This yields,
P (T (xk) = i | (xk, uk), dk) ∝ p(dk | yδk, y

g
k) (4.12)

which allows (4.7) to be obtained.

Figure 4.3: A visual depiction of the process of computing likelihoods that a particular measured
residual was generated by one of the learnt modes of the hybrid model for a given input.

As the title suggests, it would be desirable to have a classifier capable of training on
(and hence predicting) soft labels for 2 main reasons viz.,

• The hybrid GP model naturally outputs soft label likelihood vectors. Training on
these directly as opposed to converting them to a one-hot vector encoding prevents
learning over-confident assignments as demonstrated in Example 4.3.2.

• The ability to treat soft labels as viable priors to substitute in (4.6). This use case
is not considered in this thesis.

61

For simplicity in this thesis, I choose to use a simple single-layered NN as the classifier.

I now present an algorithm to perform terrain mapping across the workspace of an
unknown environment by training a classifier every time new information, encapsulated in
the form of a trajectory executed in closed-loop, is received.

Algorithm 2 Iterative terrain mapping

Require: f : Nominal dynamics
Require: ĝset: Hybrid residual model
Require: Din: Accumulated dataset
Require: x, u: New trajectory to be manipulated and added to the dataset
Require: Bg,in: Matrix defining projection onto GP input space
Require: ψ: Function to project x onto Xws

1: procedure SimulatedAnnealing
2: Nsim ← len(x) ▷ Trajectory length
3: ycl ← ∅ ▷ Classifier training labels
4: yδ ← ∅ ▷ Classifier training inputs
5: foreach k ∈ range(Nsim) do
6: dk ← ComputeResidual(f, xk, uk, xk+1) ▷ As in (3.3)
7: zk ← [xk

T , uk
T]T

8: yδ ← yδ ∪ ψ(xk) ▷ Append new training input.
9: ygk ← Bg,inzk

// Append new training label.
10: ycl ← ycl ∪ Softmax(ComputeLikelihood(ygk, dk, ĝset))

// Concatenate new dataset with existing one accumulated over previous runs.
11: Dnew[x]← yδ

12: Dnew[y]← ycl

13: DT̂ [x]← Din[x] ∪Dnew[x]
14: DT̂ [y]← Din[y] ∪Dnew[y]
15: model← TrainMappingClassifier(DT̂)
16: return model

The residuals on line 6 are computed as described in (3.3). The projection function on
line 8 is of note as it reduces the dimension of input that the classifier is to be trained on
by pruning redundant (for the purpose of terrain “mapping”) variables in the state vector
and limiting the consideration to yδk = ψ(xk) = xws ∈ Xws = ∆in. The likelihood function
on line 10 requires computing (4.11) across all terrains and then stacking them together
in a vector. Passing this vector through the softmax allows the requirement in (4.8) to

62

be met. Finally, I now describe the loss function at the core of training the NN classifier
mentioned on line 16.

Loss function for the NN classifier.

Training the classifier requires a loss function capable of accounting for soft label prob-
ability distributions generated by (4.8). Cross-entropy loss naturally lends itself to this
while also being able to handle for one-hot labels (as is what it is typically used for). The
classification problem considered has T possible class assignments corresponding to each
of the terrains that might be encountered in the environment. For simplicity, the binary
(2-class) cross entropy loss is considered which can straightforwardly be extended to the
multi-class case.

For discrete distributions p and q, with T possible assignments, cross entropy is defined
as,

H(p, q) = −
T∑
i=0

p(i | xk) log q(i | xk) (4.13)

When used with one-hot vectors, p is a distribution where the probability is 1 for the
observed terrain and 0 otherwise while q is representative of the discrete probability dis-
tribution learnt by the classifier across the domain of the input space. p reduces to an
indicator function for the corresponding class as a result yielding,

H(p, q) = − log q(i | xk) (4.14)

where i ∈ Tset is such that p(i | xk) = 1.

When dealing with soft label assignments to p, such a simplification cannot be made.
This is the case I will be working with (further motivated in Section 4.3.2) as defined
by (4.7), (4.11). Given that the labels are normalized (4.8), (4.13) can be used to yield,

H(p, q) = −(p(i = 0 | x) log q(i = 0 | x) + p(i = 1 | x) log q(i = 1 | x)) (4.15)

Note. A third alternative would be an intermediate between these approaches that uses
one-hot vector encoding but uses a dynamic weighting for the loss on each sample based on
a distance metric (e.g., (4.19)) that measures the similarity between distributions generated
by each mode. This is not considered in this thesis.

A typical training loop with cross-entropy loss and gradient back-propagation using
optimizers like [78] can now be used to train an NN classifier.

63

(a)

(b)

(c)

(d)

Figure 4.4: (a) Trained hybrid GP model. (b) Ground truth regions spread across
workspace. (c)/(d) Example of uniform random sampling and biased sampling across
Gin respectively.

4.3.2 Soft vs. Hard label training datasets

I consider an example that demonstrates the benefits of training on soft labels. First,
assignments to yδk are sampled uniform randomly across the workspace. I then consider
two cases for sampling assignments to ygk. The first case considers uniform random sampling
across the GP input space and the second considers sampling biased towards the regions
of the GP input space where there is a high degree of overlap between the Gaussian
distributions output from 2 or more modes of the hybrid model. The problem setup, along
with examples of the 2 sampling schemes, is depicted in Figure 4.4. A simple single-layered
NN classifier with 32 hidden nodes in the hidden layer is used for these experiments.

While the cross-entropy loss is most natural to measure test accuracy, the metric I use
to measure performance involves converting the predictions to hard labels and counting
the number of samples correctly classified. This is motivated by the fact that the controller
architecture currently cannot handle for probabilistic distributions over regions while meet-

64

(a)

Hard label DS w/ 200 samples Soft label DS w/ 200 samples Hard label DS w/ 5000 samples Soft label DS w/ 5000 samples

(b) (c) (d)

Figure 4.5: Plots depicting the qualitative outputs on a test dataset after training classifiers
using the soft (b)/(d) and hard label (a)/(c) approaches when working with a random
sampled dataset. (a)/(b) uses 200 training samples and (c)/(d) uses 5000 training samples.
Row 1 corresponds to the argmax predictions. Row 2, 3 and 4 correspond to classifier logit
outputs for each region after applying the softmax operator.

ing the safety constraints. As such, the classifier output must be converted to hard labels
for use in a δ−parametrized NLP controller. Hence, the metric that counts the number of
correctly classified samples is more relevant.

For test examples, Figure 4.5 visualizes the performances of the classifiers on a dataset
constructed by random sampling across Gin. Figure 4.6 shows heatmap outputs obtained
after training the 2 classifiers on a biased dataset of 500 points are shown. The bias here
is towards points in Gin where there is high overlap between the distributions output from
each mode of the hybrid GP (as indicated in Figure 4.4 (d)). Finally, Figure 4.7 shows
accuracy plots of both soft and hard label classifiers for each of the sampling schemes.

Remarks.

65

Argmax predictions

Soft Label DSHard Label DS

Region 1 Heatmap

Region 2 Heatmap

(a) (b)

Region 3 Heatmap

Figure 4.6: Qualitative outputs on a test dataset after training classifiers using the soft (b)
and hard label (c) approaches when working with a biased dataset.

• For the case of random sampling across Gin, Figure 4.5 shows that the soft label
approach is rightly conservative when dealing with fewer data points. It also learns
much cleaner boundaries when compared with the hard label approach as the number
of data points increases.

• For the case of biased sampling, depicted in Figure 4.6, it is clear that the soft label
method still proceeds with a degree of conservatism whereas the hard label approach

66

does assign higher probability magnitudes and fails to perform as well due to nearby
samples with conflicting labels. This is confirmed by the accuracy plot in Figure 4.7.

• From Figure 4.7, it is clear that both approaches work well with random sampling
particularly as the dataset size increases. However, the soft label approach works
much better than the hard label approach when looking at the mean training accuracy
particularly in the case of the biased training set and working with fewer samples.

• Though the error bars are large across both, this is partially due to bad weight ini-
tialization, for a relatively simple NN classifier, leading to convergence to a poor local
optimal model. The mean accuracy being closed to the upper limit indicates, how-
ever, that re-initializing weights usually fixes this issue. Training multiple randomly
initialized models in parallel and selecting one with the lowest loss would work in
practice and this will be utilized .

Figure 4.7: A graph showing accuracy with error-bars of both (a) soft and (b) hard label
trained classifiers as a function of the number of training samples ([100, 200, 500, 1000,
3000]).

4.3.3 Terrain mapping planner-controller architecture

The resulting architecture is quite similar to the approach proposed in Section 3.6.2. The
only differences are as follows,

• In Line 15 of Algorithm 1, the condition Hjy
δ
ksim
− bj ≤ 0, is instead replaced with

T̂ (xksim) = j since the polytopes defining the regions are no longer assumed to be

known. As a result, the discrete variables returned on Line 25 are δ̂ref instead of δref

to reflect the approximation.

67

• In the parametrized NLP controller, the residual mean dynamics (3.26c) are instead
replaced by,

µĝ
k =

∑
r

δ̂refr,k µ
ĝr
k

to reflect the incorporation of the approximate discrete variable assignments into the
dynamics prediction.

Remark 3.6.1 is now updated as follows,

Remark 4.3.1. Let i ∈ Tset be the index of the terrain assumed to be active at timestep
k, i.e., T̂ (xrefk+ksim

) = i. The controller in (3.24) does not enforce constraints of the form

T̂ (µx
k) = i.

In addition to the discussion that follows Remark 3.6.1 there is another limitation with
using this approximate mapping classifier T̂ (·) that prevents us from enforcing this con-
straint. Unlike a constraint of the form Hx ≤ b where it is straightforward to quantify the
degree of constraint violation and compute the constraint jacobian (purpose as described
in Section 2.2.1), in light of Remark 4.2.2, a constraint T̂ (µx

k) = i can no longer work
with gradient-based optimizers due to the sharp switching transitions induced by changes
between one-hot encoding vectors.

4.4 Data-efficient mapping of unknown environments.

Given a state, xk ∈ X, the set of distributions output by each mode of the hybrid model
ĝ(xk) can be formalized as,

Nset(y
g
k) = {N (µĝt

k ,Σ
ĝt
k) ∀ t ∈ Tset} (4.16)

What kind of efficiency is being considering? Depending on the trajectory to track,
the samples collected might be in parts of Gin where there is a high degree of overlap
between two or more distributions in Nset. In other words, for a given dk collected in
these parts, the likelihood vectors constructed using (4.11) can have 2 or more entries that
are close to each other. This can significantly affect the convergence of the classifier as
motivated by the accuracy plot for the biased sampling case in Figure 4.7.

To address this problem, it could be desired to initially collect some samples in a manner
that allows us to better understand how terrains are distributed across the path to be

68

tracked. This can be considered as an “exploratory” phase limited to a small area of the
workspace around the trajectory that is desired to be tracked. As a result, the “efficiency”
considered here is linked to building a more accurate dataset when incorporating such
“exploration” when compared to approaches that do not utilize the proposed methodology.

To achieve this, I formulate an optimization problem capable of identifying points across
Gin that maximize the “distance” between the distributions in Nset. Given the output of
this optimization, xopt, a term of the form shown below can then be added to the stage
cost function of the optimization when using a nominal MPC to collect samples for DT̂

when there is an initial lack of data points.

Cexpl =
N∑
k=0

min{wp∥xk − xoptp ∥2Qexpl
∀ p ∈ {1, . . . , len(xopt)} (4.17)

Many auto-differentiation engines (including Casadi [7] which is used for the experiments)
implement a differentiable version of the min operator in (4.17) for use in these optimiza-
tions.

Remark 4.4.1. The minimization operator helps prevent heavily biasing the optimization
towards certain parts of the state space when including (4.17) in the cost function. When
assigning wp = c ∀ p ∈ {1, . . . , len(xopt)}, this boils down to saying that the optimization
should be indifferent about which point in xopt to track.

In Algorithms 3 and 4 the building blocks of the optimization problem referenced above
are described and then brought together in the final solution implemented in Algorithm 5.

Building blocks of the optimization problem. A version of simulated annealing is
presented in Algorithm 3. As a brief summary,

• Simulated annealing is a stochastic optimization method used to find near-optimal
solutions to complex optimization problems where conventional gradient-based ap-
proaches might fail to perform. It starts with an initial guess xinit and iteratively
explores the solution space by generating a new candidate solution (xnew) from the
guess considered in the previous iteration (xcurrent).

• xnew is generated by a neighbourhood function, NeighbourhoodFn, as shown on
Line 9. This biases the location of xnew based on some probability distribution
(usually Gaussian) centred at xcurrent.

• The “goodness” of (ordering over) solutions is defined based on a heuristic energy
function as introduced on Line 10. A lower energy function indicates a better solution.

69

• Better solutions are accepted immediately as on Line 13. Worse solutions are also
accepted probabilistically based on the value of a temperature parameter, T , and
the extent to which the new solution is worse than the current (∆E). This is as
implemented in Lines 19-22.

• The algorithm uses a cooling schedule, as shown on Line 26, to gradually reduce the
exploration intensity. This allows it to escape local sub-optimal solutions initially,
while allowing convergence towards the end of k ∈ range(Niter)

Clearly the functions ComputeEnergy and NeighbourhoodFn are at the heart
of this algorithm and so their implementations for the optimization problem are now dis-
cussed.

ComputeEnergy - Distance metrics over Gaussian probability distributions. Defin-
ing an objective (energy) function for this optimization requires a metric capable of mea-
suring the similarity between the distributions in Nset. It would not make sense for the
objective function to depend on the ordering in Tset. As a result, I opt to use the symmetric
Bhattacharya distance metric.

The formula for Bhattacharya distance between two probability distributions p and q
is given by:

DB, gen(p, q) = −
∫
X

√
p(x) · q(x) dx (4.18)

Letting Ni denote the ith element of Nset and given (2.7), (4.18) simplifies to the pair-
wise distance,

DB(Ni,Nj) =
1

8
(µi − µj)

T (Σi + Σj)
−1(µi − µj) +

1

2
ln

(
det(Σij)√

det(Σi) · det(Σj)

)
(4.19)

where Σij = det
(

Σi+Σj

2

)
. (4.19) requires that Ni,Nj have non-singular, p.s.d. covariance

matrices which holds by Remark 2.1.2 and the fact that process noise will ensure that Σd

is non-zero for all residual dimensions for any input. Smaller values of DB are representive
of a smaller distance and hence a higher degree of similarity between Ni,Nj.

The objective function for the optimization that aims to find points of maximum similarity
can now be defined as,

ComputeEnergy(zk) =
T∑
i=1

T∑
j=i+1

DB(Ni(zk),Nj(zk)) (4.20)

70

Algorithm 3 Simulated Annealing

Require: T : Initial temperature
Require: c f : Cooling factor
Require: σ: Step size
Require: nbhd args: Additional arguments for the neighborhood function
Require: energy args: Additional arguments for the energy function
Require: xinit: Initialization point
Require: Niter: Number of iterations to run for.
1: procedure SimulatedAnnealing
2: xcurrent ← xinit
3: xbest ← xcurrent
4: Tcurrent ← T
5: Ecurrent ← ComputeEnergy(xcurrent, energy args)
6: Ebest ← Ecurrent

7: foreach k ∈ range(Niter) do
8: update ← 0
9: xnew ← NeighbourhoodFn(xcurrent, σ, nbhd args)

// Heuristic quantifying solution “goodness”
10: Enew ← ComputeEnergy(xnew, energy args)
11: ∆E ← Enew − Ecurrent

12: if ∆E < 0 then
13: xcurrent ← xnew
14: update ← 1
15: if Enew < Ebest then
16: xbest ← xnew
17: Ebest ← Enew

18: else
19: p← exp(−∆E/Tcurrent)
20: r ← UniformRandomSample(0, 1)
21: if r < p then
22: xcurrent ← xnew
23: update ← 1

24: if update = 1 then
25: Ecurrent ← Enew

26: Tcurrent ← Tcurrent × c f
27: return xbest

71

where the summation bounds are obtained using the fact that DB(Ni,Ni) = 0 and the
property that DB is symmetric. In case it is desired to find points of minimum similar-
ity, (4.20) simply needs to be negated.

NeighbourhoodFn - Sampling new candidate solutions in the GP input space.
The neighbourhood function for a vanilla implementation of simulated annealing only takes
in parameters xcurrent, σ to sample xnew from the Gaussian distribution N (xcurrent, σ

2) as on
Lines 5-6. However, I propose a modified approach in Algorithm 4 which uses 3 additional
parameters

• An array of solutions, provided as input, accumulated from previous iterations of
simulated annealing, solution arr.

• A redundancy radius parameter used to prevent xnew from being within an ϵ-ball
around any previously found solution in solution arr as done on Lines 7-15.

• A bounded GP input space, Gin for clipping samples as done on Line 16

Remark 4.4.2. While simulated annealing is usually run in parallel with random initial-
ization to converge to multiple local optima, setting up the neighbourhood function in such
a way indicates that the algorithm must be run sequentially instead (due to solution arr
being passed in nbhd configs).

Since the hybrid GP model used is not being updated in a streaming manner online, this
procedure can be done offline and seems to be fairly efficient in the 1-D case and so it is
assumed that it would generalize well to bounded 2/3-D workspaces.

The relevance of introducing a redundancy radius parameter is motivated by (4.17) and
Remark 4.4.1. Including it affords working with a greater variety of solutions across the
input space and being able to prune them after the fact as it is seen fit to do so depending
on how they are ranked by their corresponding energy values. Once the local optima across
Gin have been found, it would be beneficial to find other suboptimal solutions outside an
ϵ ball around them. This corresponds to an increase in the value of p in (4.17) i.e., an
increase the degree of freedom in a nominal MPC controller trying to track an arbitrary
point in this set.

As far as the clipping is concerned, it is mainly included in case it is necessary to find
the points of maximum similarity (minimum discrepancy) between the distributions in
Nset. When moving far away from the regions where data points exist, GPs will settle to a
constant mean, high variance output. This causes the minimum discrepancy optimization

72

Algorithm 4 Custom Neighbourhood Function.

Require: xcurrent: Initialization point
Require: σ: Step size
Require: solution arr: Current array of accumulated solutions.
Require: redundancy radius: Radius around samples in solution arr where xnew is dis-

carded.
Require: Gin: GP input bounds.
1: procedure NeighbourhoodFunction
2: count ← 0
3: curr soln len ← len(solution arr)
4: while true do
5: offset ∼ N (0, σ)
6: xnew ← xcurrent + offset
7: distances ← {∥xcurrent − xsolnp ∥ ∀ p ∈ {1, . . . , curr soln len}
8: if (distances[i] > redundancy radius ∀ p ∈ {1, . . . , curr soln len}) then
9: break
10: else
11: count ← count +1
12: if count = 1000 then
13: return xcurrent
14: if count % 10 then

// Increase search radius if unable to find point that satisfies distance criteria.
15: σ ← σ ∗ 1.1
16: xnew ← ClipToBounds(xnew, Gin)
17: return xnew

to converge to points very far away from the set Gin necessitating an additional step of
clipping the considered point to within the bounds of Gin.

The proposed optimization algorithm. The final proposed optimization that calls the
functions described so far is summarized in Algorithm 5. The key points of note are,

• Initial solutions are randomly selected from the GP input space on Line 2 to allow
for a reasonable spread and convergence to different local optima.

• The neighbourhood configuration options and their uses have been elaborated on in
prior discussion pertaining to Algorithm 4 (Line 7). A similar discussion has been
provided regarding the energy configuration, which in this case is just ĝ (Line 5) used

73

for the objective calculation in (4.19).

• The solution array is grown iteratively over sequential runs and used to inform the
redundancy distance in Algorithm 4 (Line 9).

• Finally, SortByEnergy on Line 11 sorts the energy array in ascending order and
uses the re-ordered indices to adjust the order of the solution array too. Only the
top k solutions and energies are returned as on Line 12. This is further elaborated
on in Section 4.4.1.

Algorithm 5 Sequential simulated annealing.

Require: ĝ: Hybrid GP model
Require: Gin: GP input space within which candidates can be sampled.
Require: T : Initial temperature
Require: c f : Cooling factor
Require: σ: Step size
Require: redundancy radius: Pruning radius for new candidate samples
Require: xinit: Initialization point
Require: Niter: Number of iterations to run for.
Require: top k: Number of solutions to retain.
1: procedure SeqSimulatedAnnealing
2: initial solutions← RandomSample(Gin, num runs)
3: solution arr← ∅
4: energy arr← ∅

// Nset distributions generated from ĝ.
5: energy configs← {ĝ}
6: foreach k ∈ range(num runs) do
7: nbhd configs← {solution arr, redundancy radius, Gin}
8: local solution, local energy ← SimulatedAnnealing(T, c f, σ, xinit,

Niter, nbhd configs, energy configs)
9: solution arr← solution arr ∪ local solution
10: energy arr← energy arr ∪ local energy

11: sorted solutions, sorted energy← SortByEnergy(solution arr, energy arr)
// Truncate array to top k objective values.

12: top k solutions, top k energy← sorted solutions[: top k], sorted energy[: top k]
13: return top k solutions, top k energy

74

4.4.1 Incorporating optimization results into the nominal con-
troller.

Henceforth, the top k solutions array will be denoted as xopt as in (4.17). In order to
incorporate xopt into the controller it is first necessary to clarify some points regarding the
top k parameter and explore an alternative weight allocations for (4.17).

Why top k? While a larger value of p in (4.17) would allow for a greater degree of
freedom, it is still a tunable hyperparameter. If p is chosen to be large enough that the
optimization yields samples in areas of high overlap as a result of exhausting the area of
the bounded space (depending on the redundancy radius), then limiting to top k values
(or alternatively truncating outputs to within some threshold of the smallest value), yields
better results.

Relative weighting scheme for the cost function. An additional solution to the
problem described above would be to use an alternate weighting scheme for (4.17) based
on the top k energy array. This would be done simply by dividing top k energy through-
out by the first element and then replacing wp in (4.17) by the weights obtained at the
corresponding indices. This is utilized in the experiments.

With access to an array of points where samples collected can be identified as belonging
to a particular mode of the hybrid model with relative ease, it is desired to find a way to
include this in the optimization that collects samples for region identification. This can
be done if one is able to trade-off tracking of the high-level waypoints provided to us with
tracking the points in xopt. If the optimization for the nominal system is able to converge
reasonably close to the desired waypoints, the added exploration cost term (4.17) should
now be able to modify this trajectory in a manner that allows us to collect samples that
allow for better region discrimination.

Finally I propose the new cost function for the controller (3.26). First, to obtain a cost
comparable to the tracking cost for the high-level waypoints, I set the cost matrix in (4.17)
to be Qref =

∑nx

j=1Qj,j where Q is as used to define the stage cost for the controller (3.26).
Then the final cost function is of the form,

Ctotal,k = Ctrack(xk, uk, x
ref
k) + αCexpl(xk, uk, x

opt) (4.21)

where Ctrack is the original stage cost function as defined in (3.26). α ≥ 0 can now be
used to trade-off exploration with waypoint tracking. The results for this are described in
Section 4.5.1.

75

4.5 Results

(a) (b)

Ground truth piecewise residual

Learnt hybrid residual

R1

R1 mode R2 mode R3 mode

R2

R3

Figure 4.8: Terrain locations and corresponding modes of the piecewise residual dynamics
active in each of them.

Simulation Setup The simulation setup is equivalent to that considered in Sec-
tion 3.7.2 for the most part. The slightly modified residual and regions are shown in
Figure 4.8. For the mapping classifier, I use a relatively simple single-layered neural for
the experiments. The inputs to the NN are the workspace variables (x, z) and the soft la-
bels are generated by the hybrid GP model as described in Section 4.3.1. The output size
is equivalent to the number of terrains considered in this example i.e., 3. The NN starts
with a fully-connected layer from the input nodes to a hidden layer containing 32 nodes.
The outputs from the hidden layer are passed through a Rectified Linear Unit (ReLU)
activation function and then linearly combined to generate T = 3 output logits on which
the cross-entropy loss 4.13 is then applied. The Adam [78] optimizer is used for training
and backpropagation of gradients. A step learning rate scheduler with an initial learning
rate of 0.95 and an exponential decay factor of 0.95 applied every 2 iterations. Due to
the discussions on large error bars in Section 4.3.2 as demonstrated by Figure 4.7, all of
the tests here involve training 2 NN models on a given dataset and then selecting the one
with the lowest loss to minimize the effect of a bad NN mapping classifier initialization on
controller performance.

76

(a)

(c) (d)

(b)

Figure 4.9: (a) / (c) Output from the simulated annealing optimization with num runs
= 20, top k=10, redundancy radius=0.45, using a Bhattacharya distance metric that tries
to maximize / minimize, respectively, the sum of the pair-wise distances between the
elements of Nset. (b) / (d) Output from the same optimization but with redundancy
radius functionality excluded and solutions within a 0.1 radius of each other being pruned.

4.5.1 Data-efficient mapping results

The results of Algorithm 5 for the Bhattacharya distance metric with and without the
redundancy radius parameter are as shown in Figure 4.9. In the case where the redundancy
radius parameter is excluded, the solutions obtained in xopt are pruned to prevent plotting
of outputs within a 0.1 radius of each other.

Note. This is different to simply setting the redundancy radius parameter to 0.1 as the
exclusion causes the candidates for the current iteration of simulated annealing not to take
into account the positions of existing solutions accumulated in solution arr.

Figure 4.10 depicts an example of a scaled version of the exploration function and
shows how it modifies a tracking cost on ẋ = vx (I consider this variable since ygk = vx).
This figure serves to provides validation for the inclusions in Algorithm 5 as discussed in
Section 4.4.1. With regards to the redundancy radius parameter and the inclusion of top k
results, (a) clearly shows a lower cost over larger parts of the input space when compared
with (b) resulting in less bias / restrictions for the optimization.

Now using Figure 4.11 and Table 4.1, I consider how inclusion of this “exploration”
cost into the optimization affects the accuracy of the generated dataset and the behaviour
of the system. Figure 4.11 depicts a reference trajectory xrefk to be tracked limited to the

77

(a) (b)

Figure 4.10: A visualization of the cost function that results after incorporating the explo-
ration cost Cexpl generated using the array xopt produced by finding points of maximum
distance between the distributions in Nset. (a) depicts the plot when the redundancy is
included and (b) shows the plot when redundancy is not included.

α (4.21) Red. radius µce µargmax (%)

0 - 0.076 93.50
0.1 0 0.063 93.64
0.1 0.4 0.077 93.33
0.5 0 0.023 98.17
0.5 0.4 0.042 96.4

Table 4.1: A quantitative comparison between the training dataset accuracy generated
by various parameters in Algorithm 5. α = 0 indicated no exploration and Red. radius
= 0 indicates a deactivation of the redundancy radius feature. µce indicates the average
cross-entropy loss per sample computed between the generated soft label and the provided
ground truth. µargmax is the % of soft label that match the ground truth after applying
the argmax operator to them.

x− z variables. It also depicts the actual trajectories executed by several variations of the
optimization including the exploration cost as indicated in (4.21). The variations include
setting α in (4.21) = {0.1, 0.5} on the cost function generated when the redundancy radius
is included and also when it is excluded.

78

(a)

(b)

Figure 4.11: A qualitative comparison of the closed-loop trajectories obtained for various
assignments parameters in the exploration-based optimization framework. Row (a) shows
x−z trajectories when the redundancy radius is excluded and (b) shows trajectories where
they are included.

Remarks.

• Neglecting the redundancy radius parameter and setting a high weight for the ex-
ploration cost term Cexpl yields the best training dataset as seen from Table 4.1.
However, it also yields significantly erratic behaviour as seen from Figure 4.11 (a).

79

• When the redundancy radius is included, the cost function is less biasing for the op-
timization even with a higher weight assigned to Cexpl. This yields smoother trajec-
tories (as seen in Figure 4.11 (b)) when compared to the plots where the redundancy
radius is excluded for the same value of α.

• None of the cases here consider the probability of violation i.e., there is no way to
find the optimal value of α that allows exploration while still remaining safe. This is
a limitation that I leave to address in future work since it would involve merging the
proposed framework with existing safe exploration approaches e.g., [19].

4.5.2 Iterative terrain mapping results

In this section, I demonstrate how I can iteratively train a classifier over multiple runs to
obtain an improvement in closed loop performance over time. For this example, the desired
repetitive task is defined by the high-level waypoints,W = [(1, 6), (4, 1), (6, 5), (2.5, 3), (0, 1)].
However, to better demonstrate the approach, it is assumed initially that the quadrotor
is allowed to track a more restrictive path to obtain samples defined by the waypoints
Winit = [(0.5, 4), (1, 1), (2, 3), (1, 4)]. In both cases, the closed-loop trajectories are run for
160 simulation steps and the residual model is the same as shown in Figure 4.8. As indi-
cated in Algorithm 4.3.1, the dataset generated by the current trajectory is concatenated
with those generated by previous runs and used to retrain the classifier from scratch.

The iterative procedure and results are demonstrated through the qualitative outputs
shown in Figure 4.12. The classifier is capable of consistently bringing down the closed-loop
cost over multiple runs of the experiment as indicated in Table 4.2.

Run number µc
cl +/- errors

1 43.21 8.06/4.46
2 8.11 4.52/0.33

Table 4.2: A comparison of closed-loop performance over repeated runs of the system on
the repetitive tracking task. µc

cl denotes the average closed-loop cost for a given run number
and the +/- signify the minimum and maximum deviations from the mean computed over
15 simulations.

Remarks.

• On this relatively simple example, the classifier is able to converge to the ground
truth over the tracked path within 2 training dataset updates as seen in the last row

80

Trajectory Visualization

Initial waypoint
 tracking run

Repetitive task
tracking run 1

Repetitive task
tracking run 2

(Accumulated)Training DS and Accuracy Classifier predictions on test DS

Tracking issue

Tracking Issue Fixed

Errors due to lack of data

Figure 4.12: Plots demonstrating the training procedure for the iterative mapping-based
classifier and the benefits it yields on closed-loop trajectories over repeated runs on the
repetitive tracking task.

of Figure 4.12. As a result, runs past 2 are not shown in Table 4.2 since the cost
converges to a local optima consistently on and after run 2.

• It is clear that the restricted task defined by Winit does not allow for the collection of
any samples in R2 (as shown in green in Figure 4.8). As a result, the first run on the
repetitive task demonstrates poor tracking performance on waypoints in this region.

• After collecting samples during the first run, the classifier predictions now reflect
R2 and show significantly improved tracking performance in that region during the
second run.

• It is clear that R2 is not able to be identified completely even after run 2. This is
down to the fact that the classifier is liable to incorrect generalize region assignments
to parts of the workspace where samples have not been collected.

81

In terms of notions of safety, I provide a qualitative analysis of results for a task of track-
ing waypoints close to the boundary. In this task, the majority of the setup remains the
same as before except for the waypoint arrays. I choose Winit = [(6, 1), (6, 6), (1, 6), (1, 1)]
and W = [(6.7, 0.3), (6.7, 6.7), (0.3, 6.7), (0.3, 0.3)]. The qualitative results for the iterative
mapping are as shown in Figure 4.13.

Initial conservative waypoint tracking Mapping classifier output after training Trajectory tracking for waypoints close to boundary

Figure 4.13: Plots demonstrating the possible application of the framework to iterative
safe exploration under uncertainty.

Remarks.

• In terms of safety, if the initial waypoint tracking task is relatively conservative
and there is some knowledge about how quickly the terrains can vary for a given
environment, then the controller appears to perform well on the edge tracking task.
This demonstrates potential for the approach to be applied to an iterative learning
framework for safe / robust exploration similar to [114, 19] but formalizing this is
left for future work.

• Collisions reduce the number of samples available to train on since collision dynam-
ics differ from the residuals and need to be neglected from the training dataset.
Incorporating this into the pipeline would thus benefit data efficiency in addition to
safety.

4.6 Conclusion

In this Chapter, I proposed a “terrain”-mapping methodology to identify terrain locations
across an unknown environment by leveraging an apriori provided hybrid GP model. The
use of the soft labels generated by this hybrid model was validated through tests on classifier

82

accuracy. A simulated annealing-based framework was proposed to improve the quality of
the dataset available for classifier training. This was demonstrated to be dependent on the
inclusion of redundant (sub-optimal) solutions to prevent limiting the optimization due to
a dominating exploration cost term.

Mapping tests performed on repetitive tasks were demonstrated to exhibit significant
reductions in closed-loop cost over successive iterations as a result of identifying the un-
derlying ground truth region distribution over the trajectory.

In terms of limitations, the controller is not yet capable of handling new environment
with Out of Distribution (OOD) terrains i.e., those for which a corresponding mode is not
yet present in the hybrid model. Moreover, a formal proof of safety guarantees is hard to
present due to the black-box, unexplainable nature of the NN classifier in its current form.
These limitations are further elaborated on in Section 5.1.2.

83

Chapter 5

Conclusion

In this thesis, I have investigated control solutions to chance-constrained optimal control
problems concerning systems with piece-wise residual dynamics. Initially, I considered the
problem of optimizing over the space of trajectories defined in part by discrete variables
resulting in an MINLP. The developed hybrid models were demonstrated to have significant
modelling advantages over the use of a single model that has been prevalent in literature so
far. Through simulation, the resulting controller that incorporated this model was shown
not to suffer from both over-conservatism and under-conservatism in cases where a baseline
single GP controller did.

An issue with this controller is the high computational complexity that results from
the incorporation of discrete optimization variables making application to most practical
systems, requiring relatively long open-loop horizons, intractable. The solution devised
for this problem involved using a hierarchical planner-controller architecture to generate
reference trajectories that could then parametrize the discrete variables for the controller.
This, combined with other approximations, reduced the problem to an NLP with solve
times comparable to that of nominal MPC while trading off retaining the benefits of the
previously proposed MINLP controller with computational tractability.

I concluded the investigation by relaxing a significant assumption made in the previ-
ous two problems viz. the polytopic constraints that define the partitioning regions are
known. The solution involves computing the likelihood with which a measured residual
term was drawn from each of a set of probabilistic models and then training a classifier
to approximate the ground truth terrain mapping function. The approach, demonstrated
via simulation on a repetitive task in an environment where the distribution of terrains is
unknown, shows significant reduction in closed-loop cost over time. An additional module

84

is also proposed to improve the efficiency with which samples can conclusively be linked
to being generated by a specific mode of the hybrid model.

5.1 Limitations and Future Research Directions

Over the course of working on this thesis, several avenues were left unexplored and are
detailed here to represent future research directions or improvements to the modules pro-
posed.

5.1.1 MINLP to NLP conversion.

Recovering optimality benefits of an MINLP. One of the issues with the NLP version
of the hybrid model-based controller proposed in Section 3.6 is that there is no longer a
search over the space of trajectories (and hence assignments to δ) but rather just a fixed
trajectory to track. As a result, some of the optimality benefits that stem from the MINLP
are lost. To recover this, randomized planning approaches like RRT* (as described in
Section 3.6.3) can generate paths that are quite different from each other and hence might
constitute varying assignments to the δ array. Attempting to then track each generated
spline-interpolated trajectory using parallel instances of the parametrized controller and
selecting the best one would help us maintain some notion of optimizing over the space of
discrete variables. This might be necessary in more complex scenarios like those involving
dynamic (or even static) obstacle avoidance.

Re-planning conditions. Algorithm 1 generates a lot of quantities that are local to the
trajectory being tracked by the online NLP controller proposed in Section 3.6.2. When
there is a deviation from the reference trajectory in closed-loop, these apriori computed
quantities might no longer be valid. Setting up conditions under which re-planning must
occur in order to maintain validity of these trajectory-centric quantities would be essential
in practical scenarios. The use of anytime RRT* variants [75] might still allow for real-time
implementation of the controller in (3.26) if re-planning is to be included.

Incorporating uncertainty estimates into the pipeline. (3.26) does away with in-
cluding the variance costs in the controller to prevent online computation of the covariance
matrices in the optimization. When Assumption 3.2.4 holds, this might not be particu-
larly limiting. However, when this is not the case, a large uncertainty in the generated
plan implies that the δk’s generated based on the reference trajectory might not be valid.

85

Incorporating the uncertainty estimates generated by the hybrid model into the heuris-
tic/objective function for the offline planner to steer it away from high uncertainty regions
of the GP input space that result from lack of data might help especially if the uncertainty
ends up compounding over the horizon otherwise. Alternatively, something similar would
also be required if it is desired to explore areas of the GP input space with low data density.

5.1.2 Terrain mapping-based control.

Improving safety guarantees. One of the key limitations of the approach proposed in
Section 4.3 is the lack of guarantees provided on safety. The factors that contribute to this
and some implications are highlighted here.

• With black-box models like NNs, it can be hard to guarantee convergence of the
mapping classifiers to the ground truth even with a reasonably large dataset. As a
result, proving the convergence of T̂ (x) → T (x), desired in Problem 4 to provide
safety guarantees, is hard when using such a model.

• Section 4.3.2 demonstrates benefits to training classifiers using soft labels. However,
when incorporating this classifier into the controller, it does not take into account
the output logits themselves but rather computes an argmax over them to assign
values to the reference δ array. This is a limitation which becomes apparent when
considering a normalized logit output prediction of [0.33, 0.33, 0.34]T . Despite the
high uncertainty, an argmax assigns δ3,k = 1 where the residual could be wildly
different from those in the other two regions. Instead, it would be beneficial to use a
fuzzy logic-based control approach to leverage the logits in the predictions generated
by the classifier. Being able to combine the information from multiple modes based
on these soft predictions could benefit not only safety but also performance.

• Another issue, similar to the above, is when the classifier is overconfident of its
prediction. This is a problem when the prediction is in a region of low data density.
For example, if the waypoints defining the repetitive task has changed but the old
model is still utilized, its predictions on inputs that are reasonably far away from
previously collected data points must be treated a degree of skepticism. In such cases,
it would be beneficial to quantify some notion of worst case probabilistic shrunk sets
and adhere to this when such a situation arises.

• The results in Section 4.5.1 highlights issues with safe data collection while still
obtaining data samples that allow us to easily identify the active mode at that point

86

with confidence. Similar to the above, worst case probabilistic shrunk sets might
help initially provide safety benefits during the process of data collection. To reduce
over-conservative behaviours, these worst case sets can be iteratively refined over
time as more data is identified and the environment is better understood.

Extensions to a continually changing setting. The benefits of the proposed mapping
approach rely on the fact that the task to be carried out is repetitive and the data samples
collected from previous trajectory can be utilized to obtain more accurate predictions in an
MPC scheme. However, when moving to a setting where the environment has the potential
to change continually (e.g., an autonomous vehicle on a highway instead of a wheeled robot
in a closed warehouse) there could be potential issues with using the classifier to predict
assignments to discrete variables. Using a hybrid control scheme with adaptive and MPC
control in parallel could be beneficial in such settings. Moreover, MPC predictions could
be better informed if a sensor fusion approach was adopted using camera data to help with
terrain identification.

Adapting to region changes over time. The underlying model active across different
parts of the workspace is subject to change over time. A limitation of the proposed clas-
sifier is that it uses previous data samples to re-train from scratch in between runs. In
contrast, it would be better to incorporate the priors generated by previous iterations of
the classifier into (4.6) while also prioritizing the likelihood samples generated if a region
and has not been visited for some time. This would allow the classifier to be trained it-
eratively allowing for adaptation as opposed to concatenating all the datasets together as
done in Algorithm 4.3.1.

5.1.3 Online learning and control.

Guarantees on stability and recursive feasibility. The proposed controllers currently
do not provide any guarantees in terms of stability and recursive feasibility. There is
some work that tries to address such issues as highlighted in [86]. It would be relevant
to see if existing results can be leveraged, or the necessary theory can be developed, to
endow the controllers with these crucial additional properties. This would allow for a more
comprehensive theoretical analysis of the performance of these controllers.

Building hybrid models in an unsupervised manner. A limitation of this thesis
was that it was assumed that the dataset provided to train the hybrid GP residual had
labels that indicated which mode of the residual a sample was drawn from. While there
has been worked that tries to address this (as elaborated on in Section 1.1.1) it would

87

be relevant from a practical standpoint to see whether these approaches mesh with the
mapping framework proposed in Chapter 4. This would allow for the extension of the
proposed approach to environments which contain terrains for which datasets have not yet
been provided (corresponding to a relaxation of Assumption 4.2.1) leading to the absence
of a mode corresponding to that terrain in the hybrid model.

Sparse GP approximations for hybrid models. Often sparse approximations are
computed using the previous open-loop optimization solution as inducing points [55, 73,
61]. However, when dealing with region based information, there might not have enough
points across all regions for each model to be sufficiently approximated. A question to be
investigated is whether this matters to performance and safety as long as approximation is
good enough about the points in the future horizon. In the case of simple tasks this might
be sufficient but in complex environments with other dynamic agents this could no longer
be the case.

5.1.4 Real-World Implementation

There was insufficient time to implement these techniques on a real-world platform. In
addition to the practical considerations highlighted across remarks in Chapter 3 and 4, it
remains to be seen whether the residuals encountered in practice follow the same trend as
has been considered in the illustrative examples shown in this thesis. For example, tyre
friction models have areas of high overlap where the dynamics are quite similar outside of
which the models can deviate significantly. This is an intermediate between the two cases
considered in 3.4 and ways of efficiently modelling and incorporating such residuals into
the control formulation remain to be explored.

88

References

[1] Stochastic linear model predictive control with chance constraints – a review. Journal
of Process Control, 44:53–67, 2016.

[2] Hirotugu Akaike. Fitting autoregreesive models for prediction. In Selected Papers of
Hirotugu Akaike, pages 131–135. Springer, 1969.

[3] Frank Allgöwer and Alex Zheng. Nonlinear model predictive control, volume 26.
Birkhäuser, 2012.

[4] Aaron D Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista, Koushil
Sreenath, and Paulo Tabuada. Control barrier functions: Theory and applications.
In 2019 18th European control conference (ECC), pages 3420–3431. IEEE, 2019.

[5] Patrick R Amestoy, Iain S Duff, and J-Y L’excellent. Multifrontal parallel distributed
symmetric and unsymmetric solvers. Computer methods in applied mechanics and
engineering, 184(2-4):501–520, 2000.

[6] Brian DO Anderson and Arvin Dehghani. Challenges of adaptive control–past, per-
manent and future. Annual reviews in control, 32(2):123–135, 2008.

[7] Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl.
CasADi – A software framework for nonlinear optimization and optimal control.
Mathematical Programming Computation, 2019.

[8] Shan Ba and V. Roshan Joseph. Composite gaussian process models for emulating
expensive functions. The Annals of Applied Statistics, 6(4), dec 2012.

[9] François Bachoc, Fabrice Gamboa, Jean-Michel Loubes, and Nil Venet. A gaussian
process regression model for distribution inputs. IEEE Transactions on Information
Theory, 64(10):6620–6637, 2017.

89

[10] Mohammed Saad Faizan Bangi and Joseph Sang-Il Kwon. Deep hybrid model-
based predictive control with guarantees on domain of applicability. AIChE Journal,
69(5):e18012, 2023.

[11] Yajie Bao, Kimberly J Chan, Ali Mesbah, and Javad Mohammadpour Velni.
Learning-based adaptive-scenario-tree model predictive control with improved proba-
bilistic safety using robust bayesian neural networks. International Journal of Robust
and Nonlinear Control, 33(5):3312–3333, 2023.

[12] Nicholas H. Barbara, Max Revay, Ruigang Wang, Jing Cheng, and Ian R. Manch-
ester. Robustneuralnetworks.jl: a package for machine learning and data-driven
control with certified robustness, 2023.

[13] Leonard Bauersfeld, Elia Kaufmann, Philipp Foehn, Sihao Sun, and Davide
Scaramuzza. Neurobem: Hybrid aerodynamic quadrotor model. arXiv preprint
arXiv:2106.08015, 2021.

[14] Alberto Bemporad. A piecewise linear regression and classification algorithm with
application to learning and model predictive control of hybrid systems. IEEE Trans-
actions on Automatic Control, 2022.

[15] Alberto Bemporad and Manfred Morari. Control of systems integrating logic, dy-
namics, and constraints. Automatica, 35(3):407–427, 1999.

[16] Alberto Bemporad, Carlo A Pascucci, and Claudio Rocchi. Hierarchical and hy-
brid model predictive control of quadcopter air vehicles. IFAC Proceedings Volumes,
42(17):14–19, 2009.

[17] Mouhacine Benosman. Model-based vs data-driven adaptive control: an overview. In-
ternational Journal of Adaptive Control and Signal Processing, 32(5):753–776, 2018.

[18] Julian Berberich, Johannes Köhler, Matthias A Müller, and Frank Allgöwer. Data-
driven model predictive control with stability and robustness guarantees. IEEE
Transactions on Automatic Control, 66(4):1702–1717, 2020.

[19] Felix Berkenkamp and Angela P. Schoellig. Safe and robust learning control with
Gaussian processes. In 2015 European Control Conference (ECC), pages 2496–2501,
Linz, Austria, July 2015. IEEE.

[20] Karl Berntorp and Kitano Hiroaki. Bayesian learning of tire friction with automotive-
grade sensors by gaussian-process state-space models. In 2019 IEEE 58th Conference
on Decision and Control (CDC), pages 6681–6686, 2019.

90

[21] Mickaël Binois and Robert Gramacy. hetgp : Heteroskedastic gaussian process mod-
eling and sequential design in r. Journal of Statistical Software, 98, 07 2021.

[22] Lars Blackmore. A probabilistic particle control approach to optimal, robust predic-
tive control. In AIAA Guidance, Navigation, and Control Conference and Exhibit,
page 6240, 2006.

[23] Lars Blackmore, Masahiro Ono, and Brian Charles Williams. Chance-constrained
optimal path planning with obstacles. IEEE Transactions on Robotics, 27:1080–
1094, 2011.

[24] Henk AP Blom, John Lygeros, M Everdij, S Loizou, and K Kyriakopoulos. Stochastic
hybrid systems: theory and safety critical applications, volume 337. Springer, 2006.

[25] Pierre Bonami and Jon Lee. Bonmin user’s manual.

[26] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predictive Control for
Linear and Hybrid Systems. Cambridge University Press, 2017.

[27] Mathieu Bourdeau, Xiao qiang Zhai, Elyes Nefzaoui, Xiaofeng Guo, and Patrice
Chatellier. Modeling and forecasting building energy consumption: A review of
data-driven techniques. Sustainable Cities and Society, 48:101533, 2019.

[28] Eric Bradford, Lars Imsland, Dongda Zhang, and Ehecatl Antonio del Rio Chanona.
Stochastic data-driven model predictive control using gaussian processes. Computers
& Chemical Engineering, August 2020.

[29] Lukas Brunke, Melissa Greeff, Adam W. Hall, Zhaocong Yuan, Siqi Zhou, Jacopo
Panerati, and Angela P. Schoellig. Safe learning in robotics: From learning-based
control to safe reinforcement learning, 2021.

[30] Steven L Brunton, Marko Budǐsić, Eurika Kaiser, and J Nathan Kutz. Modern
koopman theory for dynamical systems. arXiv preprint arXiv:2102.12086, 2021.

[31] Thang D Bui, Cuong Nguyen, and Richard E Turner. Streaming Sparse Gaussian
Process Approximations. page 9.

[32] Martin Buss, Markus Glocker, Michael Hardt, Oskar Von Stryk, Roland Bulirsch,
and Günther Schmidt. Nonlinear hybrid dynamical systems: modeling, optimal
control, and applications. In Modelling, Analysis, and Design of Hybrid Systems,
pages 311–335. Springer, 2002.

91

[33] Erion Bwambale, Felix K Abagale, and Geophrey K Anornu. Data-driven model pre-
dictive control for precision irrigation management. Smart Agricultural Technology,
3:100074, 2023.

[34] Roberto Calandra, Andre Seyfarth, Jan Peters, and Marc Deisenroth. Bayesian op-
timization for learning gaits under uncertainty. Annals of Mathematics and Artificial
Intelligence (AMAI), 76, 06 2015.

[35] E.F. Camacho, D.R. Ramirez, D. Limon, D. Muñoz de la Peña, and T. Alamo.
Model predictive control techniques for hybrid systems. Annual Reviews in Control,
34(1):21–31, April 2010.

[36] Andrea Carron, Elena Arcari, Martin Wermelinger, Lukas Hewing, Marco Hutter,
and Melanie N Zeilinger. Data-driven model predictive control for trajectory tracking
with a robotic arm. IEEE Robotics and Automation Letters, 4(4):3758–3765, 2019.

[37] Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural lyapunov control. Advances
in neural information processing systems, 32, 2019.

[38] Girish Chowdhary, Hassan A. Kingravi, Jonathan P. How, and Patricio A. Vela.
Bayesian nonparametric adaptive control using gaussian processes. IEEE Transac-
tions on Neural Networks and Learning Systems, 26(3):537–550, 2015.

[39] Fabian Christ, Alexander Wischnewski, Alexander Heilmeier, and Boris Lohmann.
Time-optimal trajectory planning for a race car considering variable tyre-road friction
coefficients. Vehicle System Dynamics, 59(4):588–612, 2021.

[40] Lehel Csato. Gaussian Processes - Iterative Sparse Approximations. page 117.

[41] Lehel Csató. Gaussian processes - iterative sparse approximations. 03 2002.

[42] Olaf Czogalla, Robert Hoyer, and Ulrich Jumar. Modelling and simulation of con-
trolled road traffic. In Modelling, Analysis, and Design of Hybrid Systems, pages
419–435. Springer, 2002.

[43] Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke Fujii,
Alexis Boukouvalas, Pablo León-Villagrá, Zoubin Ghahramani, and James Hensman.
Gpflow: A gaussian process library using tensorflow. Journal of Machine Learning
Research, 18(40):1–6, 2017.

92

[44] Manoj Kumar Debnath, Tarakanta Jena, and Smaran Kumar Sanyal. Frequency con-
trol analysis with pid-fuzzy-pid hybrid controller tuned by modified gwo technique.
International Transactions on Electrical Energy Systems, 29(10):e12074, 2019.

[45] Marc Peter Deisenroth, Dieter Fox, and Carl Edward Rasmussen. Gaussian processes
for data-efficient learning in robotics and control. IEEE transactions on pattern
analysis and machine intelligence, 37(2):408–423, 2013.

[46] Tommaso Dreossi, Alexandre Donzé, and Sanjit A. Seshia. Compositional falsifica-
tion of cyber-physical systems with machine learning components, 2017.

[47] David Duvenaud. Automatic model construction with Gaussian processes. PhD the-
sis, University of Cambridge, 2014.

[48] David Duvenaud. Automatic model construction with Gaussian processes. PhD the-
sis, 11 2014.

[49] David D. Fan, Jennifer Nguyen, Rohan Thakker, Nikhilesh Alatur, Ali-akbar Agha-
mohammadi, and Evangelos A. Theodorou. Bayesian learning-based adaptive control
for safety critical systems. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 4093–4099, 2020.

[50] Giancarlo Ferrari-Trecate, Marco Muselli, Diego Liberati, and Manfred Morari. A
clustering technique for the identification of piecewise affine systems. Automatica,
39(2):205–217, 2003.

[51] Jonathan D Gammell, Siddhartha S Srinivasa, and Timothy D Barfoot. Informed rrt:
Optimal sampling-based path planning focused via direct sampling of an admissible
ellipsoidal heuristic. In 2014 IEEE/RSJ international conference on intelligent robots
and systems, pages 2997–3004. IEEE, 2014.

[52] G. Gao, Hao Jiang, Jeroen Vink, Chaohui Chen, Yaakoub el Khamra, and J. Ita.
Gaussian mixture model fitting method for uncertainty quantification by conditioning
to production data. Computational Geosciences, 24:663–681, 04 2020.

[53] Jacob R. Gardner, Geoff Pleiss, David Bindel, Kilian Q. Weinberger, and An-
drew Gordon Wilson. Gpytorch: Blackbox matrix-matrix gaussian process inference
with gpu acceleration, 2018.

[54] Jorge L Garriga and Masoud Soroush. Model predictive control tuning methods: A
review. Industrial & Engineering Chemistry Research, 49(8):3505–3515, 2010.

93

[55] Agathe Girard, Carl Edward Rasmussen, Joaquin Quiñonero Candela, and Roderick
Murray-Smith. Gaussian process priors with uncertain inputs application to multiple-
step ahead time series forecasting. In Proceedings of the 15th International Confer-
ence on Neural Information Processing Systems, NIPS’02, page 545–552, Cambridge,
MA, USA, 2002. MIT Press.

[56] Lars Grüne, Jürgen Pannek, Lars Grüne, and Jürgen Pannek. Nonlinear model
predictive control. Springer, 2017.

[57] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In
International conference on machine learning, pages 1861–1870. PMLR, 2018.

[58] Wei He, Zhao Yin, and Changyin Sun. Adaptive neural network control of a ma-
rine vessel with constraints using the asymmetric barrier lyapunov function. IEEE
transactions on cybernetics, 47(7):1641–1651, 2016.

[59] Wei He, Zhao Yin, and Changyin Sun. Adaptive neural network control of a ma-
rine vessel with constraints using the asymmetric barrier lyapunov function. IEEE
transactions on cybernetics, 47(7):1641–1651, 2016.

[60] Lukas Hewing, Andrea Carron, Kim P. Wabersich, and Melanie N. Zeilinger. On a
correspondence between probabilistic and robust invariant sets for linear systems. In
2018 European Control Conference (ECC), pages 1642–1647, 2018.

[61] Lukas Hewing, Juraj Kabzan, and Melanie N. Zeilinger. Cautious model predictive
control using gaussian process regression. IEEE Transactions on Control Systems
Technology, 28(6):2736–2743, nov 2020.

[62] Lukas Hewing, Alexander Liniger, and Melanie N. Zeilinger. Cautious NMPC with
gaussian process dynamics for autonomous miniature race cars. In 2018 European
Control Conference (ECC). IEEE, jun 2018.

[63] Lukas Hewing, Kim PWabersich, Marcel Menner, and Melanie N Zeilinger. Learning-
based model predictive control: Toward safe learning in control. Annual Review of
Control, Robotics, and Autonomous Systems, 3:269–296, 2020.

[64] Lukas Hewing and Melanie N. Zeilinger. Performance analysis of stochastic model
predictive control with direct and indirect feedback. In 2020 59th IEEE Conference
on Decision and Control (CDC), pages 672–678, 2020.

94

[65] Lukas Hewing and Melanie N. Zeilinger. Scenario-based probabilistic reachable sets
for recursively feasible stochastic model predictive control. IEEE Control Systems
Letters, 4(2):450–455, 2020.

[66] Lukas Hewing and Melanie Nicole Zeilinger. Indirect and direct feedback in stochastic
model predictive control. 2020.

[67] Zhong-Sheng Hou and Zhuo Wang. From model-based control to data-driven control:
Survey, classification and perspective. Information Sciences, 235:3–35, 2013.

[68] Zhongsheng Hou, Ronghu Chi, and Huijun Gao. An overview of dynamic-
linearization-based data-driven control and applications. IEEE Transactions on In-
dustrial Electronics, 64(5):4076–4090, 2016.

[69] Naira Hovakimyan and Chengyu Cao. 1 adaptive control theory: Guaranteed robust-
ness with fast adaptation. SIAM, 2010.

[70] Naira Hovakimyan, Flavio Nardi, Anthony Calise, and Nakwan Kim. Adaptive out-
put feedback control of uncertain nonlinear systems using single-hidden-layer neural
networks. IEEE Transactions on neural networks, 13(6):1420–1431, 2002.

[71] Marvin Jung, Paulo Renato da Costa Mendes, Magnus Önnheim, and Emil Gustavs-
son. Model predictive control when utilizing lstm as dynamic models. Engineering
Applications of Artificial Intelligence, 123:106226, 2023.

[72] Eurika Kaiser, J Nathan Kutz, and Steven L Brunton. Sparse identification of non-
linear dynamics for model predictive control in the low-data limit. Proceedings of the
Royal Society A, 474(2219):20180335, 2018.

[73] Sanket Kamthe and Marc Peter Deisenroth. Data-efficient reinforcement learning
with probabilistic model predictive control, 2017.

[74] Nikolas Kantas, JM Maciejowski, and A Lecchini-Visintini. Sequential monte carlo
for model predictive control. Nonlinear model predictive control: Towards new chal-
lenging applications, pages 263–273, 2009.

[75] Sertac Karaman, Matthew R. Walter, Alejandro Perez, Emilio Frazzoli, and Seth
Teller. Anytime motion planning using the rrt*. In 2011 IEEE International Con-
ference on Robotics and Automation, pages 1478–1483, 2011.

95

[76] Robert E. Kass, Bradley P. Carlin, Andrew Gelman, and Radford M. Neal. Markov
chain monte carlo in practice: A roundtable discussion. The American Statistician,
52(2):93–100, 1998.

[77] Saeed Khankalantary, Pouya Badri, and Hassan Mohammadkhani. Designing a hier-
archical model-predictive controller for tracking an unknown ground moving target
using a 6-dof quad-rotor. International Journal of Dynamics and Control, 9:985–999,
2021.

[78] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2017.

[79] Kevin Kircher. Robust and stochastic optimization notes, Fall 2015.

[80] Bahare Kiumarsi, Kyriakos G Vamvoudakis, Hamidreza Modares, and Frank L Lewis.
Optimal and autonomous control using reinforcement learning: A survey. IEEE
transactions on neural networks and learning systems, 29(6):2042–2062, 2017.

[81] Torsten Koller, Felix Berkenkamp, Matteo Turchetta, Joschka Boedecker, and An-
dreas Krause. Learning-based model predictive control for safe exploration and re-
inforcement learning, 2019.

[82] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[83] Eugene Lavretsky. Adaptive control: Introduction, overview, and applica-
tions. https://www.cds.caltech.edu/archive/help/uploads/wiki/files/140/

IEEE_WorkShop_Slides_Lavretsky.pdf. Accessed: 1-7-2023.

[84] Quoc V Le, Alex J Smola, and Stéphane Canu. Heteroscedastic gaussian process
regression. In Proceedings of the 22nd international conference on Machine learning,
pages 489–496, 2005.

[85] Frank L Lewis, Aydin Yesildirek, and Kai Liu. Multilayer neural-net robot con-
troller with guaranteed tracking performance. IEEE Transactions on neural net-
works, 7(2):388–399, 1996.

[86] Michael Maiworm, Daniel Limon, and Rolf Findeisen. Online learning-based model
predictive control with gaussian process models and stability guarantees. Interna-
tional Journal of Robust and Nonlinear Control, 31(18):8785–8812, 2021.

96

https://www.cds.caltech.edu/archive/help/uploads/wiki/files/140/IEEE_WorkShop_Slides_Lavretsky.pdf
https://www.cds.caltech.edu/archive/help/uploads/wiki/files/140/IEEE_WorkShop_Slides_Lavretsky.pdf

[87] D Mariano-Hernández, L Hernández-Callejo, A Zorita-Lamadrid, O Duque-Pérez,
and F Santos Garćıa. A review of strategies for building energy management system:
Model predictive control, demand side management, optimization, and fault detect
& diagnosis. Journal of Building Engineering, 33:101692, 2021.

[88] Albert W Marshall, Ingram Olkin, and Barry C Arnold. Inequalities: theory of
majorization and its applications. 1979.

[89] Andrew Mchutchon and Carl Rasmussen. Gaussian process training with input noise.
In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 24. Curran Associates,
Inc., 2011.

[90] Christopher D. McKinnon and Angela P. Schoellig. Learning multimodal models for
robot dynamics online with a mixture of gaussian process experts. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pages 322–328, 2017.

[91] Christopher D McKinnon and Angela P Schoellig. Learn fast, forget slow: Safe pre-
dictive learning control for systems with unknown and changing dynamics performing
repetitive tasks. IEEE Robotics and Automation Letters, 4(2):2180–2187, 2019.

[92] Ali Mesbah. Stochastic model predictive control: An overview and perspectives for
future research. IEEE Control Systems Magazine, 36(6):30–44, 2016.

[93] Charles A. Micchelli, Yuesheng Xu, and Haizhang Zhang. Universal kernels. Journal
of Machine Learning Research, 7(95):2651–2667, 2006.

[94] Ioanna Mitsioni, Yiannis Karayiannidis, Johannes A Stork, and Danica Kragic. Data-
driven model predictive control for the contact-rich task of food cutting. In 2019
IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), pages
244–250. IEEE, 2019.

[95] Pieter J Mosterman, Manuel A Pereira Remelhe, Sebastian Engell, and Martin Otter.
Simulation for analysis of aircraft elevator feedback and redundancy control. In
Modelling, analysis, and design of hybrid systems, pages 369–390. Springer, 2002.

[96] Tomáš Nagy, Ahmad Amine, Truong X Nghiem, Ugo Rosolia, Zirui Zang, and Rahul
Mangharam. Ensemble gaussian processes for adaptive autonomous driving on multi-
friction surfaces. arXiv preprint arXiv:2303.13694, 2023.

97

[97] Radford M Neal. Probabilistic inference using Markov chain Monte Carlo methods.
1993.

[98] Masahiro Ono and Brian C. Williams. Iterative risk allocation: A new approach to
robust model predictive control with a joint chance constraint.

[99] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet:
A generative model for raw audio. arXiv preprint arXiv:1609.03499, 2016.

[100] Chris J. Ostafew, Angela P. Schoellig, and Timothy D. Barfoot. Learning-based non-
linear model predictive control to improve vision-based mobile robot path-tracking
in challenging outdoor environments. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 4029–4036, May 2014. ISSN: 1050-4729.

[101] Chris J. Ostafew, Angela P. Schoellig, and Timothy D. Barfoot. Learning-based non-
linear model predictive control to improve vision-based mobile robot path-tracking
in challenging outdoor environments. In 2014 IEEE International Conference on
Robotics and Automation (ICRA), pages 4029–4036, 2014.

[102] Hans B. Pacejka and Egbert Bakker. The magic formula tyre model. Vehicle System
Dynamics, 21(sup001):1–18, 1992.

[103] Joel A Paulson, Edward A Buehler, Richard D Braatz, and Ali Mesbah. Stochastic
model predictive control with joint chance constraints. International Journal of
Control, 93(1):126–139, 2020.

[104] Ian R Petersen and Roberto Tempo. Robust control of uncertain systems: Classical
results and recent developments. Automatica, 50(5):1315–1335, 2014.

[105] Matthew Pitropov, Danson Evan Garcia, Jason Rebello, Michael Smart, Carlos
Wang, Krzysztof Czarnecki, and Steven Waslander. Canadian adverse driving condi-
tions dataset. The International Journal of Robotics Research, 40(4-5):681–690, dec
2020.

[106] Alexander S Poznyak, Edgar N Sanchez, and Wen Yu. Differential neural networks
for robust nonlinear control: identification, state estimation and trajectory tracking.
World Scientific, 2001.

[107] Krupa Prag, Matthew Woolway, and Turgay Celik. Toward data-driven optimal
control: A systematic review of the landscape. IEEE Access, 10:32190–32212, 2022.

98

[108] Christopher J. Pratt and Kam K. Leang. Dynamic underactuated flying-walking
(duck) robot. In 2016 IEEE International Conference on Robotics and Automation
(ICRA), pages 3267–3274, 2016.

[109] Ananth Ranganathan, Ming-Hsuan Yang, and Jeffrey Ho. Online Sparse Gaussian
Process Regression and Its Applications. IEEE Transactions on Image Processing,
20(2):391–404, February 2011.

[110] Carl Edward Rasmussen. Gaussian processes for machine learning. MIT Press, 2006.

[111] Benjamin Recht. A tour of reinforcement learning: The view from continuous control.
Annual Review of Control, Robotics, and Autonomous Systems, 2:253–279, 2019.

[112] Beibei Ren, Shuzhi Sam Ge, Keng Peng Tee, and Tong Heng Lee. Adaptive neural
control for output feedback nonlinear systems using a barrier lyapunov function.
IEEE Transactions on Neural Networks, 21(8):1339–1345, 2010.

[113] Garrett Robert Rose. Numerical methods for solving optimal control problems. Mas-
ter’s thesis, University of Tennessee, 2015.

[114] Ugo Rosolia and Francesco Borrelli. Learning model predictive control for iterative
tasks. a data-driven control framework, 2016.

[115] Tim Salzmann, Elia Kaufmann, Jon Arrizabalaga, Marco Pavone, Davide Scara-
muzza, and Markus Ryll. Real-time neural mpc: Deep learning model predictive
control for quadrotors and agile robotic platforms. IEEE Robotics and Automation
Letters, 8(4):2397–2404, 2023.

[116] Robert M Sanner and Jean-Jacques E Slotine. Gaussian networks for direct adaptive
control. In 1991 American control conference, pages 2153–2159. IEEE, 1991.

[117] Alan D. Saul, James Hensman, Aki Vehtari, and Neil D. Lawrence. Chained gaussian
processes, 2016.

[118] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International conference on machine learning,
pages 1889–1897. PMLR, 2015.

[119] Max Schwenzer, Muzaffer Ay, Thomas Bergs, and Dirk Abel. Review on model pre-
dictive control: An engineering perspective. The International Journal of Advanced
Manufacturing Technology, 117(5-6):1327–1349, 2021.

99

[120] Science and Technology Facilities Council (STFC). Coin-hsl solvers. https:

//licences.stfc.ac.uk/product/coin-hsl. Accessed: 5-7-2023.

[121] Yong Shi, Wei Dai, Wen Long, and Bo Li. Deep kernel gaussian process based
financial market predictions, 2021.

[122] Francesco Smarra, Achin Jain, Tullio de Rubeis, Dario Ambrosini, Alessandro
D’Innocenzo, and Rahul Mangharam. Data-driven model predictive control using
random forests for building energy optimization and climate control. Applied En-
ergy, 226:1252–1272, 2018.

[123] Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-
inputs. 01 2005.

[124] Marion Sobotka. Hybrid dynamical system methods for legged robot locomotion
with variable ground contact. 2007.

[125] Nilesh Suriyarachchi, Rien Quirynen, John S Baras, and Stefano Di Cairano.
Optimization-based coordination and control of traffic lights and mixed traffic in
multi-intersection environments. In 2023 American Control Conference (ACC), pages
3162–3168. IEEE, 2023.

[126] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar Hafner,
Steven Bohez, and Vincent Vanhoucke. Sim-to-real: Learning agile locomotion for
quadruped robots, 2018.

[127] Russ Tedrake. Underactuated Robotics. 2022.

[128] C.J. Tomlin, I. Mitchell, A.M. Bayen, and M. Oishi. Computational techniques for
the verification of hybrid systems. Proceedings of the IEEE, 91(7):986–1001, 2003.

[129] Guillem Torrente, Elia Kaufmann, Philipp Fohn, and Davide Scaramuzza. Data-
Driven MPC for Quadrotors. IEEE Robotics and Automation Letters, 6(2):3769–
3776, April 2021.

[130] Arjan J Van Der Schaft and Hans Schumacher. An introduction to hybrid dynamical
systems, volume 251. springer, 2007.

[131] Dennis Harald Van Hessem. Stochastic inequality constrained closed-loop model
predictive control with application to chemical process operation. 2004.

100

https://licences.stfc.ac.uk/product/coin-hsl
https://licences.stfc.ac.uk/product/coin-hsl

[132] Bart PG Van Parys, Daniel Kuhn, Paul J Goulart, and Manfred Morari. Distri-
butionally robust control of constrained stochastic systems. IEEE Transactions on
Automatic Control, 61(2):430–442, 2015.

[133] Andrea Lecchini Visintini, William Glover, John Lygeros, and Jan Maciejowski.
Monte carlo optimization for conflict resolution in air traffic control. IEEE Transac-
tions on Intelligent Transportation Systems, 7(4):470–482, 2006.

[134] Vivek Vittaldev, Ryan P Russell, and Richard Linares. Spacecraft uncertainty prop-
agation using gaussian mixture models and polynomial chaos expansions. Journal of
Guidance, Control, and Dynamics, 39(12):2615–2626, 2016.

[135] RICHARD VON MISES. Chapter vii - probability inference. bayes’ method. In
RICHARD VON MISES, editor, Mathematical Theory of Probability and Statistics,
pages 329–367. Academic Press, 1964.

[136] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical Pro-
gramming, 106:25–57, 2006.

[137] Chunyi Wang and Radford M. Neal. Gaussian process regression with heteroscedastic
or non-gaussian residuals, 2012.

[138] Ruigang Wang and Ian Manchester. Direct parameterization of lipschitz-bounded
deep networks. In International Conference on Machine Learning, pages 36093–
36110. PMLR, 2023.

[139] Yang Wang and Stephen Boyd. Fast model predictive control using online optimiza-
tion. IEEE Transactions on Control Systems Technology, 18(2):267–278, 2010.

[140] Christopher Williams and Matthias Seeger. Using the nyström method to speed up
kernel machines. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural
Information Processing Systems, volume 13. MIT Press, 2000.

[141] Matthew O Williams, Ioannis G Kevrekidis, and Clarence W Rowley. A data–driven
approximation of the koopman operator: Extending dynamic mode decomposition.
Journal of Nonlinear Science, 25:1307–1346, 2015.

[142] Wee Chin Wong, Ewan Chee, Jiali Li, and Xiaonan Wang. Recurrent neural network-
based model predictive control for continuous pharmaceutical manufacturing. Math-
ematics, 6(11):242, 2018.

101

[143] Xiao Wu, Jiong Shen, Yiguo Li, and Kwang Y Lee. Data-driven modeling and pre-
dictive control for boiler–turbine unit using fuzzy clustering and subspace methods.
ISA transactions, 53(3):699–708, 2014.

[144] Zheng Yan and Jun Wang. Model predictive control for tracking of underactuated
vessels based on recurrent neural networks. IEEE Journal of Oceanic Engineering,
37(4):717–726, 2012.

[145] Zheng Yan and Jun Wang. Robust model predictive control of nonlinear systems with
unmodeled dynamics and bounded uncertainties based on neural networks. IEEE
transactions on neural networks and learning systems, 25(3):457–469, 2013.

[146] Zhaocong Yuan, Adam W. Hall, Siqi Zhou, Lukas Brunke, Melissa Greeff, Jacopo
Panerati, and Angela P. Schoellig. safe-control-gym: a unified benchmark suite for
safe learning-based control and reinforcement learning in robotics, 2022.

[147] Andrea Zanelli, Alexander Domahidi, Juan Jerez, and Manfred Morari. Forces nlp:
an efficient implementation of interior-point methods for multistage nonlinear non-
convex programs. International Journal of Control, 93(1):13–29, 2020.

[148] Jiu-sun Zeng, Chuan-hou Gao, and Hong-ye Su. Data-driven predictive control for
blast furnace ironmaking process. Computers & Chemical Engineering, 34(11):1854–
1862, 2010.

[149] Dan Zhang and Bin Wei. A review on model reference adaptive control of robotic
manipulators. Annual Reviews in Control, 43:188–198, 2017.

[150] Yongchang Zhang, Jialin Jin, and Lanlan Huang. Model-free predictive current con-
trol of pmsm drives based on extended state observer using ultralocal model. IEEE
Transactions on Industrial Electronics, 68(2):993–1003, 2021.

[151] Yingzhe Zheng, Cheng Hu, Xiaonan Wang, and Zhe Wu. Physics-informed recurrent
neural network modeling for predictive control of nonlinear processes. Journal of
Process Control, 128:103005, 2023.

102

APPENDICES

103

Appendix A

Dynamics model for a 2-D quadrotor.

Figure A.1: [146] A 2-D quadrotor model subject to 2 input thrusts T1, T2 with tilt angle
θ operating in the x− z plane.

The 2-D quadrotor utilized in this thesis is as presented in [146] with all of the parameters
in the dynamics and bounds being pulled from either [146] or the associated code-base.
The quadrotor operates in the x− z plane with a state and input vector,

x = [x, ẋ, z, ż, θ, θ̇]T (A.1a)

u = [u1, u2]
T = [T1, T2]

T (A.1b)

where (x, z), θ denote the cartesian co-ordinates along the x− z axes and the tilt angle
measured CCW from the x-axis respectively. (ẋ, ż), θ̇ represent the velocity along the x−z
axes and the tilt angle rate of change respectively.

104

The equations of motion of this system are of the form,

ẍ = sin θ (u1 + u2) /m (A.2a)

z̈ = cos θ (u1 + u2) /m− g (A.2b)

θ̈ =
(u2 − u1)

Iyy

l√
2
, (A.2c)

The assignments to the parameters in (A.2) are as follows,

• m = 0.027 kg - quadrotor mass

• l = 0.0397 m - arm length of the quadrotor

• Iyy = 1.4× 10−5 kg m2 - moment of inertia about the y-axis

Bounds for x, z are dependent on the environment and as such are specified in the
simulation setup in Section 3.7.2. The velocity limits are set to be −5 ≤ ẋ ≤ 5 and
similarly for ż. For tilt angles, the limits are defined as −1.484rad. ≤ θ ≤ 1.484rad. with
no constraint on the rate of change of tilt. Bounds on the input are as determined by
motor coefficients and minimum and maximum Pulse Width Modulation (PWM) limits
and are thus defined as 0.05632 ≤ ui ≤ 0.29668 ∀ i ∈ {1, 2}.

105

Glossary

Chance-Constrained Model Predictive Controller A type of MPC dealing with prob-
abilistic constraints, usually used for systems involving uncertainty modelled as dis-
tributions with infinite support (e.g., Gaussians). xvi

combinatorial explosion Refers to a situation where the number of possible combina-
tions or outcomes of a problem grows exponentially as the problem size increases.
This can quickly become overwhelming for computer algorithms, as the time and
resources needed to explore every possible combination become impractical, or in-
feasible necessitating the use of relaxations and/or approximations to the original
problem. 38

hybrid This shares the definition of a piecewise system but in the context of this thesis I
will use this term to indicate the learnt approximation of some underlying piecewise
residual dynamics or to characterize an MPC controller making use of such a model
in the dynamics constraint equations. iii, x, 2, 3, 5, 6, 17, 19, 21–25, 27, 29–31,
33–38, 45, 52, 53, 55, 57, 60, 61, 64, 65, 68, 72, 76, 83, 85–88

Mixed Integer Nonlinear Program An extension of non-linear programming where
the optimization variables can be continuous or (discrete) integer-valued. These
problems can become computationally intractable to solve as the number of vari-
ables and constraints grows. xvi

piecewise In the context of this thesis, this term will refer to true underlying residuals
that vary over different regions of the state-space (or more practically, the workspace
of a robotic system). iii, 17, 19, 21, 23, 27, 30, 31, 54–57, 106

polytope A n-dimensional polyhedron often used in MPC to define constraint sets. 13,
20

106

residual The mismatch between next state of a discrete (or discretized) system predicted
by a nominal model derived from first principles and the true measured next state
(assuming no measurement error). iii, 2, 9–12, 17, 19, 21–25, 27, 30, 88, 106

107

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Literature Review
	Data-driven control
	Hybrid MPC
	Stochastic MPC

	Contributions

	Background
	Gaussian Processes - An Overview
	Introduction to MPC
	Tractability of Gaussian Process-based MPC
	Stochastic Chance-Constrained MPC

	Designing a Hybrid CC-MPC Controller
	Introduction
	Motivating Example

	Problem Statement
	Learning Hybrid GP residual models
	Demonstrating the benefits of hybrid GP models
	Effects of discontinuities in residuals.
	Addressing issues with learnt lengthscales.
	Residual dynamics with overlapping input spaces.

	Designing an SMPC Controller for a model with hybrid piece-wise dynamics
	Control Policy.
	Propagating residual dynamics across a horizon.
	Shrunk chance-constrained sets.
	Big-M formulation for the hybrid residual model.
	Cost Function.
	Hybrid MPC Formulation

	Improving computational speed of a hybrid GP-MPC controller.
	Cause of slow MINLP solve times.
	Constructing a parametrized hybrid MPC controller.
	Planning considerations.

	Numerical Simulations
	Mixed-Integer GP-MPC Controller.
	Hybrid NLP GP-MPC Controller.

	Conclusion

	Identifying region locations in unseen environments.
	Motivating Example.
	Problem Setup and Statement
	Methodology
	Training a classifier on a dataset of soft label vectors.
	Soft vs. Hard label training datasets
	Terrain mapping planner-controller architecture

	Data-efficient mapping of unknown environments.
	Incorporating optimization results into the nominal controller.

	Results
	Data-efficient mapping results
	Iterative terrain mapping results

	Conclusion

	Conclusion
	Limitations and Future Research Directions
	MINLP to NLP conversion.
	Terrain mapping-based control.
	Online learning and control.
	Real-World Implementation

	References
	APPENDICES
	Dynamics model for a 2-D quadrotor.
	Glossary

