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Abstract

Workplace surveillance is not a new issue; however, recently there has been increasing
adoption of Employee Monitoring Applications (EMAs) that observe employees’ digital
behaviour. This trend was advanced by the increase of remote work due to the COVID-19
pandemic and the ease of deployment of EMAs with the accelerating cloud computing
industry. EMAs allow employers to monitor their workers’ behaviours remotely, resulting
in privacy concerns.

EMAs use highly privileged functions to achieve their features, such as web browsing
monitoring, key-logging, microphone monitoring, webcam monitoring, and remote takeover
of the device. EMA vendors claim to protect company security and employee privacy. Our
research challenge is to assess how well the vendors uphold their claims of protecting
security and privacy.

We develop a framework to assess security and privacy issues related to EMAs. Our
framework applies dynamic and static analysis techniques to ten popular Windows EMAs.
EMAs typically have a monitoring app, which is installed on an employee computer. The
app collects and sends data to the backend server, which aggregates the data and displays
it in a dashboard. The employer has access to the dashboard to view the collected data
and configure monitoring settings.

Our app-centred analysis is focused on issues such as insecure data transmissions, lack
of certificate pinning, residual vulnerabilities after app un-installation, security vulnerabil-
ities due to use of a proxy, anti-keylogging, conforming to Windows privacy permissions,
effectiveness of EMA privacy features, and determining a general monitoring profile. The
app-centred analysis informs us whether EMAs are secure at the local and network levels.
We also assess whether EMAs uphold their promises in regards to privacy.

Our backend analysis focuses on issues like password security, lack of input validation,
open cloud storage, insufficient access control, server geolocation, and insecure security
configurations like no HSTS enforcement and out-of-date TLS versions. Analysing the
backend infrastructure tells us on EMAs’ vulnerability posture in regards to a remote
attacker threat. We assess whether EMA vendors adequately protect the data they collect
about employees.

Our analysis reveals a number of security and privacy vulnerabilities. These vulnera-
bilities include issues like data creep, where apps collect metadata about employees and
their devices, but do not display this data on the dashboard to an employer. We also
notice that one app does not use TLS for data transmission, so it sends private employee
data over the public Internet for anyone to eavesdrop. One app offers a GDPR mode,
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which claims to stop collecting highly sensitive data like web browsing history and screen-
shots. However, we see that this app still collects and sends web browsing history while
this mode is turned on. Backend security misconfigurations we observe include open cloud
storage, weak password requirements, lack of password guess rate limiting, and no HSTS
enforcement.

Overall, we find that each app in our analysis is vulnerable to at least one threat we
assess in our framework. Our study aims to provide data for legal analysis to assess the
need for legal protections for employees against this kind of monitoring.
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Chapter 1

Introduction

1.1 Overview

Employee monitoring has long been a controversial issue. From punch cards to CCTVs,
now we have network monitoring and keystroke logging. This controversy is accelerated by
advances in computing technology, which provide the ability for more invasive surveillance
and easy-to-deploy solutions. Employee monitoring applications (EMAs) can now moni-
tor employees while they are working remotely. EMAs are capable of keystroke logging,
monitoring web usage, emails, and printings, screen recordings, and even observing the
user’s webcam. The shift towards remote work brought on by the COVID-19 pandemic
has accelerated the adoption of EMAs [28]. Large companies have seen a 100% increase
in adoption from the pre-pandemic number [30]. Employee monitoring has increased in
both adoption and capabilities. However, there is little legal protection for employees from
employer monitoring. In Ontario, employers can electronically monitor employees as long
as they disclose the surveillance under the Working for Workers act [5]. Quebec, British
Columbia and Alberta also require disclosure of monitoring under provincial privacy laws
and workers in other provinces are left without legal protections [47].

Working remotely, our homes have become our office spaces. This blurs the line between
work and home. Many use their devices for work and personal usage. This complicates
the issue of privacy. Employees are in a vulnerable position relative to their employer.
Employees may be informed of the monitoring but have little say in what aspects of their
behaviour can be tracked. Workplace surveillance can widen the trust gap between em-
ployee and employer [48].
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A survey reports that 2/3 of companies track internet usage, and 45% log keystrokes
[55]. The EMA industry is robust, with a doubling in size from 2021 to 2030 [39]. These
rapid increases in adoption and capabilities are not met with an increase in regulation.
Many EMAs [?, ?, ?] claim that they aim to protect security and personal privacy. How
well do they protect the security of the data they collect and adhere to their privacy
policies?

Some commonly cited benefits of EMAs are project management, productivity, ac-
countability, attendance, payroll, performance view, and data security [52]. One vendor
claims that being monitored improves performance [?]. Insider threats are the largest risk
to manage in enterprise security [1]. So, employers wish to monitor their employees so
they can reduce the risk of an insider threat. Also, EMAs are increasingly easy to deploy
with cloud-based solutions. Of course, EMAs also have disadvantages like the risk to per-
sonal privacy, the risk of data security, increasing distrust in employees, and breaking legal
boundaries. Even though EMAs claim to improve data security, they are implicitly adding
another layer in the technology stack, which will always come with another opportunity
for an attack vector. EMAs must collect and store employee data in a secure manner so
as not to risk breaching employee privacy.

In this thesis, we design and develop an analysis framework to assess security and pri-
vacy issues related to EMAs. We choose this domain of applications due to the accelerating
nature of the industry. The industry is accelerating because of the increasing trend towards
remote work and the ease of deploying EMAs in the cloud. These apps are designed to
help managers and employers watch their employees for insider threats, improve produc-
tivity, and help with business administration such as payroll or attendance. EMAs use
invasive surveillance techniques like screen recording and keystroke logging to achieve this
end. Our research question is: how well do EMA vendors protect the data they collect about
employees? We detail a list of security and privacy issues that are important for protecting
the security and privacy of employee data (i.e., proxy vulnerabilities and backend security
configurations). We apply static and dynamic analysis techniques to assess 10 Windows
EMAs with a variety of tools. We choose Windows as our analysis platform due to its
prevalence in workplace settings.

1.2 Contributions

Our contributions are as follows:

1. We develop an analysis framework to assess security and privacy issues related to
EMAs. We apply static and dynamic analysis techniques. We intercept the apps’ web
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traffic to understand what data the apps are collecting and whether it conforms with
the app’s claims. For our app-centred approach, we assess each app for insecure data
transmission, residual vulnerabilities, whether it raises malware alarms, check for proxy
vulnerabilities, and assess the efficacy of privacy features. For our back-end analysis, we
assess password strength, password brute force attack protections, input validation, open
cloud storage, access control of private media, server geolocation, TLS versions, and HSTS
enforcement.

2. We assess EMAs for security and privacy issues, which is the first technical analysis
of EMAs. We apply our framework to 10 Windows EMAs. We find that each app is
vulnerable to at least one of the privacy and security issues we assess.

3. We provide novel data sets to social and legal teams to clarify discrepancies between
how EMAs work and what is permissible under Canadian law.

4. We find a number of vulnerabilities in EMAs. We find 3/10 of apps have weak pass-
word requirements. So, password brute-force attacks on these apps are computationally
easier. 2/10 of apps have no password brute-force protections. An attacker can try pass-
words repeatedly without penalty. 1/10 of apps do not encrypt network traffic, so private
employee data passes through the public internet for anyone to see. 9/10 of apps lack HSTS
enforcement, so users visiting their site are vulnerable to SSL-stripping attacks. 7/10 of
apps do not inform the user of suspicious activities on the account. This allows attackers
to compromise accounts more conveniently. 1/10 of apps have known vulnerabilities with
their web proxy, compromising network security. 5/10 of apps have improper access control
to private media, so those without credentials can access the user’s private data. 4/10 of
apps have open cloud storage, so anyone with the URI can access the information stored
there.

1.3 Thesis Structure

This thesis is organised as follows: In Chapter 2, background knowledge is provided for
the rest of this thesis. We discuss the security and privacy issues of EMAs, our threat
model, and related work. In Chapter 3, we propose the analysis framework used to assess
EMAs. We apply static and dynamic analysis techniques at both the application and
back-end levels of the technology stack. In Chapter 4, we present the experimental results
of our app-centred analysis. In Chapter 5, we present the experimental results of back-end
analysis. Lastly, in Chapter 6, we provide discussion, limitations, recommendations for
developers, and our concluding remarks.
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Chapter 2

Background

In this chapter we will discuss the concepts, techniques and questions we will apply to
our analysis of employee monitoring applications. We will borrow high level strategies
from malware analysis work, and use research questions from security and privacy analysis
papers. Both types of papers will suggest techniques and strategies we can apply to the
analysis of employee monitoring apps.

2.1 Malware Analysis and Reverse Engineering

Malware analysis typically involves reverse engineering techniques to peel back the layers
of complexity to understand how malware works. These techniques fall into two broad
categories: static analysis and dynamic analysis. Static analysis is an analysis of the
program without it running. Opening and reading the program’s code is a static analysis
technique. Dynamic analysis is the analysis of a program while it is running. Network
analysis is a dynamic analysis technique where network traffic coming from the program
is logged and analysed. Analysis techniques and strategies introduced in malware analysis
can be applied in the context of security and privacy analysis. We analyse the state-of-
the-art in malware analysis to borrow techniques to analyse EMA’s privacy and security
issues.
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2.1.1 Low-level Malware Analysis

Carnavalet et al. [17] show the security and privacy risks of the adware, Wajam. The
authors study the adware for six years and evaluate the anitivirus evasion techniques used
by Wajam. They demonstrate an infected user is subject to plaintext leaks of browser
histories and keyword searches. Their paper provides analysis on how Wajam has reached
widespread use. Adware was considered the same as spyware, but now there is a change to
tolerate adware, and it is now considered “optional”, or “not a-virus”. Malware analysis
research has not focused much on adware in recent years. This paper addresses three
research questions: 1) Is Wajam simply displaying untargeted advertisements? 2) Does
Wajam pose any serious security and privacy threats? 3) Are all strains of Wajam limited
in complexity and reliably detected by antiviruses? Wajam has been installed hundreds
of millions of times. The authors evaluate 52 samples from Wajam, which were released
over a six-year period. They reverse engineer the samples to characterise how the Wajam
product has evolved over the years. The Wajam product used 4 different techniques for
content injection, 23 techniques for AV evasion, and 332 domains to serve injected scripts.
Their analysis shows the important PII (Personal Identifiable Information) leakage and
security risks. Wajam uses a rootkit to hide itself. The authors show the privacy leaks
and security risks. Wajam leaks unique identifiers during installation. Wajam was shown
to leak the files installed on the OS, the browsing history, and whether the program was
running in a VM. Wajam looks for the presence of major antivirus software and sends out
a list of installed AV software. The authors describe the update mechanism of Wajam and
the security risks involved. Security risks include: downgraded TLS from proxies, private
key generation and common name generation, downgrading website security by removing
CSP headers. Their analysis method involves two main steps: 1) Download Wajam on a
fresh VM snapshot with ProcMon and Wireshark running. They snapshot the filesystem
and registry. 2) Debugging: they set breakpoints at Windows API calls to load files and
use I/O events from ProcMon to identify relevant functions from the call stack at that
time. They find that Wajam collects and leaks large amounts of data about the user.
Wajam also displayed antivirus evasion strategies.

Knockel et al. [36] examine the security risks of the QQ browser by Tencent. Their
threat model is based on a MITM attacker with nation-state control over the network.
They describe and provide examples of three classes of threats to QQ. The authors use
reverse engineering to examine the encryption protocols used by the browser. They find
a significant security risk in the browser’s encryption scheme. There is no padding added
to the ciphertext before encryption. The authors describe three sets of attacks. The first
set is based on exploiting QQ’s poor random number generation, hard-coded symmetric
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keys, and use of a 128-bit RSA key in earlier versions. The MITM threat would be able to
decrypt and read all secure communication with passive, offline eavesdropping. The second
set of attacks is based on the use of textbook RSA. An attacker can crack the session key
with 128 connections of their own to the QQ server. This attack can guess the session key,
one bit at a time. This attack is not a passive, offline attack and only scales to breaking
the encryption of one user’s session. The third category of attacks involves an attacker
gaining full access to a client device through a MITM. The attacker exploits the update
system to replace the APK and hash with their own malware instead of the update. QQ
sends WUP updates regularly to QQ servers with IMEI, WiFI MAC address, URLs of
webpages visited, and more sensitive data. The only entropy source for choosing a session
key scheme is the time since epoch. The session key is the 128 least significant bytes in
the decrypted plaintext. The authors present a novel attack against textbook RSA. The
downside is that the security of millions of people has not been adequately protected by
Tencent developers. The paper does not include details on how they performed the reverse
engineering. What tools did they use? What were the steps in this analysis? The authors
seem to gloss over this aspect of their findings. This lack of detail makes the paper less
useful if one wants to repeat their experiments. If we find that EMAs use the same method
of updating, they may face a similar vulnerability as the QQ browser.

2.1.2 High-level Malware Analysis

Egele et al. [21] examine techniques and tools used to help us understand the behaviour of
malware. Malware is using defences such as self-modifying code that will make signature
detection difficult with static analysis alone. The authors discuss tools and techniques
that run the malware and monitor its behaviour. Most dynamic analysis tools (DAT) will
monitor API and system calls. Function calls can be categorised based on the parameters
passed in the function call. Some DATs monitor how sensitive data is collected and sent
within and beyond the malware-infected device. Automated dynamic analysis reports
actions that the malware took while under observation. Such reports can be used to
group malware into families based on similar behaviours. Novel malware can be identified
when its behaviour does not fit into the previously identified malware families. This is an
improvement over static analysis, which may not be able to detect signatures if attackers
generate many new malware samples with polymorphic encodings and binary packers. This
paper introduces several techniques. One such technique is hooking. Hooking is the process
by which function calls are intercepted. The Windows native API sits between the system
call interface and the Windows API. Often, the native API is called by the Windows API.
Implementing function hooking involves several steps: 1) If the source code is available,
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calls to hook functions can be inserted in the source code at appropriate locations. 2) If
the program is only available in binary, binary rewriting is used to insert hook function
invocations. 3) Rewrite the monitored function to invoke the hook before normal operation
of the function. 4) Modify all locations of the “call” instruction that will invoke the call
to the hook instead of normal execution. The Detours library [29] helps with function
hooking. This program redirects control from the hook function to the analysis function.
It can modify binary before it is loaded, or it can also manipulate binary while it is loaded
in memory. An instrumented debugger can also be used by placing breakpoints at the call
site or the monitored function. Then the memory contents and CPU state will be visible.
Function parameter analysis allows for the correlation of function calls operating on the
same object. Information flow tracking is another technique that operates by establishing
taint sources and taint sinks. Then we can create direct data dependencies where taint
is transferred directly for assignments and arithmetic operations with the tainted value.
Address dependencies are made when taint is transferred if the tainted value is referenced
as a pointer or as an array index. Control flow dependencies find the first instruction (re-
convergence point) executed regardless of which branch is taken. Before re-convergence
is reached, each target of an assignment is tainted. The paper describes implementation
techniques for malware analysis. Emulated environments allow the analysis component to
control every aspect of program execution and the ability to run malware without fearing
how it impacts the system. VM-based analysis offers the privileged state of the physical
machine, which is not reachable from the VM (analysis environment). Network simulation
offers no internet but a simulated network, and allows filtered internet access. The authors
describe the malware analysis arms race in which malware creators use self modifying code,
packers, detection environments, and logic bombs.

Galloro et al. [23] document 92 evasion techniques used by malware to avoid detection
and create a taxonomy of these techniques. They evaluate 45K malware samples belonging
to 2867 different malware families. They perform this evaluation over 10 years to document
how evasion techniques change over time. They compare the evasion techniques of malware
with legit Windows apps and software. They find a slight increase in the prevalence of
evasive techniques. Such example techniques are: memory fingerprinting, which examines
the memory location of a running process to find debuggers, exception handling, CPU
fingerprinting; table descriptors; Traps, Timing, which identifies analysis by a slowdown
in CPU clock ticks, Stalling, Registry, System environment, and human interaction, which
assumes the environment is instrumented if the mouse is not moving. The malware may also
process its environment by analysing the file system (i.e., a Python-based agent, agent.py
in the home directory), listing processes, listing services, and listing drivers (emulated or
virtualized devices).
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Yong et al. [68] provide insight into the goals, workflow and thought processes of reverse
engineers (REs). The authors broadly describe two types of analyses: Static analysis, which
happens not during run time and dynamic analysis, which occurs during run time. The
method the authors use is as follows: Recruitment of subjects, interview subjects about
malware sources, analysis workflow, and dynamic analysis system configuration, and ask
about data analyses. The authors find there are three categories of malware analysts:
Tier 1: those who focus on string-based intrusion detection (i.e., hashes, IPs, and domain
names) Tier 2: those who identify potential threats in network host artefacts or with
tools. Tier 3: those who track TTPs: tactics, techniques, and procedures. The malware
analysis workflow generally starts with dynamic analysis. The dynamic analysis set-up
starts with the decision of bare metal vs. virtualization, and usually virtualization is used.
Then the analyst will install the Web browser, Microsoft, Java, and Adobe Libraries. The
analyst will mimic a real user with browser history, files, documents, directories, and usage.
The analyst will configure settings such as libraries, timezone, language, usernames, and
user privileges. The paper lists commonly used dynamic analysis monitoring tools and
techniques such as ProcMon, hooking, syscalls, registry, files created, network activity
monitoring, PCAP, and logs. This paper provides useful, high-level strategies to analyse
EMAs. Although the paper is focused on malware, the strategies mentioned are effective
in our analysis. The question we are focused on answering is different from typical malware
analysis, however.

Votipika et al. [65] ask three research questions. Their first question asks what high-level
process do REs follow when examining a new program? Second, what technical approaches
(i.e., manual and automated analyses) do reverse engineers use? Finally, how does the
RE process align with traditional program comprehension? How does it differ? Reverse
engineering practises are different from traditional program comprehension because there
is a lack of access to code and documentation and it occurs in an adversarial environment.
The authors outline a three phase model used in reverse engineering: starting with an
overview, going into sub-component scanning, and then performing focused experiments
to answer specific hypotheses about the respective sub-component. During the overview
phase, a reverse engineer will list strings and APIs, run a program with basic parameters,
review metadata, and find specific functions to focus on. Then, in the subcomponent
scanning phase, a reverse engineer scans beacons, comes up with specific hypotheses that
require concrete information, and constructs data flow and control flow paths. Finally, in
the focused experiments phase, a reverse engineer executes under inspection (debugger,
file monitor), compares to the reference function (i.e., compare encryption outputs from
the reference and in the program under investigation), and reads code line by line. The
subcomponent scanning and focused experiment phases require a lot of back and forth,
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to look at a subcomponent, create a hypothesis, and run experiments to evaluate their
hypothesis. Some cross-phase trends are that the first two phases use static analysis,
while phase 3 uses dynamic analysis. In phases 1 and 2, the REs choose a focus area.
In phase 2, the RE recognises behaviours or vulnerabilities. The experience of reverse
engineers guides where to look in the code. This paper provides guidelines for reverse
engineering tool design, provides a framework to evaluate said tools, and gives insight on
reverse engineering automation.

Botacin et al. [10] do static and dynamic analysis of 40k malware, over a 10 year
period to track how financial malware in Brazil changes. They perform static analysis
with SSDeep [32] to discard samples with repeated SHA1 values. They look for executables
embedded in normal files with Foremost [45]. To extract portable executables, they use
pyew [37] and peframe [7]. They use VirusTotal [53] to understand what malware family
a sample belongs to. As for dynamic analysis techniques, they monitor changes to the
registry, process creation and termination, and use tcpdump to capture network traffic.

2.1.3 Reverse Engineering Tools

In this subsection we discuss reverse engineering tools that represent the state-of-the-art
in computer science research. We describe the tools to illustrate that there are a number
of reverse engineering tools available but it is difficult to find one to suit our specific needs.
Reverse engineering involves looking into very specific questions about the application in
question, and often researchers develop tools to fit their use case but may be difficult to
use in other applications. Instead we use well-known tools in our analysis. We use IDA
Pro [26] for static analysis of application code, in particular when analyzing DLLs injected
into a web browser process as we discuss in Sec. 3.2.9. For local dynamic analysis we use
ProcMon [51].

PIITracker [8] can be used by reverse engineers to track PII data and capture any
processes sending PII over the network. The techniques the authors use to accomplish
this are, dynamic information flow tracking (DIFT) and monitoring specific functions and
system calls. Their evaluations reveal that 12 of the 15 apps evaluated collect the users’
PII in some form. The DIFT method uses two methods to track data. “Direct flows
are data-flow based; indirect flows are control-flow-based. There are two direct flows:
copy and computation dependencies. There are two types of indirect flows: address and
control dependencies.” The system plugs into PANDA [20], which is an open-source plat-
form for dynamic analysis. PIITracker interacts with three plugins: taint2, syscalls2, and
OSI/Win7x86intro. They use Windows API function calls and system calls as hooks, so
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they get a callback when a specific function is called, with the callback containing the
memory address. They taint the address with taint2. The authors have made this tool
publicly available for download. The evaluations show how users’ PII is not being kept safe
by Windows application developers, who frequently gather and transmit the users’ PII. PI-
ITracker provides memory addresses for leaked PII and network socket data. However, it
is difficult to understand how all the technology fits together. The authors do not explain
how PIITracker fits into PANDA. It is not made clear what PANDA does or how it works.
The PII that the authors investigate in this paper are (1) MAC address, (2) hard drive
serial number, (3) hard drive model name, (4) volume serial number, (5) host name, (6)
computer name, (7) security identifier number (SID), (8) CPU model, and (9) Windows
version and build.

PyPANDA [15] provides a single script that controls both analysis and guest behaviour.
Their interface provides full access to core emulator structures, and users can use generic
images as starter templates. A common challenge is that the analysed system must be
controlled manually while analysis scripts are run. PyPANDA addresses this challenge.
Their design goals for PyPANDA are: high performance, providing unified analysis, easy
integration with other tools, making C structures available as Python objects, and making
them easy to use. The authors describe an example workflow for different use cases, such
as dynamic heap monitoring, and provide the steps to do this analysis with PyPANDA.
Overall, the tool provides an easy-to-use interface for PANDA. This tool appears to be
useful for users of PANDA but does little to convince non-users of PANDA to try it.

PIITracker and PyPANDA both work as a plugin for PANDA but provide little back-
ground on what PANDA can be used for and how to implement the analysis.

2.2 Privacy and Security Analysis of Applications

Many applications today monitor user behaviour; this may be the purpose of the app
or it may be a side effect. Apps with uses such as elderly care, e-scooter rentals, child
monitoring, proctoring, and stalkerware have been studied to analyse the security and
privacy issues raised by such apps. To our knowledge, this analysis has not been done on
employee monitoring applications. So, we will pull useful research questions and analysis
techniques to apply in our work.

Much of the work in this domain is done on the Android platform. Our analysis
focuses entirely on Windows applications. So, exact techniques may not transfer to our
work. However, we can adapt the techniques in order to answer our research questions.
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Table 2.1: Summary of Security and Privacy Analysis Papers
Papers Local Analysis Techniques Network Analysis Techniques Backend Analysis Techniques

Vinayaga-Sureshkanth et al. [64]

Android permissions requested,
3rd party identification,
data flow analysis,
control flow analysis

generic network monitoring none

Ali et al. [6]
static analysis,
identify 3rd party SDKs

tcpdump,
mitmproxy,
PII and secrets leakage,
identify trackers,
insecure authentication

password policy,
online brute force
attack, hsts enforcement,
uniformed suspicious actvities,
firebase scanner

Gruber et al. [25]
static analysis
(permissions, libraries, SDKs),
certificate pinning check

mitm, ip geolocation

SQL injection,
access control,
cloud enum,
sslscan,
Firebase scanner

Yang et al. [67]
API monitor,
binary analysis

Microsoft Network Monitor none

Burgess et al. [13]

encryption at rest,
screenshots,
virtual machine detection,
clipboard management

encryption in transit,
network access restrictions

none

Carnavalet et al. [16] private key extraction
certificate validation,
TLS versions,
known attacks

none

Liu et al. [38] manual analysis of each feature
tcpdump,
mitmproxy

none

Kapoor et al. [33]
app permissions,
3rd party libraries,

TLS interception (BurpSuite),
identify 3rd party trackers,
API authentication

SQL injection,
cross-site scripting XSS,
firebase scanning

Common areas of analysis in this domain are local analysis, network analysis, and back-
end analysis. Local analysis involves looking at the app itself and searching for security
and privacy vulnerabilities. For example, static analysis of code is a local analysis tech-
nique. Network analysis of applications concerns the investigation of network traffic com-
ing from the application under investigation. Intercepting encrypted traffic is a common
technique that allows researchers to read what data the app is sending over the network.
Researchers study the back-end infrastructure of applications to understand their security
posture against potential attacks. A summary of the papers discussed in this section is
viewable in Table 2.1.

2.2.1 Android

Kapoor et al. [33] look at the security and privacy issues in mobile apps marketed towards
elderly populations. Their analysis includes local analysis, network analysis, back-end
analysis, and privacy policy analysis. For static analysis techniques, they look at the
app permissions and which third-party libraries an app uses. This informs them if the
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app is using any suspicious permissions or third-party libraries. For network analysis,
they use BurpSuite [49] for TLS interception, so they can read encrypted traffic coming
from the apps. They analyse the network traffic to identify third-party trackers. They also
modify the authentication headers in the network packets they collect to assess the security
strength of the apps APIs. To analyse the backend of elderly apps, they try SQL injection
and cross-site scripting to assess input validation. They use the Firebase Scanner to assess
access control for the Firebase database. In this work, they also use an automated privacy
policy analysis tool, Polisis [27], to assess these apps’ privacy policies.

We also use TLS interception techniques but with mitmproxy [14] instead of BurpSuite.
We also assess the input validation of the back-end against SQL injection attacks. As
for database scanning, we use cloud enum [43] instead of the Firebase scanner because
Windows apps do not use Firebase as often as Android apps. We employ some of the same
strategies, but our tools will differ because this work focuses exclusively on Android.

Liu et al. [38] investigate consumer spyware apps features. They investigate each feature
to see how it works under the hood. This includes features like screenshots and hiding the
app icon. They use static and dynamic analysis techniques for their investigation. This
paper also looks at the data collected from these apps and how well it is protected. Some
issues they look at are whether the data is encrypted in transit, cross-account request
forgery, unauthenticated access to the victim’s data, and data retention practises. They
use tcpdump and mitmproxy in their network analysis to collect and intercept traffic
coming from the spyware apps.

In our work, we assess the privacy issues this paper brings forth. We analyse network
traffic with Wireshark to see if the data is encrypted in transit. We assess the risk of
unauthenticated access to the user’s data by looking at the URLs used to host the user’s
data. We assess if access to the URL is feasible (e.g., if the URL can be easily guessed)
and whether it is accessible publicly. Finally, we also assess the EMA’s data retention
practises. When a user requests their data be deleted, we test whether media access
becomes unavailable.

Vinayaga-Sureshkanth et al. [64] look at the privacy issues related to mobile e-scooter
rental apps. They use local analysis techniques like static analysis to analyse the control
flow of an app, permissions requested, and third-party libraries used. Dynamic analysis
techniques are used to monitor how data flows through the device and onto the network.
They use generic network monitoring techniques to capture the traffic leaving the device.
This paper also analyses the privacy policies of these apps with automated and manual
processing.

In our work, we also record what data EMAs collect about users, but we rely on network
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traffic interception instead of monitoring API calls. The Android platform allows for
insight into the Android API and permissions requested by applications. On the Windows
platform, information on system calls and OS procedures are not accessible at the user
level. Much of the low-level permissions are obfuscated from the user on Windows.

Gruber et al. [25] investigate privacy and security issues of child care apps. They use
common local analysis techniques for Android analysis. Such techniques include using
static analysis to see what permissions, third-party libraries, and SDKs are used by an ap-
plication. For network analysis, they use tcpdump [57] for recording traffic and mitmproxy
to intercept encrypted traffic. They record whether the app trusts a generic certificate
from mitmproxy or whether this app is using certificate pinning. With traffic recorded
from tcpdump, they geolocate all IPs the app communicates with. Their back-end analy-
sis techniques are input validation testing, access control, TLS versions, checking for open
cloud buckets, assessing access control security, and scanning Firebase.

Our work borrows their network analysis techniques for intercepting encrypted traffic,
but we will use Wireshark instead of tcpdump for recording traffic. We employ most of
their back-end analysis strategies, like testing input validation.

2.2.2 Windows

Yang et al. [67] use reverse engineering techniques to evaluate the security and privacy
of video conferencing applications (VCAs). They use runtime binary analysis tools to
achieve this end. With such tools, the authors trace raw audio in VCAs as it goes from
the audio driver to the network. The authors develop a classifier that can infer what type
of activity the user is doing based on the stats sent to the server. This classifier realises
82% accuracy across six categories of user activities. The authors analyse the mute button
of VCAs for potential privacy risks. For analysis of the mute button in Windows, they
use the system registry to track microphone access. Then they use the Windows API
Monitor tool to instrument the userland API with hooks and log pointers to the inputs
and outputs of microphone-related API calls. They use X64dbg [66] to read the contents
of the buffer and Scylla-Hide [3] to hide the debugging from the app to prevent crashing.
This paper [67] implements reverse engineering techniques across three platforms to assess
the privacy strength of mute buttons in VCAs. This paper shows how answering the same
question requires different techniques for each platform. Further, this paper shows how a
user’s privacy may be violated when they use a mute button. Even when the mute button
is used, audio data is collected and sent over the network. Their classifier is able to use
the audio data collected to infer what activity the user is doing.
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We use static analysis and network monitoring, but the tools and techniques differ from
this work. This work investigated specifically how the mute button works for VCAs, but in
our work, we are building a more general profile of the security and privacy issues related
to EMAs.

Ali et al. [6] propose a system to evaluate security and privacy risks in parental control
software and hardware. The authors identify potential issues and develop a threat model.
They develop a framework to evaluate parental control apps for security and privacy issues
and apply this framework to a number of Windows and Android applications. This paper
provides useful insight on security and privacy issues that affect monitoring applications.
Their evaluations are conducted with eight network devices, eight Windows apps, ten
Chrome extensions, and 29 Android apps. They analyse the tools on these platforms
for leaking PII, insecure API authentication, and using third parties or known trackers.
Their analysis reveals 135 vulnerabilities among the parental control solutions tested. Such
solutions fail to protect the security and privacy of both the children and their parents. The
parental control solutions are achieved with network monitoring, Android apps, Windows
apps, and Chrome extensions. Network devices can use ARP spoofing to fool devices on
the local network to confuse the network device for the local router. This way, the network
device can read the outgoing messages and act as a MITM. The threat model includes
an on-device attacker, a local network attacker, an on-path attacker (MITM), or a remote
attacker who gains access through the backend. Their method uses dynamic analysis to
see if the traffic is plaintext or encrypted and what data is sent. They use static analysis
on binaries and scripts. They look in the binaries for APIs and URLs. In their dynamic
analysis, they capture network traffic on the test device and the router using Wireshark
and tcpdump. Their evaluation setup uses a full Linux distribution with mitmproxy and
tcpdump installed in each environment with a Linux deployment. When using Android,
they configure the network setting to proxy all traffic through the WiFi adapter, which
routes it to the mitmproxy server. They analyse network traffic for PII and authentication
leakage, improper access control, and identifying trackers. To identify improper access
control, the authors use Postman [2] with requests to the API with stripped authentication
headers to see if the API has weak authentication. They identify known trackers with Easy
List, Easy Privacy, and Fanboy. The authors identify challenges in dynamic analysis, like
network traffic attribution. Their solution is to use mitmproxy to call netstat to report
the process name for each packet. They had challenges with traffic interception as well,
where the apps were using certificate pinning to stop mitmproxy from intercepting the
traffic. The authors use SSLunpinning [62] to overcome this challenge. The author’s static
analysis techniques involve identifying vulnerable services by scanning network devices
with tools such as OpenVas [24], Nmap [40], Nikto [56], and Routersploit [60]. They
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use the Firebase Scanner to detect security misconfigurations for apps that use Firebase.
They use LibScout [19] to find third-party libraries embedded in the apps. They analyse
the back-end of parental control apps by assessing the password rules, protecting against
brute-force attacks, attempting SSLstripping attacks, recording responses to suspicious
activities (like logins from new devices), and scanning the Firebase database. They also
provide a framework that can be applied to similar apps to assess the security and privacy
risks of those applications. Some of their techniques are applicable to Android apps, like
SSLunpinning, which only works for Android apps, and Firebase Scanner, which is more
effective with Android apps because of how prevalent the use of Firebase is with Android
developers.

In this work, we also use mitmproxy [14] for network traffic interception, but instead of
tcpdump, we use Wireshark. We also apply their techniques in back-end analysis: record-
ing password rules, protection from brute force attacks, checking HSTS enforcement with
SSLstrip attacks, and whether the apps inform users of new logins or password changes.

Carnavalet et al. [16] design a framework to analyse client-end TLS proxies that are seen
in antivirus and parental-control software. This work highlights the risks created by such
TLS proxies. They evaluate 14 antivirus and parental control apps (content control apps).
They analyse whether the apps generate root certs dynamically and to what extent they
protect the private keys using reverse engineering and deobfuscation techniques. They find
flaws in the certificate validation process and test the TLS proxies against known attacks.

Applications that wish to monitor the user’s traffic install a MITM proxy on the user’s
device. This breaks the client-server connection into two connections: client-proxy and
proxy-server. The proxy analyses the traffic to determine whether it is safe. This raises se-
curity concerns. If the proxy’s root certificate is pre-generated, users may be vulnerable to
a MITM attacker who has access to a signing key if the proxy accepts external site certifi-
cates issued by its own root certificate. The proxy must also verify certificates, which may
be vulnerable to several threats. Verifying certificates is difficult for tested TLS libraries.
The proxy introduces a new TLS client, which must have all the latest updates to protect
against new vulnerabilities. The new proxy connection may not match the parameters of
the original connection, weakening the security and declaring the connection to be more
secure than it is. The authors describe techniques to locate the private keys. To locate
private keys in files and the Windows registry, they use ProcMon during installation to
monitor the actions, check the Windows certificate manager for new certificates, and iden-
tify the process that created the certificate. Then they examine the registry and associated
files that may contain the private key. For app-protected private keys, the authors identify
the process filtering traffic, dump the memory of such processes, search memory for private
keys and root certificates, and identify the process filtering traffic by noting which process
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holds the private key in memory. Some protect their private keys with a passphrase. To
retrieve passphrases, the authors extract strings of printable characters and try that as the
password, disassemble (using IDA Pro to find OpenSSL functions related to private keys),
execute (loading binary into the Immunity debugger), or break an SQLCipher encrypted
database in some cases. Their TLS proxy testing framework involves certificate validation
testing, proxy-embedded trust stores, TLS versions, and known attacks against TLS. They
implement this framework in a number of antivirus and parental control applications that
use a TLS proxy. They find that not one app implemented the TLS proxy that defended
against all the tests the authors did.

In our work, we check the TLS versions of EMA servers as well as test them against
known proxy vulnerabilities with howsmyssl.com [4] and ssllabs.com [50] to test the security
parameters of the proxy. Only one app in our study uses a proxy for interception, so we
avoid the in-depth analysis this paper made because it only covers 1/10 of the apps in our
analysis.

Burgess et al. [13] look at any potential security or privacy risks of remote proctoring
apps. The authors also examine any racial bias introduced by the apps’ facial recognition
system. They look at four proctoring apps for their security and privacy issues. They
release a tool [12] to extract the security and privacy properties of proctoring apps. The
authors ask whether the app provides the claimed security. Further, they ask what security
and privacy the user must give up for the app to provide the security it claims. The authors
try to investigate claims of procedural fairness, security, and integrity with reverse engi-
neering techniques. They find that cheating measures can be easily subverted. To analyse
these apps, they monitor the network with standard techniques (presumably Wireshark or
tcpdump). They ask whether the traffic is TLS or plaintext. If TLS is used, they examine
how the programme responds to a certificate with an incorrect name or a certificate that is
not recognised by any authority but bears the correct name. The authors use reverse engi-
neering techniques to examine VM detection, clipboard management, screenshot capture,
application restrictions, and network interception by the apps. Further, they analyse exam
content protection (encryption in transit and encryption at rest). Finally, they assess ID
verification and authentication by evaluating login, general interaction fingerprinting, and
facial recognition.

In our work, we try the tool released with this paper to see what it reports on EMAs.
But this tool does not work accurately for us. For example, this tool reports on whether
an app records screenshots, and the tool reports back that this binary does not record
screenshots. But we know this to be false based on the functionality we report as well as
what is marketed on the EMA website. We do not use the results of the tool in our analysis
to gain insight into how these apps work. The only strategy we borrow from this paper is
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network analysis; we also check to see that the apps are encrypting data in transit.

2.2.3 Our Techniques

The local analysis techniques we use in this work are checking for residual vulnerabili-
ties, checking whether the apps comply with Windows privacy permissions, using an anti-
keylogger to see if their keylogging is detectable and running the apps through malware
analysis suites.

Network analysis techniques we use are standard network imposition with Wireshark,
using mitmproxy to intercept encrypted traffic, checking proxy for known vulnerabilities,
server geolocation and checking for certificate pinning.

Back-end analysis techniques we use are checking password requirements, preventions
of brute force password guessing attacks, input validation, searching for open cloud storage,
HSTS enforcement, checking TLS versions, assessing access control of private media, and
verifying that deleting private user data works as expected.

2.3 Security and Privacy Issues

From related work and our project goals, we decide on the following list of issues to analyse
employee monitoring applications.

1) Insecure private data transmission: is private user data sent over the network unen-
crypted (HTTP)?

2) Residual vulnerabilities: does the application leave behind any file containing private
data recorded about the employee after uninstallation?

3) Privacy features claims upheld: do these apps stop recording when requested?

4) What is the general monitoring profile of these applications? Do they send more
data than they claim?

5) Network vulnerabilities: do the apps use secure techniques to collect users’ web
traffic?

6) Back-end security configurations: HSTS enforcement, TLS versions, password secu-
rity, input validation and open cloud storage buckets are all potential vulnerabilities of a
back-end web-server.
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7) Where are the servers located? What legal jurisdiction may be applicable to EMA
data collection?

8) Does delete mean delete? When a user or manager requests their data to be deleted,
is it really deleted and is it done in a timely manner?

9) Access control: is private user data viewable only by those with proper credentials?

2.4 Ethical Concerns and Responsible Disclosure

When we assess for vulnerabilities, we ensure we are running these attacks against our own
accounts. We do not use any vulnerabilities we find to breach the systems. We stop our
assessment once we collect enough data to confirm the existence of a vulnerability.

In this work, we have identified a number of privacy and security risks. We hope to
disclose this information to the developers of the vulnerable apps. However, we are still
waiting on legal support from the university to name the apps we have looked at. So, until
we have legal support, we will not publicly name the apps we have assessed, nor will we
contact the developers.
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Chapter 3

Approach

3.1 App Selection

We choose 10 EMAs for this analysis. We are focusing on popular apps that are widely
used and recommended for employee monitoring. This software has similar feature profiles
to any spyware, but we choose these apps based on the marketing material. If the tool is
marketed towards managers, then it fits our inclusion criteria. We choose apps based on
popularity [42, 22]. We select apps that offer a free trial. The apps we assess offer the full
feature set in the trial version so we are able to test all of the features. The exception being
SmartAuthority’s facial recognition feature which requires a subscription. When we began
our analysis SmartAuthority also offered webcam monitoring in the trial version but later
limited this feature to paying customers only. We were able to assess this feature before
SmartAuthority changed the trial version. We study these apps for months and would be
downloading them many times, so this was an economical choice.

These apps have a variety of feature sets. The more powerful apps offer advanced mon-
itoring capabilities like keylogging, webcam monitoring, screen recording, remote takeover,
GPS tracking, instant messaging monitoring and more. The less powerful apps may just
track time spent on the computer and web browsing history. The general app structure
is based on the client-server model. A client-side application collects data on the em-
ployee device and transmits the data to the server. The server-side collects, aggregates
and displays the data in a dashboard format. Generally the server is hosted in the cloud.
However, JoltDrone is the exception to the rule where the server is hosted on premises of
the employer.
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The apps we choose are: SmartAuthority, CerebralMega, EmployHour, IndustryVibe,
CounterCube, JoltDrone, Oversightio, CoreCrew, DateExpert, and AliveRecord.

For each app, we create an account, download the required installers, and install the
application in Windows Sandbox. We use Windows Sandbox [46] for experimental re-
peatability; each time we install the application, it is in a fresh sandbox. Further, Windows
Sandbox helps protect our devices against the advanced tracking capabilities of these apps.

Our analysis of the data these apps collect relies heavily on network analysis. We are
able to see what data these apps collect based on the network traffic. Because most of the
apps we choose use TLS for communicating with the server, we use a man-in-the-middle
(MITM) to break TLS encryption and read the traffic coming from the EMA. More details
are to follow in section 3.2.3.

3.2 App-centred Analysis

This analysis approach is focused on the app itself and includes both static and dynamic
analysis techniques. For each app, we install it in a sandbox and monitor the application
with various tools to inspect how it runs and any vulnerabilities in its security or protection
of privacy. We employ static and dynamic analysis techniques in our investigation. A high
level overview of the app-centred issues we assess is shown in Fig 3.1.

3.2.1 Malware Analysis

We use a set of anti-virus engines in the VirusTotal system to assess whether these apps
would raise any flags for a curious employee or a corporate security system. We provide
VirusTotal the app executable (not the installer), and the tool runs the app through up to
71 anti-virus engines, and we tabulate the results.

To get the application file, we install each application and use the application executable
in the installation directory.

VirusTotal uses a suite of anti-virus engines, including popular AV tools like Avast,
McAfee, Fortinet, and others.

3.2.2 Anti-Keylogging Analysis

We want to see if keylogging is detectable by a curious employee and whether keylogs
are stored on disc before being sent over the network to the server. We use the KL-
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Figure 3.1: App-Centred Analysis Overview

detector tool [9], which monitors changes to the filesystem during a period. We, the user,
type into a notepad app during the monitoring process. The KL-detector tool will record
changes to filesystems that are potentially suspicious (ignoring windows folders, which often
are changing something while the OS is running) and point the user to these potentially
suspicious folders if the tool noticed changes. We use this approach to see if there is
evidence of keylogging from the user’s perspective.
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3.2.3 Traffic Interception

For each app, we run the app in the sandbox and run Wireshark on the host system to
log the traffic. But because most modern apps encrypt their traffic, we need a man-in-the-
middle (MITM) to intercept the traffic and see what data these apps are collecting and
sending. We use mitmproxy [14] as our MITM. To use this program, we install a certificate
in the Windows Trusted Root Certification Authorities Certificate Store so that apps trust
the MITM as a server. This way, we can break the encryption and read what the apps are
sending.

We connect the sandbox device to a router that has mitmproxy running. We run the
proxy in transparent mode and are breaking encryption at the router. This is the simplest
way to make sure we are intercepting the traffic. The traffic must flow through the router,
and we are ensuring that the router redirects the traffic to the mitmproxy process.

Once we see the device running the sandbox is having traffic intercepted, we apply
an evaluation protocol to assess the data collection options provided by EMAs. Variable
monitoring options include screen capture, microphone access, webcam access, web traffic
monitoring and website blocking. With each setting we collect the data transferred by the
EMA with this setting on and off.

Our evaluation protocol steps are as follows:

1) Install the application and wait 5 minutes.

2) Once the app is installed, enable the variable monitoring option at the server-side
and wait 5 minutes.

4) Disable the variable monitoring option at the server-side and wait 5 minutes.

5) Enable the variable monitoring option at the server-side and wait 5 minutes.

We initially tried PolarProxy[44] and Proxifier[31] to intercept TLS traffic entering and
leaving the Windows sandbox. Both tools are installed on the Windows sandbox. Proxifier
is configured to redirect all traffic to PolarProxy, except traffic coming from PolarProxy
(to avoid an infinite loop).

We installed PolarProxy’s certificate in Windows Trusted Root Certification Authorities
Certificate Store so that the EMAs trust PolarProxy as a server and we can decrypt the
TLS traffic. This method worked as expected for some EMAs, where we were able to
decrypt and read the TLS traffic. But other EMAs ignored our proxy rules and bypassed
the Proxifier/Polar Proxy setup.
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Because some apps ignore windows proxy settings, we choose to use a transparent
proxy setup. A transparent proxy eliminates any trouble with apps ignoring proxy rules
by putting the proxy on the router.

Wireshark

In Wireshark, we gather and decode all traffic arriving at the router from the interface to
which the sandbox machine is connected. With the DNS requests, we can see all domains
contacted and get the IP addresses for server geolocation.

Wireshark allows us to see what protocols the apps are using for data transmission. If
the traffic is unencrypted, we can read it in Wireshark.

We analyse the DNS traffic to see all hosts contacted by the monitoring application,
and we use these hostnames for geolocation analysis.

Certificate Pinning

Certificate validation by a Windows app generally checks the certificate chain by going
up the hierarchy until they arrive at the root certificate; if the root certificate is in the
Windows trusted certificates, then the app trusts this certificate.

Certificate pinning differs from this general validation technique in that apps will only
trust a pre-defined certificate or only certificates signed by the pre-defined certificate.

This means that without access to the pre-defined certificate, the application will not
trust a certificate we put in the Trusted Root Certification Authorities Certificate Store.

We install a certificate into the Trusted Root Certification Authorities Certificate Store
with a mitmproxy certificate on the sandbox machine. This means if the app trusts any
generic certificate, we can break encryption with mitmproxy. However, if this technique
does not work, it is indicative of certificate pinning.

Typically with certificate pinning, an app will have a certificate embedded in the pro-
gram such that only this certificate is trusted. Meaning you can only break encryption
with access to this certificate.

One approach we use to break certificate pinning is to see if we can find the certificate
and replace it with our own or just make it empty. So, we search for certificates in the file
folder in which the application was installed.
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For CerebralMega we find two security certificates in the installation directory. How-
ever, these certificates do not match with the certificates we get from the servers that Cere-
bralMega app communicates with. We get the server certificates with an OpenSSL [59]
command: ”openssl s client -connect host:port -key our private key.pem -showcerts”.

Proxy Security

CerebralMega uses a proxy for intercepting traffic. This proxy runs on the client machine
and breaks all the encrypted traffic from the user. We check this proxy for any security
vulnerabilities it may introduce. These may be related to its cryptography, interception
certificates, and validation.

We use badssl.com and howsmyssl.com to check the security configuration of this proxy.
We install CerebralMega in the sandbox and ensure the program is using the proxy by
checking the configuration and that the web traffic is visible on the dashboard. Then we
access the web-based tool through the browser, with the CerebralMega proxy running to
run tests on the proxy.

howsmyssl.com checks the TLS version, cypher suites, support of ephemeral keys, ses-
sion tickets, whether there’s TLS compression, and whether there’s a vulnerability to a
BEAST (Browser Exploit Against SSL/TLS Attack), which is only possible with TLS 1.0.

badssl.com [34] checks certificate validation, broken cryptography, interception certifi-
cates, legacy cryptography, and domain security policies. The site checks whether the
browser connects to sites with the previously stated vulnerabilities, and if it does, this
means that an attacker could modify websites that a user visits.

3.2.4 Residual Vulnerabilities

We want to know if, after uninstalling these apps, any artefacts are left behind in the
file system. These could potentially be a security or privacy vulnerability if they contain
the information these apps log about the user. To do this analysis, we install Folder-
ChangesView [54], which monitors the Windows file system for changes. We install this
tool and run it. Then we install the app and wait 5 minutes. Next, we uninstall the app
and stop monitoring folder changes. We can see all files modified, added, or removed during
this time and see if any files from the app are left behind. On the Windows platform, there
are many files being changed in the background. Because of this, we will not manually
assess each file modified during this period. Instead, we focus on folder that are likely to
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be related to the app and monitoring data such as “Program Data” or “Program Files”
folders.

3.2.5 Hidden App Installation Directory

Many apps include the option for a “hidden” app, where there is no icon displayed in the
taskbar. We investigate where the program files go in this instance. We assess how difficult
it is for an employee to see if there is a monitoring program on their device.

3.2.6 Privacy Features

Several of these apps implement features to give the employees control over when they want
to be monitored. We inspect these features individually to investigate whether they work
as expected. SmartAuthority, Oversightio, CoreCrew, DateExpert and IndustryVibe offer
employee-end privacy controls such that on the client end, an employee can turn off and
turn on monitoring. AliveRecord does not have client-end controls; instead, an employer
can add an employee to a do-not-track list. EmployHour, CerebralMega, and JoltDrone
have no client-end privacy controls nor a do-not-track list option on the server-side. If the
app gives the option, we install the app with the non-hidden mode enabled and enable
the toggling of turning monitoring off and on. This way the employee can control when
monitoring occurs, and we assess the feature for effectiveness.

For each app that offers client-end privacy controls, we employ the following protocol:

1) Install the app with the non-hidden mode settings and options for turning off and
turning on monitoring.

2) Once the app is installed and running, wait 5 minutes with default monitoring
settings.

3) Turn off monitoring at the client-side and wait 5 minutes with monitoring off.

4) Turn monitoring on at the client-side and wait 5 minutes.

5) Turn monitoring off at the client-side and wait 5 minutes.

We repeat steps to confirm our observations. If we find that the same observation is
made repeatedly, we can conclude that the finding is not a one time quirk in the system.
If there is a server-side restart button, we apply the same steps as above but with toggling
the restart button instead, of the monitoring setting. We assess the restart button to
understand if an employers’ controls can override the employee’s privacy controls.
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3.2.7 Windows Privacy Permissions

Windows provides privacy permission options for the user to control. The permission
options govern what sensitive data an app can collect, such as data from the webcam or
microphone. The apps requesting permissions can be viewed and changed from “Privacy
& Security” settings page, searchable from the Start Menu. The user can select what
permissions a given app has access too. Further, an icon can be viewed from the taskbar
indicating that an app is using the webcam or microphone.

For apps that record webcam and microphone data, we want to know whether these
apps comply with the permission controls set forth by Windows. Malware has been shown
to override Windows privacy permissions and record without informing the user [63]. We
will investigate whether EMAs evade Windows privacy permissions or conform with the
OS privacy and security settings.

3.2.8 Proctoring Suite Analysis Tool

Burgess et al. [13] developed a tool [12], which they used on Windows apps to analyse the
security and privacy properties of Windows proctoring apps. We use this tool on EMA
executables to analyse them for their respective security and privacy properties. This tool
is available on Github and runs as a command-line tool, with the path to the binary as an
input parameter.

3.2.9 How do EMAs access browser history?

There are four possible methods an EMA can access an employee’s browser history [18].
The most simple method is for the app to gather DNS requests and take the hostname from
the requests to see which site the employee visits. This method, however, will not show
the full URIs, only the domain name. The second approach is to use a proxy as a MITM
and intercept the traffic at the proxy. The third approach is to look in specific folders for
browser history, for example, \localappdata\Google\Chrome\User Data\Default\History.
The fourth potential method is to inject a DLL that will hook into the browser process
and record the full URI.

We analyse the EMAs to see what browser monitoring techniques are used by EMAs.
We can rule out DNS traffic recording if they show the full URIs visited by an employee.
We use ProcMon [51] from the Windows System Internals tools to see if a DLL is injected
into the browser process by the EMA. This would indicate that the EMA is using the fourth
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method for web browser monitoring. We use IDA Pro [26] to perform static analysis on
the DLL for insight on how it functions. Only one app in our selection uses a proxy
for web browsing monitoring, CerebralMega. If an app does not use one of the previous
methods, we infer that the EMA is using the third method. This will be confirmed if the
EMA provides the browser history prior to installation of the EMA, because the EMA is
gathering browsing history from files stored on the employee’s device.

3.2.10 QUIC

With IndustryVibe, we identified that the EMA uses TLS as well as QUIC for network
communication. To try and break QUIC encryption we use the developer version of mitm-
proxy, which has support for QUIC. The released version does not yet have QUIC support.

We download the newest development version of mitmproxy, and run it in transparent
mode. We can run the program and decrypt TLS traffic as with the fully released version
of mitmproxy. However, despite the development version supporting QUIC traffic, we still
see QUIC packets passing through the proxy and are not intercepted. So, this method for
breaking QUIC encryption failed.

3.2.11 SmartAuthority’s Facial Recognition Feature

SmartAuthority offers a premium feature, facial recognition feature that records from the
employee webcam with snapshots every 5 seconds [?]. Because this feature is considered an
extra, we purchase a subscription, webcam monitoring and the facial recognition feature.
The photos are taken and processed by machine learning models to locate the face in
the picture and identify the face. The prediction model compares to any other face in
the database, which is comprised of any people identified through this feature. So, the
database grows as this feature is deployed on more employee machines. SmartAuthority
claims this feature is designed to improve discipline, reduce employees working under false
identities, and improve productivity. Then SmartAuthority reports photos of all people
who worked on the computer, and each photo has the name of the person (if previously
identified) and a timestamp.

We wish to evaluate the accuracy of the model by testing it with simple tricks. We
install SmartAuthority, enable the facial recognition model, and allow SmartAuthority
to record faces. We intercept the traffic with mitmproxy, with our previously mentioned
experimental setup. By intercepting the traffic, we can understand where the model makes
inferences and other data sent with the webcam photos.
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We show the webcam pictures of the thesis author and someone else to see how the
model responds to photos and to introducing a new face. We also show part of the face
(i.e., slowly moving from the edge of the frame), change the angle of the face, and take
glasses on and off. Our goal here is to see if any of these methods can fool the model.
If we can fool the model with such tactics, we conclude that the model has obvious flaws
in identification. For a feature as intrusive as this one, we would expect it to be highly
effective with its supposed claims.

3.3 Back-end Analysis

This portion of analysis focuses on the back-end infrastructure of EMAs. EMAs send the
client data to a server, which stores, processes and visualizes the data in a dashboard. In
this portion of our investigation, we focus on the analysis of the web servers and cloud
computing systems that EMAs employ. A high level overview of the backend issues we
assess is shown in Fig 3.2.

3.3.1 Input Validation

Any input field on a website has the potential to be an attack vector. An attacker could
use such input fields to launch an SQL injection attack. Such attacks can be mitigated
if developers use rules to allow only the expected types of input. Such rules include
blocklisting certain characters or enforcing formatting rules for an email input field.

In our investigation we try to use a dummy injection attack to see if the website has
input validation rules. Such an attack adds: “ ’or 1=1;—” to the tail end of an email in
the email field. Which would always return true, so we can use our password to see if we
can gain access.

3.3.2 Password Security

Strong password requirements are an easy method to improve security against brute-force
password guessing attacks. We investigate each EMA’s password requirements on the
vendor website to determine the relative strength of their password requirements. We
expect to have requirements of at least eight characters and two types of characters or
more (i.e., uppercase and lowercase, or letters and numbers).
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Figure 3.2: Infrastructure Analysis Overview

3.3.3 Cloud Resource Enumeration

Many modern web apps use cloud infrastructure for storing media. This design principle
has the potential to be a security risk if the cloud storage buckets lack proper access
control. If private client data is stored in cloud storage buckets, for example, screenshots
from their personal devices, and those buckets lack secure access control, there is a privacy
vulnerability.

We employ cloud enum [43] to enumerate over a large set of possible web URIs that
an EMA may use. Such URIs could be formatted like: “dev.CerebralMega.ap-northeast-
3.amazonaws.com”. cloud enum checks thousands of possible URIs to see if they exist
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and are publicly accessible. This example of URI format comes from fuzzing over a list
of common words used in cloud servers. The enumeration returns a list of URIs that are
publicly accessible, and is often a small subset of all URIs checked. Once the enumeration
completes, we manually check the URIs corresponding to open storage to see if they are
owned by the EMA product and see what kind of data is stored in the cloud drives.

3.3.4 Private Media Access Control

Most of the EMAs in our investigation gather data in image, or video formats. The data
may come from the screen capture or from the webcam. We investigate each EMA to see
how they store this media on the web. We record screenshots from the user’s device, and
open the screenshot in a new tab to access the media URI. With the URI for the media file,
we try to access the URI from another device that is not logged into the EMA dashboard.
If the media can be accessed without logging in, this can be a security risk. We investigate
further to see if there are any patterns in the URIs on which the media is hosted. If the
URI is long and seemingly random, this poses less of a security concern.

To investigate the privacy risk, we see if, when an employer or employee requests their
data be deleted, it is done in a timely manner. To do so, we access the cloud URI that
hosts the employee’s media (e.g., a screenshot of their device) and request that their media
be deleted. Then we monitor the URI to see if and when the media is removed.

3.3.5 Server Geolocation

The geographical location of the web server will have an impact on which legal jurisdiction
applies to the recording and storage of private employee data. To determine the geolocation
of each server contacted by EMA clients, we record the web traffic in Wireshark and parse
the DNS requests for all domains contacted by the EMA client. Once we have a list of the
domains, we use the MaxMind API [41] and Linux whois commands to verify the location.
We use two methods to cross-validate the results from one tool with those from the other.
The results from these tools may differ, so we look into the result returned from the tools
to give a better indication of where the server is located.

3.3.6 TLS Versions

We look at the TLS versions each EMA webserver has enabled to see whether they have
older versions of TLS enabled. TLS versions 1.2 and 1.3 are considered secure and up-to-
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date. Older versions are often accepted by most web servers for clients who are using old,
outdated browsers.

3.3.7 HSTS Enforcement

A web server can avoid HTTP downgrade attacks with HTTP Strict Transport Security
(HSTS). This means the server strictly enforces that you visit the site over HTTPS and
not HTTP. We use mitmproxy to launch an SSL-stripping attack against a client trying
to access EMA web servers. If the client can access the EMA website via HTTP, this
indicates the server lacks HSTS enforcement.
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Chapter 4

App-centred Analysis Results

We follow the method discussed in Chapter 3 between May 2022 and June 2023. For
dynamic analysis, we run the apps on a Windows 10 Thinkpad P14s, running the app in
a Windows Sandbox environment. We perform this analysis with 10 employee monitoring
applications.

In this chapter, we present our results from analysing the security and privacy issues
of EMAs at the application and local network levels.

4.1 Employee Monitoring Features

CerebralMega is one of the most powerful EMAs we have look at in our assessment. Cere-
bralMega’s feature set includes remote takeover, screen recording (live and playback), in-
ternet usage monitoring, file transfers, printings, emails, keystroke logging, instant message
monitoring, and online meeting monitoring. CerebralMega uses a cloud model in that the
server is hosted on cloud resources leased by CerebralMega. The employer installs the
CerebralMega monitoring program on the employees’ devices, and data is sent back to a
cloud-hosted backend. Employers can access employee data through a web-based dash-
board.

EmployHour has relatively few features compared to other apps we look at. Employ-
Hour can monitor attendance, internet usage, online meetings, and active and idle times.
EmployHour has on-premise and cloud-based deployment solutions. We elect to use cloud-
based deployment because of the simplicity of setting it up in our analysis. Employers can
see employee data on the web-based dashboard.
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AliveRecord can track app and internet usage, provide productivity reports, and take
screenshots with the “alarm feature”. AliveRecord provides activity logs that record each
action an employee takes (e.g., opening a new tab or the computer going to sleep). The
alarm can be triggered when the employee performs an action, such as visiting a URL
containing“ebay.com”. AliveRecord uses a cloud model, and employers can see employee
data and settings on the dashboard.

DateExpert provides features like time tracking, website, app, and chat monitoring,
screenshots, screen recordings, and productivity analyses. DateExpert uses a cloud de-
ployment, and employee data is accessed through the dashboard.

SmartAuthority has features such as key-logging, screenshots, live viewing of the screen,
tracking instant messages, tracking internet usage, emails, social media, website blocking,
recording from a webcam, live streaming from a webcam, tracking external media, printing,
voice recording, and program activity monitoring. SmartAuthority has the most privileged
features we look at in this analysis. SmartAuthority uses a cloud deployment, and employ-
ers can see employee data from the online dashboard, which we have pictured in Figure
4.1.

Figure 4.1: SmartAuthority Dashboard

CoreCrew can record app usage, URLs visited, GPS location, time tracking, and screen-
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shots. CoreCrew uses a cloud deployment with an online dashboard to display tracked
data.

CounterCube tracks URLs, app usage, window titles, and screenshots. This feature
set is relatively compact compared to others, but it still provides invasive features like
screenshots. CounterCube deploys their server on the cloud and makes employee data
available through the dashboard.

Oversightio offers monitoring features like attendance tracking, screenshots, key logging,
internet usage monitoring, file accesses, printing usage monitoring, and email monitoring.
Figure 4.2 shows Oversightio’s monitoring options. Oversightio uses a cloud model and
displays employee data on the online dashboard, viewable in Figure 4.3.

Figure 4.2: Oversightio Options

IndustryVibe offers standard EMA features such as screen recordings, time tracking,
app and internet usage, and productivity analysis. They also use a cloud deployment model
and display employee data on the online dashboard.

JoltDrone provides features such as online screen monitoring, screen recordings, keystroke
logging, remote access, time tracking, productivity analysis, and violation detection. Jolt-
Drone is the exception when it comes to deployment models. They use an on-premise server
model, so the employer installs the JoltDrone server on their machine, and data from the
employees is stored on that computer. The employer can view the data with a program
called Viewer provided by JoltDrone, which pulls the data from the server program running
on the same machine.

Table 4.1 shows which versions of apps we use in our app-centred analysis and when
we downloaded the apps. We are missing the versions for some apps because the app did
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Figure 4.3: Oversightio Dashboard

not have the version embedded in the file, nor were we able to recover a client app version
from network traffic.

4.2 General Monitoring Profile

AliveRecord sends its data to a Google Cloud server in the form of a POST request. The
requests include information such as AliveRecord account ID, OS, OS version, public IP
address, device hardware ID, desktop username, list of open applications, titles of open
windows, URLs accessed, and the user’s timezone. The OS version, IP address, hardware
IDs and other metadata collected and transmitted is not displayed on the dashboard.
Collecting minute details about the observed machine falls into data creep, which builds
a comprehensive profile of the monitored user. AliveRecord sends screenshots to the same
Google Cloud server with a hex encoding.

SmartAuthority sends updates by opening a WebSocket, which is a full-duplex com-
munication channel over a single TCP connection. The data sent in WebSocket messages
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are the open apps, window titles, desktop username, and screen dimensions. There are
also other updates sent in Multipurpose Internet Mail Extensions (MIME) format. Data
in the MIME updates include processor name, timezone, OS architecture, OS install date,
webcam name, SmartAuthority program version, total physical memory, OS serial number,
and more meta-data collected about the monitored computer. The information about the
computer is not displayed on the dashboard, nor is it mentioned on their website. This
metadata collection also falls under data creep.

Oversightio sends updates in a WebSocket, too. Messages in the WebSocket include
the open apps, window titles, desktop username, account ID, and tracking options. The
tracking options detail inactivity sensitivity (60 seconds) and directories monitored for file
changes. Web servers for collecting data are hosted on Amazon Web Services (AWS).

CounterCube sends updates in JSON and MIME formats to their own webserver. The
JSON updates show what apps the user has open and the path to the app’s executable.
The MIME updates include URLs accessed, window titles, and screenshots encoded in hex.

CoreCrew sends both JSON and MIME-formatted updates to an AWS URL. JSON
updates include open apps and information on the mouse and keyboard, represented by an
integer. MIME updates include information on the connection (i.e., expiration, signature,
encryption, and credentials) and hex-encoded screenshots.

DateExpert sends updates in a WebSocket to a Google Cloud URI. WebSocket messages
include open apps, URLs, mouse clicks, keystrokes, and mouse movements. DateExpert
also sends screenshots in a PUT request to the Google Cloud server.

IndustryVibe also sends updates in WebSocket messages. These messages have the
URLs accessed, filepaths to open apps, window titles, active/inactive state, timezone offset,
and a gateway list (e.g., 00155D2CDB20), which could be a MAC address.

EmployHour uses no network encryption so we can read the data with Wireshark. Em-
ployHour sends data that includes workstation ID, customer ID, active or idle, username,
open applications, window titles, URLs accessed, EmployHour installation directory, local
timezone, time tracked today, idle time today, key press count, and number of mouse clicks.

CerebralMega and JoltDrone both use certificate pinning so our network interception
technique fails for these apps. Our analysis of these apps relies on the data we can see from
the dashboard. CerebralMega offers powerful features like webcam monitoring, instant
message monitoring, screen recording, keystroke logging and remote takeover of the device.
JoltDrone also has a powerful feature suite, with keystroke logging and screen recording.

Full messages for each app are included in Appendix A.
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4.3 Unprotected Private Data Transmission

For each app, we collect the network traffic with Wireshark. The majority of apps use
TLS, meaning they encrypt the data transmission. EmployHour is the exception to the
rule. EmployHour does not send the data it collects in TLS but instead in plaintext TCP.

EmployHour transmits PII over the network, visible to any eavesdroppers. The most
sensitive information includes web browsing history, mouse usage, keyboard usage and last
time since last input. This data should be kept private from any eavesdroppers, but it is
transmitted over the public internet without protection.

4.4 Certificate Pinning

We find that 7 out of 10 apps do not use certificate pinning. These apps are SmartAuthor-
ity, IndustryVibe, CounterCube, Oversightio, CoreCrew, DateExpert, and AliveRecord.
These apps trust any generic certificate, so we are able to intercept and remove the net-
work encryption with mitmproxy. EmployHour does not use encryption, so the problem
of certificate pinning is not relevant.

We find that 2/10 apps do use certificate pinning. CerebralMega and JoltDrone use
certificate pinning, which means we cannot intercept traffic originating from these apps.
We were unable to remove encryption for these two apps. There are certificate unpinning
tools available, but these are built for the Android platform. To bypass certificate pinning
for these apps would require significant reverse engineering, which falls outside the scope
of this work. We did find a certificate within CerebralMega files, and we try removing
it or replacing it with mitmproxy’s certificate, but both attempts did not allow us to see
CerebralMega traffic.

4.5 Residual Vulnerabilities

We find that 10 out of 10 apps left no files behind after installation or uninstallation. We
use FolderChangesView [54] to monitor changes from install to uninstall. It could be a
potential vulnerability if an app records private data, stores it somewhere on the computer,
and does not remove the file when the app is uninstalled. This is of particular concern
when the computer is a shared work device. We find that all apps were secure against this
potential threat.
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4.6 Hidden App Installation Directory

Oversightio, IndustryVibe, JoltDrone, SmartAuthority, CerebralMega and DateExpert al-
low for a hidden app. For each of these apps we investigate where the program files are
stored in the filesystem. The most common method for obfuscating the install directory
was by using a serial number in the ProgramData folder, which is hidden by default. The
user can enable viewing of hidden folders in Windows File Explorer and find the program
files. CerebralMega, Oversightio and SmartAuthority all use this method. The second most
common method is to store program files under an alias. JoltDrone stores program files
in the folder ”TeleLinkSoftHelper” within ”Program Files” directory. DateExpert stores
program files in ”SFproc” folder also within Program Files directory. Finally, IndustryVibe
stores program files in ProgramData directory without an alias, simply “workpuls”.

4.7 VirusTotal Analysis

We run each app’s executable through the VirusTotal analysis system to find out how an
antivirus engine would react to the EMAs in our assessment. We find that 4/10 apps test
positive in at least one anti-virus engine. Each app is tested on up to 71 antivirus engines.
Potential listed threats in CerebralMega were its netfilter, which is likely related to the
app’s proxy for intercepting network traffic. CounterCube and EmployHour are classified
as potential grayware. Grayware is a classification of software that blurs the line between
legitimate software and malware. Typically spyware is considered as malware or grayware.
SmartAuthority is identified as malware by four AV engines.

4.8 Proxy Vulnerabilities

CerebralMega is the only app in our assessment that uses a proxy to intercept user traffic,
record it, and send it to the back-end server. We analyse CerebralMega’s proxy against
known proxy vulnerabilities. While using the proxy, we check the security with hows-
myssl.com [4] and badssl.com [34].

We find that CerebralMega’s proxy has several vulnerabilities. Badssl.com checks
certificate validation, interception certificates, broken cryptography, legacy cryptography,
domain security policies, and some security settings. CerebralMega’s proxy connects to
untrusted-root.badssl.com, which means the certificate issuer is unknown and the proxy
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Product Positive Count Negative Count Engines Used % Positives
DateExpert 0 66 66 0
IndustryVibe 0 56 56 0
CoreCrew 0 68 68 0
AliveRecord 0 60 60 0
CerebralMega 7 54 61 11
CounterCube 1 44 45 2.2
EmployHour 1 70 71 1.4
Oversightio 0 71 71 0
SmartAuthority 4 59 63 6.3
JoltDrone 0 61 61 0

Table 4.2: Summary of VirusTotal Analysis

should stop the connection, so CerebralMega has a high risk with this flaw in certifi-
cate validation. CerebralMega is also vulnerable to interception certificates as it connects
to preact-cli.badssl.com and webpack-dev-server.baddssl.com. CerebralMega is vulnerable
to interception attacks where an attacker modifies the webpage a user is visiting. Cere-
bralMega also has a risk of broken cryptography by connecting to dh1024.badssl.com, which
is considered a weak cryptographic scheme.

Howsmyssl.com checks the TLS version, ephemeral key support, session ticket support,
TLS compression, TLS downgrade, and insecure cypher suites. CerebralMega passes all
checks on howsmyssl.com. So, this means it is using up-to-date TLS versions, supports
ephemeral keys and session tickets, does not use TLS compression, and uses up-to-date
cypher suites.

CerebralMega’s proxy is used to filter and intercept user traffic. We can see that
this proxy introduces many vulnerabilities, increases the risk of interception, and accepts
outdated cryptographic schemes. CerebralMega’s web proxy is a risk to user privacy and
security.

4.9 Anti-key-logging Analysis

4/10 apps in our analysis use key-logging as a feature to track user behaviour. Cere-
bralMega, Oversightio, SmartAuthority, and JoltDrone use key-logging. We use KL-
detector [9] to detect this activity with each of the 10 apps. We find that 6/10 apps are
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Product Key-logging feature? Detectable by an anti-key-logger?
EmployHour no no
AliveRecord no suspicious
DateExpert no suspicious
CerebralMega yes no
CoreCrew no no
CounterCube no no
Oversightio yes suspicious
IndustryVibe no suspicious
SmartAuthority yes suspicious
JoltDrone yes suspicious

Table 4.3: Summary of key-logging analysis

identified as potentially suspicious by KL-detector. The suspicious apps are AliveRecord,
DateExpert, Oversightio, IndustryVibe, SmartAuthority and JoltDrone. AliveRecord, Da-
teExpert and IndustryVibe are false positives in this assessment. KL-detector also points
to the files that changed during analysis and may contain the key logs. For each of the
suspicious apps, we perform a manual analysis of the potentially suspicious files. In each
case, there are no key logs to be found in files on the computer. So, we conclude that the
apps that are key-logging are storing the key-logs in program memory and sending them
over the network rather than storing them in local files and transmitting the file over the
network. The suspicious files held general logging data but are not related to the user’s
keystrokes.

4.10 Privacy Feature Assessment

7/10 of the apps in our assessment have the option of client-end privacy controls. These
control features allow the employee to start or stop monitoring. 2/7 of the apps with
client-end privacy control have the feature implicitly built into the app. The employee
starts monitoring when they want and ends it when they want. 5/7 of the other apps add
privacy controls as an additional feature, so a manager can choose whether or not to enable
privacy controls. 1/10 apps, AliveRecord has privacy controls available to the manager on
the dashboard. 2/10 apps do not have privacy controls: CerebralMega and JoltDrone.

3/8 of apps that implement privacy controls have risks associated with privacy control
features. For each app with privacy controls, we apply the protocol from Section 3.2.6.
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We turn off monitoring at the client side, wait a few minutes before toggling monitoring
off again at the client side, and repeat this process. Our aim is to see whether the privacy
feature works as expected and whether data is not transferred when monitoring is disabled.

Oversightio offers two privacy features: GDPR mode and client-end privacy controls.
The GDPR mode is described as a disabling of some data collection. This mode can be
enabled or disabled by the manager on the dashboard; the employee does not have control.
Oversightio’s website and dashboard claim to no longer collect window titles, URLs, screen
recordings, keystrokes, searches, files, emails, or printings in GDPR mode. However, we
still see Oversightio sending window titles and URLs. The window titles and URLs are not
displayed on the dashboard, though. We also see screenshots and videos sent, but these
were recorded before we enabled GDPR mode. Meaning the data was not collected while
GDPR mode was on.

Oversightio also offers control over what media is collected, such as web browsing or
screen captures. This control is available on the dashboard for the employer. We notice
that when the employee turns off monitoring and while the monitoring is disabled, their
employer turns off screen captures and the employee starts monitoring again, a single frame
of video is sent by Oversightio. This appears to be a bug; Oversightio tries to record video
before checking what the monitoring options are. This bug is especially concerning because
the frame of the video was visible from the dashboard. So, an employer may inform their
employee that they will not record their screen. But, because of this bug, their screen is
recorded for an instant.

SmartAuthority offers client-end privacy controls for employees. They also offer a
server-side restart button to the employer. We find that when an employee has disabled
monitoring, an employer can hit the program restart button, which will start SmartAu-
thority monitoring. After a few moments (less than one minute), the monitoring halts
and data collection stops. It appears that SmartAuthority will record data when restarted
without first checking whether the employee has enabled monitoring. This violates the
employee’s privacy because they would think that while they have monitoring turned off,
there would be no data collection. But, their employer still has access to the program
restart button, which can start data collection for a short interval. The data collected in
this interval was not displayed on the dashboard, however. But we can see it was collected
by intercepting the network traffic.

AliveRecord offers server-side privacy controls in that an employee can be added to a
do not track list and they will not be monitored. This do-not-track list works mostly as
expected but takes up to five minutes to update. This finding is not overly concerning
except for the case when an employer tells their employee they have been added to a do-
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not-track list immediately after adding them. In this case, the employee is monitored for
a few minutes before the list updates.

4.11 Windows Privacy Permissions

CerebralMega and SmartAuthority use the microphone and webcam data for surveillance.
For both apps we toggle Windows privacy permissions for both microphone and webcam.
When the webcam or microphone is in use, the user is made aware with an indication in
the taskbar. Upon the user changing the privacy settings to deny access to the microphone
and webcam, the data collection halts. Once the data collection halts, the dashboard view
stops displaying webcam footage or microphone audio. We find that both apps comply
with Windows privacy permissions. This indicates that they are using the camera and
microphone permissions in the standard method and are not overriding Windows privacy
permissions.

4.12 How do EMAs Access Web Browsing History?

There are three main categories in which an app may collect browsing history from a user.
1) A TLS proxy; 2) Collect browser data from local files (i.e., %localappdata% \Google
\Chrome\User Data \Default \History); 3) Inject a DLL into the browser and hook into
functions that handle the request URLs.

We assess the apps in our study to see what strategies they use to access browsing
history. We know CerebralMega uses a proxy for web traffic filtering and interception. We
use ProcMon to see if Oversightio injects DLLs into the browser for traffic collection. We
find Oversightio does inject DLLs into the browser. With those DLLs, we open them in IDA
Pro to read the binary and gain insight on what is happening. We find hooking functions,
which we conclude it uses to gather the URLs accessed by the user. SmartAuthority has
the ability to import web browsing history prior to installation. Because of this feature, we
conclude that SmartAuthority is using the local browser files to record web traffic. Also,
we find that the web browsing history on the server side takes several minutes to load.
This finding makes sense given that these local files take a few minutes to update.

We find that EMAs are using all three strategies to collect web history.
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4.13 Instant Messaging Monitoring

2/10 apps in our assessment have features specific to monitoring instant messages (IM),
CerebralMega and SmartAuthority. We install and use Slack, Skype, and Signal while the
apps are monitoring our behaviour. The apps are only able to capture Skype messages.
Even though CerebralMega claims to explicitly support Slack IM monitoring, we observe
that CerebralMega does not track those messages.

With keystroke monitoring turned off, this feature still worked. This has the potential
to be confusing if a manager tells their employees that their keystrokes are not logged but
their Skype messages are still recorded verbatim.

4.14 SmartAuthority’s Facial Recognition Feature

We want to see how easily facial recognition can be fooled and whether the user is informed
that they are being observed by a facial recognition model. A claimed benefit of this feature
is that it can reduce the number of employees working under false identities. If we can
fool the model with simple tricks, this feature fails to meet its claims. For instance, the
author took a picture of himself and held it in front of the webcam. The facial recognition
model identified this as the author. An employee could leave their desk with a picture of
themselves to fool the model into thinking they are still there. Further, we tried using
a picture of another person in the same setup. The model both identified this as a new
person and identified it as the author. Changing the angle of the face, putting on glasses,
and showing only part of the face did not fool the model into thinking the author was
someone else. In Figure 4.4, it is shown that changing the face angle, putting on glasses,
a picture of the author, and a picture of someone else were all identified as person 1. The
only photo where a new person was identified is where the author put a photo of someone
else in front of the webcam.

The intercepted messages did not include who was in the picture (i.e., person 1); they
just contained the picture without saying who was in it. This is surprising because we
found the ML models in the local SmartAuthority program files. The model we found
was the DLib open-source facial recognition model [35]. So, it seems the inference is done
server-side. The employee is not made aware that the software is using facial recognition;
they can only see the webcam light on. So, the employee only knows if the employer
explicitly tells them.

This facial recognition feature is flawed, identifying photos as people and identifying a
photo of another person as the author.

44



Figure 4.4: SmartAuthority Facial Recognition Tab

4.15 GDPR Compliance

CoreCrew provides a short description; they claim that they work hard to be GDPR
compliant and are privacy shield certified. They also offer an option for an employee to
ask for their data to be deleted by asking their employer.

AliveRecord provides a relatively in-depth explanation. There is a table with GDPR
requirements and recommended actions for the organisation or agency to take in order to
comply with GDPR. They also briefly explain what GDPR is.

CerebralMega describes GDPR and how it can help organisations conform with the
requirements. They describe features such as selective recording to protect privacy, cat-
egorising PII to apply privacy, and exfiltration rules, continuous enforcement of policies,
identity-based authentication, and segregated access control to prevent PII leakage, and
screen recording only during policy violations. However, it is not clear how to set this up.
It seems the employer must manually configure each setting to be GDPR-compliant.

CounterCube claims it complies with GDPR. They claim data is secured on secure
cloud servers in the EU. Any third-party service providers also comply with GDPR, and
more detailed data protection information is viewable on the privacy policy page. Overall,
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CounterCube gives a short description, but CounterCube has fewer monitoring capabilities
compared to some other apps (e.g., CerebralMega.)

EmployHour gives a legal disclaimer that their GDPR advice is general only and that
a lawyer should be consulted for legal advice. They describe the principles to follow in
order to conform to GDPR and say how EmployHour can conform with those principles.
But as per the disclaimer, their advice is general. They claim EmployHour is non-invasive
and focused purely on productivity.

Oversightio provides a GDPR mode, which is described by: “In this mode, some data
Collection functionality will be disabled on the agent, server, and console sides (windows
titles, web URLs, screen recordings, keystrokes, searches, files, emails, and printings).
GDPR-related data collection and display will be stopped.”. An employer can also config-
ure a warning message for employees to tell them that they are being monitored. Overall,
this is a short description, but the user only needs to activate GDPR mode instead of
configuring each setting. With this mode, PII will not be leaked, so Oversightio claims.
Despite Oversightio’s claim that collection of window titles and web URLs will be disabled
with GDPR mode on, we observe collection and transmission of windows titles and web
URLs as discussed in Sec. 4.10.

IndustryVibe provides a legal disclaimer as well, saying that this advice should not
be used as legal advice. They lay out the regulations in each EU country, saying some
are stricter than others. They also mention how monitoring remote employees introduces
different legalities and it is important to be aware of the law. They mention that GDPR
states that employees must be informed that they are being monitored.

SmartAuthority also states that the main aspect of GDPR is informing employees that
they are monitored. They do say that GDPR explicitly prohibits keystroke logging and
screen recording, which no other app states.

JoltDrone describes GDPR, what the principles are, and how it can be ensured. They
generally describe how employee monitoring can be GDPR-compliant. They say it is im-
portant to make monitoring as transparent as possible, to make monitoring as unobtrusive
as possible, and that JoltDrone you can restrict some of the more powerful features (i.e.,
keystroke logging and screen recording).

DateExpert describes how users have additional rights over their data in the EU. They
describe the rights of access to your data, the right to correct it, and the right to restrict
data collection. DateExpert provides contact information for their EU representative to
exercise their data rights. DateExpert also describes the California Consumer Privacy Act,
which provides the right to know what data is collected and the right to delete data. They
claim that the data requested to be deleted will be done within 30 days.
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Chapter 5

Backend Analysis Results

In this chapter, we focus on the back-end infrastructure EMAs use to host their web-
sites and store and display the data they collect. Our analysis consists of checking the
infrastructure against known vulnerabilities and attacks.

5.1 Password Strength and Protections

For each app, we check the password requirements for the app’s dashboard as well as
assess protections against brute-force password guessing attacks. We attempt to login
to the account up to fifty times to see if we encounter any protection mechanisms. We
tabulate the results in Tables 5.1 and 5.2.

3/10 apps (CerebralMega, EmployHour and SmartAuthority) have password require-
ments of just 6 characters and no other requirements on character types. The other apps
have more sophisticated requirements, either in terms of the number of characters or more
complex character types, or a combination of both.

2/10 apps have no protection from a brute-force password-guessing attack (DateExpert
and EmployHour). Notably, EmployHour has weak password requirements and no protec-
tion from brute-force attacks. EmployHour’s password security is the most concerning of
the apps in our assessment.

We recommend app developers use password requirements of at least 8 characters and
include uppercase, lowercase, numerals, and special characters. We also recommend app
developers use some protection mechanisms against password brute-force guessing attacks.
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Application Password Rules
DateExpert 8 characters min., uppercase, lowercase, number and a special character
IndustryVibe 8 characters min., lowercase, uppercase, number
CoreCrew 6 characters min., uppercase, lowercase, number
AliveRecord 8 characters min., lowercase, uppercase, number, special character
CerebralMega at least 6 characters long
CounterCube at least 8 characters
EmployHour at least 6 characters long
Oversightio 8-64 characters, one digit, one uppercase, one lowercase
SmartAuthority at least 6 characters
JoltDrone 8 characters min, digits, uppercase and lowercase letters

Table 5.1: Summary of Password Requirements

Such protection mechanisms could include a captcha to make automating the task more
difficult or rate limiting guess attempts at 5-10 attempts and locking the account out for
a period upon reaching this limit. Otherwise, any password can be broken with enough
guessing.

5.2 Uninformed Suspicious Activities

For each of the 10 apps in our assessment, we perform password changes and a login from a
device different from the one currently logged in. In each case, we record any notifications
or updates.

We find that 3/10 apps warn the account owner about a login from a new device. The
updates for a login from a new device are not sent by email but instead are visible from the
server dashboard. AliveRecord displays a warning banner to the user on the dashboard
about a new login. SmartAuthority shows the logins from a “Latest Actions”s tab in
the dashboard. Oversightio shows logins to the dashboard from the “Sessions”tab in the
dashboard.

5/10 apps warn the account owner about a password change. CoreCrew, CounterCube
and JoltDrone all send the password change warning via email. CounterCube’s warning
is implicit because the only way to change the password is via the email link. CoreCrew
and JoltDrone warnings are explicit because an account owner can change the password
without an email link. AliveRecord and SmartAuthority display a warning about the
password change the same way they display a warning about a login from a new device.
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Application Password Brute Force attack results
DateExpert no warnings, no lockouts
IndustryVibe 5 minute lockout after 10 attempts
CoreCrew 1 hour lockout after 10 attempts
AliveRecord account locked after 5 attempts, must reset password
CerebralMega 5 minute lockout after 10 attempts
CounterCube 30 second lockout after 5 attempts
EmployHour no warnings and no lockouts
Oversightio account locked (must reset password) after 10 attempts, with email warning
SmartAuthority 1 hour lockout after 2 attempts
JoltDrone Uses a CAPTCHA

Table 5.2: Summary of Password Protections

4/10 apps have no warnings at all for suspicious activities. These apps are Cere-
bralMega, EmployHour, DateExpert, and IndustryVibe. We consider these apps to be
potentially vulnerable to an attacker gaining access to the backend. Because these apps
collect and display highly sensitive data, we suggest that EMAs show warnings about
password changes and logins from new devices.

5.3 Input Validation

We check each app’s login form for basic input validation. We use a benign SQL in-
jection attack with email= “ouremail@emailserver.com’or 1=1;–” and password=“some-
password”. Where we have an account with the password “some-password”. That way if
the injection attack succeeds we only access our account.

All 10 apps deny access with this simple SQL injection attack. 9/10 apps tell us that
it is an invalid email format. CoreCrew says that the reason our login was blocked may be
because of SQL injection.

5.4 Server Geo-location

We collect all DNS requests while EMAs are on. We check each domain name in the
MaxMind API [41] to check the geolocation in which the server resides. We tabulate the
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Product Login from New Device Warning Password Change Warning
CerebralMega no no
EmployHour no no
AliveRecord yes, visible from dashboard yes, visible from dashboard
DateExpert no no
SmartAuthority yes, visible from “latest actions” tab yes, visible from “latest actions” tab
CoreCrew no yes, email warning
CounterCube no yes, via password reset link
Oversightio yes, viewable from sessions list no
IndustryVibe no no
JoltDrone no yes, email warning

Table 5.3: Summary of Uniformed Suspicious Activities

results in Table 5.4. The majority of servers are located in the USA. The exceptions are
a CerebralMega server located in Germany, SmartAuthority servers located in Canada,
and a CounterCube server located in India. It is important to note that the German
CerebralMega server and Indian CounterCube server are not the main servers with which
the apps are communicating. Instead, the traffic sent to these servers contains data on
connectivity. This connectivity data is a check that all the servers are reachable and could
be connected to.

5.5 Access Control of Private Media

With each app, we assess whether the private media EMAs collect (screenshots, webcam
snapshots, and screen recordings) are stored in authenticated buckets. We allow the app
to record screenshots and use the dashboard to access the media. We find that 5/10 apps
do not have access control for private media as shown in Table 5.5. This means that
even someone who is not logged in can access the media if they have the URL. However,
the URLs used by each app are long in number and seemingly random. We find that
AliveRecord is encoded as a token in base64. The decoded token is in Appendix ??. We
were unable to decode any other URLs.
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App Country
EmployHour USA
AliveRecord USA
DateExpert USA
CoreCrew USA
CerebralMega USA
CerebralMega Germany
CounterCube USA
CounterCube India
IndustryVibe USA
Oversightio USA
SmartAuthority Canada
JoltDrone USA

Table 5.4: Geo-location of EMA webservers

Product Publicly Accessible Media
EmployHour N/A
AliveRecord yes
DateExpert yes
CerebralMega no
CoreCrew no
CounterCube no
Oversightio yes
IndustryVibe yes
SmartAuthority yes
JoltDrone no

Table 5.5: Publicly Accessible Media
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5.6 Does Delete Mean Delete?

For each app in our analysis that provides the option to delete screenshots, this works as
expected. We check the URL hosting the private media before and after the deletion is
requested. In each case, the URL is inaccessible within minutes or seconds. We conclude
that the media is no longer stored and has been successfully deleted.

DateExpert gives the employee the option to request their data be deleted. This was
done as expected and in a timely manner.

5.7 Server-side Security Configurations

In this subsection we discuss our findings on back-end security configurations of EMA
web-servers.

5.7.1 HSTS Enforcement

We use mitmproxy [14] to launch an SSL-stripping attack against a user attempting to
access EMA webservers. If possible, the connection will degrade to HTTP instead of the
usual HTTPS. The most secure practice is to use HSTS enforcement, which ensures users
can only access a website through HTTPS. We find that only CerebralMega has HSTS
enforcement enabled on their webserver. In all other apps, we were able to successfully use
an SSL-stripping attack on a client visiting EMA web servers.

5.7.2 TLS Downgrade Vulnerability

We use ssllabs.com [50] to assess what versions of TLS are enabled on each EMA web-
server. The most secure and up-to-date protocols are TLS 1.2 and TLS 1.3. Older versions
of TLS enabled could be a vulnerability, as these protocol versions are susceptible to known
attacks (BEAST and CRIME). We find that 8/10 apps have TLS 1.0 enabled on their web-
server, shown in Table 5.6. 2/10 apps (AliveRecord and CoreCrew) have only TLS 1.2 and
higher enabled. We consider AliveRecord and CoreCrew to be the most secure in regards
to this particular threat.
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Hostname Vulnerable?
https://2.timedoctor.com yes,TLS 1.0 enabled
https://app.activtrak.com no
https://app.hubstaff.com no
https://www.teramind.co yes, TLS 1.0 enabled
https://desktime.com/ yes, TLS 1.0 enabled
https://www.worktime.com yes, TLS 1.1 enabled
https://app.controlio.net yes, TLS 1.0 enabled
https://app.insightful.io (WorkPuls) yes, TLS 1.0 enabled
https://dashboard.clevercontrol.com/ yes, TLS 1.0 enabled

Table 5.6: TLS versions for each web-server

Product Open Cloud Storage?
EmployHour no
AliveRecord no
DateExpert yes, but not private data
CerebralMega yes, but not private data
CoreCrew no
CounterCube no
Oversightio no
IndustryVibe no
SmartAuthority no
JoltDrone no

Table 5.7: Publicly Accessible Cloud Storage

5.7.3 Open Cloud Buckets

We use cloud enum [43] to enumerate potential cloud buckets for each EMA. We find that
2/10 apps (DateExpert and CerebralMega) both have open cloud storage buckets, shown in
Table 5.7. We manually check the buckets to see if private data is stored in them. In both
cases, we do not find private user data. In CerebralMega’s bucket, we find a marketing
material such as a landing page. In DateExpert’s bucket, we find development code, which
could indicate how the web app operates and may provide insight to potential attackers.
The code we found was related to image editing. The threat level of this development code
is likely low, but remains a security oversight.
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Chapter 6

Discussion and Conclusion

6.1 Contributions

We presented our analysis framework and assessed 10 EMAs for Windows. Our analysis
revealed a number of bugs and security vulnerabilities. Our research question was how
well do EMA vendors protect the data they collect about employees? We identify vulnera-
bilities in each of the apps we assess. Our findings demonstrate that EMA vendors need
to provide better app-level and back-end security to adequately protect employee’s private
personal data. EMAs use highly privileged features yet claim to protect employee privacy
and security. An overview of our findings is tabulated in Table 6.1. Our key results are
as follows: We find that EmployHour has no network encryption, so any eavesdroppers
can read private data pertaining to an employee’s behaviour on the computer. We observe
Oversightio collecting and transmitting window titles and web URLs while GDPR mode
is on. This observation contradicts Oversightio’s claims that window titles and web URLs
are not collected at the client-side while GDPR mode is on. CerebralMega, EmployHour,
and SmartAuthority have weak password requirements. EmployHour and DateExpert do
not have rate limiting for password brute force attacks. EmployHour is especially vul-
nerable to account hijacking because of the combination of weak password requirements
and a lack of rate-limiting protection against a brute-force password attack. All apps ex-
cept CerebralMega lack HSTS enforcement and are vulnerable to SSL stripping attacks.
CerebralMega, EmployHour, DateExpert, CoreCrew, CounterCube, Oversightio and Jolt-
Drone leave the account owner uninformed of either logins from new devices or password
changes. These kinds of warnings can help indicate that someone is trying to hijack the
account. CerebralMega uses a proxy for network traffic interception and collection. This
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Insecure PII Transmission ♡
Weak password requirements ♠ ♠ ♠
SSL stripping ♡ ♡ ♡ ♡ ♡ ♡ ♡ ♡ ♡
Password brute force attack ♠ ♠
Uninformed suspicious activities ♠ ♠ ♠ ♠ ♠ ♠ ♠
Proxy Vulnerabilities ♡ - - - - - - - - -
Certificate Pinning - ♡ ♡ ♡ ♡ ♡ ♡ ♡
Access control of private media - ♠ ♠ ♠ ♠ ♠
Open cloud storage ♠ ♠ ♠ ♠

Table 6.1: Summary of security vulnerabilities in employee monitoring applications. ♡:
on-path network attacker, ♠: remote attacker, -: not applicable, blank: no threat

proxy introduces known vulnerabilities, such as trusting unknown certificate issuers, which
make the user more vulnerable to interception attacks. AliveRecord, DateExpert, Smar-
tAuthority, Oversightio and IndustryVibe have publicly accessible private media storage.
The URIs can be accessed without credentials; however, the URIs are difficult to guess.
CerebralMega, EmployHour, DateExpert and CoreCrew have open cloud storage. These
cloud buckets do not contain private user data but instead marketing and development
material.

With the security and privacy risks we found in our search, we suggest that EMAs be
designed and developed with privacy and security as a priority. EMAs collect sensitive
data and must comply with their employers’ workplace surveillance practices. Because of
the vulnerable position employees are in, it is of the utmost importance that EMAs provide
adequate and functional security and privacy features.

In this thesis, we demonstrate that EMAs need to improve in the domains of security
and privacy. We find that ten out of ten apps are vulnerable to at least one issue we assess
in our framework. The most concerning issues we found are that EmployHour sends data
without network encryption, CerebralMega’s web interception feature introduces proxy
vulnerabilities, Oversightio’s GDPR mode still sends data that they claim not to collect,
Oversightio collects and sends a single video frame sent while the employee has disabled
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monitoring, and SmartAuthority’s restart button triggers new communication briefly when
the employee has monitoring turned off. Surveillance can increase distrust between em-
ployees and employers. EMAs increase the risk of security and privacy and thus stretch
the relationship between employee and employer further. So, EMA vendors should at
least provide adequate security and uphold the privacy they claim to protect. Given the
trend towards increasing prevalence of EMAs, developers must take accountability for the
protection of employees’ security and privacy.

6.2 Recommendations for Developers

Given the highly sensitive nature of data collected by EMAs and the security and privacy
issues we found, we suggest developers follow our recommendations:

1. Any traffic sent over the public Internet should be encrypted. The Internet is
inherently public, and it should not be assumed that data sent through it is safe from
modification and eavesdropping. Using up-to-date secure protocols for data transmission
will ensure that the data collected about employees will arrive at the server untampered
and unread.

2. Developers should apply our evaluation protocol (Section 3.2.6) to their privacy
features to ensure they work as expected. EMAs offer a number of privacy features, so
employees have some control over what and when data is collected. However, we have
found a number of bugs in these features. The bugs mean that the employee may assume
they are not being monitored, but in fact they are. This violates the trust an employee
has in the surveillance practice.

3. Apply state-of-the-art back-end security configuration strategies. We found a num-
ber of open cloud storage URIs, web pages lacking HSTS enforcement, weak password
requirements, a lack of password attack rate-limiting, and uninformed suspicious activi-
ties. Addressing those issues will improve the security of the system and thus better protect
employee privacy.

4. Check for known proxy vulnerabilities with tools like badssl [34] and ensure the
proxy only trusts desired certificates. Otherwise, the developers can use simpler strategies
to monitor employee internet usage, such as gathering browsing history from local folders.
Fixing the vulnerabilities we identified will improve communication security against traffic
interception attacks.
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6.3 Limitations and Future Work

A key limitation in our work is we were unable to bypass certificate pinning. In related
work we find that this is done commonly when analyzing Android apps with tools like
SSLUnpinning [62]. Two out of ten apps in our assessment use certificate pinning, so we
were still able to intercept traffic from the majority of apps. However, more developers may
use certificate pinning and make analysis of their apps more difficult. Certificate unpinning
on Windows would likely require advanced reverse engineering to intercept SSL functions
in application code and replace or remove the certificate. A system that could automate
this task would be very useful to security and privacy researchers analyzing Windows
apps. Such a system would likely need to intercept system calls the app uses to validate
certificates. Intercepting said function and always returning true would allow us to bypass
certificate pinning. This would require in-depth reverse engineering and would likely differ
for each app, however there could be similarities between the apps and a general tool could
be developed.

As this industry grows, so will the number of apps. To create a more complete view of
the landscape, we suggest that the analysis of EMAs continues to include more apps. We
only looked at Windows apps because of the prevalence in the workplace. A number of
companies we looked at also offer mobile apps for monitoring employees phones. Analyzing
mobile EMAs could apply our ideas to Android and iOS platforms but would likely require
different techniques and tools.

Much of the dynamic analysis performed in this work was performed manually in a
sandbox environment. An automated system that executes our evaluation protocol would
help in the analysis of more apps. This system would require interacting with the UI, to
turn features on and off throughout analysis.

The apps we assess may check whether they are in a VM or sandbox and alter their
behaviour. We are able to observe all the apps features, and saw no explicit record of
whether the apps checks whether it is in a VM. We assume the app was behaving normally
in a sandbox. This assumption could be tested by evaluating the apps as we did but on a
host OS instead of a sandbox environment.

We looked at some of the back-end security configurations; however there is still more
that could be assessed. The API security could be analyzed for vulnerabilities such as
authentication strength.

Finally, we suggest that lawmakers develop regulation regarding employee privacy in
the workplace. So that employees have control over what is tracked, and that their data is
protected by a standard.
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6.4 Concluding Remarks

The EMA industry is growing due to ease of deployment, and the increasing trend towards
remote work. This industry has not been analyzed for security and privacy issues because of
its recent emergence. We have assessed 10 Windows EMAs with our analysis framework.
Our framework uses dynamic analysis techniques such as network interception to read
encrypted EMA traffic, anti-keylogging analysis, investigating changes to filesystem and
registry, and assessing proxy vulnerabilities. We also apply static analysis techniques like
malware analysis and assessing several backend vulnerabilities.

EMAs vendors claim that their product will protect security and privacy of the company
and employees. Our analysis reveals that each app in our analysis is vulnerable to at least
one of the issues we assessed. We find several bugs, which are particularly concerning when
they relate to privacy features of the EMA. The apps claim to support employee privacy.
However, the feature does not work as expected and the employees privacy can be violated.
This is worse than employees assuming they have no privacy at all. Rather we have a few
cases where the employee will assume their activity is private, but instead they are still
monitored because of a bug in the system.

Our analysis lays a general landscape of the security and privacy issues of EMAs. We
suggest that analysis of EMAs continues, to create a more complete picture of the security
and privacy vulnerabilities of EMAs. This will hopefully urge EMA developers to fix these
bugs and issues to better protect employee privacy.
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