
Out-of-Distribution Generalization of
Gigapixel Image Representation

by

Milad Sikaroudi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Systems Design Engineering

Waterloo, Ontario, Canada, 2023

© Milad Sikaroudi 2023



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Member: Majid Ahmadi
Prof., Dept. Electrical and Computer Engineering,
University of Windsor

Internal-External Members: Mohammad Kohandel
Prof., Dept. Applied Mathematics,
University of Waterloo

Mark Crowley
Associate Prof., Dept. Electrical and Computer Engineering,
University of Waterloo

Internal Member: Jonathan Kofman
Prof., Dept. Systems Design Engineering,
University of Waterloo

Supervisor(s): Hamid Tizhoosh
Prof., Mayo Clinic

Shahryar Rahnamayan
Prof., Brock University

ii



Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Statement of Contributions

Every piece of experimental data, graphical representations, and textual content presented
here is the product of my own efforts during my Ph.D. research journey. These constitute
the collective body of contributions I made throughout my doctorate studies. Whether or
not the thesis directly draws upon the following papers that I have authored is a variable
factor:

a) Sikaroudi M, Hosseini M, Rahnamayan S, Tizhoosh HR. ALFA–Leveraging All Lev-
els of Feature Abstraction for Enhancing the Generalization of Histopathology Image
Classification Across Unseen Hospitals. Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). 2023 Aug.

b) Sikaroudi M, Hosseini M, Gonzalez R, Rahnamayan S, Tizhoosh HR. Generaliza-
tion of Vision Pre-trained Models for Histopathology. Nature, Scientific Reports.
2023 Apr.

c) Alsaafin A, Safarpoor A, Sikaroudi M, Hipp JD, Tizhoosh HR. Learning to Predict
RNA Sequence Expressions from Whole Slide Images with Applications for Search
and Classification. Nature, Communications Biology. 2023 Mar.

d) Hosseini SM, Sikaroudi M, Babaie M, Tizhoosh HR. Proportionally Fair Hospital
Collaborations in Federated Learning of Histopathology Images. IEEE Transactions
on Medical Imaging. 2023 Jan.

e) Sikaroudi M, Rahnamayan S, Tizhoosh HR. Hospital-agnostic image representation
learning in digital pathology. 2022 44th Annual International Conference of the IEEE
Engineering in Medicine & Biology Society (EMBC) 2022 Jul.

f) Hosseini SM, Sikaroudi M, Babaei M, Tizhoosh HR. Cluster-Based Secure Multi-
party Computation in Federated Learning for Histopathology Images. MICCAI
Workshop, International Workshop on Distributed, Collaborative, and Federated
Learning 2022 Sep.

g) Sikaroudi M, Ghojogh B, Karray F, Crowley M, Tizhoosh HR. Magnification Gen-
eralization for Histopathology Image Embedding. 2021 IEEE 18th International Sym-
posium on Biomedical Imaging (ISBI) 2021 Apr.

h) Sikaroudi M, Ghojogh B, Karray F, Crowley M, Tizhoosh HR. Batch-incremental
Triplet Sampling for Training Triplet Networks using Bayesian Updating Theorem.
2020 25th IEEE International Conference on Pattern Recognition (ICPR) 2021 Jan.

i) Sikaroudi M, Ghojogh B, Safarpoor A, Karray F, Crowley M, Tizhoosh HR. Offline
versus Online Triplet Mining based on Extreme Distances of Histopathology Patches.
International Symposium on Visual Computing 2020 Oct.

iv



j) Sikaroudi M, Safarpoor A, Ghojogh B, Shafiei S, Crowley M, Tizhoosh HR. Su-
pervision and Source Domain Impact on Representation Learning: A Histopathology
Case Study. 2020 42nd IEEE Annual International Conference of the IEEE Engi-
neering in Medicine & Biology Society (EMBC) 2020 Jul.

k) Ghojogh B, Sikaroudi M, Shafiei S, Tizhoosh HR, Karray F, Crowley M. Fisher
Discriminant Triplet and Contrastive Losses for Training Siamese Networks. 2020
IEEE International Joint Conference on Neural Networks (IJCNN) 2020 Jul.

l) Ghojogh B, Sikaroudi M, Tizhoosh HR, Karray F, Crowley M. Weighted Fisher
Discriminant Analysis in the Input and Feature Spaces. International Conference on
Image Analysis and Recognition 2020 Jun.

v



Abstract

This thesis addresses the significant challenge of improving the generalization capabil-
ities of artificial deep neural networks in the classification of whole slide images (WSIs) in
histopathology across different and unseen hospitals. It is a critical issue in AI applications
to vision-based healthcare tasks, given that current standard methodologies struggle with
out-of-distribution (OOD) data from varying hospital sources. In histopathology, distri-
bution shifts can arise due to image acquisition variances across different scanner vendors,
differences in laboratory routines and staining procedures, and diversity in patient demo-
graphics. This work investigates two critical forms of generalization within histopathol-
ogy: magnification generalization and OOD generalization towards different hospitals. One
chapter of this thesis is dedicated to the exploration of magnification generalization, ac-
knowledging the variability in histopathological images due to distinct magnification levels
and seeking to enhance the model’s robustness by learning invariant features across these
levels. However, the major part of this work focuses on OOD generalization, specifically
unseen hospital data. The objective is to leverage knowledge encapsulated in pre-existing
models to help new models adapt to diverse data scenarios and ensure their efficient op-
eration in different hospital environments. Additionally, the concept of Hospital-Agnostic
(HA) learning regimes is introduced, focusing on invariant characteristics across hospitals
and aiming to establish a learning model that sustains stable performance in varied hospi-
tal settings. The culmination of this research introduces a comprehensive method, termed
ALFA (Exploiting All Levels of Feature Abstraction), that not only considers invariant fea-
tures across hospitals but also extracts a broader set of features from input images, thus
maximizing the model’s generalization potential. The findings of this research are expected
to have significant implications for the deployment of medical image classification systems
using deep models in clinical settings. The proposed methods allow for more accurate
and reliable diagnostic support across various hospital environments, thereby improving
diagnostic accuracy and reliability, and paving the way for enhanced generalization in
histopathology diagnostics using deep learning techniques. Future research directions may
build on expanding these investigations to further improve generalization in histopathology.
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Chapter 1

Motivation

1.1 Cancer Diagnosis

Cancer is the world’s major cause of death, estimated to claim almost 10 million lives
in 2020 [164]. The early and reliable diagnosis of cancer is of high importance since it
is conducive to a higher chance of successful treatment. Although a potential cancer
diagnosis may be initiated based on medical history and physical examination, ultimate
verification and final diagnosis need a biopsy and histopathologic inspection. Hematoxylin
and Eosin (H&E) stained slides of biopsy samples on glass slides are routinely used by
pathologists to examine human tissue under the microscope [37]. Histopathological visual
inspections provide diagnostic and predictive information regarding disease progression
and phenotypic characteristics. In most cases, pathologists may stratify tumors based on
simple decision trees that they develop during their training. Inter-observer variability
and prolonged diagnosis times are the two major limitations of examining H&E slides by
pathologists [77]. These limitations can be overcome using computer-aided approaches,
which can reveal nuances in morphology between clinical groups.

1.2 Digital Pathology

The advent of WSI scanners and the impact of the COVID-19 pandemic has started a
revolution in diagnostic pathology [168]. The WSI scanner is capable of digitizing con-
ventional glass tissue slides into digital images, significantly facilitating the application of
image analysis in pathology. Image analysis, which uses computational techniques to in-
terpret pathology images, is rapidly becoming a powerful tool for examining a wide variety
of pathology workflows. Numerous studies [102, 231] have shown that such technologies
can overcome the inherent subjectivity involved in manual analysis and significantly reduce
pathologists’ burden via high-throughput computerized analysis.
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1.3 Deep Learning and Computational Pathology

Deep learning, particularly a CNN, has significantly improved the accuracy of many tasks
such as image recognition, object detection, and semantic segmentation [158, 265, 3]. One
of the primary tasks in computer vision is image classification. Deep learning approaches
have demonstrated their effectiveness in this area, but their performance is ultimately
constrained by the size of the available dataset [105]. The availability of large datasets has
contributed to significant progress in image classification, facilitated by the emergence of
deep learning techniques. Furthermore, CNNs have proven successful in capturing intricate
tissue patterns and are extensively utilized in biomedical imaging for cancer detection and
segmentation of breast, lung, and prostate cancers [105].

However, the limited availability of expert-labeled training data [231] and the challenge
of generalizing beyond the training data [185] raise concerns about the applicability of
these models in computational pathology.

Transfer learning is utilized to overcome this limitation. It is all about re-purposing
previously learned abstract information in a new context, similar to humans in the way
that they do not learn everything from scratch and instead use and transfer their knowledge
from previously learned areas to new domains and tasks. In histopathology, the recurring
histomorphologic patterns are a hallmark of organizing diseases into meaningful subgroups
by pathologists. These shared histomorphologic patterns appearing in different types of
cancers would help pathologists to approximate clinical conditions for varied types of dis-
eases which would be outside of their subspecialty. But, the problem is the assumption
that the source and target domains are Independent and Identically Distributed (i.i.d.)
while disregarding OOD scenarios that occur frequently in reality. In most scenarios, even
the smallest difference in the statistics of external validation data compared to the training
data can cause a method to utterly fail [233].

1.4 Generalization in Digital Pathology

Histopathology images inherently possess certain characteristics that make them challeng-
ing to handle; they are very large, diverse in terms of subtypes and classes, and display
inconsistencies and fluctuations due to varying standards in acquisition and processing.
This leads to several generalization issues that need to be tackled:

Generalization to different magnification levels– This involves adapting our
methods to accommodate varying scales of image magnification, i.e., the field of view
and resolution to perceive tissue characteristics.

Generalization to unseen subtypes– This area of study falls under the zero/few-
shot learning scheme, where the objective is to adapt to classes that were not visible during
the training phase.

2



Generalization to the same classes but from different distributions– This is
also known as Out-Of-Distribution generalization. It is a significant aspect of research in
the field, particularly when considering the problem of generalizing to unseen hospitals,
where the data might be derived from a different source set.

1.4.1 Generalization to Different Magnification Levels

Magnification generalization is essential in the analysis of histopathological WSI for several
reasons:

Detailed examination– In histopathology, a detailed examination of tissue samples
at different magnification levels can reveal more about the disease’s extent and nature. For
example, the subtleties of some cellular or tissue abnormalities might only be visible at
higher magnifications.

Consistency across different settings– Magnification generalization allows for a
more consistent interpretation of images across different settings and devices. Different
laboratories might use different magnification levels based on their protocols and the equip-
ment they use. Hence, a model that can be generalized across different magnifications can
be more universally applicable.

Invariance to scale– Tissue samples can exhibit considerable variation in their appear-
ance depending on the magnification level used. A model that can handle these variations
(i.e., that is invariant to magnification level) is likely to be more robust and hence more
accurate in tissue categorization.

Handling scarce labeled data– In the context of machine learning, models that
can generalize across different magnification levels can help address the problem of scarce
labeled data. If a model can learn to recognize patterns at different magnifications, it can
effectively increase the amount of useful training data.

1.4.2 Generalization to Unseen Classes

Generalization to unseen classes which is being studied through the few-shot learning
framework is vital for histopathology for several reasons:

Diversity of Disease Manifestations– Histopathology involves the examination of a
wide range of diseases, each with unique cellular and tissue characteristics. These diseases
may manifest differently in different patients and might not be adequately (or at all)
represented in the training set. Therefore, the ability to generalize to unseen classes is
crucial for accurate diagnosis and prognosis.

Data Scarcity– Well-annotated histopathological data is often scarce due to the time-
consuming and expensive nature of data collection and annotation. This scarcity makes it
difficult to train robust models using traditional supervised learning methods, which require
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a large amount of labeled data. Few-shot learning methods, which are designed to learn
from limited labeled data, are therefore essential for developing effective histopathology
image classification systems.

Domain Shifts and Variations– Histopathological images can vary significantly due
to factors such as different acquisition protocols, primary sites (organs), and tissue types.
These variations pose significant challenges for traditional machine-learning methods. A
model that can generalize well to unseen classes can handle these domain shifts and vari-
ations more effectively.

Robustness to Different Magnifications and Stains– Different laboratories may
use different slide preparation protocols, staining techniques, and magnification levels when
creating histopathological images. A model that can generalize to unseen classes and use
few-shot learning can handle these variations and provide more consistent and reliable
results.

Efficient Use of Available Data– Few-shot learning methods are designed to learn
from limited data, making the most of the available labeled samples. This efficiency is
particularly important in histopathology, where the collection and annotation of data can
be extremely labor-intensive and costly due to the gigapixel nature of digitized tissue
samples.

Adapting to Novel Diseases– Diseases can evolve over time, and new diseases can
emerge. A model that can generalize to unseen classes and utilize few-shot learning can
adapt more quickly to these novel diseases, helping to ensure timely and accurate diagnoses.

1.4.3 Generalization to OOD Data Coming from Different Hos-
pitals

Generalization to unseen hospital data is paramount in histopathology due to the following
reasons:

Variability in Data– Histopathology data varies significantly across different hos-
pitals, laboratories, and regions due to differences in tissue preparation, staining proto-
cols, imaging equipment, individual pathologist interpretation, and patient demographics.
These variations can cause a model trained on data from one distribution (e.g., a specific
hospital) to perform poorly when tested on data from a different distribution (e.g., a differ-
ent hospital or lab). Thus, addressing OOD generalization is crucial for developing robust
models that can perform well across diverse clinical settings.

Biases in Data– Histopathological data can often be biased due to factors such as
differences in the patient population, the prevalence of certain diseases, and other de-
mographic and socio-economic factors, the so-called social determinants. For instance,
different races or sexes under different circumstances might have different histomorpho-
logic patterns. If a model is trained on biased data, it may not perform well on data from
an unseen distribution that does not share the same biases.
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Figure 1.1: Different types of generalization applicable to digital pathology WSIs.

Scarcity of Labeled Data– Histopathology datasets often suffer from a scarcity of
labeled data, which makes it challenging to properly train deep learning models that can
generalize well to unseen data distributions. By focusing on OOD generalization, tech-
niques like self-supervised learning and domain adaptation can be employed to learn useful
representations from unlabeled or semi-labeled data, thereby improving the model’s per-
formance on unseen data.

Clinical Applicability– In clinical settings, a model must perform well on unseen
data during training. This includes not just data from different hospitals or labs, but
also data from new patients with potentially different disease manifestations or subtypes.
Therefore, addressing OOD generalization is indispensable in ensuring that the models are
clinically applicable and can provide reliable and accurate results across different scenarios.

By addressing these challenges, researchers can build more robust and reliable models
for histopathology that can help in accurate disease diagnosis and prognosis, ultimately
leading to better patient care.

1.5 Importance of Generalization in Histopathology

Generalization is a cornerstone of effective Machine Learning (ML) models and carries spe-
cial significance in the field of histopathology. This is due to the essential role histopatho-
logical analysis plays in diagnosis, a critical process directly influencing patient outcomes,
irrespective of factors such as race, ethnicity, or geographical location. To ensure patient
safety and enhance the efficacy of treatment plans, it is crucial to develop robust models
capable of handling the inherent distribution shift in histopathology data, thus exhibiting
a “hospital-agnostic” behavior.

The types of generalization - magnification generalization, generalization to unseen
classes, and OOD generalization - each cover vital aspects of this challenge in histopathol-
ogy.

Magnification generalization, by allowing models to discern critical disease character-
istics across different magnification levels, aids in the detailed and accurate examination
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of tissue samples. This, in turn, enhances consistency in various laboratory settings and
improves the robustness of deep models.

Generalization to unseen classes addresses the diversity of disease manifestations, the
scarcity of annotated histopathological data, and the variations in image acquisition pro-
tocols. With the application of few-shot learning methods, models can effectively use
available data, handle domain shifts, and adapt quickly to novel diseases, significantly
contributing to timely and accurate diagnoses.

Finally, OOD generalization targets the crucial issue of data variability between differ-
ent hospitals, laboratories, and regions. By focusing on this form of generalization, we can
tackle potential biases in data, make the best use of scarce labeled data through techniques
like self-supervised learning and domain adaptation, and enhance the clinical applicability
of models.

While attempts to increase the diversity of training data and applications of stain
normalization methods [178] can somewhat mitigate the distribution shift issue, this study
will explore the potential of Multi-Domain Learning (MDL) regimes, particularly Domain
Generalization (DG) techniques, in addressing these challenges.

In this thesis, the primary focus is on two essential types of generalization: magnification
generalization and OOD generalization to unseen hospitals. The aim is to propose effective
solutions and applications to address these specific challenges in histopathology.

The pursuit of magnification generalization revolves around building models that can
effectively adapt to and interpret histopathological images at various magnification levels.
Such models not only enhance the detail and precision of disease diagnoses but also promote
consistency across different laboratory protocols and settings, contributing to their broader
applicability.

In dealing with OOD generalization, the goal is to devise models capable of main-
taining robust performance even when confronted with data from unseen hospitals. This
aspect is of particular significance given the variations in data collection, preparation, and
interpretation practices across different hospitals, laboratories, and regions.

By introducing and addressing these forms of generalization, the intention is to create
machine learning models that exhibit remarkable adaptability to a wide array of conditions,
efficiently manage variations in data, and offer consistent, reliable performance. Through
this endeavor, the thesis strives to contribute to the overarching objective of improving
diagnostic accuracy, enhancing prognosis assessment, and ultimately, elevating the quality
of patient care in histopathology.

1.6 Outline of the Thesis

In this thesis, a structured approach is followed, addressing two fundamental types of
generalization pertinent to the field of histopathology.
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The relevant studies and methodologies related to this thesis are provided as background
information in Chapter 2.

The first area of exploration centers on the challenge of magnification generalization.
Accordingly, in Chapter 3 a method is proposed for emphasizing the learning of invariant
features across different magnification levels. Recognizing the variability in histopatholog-
ical images owing to distinct magnification levels, the proposed method aims to identify
and learn those features that remain consistent, thus enhancing model robustness and
reliability across varied settings and equipment.

In Chapter 4, the thesis attention is subsequently directed to OOD generalization,
especially as it relates to unseen hospitals. This problem is formulated, and the potential
contribution of pre-trained models in advancing OOD generalization is assessed. The aim
is to use the knowledge housed within these pre-existing models to develop models that
are effectively equipped to navigate and adapt to the diverse data scenarios encountered
in different hospital environments.

In the subsequent phase of the investigation in Chapter 5, the thesis proposes a hospital-
agnostic learning regime. This approach pivots on the idea of invariant features serving as
the semantic core of the data across different hospitals. By emphasizing these consistent
features, this research aspires to devise a learning model that maintains its performance
stability across diverse hospital environments, ensuring its utility and reliability in varying
clinical settings.

Finally, the thesis reaches its pinnacle with the proposal of a comprehensive method in
Chapter 6. This method goes beyond focusing merely on invariant features across hospitals.
It also considers an expanded set of features extractable from the input images, aiming
to exploit all valuable information to maximize generalization potential. The thesis posits
that this multi-faceted approach will significantly enhance the generalization capability of
the model, delivering superior performance and contributing to the progress of diagnostic
accuracy in histopathology.
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Chapter 2

Background

In this chapter presents a review of the pertinent literature, aiming to shed light on the
diverse range of topics relevant to our research. Our journey traverses through various
interconnected domains, starting with digital histopathology and WSI, and ending with
the exploration of methods that emphasize invariant and domain-specific features.

We embark on our exploration by delving into the realm of digital histopathology and
WSI. In this section, we assess their fundamental role in transforming modern pathology
and enhancing cancer diagnosis capabilities. We also review the evolution of these tools
and discuss their growing influence on the application and development of ML tools in
histopathology.

As our exploration progresses, we focus on the core concepts of representation and deep
learning. We delve into how these tools have catalyzed advancements in cancer diagnosis
and have become integral components of the ML toolkit. Their profound impact on the
field necessitates an in-depth discussion to appreciate the depth of their influence.

Despite the significant strides made by Deep Neural Network (DNN) in disease diag-
nosis, they are not devoid of challenges. In the ensuing section, the thesis highlights these
challenges and describes potential solutions. Among these, transfer learning emerges as a
promising approach, capable of enhancing the robustness and performance of DNNs.

The journey through the literature next guides us towards a deep dive into transfer
learning to critically assess the related studies. Along the way, the concept of general-
ization is introduced, a fundamental component of my research. The significance of this
problem and its relevance in the context of machine learning applications in histopathology
is explained.

In the following sections, the review scrutinizes MDL techniques, including Domain
Adaptation (DA) and DG. The objective here is to present an exhaustive understanding
of these techniques and their contributions toward addressing the generalization problem.

Subsequently, the review delves into a literature review of generalization to different
magnification levels, unseen labels, and OOD target data. The aim here is to offer a

8



comprehensive overview of these significant areas and highlight their relevance to this
research.

Finally, the chapter concludes the literature review by assessing works that emphasize
invariant features and those that leverage domain-specific features. This chapter seeks
to illuminate the importance of these techniques and their potential to contribute to the
development of robust, reliable, and generalizable models in digital histopathology.

Through this extensive literature review, the chapter aims to offer a comprehensive
backdrop against which this research unfolds, contextualizing this thesis work within the
broader scope of the field.

2.1 Digital Histopathology

The advent of digital histopathology has been marked by considerable evolution in image
acquisition methods, shifting from conventional camera-based static acquisitions to the rel-
atively novel technique of WSI [58]. Also referred to as “virtual microscopy,” WSI replicates
the process of light microscopy using computer technology, thus enhancing accessibility and
convenience for pathologists [169]. The advent of affordable storage solutions and high-
speed networks have further bolstered the efficacy of digital slide images, rendering them
easily manageable.

Emerging at the intersection of technology and pathology, WSI facilitates the viewing
of digitized histological slides on computer screens. It enables the seamless application
of advanced image analysis algorithms, paving the way for intuitive and comprehensive
slide examination. Owing to its capacity for quantifiable tissue analysis, histopathology
image analysis has emerged as the gold standard for cancer recognition and diagnosis
[77, 240, 101, 40]. This technology provides valuable support to pathologists, facilitating
more accurate diagnosis through precise quantitative analysis.

The digital representation of a pathology slide involves a series of successive steps
[1]. The process begins with fixation in formalin, which serves to prevent deterioration.
Following this, the sample is embedded in paraffin, enabling the slicing of thin sections
using a microtome. These wafer-thin sections are then colored using standard stains, such
as H&E, transforming them into shades of pink and purple. This color transformation
aids in the identification of any pathological changes under the microscope. These stained
sections are subsequently scanned to digitize them at high magnifications using advanced
scanners (e.g., 20x or 40x). This results in high-resolution images with dimensions varying
from 10,000 to 100,000 pixels. Pathologists analyze these extraordinarily large images at
multiple magnification levels to gain a comprehensive understanding of the specimen [47].
Higher magnification levels allow for the examination of smaller areas in greater detail,
enabling experts to observe minute tissue characteristics that are crucial for diagnosis.

With the exponential growth in the volume of WSIs, concerted efforts have been di-
rected towards their analysis using machine learning-based digital image analysis. This
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innovative approach aids pathologists in various tasks, including diagnosis [181]. Fur-
thermore, TCGA project has significantly enriched the availability of digital H&E WSIs,
making them publicly accessible [34, 78]. However, a significant challenge lies in the fact
that these images lack annotations. This underlines the need for continued research and
development efforts to enhance the utility and applicability of digital histopathology in the
diagnosis and treatment of diseases.

2.2 Representation Learning

Representation learning, a pivotal process in ML, involves extracting compact, informative
feature vectors from raw data, thereby simplifying the task of developing classifiers or
other predictive models. A high-quality representation is typically one that encapsulates
the posterior distribution of the fundamental explanatory factors inherent to the observed
input [19]. Such potent and expressive representations then serve as the input to supervised
predictive models, contributing to their performance and accuracy.

Among the myriad methodologies for learning representations, this study is centered
on deep learning approaches. Deep learning methods leverage multiple non-linear transfor-
mations, resulting in more abstract and ultimately more efficient representations. These
methods underscore the role of abstraction in discerning relevant patterns and correlations,
thereby enhancing the functionality and proficiency of representation learning.

The advent of CNN marked a significant stride forward in the field of representation
learning. CNN brought forth the possibility of an integrated framework for simultaneous
representation learning and classification, thereby streamlining the process and bolstering
the model’s efficiency [121]. This end-to-end approach provided by CNN revolutionizes the
way we conduct representation learning, enabling more sophisticated and effective models
for a wide range of tasks.

2.2.1 Convolutional Neural Networks

CNN [129] epitomize a significant stride in deep learning, owing their inception to the study
of the cat’s visual cortex [63]. They are a class of deep neural networks which assign varying
importance, through learnable weights and biases, to different objects within an image.
This assignment is achieved by learning feature maps through the utilization of multiple
convolutional layers1, as exemplified in Fig. 2.1. Convolution involves the application of
a filter to the input, yielding latent space representations of images when repeated, which
are then used for prediction (Fig. 2.1).

Unlike conventional hand-crafted methods, CNN provides an integrated framework
for simultaneous representation learning and classification. However, due to their vast

1Although machine learning libraries implement cross-correlation, they refer to it as convolution [74]
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quantities of adjustable parameters, CNNs are data-intensive. Several CNN architectures
have been proposed, including LeNet [130], AlexNet [121], VGG [211], ResNet [84], and
DenseNet [97], to name a few [222].

Figure 2.1: An example of a CNN architecture. Convolutional layers, pooling layers, and
fully connected layers are the building components of a typical CNN architecture. Each
convolution layer and pooling layer is followed by one or more fully connected layers in the
typical architecture. Forward propagation is the process of transforming input data into
output data.

AlexNet

Characterized by its 60 million parameters and 8-layer structure (which includes 5 convolu-
tional layers, accompanied by 3 pooling layers, and 3 fully-connected layers), AlexNet [121]
was the victorious entry in the ILSVRC 2012 competition. As depicted in Fig. 2.2, the
architecture of AlexNet does not incorporate any skip connections. AlexNet extended the
foundational LeNet [130] and drastically outperformed the hand-crafted approaches on the
ILSVRC 2012 challenging dataset. While newer, more efficient network architectures have
since been proposed, AlexNet, particularly its ImageNet pre-trained version, remains a
preferred choice as a feature extractor when network architecture is not a primary concern
[190, 166, 140].

ResNet

ResNet, short for Residual Network [84], marked a turning point in deep learning. As
shown in Fig. 2.2, it introduced the concept of skip connections or shortcut connections,
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enabling the training of exceptionally deep neural networks. ResNet reformulates layers as
learning residual functions relative to the layer inputs, addressing the degradation problem
that arises with increased network depth. The result is a network with over 100 layers,
exhibiting no degradation in performance. Given its impressive performance and simplicity,
ResNet models have found widespread use in various applications and laid the groundwork
for many subsequent architectures [97, 253].

DenseNet

Depicted in Fig. 2.2, DenseNet [97] or Dense Convolutional Network, represents a different
approach to layer connections. Unlike ResNet’s selective layer inputs, DenseNet connects
each layer to every other layer in a feed-forward fashion. By improving the information
flow between layers, DenseNet reduces the number of required parameters compared to
traditional convolutional networks, obviating the need to relearn redundant feature maps.
Consequently, DenseNet significantly diminishes the vanishing-gradient problem, fortifies
feature propagation, encourages feature reuse, and drastically reduces the number of pa-
rameters, making it an efficient and effective network for a broad spectrum of applications.

c c c

Figure 2.2: Contrasting architectures of various convolutional neural networks. The symbol
⊕ stands for element-wise addition and c○ stands for channel-wise concatenation.

Newer deep learning architectures have emerged, building on and refining the designs
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of predecessors like AlexNet, ResNet, and DenseNet [253, 96]. One significant innovation
is the Vision Transformer (ViT) [51], which, unlike CNN-based models, applies Trans-
former architecture from natural language processing. ViT treats an image as a sequence
of patches, processed independently through transformer layers, allowing for a global con-
textual understanding. This marks a fundamental shift in approach, enhancing accuracy
and efficiency in image classification.

2.2.2 Deep Metric Learning

The journey towards representation learning via a DNN sets off with a clear-cut objective.
Typically, one might aim at diminishing the misclassification rate using the labels derived
from a training dataset. In our pursuit of this objective, we come across a plethora of
functions [103] that could be potentially leveraged. However, not all objectives are confined
to reducing misclassification rates. A distinctive category of objective functions focuses on
the learning of similarity or dissimilarity measures across pairs or triplets of data points, an
approach commonly termed as Deep Metric Learning (DML). Research has suggested [109,
218] that utilizing these types of objective functions can culminate in a more discriminative
latent space representation, thereby enhancing the performance of the learning algorithm.
By honing the acuity of the discriminative capability of our model, we aim to forge a more
robust and reliable representation learning method.

Siamese Networks

Siamese networks, originally introduced by Bromley et al. [26], are a specialized type of
DNN architecture that comprise multiple subsidiary networks, also known as ’backbone’
networks, that share weights. The prime strength of these networks lies in their capability
to gauge the similarity or disparity between pairs or triplets of input data points, making
them particularly effective for tasks such as signature verification or face recognition.

Training a Siamese network involves the use of specialized objective functions. Two such
eminent loss functions that have gained widespread use in the realm of Siamese networks are
the Contrastive loss [79] and Triplet loss [193]. The Contrastive loss is generally employed
when the Siamese network comprises two sub-networks, while the Triplet loss function is
adopted when the Siamese network features three sub-networks.

For understanding these loss functions, let’s denote the anchor, positive, and negative
samples in a triplet as xa, xp, and xn, respectively. The Contrastive loss and the Triplet
loss functions can be formally defined as:
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ℓc=
b∑
i=1

[
(1−y)||f(xi1)− f(xi2)||22 + y

[
−||f(xi1)− f(xi2)||22 + ζ

]
+

]
, (2.1)

ℓt=
b∑
i=1

[
∥f(xia)−f(xip)∥22−∥f(xia)−f(xin)∥22+ζ

]
+
, (2.2)

In these equations, f(.) symbolizes the output of the network, ζ > 0 is a margin that
helps to separate the positive and negative pairs, y is a binary variable which equals zero
when the samples originate from the same class and one when they hail from different
classes, b denotes the mini-batch size, [·]+ := max(·, 0) symbolizes the standard Hinge loss,
and ||·||2 denotes the ℓ2 norm. These loss functions essentially strive to shape the network in
such a way that it learns to embed samples from the same class close together and samples
from different classes far apart in the feature space, leading to a more discriminative latent
space representation.

2.2.3 Transfer Learning: Overcoming the Bottleneck

The primary challenge or bottleneck in leveraging deep neural networks, particularly CNNs,
is their voracious appetite for large volumes of labeled data. The larger the amount of data
fed into these models, the better they learn to discern patterns and make accurate predic-
tions. This relationship has been explored in depth by Sun et al. [220], who discovered that
the performance of CNNs on visual tasks follows a logarithmic growth pattern in relation
to the size of the training dataset.

However, in certain fields such as the medical domain, obtaining large, well-annotated
datasets for training purposes can be a formidable task. This is primarily due to the
sensitive nature of medical data, stringent privacy regulations, and the necessity for expert
annotation, which is both time-consuming and expensive.

To circumvent this limitation, the strategy of transfer learning has been employed [234].
Transfer learning involves pre-training a model on a large, readily available dataset and
then fine-tuning it on the task-specific, often smaller, dataset. The underlying premise is
that the features learned by the model in the pre-training phase, such as basic shape and
pattern recognition in the case of image data, can be repurposed and refined to perform well
on the target task. This approach alleviates the necessity for colossal amounts of labeled
data, making it a valuable technique in domains where such data is scarce or difficult to
procure.

2.3 Transfer Learning

Transfer learning is a ML approach in which a model that has been trained on one objective
is re-purposed for a second related task (see Fig. 2.3). In transfer learning terminology,
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the target-domain task is the ultimate task and the source-domain task is a related task
or some related tasks which will facilitate solving the target-domain task.

Figure 2.3: As illustrated on the left, traditional machine learning constructs each model
on a specific domain in isolation; however, with transfer learning (right), the target model
is created using the learned knowledge from the source-domain.

Transfer learning has been based upon an important assumption as follows. Although
multiple different tasks (source-domain and target-domain tasks) may be i.i.d. but, deep
inside, they share a common low-dimensional representation [56]. One way to perform
transfer learning is to learn a shared latent space representation across related tasks. The
neural codes, commonly known as DeCAF features [50], consist of reusing existing Im-
ageNet pre-trained [235] CNNs (architecture and parameters) to perform target-domain
task, using retraining only the fully-connected layers [50, 6, 201]. Bar et al. [10] showed
that DeCAF features might be a suitable substitute for domain-specific representations for
general medical domain image recognition tasks. Lu et al. [147] fine-tuned a pre-trained
AlexNet [121] to classify a short-size Magnetic Resonance Imaging (MRI) dataset.

Transfer learning has also been found to be promising for histopathology images [113].
Xu et al. [254] showed that DeCAF features can be representative enough for MICCAI 2014
Brain Tumor Digital Pathology challenge achieving 97.5% classification accuracy. Spanhol
et al. [213] used DeCAF features for breast cancer histopathological image recognition task
and demonstrated that DeCAF features are superior to hand-crafted features.

Some works have used pre-trained CNNs but through domain-related tasks. For in-
stance, Faust et al. [60] used a brain-tumor-educated CNN to perform a classification on
RCC. Bayramoglu et al. [11] analyzed and showed the effectiveness of transfer learning
compared to learning from scratch for cell nuclei classification. Riasatian et al. [180] uti-
lized a TCGA fine-tuned densely-packed CNN and demonstrated that their fine-tuned net-
work using patches extracted from TCGA can outperform DeCAF features in histopatho-
logical image search and classification tasks.

It may be prohibitively expensive and time-consuming to train a new DNN for each
new application without the ability to transfer relevant knowledge from prior datasets.
The absence of annotated labels with varied and generalizable tissue types from different
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Figure 2.4: The (blue) training, (red) iid validation, (green) OOD test losses vs. iterations.

organs, as well as the diversity in WSI scanners and staining methods, are two major
barriers to transfer learning. On top of that, sometimes a DNN model trained on the
source-domain task(s)2 cannot generalize to perform well on the target-domain task3. The
principal reason is domain shift which will be discussed in Section 2.3.2. In the subsequent
subsection, the generalization problem will be discussed in more detail.

2.3.1 The Problem of Generalization

At its core, ML is fundamentally concerned with the problem of generalization. One of the
central questions that arise in this field is how we can ensure that the models we train will
perform adequately when faced with new, unseen data. This issue is especially pertinent
in the realm of deep learning, where the vast weight space of DNN models can easily lead
to overfitting the training data, consequently compromising generalization.

The challenge intensifies significantly when the unseen data is characterized by a distinct
distribution, a scenario known as domain shift. In this situation, even the most minor
changes in the statistical properties of the data compared to the training data can lead a
DNN model to fail. Some essential considerations for training a generalized DNN include:

• Dataset Diversity: To train a generalized DNN, a diverse dataset is imperative.
By diversity, we are not alluding to sheer volume; instead, we refer to a dataset that
embodies a wide variety of samples. This breadth of data ensures the DNN model

2In medical literature It is also called the internal dataset(s).
3In medical literature It is also called external validation dataset.
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is exposed to more than just a specific subset of data, thus paving the way for more
effective generalization.

• Model Complexity: ML models that become excessively complex are prone to
overfitting, while simpler, more compact models tend to mitigate this risk. Numer-
ous methods in machine learning, known as regularization methods, discourage the
learning of more complex models to avert overfitting.

• Regularization: Regularization comprises a suite of techniques that reduce the
complexity of a DNN model during training, thereby curtailing overfitting [183]. This
process can involve various strategies, including the use of dropout and L1-norm or
L2-norm to regularize the cost function.

While adhering to these considerations can foster a more generalized DNN, a DNN
model may still struggle with distribution shifts, impeding effective generalization to un-
seen, target-domain data. As illustrated in Fig. 2.4, although using a hold-out validation
set can decrease the loss for the target-domain task, the loss can increase at some point
before reaching optimal iterations. This situation demonstrates the persistent challenge of
achieving true generalization in the context of distribution shifts.

2.3.2 Understanding Distribution Shift

The concept of distribution shift refers to the divergence between source-domain and target-
domain data distributions [175]. In an ideal scenario, where distribution shift is absent, the
knowledge obtained from the source domain can be directly transposed to the target domain
[61]. However, real-world scenarios often differ markedly from this idealized situation.

A prevalent assumption in most statistical learning methods is that the source and
target domain data sets are i.i.d., while the frequently occurring OOD scenarios are often
overlooked. Under this assumption, the focus is primarily on minimizing errors within
the source domain, anticipating that this will yield similar success in the target domain.
However, this assumption can lead to significant misestimations, as even the slightest
divergence in the statistical properties of the target domain data set compared to the
source domain can precipitate a catastrophic failure of the method [233].

In response to these challenges, MDL approaches have gained prominence. These ap-
proaches come into play when the presumption that the “source-domain and target-domain
derive from a nearly identical distribution” does not hold true. MDL thus strives to ad-
dress this discrepancy, working to ensure a model’s resilience and effectiveness in the face
of distribution shifts, thereby enhancing its capacity to generalize across diverse data sets.
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2.4 Multi-Domain Learning

In MDL, the aim is to train a single model which is effective for multiple known domains
[43, 23]. There are two variants of MDL in the literature that can be confused, i.e., DA
and DG; there are some nuances that make them different from each other. In the next
section, these nuances are discussed in detail.

2.4.1 Domain Adaptation

DA techniques have been developed as solutions to mitigate the problem of domain shift,
typically achieved by aligning the target and source-domain distributions within a domain-
invariant feature space [16]. These techniques usually presuppose access to a few [124] or
unlabelled [66, 89, 236, 188] samples from the target domain.

According to Farahani et al., [57], DA methods can be categorized into four types based
on the category gap: closed-set, open-set, partial, and universal DA.

• Closed-set DA: In this scenario, both the target and source-domain datasets share
the same classes, but there is a domain gap between the domains. Despite sharing
the same categories, the distribution of features within these categories may differ
significantly, presenting a challenge for effective adaptation.

• Open-set DA: Here, both source and target-domain datasets, in addition to common
labels, might have unique class labels [167]. This adds a layer of complexity as the
model must not only adapt to new feature distributions but also potentially unseen
categories.

• Partial DA: This refers to the situation where the target label set is a subset of the
source label set [30, 263]. In this case, the model must learn to identify and focus on
relevant categories while ignoring extraneous ones.

• Universal DA: This most challenging form generalizes all the above scenarios and
is not restricted to any prior knowledge regarding the source and target-domain
dataset labels [260]. It requires models to be highly flexible and capable of adjusting
to multiple forms of domain shifts.

Within the realm of histopathology, domain-invariant techniques are commonly de-
veloped by incorporating a domain adversarial module into the model. For instance,
Aubreville et al. [21] trained and evaluated mitosis detection models that included a do-
main adversarial module to assist with generalization on canine cutaneous mast cell cancer
and canine mammary carcinoma. Another study by Lafarge et al., [126] compared tradi-
tional augmentation and normalization methods with domain-adversarial neural networks
(DANN) as an alternative approach. Chang et al., [33] proposed the stain mix-up method,
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an effective data augmentation strategy for differentially stained histopathology images.
This approach encourages the model to adapt to varied stain colors in an unsupervised
manner. In all these techniques, the data from the target domain are accessible, though
the labels or annotations may not be available.

2.4.2 Domain Generalization

The concept of DG represents a more formidable challenge within the spectrum of DA
problems. The key objective under the purview of DG is to attain a level of generalization
that allows for accurate predictions on a completely unseen or novel domain. This is
achieved by training on a multi-domain source-domain dataset, without the need to retrain
the network with data from a held-out domain. This reference to the ’held-out domain’
implies a portion of the data that has been purposely set aside and not included in the
training process.

The premise of DG is highly relevant and practical, often regarded as more realistic
when compared with DA. The basis of this comparison stems from the fact that, in many
real-world scenarios, we are often faced with situations where we have to make decisions
or predictions based on new, unseen data. More importantly, we usually do not have any
prior knowledge or information about the distribution characteristics of this new target
domain data set.

Considering that there is no prior knowledge about the target-domain distribution, a key
question that emerges within the context of DG pertains to the model’s guidance strategy.
More specifically, how can we instruct or navigate the model to extract information from
the source data in such a way that it is not just discriminative, but also resilient to changes
in domain distribution? This robustness to domain variations is a fundamental requirement
for the model to ensure its performance remains consistent even when confronted with new
data that exhibit different characteristics from the training data.

The field of DG is generally divided into three primary categories. These categories,
namely (1) Selecting, (2) Domain-Invariant-Based, and (3) Hybrid Domain-Invariant and
Domain-Specific-Based, each adopts a unique approach to address the challenge posed by
domain shifts.

Selecting methods

The first category, termed “Selecting”, operates on a model-specific basis for each domain
within the source-domain dataset. This strategy essentially involves training individual
models for every available domain and then choosing the most relevant model when pre-
sented with a new target domain [256]. This relevance is typically established by comparing
the inherent characteristics of the target domain with the source domains, and the model
associated with the most similar source domain is selected for application on the target
domain.
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Domain-Invariant-Based methods

These methods [112, 161, 69, 161, 65, 25] embrace a more holistic approach, predicated on
the belief that every domain consists of a universal, or common component, and a unique,
or domain-specific component. The strategy here is to isolate the common elements that
pervade numerous domains and utilize this to cultivate a durable, domain-invariant feature
representation. This commonality essentially represents shared or overlapping information
across disparate domains. Extracting these common elements facilitates the creation of
a representation that remains primarily unaffected by domain-specific changes, thereby
enhancing the model’s capacity to generalize effectively to unseen domains.

One promising direction to augment the generalization capabilities of machine learning
models is through MDL, with a specific emphasis on learning domain-invariant features.
This method involves simultaneous processing and learning from multiple source domains.
As a result, a model can obtain a more comprehensive and diverse representation of data,
which aids in more effectively capturing the inherent structure of the data manifold.

The focal point here is the learning of domain-invariant features - those aspects consis-
tent across all domains, unaffected by specific characteristics of any single domain. These
invariant features can be perceived as common threads across domains, encapsulating
shared information, and thereby effectively decoupling task-related knowledge from the
specificities of any single domain.

By concentrating on these core, task-specific features rather than the nuances of individ-
ual domains, the model becomes more resistant to domain shift. This approach encourages
robust generalization and enhances the model’s performance on unseen domains. It dimin-
ishes the risk of overfitting to any particular source domain and increases the model’s
overall flexibility and adaptability. This strategy offers a potent tool for effectively han-
dling the inherent diversity and variability in real-world data, enabling the model to better
handle new, unseen domains.

A promising research direction in DG is to utilize the learning regime of Model-Agnostic
Meta-Learning (MAML) [62]. MAML-based DG frameworks divide the source-domain
dataset into meta-train and meta-test domains to simulate the domain shift [134]. This
approach has shown promise in terms of generalization and fast adaptation [243, 172, 7].
The learning goal of MAML-based DG methods is to update a model using the meta-
source-domain(s) in a way that minimizes the test error on the meta-target-domain, which
is typically achieved via bi-level optimization.

In the field of histopathology, MAML-based DG has found extensive use. For example,
Cai et al. [28] introduced a DG technique for multiclass recognition of nucleus in Ki67 IHC
images, aimed at addressing practical limitations of DG, including the insufficient number
of domains and the issue of class mismatching across domains.

While there are many DG approaches available, Dou et al. [52] proposed an MAML-
based DG technique, called MASF, that aims to learn the semantic structure of the source-
domain dataset(s) while also promoting class-specific cohesiveness and separation across
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domains using DML approaches. MASF represents an important step in DG research, as
it emphasizes not only domain-invariance but also class-specific discriminability, making it
a valuable tool for the practical application of DG. MASF follows MAML learning regime;
thus, in what follows, MAML will be reviewed first.

Model-Agnostic Meta Learning– MAML (a.k.a. learning to learn) [62] is a heated
topic in ML with the main idea of “the small number of gradient steps along with a small
amount of training data from a new task are sufficient to achieve strong generalization on
that specific task”.

Algorithm 1: MAML Algorithm

p(T ) : distribution over tasks
α and β: step size hyper-parameters
θ ← θ0;

1 while not done do
2 sample a batch of tasks: Ti

for all Ti do
3 Evaluate ∇θLTi
4 Compute adapted parameters with gradient descent:

5 θ
′
i ← θ − α∇θLTi(fθ),

6 end

7 Update θ ← θ − β∇θ

∑
Ti∼p(T ) L

(1)
Ti (fθ−α∇θL

(0)
Ti

(fθ)
),

8 end

Consider a model that is represented by a parametric function fθ. When the model is
adapted to a new task Ti, the parameters of the model become θ

′
i. The updated parameter

is produced by performing one or more gradient descent updates on the task. For instance,
when merely one gradient update is used,

θ′i = θ − α∇θLTi (fθ) . (2.3)

The model parameters are trained by optimizing for the performance of fθ′ across tasks
sampled from p(T ). To put it another way, the meta-objective is as follows:

min
θ

∑
Ti∼p(T )

LTi
(
fθ′i

)
=

∑
Ti∼p(T )

LTi

(
fθ−α∇θLTi (fθ)

)
. (2.4)

Where: - θ represents the model parameters to be optimized. - Ti is a task sampled
from the distribution p(T ). - θ′i denotes the modified model parameters for task Ti. - fθ′
represents the model with parameters θ′. - LTi(fθ′i) is the loss on task Ti using model fθ′i .
- α is the step size for the inner update. - ∇θLTi(fθ) is the gradient of the loss on task Ti
with respect to θ.
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One has to note that the meta-optimization is conducted on the model parameters,
whilst the objective function is derived using the modified model parameters. In fact,
MAML aims to optimize model parameters in such a manner that a single or a small number
of gradient steps on a new task produces the most possible appropriate behavior. The meta-
optimization across tasks is carried out using Stochastic Gradient Descent (SGD), with the
following model parameters updated:

θ ← θ − β∇θ

∑
Ti∼p(T )

LTi
(
fθ′i

)
. (2.5)

Where: - β is the learning rate for the outer update. - ∇θ

∑
Ti∼p(T ) LTi

(
fθ′i

)
is the

gradient of the sum of losses across tasks with respect to θ.

According to Algo. 1, The Eqs. (2.3, 2.5) are repeated iteratively until convergence.

Model-Agnostic learning of Semantic Features– Inspired by the MAML approach,
MASF learns a latent space representation suitable for generalization to an unseen target-
domain. MASF is a model agnostic learning scheme that can be used for performing
different tasks. If the classification is the task at hand, MASF consists of some layers of
feature extraction, classification, and metric embedding.

Consider that a CNN, consisting of some feature extraction and classification layers,
is being used as the model in a MASF framework. Then, Gψ sub-network is the feature
extractor which ends up in latent space representation, and Sθ sub-network is the classi-
fication layers of the model of this CNN. A metric learning module, Mϕ also comes after
Gψ which can be a triplet loss using Eq. 2.2, or contrastive loss functions using Eq. 2.1.

MASF combines three different loss functions for learning a discriminative embed-
ding space. These loss functions are a cross-entropy loss for supervised learning, a Kull-
back–Leibler (KL) divergence loss between pairs of meta-train and meta-test sets for do-
main alignment purposes, and a metric loss to promote domain-independent class-specific
cohesion and separation of instances.

At each iteration of the algorithm, a batch of the source-domain dataset (D) is split
into meta-train and meta-test batches, indicating by Dtr, and Dte, respectively. Then, Gψ,
Sθ, and Mϕ sub-networks are updated using three aforementioned loss functions as below:
The first loss which is used is the cross-entropy loss for supervised learning:

Lce(Dtr;ψ, θ) :=
−1
|Dtr|

∑
D∈Dtr

1

|D|
∑
(x

, y) ∈ D
C∑
c=1

I(y = c) log I(ŷ = c), (2.6)

where | · | denotes the cardinality of a set, C is the number of classes, y is the true label
for x, ŷ is the predicted label for x, and I(·) is the indicator function which is one when
its condition is satisfied and is zero otherwise. In practice Eq. 5.2 is used in batches. The
updated ψ and ϕ are denoted by the cross-entropy loss by ψ′ and ϕ′, respectively. The
cross-entropy loss function is used for hard class separation.
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The next loss used is a KL-loss which takes care of between-domain generalization.
Consider the feature extraction embedding of samples of domain k. If the samples of this
domain in the label c are denoted by {x(k)c,i }nc

i=1 and their feature extraction embeddings

are {Gψ′(x
(k)
c,i )}nc

i=1, the Monte-Carlo approximation for the mean embedding of label c in
domain k can be given as

z(k)c :=
1

nc

nc∑
i=1

Gψ′(x
(k)
c,i ). (2.7)

This mean is passed through the layers for supervised learning and its softmax with tem-
perature τ > 1 is

s(k)c := softmax(Sθ′(z
(k)
c )/τ), (2.8)

which provides a soft confusion matrix. For two domains Di and Dj, the symmetrized KL
divergence, averaged over all the C classes, is calculated as

ℓdomain alignment(Di,Dj;ψ′, θ′) :=
1

C

C∑
c=1

1

2

[
DKL(s

(i)
c ∥s(j)c ) +DKL(s

(j)
c ∥s(i)c )

]
, (2.9)

where DKL denotes the KL divergence. This loss is computed over all the meta-train and
meta-test trial sites through

Ldomain alignment(Dtr,Dte;ψ
′, θ′) :=

1

|Dtr||Dte|
∑

Di∈Dtr

∑
Dj∈Dte

ℓgen(Di,Dj;ψ′, θ′). (2.10)

In practice, we use Eqs. (2.7, 2.9, and 2.10) on batches. This KL-divergence loss function
is used for domain generalization between each pair of domains.

Finally, a metric loss [193] is used for the sake of promoting domain-independent class-
specific cohesion and separation of instances. Consider a triplet of anchor, positive, and
negative instances denoted by xa, xp, and xn, respectively. Triplet loss attempts to increase
the inter-class variances of data and decrease the intra-class variances. If we randomly
sample R triplets, T := {xra, xrp, xrn}Rr=1, from all the source-domain datasets {Dk}Kk=1, the
average triplet loss is

Ltriplet(T ;ψ′, ϕ) :=
1

R

R∑
r=1

[
∥Mϕ(Gψ′(xra))−Mϕ(Gψ′(xrp))∥22

− ∥Mϕ(Gψ′(xra))−Mϕ(Gψ′(xrn))∥22 + ζ
]
+
, (2.11)

where ∥ · ∥2 is the ℓ2 norm, ζ is a margin and [·]+ := max(·, 0) is the standard Hinge loss.
The triplet loss function is used for metric learning and soft class separation where the
intra-class and inter-class variances are decreased and increased, respectively.
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The MASF learning scheme is characterized by an episodic training scheme derived
from MAML [62], which exposes the model optimization to distribution mismatch. To
achieve domain generalization, the model is trained on a succession of simulated domain
shifts in each episode. To be more precise, each iteration randomly divides the available
source-domain datasets, i.e. D, into sets of meta-train Dtr and meta-test Dte domains.
After optimization with one or more steps of gradient descent using Dtr, the model learns
to perform well semantically on hold-out Dte.

MASF starts with updating the parameters of the Gψ and Sθ, in which ψ and θ are
first adjusted using a cross-entropy loss function Lce on the classification task, which is
calculated on Dtr using Eq. 5.2. After obtaining this updated Gψ and Sθ subnetworks, a
meta-learning phase is performed to enforce particular model attributes on the hold-out
domain, i.e. Dte, using the domain alignment loss function, using Eq. 2.10. Using the
domain alignment loss function, parameters are changed in such a way that future updates
with provided D increase the model’s generalizability for unseen target-domain(s). On top
of that, MASF tries to cluster the datasets compactly according to class labels regardless
of the domain using a metric loss function, as described in Eq. 5.3, and through this loss
function Mϕ subnetwork is updated. In this work, the MASF method will be used for
developing a hospital-agnostic model.

Hybrid Domain-Invariant and Domain-Specific-Based methods

The final category of domain generalization methods incorporates a hybrid approach that
appreciates the unique characteristics present in each domain while still emphasizing the
extraction of domain-invariant features. This approach deviates from solely focusing on
shared commonalities across domains, emphasizing instead the value of domain-specific
attributes. Such unique features across various domains can provide critical insights into
the diversity of data, thus enabling models to yield a more customized performance when
encountering a novel domain.

This hybrid strategy operates on the principle of balance. It aims to intertwine domain-
invariance with domain-specificity in such a way that maximizes the adaptability and re-
silience of the model to different domains. The value of this equilibrium becomes evident
when considering the pitfalls of completely disregarding domain-specific information. De-
spite the appealing qualities of domain-invariant features, especially in their role in building
models resistant to domain shift, over-reliance on them may not ensure the best general-
ization performance. This viewpoint has been emphasized in the research conducted by
Mancini et al. [152] and Shankar et al. [200], where they highlight that essential, discrim-
inative information could be missed if domain-specific characteristics are overlooked.

Bui et al. [27] took note of this and proposed the mDSDI method, aiming to harmonize
the use of domain-specific information and domain-invariant features. The mDSDI method
extracts and utilizes both invariant and unique features across various domains, fostering
a more comprehensive and potentially more effective representation of data. Their math-
ematical proof lends robust support to the efficacy of this approach, further underscoring
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its potential as a refined solution to domain generalization challenges. By embracing the
strengths of both domain-invariant and domain-specific features, this hybrid method rep-
resents a promising strategy in the domain generalization landscape.

Meta-Domain Specific-Domain Invariant (mDSDI) Algorithm– The mDSDI al-
gorithm is an intricate and ingenious solution aimed at ameliorating generalization per-
formance in machine learning tasks. Fundamentally, the framework encompasses several
components, each undertaking a pivotal role in the execution of the algorithm.

Primarily, there is a domain-invariant representation, denoted by ZI , which is generated
by an encoder. Additionally, there’s a domain-specific representation, referred to as ZS,
created by another encoder. These representations bear great significance as they carry
the domain-invariant and domain-specific information of the input data respectively. The
extraction of ZI is accomplished using an adversarial training framework. In this study,
a domain discriminator attempts to classify the domain based on ZI . Concurrently, the
encoder for ZI aims to make this task as challenging as possible. This culminates in
the production of a robust domain-invariant representation. Analogously, for capturing
domain-specific nuances, a domain classifier is trained to predict the domain label from
ZS.

A paramount aspect of the mDSDI methodology is the disentanglement of ZI and ZS,
thereby safeguarding the uniqueness of the information each of them carries. This dis-
entanglement is actualized by minimizing the covariance between ZI and ZS, effectively
ensuring they contain non-overlapping information. The adequacy of these two represen-
tations in the context of the classification task is assured by another classifier that utilizes
the combination of ZI and ZS to predict the original sample label. The aim is to ensure
that the combined representations are sufficient to recreate the original data label. The
novelty in the mDSDI methodology stems from the inclusion of a meta-learning framework
for domain-specific information. This allows ZS to adapt the information it learns from
the source domains to unseen target domains, thereby aiming for enhanced generalization.
This is achieved by dividing each source domain into meta-train and meta-test sets and
optimizing the parameters accordingly.

Finally, the complete training procedure incorporates several objective functions that
are associated with both the domain-invariant and domain-specific representations, their
disentanglement, and the classification task itself. This combined objective function, which
we denote as LA, forms the consolidated optimization target for the system. The purpose
of this integrative approach is to attain a comprehensive optimization across all parameters
involved in the model, resulting in superior generalization performance. Specifically, the
function LA is minimized over the parameters θQ, θDS, θR, θF and maximized over θDI .
This is illustrated in the following equation:

minimize
θQ,θDS ,θR,θF

maximize
θDI

LA := λZILZI + λZSLZS + λDLD + LT (2.12)

In the above equation, λZI , λZS, and λD are tuning parameters used to balance the
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various components of the loss function. LD is responsible for ensuring the disentanglement
of domain-invariant and domain-specific representations, which effectively encapsulates the
diverse information from the different domains. LT is directly tied to the classification
task. It evaluates the performance of the classifier, which operates on a concatenation of
the domain-invariant and domain-specific features.

2.5 Impact of Pre-Trained Models on Generalization

DG, while extensively studied [266], remains a complex field with varying strategies yielding
different results [76, 192]. A deeper dive into the intricacies of this field was conducted
by Wiles et al. [250], who investigated distribution shifts in three key areas: (1) spurious
correlations, (2) low-data environments, and (3) unfamiliar scenarios. Their exploration
highlighted the effectiveness of seemingly simple strategies, such as data augmentation and
pre-training. Nevertheless, their work also revealed that the performance of DG algorithms
is dependent on the specific dataset and the nature of the distribution shift.

This context-specific effectiveness emphasizes the need for a greater understanding and
improvement of domain generalization strategies, particularly to ensure their robustness
in real-world scenarios. A question that naturally arises from this is whether the field has
significantly advanced beyond standard ERM algorithm [250] capabilities.

While some might view these findings as discouraging, it’s essential to note that there
is research demonstrating the potential of generalization across varying dataset distribu-
tions [250, 176]. In particular, certain studies suggest that pre-training models using large
datasets can be quite effective for OOD generalization [226, 250]. In the ensuing sections,
we delve into a few specific pre-trained models and their impact on generalization.

2.5.1 Vanilla Pre-Trained Models using ImageNet

Pre-training is a dominant paradigm in computer vision. It is based on the concept that
if models are trained on one dataset, they would be able to provide insights into other
related tasks. This has led to the prevalence of Vanilla ImageNet pre-trained models
that are frequently used for various computer vision tasks [73, 50, 141, 35]. However, the
effectiveness of these models has been called into question in certain contexts. For example,
it was found that these models did not perform well in specific tasks such as Microsoft
COCO object detection [202, 137]. In fact, a model trained with random initialization was
found to outperform these models in certain scenarios [68]. This casts some doubt on the
utility of relying solely on vanilla pre-trained models.
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2.5.2 SSL and SWSL Pre-Trained Models

A common sentiment in the AI community is that pre-training models on more diverse
datasets would lead to better OOD generalization. This is further supported by studies
showing that pre-trained models using more varied datasets result in improved OOD gen-
eralization during real-life distribution shifts [226, 87]. Some pre-trained models [258] have
outperformed the vanilla ImageNet pre-trained models in both OOD and in-distribution
top-1 accuracy levels. Among the various methods, two particular approaches are notewor-
thy, both introduced by the Facebook team: the Semi-SL [258] and the Semi-WSL [258]
pre-trained models.

2.5.3 KimiaNet: A Pre-Trained Model for Histopathology

For histopathology, using a model specifically pre-trained for this field could potentially
yield better results than models trained on natural images. One such model is KimiaNet
[180], a pre-trained model developed using the DenseNet topology [97] and trained on
TCGA dataset, a diverse, multi-organ public image repository.

2.6 Summary

In this chapter, I provided an extensive review of the scholarly literature pertaining to
the topics and concepts that are central to the content of this thesis. The discussion
commenced with an examination of CNN and their well-known architectures, underscoring
their significance in the landscape of Deep Learning (DL).

Further, the review delved into the concept of transfer learning, a method that al-
lows us to leverage pre-existing models for new tasks, potentially saving computational
resources and time. A particular emphasis was placed on MDL, a technique that has been
instrumental in addressing the challenge of generalization that DNNs commonly encounter.

The discussion culminated with an exploration of the role and utility of pre-trained
models. The advent of numerous such models trained on extensive and diverse datasets has
provided an opportunity to study their efficacy in OOD generalization. This is particularly
relevant given the ongoing debate in the AI community regarding the ability of DG to
effectively tackle the generalization problem despite the complexities it introduces during
the training process.

In subsequent chapters, I will explore how these methods and concepts have been ap-
plied within the field of digital pathology, including potential enhancements and a thorough
analysis of the results. These sections largely constitute the product of my Ph.D. research
and highlight my contributions to the field. Through these discussions, I hope to shed
light on the continued progress in these areas and provide a meaningful contribution to the
ongoing discourse on these topics.
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Chapter 3

Generalization to Different
Magnification Levels

Prologue

The content of this chapter is based on an article published during my Ph.D. research:
Magnification generalization for histopathology image embedding- M Sikaroudi, B Gho-
jogh, F Karray, H. Tizhoosh- International Symposium on Medical Imaging (ISBI) 2020
[205]

3.1 Motivation

In recent years, the application of ML and specifically deep learning for cancer diagnosis
in the histopathology field has grown exponentially [106]. However, challenges remain due
to the variance in magnification levels in WSI images [195].

In the field of histopathology, a central challenge has been the discrimination of image
patches, which originates from different magnification levels, to derive a more condensed
representation of WSI. This task is made intricate by the prominent disparities in the
visual characteristics that manifest across varying levels of magnification. Despite these
patches being i.i.d.—since they all emerge from the same WSI—the differences in visual
manifestations can be perceived as shifts in their distributions.

If consider the variable X to represent a patch from a WSI and M to represent a
specific magnification level, one can represent the distribution of patches at a particular
magnification level as P (X|M).

Now, given that all patches emerge from the same WSI, one can argue that for any two
magnification levels Mi and Mj, the following holds:
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Figure 3.1: The provided WSI, sourced from TCGA, depict varying magnification levels
of the same specimen. The images on the right display an enlarged view of the area
highlighted by the red box in the corresponding left images. The leftmost image distinctly
portrays a papillary structure, while the rightmost image provides a clear view of each
cell’s nucleus. Taken from [118].

P (X|Mi) = P (X|Mj) (3.1)

Eq.3.1 would suggest that the patches are identically distributed across different magni-
fication levels.However, due to differences in the visual manifestations of patches at differ-
ent magnification levels, in reality, it is more accurate to say that the distributions across
magnification levels are different. Therefore, it can be written as

P (X|Mi) ̸= P (X|Mj) (3.2)

Eq.3.2 shows that different magnification levels are indeed like parallel worlds with
different “visual atmospheres,” each contributing to a shift in the overall distribution of
the WSI. This can be interpreted as a OOD shift between different magnification levels
within the same WSI.

It’s important to remember, however, that this is a simplification of a complex reality.
The actual relationship between patches at different magnification levels is likely much more
intricate, being influenced not only by the magnification level but also by a multitude of
other factors such as the specific properties of the tissue and the particular characteristics
of the imaging process. As a general guideline, according to Fig. 3.1, high-power field
microscopic images proficiently capture fine details related to cell morphology, while lower-
power field images provide a more comprehensive representation of structural aspects, such
as the arrangement of glandular structures composed of numerous cells.

To further elaborate, imagine each magnification level as a parallel world of its own.
While these worlds all belong to the same universe—similarly to how all patches come
from the same WSI—they each offer unique living spaces and atmospheres. These distinct
environments within each “world” or ”magnification level” can be compared to the varied
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Figure 3.2: The subnetworks and loss functions used in MASF and the proposed magnifi-
cation generalization for histopathology image embedding.

visual characteristics that one observes in histopathology images at different magnifica-
tions. The task, then, is to reconcile these disparate “worlds, bringing together the unique
information each one provides to form a more comprehensive and compact representation
of the WSI from which they originate. This challenge is the crux of this study as these par-
allel worlds are navigated and their unique visual atmospheres address the generalization
problem in the histopathology field.

Although previous research has delved into the realm of magnification adaptation for
histopathological embedding [12, 42, 215], my study embarks on a novel journey, focusing
on magnification generalization, where the model in training is kept oblivious to the target
magnification. This innovative line of investigation, to the best of my knowledge, has not
been previously pursued.

Our approach is anchored by a cutting-edge DG technique, known as MASF [52]. This
methodology is built on the foundational principles of MAML [62].

By harnessing the power of MASF, I am able to engage in a fascinating exploration
of the extent to which each magnification level can be generalized based on information
gleaned from all other magnification levels. Such an innovative strategy offers the tanta-
lizing prospect of creating more streamlined and compact representations for WSI.

In essence, I am investigating how to “translate” information between these different
“worlds” of magnification levels, with the ultimate goal of constructing a comprehensive
WSI representation that encapsulates the distinctive visual features inherent in each mag-
nification. This pioneering endeavor to illuminate the path toward more effective general-
ization across magnification levels underpins the essence of my study.

3.2 Magnification Generalization

In the process of implementing the MASF method, let us consider the presence of K
training source magnifications, represented by {Mk}Kk=1. This collection of training source
magnifications is integral to my methodology.
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To propel the MASF method forward, a specific procedure is followed during each
iteration. Primarily, the source magnifications are bifurcated into two distinct categories:
meta-train magnifications, denoted byMtr, and meta-test magnifications, represented by
Mte. This division forms the basis of my iterative procedure and paves the way for the
application of different loss functions.

In an effort to learn the most suitable latent space representation, I harness the com-
bined power of three distinct loss functions within the MASF framework. The choice of
these loss functions is not arbitrary; rather, each of them plays a crucial role in refining
the learning process and enhancing the final outcome.

Let us delve a bit deeper into the specifics of these loss functions, as understanding
their individual roles and the collective impact they impart on the model is crucial for
appreciating the finer nuances of my study. The following sections will offer a detailed
overview of these loss functions and their contributions to my work.

3.2.1 Loss for Supervised Learning

The first loss function in my study is the cross-entropy loss for supervised embedding. This
loss function is defined as follows:

Lcr(Mtr;ψ, θ) :=

−1
|Mtr|

∑
M∈Mtr

1

|M|
∑

(x,y)∈M

C∑
c=1

I(y = c) log I(ŷ = c), (3.3)

Let us break this equation down to understand it more clearly:

1. Mtr refers to the meta-training magnifications.

2. ψ and θ are the model parameters before updating.

3. C stands for the total number of classes.

4. The term (x, y) represents a tuple where x is a data point inM and y is its ground
truth label.

5. ŷ is the predicted label for the data point x.

6. I(·) represents an indicator function that outputs 1 when the condition in parentheses
is satisfied, and 0 otherwise.

The cross-entropy loss essentially measures the dissimilarity between the ground-truth
labels and the predictions made by the model. By averaging the cross-entropy loss across
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all patches and classes in the meta-training set, one can quantify how well the model is
performing on the task of supervised embedding.

Please note that this loss function is computed in batches in practical scenarios to
accommodate the constraints of computational resources.

After updating the model according to the loss of cross-entropy, the new parameters
ψ′ and ϕ′ are obtained. These updated parameters will then be used in the subsequent
iterations of the learning process.

3.2.2 Loss for Magnification Generalization

The second loss function in the model is designed to manage the magnification generaliza-
tion. This is essentially the loss of generalization. Let us delve into the specifics of this
loss function:

For a specific magnification level k, consider the embeddings of samples obtained
through feature extraction. If samples belonging to the class label c at this magnifica-
tion are represented as {x(k)c,i }nc

i=1, their corresponding feature extraction embeddings would

be {Fψ′(x
(k)
c,i )}nc

i=1. With these, one can compute a Monte Carlo approximation for the mean
latent space representation of class c at magnification k:

z(k)c :=
1

nc

nc∑
i=1

Fψ′(x
(k)
c,i ). (3.4)

The mean latent space representation, z
(k)
c , is then processed through the supervised

embedding layers, and the softmax function is applied, scaled by a temperature factor
τ > 1:

s(k)c := softmax(Fθ′(z
(k)
c )/τ), (3.5)

This gives us what can be conceptualized as a “soft” confusion matrix.

Next, for any pair of magnificationsMi andMj, one can compute a global loss that
is essentially the KL divergence, averaged across all C classes:

ℓgen(Mi,Mj;ψ
′, θ′)

:=
1

C

C∑
c=1

1

2

[
DKL(s

(i)
c ∥s(j)c ) +DKL(s

(j)
c ∥s(i)c )

]
, (3.6)
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Here, DKL denotes the KL divergence.

This generalization loss is then computed across all the meta-training and meta-testing
magnifications:

Lgen(Mtr,Mte;ψ
′, θ′) :=

1

|Mtr||Mte|
∑

Mi∈Mtr

∑
Mj∈Mte

ℓgen(Mi,Mj;ψ
′, θ′), (3.7)

The symbol |·| here represents the cardinality, or size, of a set. As with my previous loss
function, the computations involved in this equation are performed in batches in practical
applications. These computations are represented by Eqs. (3.4, 6.3, and 3.7).

3.2.3 Loss for Metric Learning

Finally, a triplet loss [193] is used for the sake of metric learning. Consider a triplet of
anchor, positive, and negative instances denoted by xa, xp, and xn, respectively. Triplet loss
attempts to increase the interclass variances of data and decrease the intraclass variances.
If R triplets are randomly sampled, T := {xra, xrp, xrn}Rr=1, from all the source magnifications
{Mk}Kk=1, the average triplet loss is

Ltri(T ;ψ′, ϕ′) :=

1

R

R∑
r=1

[
∥Fϕ′(Fψ′(xra))− Fϕ′(Fψ′(xrp))∥22

+ ∥Fϕ′(Fψ′(xra))− Fϕ′(Fψ′(xrn))∥22 + ζ
]
+
, (3.8)

where ∥ · ∥2 is the ℓ2 norm, ζ is a margin and [·]+ := max(·, 0) is the standard Hinge loss.

3.2.4 Updating Parameters

In this section, I delve into the specifics of how the weights of subnetworks, as visualized
in Fig. 3.2, undergo iterative updates. The fundamental step of this process involves the
use of gradient descent.

To illustrate, let us look at the first step of gradient descent employed to update the
weights ψ and θ:

(ψ′, θ′) := (ψ, θ)− α∇ψ,θLcr(Mtr;ψ, θ), (3.9)
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In this equation, α represents the learning rate, while ∇ψ,θ signifies the gradient with
respect to ψ and θ.

To construct the meta loss, I utilize a linear combination of the generalization and
triplet losses:

Lmeta(Mtr,Mte, T ;ψ′, θ′, ϕ′) :=

β1Lgen(Mtr,Mte;ψ
′, θ′) + β2Ltri(T ;ψ′, ϕ′), (3.10)

Here, β1, β2 > 0 serve as weight coefficients for the respective losses.

Following the first step of gradient descent as defined in Eq. 5.4, the weights are further
updated through two additional gradient descent steps:

(ψ, θ) := (ψ, θ)− η∇ψ,θ(Lcr + Lmeta), (3.11)

ϕ := ϕ− γ∇ϕLtri(T ;ψ′, ϕ′), (3.12)

In these equations, η and γ act as the learning rates.

We carry out the above steps of gradient descent iteratively until convergence. The
mathematical procedures outlined in Eqs. (5.4, 5.6), and 3.12) are implemented using the
backpropagation algorithm. A visual representation of these loss functions is provided in
Fig. 3.2. This process ensures that the weights are updated efficiently, driving the learning
of my model.

3.3 Experimental Results

In this section, I discuss the experimental setup, including dataset selection, image prepro-
cessing, configuration settings, and results.

3.3.1 Dataset, Preprocessing, and Setup

For the experimental evaluation, the BreaKHis breast cancer histopathology image dataset
is employed [214]. Composed of patches derived from four types of benign breast tumors
(adenosis (A), fibroadenoma (F), phyllodes tumor (PT), and tubular adenoma (TA)) and
four malignant breast cancer tumors (ductal carcinoma (DC), lobular carcinoma (LC),
mucinous carcinoma (MC), and papillary carcinoma (PC)), this dataset provided us with
a diverse range of samples for investigation. These patches are available in four distinct
magnification levels, namely, 40×, 100×, 200×, and 400× according to Fig. 3.3.
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Figure 3.3: Random images of different magnification levels for Adenosis on BreakHis
dataset.

To maintain consistency in color and staining across the dataset, the Reinhard stain
normalization technique [178] was applied to all images. Then the normalized dataset was
split into training, validation, and test sets in a ratio of 45%-45%-10%.

For the backbone, AlexNet was employed [121], with initial weights seeded from pre-
trained ImageNet weights [187].

Regarding the hyperparameter settings for the experiments, I adopted the values β1 =
1, β2 = 0.005, α = η = γ = 10−5, which were inspired by the work presented in [52]. For
the remaining network configuration and hyperparameters, I kept the setup consistent with
the one used in [52]. To optimize the model, I used the Adam optimizer and implemented
early stopping as a measure to prevent overfitting.

3.3.2 Magnification Generalization for Tumor Types

Inspired by literature [52], the baseline for comparison of generalization is the ERM ap-
proach in which all source domains are combined to train an latent space representation
with a cross-entropy loss function. Table 3.1 reports the average accuracy of embeddings by
the proposed and ERM models where the accuracies are averaged over three independent
runs, inspired by [52]. In this experiment, all eight tumor types are used as classes which
is a demanding task due to the presence of similarity of patterns between different tumor
types. Four different cases are reported where one domain is left out of the magnification
levels to be considered as the target magnification. This generalization is useful in prac-
tice for cancer diagnosis of novel magnifications. The table shows my proposed method
outperforms the baseline in all cases of target magnifications.

3.3.3 Magnification Generalization for Malignancy Classification

I further put the proposed method to the test by examining its effectiveness in magnification
generalization for binary classification. The aim was to classify images based on their
malignancy status - that is, whether they were benign or malignant.
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Table 3.1: Comparison of magnification generalization for tumor types by ERM and my
proposed approach. The rates are accuracy percent.

Source Target Magnification Generalization ERM

100×, 200×, 400× 40× 44.37 ± 0.11 40.39 ± 0.46
40×, 200×, 400× 100× 50.82 ± 0.06 48.82 ± 0.39
40×, 100×, 400× 200× 52.82 ± 0.22 51.75 ± 0.26
40×, 100×, 200× 400× 48.27 ± 0.43 47.21 ± 0.19

Table 3.2: Comparison of magnification generalization for malignancy using my method
based on MASF and the ERM method. Accuracy rates are represented as percentages.

Source Magnification Target Magnification Magnification Generalization ERM

100×, 200×, 400× 40× 81.01 ± 0.42 78.86 ± 0.23
40×, 200×, 400× 100× 80.98 ± 0.70 80.52 ± 0.34
40×, 100×, 400× 200× 80.99 ± 0.57 79.96 ± 0.86
40×, 100×, 200× 400× 77.25 ± 0.83 74.44 ± 0.31

For this task, I compared the performance of the method against the ERM approach.
The mean accuracy rates of both methods were calculated over three independent runs and
presented in Table 3.2. Given that binary classification is generally simpler than multi-class
categorization, the accuracy rates reported here are higher than those of previous experi-
ments. It should be noted, however, that the rates are slightly lower than those achieved
with magnification adaptation methods, such as those presented in [12, 42, 215]. This is
primarily due to the fact that generalization is a more challenging task than adaptation,
as indicated by [52].

As indicated in Table 3.2, my proposed method outperformed the ERM baseline across
all target magnifications, which speaks to its effectiveness.

Figure 3.4 provides a visualization of a trained embedding example, with a target mag-
nification of 400×. Here, the embedding is plotted with labels indicating both malignancy
and magnification. The figure demonstrates that classes, including those with an unseen
target magnification, are well separated. It is also evident that both benign and malignant
instances include a range of different magnification levels, including the 400× level, which
was not seen during training. The coherence of the trained latent space representation
further underscores the effectiveness of the presented magnification generalization method.

3.4 Conclusion and Summary

In this chapter, I introduced a method for generalizing different magnification levels in
histopathology images. The unique feature of my method is that during the training
phase, the target magnification level is kept unknown to the model. The foundation of my
proposed model is the MASF framework, which itself was built on the concept of MAML,
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(a) (b)

Figure 3.4: latent space representation visualization of the test dataset with the target
magnification set at 400×. (a) malignancy-wise, (b) magnification-wise

specifically designed for DG.

The experiments utilized the BreaKHis dataset and the results obtained confirmed
the robustness and effectiveness of the approach over the ERM. The introduced method
demonstrated a significant improvement in the accuracy of classifications, especially when
the target magnification level was unknown during the training phase.

In the following chapters, I will be detailing the studies I have conducted concerning
the OOD generalization applicable to unseen hospital settings.
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Chapter 4

Generalization of Vision Pre-trained
Models to Unseen Hospitals

Prologue

The content of this chapter is based on an article published during my Ph.D. research:
Generalization of vision pre-trained models for histopathology- M Sikaroudi, M Hosseini,
R Gonzalez, S Rahnamayan, HR Tizhoosh, Nature, Scientific Reports 2023 [207]

4.1 Introduction

Artificial neural networks offer the capability to fit model weights to data, thereby yielding
highly precise outputs. However, difficulties arise when attempting to generalize these
models to unseen data. Various terminologies have been used in the literature to describe
these challenges. Some studies suggest that poor OOD generalization is a result of the
models learning “shortcuts” [67, 148, 182] or “biases” [232, 203, 44].

Contrarily, other research approaches the issue of OOD generalization from a unique
angle. They assert that the main cause of subpar OOD performance is the “domain shift”
that occurs between the source and target domains [216, 149, 217].

Different nomenclatures can be summarized as follows:

• Bias

Definition: Bias is an inherent or acquired inclination towards favoritism or prejudice
that is targeted towards a specific entity or a group of entities. This often results
in unfair treatment or judgment. Bias, in this context, can significantly influence
the decision-making process in AI models, often leading to skewed or discriminatory
outcomes [156].
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Illustration: A clear example of bias in AI can be seen in the Correctional Offender
Management Profiling for Alternative Sanctions (COMPAS) system. COMPAS is
a decision-making tool used by judges to assess an offender’s potential risk of re-
cidivism - the likelihood of a convicted criminal to re-offend. It plays a crucial role
in determining if an offender should be released or retained in prison. However, an
investigation uncovered that the COMPAS algorithm had an inherent bias against
African-Americans, treating them more unfavorably compared to other groups [156].

Related Studies : The issue of bias in AI and machine learning has been a significant
focus of research. Various studies explore the concept and its implications, offering
insight into how bias can affect models and their decision-making processes [232, 203,
44].

Consequence: The inherent bias in AI models contributes to the challenge of general-
izing these models to unseen data. In essence, the models may not perform accurately
or fairly when presented with new data that falls outside of their training domain.
This lack of generalization raises concerns about the reliability and fairness of AI
models.

• Shortcuts

Definition: The term “shortcut” refers to a decision rule that works effectively on
i.i.d. test data but does not perform as expected when applied to OOD test data.
This situation results in a discrepancy between what the AI model is designed to
learn and what it actually learns [67].

Illustration: An example of an AI system taking a “shortcut” can be observed in
image recognition models. For instance, when such a model trained on cows in
a grassland context is presented with an image of a cow on a beach, it may fail
to correctly classify the cow. This happens because the model may use the usual
background as a significant feature for recognizing cows. Therefore, when the context
shifts to an unexpected environment (the beach), the model may incorrectly classify
the image [14].

Related Studies : Numerous studies have delved into the issue of “shortcuts” in AI
models. They have highlighted the challenges and potential solutions in understand-
ing and rectifying the issues caused by these “shortcuts” [67, 148, 182].

Consequence: The adoption of shortcuts by AI models contributes to the difficulty in
generalizing these models to unseen or new data. In other words, these models might
not perform accurately when they encounter data that significantly differs from the
data they were trained on. This can cause serious issues in real-world applications
where data often come from varied and unpredictable sources.

• Domain/Distribution Shift

Definition: Domain or distribution shift refers to the discrepancies or changes be-
tween the source data (on which a model is trained) and the target data (on which
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the model is tested or deployed). This concept is particularly significant in the field
of transfer learning, where models are trained on one type of data and then applied
to another [120].

Illustration: Various factors can contribute to a domain shift in visual data. For
instance, sampling bias can lead to differences in the types of images that are col-
lected. Additionally, variations in image content or perspective can create discrep-
ancies. Even changes in image characteristics such as brightness, noise level, or color
can lead to significant domain shifts. These shifts can greatly affect the performance
of machine learning models when they are applied to new data that differ from the
training data in these respects [120].

Related Studies : There are numerous studies addressing the concept of domain shift
and its effects on model performance. These works provide insights into how domain
shifts occur and how they can be managed or mitigated to improve model general-
ization [149, 217, 216].

Consequence: The issue of domain shift plays a critical role in inducing challenges
related to model generalization on unseen data. When a model encounters data that
differs significantly from its training data, its performance may degrade, leading to
unreliable or inaccurate outcomes. This raises concerns about the robustness of AI
models in dealing with real-world, diverse data.

In the field of histopathology, Hägele et al. [80] have defined three distinct categories of
biases that occur in histopathology setups. Though they have provided specific terminolo-
gies, these types of biases bear strong resemblances to the concept of “shortcuts” in the
broader machine learning literature. These biases can lead to satisfactory in-distribution
performance but poor OOD performance. Here is an elaboration of these categories:

• Dataset Bias
This form of bias occurs when only a small portion of an image is correlated with
its class label. For instance, in a situation where a small central area of each image
signifies the class label and the remaining areas are irrelevant, a deep learning network
may struggle to generalize. The issue arises when the model is tested on images where
the subject of interest does not necessarily occupy the center. This can lead to errors
in prediction and hamper the model’s ability to generalize effectively to new data.

• Label Bias
Label bias refers to biases that accidentally correlate with class labels. Suppose a deep
learning network is trained on a set of images where a unique red spot characterizes a
particular class. If the model generalizes this feature as a characteristic of that class,
it may fail to recognize the same class in the test images that lack this unique red
spot. Such a bias can limit the model’s ability to effectively generalize to new data.

40



• Sampling Bias
Sampling bias happens when the training dataset lacks certain critical features or
textures. For instance, if a network is trained on images that do not include certain
tissue textures such as necrosis, its performance may degrade when tested on images
with these previously unseen textures. This is because the network has not seen or
learned these textures during the training phase.

In addition to defining these bias categories, Hägele et al. also demonstrated the value
of Explainable Artificial Intelligence (XAI) techniques for visualizing and understanding
these biases [80]. By doing so, they contribute to a better understanding of how biases in
data can affect model performance, and how these biases can be identified and mitigated
to improve OOD generalization.

To effectively deploy deep learning models in real-world environments, it is of paramount
importance to account for potential distribution shifts that may occur between source and
target data. This need is particularly pronounced in fields such as digital pathology, where
variations in data acquisition methods across trial sites or over time may introduce domain
shifts. Such shifts can result from subtle and possibly visually unnoticeable differences
among WSIs, significantly impacting model performance and reliability.

A comprehensive understanding of distribution shift, its causes, and its implications
is crucial to fully exploit the vast potential that deep learning promises in the field of
histopathology. It is vital to ensure that a model’s predictions remain trustworthy and
accurate, even when new, unseen data is introduced. Although this task of correctly mod-
eling and responding to unencountered data during training is undoubtedly challenging,
several methods have recently been proposed to improve OOD generalization.

Among these approaches, multi-domain learning regimes, such as domain generalization
and domain adaptation, have shown promise. These strategies aim to enhance the model’s
performance on OOD data by employing specialized training methods. They primarily fall
into three categories:

1. Simulating OOD Data During Training: This approach generates synthetic
data that mimic the characteristics of potential OOD data, providing the model with
exposure to such data during training [134, 52, 208].

2. Learning Invariant Representations: This strategy aims to learn representations
that remain constant across various data domains. Such invariant representations can help
improve model robustness to domain shifts [4].

3. Creating Adversarial Data Acquisition Scenarios: This involves deliberately
introducing challenging data acquisition scenarios to the model during training. This
method can prepare the model to handle difficult or unexpected situations that might
occur in the real world [242].

By exploring and implementing these techniques, we can better equip deep learning
models to handle the challenges of distribution shifts, ultimately improving their perfor-
mance and reliability in real-world, OOD scenarios.
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Although domain generalization is a field that has been considerably explored [266],
recent studies have questioned the efficacy of existing strategies [76, 192]. For instance,
Wiles et al. [250] delved into the effect of three types of distribution shifts: (1) spurious
correlations, (2) low-data drifts, and (3) unseen shifts.

Their findings were mixed and did not conclusively favor a particular method. However,
they highlighted that rudimentary techniques such as data augmentation and pre-training
were often effective. Additionally, they demonstrated that domain generalization algo-
rithms show efficacy in handling certain types of data and distribution shifts. However,
the optimal approach varied based on the dataset and the nature of the attribute, un-
derlining the absence of a one-size-fits-all solution and emphasizing the need to enhance
algorithmic robustness for diverse real-world scenarios.

These observations led to a critical question: Has domain generalization truly advanced
beyond standard ERM algorithms? [250]. Such contemplations might appear discouraging
at first; however, they are crucial for the evolution of the field. On a positive note, numerous
other studies underscore that machine learning models can indeed be generalized across
datasets that exhibit different distributions [250, 176].

For instance, several works have supported the efficacy of pre-training on large datasets
for improving OOD generalization [226, 250]. Such strategies can potentially provide the
model with a broad understanding of different data characteristics, thus enabling it to cope
better with unseen data or distribution shifts.

In essence, while current domain generalization techniques provide some promise, there
is a need for further research and exploration to identify more robust and universally
effective methods. This ongoing endeavor is crucial to ensure that machine learning models
can consistently deliver reliable performance across diverse real-world scenarios.

This chapter delves into a comprehensive exploration of the role and efficacy of pre-
trained models in achieving OOD generalization. This investigation includes a wide range
of pre-trained models, some of which are trained on natural images while others employ
histopathology images. An important aspect of this research is the utilization of a leave-
one-hospital -out cross-validation method. This method involves isolating each WSI repos-
itory associated with individual hospitals and subsequently fine-tuning the pre-trained
models using the remaining WSI repositories for the task at hand.

The primary goal of this chapter is not simply to achieve top-tier results on benchmark
datasets but rather to enhance our understanding of how pre-trained models can contribute
to more robust OOD generalization. By shedding light on the mechanisms and effective-
ness of pre-trained models in managing OOD generalization, we aim to generate valuable
insights that could help narrow the gap between in-distribution and OOD performance in
future research endeavors.

The research contribution of this chapter can be summarized into three primary areas:

1. Significance and Nature of Pre-training for OOD Generalization: It was
demonstrated that pre-training on large datasets plays a vital role in OOD generalization.
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This observation holds true for both Semi-WSL [258] and Semi-SL [258] as compared
to a basic ImageNet [45] pre-trained model. However, the specific nature of the pre-
trained model also significantly influences OOD generalization. For instance, KimiaNet
[180] exhibits distinct performance when compared to Semi-WSL [258] and Semi-SL [258].
The experimental results indicate that lacking either of these components - size of the
pre-training dataset or appropriate nature of the pre-trained model - may lead to a decline
in OOD generalization.

2. Role of Fixed-Policy Augmentations: The experiments suggest that with fixed-
policy augmentations, OOD generalization can be improved by reducing reliance on short-
cuts and instead focusing more on semantically interpretable features. However, this ap-
proach comes with its challenges, as it could complicate the training of deep networks. In
essence, fixed-policy augmentation can be both beneficial and detrimental, depending on
the nature of the OOD test data. As such, one cannot assume a one-size-fits-all fixed-policy
augmentation that will work across all scenarios.

3. Correlation between In-Distribution Performance and OOD Performance:
This study shows that improving in-distribution performance does not always translate
into better OOD performance. This finding challenges the commonly held belief that
in-distribution performance is a reliable indicator of OOD performance [2], thereby high-
lighting the need for specific metrics or methods to assess and ensure OOD generalization.

By illuminating these aspects, it is hoped that future research endeavors will be guided
toward the development of more robust and universally effective methods for achieving
high-quality OOD generalization across various application scenarios.

In these experiments, a variety of pre-trained models were employed. These include
(1) the vanilla ImageNet model, (2) the Semi-SL model trained on both ImageNet and
YFCC100M, (3) the Semi-WSL model trained on ImageNet and 940 million public images
tagged with 1.5K hashtags, and (4) KimiaNet, which is trained on TCGA dataset. The
summary of these pre-trained models and their details can be found at Table 4.1.

Pre-trained Model Architecture Number of Parameters Pre-training Data Feature Space Dimension

Vanilla ResNet18 11,689,512 ImageNet 512
Semi-SL ResNet18 11,689,512 YFCC100M, ImageNet 512

Semi-WSL ResNet18 11,689,512 IG-1B-Targeted with 1.5K hashtags, ImageNet 512
KimiaNet DenseNet121 7,978,856 Subtying of TCGA WSIs 1024

Table 4.1: Details of pre-trained models used in the study.

4.2 Experimental Setup and Methods

When investigating OOD performance in histopathology configurations, most researchers
typically rely on datasets derived from TCGA [145, 131, 208]. However, the KimiaNet
model [180], which forms a key part of my research, has been pre-trained on all WSIs from

43



the TCGA dataset. Consequently, using TCGA data to define OOD test set would not be
appropriate, given that it has already been leveraged during the pre-training phase of the
model. This constraint prompts us to look for alternative data sources to construct the
test set.

Among available options, the CAMELYON17 dataset emerges as a suitable choice due
to its multi-hospital representation. The dataset’s heterogeneity makes it well-suited for
assessing the OOD performance of the pre-trained models. In the subsequent sections, I
provide a detailed description of the data and models utilized in the study and outline the
structure of the experimental setup. These detailed outlines are designed to offer insights
into the research methodology and enable replication and extension of the study.

4.2.1 The CAMELYON17 Dataset

The CAMELYON17 dataset [9], a rich source of histopathological data, comprises 1000
WSIs obtained from five distinct medical centers. These WSIs present not only disparate
variations in stain colors [229] but also differences in morphology and tumor staging across
the participating medical centers [8, 138] (as illustrated in Fig. 4.1).

In the CAMELYON17 challenge, 500 WSIs were allocated for training, and the remain-
ing 500 were utilized for testing purposes. The training subset of CAMELYON17 includes
318 WSIs categorized as negative and 182 WSIs identified as having metastases. However,
out of all the slides, only 50 WSIs included pixel-level annotations. Thus, for the purpose of
sampling tumor and non-tumor cells, only these 50 slides were considered. Although sam-
pling non-tumor cells from the other slides could introduce further variations, the impact
on the overall results is not expected to be substantial [217].

It is also important to note that tumor areas typically occupy only a minor portion of
the slide area. This disparity leads to a significant patch-level imbalance. To counteract this
issue, a patch sampling strategy mirroring the approach outlined in [139] was implemented.
In this strategy, an equal number of tumor and normal patches are sampled from each slide,
ensuring a uniform distribution of patches.

As a result of this sampling strategy, approximately 3000 patches were acquired from
each hospital. These patches comprised a balanced distribution of tumor and non-tumor
samples, with each category constituting about half of the total patches.

4.2.2 Defining the OOD Hospital and Data Segments

In this research, the “leave-one-hospital-out” approach is employed. Here, for each hospital,
designated as Hexternal, the model’s backbone is trained exclusively on images derived from
the other hospitals, collectively termed Hinternal.

The Hinternal data is further segmented into distinct chunks for training, validation, and
in-distribution testing. These segments account for 70%, 10%, and 20% of the Hinternal

data, respectively.
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Figure 4.1: The bulk RGB histogram of the 512× 512 extracted patches as well as sample
tumor and non-tumor patches of each center/hospital in the CAMELYON17 dataset. Hos-
pitals 3 and 5 have quite different histograms in comparison to the rest of the hospitals.

As the training progresses through each epoch, the accuracy is computed for both the
external and in-distribution datasets. These calculations yield the OOD top-1 accuracy
and in-distribution top-1 accuracy, which serve as performance indicators for the model’s
ability to generalize across various hospitals.

4.2.3 Variations in Training Data Scenarios

This section introduces various scenarios that are put forward for the fine-tuning or training
of the models involved in the experiments. For this purpose, three distinct scenarios for the

45



tumor tumor tumor tumor

tumortumortumortumortumor

Scenario 1
Images without 

change 

Scenario 2
Diversifying 
images by 

transformations

0.25

H
ED

 Jitter

C
o

lo
r Jitter

G
au

ssian
B

lu
r

Id
en

tity

tumor tumor tumor tumor

tumortumortumortumortumor

Transformations

Scenario 3
Shortcut 
overlaid

Figure 4.2: An example training batch for different scenarios. It is noteworthy that in
Scenario 1, the training set patches are devoid of any form of augmentation. As can be
seen in the figure, in Scenario 2, one transformation is selected from the set of identity,
HED jitter, color jitter, and Gaussian blurring transformations (with uniform distribution
(p = 0.25)) for each image in the batch. In Scenario 3, the correct label (0: non-tumor, 1:
tumor) for each image is overlaid on the image itself.

training are evaluated, as illustrated in Fig. 4.2. The delineated scenarios are as follows:

Scenario 1 : In this scenario, the training images, identified as Hinternal, are introduced
into the network without undergoing any alterations.

Scenario 2 : This scenario presents a case where multiple types of distortions, common
in histopathology setups (refer to Fig. 4.2), are simulated and uniformly applied at random
toHinternal, prior to feeding these images to the deep learning network. The transformations
considered are as follows:

• HED jitter [228]: This method introduces random perturbations to the HED color
space value of an RGB histopathology image. The hematoxylin and eosin color
channels are initially separated using a color deconvolution technique [186]. The
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hematoxylin, eosin, and Diaminobenzidine (DAB) stains are then independently per-
turbed. The resulting stains are subsequently converted back to the standard RGB
color space. These manipulations facilitate stain invariance in the model.

• Color jitter: This transformation directly alters image attributes such as brightness,
contrast, and saturation to enhance image diversity, thereby boosting the model’s
robustness against color variations.

• Gaussian blurring: This method applies a blurring effect using a Gaussian kernel
with a defined radius.

• Identity: This transformation leaves the input images unchanged.

Scenario 3 : This scenario involves overlaying a digit (0: non-tumor and 1: tumor)
corresponding to the label of images on the top left corner of each image, as illustrated
in Fig. 4.2. This experiment is set aside for subsequent sections where the concept of
shortcut learning is discussed.

4.2.4 Implementation of Pre-trained Models in Training

Several pre-trained models have been leveraged and evaluated for this study, including
vanilla ImageNet, Semi-SL [258], and Semi-WSL [258] pre-trained models. All these pre-
trained models are constructed on the ResNet18 backbone [84].

In addition to these pre-trained models on natural images, an investigation has also been
conducted into the performance of the KimiaNet pre-trained model [180]. Unlike the previ-
ous models, KimiaNet is domain-specific, having been trained explicitly for histopathology
applications. This provides an opportunity to evaluate the performance of a model that
has been primed for the specific demands and peculiarities of histopathology imagery.

The implementation of these models in the experiments followed certain established
guidelines and settings. Consistent with the studies of [136, 261], the total batch size was
fixed at 32. For the learning rate, a value of 0.01 was adopted for the instances where
training was conducted from scratch. Conversely, for pre-training instances, the learning
rate was reduced to 0.001. This was combined with a step-LR schedule comprising of 7
steps and a γ value of 0.1.

The choice of optimizer is a critical component in the training process. For these
experiments, the SGD optimizer was utilized. The SGD optimizer has seen widespread
use in the literature [184] due to its efficiency and simplicity. To regularize the model and
prevent overfitting, a weight decay value of 1e− 4 was used.
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4.3 Analysis and Interpretation of Results

Throughout the course of the conducted experiments, certain notable trends and patterns
emerged. One of the most striking observations pertains to the differential progress of the
in-distribution test accuracy and the OOD top-1 accuracy throughout the training process.

While the in-distribution test accuracy displayed a near-constant upward trend, the
OOD top-1 accuracy was not as consistent. This discrepancy may hint towards an in-
triguing facet of the learning process taking place during the training. It suggests that the
models do not only learn semantic features that align with the general characteristics of
the class, but they also pick up on non-semantic or hospital-specific features. These non-
semantic features, rather than enhancing the model’s generalization ability, could paradox-
ically be undermining it. This potential undermining is evidenced by the unstable progress
of the OOD top-1 accuracy, as these hospital-specific features may not be applicable or
helpful when the model encounters data from a different hospital (or distribution).

In the ensuing sections, the focus will shift toward a comparative assessment of different
types of pre-trained models. This comparison aims to discern and elucidate the differences
in their out-of-distribution performance, providing valuable insights into the strengths and
limitations of each model when it comes to handling OOD data. This analysis can offer a
foundation for future research efforts aimed at improving OOD generalization and could
guide the choice of models and training strategies in practical histopathology applications.

4.3.1 Out-of-Distribution Performance of Pre-Trained Models

Comparison between Training from Scratch and Using Pre-Trained Models:
One of the most salient findings drawn from the conducted experiments is the considerable
advantage that pre-trained models exhibit over models trained from scratch when it comes
to out-of-distribution generalization.

The data detailed in Table 4.2 elucidate the substantial gap in performance between
these two approaches. On average, pre-trained models yield significantly superior results,
underscoring the merit of leveraging prior knowledge in tackling the challenge of out-of-
distribution generalization. Consequently, it can be inferred that employing any reasonably
pre-trained model tends to be more beneficial than resorting to training from scratch,
particularly when the objective involves handling OOD data.

These observations align with the findings reported in previous research, such as the
study by Yu et al. [261]. This consensus reinforces the argument in favor of pre-trained
models and advocates for their adoption in applications where out-of-distribution general-
ization is of paramount importance.

It is crucial to note, however, that the choice of pre-training depends on the specific
task at hand and the availability of relevant pre-trained models. Future studies might
delve into examining the impact of varying degrees of relatedness between pre-training and
target tasks, and how that affects out-of-distribution performance.
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When it comes to the training-from-scratch approach, Table 4.2 reveals that scenario 2
typically falls short of the performance achieved by scenario 1. The situation seems to take
a turn when pre-trained models enter the picture. As per the data in Table 4.2, scenario
2 demonstrates superior performance to scenario 1 when hospitals 2, 3, or 5 are used as
the hold-out dataset.

This discrepancy suggests an intriguing interplay between the initial weights of the deep
learning model and the complexity of the training process. With a suitable foundation of
initial weights (achieved through pre-training), the model appears to benefit from addi-
tional complexity (in the form of augmentation or diversification) during training, resulting
in enhanced generalization to out-of-distribution data. However, if the model does not have
the advantage of appropriate initial weights (as in the case of training from scratch), the
added complexity seems to hinder the learning process, possibly leading the model astray
from capturing meaningful and semantic features.

Comparison between Vanilla, Semi-SL, and Semi-WSL Pre-training: An
analysis of the maximum performance on each hold-out hospital, highlighted in Table
4.2, presents some compelling observations. Remarkably, neither the models trained from
scratch nor the vanilla pre-trained models gain any highlights.

This trend accentuates the potential of Semi-SL [258] and Semi-WSL [258] pre-training
strategies as robust alternatives to the conventional vanilla pre-training. This superior
performance can likely be ascribed to the extensive and representative datasets on which
the Semi-SL and Semi-WSL models have been pre-trained, enabling them to capture and
retain more generalized features.

However, there are instances where training under scenario 2 has resulted in diminished
OOD performance. A case in point is when hospital 2 served as the hold-out set. Given the
relatively smaller image set from this hospital (roughly 2000 images compared to 3000 from
others), it is speculated that image diversification or augmentation may actually impair
performance by introducing unwarranted complications to the training process of the deep
learning model.

Exploring KimiaNet: The performance of the KimiaNet model has been examined

Table 4.2: The OOD performance of training from scratch versus the pre-trained models
(vanilla, Semi-SL, and Semi-WSL). Each column represents the OOD top-1 accuracy on
the hold-out set.

Pre-training Weights Training scenario Hospital 1 Hospital 2 Hospital 3 Hospital 4 Hospital 5 Average

F Random S1 93.01 89.22 84.95 91.06 81.09 87.9± 4.22

F Random S2 92.72 90.28 82.01 90.00 80.71 87.1± 4.73

T Vanilla S1 98.75 96.03 94.42 96.65 90.54 95.3± 2.69

T Vanilla S2 98.62 93.60 97.06 97.19 91.67 95.6± 2.52

T Semi-SL S1 98.52 96.92 94.8 97.46 96.61 96.9± 1.19

T Semi-SL S2 99.18 94.98 95.09 97.79 97.21 96.8± 1.59

T Semi-WSL S1 99.08 96.52 94.97 98.12 83.93 94.5± 5.37

T Semi-WSL S2 99.31 96.19 97.44 98.09 89.71 96.1± 3.3
Average 97.4± 1.95 94.2± 2.05 92.6± 4.01 95.8± 2.29 88.9± 4.48
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Hold-out set: Hospital 3 Hold-out set: Hospital 5

Figure 4.3: The OOD versus in-distribution top-1 accuracy for the model trained using
scenario 1 versus scenario 2 for the hospitals 3 and 5 with significant distribution shift
relative to other hospitals.

under two distinct settings: (1) linear probing [125] (where the feature extractor remains
frozen while the classification head alone undergoes training), and (2) fine-tuning (where
all model parameters are updated). As summarized in Table 4.3, it is clear that fine-tuning
offers superior results compared to linear probing.

Interestingly, the average results across hospitals 2, 3, and 5 appear to be both lower
and more variable when compared to hospitals 1 and 4. Moreover, scenario 2 training
surpasses scenario 1 when the hold-out trial site is either hospital 1, 3, or 5.

Looking at both Table 4.2 and Table 4.3 provides some enlightening insights. KimiaNet,
a domain-specific (histopathology) pre-trained model, proves to be superior to all other pre-
trained models in at least three of the five external validation cases. This suggests that
pre-training models using domain-specific data can significantly enhance out-of-distribution
generalization. However, it is important to note that while linear probing outperforms
training from scratch in both scenario 1 and scenario 2, it falls short of the performance
achieved by any of the fine-tuning approaches, regardless of the pre-trained model used.

However, it is important to note that while linear probing outperforms training from
scratch in both scenario 1 and scenario 2, it falls short of the performance achieved by
any of the fine-tuning approaches, regardless of the pre-trained model used.

Analyzing Performance Variations in Hospitals 3 & 5 - OOD versus In-
Distribution:

Table 4.3: The OOD performance of linear-probing versus the fine-tuning of KimiaNet.
Each column represents the OOD top-1 accuracy on the hold-out (external) hospital.

Training Scenario Hospital 1 Hospital 2 Hospital 3 Hospital 4 Hospital 5 Average

Fine-tuning
S1 98.75 96.6 96.44 98.58 95.54 97.2 ± 1.24
S2 99.18 95.95 99.18 98.45 97.85 98.1 ± 1.17

Linear-probing
S1 97.59 89.79 92.45 95.58 80.57 91.2 ± 5.82
S2 96.77 86.77 94.71 96.7 91.62 93.3 ± 3.69

Average 98.1± 1.08 92.3± 4.69 95.7± 2.78 97.3± 1.42 91.4± 7.51
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Tables 4.2 and 4.3 reveal distinct variations in performance accuracy between the pre-
trained models and training-from-scratch, particularly when hospitals 2, 3, and 5 are set as
the hold-out hospitals. Notably, the performance of deep networks is at its lowest among
all holdout hospitals under these circumstances.

The lower performance and variability of results when Hospital 2 serves as the hold-
out hospital is understandable given its smaller quantity of patches (approximately 2000
versus approximately 3000 in other hospitals). However, the results obtained for hospitals
3 and 5 necessitate further investigation, as their variability could indicate a significant
distribution shift in these medical centers compared to others. To visualize this, the OOD
versus in-distribution accuracies have been plotted in Figure 4.3.

OOD performance is of crucial importance when considering real-world applications.
When examining the different pre-trained models, it becomes evident that KimiaNet out-
performs the others in terms of OOD performance when Hospital 5 is the hold-out set. The
Semi-WSL [258], vanilla, and Semi-SL [258] pre-trained models follow next in performance
when considering training under scenario 2. In contrast, under scenario 1, KimiaNet re-
tains the leading position with Semi-WSL, Semi-SL, and vanilla pre-trained models ranking
subsequently.

Observations on Training Scenarios and Performance:

One crucial observation from the experiments is that training under scenario 2 con-
sistently improved OOD performance more effectively than scenario 1, despite lowering
in-distribution performance across all pre-trained model types. In essence, the various
transformations utilized in scenario 2 effectively enhanced OOD performance but had the
unintended side effect of degrading in-distribution performance. This finding underscores
the fact that in-distribution accuracy does not necessarily correlate with or predict OOD
performance. An illustrative example can be found in the performance of KimiaNet under
scenario 2, which, despite having the least impressive in-distribution performance, deliv-
ered the best OOD performance. Additionally, it is worth noting that when Hospital 3 was
the hold-out hospital, KimiaNet under scenario 1 delivered the best in-distribution and
OOD performance. However, the adoption of scenario 2 bolstered the OOD performance,
albeit at the expense of in-distribution performance. This intriguing phenomenon can be
attributed to shortcut learning, which, based on the current understanding, offers satisfac-
tory in-distribution performance while undermining OOD performance. Consequently, this
case warrants further investigation using XAI techniques to illuminate potential shortcuts
and offer more profound insights into the observed performance dynamics.

This intriguing phenomenon can be attributed to shortcut learning, which, based on the
current understanding, offers satisfactory in-distribution performance while undermining
OOD performance. Consequently, this case warrants further investigation using XAI tech-
niques to illuminate potential shortcuts and offer more profound insights into the observed
performance dynamics.

Exploring the Concept of Shortcut Learning in Neural Networks:
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Figure 4.4: KimiaNet trained using Scenario 3 when tested with a tumorous OOD patch
with different class labels overlaid and their corresponding GradCAM heatmaps. (left)
When false label (0: non-tumor) has been overlaid on the image. According to the class
prediction of the network, the network has thoroughly paid attention to the overlaid digit
and misclassified the image with its misleading shortcut. (right) When the true label (1:
tumor) has been overlaid. The network, by focusing on the shortcut, classified the patch
with a high degree of certitude.

Figure 4.5: KimiaNet trained using Scenario 3 when tested with a healthy (non-
tumor) OOD patch with different class labels overlaid and their corresponding Grad-CAM
heatmaps. (left) When true label (0: non-tumor) has been overlaid on the image. The
network, by relying on the shortcut, classified the patch with confidence. (right) When
the false label (1: tumor) has been overlaid. According to the class prediction of the net-
work, the network has thoroughly paid attention to the overlaid digit and misclassified the
image with its misleading shortcut.
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Figure 4.6: The result of training using scenario 1 and scenario 2 : (i) an OOD tumorous
patch (from hospital 3) with different anatomical structures, T○: Tumor cells, L○: Lym-
phocyte, E○: Erythrocyte. (ii) Expert annotation for tumorous regions. (iii) GradCAM
heatmap for the model trained using scenario 2 which correctly classified the patch, (iv)
GradCAM heatmap for the model trained using scenario 1 which misclassified the patch
as a healthy patch.

The general function of neural networks, and machine learning algorithms more broadly,
involves establishing decision rules that map inputs to corresponding outputs. For example,
in classification tasks, the aim is to assign a specific category to each input image. However,
an intriguing phenomenon often observed in these networks is the reliance on what is
termed as shortcuts. When a network depends on these shortcuts, it performs well on
the training data and in-distribution tests, yet its performance on OOD tests is usually
suboptimal. This discrepancy reflects a disparity between the intended solutions, based on
robust general principles, and the solutions the network has actually learned, which often
take advantage of idiosyncratic features in the training data that may not generalize well
[67].

These shortcuts, while expedient for in-distribution data, may lead to subpar perfor-
mance when facing novel or more complex data structures, as seen in OOD tests. The
exploration of this phenomenon allows us to better understand and address the limitations
of current machine learning algorithms, as well as develop more reliable and robust models
for diverse and unpredictable real-world scenarios.

Distinguishing Between Shortcut and Bias:

In the realm of machine learning, the term “bias” is used to denote any form of pref-
erential treatment given to a certain entity [86]. This preferential treatment could be
directed towards a specific demographic, a certain set of data originating from a particular
hospital, or even a subset of data with certain unique characteristics. This favoritism may
or may not pave the way for shortcut learning. It can be postulated that a bias is likely
to exist if the training of a deep network only includes images from a single, specific trial
site. Consequently, a deep network that is skewed or biased might be trained, which may
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or may not perform satisfactorily on OOD test images. The deciding factor here is the
diversity of the images from that trial site. A generalization problem may surface if the
images from a certain trial site lack sufficient diversity.

In the scenario 3, a situation is simulated where the training images are embedded with
significant digits representing their true labels. This approach can create a bias in favor
of images with overlaid labels. While this bias might produce satisfactory results when
tested on images with overlaid labels, it might also prompt the deep network to overlook
the broader context of the images, leading to a bias towards the overlaid labels.

In general, while all shortcuts can be classified as a form of bias, not all biases necessarily
lead to shortcuts. More specifically, among all types of biases, those that result in high
in-distribution performance and low OOD performance are usually considered shortcuts.

For all experiments conducted in this section, KimiaNet [180] was utilized, adhering to
the same hyperparameters as in previous sections, with hospital 3 serving as the hold-out
set. This provided a consistent framework for analyzing and interpreting the results.

Exploring Scenario 3 :

In Scenario 3, we experiment with an artificial shortcut by overlaying the true labels
directly onto the training images. Training a deep network using this method may result
in the algorithm exploiting this obvious ”clue” during its learning process, likely leading to
the development of decision rules based on this prominent shortcut. This type of shortcut
is referred to as a label bias in the existing literature [80]. Rather than focusing on the
broader and more nuanced features of the tissue context, the network primarily recognizes
the overlaid label digit. Consequently, when the network encounters an image without
an overlaid label after training, it struggles to make accurate predictions since it hasn’t
learned to recognize the more substantive decision rules. Instead, it will likely default to
the class category that was previously overlaid.

Grad-CAM [196] was used to offer some degree of explainability in these cases, generat-
ing heatmaps that highlight the salient areas relevant to the classification. As depicted in
Figs. 4.4- 4.5, the Grad-CAM heatmaps illustrate how scenario 3 causes the deep network
to fixate almost exclusively on the overlaid label, neglecting the tissue morphology that
should ideally inform the decision-making process.

In essence, the overlay of an image’s label (an extreme example of a shortcut) takes
precedence over all other content within the image in these instances. The deep network
essentially operates as a digit recognizer, making decisions based solely on the digit overlaid
on the image. When the overlaid class label is either missing or misleading, the deep
network struggles to provide accurate results.

Further tests were carried out using KimiaNet, trained under scenario 3, with images
that did not have class labels overlaid. The result was that the deep network randomly
assigned class labels, resulting in an accuracy of approximately 50%, similar to the ran-
domness of flipping a coin.

Exploring Scenario 1 and 2 :
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Figure 4.7: (i) an OOD healthy patch with different anatomical structures, I○: Immune
cells, A○: Adipocyte, F○: Fibrous tissue, E○: Erythrocyte. (ii) GradCAM heatmap for
the model trained using scenario 1 which misclassified the patch as a healthy patch. (iii)
GradCAM heatmap for the model trained using scenario 2 which correctly classified the
patch.

KimiaNet was trained by segregating images from hospital 3 and utilizing both Scenario
1 and 2. Fig.4.6i-ii presents an OOD tumorous patch from hospital 3, which includes
pixel-level annotations by a pathologist indicating the tumorous area. The model, when
trained using scenario 2, correctly identified the image as tumorous, as shown in Fig.
4.6iii which illustrates the salient tumorous area. On the other hand, the model trained
under scenario 1 misclassified the patch as healthy, as evident from the heatmap of salient
healthy areas depicted in Fig. 4.6 iv. Although some tumor areas were not highlighted in
the explainability heatmap (Fig. 4.6.iii), the activated areas aligned well with the expert
annotation, and areas containing lymphocytes were not activated. Conversely, the model
trained under scenario 1 incorrectly classified the patch as healthy, as shown in Fig. 4.6iv
which depicts its heatmap for salient healthy regions. This heatmap aligns strongly with
the healthy area as per Fig. 4.6.ii, yet certain tumorous regions were incorrectly activated.
These regions could be linked to shortcut opportunities that were eliminated by applying
the transformations in scenario 2.

Fig. 4.7i shows a patch consisting of healthy tissue. The network trained under scenario
1 wrongly classified this image as tumorous, while the model trained under scenario 2
correctly identified it as healthy. Fig. 4.7ii and Fig. 4.7iii show heatmaps for salient
tumorous and healthy areas for scenario 1 and scenario 2, respectively. It can be observed
that the model trained under scenario 1, which can be considered as a shortcut-trained
model, has incorrectly associated fibrous tissues with the tumorous region. However, in
the model trained under scenario 2, the prominent healthy areas are mostly composed of
immune cells and adipocytes.
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From this, it becomes clear that training using scenario 2 guides the deep network to
focus less on nonsemantic features, such as those induced by inconsistent staining colors
or variances in morphology and tumor staging across different hospitals or trial sites, and
more on what is intended, discerning the semantics of tumorous or healthy patterns.

4.3.2 Variations in Pre-Training: Distinct Aspects of Images

– Pre-training on a related task vs. ImageNet – Although pre-training on natu-
ral images, including vanilla, Semi-SL, and Semi-WSL ImageNet pre-trained weights, has
been the prevalent approach for numerous computer vision tasks, there is substantial ev-
idence suggesting that domain-specific pre-trained weights might prove more effective for
certain specialized tasks [119, 225]. This implies that a model pre-trained on an extensive
histopathology task, for instance, cancer subtyping on TCGA, could potentially outper-
form a model with ImageNet pre-training on a histopathology downstream task such as
differentiating between tumorous and non-tumorous breast tissues in the CAMELYON
dataset.

Histopathological images are distinct in that they exhibit unique variations in cell
structures and tissue patterns, attributes which may not be adequately represented in
ImageNet, a dataset primarily composed of natural images. By pre-training on the TCGA
dataset, the model is primed to recognize and learn features and patterns more relevant to
histopathology tasks, thereby improving performance.

In addition, KimiaNet has been trained on a wide variety of common cancer types
in various hospitals, including MSKCC, NCI, among others. Employing ERM with the
labels representing cancer subtypes, the resultant trained representations can be viewed
as somewhat hospital-invariant. The variability among hospitals can function as a form of
data augmentation, indirectly enhancing the generalizability of KimiaNet. Consequently,
pre-training on the TCGA dataset could result in the model being more proficient at
“overlooking” certain irrelevant, hospital-specific aspects of the images, thereby performing
better than models pre-trained on ImageNet.

To substantiate this hypothesis, I leveraged heatmaps generated using XAI techniques,
which provided a deeper understanding and visual insight into how pre-training on different
datasets affected the model’s focus and performance.

– Analyzing Heatmaps of Initial Layers – Heatmaps generated using XAI tech-
niques, particularly Grad-CAM in this study, tend to emphasize lower-level features such
as edges and corners when focused on the initial layers. These contrast with deeper layers,
which encapsulate more abstract high-level features. When fine-tuning a suitably pre-
trained model for a specific task, these initial layers are typically kept unchanged. This
is because they have already been trained to detect ”useful” features that are likely to be
relevant to the new downstream task [98]. Therefore, a crucial factor in evaluating the suit-
ability of pre-trained weights for downstream tasks is to assess if fine-tuning significantly
alters the initial layers.
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Figure 4.8: Sample non-tumorous patch at 20× magnification from Hospital 3.

In this study, I delve into this issue by inspecting Grad-CAM heatmaps of the image
depicted in Fig. 4.8, generated for the first layer of each pre-trained model before and after
fine-tuning (see Fig. 4.9). The findings indicate that the responses of KimiaNet’s initial
layer remain stable after fine-tuning when exposed to an OOD healthy patch from hospital
3. This implies that the features captured by this pre-trained model are well-adapted to
the downstream task.

In contrast, for other pre-trained models, noticeable changes were observed in the re-
sponses of the initial layers, with the model starting with random weights showcasing the
most dramatic transformations. These results underline the need for judicious selection
of pre-trained weights when preparing models for specific downstream tasks, as the initial
assumptions significantly impact the model’s learning trajectory and overall performance.

4.4 Final Thoughts

While a predetermined diversification of images, akin to scenario 2 in this study, may
boost OOD generalization in some instances, this is not an absolute rule. I demonstrated
that, in certain scenarios, data diversification might paradoxically lead to poor OOD and
in-distribution performance by adding complexity to the training of deep learning networks.
Consequently, it is not always feasible to anticipate a policy that suits every situation unless
the target test data and its distribution are known or accessible. An interesting example of
this is learnable augmentation policies [89] employing Cycle-Generative Adversarial Net-
works (Cycle-GAN)s [267]. These are used to adapt the target data to source data, thereby
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Figure 4.9: Activation maps of first layer weights: pre-trained weights (Gray-highlighted)
and fine-tuning (Yellow-highlighted) using the same downstream task for each pre-training
scenario.

improving OOD generalization. However, in this study, I made the assumption that target
data is not accessible during the training phase.

While some studies have questioned the effectiveness of pre-training, my research un-
derscores the value of employing pre-training in computer vision tasks. I demonstrated that
the recent advancements in pre-trained vision models (such as Semi-WSL and Semi-SL) can
enhance performance across various scenarios, corroborating findings from other research
[261]. More notably, I highlighted that KimiaNet, a pre-trained model specifically tailored
to histopathology, can significantly outperform models pre-trained on natural images, par-
ticularly when dealing with substantial distribution shifts in the field of histopathology.

Throughout this study, I utilized XAI techniques to elucidate the findings and offer
interpretations for certain conclusions. I provided empirical evidence showing that data
diversification can boost OOD performance by eliminating shortcuts. Additionally, I ex-
plored how the appropriateness of different pre-trained models influences the activation
maps of initial layers in deep networks. While some of the conclusions might seem self-
evident, this research offers an exhaustive examination of various histopathology trial site
repositories, pre-trained models, and image transformations. Furthermore, this study can
serve as a valuable reference for practitioners unfamiliar with current concepts and trends
in the field. I observed a common practice among the computational pathology community
to utilize ImageNet pre-trained models for their histopathology downstream tasks. These
findings invite a reconsideration of this practice, highlighting the potential advantages of
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using domain-specific pre-trained models.

– Recognizing Limitations –

Despite the extensive examination of various pre-trained models’ performance on OOD
test data within histopathology repositories in this study, it is paramount to recognize its
inherent limitations. Primarily, the scope of the study was confined to the application of
ERM on a variety of pre-trained models, while other potential methodologies such as do-
main adaptation and domain generalization, which could exhibit improved generalization
on OOD data, were not explored. This limitation points to potential future research direc-
tions aimed at leveraging these alternative approaches for enhancing model generalization.

Secondarily, while the use of XAI techniques was incorporated into the study to inter-
pret the results, the resulting explanations were not subjected to an exhaustive analysis.
A more thorough exploration of these explanations has the potential to provide deep in-
sights and contribute to a deeper understanding of the underlying factors that influence
the observed distribution shifts in the histopathology domains.

Moreover, the study was limited in its selection of pre-trained models, with attention
given exclusively to the vanilla ImageNet, Semi-SL, Semi-WSL, and KimiaNet models.
Given the vast array of pre-trained models specifically designed for a multitude of disparate
tasks, it is important to note that the results of the study may not be generalized to all
pre-trained models. This limitation underscores the need for further research in order to
extend and substantiate the findings across a broader range of pre-trained models within
the field.

4.5 Summary

In this chapter, a thorough investigation was conducted to examine the performance of
various convolutional pre-trained models on OOD test data. These datasets were specif-
ically from unobserved domains during the training phase on histopathology repositories
attributed to different trial sites. A myriad of factors, such as trial site repositories, pre-
trained models, and image transformations, were meticulously analyzed.

The findings of this research also included a comparative study between models trained
entirely from scratch (i.e., without pre-training) and those that had been pre-trained.
Specifically, the OOD performance of pre-trained models on natural images was evalu-
ated. This encompassed (1) vanilla pre-trained ImageNet, (2) Semi-SL, and (3) Semi-WSL
models pre-trained on IG-1B-Targeted. Furthermore, the performance of a histopathology
model (KimiaNet) trained on the most comprehensive histopathology dataset TCGA was
studied.

It was discovered that, while the Semi-SL and Semi-WSL pre-trained models pro-
vided better OOD performance compared to the vanilla ImageNet pre-trained model, the
histopathology pre-trained model exhibited superior overall performance. From the per-
spective of top-1 accuracy, it was found that diversifying the images in the training set
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using suitable image transformations effectively prevented the learning of shortcuts when
the distribution shift was significant.

Additionally, the use of XAI techniques enabled high-quality, human-understandable
explanations of AI decisions. These XAI techniques were leveraged to perform further
investigations, aiding in a deeper understanding of the model’s performance. This chapter
thus provided significant insights into the OOD performance of various pre-trained models
on histopathology datasets and shed light on effective strategies to improve their general-
ization capability. These findings lay the groundwork for the subsequent chapters of this
thesis, where further techniques to enhance model generalization will be explored.

In the following chapter, the idea of employing techniques from DG is proposed as
a more reliable alternative to ERM. This approach aims to address and ameliorate the
existing shifts and gaps between various hospital repositories.
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Chapter 5

Hospital-Agnostic Image
Representation in Digital Pathology

Prologue

The content of this chapter is based on an article published during my Ph.D. research:
Hospital-Agnostic Image Representation Learning in Digital Pathology- M Sikaroudi, S
Rahnamayan, HR Tizhoosh- IEEE Engineering in Medicine & Biology Conference (EMBC)
2022 [208]

5.1 Motivation

This chapter presents a novel methodology for improving the generalization of computa-
tional pathology models by extracting domain or hospital-invariant features. Computa-
tional pathology has been revolutionized by the digitization of biopsy slides and the appli-
cation of ML for image classification and cancer diagnosis. Despite these advancements,
the utility of these models in clinical practice remains questionable due to the scarcity of
expert-labeled training data and their limited ability to generalize beyond this data.

Transfer learning is a potential solution to these limitations, given its ability to re-
purpose previously learned abstract information in new contexts. However, deep learning
networks often fail to account for OOD scenarios and differences between the source and
target domain distributions, a problem known as ”domain shift”. This shift is common
in histopathology due to variations in slide preparation, staining procedure, and scanner
characteristics across different trial sites.

In this context, training robust models that are invariant to domain shifts (also known
as “hospital-agnostic”) is crucial for accurate diagnoses and ultimately, patient well-being.
While increasing training data diversity or normalizing stains could potentially alleviate
this problem, these methods are often subjective and expensive.
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Figure 5.1: The Venn diagram illustrates the feature space of H1 and H2, which represent
disparate source data, as well as HT , denoting the target data. Features that remain
consistent across all hospitals are also depicted.

To address these challenges, the chapter proposes the use of MDL regimes and a spe-
cific DG technique called MASF. The aim is to take advantage of these methods to ex-
tract domain-invariant features Fig.5.1, thereby enhancing the models’ ability to generalize
across different hospitals and conditions. This innovative approach offers a promising av-
enue to improve the practical utility of computational pathology models.

5.2 Methodology

5.2.1 Preprocessing

Suppose we have K collections of WSI repositories, each of which has been gathered from
a distinct trial site. We denote these as Hs = {Hk}Kk=1, where each Hk represents the WSI
repository from the kth trial site.

Our first step involves the segmentation of tissue regions from the background regions in
each of the WSIs. For this purpose, we employ the Otsu algorithm [165], a popular method
for image thresholding. Once the segmentation is complete, we have distinct tissue regions
that can be better analyzed.

Following this segmentation process, we proceed to generate a dataset of patches. Each
of these patches is a piece of the segmented tissue region, and this process results in
a transformed version of our original set of WSI repositories, which we now denote as
Hp = {Hk}Kk=1. These patches are what will be fed into the CNN in the subsequent steps
of our methodology.

In order to evaluate the model, we employ the leave-one-hospital -out technique, as
detailed in Algorithm 2. This technique is a variation of the widely adopted practice
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of leave-one-out cross-validation but adapted to our context, with the “hospital” or trial
site acting as the unit of analysis. Under this approach, we train our model on the WSI
repositories collected from K−1 trial sites while holding out a single repository for testing.

The advantage of this method lies in its realistic evaluation of the model’s performance.
By testing on unseen data from a different trial site, we gain valuable insights into how
well our model can generalize and apply its learned knowledge to new, distinct data. This
can be particularly beneficial in a field such as computational pathology, where models
need to be capable of accurately analyzing data from varied sources.

Following the extraction and preparation of the patches from the WSI repositories, we
denote this comprehensive dataset as Hp. To enable a robust testing and training protocol
for our model, this dataset is then partitioned into two distinct subsets, namely Hexternal

and Hinternal.

The subsetHexternal = {Hk} signifies the hold-out repository, which is set aside explicitly
for the purpose of testing. This subset plays a critical role in the invented approach as it
represents ’unseen’ data for the model. The intention behind this strategy is to evaluate
the performance of our model on fresh, previously unseen data, a scenario that closely
replicates how the model will operate in real-world conditions. This provides a realistic
and unbiased assessment of the model’s ability to generalize and adapt to new information.

On the other hand, the subset Hinternal = {Hi}Ki ̸=k encompasses the remaining reposito-
ries, and these are utilized to form the training dataset for the model. This comprehensive
set of patches drawn from multiple trial sites serves as fertile ground for the model to learn
and recognize a variety of complex tissue patterns. By learning from this diverse set, the
model can gain a broader and more comprehensive understanding, thereby enhancing its
predictive capabilities and ability to generalize across different contexts.

Our method of splitting the dataset into separate training and testing subsets allows us
to perform a comprehensive evaluation of our model’s performance. By testing the model
on fresh, unseen data, we ensure an unbiased assessment that closely mirrors real-world
scenarios. The ultimate goal of this methodology is to create a model that is not only accu-
rate but also possesses a reliable capacity for processing and interpreting histopathological
images from various hospitals. This could significantly increase its usability and value in
the field of computational pathology.

5.2.2 Hospital-Agnostic Learning Regime

Within the framework of our learning regime, let’s consider that there are K source domain
trial sites designated for training, represented by Hinternal = {Hi}Ki ̸=k. It’s worth noting
that these trial sites consist of different hospitals, each with its own distinct set of WSI
repositories.

In every iteration of the learning process, we further divide these source domain trial
sites into two subsets - one for meta-training and the other for meta-testing, which we
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denote as Htr and Hte, respectively. This approach is similar to the typical train-test
split in machine learning, but we incorporate a hierarchical level, commonly referred to as
’meta’, to enhance the generalization of the model.

For the implementation of the MASF technique, we utilize three different loss functions.
These loss functions are critical components of the learning process, guiding the model in
its task of learning from the data. The following sections will elaborate on these loss
functions and their role in the learning regime.

Cross-Entropy Loss

Lce(Htr;ψ, θ) := (5.1)

−1
|Htr|

∑
H∈Htr

1

|H|
∑

(x,y)∈H

C∑
c=1

I(y = c) log I(ŷ = c),

| · | indicates the cardinality of the set, C is the number of classes, y is the true label for
x, ŷ is the predicted label for x, and I(·) is the indicator function which is one when its
condition is met, and zero otherwise.

Hospital-Alignment Loss

For two hospitals Hi and Hj datasets, the Hospital-alignment loss averaged over all the C
classes, is calculated as,

ℓhospital alignment(Hi,Hj;ψ
′, θ′) := (5.2)

1

C

C∑
c=1

1

2

[
DKL(s

(i)
c ∥s(j)c ) + DKL(s

(j)
c ∥s(i)c )

]
,

where DKL denotes the symmetrized Kullback–Leibler divergence, and s
(·)
c denotes the soft

confusion matrix which is calculated by applying softmax function with temperature τ > 1
on the output of classification subnetwork, i.e. Sθ.

Triplet Loss

Triplet loss [193, 204] is used for promoting hospital-independent class-specific cohesion
and separation of instances. Each anchor, positive, and negative instances is denoted by
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xa, xp, and xn, respectively. For a batch of triplets, τ := {xb
a ,x

b
p,x

b
n}Bb=1, from all the

source domain datasets {Hk}Kk=1, the average triplet loss is

Ltriplet(τ ;ψ
′, ϕ) := (5.3)

1

B

B∑
b=1

[
∥Mϕ(Gψ′(xb

a))−Mϕ(Gψ′(xb
p))∥22 −

∥Mϕ(Gψ′(xb
a))−Mϕ(Gψ′(xb

n))∥22 + α
]
+
,

where ∥ · ∥2 is the ℓ2 norm, α is a margin and [·]+ := max(·, 0).

5.2.3 Gradient Updating

First ψ and θ weights of Sθ and Gψ are updated given by:

(ψ′, θ′)← (ψ, θ)− α∇ψ,θLce(Htr;ψ, θ), (5.4)

where α is the learning rate and ∇ψ,θ indicates the gradient with respect to ψ and θ
parameters. Then, the meta loss is calculated using weighted sum of hospital-alignment
and triplet losses as

Lmeta(Htr,Hte, τ ;ψ
′, θ′, ϕ)←

β1Lhospital alignment(Htr,Hte;ψ
′, θ′) +

β2Ltriplet(τ ;ψ
′, ϕ), (5.5)

where β1 and β2 are positive. After Eq. 5.4, two other gradient descent steps are done as

(ψ, θ) ← (ψ, θ)− η∇ψ,θ(Lce + Lmeta), (5.6)

ϕ ← ϕ− γ∇ϕLtriplet(τ ;ψ
′, ϕ), (5.7)

where η and γ are the learning rates and ϕ is the Mϕ subnetwork parameters. Eqs. (5.4,
5.6, and 5.7) are repeated iteratively until convergence.

5.3 Experiments

5.3.1 Dataset

Renal Cell Carcinoma — RCC is the most common form of kidney cancer observed in
adults. It presents itself as a diverse group of diseases, each distinguished by their unique
morphology, molecular traits, clinical consequences, and responses to treatment. Since

65



Algorithm 2: Hospital-Agnostic Approach

Data: There are K sets of WSIs: Hs = {Hk}Kk=1, and hyperparameters
α, η, γ, β1, β2

Result: There will be K sets of feature extractor Gψ, classifier Sθ, metric
embedding Mϕ subnetworks

Preprocessing:
1. Segmentation of tissues from the background using Otsu method [165]

2. Extracting 227× 227 patches from the foreground regions

3. Create Hp = {Hk}Kk=1 using the patches

1 foreach k, splits Hp into Hexternal = {Hk} and Hinternal = {Hi}Ki ̸=k do
2 repeat
3 Randomly split Hinternal into disjoint meta-train Htr and meta-test Hte,
4 Update using Equation 5.4,
5 Compute hospital alignment loss:

Lhospital alignment ← 1
|Htr|

∑
1

|Hte|
Hi∈Htr

∑
Hj∈Hte

ℓhospital alignment(Hi,Hj;ψ
′, θ′),

6 Compute triplet loss using Equation 5.3,
7 Compute meta loss using Equation 5.5,
8 Update using Equation 5.6,
9 Update using Equation 5.7,

10 until convergence;

11 end

RCCs are classified on the basis of their histological subtypes, the task of classification is
central to diagnosis and is key to increasing the probability of successful treatment. Given
its importance and the complexity involved in its classification, we’ve chosen RCC as our
case study.

WSI repository — The WSIs and relevant clinical information for this study was
sourced from TCGA data portal. Among the complete set of data, some WSIs were
excluded due to problems with readability and compatibility. Moreover, for the purpose of
this research, I focused solely on diagnostic slides that were scanned at a 40x magnification.

In selecting trial sites for the study, our criteria necessitated a substantial number (⪆ 30)
of WSIs spanning all three RCC subtypes (Clear Cell Renal Cell Carcinoma (ccRCC),
Papillary Renal Cell Carcinoma (pRCC), Chromophobe Renal Cell Carcinoma (crRCC)).
From the TCGA, only three sites fit this requirement: the NCI, the IGC, and the MSKCC.
To add a fourth center, we combined the repositories from Harvard and MD Anderson
cancer centers (HMD).

Taken together, our study utilized a total of 467 RCC WSIs from the TCGA, which
provided us with a rich and diverse set of data to train and test our models. This compre-
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(a) (b)

Figure 5.2: (a) ERM, (b) Hospital-agnostic. The hold-out trial site is “NCI”. Note that the
resulting 2-dimensional representations have been transparently visualized for each patch
representation by its ground-truth slide-level label. The 2-dimensional representations of
all patches were aggregated (averaged) for each WSI to attain the slide-level representations
which are shaded opaque with a dark border.

hensive dataset will help us to develop a robust and effective model for classifying RCC,
thereby contributing to advancements in the field of computational pathology.

Details—Each WSI repository was divided into chunks of 45%, 45%, and 10% (akin to
[132]), allocated respectively for training, validation, and testing. Following this division,
the foreground regions of each WSI, representing the tissue, were extracted. Subsequently,
a process of morphological closing was applied to each WSI to fill in any minor gaps and
holes.

In order to ensure compatibility with the input size requirements of the backbone
network (AlexNet), 227× 227× 3 RGB patches were extracted from the segmented tissue
of each WSI at a 40x magnification without any overlap. Any patches that contained more
than 50% of the background region were discarded. Furthermore, a re-sampling of all the
extracted patches was conducted to create a balanced dataset. For each of the trial sites
and subtypes in Hp, approximately 70,000 patches were sampled.

5.3.2 Experimental Setup

Baseline – In the context of these experiments, the baseline method was established by
fine-tuning the backbone architecture using traditional cross-entropy loss, also known as
ERM. This baseline was constructed by amalgamating all the WSIs sourced from various
trial sites, followed by training the model Gψ ◦Sθ using standard supervised learning based
on Lce. It’s important to note that the same hyperparameters were maintained as those
used in the hospital-agnostic regime, ensuring consistency across different aspects of the
experiment.
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(a) (b)

Figure 5.3: (a) ERM, (b) HA. The hold-out trial site is “MSKCC”.

(a) (b)

Figure 5.4: (a) ERM, (b) HA. The hold-out trial site is “IGC”.

Backbone— The proposed method in this study is designed to be model-agnostic
and consequently, architecture-agnostic. This essentially means that general architecture
remains a universal concept, making it possible for the core idea to be implemented across a
wide range of architectures. In the case of this study, the backbone of choice was ”AlexNet”,
which had been pre-trained on the ImageNet dataset.

Hyperparameters and Details—The Adam optimizer [115], initialized with a learn-
ing rate of 10−3, was utilized for the optimization process. Two fully-connected layers, with
output sizes of 1,024 and 256, were stacked together to form the subnetwork for metric
loss, Mϕ, which was then connected to the final fully-connected layer. For the calculation
of Ltriplet, the triplet loss was employed with β2 = 0.005 and β1 = 1.0, in order to achieve
a scale similar to that of Lce and Lhospital alignment. To prevent gradient explosion during
the inner optimization process, gradients with a norm exceeding a predefined threshold1

1As per [52], the threshold was set at 2.0
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(a) (b)

Figure 5.5: (a) ERM, (b) HA. The hold-out trial site corresponds to HMD.

were clipped. This step involved the use of a simple, non-adaptive gradient descent ap-
proach with a learning rate α = 1e − 5. Additionally, an Adam optimizer was used for
meta-updates with a learning rate of η = 10−5, no decay, and a batch size of 432 patches.
The metric-learning margin’s hyperparameter was set heuristically at 10 (following the
guidelines in [52]), which was based on the evaluation of distances between clusters of class
characteristics. Lastly, the learning rate for metric loss was assigned a value of γ = 10−5

with a maximum number of iterations capped at 1, 000.

5.3.3 Results

In the context of this study, a leave-one-hospital -out approach was implemented for each
trial site, which is to say that Hexternal. This meant that the backbone was trained exclu-
sively using the remaining repositories, denoted as Hinternal.

Low-dimensional Embedding Visualization— Upon completion of the training,
the model was utilized to derive a 4,096-dimensional latent space representation for ev-
ery patch present in the corresponding hold-out test set. To achieve a lower-dimensional
representation that is easier to visualize, we followed the best practice as suggested in the
existing literature [189]. Specifically, the first 20 principal components were obtained using
Principal Component Analysis (PCA) [251], after which Uniform Manifold Approximation
and Projection (UMAP) [153] was applied to reduce the dimensionality to 2. As can be ob-
served in Figs. 5.2, 5.3, 5.4, and 5.5, the hospital-agnostic learning approach demonstrated
superior performance over the baseline (ERM) in terms of producing a more discriminative
embedding space.

RCC Classification Accuracy—Once the training process was completed, slide-level
accuracy was computed. This involved averaging the softmax outputs - probability scores
that indicate the degree of belongingness to each of the RCC subtypes (ccRCC, pRCC,
and crRCC) - over the patches of each WSI. Consequently, a predicted subtype could
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Table 5.1: Slide-level accuracy for different trial sites.

Accuracy(%)
Hold-out Trial Site HA ERM
IGC 79.31 80.45
HMD 79.31 72.41
MSKCC 82.65 81.18
NCI 84.09 81.81

be assigned to each WSI. The results, as outlined in Table 5.1, show that the proposed
hospital-agnostic learning regime outperformed the baseline when the hold-out trial sites
were “NCI”, “Harvard and MD Anderson”, and “MSKCC”. A notable example can be
seen when the “Harvard and MD Anderson” was the trial site. Since this repository was
created by combining two distinct trial sites, a more significant domain shift was expected.
As per the results in Table. 5.1, the hospital-agnostic learning regime was successful in
surpassing the baseline by approximately 7% when the hold-out repository was “Harvard
and MD Anderson”.

5.4 Conclusion and Summary

In this chapter, I proposed an innovative hospital-agnostic learning regime aimed at en-
hancing the generalizability of computational models in medical applications, such as in
diagnosing RCC. This approach was inspired by the concept of DG, with a specific focus
on MASF, a DG technique. The underlying concept here involves training a DNN through
an episodic learning regime that utilizes three distinct loss functions.

The first of these is the cross-entropy loss, employed for achieving hard class separation,
which essentially helps the model to distinctly categorize different classes in a manner that
reduces misclassification. The second loss function is the triplet loss, designed for soft class
separation. This loss function aids in embedding relative distances between samples from
the same class and different classes, thereby promoting finer, nuanced separation within
the learned feature space.

The third and final loss function is the KL divergence, used specifically for hospital
alignment. This assists in mitigating the distributional discrepancies that may arise due
to the unique characteristics of data from different hospitals, thereby aligning the different
hospital domains in the model’s learned representation.

What makes this approach unique is its emphasis on learning invariant features across
various domains or hospitals. This means that the model strives to focus on the common
and universal characteristics across different trial sites while marginalizing the site-specific
variances that could potentially hinder its generalization capacity. By promoting the learn-
ing of such invariant features, I aspire to develop a model that can accurately and reliably
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interpret and process histopathological images, regardless of their source hospital. The
effectiveness of this approach in achieving a discriminative latent space representation and
classification of RCC subtypes was demonstrated and analyzed. This analysis was per-
formed through low-dimensional embedding visualization and classification accuracy and
these were compared with ERM.

While emphasizing domain- or hospital-invariant features paves the way for a more
generalized model, as I’ll discuss in the next chapter, there exists an additional set of
features that can be harnessed to enhance the model’s generalization capabilities even
further.
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Chapter 6

Leveraging All Levels of Feature
Abstraction for Improving the
Generalization

Prologue

The content of this chapter is based on an article published during my Ph.D. research:
ALFA–Leveraging All Levels of Feature Abstraction for Enhancing the Generalization of
Histopathology Image Classification Across Unseen Hospitals- M Sikaroudi, M Hosseini, S
Rahnamayan, HR Tizhoosh- Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV) Workshop, CVAMD, 2023 [209]

6.1 Motivation

In DG, domain alignment techniques are popular [237, 142, 52], as they aim to minimize
differences among source domains to learn domain-invariant features that can withstand
unforeseen shifts in the target domain [219].

Ignoring domain-specific information in favor of domain-invariant features may not
always lead to the best generalization performance, as noted by Mancini et al. [152]
and Shankar et al. [200]. Bui et al. [27] proposed the mDSDI method and provided a
mathematical proof for that.

Figure 6.1 illustrates that, apart from the invariant features, there exists a set of unique
features specific to each hospital. These features are of significant importance as they can
establish a mapping from the feature space to the label space.

In addition to invariant and specific features, there exists a distinct set of features that
can be attained without the use of either class labels or domain labels. SSL encourages
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Figure 6.1: The Venn diagram delineates the feature space of the source hospitals (H1 and
H2) in conjunction with that of the target hospital (HT ). The yellow area demarcates the
label space employed in the classification task.

the model to learn features that are relevant for predicting the data itself without being
constrained by any dominant hard labels [170, 36]. This can result in model learning
features that capture more basic perceptual information about the data, such as edges,
corners, and textures, in digital images [31]. By combining self-supervision representations
with invariant and specific representations, a range of representations can be obtained that
encompass all levels of feature abstraction.

This chapter proposes a new method that extracts disentangled feature abstractions
at all levels to enhance the model’s ability to generalize to new data from different hospi-
tals/domains. Accordingly, the main contributions are:

• My proposed approach, called ALFA, is an extension of the mDSDI technique for DG.
ALFA disentangles the components of SSL, domain-invariant, and domain-specific
representations to reduce redundancy and improve generalization to unseen target
data. By exploiting all levels of feature abstraction, ALFA strives to fully utilize the
available information in the dataset.

• The mDSDI [27] approach utilizes adversarial training to extract domain-invariant
features, but it can be unstable due to a non-differentiable step (gradient reversal).
Therefore, in this chapter, a loss function called “soft class-domain alignment” is
proposed to minimize the average divergence between two domain probability dis-
tributions and a target probability distribution representing a soft class label for
each class. This loss function provides better stability during optimization and more
distinct latent space for the representations.

• To evaluate the effectiveness of the proposed improvement, I conduct experiments on
two public datasets: the PACS [133] benchmark for DG and a RCC subtyping task
extracted WSIs of TCGA [100] data portal.
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Figure 6.2: ALFA has two phases: In Phase I, three feature extractors extract different
levels of feature abstraction, and disentangled features are concatenated for classification.
In Phase II, updated feature extractors’ representations are concatenated and fed into the
updated classifier to update parameters in a Meta-learning fashion while α′ and β′ feature
extractors remain frozen.

6.2 Methods

The key concepts underlying the invented approach have been discussed up to this point.
In this section, the specific details of how ALFA is implemented will be delved into. A
visual representation and a high-level overview of ALFA framework are provided in Fig.
6.2. It should be noted that the symbols “⊕” and “◦” have been employed as concatenation
and union operators, respectively.

Several components are included in the invented integrated network: (1) an SSL rep-
resentation zIα = α(I; θα)), with α being the SSL encoder that is parameterized by θα;
(2) a domain-invariant representation zIβ = β(I; θβ)), parameterized by θβ, which serves as
the domain invariant feature extractor; (3) domain-specific representation zIγ = γ(I; θγ)),
where γ stands for the domain-specific feature extractor parameterized by θγ; (4) a domain
aligner, parameterized by θ∆β

, denoted as ∆β(z
I
β; θ∆β

) : zIβ → 1 : Nc; (5) a domain clas-

sifier, parameterized by θ∆γ , represented as ∆γ(z
I
γ; θ∆γ ) : z

I
γ → 1 : Nh, where Nc and Nh

refer to the number of classes, and the number of participating hospitals/domains in the
training, respectively; (6) a regular classifier, parameterized by θc, i.e., ∆c(z

I
α⊕zIβ⊕zIγ; θc) :

zIα ⊕ zIβ ⊕ zIγ → 1 : Nc. The hospital and images sample spaces are represented by H and
I respectively. Images, or I, are denoted by their target labels, or y, and hospital labels,
or h, as (I, y, h).
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6.2.1 Phase I: Extracting different levels of feature abstraction

Construction of Self-supervision Representations: Capturing the “Most Gen-
eral Features”

At the core of “Phase I” is the training of a SSL feature extractor, represented by α(I; θα).
This component is designed to discern and learn generalizable features, which will become
instrumental for accomplishing downstream tasks. The learning process employs a tech-
nique known as a triplet loss, a methodology similar to the one detailed in the study by
Wang et al. [247].

The first step in this learning process involves the creation of pseudo-classes. These
are generated by applying a set of transformations, denoted as T , to a single image. This
leads to the production of an augmented image, symbolized as It = t(I)|t ∼ T .

An image originating from a different pseudo-class, denoted as Id, is also utilized in the
training process. Together, these images serve as training inputs for the network, which
employs the following triplet loss formula:

LSSL = max(||zIα − zItα ||2 − ||zIα − zIdα ||2 +M, 0), (6.1)

In this equation, ||.||2 signifies the Euclidean distance and M represents the margin,
which is set heuristically at 1.5. This formula guides the network’s learning process by
maximizing the intra-class similarity and minimizing the inter-class similarity. The trans-
formations set T includes HED jitter with a jitter parameter of θ = 0.05, as prescribed by
Tellez et al., 2018 [228]. Additionally, random affine transformations are applied, including
rotation (varying between -10 and 10 degrees), translation (ranging from 0 to 0.1), and
shear (from -1 to 1) in both x and y directions. These transformations contribute to the
generation of diverse pseudo-classes, providing a wide range of inputs to strengthen the
learning process. In Eq. 6.1, the margin, represented by M , is set to 1.5. The mining
strategy employed is semi-hard mining, for which the margin is specified as 0.7.

Hospital-invariant representations: “general features across hospitals” –

Aligning class relationships across hospitals promotes more transferable knowledge for
model generalization compared to individual hard label prediction [52]. This study aims
to impose an overall pattern of retrieved features that represent the intrinsic similarity
between the semantic structures of different classes. Soft labels and class labels are used
for consistency across domains.

– Soft Confusion Matrix: Let z(k)c denote the mean of class c in the domain k in the
embedding space. I use softmax activation for representing the probability of belonging
to classes as s

(k)
c = softmax (∆β(z

(k)
c )/τ), where τ > 1 is the temperature. The group of
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soft labels, [s
(k)
c ]Cc=1, serves as a form of soft confusion matrix associated with a particular

domain/hospital. By combining the class labels with this soft confusion matrix, our both
goals, i.e., domain alignment and retaining the class relationship, can be fulfilled.

– Soft Class Label Injection: In addition to this soft confusion matrix, proposed in
[52], I have injected the soft class labels through a discrete probability density function
that represents each class as follows

pc := {i|i = δci + (1− δci )(
ζ

nc − 1
)}, (6.2)

where δci is the Kronecker delta which is defined as δci :=

{
1 if i = c
0 otherwise

, and ζ ⪅ 1 is a

constant value indicating a high probability value (e.g., ζ = 0.9), and nc is the number of
classes.

Overall, the aim is to minimize the average divergence [198] over all the C classes be-
tween three distributions: two arbitrary hospitals/domains samples drawn from the two
training hospitals’ images, (Ih1 , ., h1) ∼ H1, (Ih2 , ., h2) ∼ H2, and the probability distribu-
tion of each class, defined in Eq. 6.2.

The Soft Class-Domain Alignment loss which serves as the domain-invariant loss in our
design is defined as

Li((Ih1 , ., h1), (Ih2 , ., h2); θβ ◦ θ∆β
) :=

1

C

C∑
c=1

1

6

[
DKL(s

(h1)
c ∥s(h2)c ) +DKL(s

(h2)
c ∥s(h1)c )+

DKL(pc∥s(h2)c ) +DKL(s
(h2)
c ∥pc) +DKL(s

(h1)
c ∥pc) +DKL(pc∥s(h1)c )

]
,

(6.3)

where DKL(p∥q) =
∑

r pr log
pr
qr
, and θβ ◦ θ∆β

is the union of all the parameters for β
feature extractor and ∆β classifier.

The inclusion of the SSL features as a level of feature abstraction could raise the question
of how distinct SSL features are from the hospital-invariant features. The subsequent
theorem and lemma aim to provide clarity on this matter:

Theorem 6.2.1 Given transformations T1 for α and T2 for different hospitals (due to
distribution shift), and an optimization objective to minimize the covariance between zα
and zβ obtained respectively by T1 (explicit data augmentation) and T2 (implicit changes
due to sources of distribution shifts), are distinct and uncorrelated in the feature space and
both contribute unique information for mapping from feature space to label space.

Lemma 6.2.2 The following assertions hold for the features zα = α(T1(I)) and zβ =
β(T2(I)) for a given image I:
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1. zα and zβ are uncorrelated:

If the optimization objective successfully minimizes the covariance, the covariance
between zα and zβ, Cov(zα, zβ), will be close to zero. This indicates that zα and zβ
are uncorrelated, i.e., changes in zα do not predict changes in zβ and vice versa.

2. zα and zβ contribute unique information to the mapping:

Let us consider a mapping function M that maps the feature space to the label space.
For zα and zβ, the mapping function M can be written as M(zα, zβ). If zα and zβ are
uncorrelated, removing one from the mapping will reduce the information provided by
M . That is, M(zα, ∅) ̸=M(zα, zβ) and M(∅, zβ) ̸=M(zα, zβ).

Therefore, given transformations T1 for α and T2 for domain shifts, and an optimiza-
tion objective to minimize the covariance between the resulting augmentation-based
self-supervised features and invariant features are distinct and uncorrelated in the
feature space and both contribute unique information for mapping from feature space
to label space.

Hospital-specific representations: “least general or specific features” –

To extract the most specific features, similar to [27], γ(I; θγ) is used for feature extraction
followed by the ∆γ domain classifier that is trained in a supervised manner using cross-
entropy loss to predict the domain/hospital label:

Ls := −E(I,.,h)∼Ih log∆γ(z
I
γ; θ∆γ ). (6.4)

Disentanglement loss between pairs of extracted features

To prevent redundancy and ensure diversity in our feature extractors, I need to disentan-
gle their resulting representations from each other. This can be achieved by zeroing the
covariance matrix between pairs of random vectors, such as za and zb. A zero-covariance
matrix indicates that the variables are independent and have no correlation or effect on
each other. To enforce this disentanglement, I define pairwise covariance loss functions
between each pair of α, β, and γ feature extractors’ representations as

Lαβ := −EI∼I
[
||Cov(zIα, zIβ)||2

]
, (6.5)

Lαγ := −EI∼I
[
||Cov(zIα, zIγ)||2

]
, (6.6)

Lβγ := −EI∼I
[
||Cov(zIβ, zIγ)||2

]
. (6.7)

Classification loss using aggregation of extracted features –

The goal of the classifier ∆c(z
I
α⊕zIβ⊕zIγ; θc) : zIα⊕zIβ⊕zIγ → 1 : Nc is to classify the images

according to their hard class labels using a concatenation of all the extracted features:

Lc := −E(I,y,.)∼I
[
y log∆c(z

I
α ⊕ zIβ ⊕ zIγ; θc)

]
, (6.8)
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where y is the target class label for image I.

Inference and training in Phase I –

Using all loss functions, the feature extractors and modules are updated via

Ltotal := a1LSSL + a2Li + a3Ls + a4Lαβ + a5Lαγ + a6Lβγ + a7Lc, (6.9)

where ai coefficients are selected as balanced parameters between loss functions and all were
set to 1.0 in our experiments as the loss values were in the same range. Through backward
the total loss, i.e., Ltotal, the updated encoders, i.e., α′(I; θα′), β′(I; θβ′), γ′(I; θγ′), and
classifiers ∆′

β(I; θ∆′
β
), ∆′

γ(I; θ∆′
γ
) and ∆′

c(I; θ∆′
c
) are obtained.

6.2.2 Phase II: Meta-learning for generalization improvement

To adapt the domain-specific representation zγ to the target domain using information from
source domains, I use the same meta-learning framework as [27]. The α′ and β′ feature
extractors remain frozen while the γ′ feature extractor and ∆′

c classifier are updated. I
aim to update ω = θγ′ ◦ θ∆′

c
through meta-learning by dividing each hospital data Hk into

disjoint meta-train Htr
k and meta-test Hte

k sets and the objective is to

min
ω

Lmeta
c := f(ω −∇f(ω,Htr

k ),Hte
k ), (6.10)

where

f(ω = θγ′ ◦ θ∆′
c
,Hk) = −E(Ik,yk,k)∼Hk

[
yk log∆

′
c(z

Ik
α′ ⊕ zIkβ′ ⊕ γ′(Ik, θγ′); θ∆′

c
)
]
, (6.11)

where yk and k are the target class label and hospital label, respectively, for image Ik.

6.3 Experiments and Results

The study evaluates the effectiveness of the proposed method, ALFA, against mDSDI
[27], HA [208], and ERM through a leave-one-domain/hospital -out evaluation using data
from multiple hospitals/domains. The evaluation includes reporting “accuracy” for the
target (hold-out) domain/hospital, as well as “Area Under the ROC curve (AUROC)” and
“recall” metrics for RCC subtyping, which is important for cancer diagnosis tasks.
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Table 6.1: Results on PACS dataset

Accuracy (%)
Target Source ERM mDSDI [27] ALFA(mine)

Photo {A,C,S} 91.98 90.06 95.15
Art {P,C,S} 76.85 76.27 83.10

Cartoon {P,A,S} 74.87 76.20 78.71
Sketch {P,A,C} 76.76 78.85 78.41

Average 80.11± 6.76 80.34± 5.60 83.75± 6.72

6.3.1 Datasets

– PACS: P(hoto), A(rt), C(artoon), S(ketch) is a benchmark for DG on natural images.
This benchmark includes four domains (Photo, Sketch, Cartoon, Painting), and 7 common
categories ‘dog’, ‘elephant’, ‘giraffe’. ‘guitar’, ‘horse’, ‘house’, and ‘person’ with a total
9991 images.

– RCC subtyping dataset from TCGA: The RCC dataset [208, 92], already introduced
in Chapter 5, comprises patches of various RCC subtypes collected from five different
hospitals. Due to the absence of certain subtypes, two of the hospitals’ data have been
merged. The dataset comprises 4 image repositories: (1) HMD, (2) MSKCC, (3) IGC, and
(4) NCI from TCGA. The dataset contains ≈ 70k patches of size 224× 224.

6.3.2 Experimental Setup

The backbone of all feature extractors was the ResNet18 [84], pre-trained on ImageNet
[122], with all of its batch normalization layers frozen as per the guidelines given in Seo
et al. [197]. All features were embedded to a size of 512. The Adam optimizer was
employed with an initial learning rate of 5e-5. A batch size of 32 was established and set
the maximum number of iterations to 3000.

6.3.3 Results

– Losses convergence: During the training, it was found that γ feature extractor was
dominating over other feature extractors and potentially causing a dampening effect on
their contributions to the model’s overall performance. Hence, I added layer normaliza-
tion [5] whenever the representations are concatenated to address this issue. With this
modification, all losses converged almost simultaneously according to Fig. 6.3.

– Low-dimensional Embedding Visualization: In accordance with the best practices
suggested in the original UMAP paper [153], I applied PCA [251] to obtain the first 50
principal components, followed by UMAP [153] for further dimensionality reduction to 2.
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Figure 6.3: The behavior of ALFA’s loss functions during the training when the hold-out
set was Art on PACS. (a) LSSL, (b) Li, (c) Ls, (d) Lαγ, (e) Lαβ, (f) Lβγ, (g) Lc

According to Figs. 6.5 and 6.4, ALFA’s domain-invariant approach yields a more powerful
discriminatory representation for different RCC subtypes or different categories on PACS,
compared to mDSDI [27], for domain-specific representations. In other words, ALFA’s
domain-invariant encoder learns some features that are also learned by mDSDI’s domain-
specific encoder. ALFA’s SSL representation provides useful representation, which seems
even better than mDSDI’s domain-invariant features according to these figures.

PACS dataset classification task

The accuracy of mDSDI [27] and ALFA applied on PACS have been reported in Table 6.1.
It can be seen in Table 6.1, except for the ‘Sketch’ with a high semantic shift in comparison
to the rest of the target domains, ALFA outperforms mDSDI with an average accuracy
of 83.75± 6.72% compared to mDSDI’s average accuracy of 80.34± 5.60%. According to
this, ALFA cannot only be effective for generalization to unseen hospitals but it can also
be effective for DG tasks for natural images.

RCC subtyping classification task

The accuracy of mDSDI [27], HA approach introduced in the previous chapter, and ALFA
applied on RCC subtyping task has been reported in Table 6.3.

In the context of HMD, ALFA exceeds the performance of both ERM and mDSDI,
achieving an accuracy of 65.52% as opposed to 72.49% and 51.72% respectively. However,
it falls short when compared to the HA method, which reaches 75.29% accuracy. This out-
come may indicate that, considering HMD encompasses two distinct data sources, methods
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Figure 6.4: 2D feature embeddings for the feature extractors in mDSDI [27] versus in ALFA:
(target hospital: ‘NCI’). ‘All’ is the concatenation of domain-specific and domain-invariant
representations for the mDSDI [27] (up), and SSL, domain-invariant, and domain-specific
representations for ALFA (bottom). Opaque-shaded scatters are WSIs representations
obtained by averaging on patches’ representations (transparent-shaded).
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Figure 6.5: 2D feature embedding for the feature extractors in mDSDI (upper row) versus
in ALFA (bottom row), target domain:‘Photo’ on PACS.

that focus on extracting invariant features are more effective. In this regard, HA, which
specifically targets hospital-invariant features, outperforms both ALFA and mDSDI.

For the IGC dataset, both ALFA and mDSDI attain the same accuracy of 86.21%, out-
performing ERM and HA, which scored 75.86% and 70.42%, respectively. Given that both
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ALFA and mDSDI leverage a combination of invariant and hospital-specific features, it’s
reasonable to speculate that the inclusion of specific features has enhanced their overall
performance in this context. In essence, the unique features sourced from the different
hospitals appear to have provided valuable information that contributed to improved per-
formance on the IGC dataset.

At the NCI, ALFA again leads with an accuracy of 86.36%, outperforming ERM
(81.82%), mDSDI (72.73%), and HA (83.38%).

In the case of MSKCC, ALFA’s performance is notably lower with an accuracy of
84.69%, when compared to both ERM (86.73%) and HA (88.19%). However, ALFA does
surpass mDSDI, which has an accuracy of 85.71%. This result might suggest that invariant
features are more conducive to effective generalization in this context than specific features.
Therefore, both mDSDI and ALFA, which rely on a combination of site-specific and site-
invariant features, may not perform as well as HA or even ERM.

According to this table, ALFA outperforms mDSDI, HA, and ERM with average accu-
racy, AUROC, and recall of 80.69± 8.61%, 94.90± 2.66%, and 81.62± 8.50%, respectively.
ALFA performed similarly to mDSDI and ERM in terms of AUROC and accuracy, but
slightly better overall. However, ALFA significantly outperformed other methods in terms
of recall metric, especially for the “NCI”, and “IGC” target hospitals.

Ablation study

To further investigate ALFA, an ablation study was conducted indicating that all compo-
nents are effective in achieving generalization according to Table 6.2. In this table, the
feature extractors under consideration are α, β, and γ, and their activation or deactivation
states are indicated in blue (active) or gray (inactive). The performance is evaluated across
four categories: Photo, Art, Cartoon, and Sketch, and an average score is calculated. When
α is active and the other two feature extractors are deactivated, the average accuracy is the
lowest, 48.63 ± 14.98. However, when either β or γ is active with the others deactivated,
there’s a significant increase in the average accuracy (around 78.88± 6.99 and 78.82± 9.11
respectively). The highest average accuracies are achieved when multiple features are ac-
tivated together, with the complete ALFA method, where all feature extractors are active,
achieving the highest average accuracy of 84.09± 7.06.

6.4 Conclusion

An innovative approach was proposed coined ALFA leverages multiple feature extractors
to disentangle features at different levels of abstraction. The effectiveness of ALFA was
demonstrated on various benchmarks, including PACS, a widely used DG benchmark,
as well as RCC subtype classification from TCGA database. ALFA outperformed the
state-of-the-art mDSDI [27] approach on PACS, highlighting its superior performance.
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Table 6.2: Ablation on PACS: Active feature extractor(s) is/are blue, Deactivated one(s):
gray

Photo Art Cartoon Sketch Average

α, β, γ 69.70 53.17 44.28 27.38 48.63± 14.98
α, β, γ 91.13 73.33 75.68 75.38 78.88± 6.99
α, β, γ 94.43 77.34 72.05 71.46 78.82± 9.11
α, β, γ 90.11 75.48 76.23 75.99 79.45± 6.03
α, β, γ 94.73 78.61 73.93 72.02 79.82± 8.75
α, β, γ 95.38 82.03 78.37 78.67 83.61± 6.80
ALFA 96.15 83.10 78.71 78.41 84.09± 7.06

Furthermore, ALFA demonstrated excellent generalization capabilities to unseen hospitals
in comparison to mDSDI and ERM. In this study, I used a simple augmentation-based self-
supervision technique. However, there is a lot of room to improve the proposed approach by
integrating more effective SSL features, especially with ongoing research in self-supervision.
In addition, to achieve hospital-invariant features a new form of domain alignment loss
function called “soft class-domain alignment” loss was proposed. It effectively extracts
domain/hospital-invariant features that align the data of two different sources with soft
class labels as a reference distribution, making it a valuable addition to my proposed
design.
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Chapter 7

Summary and Future Directions

The journey of this thesis has involved a structured exploration of two crucial forms of
generalization in the domain of histopathology. The focus on magnification generalization
and OOD generalization towards different hospitals, as well as the proposition of a HA
learning regime and a comprehensive method, i.e., ALFA, have shaped the main contours
of this study.

The exploration of magnification generalization in Chapter 3 recognized the variability
in histopathological images due to distinct magnification levels. The proposed method
sought to enhance the robustness and reliability of the model by learning invariant features
at these varying levels. This led to the development of a model that could reliably identify
and learn consistent features across different settings and equipment.

In Chapter 4, the attention was shifted to OOD generalization, with a particular empha-
sis on unseen hospital data. This investigation was built on the premise that pre-existing
models could house valuable knowledge, capable of equipping new models to adapt to di-
verse data scenarios. The aim was to ensure that these models could operate effectively in
different hospital environments.

Chapter 5 introduced the concept of HA, highlighting the invariant characteristics in
hospitals. The goal was to develop a learning model that maintained its stability in perfor-
mance in various hospital settings, ensuring its utility and reliability in a variety of clinical
settings.

Lastly, in Chapter 6, the thesis presented a comprehensive method that considered not
just invariant features across hospitals, but an expanded set of features extractable from
the input images. This multifaceted approach was designed to maximize the generalization
potential of the model, thereby contributing to the progress of diagnostic accuracy in
histopathology.

The implications of these findings are profound, pointing to a path toward a better
generalization of diagnostic precision in histopathology by harnessing the power of DG.
Even though, there are some areas that have not been explored and can be framed as the
future directions of the current study.
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7.1 Future Directions

Looking ahead, several promising avenues for future research are worth exploring.

7.1.1 Generalization to Unseen Classes in Histopahtology

One of the directions of future work for this thesis involves the progression to generalization
to “unseen classes” in histopathology [259, 199]. This important concept refers to the
ability of a machine learning model to accurately predict or classify new classes (e.g.,
different unseen cancer sub-types) that it has not been explicitly trained on, which poses a
significant challenge in the medical field due to the diverse and evolving nature of diseases.

In the context of histopathology, the generalization to unseen classes can be paramount
for the diagnosis and study of rare or novel diseases, enhancing patient outcomes by en-
abling more timely and accurate diagnoses. Moreover, it could revolutionize telemedicine
by empowering machines to adapt to unseen conditions without continuous retraining,
thereby saving crucial time and resources [22].

This objective will be pursued through the application of few-shot learning and meta-
learning approaches [248, 259]. Few-shot learning is a methodology in which the ML model
is designed to make accurate predictions with only a few training examples for each new
class. This approach is especially relevant in histopathology, where certain classes of disease
may have limited sample availability.

Furthermore, the exploration of MAML (or “learning to learn”) [62, 114] will be in-
strumental in this journey. MAML learn the strategy of learning itself, aiming to swiftly
adapt to new tasks with minimal data. This characteristic is highly beneficial in a field
like histopathology where novel classes can frequently emerge.

The evaluation of these methodologies will be performed through the N -way K -shot
classification. This type of evaluation involves classifying K examples each from N classes,
and it is an established way to measure the performance of models in a few-shot learning
setup.

Ultimately, the move towards generalization to unseen classes in histopathology aligns
with the overarching goal of this research: improving the adaptability and performance
of machine learning models in real-world medical scenarios, thereby contributing to the
advancement of AI in healthcare.

7.1.2 Multi-Instance Learning instead of PureWeakly-Supervision

Another exciting future direction for this thesis involves leveraging attention-based Multiple-
Instance Learning (MIL) [99] to mitigate the bias introduced by weakly-supervised learning
and improve the assignment of patch labels to their parent WSIs [146].
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In the context of digital pathology, WSIs often consist of billions of pixels, making
them too large to process in their entirety. As a solution, these WSIs are divided into
smaller and more manageable sections known as patches. However, there is a challenge in
assigning labels to these patches based on the labels of their parent WSIs, as this can result
in inaccuracies due to the inherent heterogeneity within the WSIs. This label assignment
process is an example of weakly-supervised learning, where only coarse or imprecise labels
are available.

Attention-based MIL presents a promising solution to this issue. In the attention-based
MIL framework, training examples are organized into bags, and a label is assigned to each
bag rather than individual instances. In the case of digital pathology, a bag could represent
a WSI, and the instances would be the patches derived from that WSI [146].

The key advantage of attention-based MIL is that it can handle ambiguity in instance-
level labels, which aligns perfectly with the nature of histopathological data. By treating
each WSI as a bag, we can make the learning process more robust against potential mis-
labeling introduced by weak supervision.

Moreover, attention-based MIL can be utilized to automatically identify and learn from
the most informative patches within WSI. This allows the model to focus on the most
relevant areas of the image, enhancing the accuracy of disease classification and prognosis
prediction.

7.1.3 Distribution Shift Quantification

Yet another promising avenue for future research in this thesis could be the quantification
of the distribution shift [157, 226] in histopathological images [217, 163]. Recognizing and
addressing distribution shifts is critical to ensure the robust performance of ML models,
especially in the medical domain where data can vary significantly due to factors like dif-
fering equipment or procedures across hospitals, or inherent biological variability amongst
patients.

While methods such as Proxy-A Distance (PAD) [17] provide a useful tool for estimating
the shift between distributions, they do have limitations. One of the primary drawbacks
is that PAD is dependent on the classifier being trained, which could introduce a bias in
the estimation. Additionally, it might not provide an accurate measure in scenarios where
the shift is subtle or complex in nature.

Therefore, the development of a more universal, classifier-agnostic metric to recognize
and quantify the distribution shift would be invaluable. This metric should be able to ac-
curately capture the degree of shift regardless of the nature of the classifier used. It should
also be sensitive to even minor shifts, which can be crucial in a field like histopathol-
ogy where small changes in cellular or tissue structure can signal significant pathological
changes.

Quantification of distribution shift could lead to more reliable predictions by allowing
better calibration of models to new data. Furthermore, it would provide valuable insights

87



into the robustness of the models and guide the creation of strategies to tackle distribution
shifts, such as domain adaptation methods or model retraining schedules.

In essence, advancing towards a more robust and comprehensive quantification of dis-
tribution shifts in histopathology data can significantly enhance the model’s reliability and
performance, thereby leading to more accurate diagnoses and, ultimately, better patient
outcomes.

7.1.4 XAI for Explainability of Biases and Shifts

A promising avenue for future research within the scope of this thesis involves the incorpo-
ration of XAI methods [90] to interpret biases and shifts within the realm of histopathology
and digital pathology [49]. XAI, by providing understandable and interpretable models,
will help address one of the significant challenges that currently limit the broader applica-
tion of ML in the healthcare sector - the lack of transparency in model predictions [80].

The application of XAI could substantially improve the understanding of biases that
could be introduced due to weak supervision or dataset-specific characteristics. It can
elucidate the specific features on which the model is relying for its predictions, whether
these are meaningful pathologic indicators or merely artifacts of data collection and pre-
processing. This would not only allow for the identification of these biases but also facilitate
their correction, thereby improving the overall accuracy and reliability of the models [80].

Moreover, XAI can also be instrumental in interpreting and managing distribution
shifts. By exposing how the model’s decisions change with varying data distributions, it
would be possible to identify if and when the model is struggling due to a distribution shift.
Such insights could guide the development of robust strategies to mitigate the impacts of
distribution shifts, including DG or DA techniques or model recalibration schedules.

Furthermore, the interpretability provided by XAI is invaluable in establishing trust and
facilitating the acceptance of AI models among healthcare professionals. Understanding
why a model makes a particular prediction fosters confidence in its recommendations, which
is critical in a high-stakes field like healthcare.

In conclusion, integrating XAI for the explainability of biases and shifts in histopathol-
ogy could significantly contribute towards enhancing model performance, understanding,
and acceptance, thereby promoting the efficient application of AI in the field of digital
pathology.

7.1.5 Improvement on ALFA

In this section, I present several prospective paths for the advancement of the ALFA
framework, which was first introduced in this thesis in Chapter 6. These potential future
directions include:
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a) As a potential future direction, I propose the integration of more advanced self-
supervision models [32] into the ALFA. Such enhanced self-supervision techniques
can potentially offer more refined segregation in the feature space, contributing to a
higher level of abstraction. This refined abstraction is anticipated to further enhance
the robustness of the model, helping it generalize better across varied scenarios and
handle more complex tasks. The study of how different self-supervision techniques
could improve the performance of the ALFA framework, and the exploration of novel
techniques designed specifically for this purpose, can provide intriguing avenues for
future research in histopathology. The overall aim is to keep refining and optimiz-
ing the ALFA framework for the betterment of diagnostic accuracy in the field of
histopathology.

b) In a future line of investigation for the ALFA framework, I plan to implement mutual
information methodologies as a potential replacement for the covariance operations
currently used for feature disentanglement. This shift is motivated by the inherent
limitations of covariance in only capturing linear relationships [82], which may not
encapsulate the complexity of interactions in high-dimensional feature spaces typi-
cally encountered in histopathology images. Mutual information, on the other hand,
is capable of capturing both linear and non-linear dependencies between variables
[24], thus providing a more comprehensive measure of correlation. By integrating
mutual information into the ALFA framework, we could potentially attain a more
robust and complete disentanglement of features. This could lead to a richer, more
accurate representation of histopathological images, thereby pushing the boundaries
of diagnostic precision in histopathology further. This proposed enhancement marks
an exciting direction for future research, which could significantly advance our un-
derstanding and utilization of the ALFA framework.

89



References

[1] Balázs Acs, Mattias Rantalainen, and Johan Hartman. Artificial intelligence as the
next step towards precision pathology. Journal of internal medicine, 288(1):62–81,
2020.

[2] Roee Aharoni and Yoav Goldberg. Split and rephrase: Better evaluation and a
stronger baseline. arXiv preprint arXiv:1805.01035, 2018.

[3] Laith Alzubaidi, Jinglan Zhang, Amjad J Humaidi, Ayad Al-Dujaili, Ye Duan, Om-
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[174] Gwenolé Quellec, Mathieu Lamard, Pierre-Henri Conze, Pascale Massin, and
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Peter Bult, Carla Wauters, Willem Vreuls, Suzanne Mol, Nico Karssemeijer, et al.
Whole-slide mitosis detection in h&e breast histology using phh3 as a reference to
train distilled stain-invariant convolutional networks. IEEE transactions on medical
imaging, 37(9):2126–2136, 2018.
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Glossary

ALFA is the proposed approach in this thesis that leverages all levels of feature abstrac-
tions for generalization to an unseen domain/hospital. xv, xvi, 73, 74, 78–85, 88,
89

CAMELYON is a grand challenge in pathology organized by the Diagnostic Image Anal-
ysis Group (DIAG) and Department of Pathology of the Radboud University Medical
Center (Radboudumc) in Nijmegen, The Netherlands. xiv, 44, 45, 56

DeCAF A Deep Convolutional Activation Feature for Generic Visual Recognition is the
title of a paper that introduced the idea of transfer learning for the first time. 15

DenseNet121 DenseNet121 is a deep learning model known for its unique ’dense connec-
tion’ structure where each layer is connected to every other layer within each dense
block. This 121-layer architecture improves information and gradient flow, mitigates
vanishing gradient issues, and enhances computational efficiency. It’s particularly ef-
fective for image classification tasks due to its robust feature extraction capabilities.
43

Grad-CAM Gradient-weighted Class Activation Mapping is a technique that produces
a heat map overlay highlighting important regions in an image for a deep neural
network’s prediction by leveraging gradients of the target class score with respect to
the feature maps of the final convolutional layer. It helps visualize and understand
the decision-making process of CNNs in computer vision tasks. xiv, 52, 54, 56, 57

HA Hospital-Agnostic Image Representation Learning approach proposed in this thesis
and already been presented at IEEE EMBC 2022 conference. xv, 68–70, 78, 80–82,
84, 85

histomorphologic The use of histology to study the morphology of cells. 2

HMD is a combined repository, bringing together data from both Harvard and MD An-
derson Cancer Centers. It is used for the Renal Cell Carcinoma (RCC) subtyping
task within the scope of this thesis, providing a benchmark to assess and compare
various methodologies. xv, 66, 69, 70, 79, 80, 84
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ImageNet is a large-scale, diverse dataset used primarily for object recognition tasks in
the field of machine learning and computer vision. It consists of over 14 million images
labeled across 20,000 categories, providing a wide-ranging resource for training and
benchmarking deep learning models.. 11, 15, 26, 27, 43, 47, 56, 58, 59, 79

KimiaNet is a deep learning network that is uniquely tailored for histopathology im-
age representation. It’s built on the DenseNet architecture and includes four dense
blocks. The network has been refined and trained using a variety of configurations
of histopathology images, displaying superior results as a feature extractor for these
images compared to both the original DenseNet and smaller Convolutional Batch
Normalized ReLU (CBR) networks. xiv, xvii, 27, 43, 47, 49–52, 54–59

latent space representation Any encoder like CNN or transformers aims to encode in-
puts across multiple layers prior to use for a downstream task (classification, re-
gression, image reconstruction). In other words, any deep model acts like a mapping
function that projects the input onto latent space through some computational layers.
The encoded version of the deep models’ input is called the latent space representa-
tion which has a lower dimension with respect to the input space. xiii, 13–15, 22,
31, 32, 35–37, 71

PACS is a popular benchmark for studying domain generalization. It consists of images
from four distinct domains: Photo, Art painting, Cartoon, and Sketch (hence the
acronym PACS). Each domain contains images spanning seven common classes. This
dataset provides a diverse and challenging environment for evaluating algorithms’ ca-
pacity to learn domain-invariant features and generalize well across varying domains.
xv–xvii, 73, 79–83

ResNet18 is a CNN model, a part of the ResNet series (Residual Networks) proposed by
Microsoft Research. It consists of 18 layers, including convolutional layers, pooling
layers, and fully connected layers, and utilizes shortcut connections or ”skip con-
nections” to address the problem of vanishing gradients in deep neural networks,
enabling efficient training of much deeper networks. 43, 47, 79
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