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Abstract

Conventional semantic ‘instance’ segmentation methods offer a segmentation mask for
each object instance in an image along with its semantic class label. These methods excel
in distinguishing instances, whether they belong to the same class or different classes,
providing valuable information about the scene. However, these methods lack the ability
to provide depth-related information, thus unable to capture the 3D geometry of the scene.

One option to derive 3D information about a scene is monocular depth estimation.
It predicts the absolute distance from the camera to each pixel in an image. However,
monocular depth estimation has limitations. It lacks semantic information about object
classes. Furthermore, it is not precise enough to reliably detect instances or establish depth
order for known instances.

Even a coarse 3D geometry, such as the relative depth or occlusion order of objects
is useful to obtain rich 3D-informed scene analysis. Based on this, we address occlusion-
ordered semantic instance segmentation (OOSIS), which augments standard semantic in-
stance segmentation by incorporating a coarse 3D geometry of the scene. By leveraging
occlusion as a strong depth cue, OOSIS estimates a partial relative depth ordering of in-
stances based on their occlusion relations. OOSIS produces two outputs: instance masks
and their classes, as well as the occlusion ordering of those predicted instances.

Existing works pre-date deep learning and rely on simple visual cues such as the y-
coordinate of objects for occlusion ordering. This thesis introduces two deep learning-
based approaches for OOSIS. The first approach, following a top-down strategy, determines
pairwise occlusion order between instances obtained by a standard instance segmentation
method. However, this approach lacks global occlusion ordering consistency, having un-
desired cyclic orderings. Our second approach is bottom-up. It simultaneously derives
instances and their occlusion order by grouping pixels into instances and assigning oc-
clusion order labels. This approach ensures a globally consistent occlusion ordering. As
part of this approach, we develop a novel deep model that predicts the boundaries where
occlusion occurs plus the orientation of occlusion at the boundary, indicating which side
of it occludes the other. The output of this model is utilized to obtain instances and their
corresponding ordering by our proposed discrete optimization formulation.

To assess the performance of OOSIS methods, we introduce a novel evaluation metric
capable of simultaneously evaluating instance segmentation and occlusion ordering. In
addition, we utilize standard metrics for evaluating the quality of instance masks. We also
evaluate occlusion ordering consistency, and oriented occlusion boundaries. We conduct
evaluations on KINS and COCOA datasets.
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Chapter 1

Introduction

Given an input image, the task of semantic instance segmentation is to generate masks for
individual objects in an image, along with their corresponding class labels. Unlike semantic
segmentation, which classifies each pixel into pre-defined categories, instance segmentation
also aims to separate objects of the same class and distinguish them as separate instances.
This technique provides more detailed and precise information about the objects present in
an image. Figure 1.1 provides an example of semantic instance segmentation and compares
it with semantic segmentation.

Figure 1.1: Comparison of semantic segmentation and semantic instance segmentation.
On left, dark blue shows ‘background’ class, purple shows ‘car’ class and light blue shows
‘bicycle’ class. On right, light blue shows the background. Other colors are random for
distinguishing different object instances. Note that in instance segmentation there is an
object class predicted for each mask as well, such as ‘car’, ‘pedestrian’, or ‘bicycle’, which
is not shown in the figure for simplicity.

Instance segmentation has a wide range of applications in various fields. It plays a cru-
cial role in autonomous driving [24, 83], where it assists in understanding the environment

1



Input Image Monocular Depth Estimation

Figure 1.2: Monocular depth estimation example from [85]. Warmer colors show smaller
depth.

by identifying and tracking different objects such as cars, and pedestrians. Further, in-
stance segmentation finds utility in robotics [35, 119], video surveillance [106, 79], remote
sensing imagery [15], aerial imagery [117], and biomedical imaging [20] where accurate
object localization and distinction are essential for performing specific tasks.

Classic instance segmentation methods, such as [40, 14, 112] adopt a two-stage pipeline
involving bounding box generation followed by pixel-wise segmentation within the boxes.
While achieving high accuracy, these methods suffer from inefficiency. Recently, contour-
based methods, including [128, 64, 28] have gained attention due to their efficiency and
accuracy. Instead of working with instance masks, they deal with instance contours. They
represent contours using a limited number of vertices (e.g., 128) and try to regress these
vertices using deep networks. By treating instance segmentation as a contour regression
task, they reduce computational complexity compared to mask-based methods. These
methods have demonstrated high accuracy while being computationally efficient, showing
promise for real-time instance segmentation [128].

Since an image is a 2D projection of a 3D scene, one may want to ask questions related
to 3D geometry. However, answering depth-related questions from just semantic instance
segmentation is not possible, at least without further processing/learning. For example, a
sofa can be to the left of a person in the image but it could be either behind or in front
of the person in the corresponding 3D scene (from the camera’s viewpoint). Augmenting
semantic instance segmentation with depth-related information and relations among the
objects can provide a significantly richer understanding of the scene.

One way to extract 3D information about a scene is monocular depth estimation.
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Input Image Monocular Depth Estimation

Figure 1.3: Monocular depth estimation has limitations. The pieces of cardboard on the
wall are assigned almost the same depth as the wall behind them disabling the recovery
of their relative depth ordering. The depth map is obtained using MiDaS [85] estimator.
Warmer colors show smaller depth.

Monocular depth estimation receives a single input image and predicts the absolute dis-
tance from the camera for each pixel. Figure 1.2 shows an example of the input and output
of a monocular depth estimator. Recent monocular depth estimation methods [25, 85] use
deep learning architectures of encoder-decoder type, where the encoder extracts features
and the decoder generates a depth map. Some methods [2, 1] incorporate skip connections
or attention mechanisms for better performance. These models are trained on paired RGB
images and ground-truth depth maps. During training, the models minimize the difference
between predicted and ground-truth depth maps using loss functions. These methods have
shown promising results in various applications of monocular depth estimation, such as
navigation, autonomous driving, and virtual reality [134, 102, 107, 121].

Monocular depth estimates 3D geometry, but it lacks semantic information. Also, as
we show in this thesis, it is not accurate enough neither to detect instances nor to establish
depth order for known instances detected by other approaches. For example, consider a
thin cardboard sheet leaning on a wall as in Figure 1.3. Since the resolution is limited,
the cardboard and the wall are likely to get equal depth estimates. Yet the relative depth
order of the cardboard is in front of the wall. In general, predicting the exact absolute
depth of each pixel is a hard task. On the other hand, determining the relative depth order
of objects is significantly easier, even for humans. Meanwhile, it can provide very useful
3D information about the scene.

Actually, tackling the hard task of absolute depth estimation is unnecessary for an-
swering many interesting questions about the 3D geometry of scenes, e.g. if a pedestrian
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is behind a car or in front of it in a driving scene. In fact, knowing the relative depth of
objects gives a coarse 3D geometry of the scene that is useful in many applications. For
example, understanding driving scenes [130], scene collaging [46], where one splits the im-
age into several depth layers to understand complex scenes, and scene/video editing [122]
where one can remove certain layers or add new layers from other scenes, can all benefit
from such a coarse 3D geometry, i.e. relative depth ordering of objects. Interestingly, hu-
mans are highly skilled at ordering objects by depth in images and even line drawings [23].
Humans are known to rely on occlusion cues for deriving such orderings [75, 51, 43].

Occlusion refers to the phenomenon where one object obscures parts of another object in
an image or a scene. Occlusion can occur when objects overlap in the image plane or when
one object is positioned in front of another in a 3D scene. Understanding occlusion relations
is important for amodal segmentation [83, 133], optical flow estimation [45, 116], and scene
understanding [46, 104]. Occlusions are a strong depth ordering cue [43]. Given a pair of
objects, humans easily determine which one occludes the other, and there are datasets [83,
133] with such pairwise annotations. Given a set of pairwise occlusion relations, we can
recover the relative depth order between any pair of instances connected by a monotonic
chain, i.e. each object in the chain occludes (or is occluded by) the next object. Hence,
occlusion ordering, defined as establishing the correct order in which objects occlude each
other from the camera’s viewpoint, can provide a coarse 3D geometry of the scene. For
example, in Fig. 1.5, right, thirteen objects on the right are in a known occlusion order.
As discussed, such a coarse 3D geometry can answer many interesting question about the
scene for different applications.

Motivated by the above, we address Occlusion-Ordered Semantic Instance Segmentation
(OOSIS). The goal of OOSIS is to produce instance masks, their corresponding semantic
classes, and their partial relative depth order based on occlusions. We can visualize occlu-
sion order using either a graph, where nodes are instances and directed edges are inserted
for known adjacent occlusions, or a relative depth map, where an instance is assigned a
larger intensity than any other instance it occludes. Figure 1.4 shows an example of the two
possible visualizations. Besides, Fig. 1.5 is an illustration of our input and output, which
consists of instances with their corresponding classes, and their occlusion order, which is
visualized as a relative depth map in Fig. 1.5.

OOSIS is useful for applications such as image captioning [52], question answering [67],
and retrieval [50], where one is interested in a more detailed 3D description of the scene.
Such descriptions are more insightful than a soup of orderless objects [130]. OOSIS is also
useful for scene de-occlusion [127], which tries to find occlusion ordering and complete the
invisible parts of the occluded objects. Scene/video editing [122] can also benefit from
OOSIS as it helps to extract objects and organize them in ordered layers. In general,
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OOSIS can also help scene understanding in other applications such as in autonomous
driving [83], and medical imaging [21].

Occlusion Order VisualizationsImage

Figure 1.4: Occlusion order can be visualized either as a depth map or as a graph. In the
depth map visualization, the background is black, and each instance is brighter than all of
its occludees. In the graph visualization, each instance is a node and there is an edge from
occluders to each of their immediate occludees.

instances occlusion orderinput

Figure 1.5: Illustration of occlusion-ordered semantic instance segmentation (OOSIS).
Given an image, we output the instances with their corresponding classes, and their occlu-
sion order, visualized as a relative depth map. The semantic classes of extracted instances
is not shown here for simplicity.

Contributions

Our work is the first to address OOSIS in the context of deep learning. There are some
works prior to deep learning [122, 46, 104], however, they are based on simple occlusion
heuristics, such as size, or y-coordinate, see Chapter 3 for more details.

We initially show the failure of two naive deep learning-based methods, underscoring
the importance of our later carefully designed approaches. In the first naive method, a deep
model is directly trained to simultaneously predict both the relative depth and instance
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labels. This model exhibits severe limitations in accurately extracting instance masks for
objects within the scene and encounters difficulties in handling occlusion scenarios.

The second naive method employs two separate deep learning models. A deep model
estimates the monocular depth map of the input image, and another deep model performs
semantic segmentation. Using the obtained semantic segmentation, we identify the non-
background pixels and apply clustering on their depth values, which were derived from the
estimated depth map. This method also yields poor results due to the inherent inaccuracy
of monocular depth estimation for precise detection of instances as discussed.

To accomplish the challenging task of OOSIS, we propose two effective approaches.
Our first approach is top-down. It first applies standard semantic ‘instance’ segmenta-
tion [41, 128] and then estimates pairwise occlusion order between neighboring instances.
The advantage of the top-down approach is that we can use state-of-the-art instance seg-
mentation to get accurate masks. The disadvantage is that because occlusions are esti-
mated in a pairwise fashion, they are not globally consistent. For example, we may have
estimated that A occludes B, B occludes C, and C occludes A, leading to A occludes A.
Occlusion cycles in ground truth are exceedingly rare, the overwhelming majority of cycles
are from errors in pairwise occlusion estimates.

Our second approach is bottom-up, which means we group pixels into instances with
proper occlusion ordering. It performs instance segmentation and occlusion ordering simul-
taneously by formulating it in CRF framework [10]. For this formulation, we need oriented
occlusion boundaries, and we design a novel CNN model for this task, outperforming prior
occlusion boundary methods [84]. The advantage of our bottom-up approach is that it pro-
duces globally consistent occlusion ordering. In addition, our bottom-up approach is also
a novel method for standard instance segmentation, but it requires occlusion annotated
ground truth.

To comprehensively assess the effectiveness of methods for OOSIS, we additionally de-
vise a novel evaluation metric. This metric evaluates the quality of instance mask extraction
and the performance of global occlusion ordering simultaneously, using both predicted and
ground truth instance masks and occlusion graphs as inputs and producing Accuracy vs.
Recall curves for each method.

We evaluate our approaches on KINS [83] and COCOA [133] datasets, using both
standard metrics for instance masks, and our new metric for global occlusion order. In
general, standard bottom-up approaches perform worse than the standard top-down ones
for instances’ mask quality. However, the accuracy of our bottom-up approach is similar or
better, depending on the metric, than our top-down approach. Our bottom-up approach
is also better at occlusion order because it recovers a globally consistent cycle-free order.
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Thesis Organization

In the following, we first explain the necessary background for neural networks, deep learn-
ing, and discrete optimization in Chapter 2. Then, in Chapter 3, we discuss the related work
in detail. Chapter 4 explains the naive methods in more detail and qualitatively demon-
strates their poor performance. We elaborate on our two proposed effective approaches
in Chapter 5, for our top-down approach, and Chapter 6, for our bottom-up approach.
Chapter 7 presents various experiments and results for a comprehensive comparison of our
approaches and baselines on the datasets and tasks discussed.
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Chapter 2

Background

2.1 Neural Networks

In recent years, there has been a tremendous surge in the popularity of Artificial Intelligence
(AI), Machine Learning (ML), and Deep Learning (DL). These technologies have gained
widespread recognition across various domains, such as computer vision, natural language
processing, and speech recognition. If one wants to clarify the relation between these
topics, it can simply be described by DL ⊂ ML ⊂ AI. ML’s main objective, and hence
DL’s, is to enable machines to learn from observed data. This process involves feeding
a dataset, which is a set of observed historical data, into the system. The system is
supposed to utilize analytical and statistical techniques to learn from the data so that
after the learning phase, also called training phase, it can generate accurate predictions
for new unseen inputs. ML and DL techniques aim to enhance the machine’s ability to
understand and interpret complex structures within data, i.e. its ability to learn.

In this work, we focus on a subset of ML, called Supervised Learning in which the
algorithms rely on labeled data. It means that each sample in the training dataset has
a corresponding label, which is the desired prediction for that input. For instance, if we
want to classify different input images by the category of the object present in them,
then a training sample would be an image plus a class label, such as ‘cat’, ‘car’, etc. By
utilizing labeled data, we aim to train models that can accurately predict or classify future
examples based on the knowledge gained from the provided labels. Supervised learning
algorithms are versatile and can be applied to two main types of problems: classification
and regression. Classification involves predicting “discrete” labels or categories, while
regression deals with predicting “continuous” values, such as price.
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Figure 2.1: The internal structure of a neuron in a neural network. Image is from [6].

The following delves into the basics of machine learning, neural networks, and deep
learning, establishing an introduction to the underlying concepts and principles.

2.1.1 Basics

Structure

A neural network is a computational model inspired by the structure and functioning of the
human brain’s neural networks [5]. A neural network receives an input and processes it to
generate a final output for that input. An input can be different across different domains.
For instance, if we work with images, our input would be the intensity values of all pixels
of the image. Neural networks consist of interconnected nodes, called neurons that are
organized in layers. Each neuron receives input signals, processes them, and produces an
output signal. The basic components of a neural network include:

• Neurons: Neurons are the fundamental processing units within a neural network.
They receive input signals, perform computations on them, and produce output sig-
nals. Figure 2.1 describes the internal structure of a neuron. For each neuron, the
process of producing the output from the received input is as follows. Figure 2.1
depicts the procedure. The inputs, denoted as x1, x2, . . . , xn, are multiplied by their
corresponding weights, represented as w1, w2, . . . , wn, respectively. The weighted in-
puts and the bias term b are then summed together. This summation is subsequently
passed through an activation function, denoted as f , which generates the output of
the neuron, y. Mathematically, this can be represented as y = f(

∑
i(wixi) + b).
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Figure 2.2: A visualization of a simple neural network with only one hidden layer. Image
is from [76].

It can also be represented using vector operations. Consider w as a column vector
where its i-th element is wi. Likewise, suppose x is a column vector made from xis.
Then, y = f(wTx + b) [5]. Each neuron has its own weights, bias, and activation
function.

• Layers: Neurons are organized into layers, typically categorized as the input layer,
hidden layers, and output layer. The input layer receives the initial input data,
while the output layer produces the final output or prediction. The hidden layers,
located between the input and output layers, perform intermediate computations and
extract features from the input data. The important thing about layers is that they
are stacked so that the input of one layer is the output of the previous layer or a
combination of the outputs of several previous layers. Hence, the layers are the same
in the essence of their working structure and they process the original input further
and further. Figure 2.2 depicts a simple neural network with one hidden layer. A
neural network can have arbitrarily large numbers of hidden layers. Figure 2.3 shows
a neural network with three hidden layers. When all neurons in a layer are connected
to all neurons of the previous layer, the layer is called a Fully Connected Layer. A
network consisting of fully connected layers is called a Fully Connected Network
(FCN).

Now, the question is how neural networks learn. The answer lies in the training proce-
dure explained below.
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Figure 2.3: Visualization of a neural network with three hidden layers. The output of one
layer is the next layer’s input. Image is from [118].

Learning and Training

The learning process of neural networks involves updating the parameters of the network
to improve its ability to make accurate predictions. The parameters include the described
weights and biases for all neurons of all layers. It is obvious that the output of the network
solely depends on the weights, biases, and activation functions described. If the activation
functions themselves have any parameter, they will also be considered as a parameter
that can be learned and updated during the training phase. Updating all weights and
parameters of the network is achieved through a mechanism called backpropagation [91].

During training, the neural network takes the input data and produces output pre-
dictions. This step is called forward propagation as the information flows from the input
layer to the output. The produced predictions are compared to the desired or true labels
using a loss function, which quantifies the error or mismatch between the predicted and
actual values. The goal is to minimize this error by adjusting the weights of the network.
Backpropagation [91] is a technique used to determine how each weight in the network con-
tributes to the overall error. The backpropagation algorithm distributes the error across
the layers of the network based on the contribution of each weight. It applies the chain
rule of calculus to compute the gradients efficiently by propagating the error gradients
backward layer by layer. Once the gradients are computed, an optimization algorithm,
such as gradient descent [16] or one of its variants, is used to update the weights. The
update is performed by taking a step in the direction opposite to the gradient. A learning
rate determines the size of the step, which controls the speed of convergence.

The weight updates gradually refine the network’s performance over multiple iterations
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or epochs. By repeatedly presenting the training data to the network (forward propaga-
tion), adjusting the weights through backpropagation and optimization, and fine-tuning
the predictions, the network learns to generalize patterns and improve its accuracy on
unseen data.

In the following, we elaborate on activation functions, loss functions, and optimizers
such as gradient descent.

Activation Functions

An activation function in a neural network determines the activation level of a neuron, indi-
cating whether it should be “fired” or activated based on its input. It serves as a threshold
or decision-making mechanism for the neuron, determining the relevance or importance
of its input in the prediction process. By applying simple mathematical operations, the
activation function transforms the input signal into an output signal that represents the
neuron’s activation state. This activation or non-activation decision is crucial in the over-
all functioning and learning capabilities of the neural network, as it allows the network
to model complex relationships and make predictions based on the importance of specific
inputs. Also, activation functions play a crucial role in neural networks by introducing
non-linearity to the network’s computations [30, 29]. They determine the output of a neu-
ron based on its input. Activation functions enable neural networks to make non-linear
transformations on the input data.

The most common activation functions used in neural networks are as follows [29].

• Sigmoid: The sigmoid activation function, also known as the logistic function, maps
the input to a value between 0 and 1. It has the mathematical form

f(x) =
1

1 + e−x
. (2.1)

The sigmoid function is widely used in binary classification problems because it
squashes the input to a probability-like output, where values closer to 0 indicate
the presence of one class, and values closer to 1 indicate the presence of another
class. However, the sigmoid function suffers from vanishing gradients, limiting its
effectiveness in hidden layers of neural networks. Vanishing gradients refer to a phe-
nomenon that can occur during the training of deep neural networks, where the
gradients calculated during backpropagation become extremely small as they prop-
agate from the output layer to the earlier layers. This results in the weights of the
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earlier layers being updated very slowly, or not being updated at all, impeding the
learning process.

• Softmax: The softmax activation function is commonly used in multi-class classifi-
cation problems. It takes a vector of inputs and produces a probability distribution
over multiple classes, ensuring that the sum of the output probabilities is equal to 1.
The softmax function is defined as

f(xi) =
exi∑n
j=1 e

xj
, (2.2)

where xi is the input to the i-th neuron and n is the total number of classes. Soft-
max is often used in the output layer of the network to produce normalized class
probabilities for classification tasks.

• Tanh (Hyperbolic Tangent) : The hyperbolic tangent function, denoted as tanh(x),
is similar to the sigmoid function but maps the input to a range between -1 and 1.
It is defined as

f(x) =
ex − e−x

ex + e−x
. (2.3)

Tanh is useful when working with data that ranges from negative to positive values
and is symmetric around zero. Like the sigmoid function, tanh suffers from vanishing
gradients for extreme input values.

• ReLU (Rectified Linear Unit [34]): The ReLU activation function is defined as

f(x) = max(0, x), (2.4)

where x is the input to the neuron. ReLU sets negative inputs to zero and keeps
positive inputs unchanged. This simple yet effective function introduces sparsity,
accelerates training, and mitigates the vanishing gradient problem. ReLU is widely
used in deep neural networks and has contributed to the success of many state-of-
the-art architectures.

Loss Functions

In machine learning and optimization tasks, a loss function, also known as a cost function
or objective function, is a mathematical function that quantifies the discrepancy or ”loss”
between the predicted outputs of a model and the actual or desired outputs. It serves as
a measure of how well the model is performing on a given task.
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The purpose of a loss function is to provide a numerical representation of the model’s
performance, allowing it to be optimized and improved through the process of training.
By evaluating the loss, the model can adjust its internal parameters, such as weights and
biases, to minimize the discrepancy between predictions and ground truth values.

The choice of a suitable loss function depends on the specific problem and the nature
of the data. Different tasks, such as classification, regression, or sequence generation, often
require different loss functions. Here are a few commonly used loss functions [48]:

• Mean Squared Error (MSE): MSE is widely used for regression tasks. It cal-
culates the average squared difference between the predicted and actual values. It
penalizes larger errors more heavily due to the squared term. The formula for MSE
is

MSE =
1

n

∑
i

(yi − ŷi)
2, (2.5)

where yi represents the actual target value, ŷi represents the predicted value, and n
is the total number of samples.

• Binary Cross-Entropy [90]: Binary cross-entropy is typically used for binary clas-
sification problems. It measures the dissimilarity between the predicted probabilities
and the true binary labels, quantifying the information loss. Its formula is

BCE = − 1

n

∑
i

(yi log(ŷi) + (1− yi) log(1− ŷi)), (2.6)

where yi represents the true binary label (0 or 1), ŷi represents the predicted proba-
bility, and n is the total number of samples.

• Categorical Cross-Entropy [90]: Categorical cross-entropy is suitable for multi-
class classification problems. It calculates the average cross-entropy loss across all
classes, comparing the predicted class probabilities with the true class labels. It can
be formulated as

CE = − 1

n

∑
i

∑
j

yi,j log(ŷi,j), (2.7)

where yi,j represents the true class label (0 or 1) for sample i and class j, ŷi,j represents
the predicted probability for sample i and class j, and n is the total number of
samples.
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• Weighted Binary Cross-Entropy [97]: The weighted binary cross-entropy ex-
tends this by introducing weights to the loss calculation. The weights assigned to the
positive class (wpos) and the negative class (wneg) allow for emphasizing the impor-
tance of correctly predicting the positive class or addressing class imbalance issues.
It is formulated as

wBCE = − 1

n

∑
i

([wposyi log(ŷi) + wneg(1− yi) log(1− ŷi)]), (2.8)

where yi represents the true binary label (0 or 1), ŷi represents the predicted prob-
ability, n is the total number of samples, wpos is the weight assigned to the positive
class (class 1), and wneg is the weight assigned to the negative class (class 0). By mul-
tiplying each term in the loss calculation by the corresponding weight, the weighted
binary cross-entropy loss function gives more significance to the positive class during
training, allowing the model to focus on correctly predicting the positive class based
on the assigned weight.

Optimizers

Optimizers are algorithms used in machine learning to update the parameters of a model
during the training process. Their primary purpose is to minimize the loss function and
optimize the model’s performance. Optimizers determine how the model’s parameters,
such as weights and biases, are adjusted based on the gradients of the loss function with
respect to those parameters.

The gradient of the loss function w.r.t the parameters represents the direction and
magnitude of the steepest increase in the loss function. Optimizers utilize this informa-
tion to iteratively update the model’s parameters, gradually moving them in a direction
that reduces the loss and improves the model’s predictions. Figure 2.4 shows a simplified
workflow of optimization based on gradients.

There are various types of optimizers available, each with its own update strategy.
Some of the commonly used optimizers include:

• Gradient Descent [16]: The basic form of optimization, where the model’s param-
eters are updated by taking steps proportional to the negative gradient of the loss
function.

• Stochastic Gradient Descent (SGD) [87, 3]: A variation of gradient descent that
randomly selects a subset of training samples (mini-batch) for each update step. This
helps accelerate the training process and improve convergence.
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Figure 2.4: Optimizing based on gradient descent. Starting from the initial weights, the
mode refines the weights using the gradients of the loss function w.r.t the weights to reach
the optimal weight values. The learning rate determines the size of the steps. Image is
from [39].

• Adam (Adaptive Moment Estimation) [55]: An adaptive learning rate opti-
mization algorithm that computes individual adaptive learning rates for different
model parameters. It combines the advantages of AdaGrad [31] and RMSprop [103]
methods to provide efficient and effective optimization.

The choice of optimizer depends on the specific problem, dataset, and model architec-
ture. Different optimizers have different behaviors and may converge at different rates. It
is often recommended to experiment with different optimizers and learning rates to find
the optimal combination for a given task.

The learning rate is a hyperparameter that determines the step size at which the model’s
parameters are updated during training. It controls the speed and magnitude of the ad-
justments made to the model’s parameters in response to the computed gradients of the
loss function.

The learning rate is a crucial parameter as it influences the convergence and stability of
the training process [47]. If the learning rate is set too high, the updates to the parameters
may be too large, causing the training process to oscillate or even diverge. On the other
hand, if the learning rate is set too low, the updates may be too small, resulting in slow
convergence and prolonged training time [13].

2.1.2 Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNNs) [61, 59] are a class of deep learning models specifi-
cally designed for analyzing visual data, such as images. CNNs have revolutionized the field
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Figure 2.5: Visualization of a convolutional neural network (CNN). Image is from [93].

of computer vision by demonstrating exceptional performance in various tasks, including
image classification [61, 59, 96, 42], object detection [86], and image segmentation [132, 88].
Figure 2.5 visualizes an example of a CNN. CNNs are basically different from Fully Con-
nected Networks (FCNs), like the ones we have described so far, by using two layers, namely
convolution and pooling layers. The following explains each of them.

Convolution Layers

Convolutional layers are fundamental building blocks of Convolutional Neural Networks
(CNNs) and play a crucial role in capturing and extracting local features from input data,
especially in the context of images. A convolutional layer applies a set of learnable filters
(also known as kernels) [54] to the input data using the convolution operation.

The convolution operation involves sliding the filters across the input data and comput-
ing the element-wise multiplication between the filter and the corresponding local receptive
field of the input [54]. Figure 2.6 shows an example of such an operation. This process
results in a feature map, which represents the filtered response of each filter to different
local regions of the input [54]. The filters in a convolutional layer are responsible for de-
tecting specific patterns or features, such as edges, textures, or more complex structures,
at different spatial locations [54].

Each filter in a convolutional layer is typically small in spatial size but extends across
the full depth (number of channels) of the input data. This depth-wise connectivity allows
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Figure 2.6: An example of a single convolution filter operating on an input image. In each
step, the filter shifts by stride= 1 to the right or down to produce the result. The kernel
size is 3× 3 and there is no padding in this example. The values for the filter are written
at the bottom right corner of each cell. Image is from [33].

the filters to capture both spatial and channel-wise information simultaneously. The filters
are shared across the entire input, meaning the same set of weights is used at every spatial
location, enabling the network to detect similar patterns regardless of their position in the
input [54].

To further enhance the capability of capturing spatial information, convolutional layers
often incorporate additional operations. These operations include:

• Padding: Padding involves adding extra border pixels to the input data to preserve
the spatial dimensions of the input and avoid reducing the size of the feature map.
Padding helps to maintain spatial resolution and prevent information loss at the
borders of the input. Padding is usually employed by adding zeros [54].

• Stride: Stride determines the step size at which the filters are applied to the input
during the convolution operation. A stride of 1 means the filters move one pixel at a
time, preserving the spatial resolution. Larger stride values result in a smaller output
size but can help reduce computational complexity [54].

Convolutional layers are typically stacked together to form deeper networks, allowing
the model to learn hierarchical representations of increasing complexity [54]. The output
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of one convolutional layer serves as the input to the next layer, enabling the network to
capture high-level features by progressively combining low-level features.

CNNs differ from fully connected networks (FCNs) in their architectural design and
their ability to exploit spatial hierarchies in data. Here are some key differences between
CNNs and FCNs:

• Local Connectivity: CNNs take advantage of the local connectivity of neurons in
the visual cortex. Each neuron in a convolutional layer is connected to only a small
local region in the input image, allowing them to focus on local patterns and features.
In contrast, FCNs connect each neuron to every neuron in the previous layer, lacking
the notion of spatial locality [54].

• Shared Weights: CNNs utilize shared weights across different spatial locations in
the input. The same set of weights (filters) is applied to different parts of the input,
enabling the network to learn and detect patterns regardless of their position in the
image. FCNs, on the other hand, have independent weights for each connection,
resulting in a large number of parameters and less weight sharing [54].

• Hierarchical Feature Extraction: CNNs employ a hierarchical structure to cap-
ture increasingly complex features. Lower layers in a CNN learn simple features like
edges and textures, while higher layers learn more abstract features like shapes and
objects. This hierarchical feature extraction allows CNNs to represent and recognize
complex visual patterns effectively. FCNs lack this explicit hierarchical structure [54].

• Translation Invariance: CNNs inherently possess translation invariance, meaning
they can recognize patterns regardless of their position in the image. This property
makes CNNs robust to small variations and enables them to generalize well to new,
unseen images. FCNs, without the convolutional and pooling operations, lack this
translation invariance [54].

Atrous Convolution

Atrous convolution, also known as dilated convolution [44, 92], is an operation that al-
lows for the extraction of multi-scale features from images or feature maps. Different from
standard convolutions, atrous convolution introduces controlled gaps or holes in the con-
volutional kernel. These gaps enable the convolutional operation to capture information
from a wider area while maintaining the original resolution of the feature map and having
the same number of parameters as a standard convolution kernel of the same size.
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Figure 2.7: a) Standard 3x3 convolution kernel. b) Atrous convolution kernel with the
same size. The small green squares of the kernel are each multiplied by the corresponding
red dots. As seen, the atrous kernel captures information from a larger area (the red
square) by introducing holes between the kernel elements. Image is from [94].

Figure 2.7 shows an example of an atrous convolution kernel performing on an input
image. As seen, though the size of the kernels is 3 × 3 for both the standard convolution
and the atrous convolution, the latter is taking the information from a larger area into
consideration by using holes.

By adjusting the dilation rate, which determines the spacing between the kernel ele-
ments, atrous convolution can effectively capture contextual information at different scales.
This makes it particularly valuable in tasks such as image segmentation, where capturing
both fine-grained details and global context is crucial for accurate and comprehensive anal-
ysis [132, 19].

Pooling Layers

Pooling is an essential operation in Convolutional Neural Networks (CNNs) that helps
to reduce the spatial dimensionality of feature maps, extract dominant features, and in-
troduce spatial invariance [38, 54]. Pooling is typically applied after convolutional layers
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Figure 2.8: An example of a max pooling operation with a filter size of 2 and a stride of
2. Image is from [60].

to progressively downsample the feature maps while retaining the most relevant informa-
tion [38, 54].

There are different types of pooling operations used in CNNs, with the most common
one being max pooling. Max pooling divides the input feature map into non-overlapping
rectangular regions (pools) and outputs the maximum value within each pool. Figure 2.8
depicts an example of such an operation. By selecting the maximum value, max pooling
retains the most salient feature in each local region. Max pooling helps in extracting the
most significant features while discarding irrelevant variations and reducing the spatial
dimensionality of the feature maps.

The main advantages of pooling are [27]:

• Dimensionality reduction: Pooling reduces the spatial dimensionality of the fea-
ture maps, making subsequent layers computationally more efficient and reducing
the risk of overfitting [27, 54].

• Translation invariance: Pooling introduces spatial invariance by selecting the most
dominant feature within each local region. This allows the network to recognize fea-
tures regardless of their precise location, enhancing the network’s ability to general-
ize [27, 54].

• Extraction of dominant features: Pooling helps to extract the most important
and distinctive features by selecting the maximum or average values. This can en-
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hance the network’s ability to capture the most relevant information for the given
task [27, 54].

It is important to note that pooling is a form of lossy compression since it discards some
information by downsampling. However, by retaining the most salient features, pooling
contributes to the overall efficiency and effectiveness of CNNs in various computer vision
tasks such as image classification, object detection, and segmentation.

2.2 Labeling Problems and Energy Optimization

Most explanations below are based on [110, 10]. A variety of computer vision tasks, such
as semantic segmentation, disparity map estimation, and instance segmentation can be
thought of as labeling problems. In a labeling problem, we have a set of sites, P , and a
set of labels, L [110]. Sites represent the image parts for which we want to predict a label.
In this work, we consider dense labeling problems and we want to label all pixels in an
image. Hence, our sites are all the pixels of our image. We refer to the sites as pixels for
simplicity. The labels can be different based on the problem. For example, in semantic
segmentation, the labels are different possible semantic classes, like ‘car’, ‘pedestrian’, etc.
The labeling problem is to assign a label from L to each pixel p ∈ P . We name the label
assigned to pixel p ∈ P as xp. A labeling, x, is the vector of xp for all different pixels. The
optimization approach defines a systematic two-step framework to solve different labeling
problems [110]. The steps can be described as follows:

• First, one should define an objective function. This function maps all possible solu-
tions for the problem to a real number. Its goal is to measure the quality or goodness
of a solution [110]. Designing such an objective function can be challenging as one
must formulate various constraints a solution needs to satisfy in a way that a better
solution receives a better score from the function. As a result, to formulate such a
function, we need to first, extract the required constraints for the problem at hand.
In many vision tasks, there are two main sets of constraints defined. Data constraints
that reflect how much the solution matches with the observed data. Prior constraints
reflect how much the solution agrees with the prior knowledge we have about a good
solution for the problem [110]. Mostly, the objective functions are designed in a
way that smaller values correspond to better solutions. Such objective functions are
widely known as energy functions [110].
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• Second step involves finding a solution that has the best goodness. More formally,
one should minimize the defined energy function over the possible solutions. Op-
timizing the energy function is even harder than designing one [110]. Most of the
energy functions are not convex, meaning they can have multiple local minima. Also,
obviously, the set of all possible solutions is exponentially large for most vision tasks,
such as semantic segmentation or instance segmentation. The computational de-
mands are quite intense [110]. Hence, most methods aim for finding an approximate
answer [110].

Below, we explain some energy functions and optimization algorithms.

2.2.1 Energy Functions

A wide variety of energy functions have the form of

E(x) =
∑
p∈P

Dp(xp) +
∑
p,q∈N

Vp,q(xp, xq), (2.9)

where N is the set of interacting pairs of pixels. It can consist of the adjacent pixels, e.g.
in a 4 or 8-neighborhood system, or it can be any other set [10]. In this formulation, the
D terms are called the unary terms and the V terms are called the pairwise terms.

An example of pairwise terms is the famous Potts model [82]. It captures the behavior
of neighboring pixels by promoting label similarity. It favors homogeneous regions and
promotes spatial coherence in the labeling. In other words, it promotes smoothness in the
labeling, penalizing frequent alternation among different labels [10, 110]. It is formulated
as:

E(x) =
∑
p,q∈N

wp,q[xp ̸= xq], (2.10)

where the [.] is the Iverson bracket, and N is the set of interacting pixels. wp,q is a pair-
specific weight. In general, it can be a fixed constant for all pairs or a variable for each [10].
In this work, we have the same constant weights for all pairs. This energy penalizes a
labeling x by wp,q for each adjacent pixel pair (p, q) if their labels are different. Hence, it
favors smooth solutions. Obviously, if an energy function only has a single term forcing
the prior knowledge, such as the smoothness prior as in the Potts model above, it will not
find a good solution. For instance, it can output the same label for all pixels minimizing
the Potts model although being undesired and not distinguishing different pixels. This
underscores the need for other terms and in fact, the data terms in the energy function.
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Labeling x Labeling x

Figure 2.9: α-expansion move example, where alph = 1. Image is from [110]

Overall, most energy functions are a combination of different unary and pairwise terms
each trying to capture the goodness of an input solution based on the observed data, or
prior knowledge of the problem. For interested readers, please see [110, 10] for more
examples and discussions.

2.2.2 Discrete Optimization Algorithms

As explained, after designing an energy function, one needs to minimize it over the possible
solutions. Since computing the globally optimal solution is often NP-hard [10], there are a
variety of methods opting for a local minimum [110]. When the labels are discrete, there
are different ways to define a local minimum [110]. A natural way is by using the concept of
move spaces [110, 80]. In fact, some of the most effective and efficient discrete optimization
algorithms work based on defining move spaces and using graph cut algorithms [10, 110].
Below, we briefly describe move, move space, and two of the algorithms that we use in this
thesis.

A move is a pair of labelings (x, x̄) ∈ X ×X , where X is the set of all possible labelings.
A move space,M, is a set of some moves,M⊂ X ×X [10, 110]. If a a move such as (x, x̄)
is in M then it is allowed. It means you can go from x to x̄. If a move is not in M then
such transition is forbidden. Naturally, a local minimum with respect to M is defined as
a labeling such as x∗ where no further move m ∈ M from x∗ exists that can reduce the
energy.

Below, we describe two optimization algorithms, along with their corresponding move
spaces, that are later used in this thesis.

• Expansion Moves [10] Let α ∈ L, then (x, x̄) is an α-expansion move if there

24



Labeling x Labeling x

Figure 2.10: 1-jump move example. Image is from [110]

Algorithm 1 Optimizing α-expansion [10]

1: E := energy function, L := set of all possible labels, labelling := labels for all pixels
2: x← arbitrary labelling
3: success← 0
4: while success = 1 do
5: success← 0
6: for α ∈ L do
7: Find x̄ := argminE(x̄) among all x̄ within one α-expansion of x
8: if E(x̄) < E(x) then
9: x← x̄
10: success← 1
11: end if
12: end for
13: end while
14: return x
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Algorithm 2 Optimizing 1-jump [110]

E := energy function, L := set of all possible labels, labelling := labels for all pixels
2: x← initialize with all pixels having the minimum label

success← 0
4: while success = 1 do

success← 0
6: Find x̄ := argminE(x̄) among all x̄ within one 1-jump of x

if E(x̄) < E(x) then
8: x← x̄

success← 1
10: end if

end while
12: return x

exists A ⊂ P such that

x̄p = α for p ∈ A (2.11)

xp = x̄p for p /∈ A. (2.12)

An example of an α-expansion move is shown in Figure 2.9. A labeling x is a local
minimum with respect to expansion moves if no further α-expansion can be made for
any α to decrease the energy function at that labeling. The work in [10] proposes an
algorithm that finds a local minimum with respect to such moves. This algorithm
works based on graph cuts. The overall algorithm is shown in Algorithm 1. In each
iteration, it goes over all α ∈ L and finds the optimal α-expansion move out of
all possible ones to decrease the energy function. Then it performs that move and
goes to the next label. It stops when no further moves are possible for reducing
the energy. To find the optimal move within one α-expansion from the current
labeling, the algorithm uses graph cuts. For further explanation on the graph-cut
part see [10, 58], as explaining it is beyond the scope of this thesis.

• Jump Moves [110]: Consider when all labels are represented by integer values.
A move (x, x̄) is called an i-jump move if for any p ∈ P , x̄p − xp = i (i ≥ 1) or
x̄p − xp = 0. An example of a 1-jump move is shown in Figure 2.10. Note that, in
general, the jump moves do not require the labels to be integers or i to be positive. In
this thesis, we only work with integer labels and 1-jumps, and hence, do not explain
beyond. The optimization algorithm shown in Figure 2, finds a local minimum with
respect to the 1-jump moves. In each iteration, it finds the optimal jump move and
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performs it until no further move is possible. Again, finding the optimal move is
based on graph cuts. For an explanation of how these graph-cut algorithms work,
please see [110, 58].

Note that for any of these move-based algorithms to work using graph cuts, the energy
functions need to be submodular [10, 58] with respect to that specific move. We will discuss
submodularity for our energy functions later in Chapter 6.
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Chapter 3

Related Work

3.1 Semantic Segmentation

Semantic segmentation is an image segmentation technique that assigns meaningful labels
to each pixel based on a predefined set of classes. In this process, every pixel in an
image is categorized into specific classes, such as “bicycle”, or “background”, providing an
understanding of the scene. Figure 3.1 shows an example of semantic segmentation for an
input image. There are three classes in the image, ‘background’, ‘pedestrian’, and ‘car’.
Semantic segmentation allows for identifying the classes of individual pixels.

Semantic segmentation is a versatile technique with a wide array of applications. It
is employed in autonomous driving [12]. In medical imaging and diagnosis, it aids in
precise delineation of structures and pathological regions [22, 69, 70]. Additionally, it finds
use in facial segmentation, handwriting detection and analysis, agriculture, fashion, video
surveillance, image editing, and more [17, 61, 72, 4, 68, 108, 71, 74].

background

pedestrian

car

Image Semantic Segmentation

Figure 3.1: An example of semantic segmentation for an input image. Each pixel is assigned
a class label from the ‘background’, ‘car’, and ‘pedestrian’ classes.
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Semantic segmentation, a challenging problem for machine vision despite its seemingly
effortless execution by the human visual system, has been a subject of extensive research
for decades. In recent years, deep learning and neural networks, particularly CNNs, have
dominated the field of semantic segmentation [19, 132, 89]. These models gained popularity
due to their ability to automatically extract features from large image datasets without
the need for manual feature engineering.

To train a fully supervised semantic segmentation network, a dataset with pixel-level
annotations is essential. Each pixel in the dataset is labeled with a class from a predefined
set of classes. During training, the CNN learns to identify features and representations
associated with each class label. Once trained, the CNN can process new images, ac-
curately assigning class labels to each pixel. This training process, utilizing images and
their corresponding pixel-level labels, is known as fully supervised semantic segmentation.
By leveraging the power of CNNs and providing detailed annotations, significant progress
has been made in achieving accurate and fine-grained semantic segmentation results. Our
bottom-up approach in Chapter 6 relies on semantic segmentation for its first stage. We
use PSPNet [132] as the base of our semantic segmentation model. Below, we explain
PSPNet in detail.

3.1.1 PSPNet [132]

Pyramid Scene Parsing Network (PSPNet) is a deep learning architecture specifically de-
signed for pixel-wise semantic segmentation tasks in computer vision.

The key idea behind PSPNet is to capture contextual information from different scales
to improve segmentation accuracy. It leverages the concept of dilated convolutions [124],
also known as atrous convolutions, to enlarge the receptive field of convolutional layers
without increasing the number of parameters. This enables the network to capture both
local and global contextual information.

PSPNet consists of two main components: the Pyramid Pooling Module and the
Encoder-Decoder Structure. The Pyramid Pooling Module is responsible for capturing
multi-scale contextual information. It takes the output feature maps from the last convo-
lutional layer and performs pooling operations at different scales, using different bin sizes.
This allows the network to capture contextual information at multiple scales and aggregate
it into a fixed-size representation.

The Encoder-Decoder Structure in PSPNet combines the extracted contextual infor-
mation with high-resolution feature maps to produce detailed segmentations. The encoder
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Figure 3.2: Overview of PSPNet. Given an input image (a), a CNN is applied and the
outputs of the last convolutional layer are called as features (b), then a pyramid parsing
module is applied to harvest different sub-region representations, followed by upsampling
and concatenation layers to form the final feature representation, which carries both local
and global context information in (c). Finally, the representation is fed into a convolution
layer to get the final per-pixel prediction (d). Image and explanation are from [132].

part consists of convolutional and pooling layers that gradually reduce the spatial resolu-
tion while increasing the number of channels. The decoder part, on the other hand, uses
up-sampling and skip connections to recover the spatial resolution and refine the segmen-
tation output.

One notable aspect of PSPNet is its ability to handle images of arbitrary sizes during
both training and inference. This is achieved by adopting a “sliding window” technique,
where large images are divided into overlapping patches that are processed independently
by the network. The final segmentation map is obtained by merging the predictions from
all patches.

PSPNet has demonstrated impressive performance on various challenging scene pars-
ing benchmarks, outperforming previous state-of-the-art methods. Its ability to capture
multi-scale contextual information and effectively leverage dilated convolutions makes it
particularly well-suited for detailed scene understanding tasks, such as object segmenta-
tion, scene labeling, and image parsing.

3.2 Semantic Instance Segmentation

In semantic “instance” segmentation, the goal is to generate a pixel-level mask for each
object instance in an image, in addition to predicting its semantic class. For instance,
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Figure 3.3: An example of semantic instance segmentation. For each instance, a mask is
produced. Also, the semantic class of each instance is predicted, which is not shown in this
figure for simplicity.

in Figure 3.3, all ‘bicycle’ and ‘pedestrian’ objects are identified by a separate mask and
a predicted class. Instance segmentation enables models to understand the spatial ex-
tent and location of each object instance, distinguishing between different instances even
if they belong to the same category. Instance segmentation is known as a keystone of
many real-world computer vision applications, such as autonomous driving [24, 83], video
surveillance [106, 79], and robotics [35, 119].

While semantic instance segmentation provides valuable scene information, it lacks
depth-related details. In this thesis, we propose two approaches that not only provide in-
stance segmentation-level information but also output a coarse 3D geometry of the scene.
Our first approach, the top-down one, leverages conventional instance segmentation meth-
ods. Hence, we review the instance segmentation works and explain the two instance
segmentation models employed in our experiments in more detail.

Generally, one can divide instance segmentation methods into two main groups, based
on how they predict the final masks of object instances. Mask-based methods, such as
[40, 14, 112, 8], predict a mask for each object, and during training, they optimize to
produce better masks. On the other hand, contour-based methods focus on predicting and
refining object contours. Contours represent the boundaries of object instances and can be
represented using a smaller number of points compared to pixel-level masks. Consequently,
contour-based methods often offer faster computation and more efficient processing.

3.2.1 Mask-based Instance Segmentation

Two-stage Methods: Two-stage instance segmentation methods involve a two-step pro-
cess to identify and segment object instances within an image. In the first stage, these
methods typically perform object detection to identify potential object regions within the
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image. Object detection algorithms, such as Faster R-CNN [86] that use Region Proposal
Networks (RPN) [86], are commonly used in this step. The object detection stage aims
to generate a set of bounding box proposals that likely contain different object instances.
In the second stage, the method refines the initial bounding box proposals and predicts
the pixel-level masks for each object instance. This stage is responsible for accurately seg-
menting each object and assigning the appropriate class label. Examples of such methods
include [40, 14, 112]. These methods are often more accurate but computationally intensive
compared to single-stage methods [128].

One-stage Methods: Single-stage instance segmentation methods directly predict
object masks in a single step, without the need for a separate object detection stage. These
methods are designed to be simpler, faster, and more computationally efficient compared
to their two-stage counterparts [128]. An example of such a method is YOLACT [8].
It combines object detection and mask prediction into a unified framework. YOLACT
utilizes a set of predefined anchor boxes across multiple feature maps to detect objects at
different scales and aspect ratios. The network simultaneously predicts object bounding
boxes, mask coefficients, and class probabilities. Instead of directly generating binary
object masks, YOLACT uses a linear combination of learned coefficients to produce high-
quality instance segmentation masks. Other single-stage methods include [114, 115]. These
methods greatly improve the speed. However, they sacrifice performance for that. As we
are not focused on speed in this thesis, we utilize two-stage methods due to their superior
performance.

Pixel-grouping Methods (Bottom-up): These methods do not rely on explicit ob-
ject detection, region proposals, or anchor boxes. In contrast, they first find embeddings
or features for each pixel of the image, then, group those pixels using clustering or other
algorithms to form different object instances. Examples of such methods include [7, 77].
It is notable that our proposed “bottom-up” approach in Chapter 6 can not only be con-
sidered a method for occlusion-ordered semantic instance segmentation but for traditional
instance segmentation as well, though it requires occlusion order annotation for training.

Mask R-CNN [40]

Mask R-CNN is a sophisticated and highly effective instance segmentation model that
builds upon the Faster R-CNN [86] framework. The architecture of Mask R-CNN consists
of five primary components, each playing a crucial role in achieving precise instance seg-
mentation: 1- the backbone network, 2- the region proposal network (RPN), 3- the Region
of Interest Align (RoIAlign) Layer, 4- the detection head, and 5- the mask head. Figure 3.4
visualizes the overal structure of Mask R-CNN model and the mentioned components.
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Figure 3.4: Mask R-CNN [40] instance segmentation model. Image is from [129]

The backbone network serves as the foundation of Mask R-CNN and is typically based
on a deep CNN such as ResNet [42]. It processes the input image and extracts high-level
feature maps that capture rich semantic information and spatial details.

The primary objective of the RPN is to propose potential bounding boxes that encom-
pass objects, which are later refined and classified by subsequent stages of the network. It
achieves this by analyzing features extracted by the backbone.

The RPN operates on a set of anchor boxes, which are predefined bounding boxes of
different scales and aspect ratios that densely cover the image. These anchor boxes are
generated across multiple positions on the feature map produced by the CNN backbone.
For each anchor box, the RPN predicts two essential parameters: objectness scores and
bounding box offsets. The objectness score indicates the probability of an anchor box
containing an object of interest, while the bounding box offsets specify the necessary ad-
justments to align the anchor box with the object’s precise location and size. To generate
accurate region proposals, the RPN utilizes a combination of classification and regression
losses during training. The classification loss measures the accuracy of the objectness
scores, distinguishing between anchor boxes that contain objects and those that do not.
The regression loss quantifies the discrepancy between the predicted bounding box offsets
and the ground truth annotations. During inference, the RPN ranks the proposed region
boxes based on their objectness scores. The boxes with high scores, typically surpassing a
predefined threshold, are then further refined and filtered by the predicted bounding box
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offsets, and non-maximum suppression, which only keeps the proposal with the highest
score among highly overlapping ones.

Once the region proposals are obtained, the backbone features and proposals are passed
through the Region of Interest (RoI) Align layer. This layer extracts a small feature
map from the backbone features specific to the bounding box represented by each region
proposal. Simply put, it splits the backbone’s feature map for each proposed bounding box
into a grid of equally spaced points and then uses bilinear interpolation to extract features
at these points from the feature map.

The RoIAligned features are then passed to two prediction networks. The detection
head and the mask head. The detection head employs fully connected layers to predict
a semantic class for each proposal and represses the bounding box prediction. The mask
head, however, predicts a binary mask within each proposal using a CNN that highlights
the object in the region proposal.

During training, Mask R-CNN utilizes ground truth annotations to compute loss func-
tions for both the semantic class prediction, bounding box regression, and mask prediction
tasks. At inference time, given an input image, Mask R-CNN first passes it through the
backbone network to extract feature maps. The RPN generates region proposals, which
are then refined and pruned based on their objectness scores and overlaps. The remain-
ing region proposals are fed into the detection and mask heads, which generate precise
instance masks and classes for each object, resulting in highly accurate segmentation of
object instances within the image.

3.2.2 Contour-based Instance Segmentation

Contour-based methods, including Curve GCN [64], Deep Snake [81], PolarMask [120],
and LSNet [28], have recently gained attention and demonstrated promising results. These
methods approach instance segmentation as a regression task, predicting the vertex co-
ordinates of a contour represented by discrete vertices. By using a contour with a rel-
atively small number of vertices (e.g., N = 128), these methods effectively capture the
instance’s shape [128]. In contrast to mask-based methods that process every pixel exten-
sively, contour-based methods offer simplicity and require fewer computations [128]. The
general framework of these methods is to initialize a first instance contour and deform it
based on the features of the object’s center to ideally match each instance’s boundary.
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Figure 3.5: Overview of E2EC model. A learnable contour initialization architecture pro-
duces the coarse con- tour. Then, a contour refinement module produces the final contour
with the supervision of DML, which is a loss function. Image and explanation are from [128]

E2EC [128]

Figure 3.5 shows the workflow of this method. An image is first passed to a backbone
network to extract deep features. These features are then used to create a heatmap for
each class, which highlights the points in the feature maps’ space that potentially belong
to each class. Note that the dimensions of feature maps is by far less than the input image.
Hence, the computational cost of such a prediction is far less than a typical semantic
segmentation. These heatmaps are then used, via employing non-maximum suppression,
to find the candidate centers of instances.

E2EC’s main contributions are the three following components. 1- Learnable Contour
Initialization 2- Multi-direction Alignment 3- Dynamic Matching Loss [128].

In E2EC, unlike the prior works [120, 81] that manually design the initial contours,
it is left to the network to learn the shape of the initial contour. This is done using
two modules. First, the contour initialization module takes the features of the instance’s
center point as input and regresses the offsets for each vertex of the initial contour. These
offsets represent the displacement of each vertex from the center point. By regressing the
offsets, the module learns to generate an initial contour that is closer to the ground truth.
Put differently, the model can arbitrarily select where to place the vertices of the contour
instead of using a fixed pre-designed shape such as a circle around the center. The output
of this stage is the initial contour as seen in Figure 3.5.

Second, the global contour deformation module refines the initial contour generated by
the contour initialization module. It takes into account the features of all the vertices in
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the initial contour, as well as the center point features. This global deformation allows the
module to better adjust the initial contour and produce a more accurate representation of
the instance boundary. This stage produces the coarse contour as in Figure 3.5.

The coarse contour is then passed to the contour refinement stage. To reduce learn-
ing difficulty, E2EC proposes a novel label sampling scheme called Multi-direction align-
ment (MDA). It fixes the directions of selected contour vertices with respect to the center
point and uniformly samples between these fixed vertices to generate ground-truth ver-
tices. MDA restricts vertex pairing and deformation paths, making learning easier while
ensuring good performance. E2EC introduces a dynamic matching strategy for pairing
predicted and ground-truth vertices instead of using fixed pairing. This strategy, along
with the corresponding DML loss function, improves the quality of predicted boundary
details by adjusting prediction points to the nearest ground-truth points and pulling them
toward key label points. Explaining the details of this step is beyond the scope of this
thesis. Interested readers are encouraged to see [128]

3.3 3D-Augmented Semantic Instance Segmentation

The most related to our work are [122, 46, 104]. They also propose to augment semantic
instance segmentation by occlusion ordering. However, they predate deep learning and are
based on simple hand-crafted strategies for occlusion order such as size, y-coordinate, and
detection confidence. Our methods take advantage of deep learning both for instance seg-
mentation and occlusion ordering. Below, we first explain three of these pre-deep learning
methods. Then, we explain the only related method that leverages deep learning.

3.3.1 Pre-deep Learning

[122] introduces a layered model that addresses simultaneous instance segmentation and
depth ordering. Their approach begins by applying detectors trained with support vector
machines (SVMs) to obtain instance detections for each semantic class. They then propose
a probabilistic model consisting of a shape model and a layer model. The shape model
incorporates shape priors to ensure accurate segmentation masks, while the layer model
enforces consistency in the depth ordering of the detections based on layering priors. The
objective of the model is to optimize the segmentation masks and their depth ordering,
such that overlaying the masks in the predicted order yields the best overall segmentation
of the input image. The layer model incorporates simple heuristics to assess the quality of
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the predicted depth ordering. Firstly, detections with higher detection scores are favored
to have a lower depth order, as higher scores indicate fewer occluded parts in the object.
Secondly, instances with lower bottom edges are encouraged to have a lower depth order.
Lastly, larger objects are encouraged to have a lower depth order, as smaller objects are
generally farther away. The optimization of the models is performed using the Expectation-
Maximization (EM) [73] algorithm.

[46] proposes a scene parsing method inspired by the process of collaging used by digital
artists to synthesize complex scenes. First, a dictionary of candidate object segments is
retrieved based on their similarity to the given query image. These segments are then
combined to form a “scene collage” that serves as an explanation for the query image. To
make such a combination, the model assigns depth layers to each of the segments that can
be warped and translated first. Finding the best collage is formulated as finding the best
layered warped object segments from the dictionary that their combination is the most
similar to the query image. The proposed method goes beyond pixel-level labeling and
provides additional valuable information about the scene. This includes details such as the
quantity of each object type present, the relationships and support among objects, and the
ordinal depth of each object within the scene.

[104] initially employs a pre-deep learning scene parsing framework to generate can-
didate instance masks and an initial pixel labeling for the image. To select the most
suitable object instances that align with the image and satisfy overlap constraints, an in-
teger quadratic program is solved. These overlap constraints incorporate prior knowledge
and statistical observations from the training set, such as cars overlapping the road or
avoiding complete overlap between cars. By solving the program, a subset of object in-
stances that best adheres to the overlap constraints is chosen. To determine the occlusion
ordering, a graph is constructed with each selected object represented as a node. Edges
are added between occluding pairs of objects, with weights determined based on training
set statistics. These weights quantify the probability of an object from the first object’s
class occluding an object from the second object’s class with the same overlap score. Edges
with smaller weights are then removed until an acyclic graph is obtained. The topological
sorting of the graph shows the occlusion ordering of the detected instances.

Obviously, these methods rely on simple cues, while our proposed methods employ deep
learning that allows for richer feature learning and stronger performance.

37



3.3.2 Using Deep Learning

The only deep learning work augmenting instance segmentation by 3D geometry is [130].
It focuses on scenarios with only one semantic class, ‘car’. Given an input image, this
model outputs car instance masks and their depth ordering. For this, it divides the input
image into overlapping patches at multiple resolutions. For each patch, a CNN predicts
both the instance masks and depth ordering. The predicted orders are patch-based and
they need to be combined into a global ordering for an image. To this end, they introduce
a Markov random field (MRF) [37] framework to ensure a coherent output for the image.
The MRF takes into account the predictions from the CNN for the overlapping patches
and solves an energy minimization. The energy function specifically encourages connected
components of the same y-coordiante to have the same depth ordering. This is a simple
specific heuristic that works only for driving scenes. Such heuristic does not work on other
scenes, e.g. for common object datasets like COCOA [133]. The energy function also
encourages far pixels to have different labels, while closer ones are encouraged to agree on
labeling. The energy is then optimized by QPBO [57] to obtain the final labeling.

Our work is different from theirs in several aspects. First, they use depth, not occlusion,
ordering. This requires a training dataset with ground truth depth annotations, which is
hard to obtain. Furthermore, they deal with only one semantic class. In their formulation,
there is no consideration of different semantic classes for each object, e.g. ‘car’, ‘pedestrian’,
etc. In our work, we design a general framework that involves detecting the correct semantic
class for each predicted instance mask in addition to its occlusion ordering. Hence, we can
deal with different semantic classes. Lastly, they propose one approach whereas we explore
a variety of approaches with different properties.

3.4 Occlusion Order Prediction

Our top-down approach leverages pairwise occlusion order classifiers. Such classifiers [133,
62] are trained on ground-truth non-overlapping instance masks. In our top-down ap-
proach, we make use of these classifiers but have to deal with predicted and overlapping
masks. Note that [133, 62] evaluate their pairwise order classifier, but on unseen yet non-
overlapping ground truth data, which makes the task easier. In the following, we explain
these classifiers separately.
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Figure 3.6: The overall architecture of InstaOrder. Image is from [62]

3.4.1 OrderNet [133]

This model takes as input two masks, one for each object instance A and B, plus the RGB
image. It predicts a 3D output for each such input. The output for each sample is in form
{A occludes B, B occludes A, no occlusion relation between the two}. The model uses
a ResNet-50 [42] backbone and slightly changes it to account for the different number of
input channels and the number of output classes.

3.4.2 InstaOrder [62]

This work also predicts the occlusion relation between two given instances. The input
to this model is three parts. First, the image. Second, the mask of object instance A.
Third, the mask of object instance B. Taking these three inputs, InstaOrder outputs a
2-dimensional output. The first component of the output is the probability that instance
A occludes instance B. The second output is the probability that B occludes A. If none
of the outputs are high, then it means there is no occlusion relation between the two
instances. Otherwise, if only one of them is high, the interpretation is obvious. If both
are high, it means that they are both occluding each other. Based on this, InstaOrder [62]
takes bidirectional occlusion relation into consideration, whereas OrderNet [133] does not.
However, such relations are extremely rare in many datasets. For example, KINS [83] and
COCOA [133] datasets are entirely free of such relations.

Figure 3.6 visualizes the architecture of the InstaOrder. The mentioned inputs are
stacked to make a (H × W × 5) dimensional input. Note that masks are binary, and
hence need one channel, while the RGB image has three channels. This input is processed
through layers of the proposed CNN and finally, a fully connected layer predicts the output
for the received inputs.

39



Note that both OrderNet and InstaOrder are ‘naturally’ trained on ground-truth masks
of instances. It means that during training they optimize the model based on ground-truth
masks and occlusion relations. In this thesis, our focus is on OOSIS where we want to ex-
tract the instance masks and their occlusion relations at the same time. Hence, these
pairwise classifiers have to perform on predicted instance masks that can be overlapping.
As they have never encountered such a case during training, they perform poorly in pre-
dicting pairwise occlusion relations for predicted masks and consequently, lead to weak
performance on OOSIS. As part of our contribution, in this thesis, we identify this prob-
lem and propose a possible solution in our top-down approach.

3.5 Oriented Occlusion Boundary Prediction

Occlusion-oriented boundary models detect object boundaries and estimate the occlusion
relations, i.e. which side of the boundary occludes the other side. Our bottom-up ap-
proach in Chapter 6 develops a method for oriented occlusion boundaries. There are two
main groups of prior work on this task. One group treats the problem as a regression
task to predict an orientation angle. These models disentangle the binary “boundary or
not” prediction from the orientation prediction [113, 65, 111]. The other group of prior
work treats the problem as a classification task and does not disentangle the boundary
and orientation predictions [84]. Our work both treats the problem as classification and
disentangles orientation and boundary prediction, outperforming the best prior work [84].

Below, we explain both approaches for occlusion-oriented boundary detection.

3.5.1 Regression-based Occlusion Oriented Boundary

Works like [113, 111] belong to this group. As stated, these methods try to regress an angle
θ that determines the occlusion orientation. These models describe occlusion boundaries by
orientation θ ∈ [−π, π) (the red arrows in Figure 3.7), which indicates occlusion relationship
using the “left” rule where the left side of the arrows occludes the right side.

Figure 3.8 illustrates the architecture of [113]. This model consists of two branches.
The first branch, known as the boundary branch, determines whether a pixel belongs to
an occlusion boundary or not. It achieves this through binary prediction using a Sigmoid
output layer. On the other hand, the second branch performs regression instead of classi-
fication. It generates a continuous value representing the angle θ for each pixel. The final
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Figure 3.7: Occlusion boundaries are shown by orientation θ (the red arrows) using the
‘left’ rule, where the left side of the arrows occludes the right side [113]. Image is also
from [113].

Figure 3.8: The overall architecture of a regression-based occlusion boundary model, [113].
Image is from [113].

prediction is obtained by applying non-maximum suppression to the boundary branch’s
output and element-wise multiplying it with the output of the orientation branch.

Now, consider θ1 = π − ϵ and θ2 = −π + ϵ, where ϵ is a very small positive number.
Obviously, these two angles describe a very similar occlusion orientation. However, alge-
braically, |θ1 − θ2| = 2π − 2ϵ. This shows that typical regression losses cannot be used
for such prediction. As a result, [113] designs a specific loss that can work with angles.
Later work [84] shows classification-based works perform better using the good-behavior
cross-entropy loss.

3.5.2 Classification-based Occlusion Oriented Boundary

[84] falls in this group of works. In this work, instead of making predictions for each pixel,
the predictions are made for each pixel pair. This means for any two adjacent pixels, for
example in a 4-neighborhood system, the model predicts if the first pixel occludes the other,
or vice versa, or if there is no occlusion relation at all between the two pixels. Obviously,
this can be represented as a classification task. It is sufficient to consider a 3-dimensional
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prediction for each pixel pair, where each of its components corresponds to each of the
described scenarios’ probability.

This model, however, does not disentangle boundary and orientation prediction. For
instance, if one wants to know if a pixel lies on an occlusion boundary or not, it is necessary
to check all of the relations with its neighbors. In contrast, in the regression-based models,
it could be easily checked by the output of the boundary branch.

Our boundary model, presented as a part of our bottom-up approach for OOSIS in
Chapter 6 takes the best of both worlds. It is formulated as a classification model with-
out the need for special losses for angles while disentangling boundary and orientation
predictions and outperforms the state-of-the-art on the KINS [83] dataset.

3.6 Other Occlusion-related Work

Some works have focused on improving instance segmentation through occlusion-aware
techniques [126, 53]. Our work is different in essence since our goal is to augment instance
segmentation with occlusion ordering for the entire scene. Our outputs are both instance
masks and their classes, and the occlusion relations among those detected objects. These
models, however, just use occlusion information to improve the quality of produced instance
masks. They do not output occlusion ordering for the scene. Furthermore, unlike [126],
we do not need amodal annotations.
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Chapter 4

Naive Approaches

Since OOSIS has not been approached post-deep learning, we first check if naive methods
can effectively solve this task. We examine two such naive approaches below and show they
perform poorly underlining the need for developing more carefully designed approaches that
we propose in Chapters 5, and 6.

4.1 Direct CNN Training

First, we explore directly training CNN on occlusion order. We create the ground truth
as follows. All background pixels are labeled with 0. All pixels in an instance are labeled
with i if the maximum label of its occludees is i− 1. Then we train a pixel-level CNN to

Labels for Training (bg=0)

Input Image

CNN 

Ground Truth

0

1 2 3 4
5 6

Prediction

Figure 4.1: Visualization of the naive direct training of a CNN using instance and occlusion
order, plus an example of how the ground truth is labeled.
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image ground tuth direct CNN training

Figure 4.2: Relative depth maps for the second naive OOSIS method based on direct CNN
training. This naive method performs poorly.

recover these labels using cross-entropy. We use PSPNet [132] for the CNN architecture.
Figure 4.1 shows the workflow of this approach and an example of the ground truth labels.

The results of direct training are poor, see Figure 4.1 and more in Figure 4.2. This is not
surprising, since OOSIS is a harder task than standard instance segmentation, for which
there is no direct training approach. However, direct training for OOSIS is worth trying
since the ground truth for OOSIS has extra (occlusion) information and occlusion-based
labels are somewhat meaningful.

4.2 Clustering Monocular Depth Estimation

The second naive approach, illustrated in Figure 4.3, is as follows. We train a semantic
segmentation CNN [132], and also apply a pre-trained monocular depth estimator [85].
We use PSPNet [132] for semantic segmentation and MiDaS (v21-384) [85] model for the
depth estimator. Using the semantic segmentation model, we can find the non-background
pixels. We intersect these pixels with the depth map. Then we use k-means to cluster
the depth maps of the non-background pixels. The clusters give us the instances and the
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Monocular Depth CNN
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Depth of Non-bg Pixels

Instances & Occ Order Ground Truth

Input Image

Figure 4.3: The workflow of the second naive approach where semantic segmentation and
monocular depth estimation are done using a CNN. Then k-means clustering is performed
on the depth estimation of the non-background pixels. The poor performance underscores
the inadequacy of monocular depth estimation for recovering object-level relative depth
relations.

average depth of each cluster is used for the occlusion ordering of adjacent clusters. We
assign the dominant semantic class to these instances.

The results are poor, see Fig. 4.4. Monocular depth estimation has limited accuracy
and is inadequate for instance segmentation. In addition, depth resolution may be insuf-
ficient for distinguishing between instances, as discussed in Chapter 1. Figure 4.4 clearly
shows how the model is not only unable to extract instances but also to order them. The
shortcomings of these simple methods show that OOSIS requires a specialized and tailored
approach.
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image ground tuth semantic seg + depth clustering

Figure 4.4: Relative depth maps for the second naive OOSIS method based on monocular
depth clustering. This naive method performs poorly.
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Chapter 5

Top-Down Occlusion-Ordered
Semantic Instance Segmentation

The top-down approach consists of three stages, see Fig. 5.1. First, we use an off-the-shelf
standard semantic instance segmentation to obtain instance masks and classes. For this
step, we evaluate an established Mask-RCNN [41] and a state-of-the-art recent contour-
based method E2EC [128]. We want to use the instance masks generated by such models
and use pairwise occlusion ordering classifiers [133, 62] to detect the occlusion relations
among the instances. However, directly using the produced instance masks does not work.
We elaborate on this below.

The state-of-the-art semantic instance segmentation models, like Mask R-CNN and
E2EC, can produce instance masks that are overlapping. See Figure 5.1 for some examples.
It means that a pixel can belong to more than one instance. Hence, the labeling of pixels is
ambiguous. In detection tasks, this is not usually a problem. However, we determined that
it is essential to resolve the overlap between masks to obtain a good pairwise occlusion
classification since the occlusion classifier is ’naturally’ trained on ground truth masks,
and they do not overlap, see experiments in Chapter 7. Thus the next step is mask
overlap resolution. For removing overlap, we tested three approaches: assigning the overlap
randomly, or to the instance with the larger confidence, or to the instance with the smaller
confidence. We found that sorting instances by confidence and removing overlaps in the
order of decreasing confidence works the best. In the future, CRF optimization [10] can
be explored for this purpose.

As stated, the final step is to determine the occlusion order. A naive global occlu-
sion ordering in Chapter 4 fails. A feasible alternative is to apply a pairwise occlusion
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Mask 
CNN

Resolve 
Overlaps
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CNN
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Examples of Overlaps

Image
Non-overlapping 
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Outputs

: overlapping region

Top-down 

Figure 5.1: Overview of our top-down approach. The image is first given to a deep CNN to
produce instance masks, and their semantic classes. The classes are not shown in the image
for simplicity. The produced instance masks can be overlapping. Hence, they cannot be
directly used by pairwise occlusion order classifiers. We develop a component that resolves
such overlaps. The output of this component has non-overlapping instance masks and their
corresponding semantic classes. These masks are then fed to a pairwise occlusion order
classifier to predict the occlusion relation between each pair of instances. The result of the
occlusion ordering is shown by a relative depth map where each instance is brighter than
all of its occludees. The instance mask CNN and pairwise occlusion order classifiers are
from prior works as discussed in Chapter 3.
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order classifier, which takes as an input two neighboring instance masks and estimates
which one is the occluder , and which one is the occludee. We tested OrderNet [133] and
InstaOrder [62] for this step.

Occlusion ordering from the pairwise classifier is not necessarily globally consistent
and may have cycles. Occlusion cycles in the ground truth are exceedingly rare, and the
overwhelming majority of cycles are due to errors in pairwise predictions. In principle, we
could break the cycles until the occlusion graph is cycle free. However, other than random,
it is hard to come up with an efficient intelligent strategy. For example, one may want to
remove the smallest set of edges which results in an acyclic ordering graph. However, this
is an NP-hard ’feedback arc set’ problem. We leave cycle removal as a future work. For
visualization as a relative depth map, we must break cycles, which we do, randomly. The
accuracy metrics in Chapter 7 are computed using the original set of ordering relations.

The advantage of the top-down approach is that it uses state-of-the-art methods for
instance segmentation, resulting in accurate masks. The disadvantage is that the occlusion
order is not globally consistent and, therefore, likely to contain cyclic errors.

49



Chapter 6

Bottom-Up Occlusion-Ordered
Semantic Instance Segmentation

The bottom-up approach groups pixels into instances by assigning an occlusion order to
each pixel. The approach is summarized in Figure 6.1 and consists of two stages. First, we
design a novel method that simultaneously predicts semantic segmentation and oriented
occlusion boundaries. Second, based on these predictions, we formulate CRF energy for
labeling pixels with their occlusion order, simultaneously inferring instances and their
occlusion order.

In the following, we first explain our designed deep CNN for joint semantic segmentation
and oriented occlusion boundary prediction in Section 6.1. This explanation includes the
model in Section 6.1.1, the training loss function in Section 6.1.2, and the architecture of the
model in Section 6.1.3. Then, we elaborate on our energy function and CRF formulation
producing the final results in Section 6.2. To accomplish this, we initially outline our
proposed energy function and its optimization process using jump moves in Section 6.2.1.
Subsequently, we provide a discussion on how we construct a submodular upper bound
for our energy function to enable effective optimization by jump moves in Section 6.2.2.
Lastly, we draw a comparison between jump moves and expansion moves in relation to our
energy function, offering a justification for the utilization of jump moves in Section 6.2.3.
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Optimization

Bottom-up 

Occlusion-oriented boundary

Semantic segmentation

Semantic Instance Seg Outputs

Occlusion Order Outputs

Image

Figure 6.1: The workflow of our bottom-up approach. Our novel deep CNN predicts
occlusion-oriented boundaries and semantic segmentation for an input image. Then, our
novel optimization formulation uses the previous stage’s outputs to generate the semantic
instance masks and their occlusion ordering. The occlusion ordering is visualized by a
relative depth map where each object is brighter than all of its occludes. In the semantic
instance segmentation output, a class is predicted for each extracted instance mask. These
classes are not shown in this figure for simplicity.

6.1 Joint Semantic Segmentation and Oriented Oc-

clusion Boundary Model

Now, we introduce our deep model for jointly learning semantic segmentation and ori-
ented occlusion boundaries. In Figure 6.2, we showcase the outputs of this model. The
semantic segmentation map assigns each pixel with its respective semantic class, while an
additional map highlights boundary pixels along with the occlusion orientation at those
pixels, enabling us to infer the occluded neighbors for each pixel. For detecting occlusion
oriented boundaries we both treat the problem as a classification task (instead of a regres-
sion one) and disentangle the boundary presence and orientation predictions. This way we
take the best of both worlds, while prior work is just focused on either of them. For more
clarification on how we are different from prior work, see Chapter 3.5.

6.1.1 Model

The orientation of occlusion at a boundary pixel can be represented by the normal vector
of the boundary, pointing from the occluder to the occludee. Here we introduce three
random variables for our model: Sp, Bp, and Op, corresponding to each pixel p. Variable
Sp represents the semantic class of pixel p and variable Bp is a binary indicator showing

51



Image gt semantic seg predicted semantic seg

predicted oriented occ boundaries+NMSgt oriented occ boundaries

Figure 6.2: Illustration of our semantic segmentation and oriented occlusion boundaries for
the bottom-up OOSIS. The images are: input, ground truth and our semantic segmenta-
tion, ground truth and our oriented occlusion boundaries after non-maximum suppression.
The color scheme for the boundaries is: left-cyan, top-yellow, right-magenta, bottom-black.
Best viewed zoomed in.

whether pixel p lies on an occlusion boundary. We also introduce an oriented boundary
variable Op ∈ D̄ where D̄ = D ∪ {∅}, see Figure 6.3. Variable Op serves a dual purpose:
besides indicating “no boundary” ∅, in case of the boundary it indicates a specific orien-
tation of its normal, an outcome in the set of all possible orientations D, e.g. discretized
bins of the whole 360-degree spectrum. Figure 6.3 shows the relationship between random
variables Op : Ω→ D̄ and Bp : Ω→ {0, 1}. It also implies the following equations

Pr(Op = ∅) = Pr(Bp = 0) (6.1)

Pr(Op = d) = Pr(Op = d |Bp = 1) Pr(Bp = 1) ∀d ∈ D (6.2)

Our objective is twofold: we aim to predict Pr(Sp), which represents the probability
distribution over each semantic class for pixel p, and Pr(Op), which represents the distri-
bution of the normal orientation for a boundary pixel and also represents the probability
of it not being a boundary.

Figure 6.4 provides a simplified visual representation of our model, which we will now
elaborate on. To obtain the two final predictions we seek, our PSPNet [132]-based model
incorporates three interconnected heads:

1. Head “s”: estimates of Pr(Sp) for each pixel p. This is similar to a standard semantic
segmentation task.
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Figure 6.3: Oriented Occlusion Boundary Op as a random variable. It is defined as a
function Op : Ω → D̄ over the probability space Ω of all elementary outcomes. Its range
D̄ := D ∪ {∅} includes all possible boundary directions D and a “no-boundary” outcome
denoted by ∅. The diagram above shows the relationship between the boundary Bp and
the oriented boundary Op by illustrating the equivalence between the following pairs of
events Bp = 1 ⇔ Op ∈ D and Bp = 0 ⇔ Op = ∅.

2. Head “b”: estimates Pr(Bp = 1), the probability that pixel p is an occlusion bound-
ary.

3. Head “e”: estimates the conditional distribution Pr(Op = d|Bp = 1), which is the
distribution of the normal at p over |D| bins, assuming p is a boundary.

Using the mentioned three heads, we produce the two mentioned final objectives as
follows. First, Pr(Sp) is estimated by the head ‘s’ directly for each pixel, and no further
processing is required. Second, for the oriented occlusion boundaries, we need to obtain
oriented boundary prediction op := Pr(Op), which is a distribution over |D| + 1 values.
The basic probability relations in Eqs. (6.1),(6.2) imply a simple formal relation of this
prediction to bp = Pr(Bp = 1) and to conditional orientation distribution ep = Pr(Op =
d|Bp = 1) defined in the list of heads above. Indeed, separating |D| + 1 components of
vector op into two parts: |D| values corresponding to the probabilities Pr(Op = d) for
d ∈ D and an extra value corresponding to Pr(Op = ∅), equations (6.1),(6.2) give

op := [bpep, 1− bp], (6.3)

where [, ] is the concatenation of values.

6.1.2 Loss

We denote the ground truth for sp, bp, and ep by Sp, Bp, and Ep, respectively. Additionally,
as explained, we called the final output of our model “o”. Let Op indicate the ground truth
for it.
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Figure 6.4: The overall structure of our joint semantic segmentation and occlusion oriented
boundary model. Given an input, the model has three heads: s, b, e. sp predicts the
probability of each semantic class for pixel p. bp estimates the probability that p is on an
occlusion boundary. ep estimates the probability of different possible orientations assuming
p is a boundary pixel. The final output of occlusion oriented boundary op incorporates the
probability that p is not a boundary 1 − bp and the probability that p is a boundary and
has any of possible orientations bpep. The color scheme for the oriented boundaries is:
left-cyan, top-yellow, right-magenta, bottom-black. Best viewed zoomed in.

Theorem 1. Denoting cross-entropy by CE, we prove the following:∑
p

CE(Op, op) =
∑
p

CE(Bp, bp) + BpCE(Ep, ep) (6.4)

Proof. Following from what we explained for the random variable Op, and Figure 6.3, we
have ∑

p

CE(Op, op) =
∑
p

−(1−Bp) ln(1− bp) +
∑
p

∑
d∈D bins

−BpE
d
p ln bpe

d
p (6.5)
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Now, consider only the last term:∑
d∈D bins

−BpE
d
p ln bpe

d
p =

∑
p

Bp

∑
d∈D bins

−Ed
p(ln bp + ln edp)

=
∑
p

Bp

∑
d∈D bins

−Ed
p ln bp − Ed

p ln edp

=
∑
p

Bp

∑
d∈D bins

−Ed
p ln bp +

∑
p

Bp

∑
d∈D bins

−Ed
p ln edp

=
∑
p

−Bp ln bp
∑

d∈D bins

Ed
p +

∑
p

Bp

∑
d∈D bins

−Ed
p ln edp

(6.6)

Now, as we know Ep is a conditional distribution, and it sums to 1, we have:∑
d∈D bins

−BpE
d
p ln bpe

d
p =

∑
p

−Bp ln bp +
∑
p

Bp

∑
d∈D bins

−Ed
p ln edp (6.7)

Now, we substitute this back in Eq.6.5∑
p

CE(Op, op) =
∑
p

−(1−Bp) ln(1− bp) +
∑
p

−Bp ln bp+∑
p

Bp

∑
d∈D bins

−Ed
p ln edp

=
∑
p

CE(Bp, bp) +
∑
p

BpCE(Ep, ep)

=
∑
p

CE(Bp, bp) + BpCE(Ep, ep)

This suggests that instead of applying cross-entropy (CE) loss directly on the predic-
tions o, we can apply it separately on the predictions b and e. However, it is important
to note that the cross-entropy loss for e should only be computed for the ground-truth
boundaries. This distinction aligns with the fact that the ground truth Op is defined for
all pixels, whereas Ep is only defined for ground-truth boundaries.

To train our three classification heads s, b, and e, we use a cross-entropy loss defined
above. Note that [113] also separate the boundary and its orientation, but they predict
the angles by regression also trained on boundary points only. We use classification, which
often works better, and provide a probabilistic derivation for the loss for the conditional
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Figure 6.5: The detailed structure of our designed joint semantic segmentation and occlu-
sion oriented boundary model.

head e. For the ‘b’ head, we replace the cross-entropy term with weighted cross-entropy
loss, wCE, due to imbalanced ground truth where most pixels are non-boundaries. It has
been shown to provide an improved performance in such cases. For the s head, we employ
standard cross-entropy loss. The total loss is hence,

L =
∑
p

CE(Sp, sp) + wCE(Bp, bp) + BpCE(Ep, ep). (6.8)

For simplicity, we use D = 4 orientation bins, which can be also interpreted as left, right,
top, and bottom neighbor occlusions, analogous to [84]. For details on how we acquire the
ground-truth occlusion orientations, see Chapter 7.12. For weighted CE, we use weight
= 0.9 for positive samples, i.e. boundary samples, and wight = 0.1 for non-boundary
samples.

6.1.3 Architecture

In accordance with Figure 6.5, we provide a detailed explanation of the model stages.
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Features: The input image is processed by PSPNet [132] to extract deep features
that capture relevant information from the image. Logits: Three separate linear layers
are employed, each producing logits for the corresponding heads described earlier. It is
important to note that as the output of PSPNet is of low resolution, we need to upsample
the logits in the subsequent stage. Upsampling: For the ”s” logits, we utilize 2D (Spa-
tial) Deconvolution upsampling, also known as transposed convolution. The upsampling is
applied separately for each channel (each semantic class), as denoted by the ”2D” descrip-
tor. We initialize the upsampling kernel with bilinear upsampling weights. On the other
hand, for upsampling the ”b” and ”e” logits, which contain complementary information,
we concatenate them and perform 3D Deconvolution upsampling. The ”3D” nature of the
kernel indicates that the channels (representing different orientation bins and ”b”) effec-
tively utilize each other’s information. Finally, we separate the upsampled ”b” and ”e”
logits. Heads: Non-linearities are applied to the logits at this stage. Specifically, softmax
is used for the ”s” and ”e” logits, while sigmoid activation is employed for the ”b” logits.
Final Outputs: They are produced as explained in Section 6.1.1 by: sp estimating Pr(Sp)
and op := [bpep, 1− bp] estimating Pr(Op).

6.2 Occlusion Order-based Instance Grouping

6.2.1 Energy Function and Optimization

The input to this stage is the semantic segmentation and oriented occlusion boundaries
from the previous stage, see Figure 6.2. We discard boundaries below a threshold of 0.1.
Since we have only vertical and horizontal orientations, we store boundaries as a set of
ordered pixel pairs, called the occlusion set: O = {(p, q) | p occludes q}.

We formulate the task of instance segmentation and occlusion ordering in CRF frame-
work [10]. We assign a label xp to each pixel p by formulating and minimizing an energy
function over pixel-label assignments. The labels are non-negative integers and denote the
occlusion order. If xp = 0, then pixel p is the background. Positive xp means that pixel p
belongs to an instance. Given two neighboring pixels p, q, if xp > xq, then p occludes q. A
connected component of pixels with the same label forms an instance. We can have many
instances with an equal label, but they cannot be immediately adjacent spatially. This is
a drawback of our formulation, but usually, instances that are immediately adjacent are
involved in an occlusion relation and have distinct occlusion order which separates them,
see, for example, the ground truth labels in Figure 7.1. To determine the instance class,
we take the majority vote on the semantic segmentation limited to the instance pixels.
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Let P be the set of pixels, and x = (xp | p ∈ P) be a labeling vector. The energy is
defined for x and consists of unary and pairwise terms. For each pixel p there is a unary
term up(xp). It is small if label xp is likely for p and large otherwise. We derive unary
terms from semantic segmentation, even though it outputs a probability distribution over
classes, not occlusion-order labels. However, the occlusion-order label 0 is identified with
the background class and can be used for unary terms. Let σp be the probability for p to
be the background according to semantic segmentation. We set

up(xp) = (1− σp) · [xp = 0] + σp · [xp ̸= 0], (6.9)

where [·] is Iverson bracket, equal to 1 if its argument is true and to 0 otherwise. If σp is
large, the unary term for label 0 is small, encouraging p to be assigned to the background.
If σp is small, then p is encouraged to be assigned to any label other than 0. There is
no preference to any particular non-zero label as semantic segmentation is not informative
about any label other than 0.

There are two types of pairwise terms: smoothness v and occlusion o. The smoothness
terms v are modeled as in [10]. They encourage spatially coherent labeling by penalizing
neighboring pixels that do not have the same label. Let p, q be neighbors. We define

v(xp, xq) = [xp ̸= xq]. (6.10)

The occlusion terms o model the occlusion set O. Let (p, q) ∈ O, i.e. p occludes q. We
assign a prohibitive cost if the label of q is larger than that of p, and a negative cost if the
label of p is larger

o(xp, xq) = c∞ · [xp < xq]− [xp > xq], (6.11)

where c∞ is prohibitively large. Since we are minimizing the energy, a negative cost is
’repulsive’ [125], and we lower the energy if p gets assigned a larger label than q. Thus,
occlusion terms encourage labeling boundaries, facilitating creation of instances, unlike the
smoothness terms, which discourage boundaries. But labeling boundaries are encouraged
only in places where we detect occlusion boundaries, which is important to maintain the
overall spatial coherence of the labeling.

The best labeling x is found by minimizing the energy

E(x) =
∑
p∈P

up(xp) + λv

∑
(p,q)∈N

v(xp, xq) + λo

∑
(p,q)∈O

o(xp, xq), (6.12)

where N is the set of pairs on an 4-connected grid. We set λv = 20 and λo = 100.
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Figure 6.6: Jump move optimization. Warmer colors are larger labels. Energies for label-
ings are listed.

Figure 6.6 illustrates how our energy in Eq. (6.12) encourages instances along occlusion
boundaries. The energy decreases when across occlusion boundaries, the occluder has a
label larger than that of the occludee. Consider labelings (c, d, e). Labeling (a) has only
one instance which groups all cars together. It does not take advantage of the occlusion
boundaries between the cars. These ’missed’ occlusion boundaries can be used to lower the
energy. Labeling (d) has two instances and, therefore, is able to take advantage of some
in-between car boundaries. Labeling (e) has three instances and takes advantage of most
occlusion boundaries, leading to the lowest energy.

We minimize the energy in Eq (6.12) with the jump move algorithm [109], but see [99]
for minimization methods review. Given a labeling x, we say that x′ is a jump move from
x if whenever xp ̸= x′

p, then x′
p = xp + 1, i.e. a jump move allows any pixel to increase its

label by 1. There is an exponential number of jumps. An optimal jump move decreases
the energy the most. It is computable with a graph-cut [56] if submodularity holds [9].
However, the smoothness terms s are nonsubmodular when xp ̸= xq. We tried QPBO [57]
for nonsubmoduar energies, but it did not work well. Instead, we replace nonsubmodular
terms by a submodular upper bound, enabling graph-cut minimization. An optimal move
is not guaranteed, but the energy is guaranteed to decrease, see Section 6.2.2.

The jump move algorithm works as follows. We initialize all pixels to label 0. Then
we run a series of jump moves until the labeling stops changing. We say that (p, q) ∈ O is
activated if xp > xq so that o(xp, xq) contributes −1 to the energy. The more terms in O
are activated, the lower is the energy. Consider Figure 6.6. The first jump, Figure 6.6(c),
switches to label 1 a segment of pixels which have a low background probability and are
also correctly aligned to the oriented occlusion boundaries, creating one instance. With
only one instance, many (p, q) ∈ O stay not activated. Therefore, the second jump move,
in Figure 6.6(d), assigns pixels in the front-most car to label 2, activating more (p, q) ∈ O
and decreasing the energy. The third jump move, Figure 6.6(e), increases by 1 the label
of the frontal car, and the car behind it, and now most (p, q) ∈ O are activated. Further
jump moves do not change the labeling. If we segment another instance, it would align
mostly to (p, q) ̸∈ O, and we would have to pay smoothness costs s(xp, xq) along most of
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the segment boundary, increasing the energy.

6.2.2 Binary Energy for Jump Move and its Submodular Upper
Bound

We now explain the binary energy for the jump move, why it is not submodular [9], and
how we construct its submodular upper bound.

Given a labeling x, a jump move either does not change the label of a pixel, or increases
the label by 1. We pose the problem of finding the optimal jump move as binary energy
minimization. Let xc be the current labeling for which we wish to find the optimal jump
move. We introduce a binary variable yp for each pixel p, and collect all these variables
into a vector y. We define one-to-one correspondence between the set of jump moves from
xc and the set of all possible labelings of y as follows. For each labeling y, let us denote
the corresponding jump move as m(xc;y), defined as

m(xc;y) =

{
xc
p if yp = 0

xc
p + 1 otherwise

(6.13)

In words, label 0 is identified with a pixel keeping its label, and label 1 with pixel increasing
its label by 1.

In the binary energy, let us use û, v̂, ô to denote the unary, pairwise smoothness and
occlusion terms, which are derived from the corresponding terms in the multi-label energy
in Eq. (6.12).

We define the unary terms of binary energy as

û(0) = u(xc
p), û(1) = u(xc

p + 1). (6.14)

Given a pixel pair (p, q) ∈ N , we define the smoothness pairwise terms of the binary energy
as

v̂(0, 0) = v(xc
p, x

c
q), v̂(0, 1) = v(xc

p, x
c
q+1), v̂(1, 0) = v(xc

p+1, xc
q), v̂(1, 1) = v(xc

p+1, xc
q+1).
(6.15)

Given a pixel pair (p, q) ∈ O, we define the occlusion pairwise terms of the binary
energy as

ô(0, 0) = o(xc
p, x

c
q), ô(0, 1) = o(xc

p, x
c
q +1), ô(1, 0) = o(xc

p+1, xc
q), ô(1, 1) = o(xc

p+1, xc
q +1).
(6.16)

60



We define the binary energy y as

E(y) =
∑
p∈P

ûp(yp) + λv

∑
(p,q)∈N

v̂(yp, yq) + λo

∑
(p,q)∈O

ô(yp, yq). (6.17)

It is straightforward to check that E(y) = E(m(xc,y)). Therefore the optimal jump
move from xc corresponds to the labeling y∗ minimizing Eq.(6.17).

If a binary energy is submodular [9] then it can be optimized with a graph-cut [56].
For submodularity to hold, there are no conditions on the unary terms, but each pairwise
term f must satisfy

f(0, 0) + f(1, 1) ≤ f(0, 1) + f(1, 0). (6.18)

It is straightforward but tedious to check that the occlusion pairwise terms ô are sub-
modular in all cases. Unfortunately, the smoothness term v̂ is not submodular for any pair
of pixels (p, q) ∈ N such that xc

p + 1 = xc
q. Indeed, in this case

v̂(0, 0) + v̂(1, 1) = v(xc
p, x

c
q) + v(xc

p + 1, xc
q + 1) = 1 + 1 (6.19)

> v(xc
p, x

c
q + 1) + v(xc

p + 1, xc
q) = 1 + 0 (6.20)

= v̂(0, 1) + v̂(1, 0) (6.21)

To make optimization feasible with a graph-cut, we replace the energy in Eq. (6.17)
with its submodular upper bound. For any (p, q) ∈ N , if xc

p + 1 = xc
q, we replace v̂

corresponding to this pair of pixels by a constant pairwise term c which always takes value
1 and therefore, is submodular. That is c(a, b) = 1 for any values of a, b. In practice, it is
equivalent (the energies are equal up to a constant) to omitting the smoothness term v̂ for
any pixels (p, q) ∈ N s.t. xc

p + 1 = xc
q.

Intuitively, our approximation means the following. If in the current labeling xc, we
have a neighboring pair of pixels whose label differs by exactly 1, then the jump move is
not able to ‘see’ that it can achieve a lower-energy labeling by increasing the smaller label
by 1. Minimizing an upper bound as opposed to the exact binary energy means that the
optimal jump move is not guaranteed if there are neighboring pixel pairs in the current
labeling whose labels differ by exactly 1. However the energy is guaranteed to decrease (or
stay the same).

For details on how to construct the graph for submodular binary function minimization,
see [56]. We use the graph-cut/max-flow algorithm of [11] to compute the minimum cut.
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6.2.3 The Expansion vs. Jump move Algorithms

For minimizing CRF energies of the type of Eq. (6.12) the expansion algorithm [10] is
frequently used. The expansion move has approximation guarantees and has been shown
superior to other minimization algorithms for many energy types [98]. However, we found
that the expansion algorithm does not work as well for our energy as the jump move, and
now explain the reasons.

The expansion algorithm performs a sequence of α-expansion moves until convergence.
Given the current labeling and some label α, an α-expansion move finds the subset of pixels
to switch to label α s.t. the energy decreases by the largest amount.

Typically, one starts with a labeling where all pixels are assigned label 0, and then per-
forms a series of cycles, where each cycle consists of one iteration over labels in {0, 1, 2, ..., lmax}.
Here lmax is the largest possible label. Notice that iterations are performed not necessarily
in the consecutive order of labels. In general, the expansion moves for our energy are not
submodular. However, it is straightforward to show that if we start with the labeling where
each pixel is assigned 0, and then expand on labels 1, 2, ..., lmax, in that order, then each
expansion is submodular, i.e. one cycle of the expansion algorithm is submodular if labels
are in the increasing order. If we perform more than one cycle, then the expansions are
not necessarily submodular.

Let x0 be a labeling where each pixel is assigned 0. Consider the example in Figure 6.6.
Suppose we apply one cycle of expansions, in the increasing order, starting with x0. Let
us refer to the car objects as car 1, 2, 3, in the order of their depth, with car 3 being
the front-most. After the first expansion, i.e. expansion on label 1, we will get the same
result as in Figure 6.6(c), with all cars labeled with 1. This is because if we start with
x0, both the expansion move on label 1 and the jump move are submodular and can be
optimized exactly, and, furthermore, the optimal jump and expansion moves coincide. The
next expansion, i.e. expansion on label 2, will produce the labeling as in Figure 6.6(d) the
same as the second jump move, where car 3 gets label 2, and cars 1 and 2 stay with label
1. Switching both cars 2 and 3 to label 2 would result in a worse energy (jump move would
switch cars 2 and 3 to label 2 if that was lower energy than the energy in Figure 6.6(d)).
Any further expansion moves will not change the labeling, unlike further jump moves. To
get to the lower energy labeling in Figure 6.6(e)), we need to simultaneously switch car 2
to label 2 and switch car 3 to label 3. Jump move is able to do this, but the expansion
algorithm cannot switch pixels to two different labels.
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Chapter 7

Experiments

7.1 Datasets

We use KINS [83] and COCOA [133] datasets. KINS consists of 7,474 training and 7,517
test images, and 7 instance classes. It provides modal and amodal semantic instance masks
with their occlusion order. We do not use amodal masks for any purpose. COCOA [133]
is a dataset consisting of 5,073 images of natural scenes. It provides modal and amodal
masks in addition to occlusion ordering. We do not use the amodal masks for any purpose.
We train on the ‘train’ set and evaluate on the ‘val’ set for all models.

7.2 Implementation Details

For KINS: For E2EC, we use their official implementation and configurations, and we
only train it on modal masks. Hence, the model is trained for 150 epochs. For Mask
R-CNN, we use the implementation of [105]. For InstaOrder and OrderNet, we use the
pre-trained models of [62]. For our bottom-up models, we use the PSPNet [132] from
the implementation of [131]. We use weight=0.9 wor wCE in our deep model for semantic
segmentation and occlusion boundary and train for 200 epochs using SGD and weight decay
as in the implementation, we used a single GPU and a batch size of 8. We train using crop
size of 225x225 and test on a resolution of 2048x615. The testing resolution is similar for
all models. The backbone of our PSPNet is Resnet-50, similar to the backbone of Mask
R-CNN that we used. P2ORM [84] is also used based on their official implementation
and the settings were used as in their code or paper. For a fair comparison, we used the
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image ground tuth baseline top-down botom-up

Figure 7.1: Relative depth map visualization of OOSIS for baseline and our approaches on
KINS dataset. The best version of the baseline and our top-down approach is displayed.

4-neighborhood variant of theirs as we use a 4-neighborhood system in our deep model.
For MiDaS [85], we used the official implementation with “midas v21 384” model type.

For COCOA: For E2EC, we train for 50 epochs using Adam with parameters of their
implementation for COCO and finetune for 10 epochs using SGD for maximum perfor-
mance. For Mask R-CNN we use the implementation of [18] and use their configuration
for COCO with the 1x training regiment. Again, for InstaOrder and OrderNet, we use the
pre-trained models from [62]. Our setting for our deep model for semantic segmentation
and occlusion boundary is the same as for KINS. The test resolution for all models is the
same as the original image size. The backbones are the same as for KINS. MiDaS is the
same as what we explained for KINS.

7.3 Baselines

We compare our methods against a baseline that utilizes existing techniques. Specifically, it
involves using an instance segmentation method to generate instance predictions and then
applying a pairwise occlusion ordering CNN directly on neighboring instances to obtain the
occlusion order without any further processing or mask overlap resolution, as is the case
with our top-down approach. The poor performance of these baselines underlines the role
of the mask overlap resolution component we propose in the framework of the top-down
approach in Chapter 5.

7.4 Confidence Score in our Bottom-up Approach

Bottom-up approaches lack the instance confidence score provided by detection-based in-
stance segmentation methods like M-RCNN that use their deep network to predict it.
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Some evaluation metrics require an instance confidence score for each instance prediction,
as it will be discussed in Section 7.6. To address this, we follow the common practice of
assigning the score based on simple heuristics [7]. Specifically, we assign a score to each
instance by summing the predicted occlusion boundary probabilities on the border and in-
side of the instance, and subtracting the second from the first. This score rewards instances
whose borders match the predicted boundaries and have no high-probability boundaries
inside, indicating that they should not be further divided. It also gives higher scores to
larger instances, and these tend to be more reliable. Using this score, we can evaluate our
bottom-up approach, when a metric requires it.

7.5 Qualitative Results

Figure 7.1 and Figure 7.2 show visualizations of our approaches vs. the baselines and the
ground truth for KINS. Figure 7.4 represents the output of our deep model for semantic
segmentation and oriented occlusion boundary for KINS. Also, Figure 7.3 show visualiza-
tions of our approaches vs. the baselines and the ground truth for COCOA, and Figure 7.5
represents the output of our deep model for semantic segmentation and oriented occlusion
boundary for COCOA.

7.6 Standard Mask Evaluation Metrics

Here, we explain and discuss the standard metrics used for assessing the quality of pre-
dicted instance masks by a method. These metrics are later used for the evaluation of our
approaches.

7.6.1 Intersection over Union (IoU)

IoU is commonly used as an evaluation metric to measure the accuracy and quality of
object localization or segmentation algorithms. In instance segmentation, IoU is used to
assess the similarity between two masks, e.g. a predicted and a ground-truth mask. Given
two masks a and b, the intersection-over-union (IoU) for them is defined as:

IoU(a, b) =
a ∩ b

a ∪ b
. (7.1)
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image ground tuth baseline top-down botom-up

Figure 7.2: Relative depth map visualization of OOSIS for baseline and our approaches on
KINS dataset. The best version of the baseline and our top-down approach is displayed.
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Image ground truth bottom-up top-down

Figure 7.3: Relative depth map visualization of OOSIS for baseline and our approaches on
COCOA dataset. The best version of the baseline and our top-down approach is displayed.
COCOA is a harder dataset than KINS for OOSIS as common objects such as chairs, tables,
etc are more complicated than objects in driving scenes.
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image gt semantic segmentation semantic segmentation

gt occlusion boundaries occlusion boundaries+NMS

Figure 7.4: Illustration of our semantic segmentation and oriented occlusion boundaries for
the bottom-up OOSIS. The images are: input, ground truth and our semantic segmenta-
tion, ground truth and our oriented occlusion boundaries after non-maximum suppression.
The color scheme for the boundaries is: left-cyan, top-yellow, right-magenta, bottom-black.
Best viewed zoomed in.
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Image gt semantic seg pred semantic seg

gt occ oriented bndries pred occ oriented
 bndries+NMS

Figure 7.5: Illustration of our semantic segmentation and oriented occlusion boundaries for
the bottom-up OOSIS. The images are: input, ground truth and our semantic segmenta-
tion, ground truth and our oriented occlusion boundaries after non-maximum suppression.
The color scheme for the boundaries is: left-cyan, top-yellow, right-magenta, bottom-black.
Best viewed zoomed in. Note that COCOA does not have several specific semantic classes
but only a background/object class is determined.
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This formula represents the ratio of the intersection of the masks to their union, where
intersection refers to the overlapping area between the masks, and union represents the
total area covered by both masks. IoU ranges from 0 to 1, where a score of 1 indicates a
perfect overlap between the masks, while a score of 0 means no overlap at all.

7.6.2 mean Average Precision (mAP)

Among the metrics for instance segmentation, mean AP (mAP) [63, 83] is the most com-
monly used metric. The mAP is a score inspired by the detection problem. The mAP is
calculated by finding Average Precision (AP) [32] for each class and then averaging over
them.

For calculating AP for different classes, we first need to match the predicted instances
and the ground-truth instances. To initiate the matching process, we start by identifying
the predicted instance with the highest confidence score. This means that the instance
segmentation algorithm must produce a confidence score for each predicted instance, to
enable mAP computation. Then, we aim to find a corresponding ground-truth instance
that shares the same semantic class and has the highest IoU value. This IoU serves as a
measure of overlap between the predicted and ground-truth instances.

If the computed IoU surpasses a predefined minimum threshold, which we call t, we
consider the instances as a match and move on to the next predicted instance. By adjusting
t, we have the ability to control the number of matched instances.

To compute the Average Precision (AP) for each semantic class c in an instance seg-
mentation task, several steps need to be followed. Firstly, Precision and Recall must be
defined. Precision is the ratio of predicted instance masks with class label c that success-
fully match a ground truth mask of the same class. Recall, on the other hand, represents
the ratio of ground truth masks with class c that are successfully matched by a prediction.

To calculate AP, the confidence score threshold for predicted instances can be adjusted.
This allows us to exclude predicted masks below a certain confidence score from the preci-
sion and recall calculations. By varying this threshold from 0 to 1 and computing precision
and recall at each step, we obtain a series of precision-recall pairs. These pairs can be used
to construct a Precision-Recall curve. The area under the Precision-Recall curve corre-
sponds to the average precision for class c. AP is calculated for each class, and the mean
average precision (mAP) is obtained by averaging the AP values across all classes.

Now, remember that mAP also depends on t, the threshold of IoU in the matching
process. Typically, different t values are used, and the mAP is calculated for each. Then,
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the mean of such mAPs is reported. A common practice is to use ten t values from 0.5 to
0.95 with steps of 0.05. The mAP using this practice is called mAP0.5:0.95.

There are multiple works that analyze the shortcomings of AP [26, 78, 130, 7, 49]. One
problem with AP is that it does not penalize overlapping instances or a large number of
instance predictions provided that the instances are ranked in the correct order [49]. Thus
the unambiguous approaches, i.e. approaches that predict a single instance label per pixel,
are at a disadvantage.

Our top-down and bottom-up approaches are unambiguous. However, even in such
cases, the AP metric has a serious drawback [7]. AP metric depends on the confidence
score assigned to instances. If we take the same instance segmentation and assign different
confidence scores to the instances, AP scores will be different, even though the segmentation
is exactly the same. Our top-down approach is based on instance detection methods and,
therefore, has reasonable instance confidence scores estimated by CNN. However, for the
bottom-up approach, we have to come up with ad-hoc confidence scores to employ the AP
metric as we explained in Section 7.4. This is a non-appealing property of the AP metric,
especially when applied to non-ambiguous instance segmentation, where the confidence
scores are not required, as all the instances appear in the final instance segmentation
result.

7.6.3 Weighted Coverage Score (WCS)

In [49] they propose metrics that are more appropriate for the approaches producing over-
lapping instances, i.e. ambiguous segmentation where a pixel can belong to more than one
instance. However, since both our top-down and bottom-up approaches do not produce
overlapping instances, we advocate the use of the Weighted Coverage Score metric [101, 95],
which can be applied only to the unambiguous approaches, i.e. approaches which produce
one instance (or background) per pixel.

Let G = {r1, ..., rk} be the set of ground truth instances, and S = {s1, ..., sl} be the
set of segmented instances in an image. Given a pair of regions a, b, the intersection over
union score is defined as

IoU(a, b) =
a ∩ b

a ∪ b
(7.2)

The Weighted Coverage Score (WCS) metric is defined as

WCS(G,S) =
1

n

k∑
i=1

|ri| max
j=1,...,l

IoU(ri, sj), (7.3)
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where n is the number of pixels in the image and |ri| is the size of region ri. Intuitively,
WCS matches each ground truth instance with a segmented instance of the largest overlap
and adds to the score the size of the ground truth region, weighted by the goodness of this
overlap (where goodness is equal to the IoU score). The best value of WCS is 1, obtained
when the set of segmented instances contains exactly the same segments as the ground
truth. WCS metric does not depend on the confidence of a segmented instance, which is
an intuitive property for the evaluation of unambiguous instance segmentation methods.

Note that using WCS metric makes sense only for unambiguous instance segmentation
methods, i.e. each pixel is assigned to at most one instance. Otherwise, one can take S to
be equal to the set of all possible segments, automatically achieving the best WCS score
of 1.

7.7 Occlusion Boundary Model Ground Truth

Having the instance masks, one can easily get the boundary pixels. Hence, Bp is easy
to produce. Regarding Ep, which is only defined for ground-truth boundaries, we deter-
mine the orientation distribution for each boundary pixel p. To achieve this, we examine
whether pixel p occludes any of its left, right, top, or bottom neighbor pixels. We then
set the corresponding components in the orientation vector to 1, indicating the presence
of occlusion in those orientations. Finally, to ensure that the vector represents a valid
probability distribution, we normalize it to have a sum of 1. For example, if pixel p only
occludes its left neighbor, the corresponding Ep vector is [1, 0, 0, 0]. On the other hand, if
pixel p occludes both its left and top neighbors, the Ep vector is [0.5, 0, 0.5, 0], indicating
that the normal’s orientation lies between the two directions (i.e., 45 degrees to the top
left).

7.8 Evaluation of Semantic Instance Masks

We evaluate the instance masks of our approaches using standard instance segmentation
metrics. Occlusion ordering is not considered for this evaluation. We call an instance
segmentation method unambiguous if each pixel is assigned to a single instance. Both of
our approaches are unambiguous, whereas most instance segmentation methods are am-
biguous, producing multiple overlapping masks [49]. For the top-down method, we use two
well-established instance segmentation models, E2EC and M-RCNN, and different overlap
resolution techniques, as explained in Chapter 5. We report metrics: mAP0.5:0.95 [63, 83]
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Table 7.1: Performance of our different approaches on semantic instance segmentation on
the KINS dataset.

Model Instance Detection Overlap Resolution
Unambiguous Instance Segmentation

mAP0.5:0.95 ↑ Weighted Coverage ↑

Top-down M-RCNN
Random 11.1 66.7

Low Confidence 7.3 61.2
High Confidence 23.3 76.2

Top-down E2EC
Random 14.2 68.1

Low Confidence 10.3 63.2
High Confidence 24.1 76.8

Bottom-up Optimization By Construction 21.6 77.4

and Weighted Coverage Score [95]. The former is widely-used for instance segmenta-
tion [63] [83]. The latter is more equitable when comparing bottom-up approaches vs.
top-down ones, as it removes the need for predicting a mask confidence score [7]. How-
ever, it is only applicable when the predicted masks are unambiguous [7], as explained in
Section 7.6.

Results on KINS: Tab.7.1 shows the results. Resolving the overlap by High Con-
fidence yields superior results vs. other policies. E2EC is better than M-RCNN in all
cases. Our bottom-up approach achieves the best Weighted Coverage Score (WCS), de-
spite its lower mAP. This is due to the confidence score assignment influence, see [7, 49]
and Section 7.6. While an improved scoring may increase mAP for bottom-up approaches,
WCS is a more equitable comparison as explained in the previous paragraph. The results
highlight the effectiveness of the High Confidence overlap resolution, and the strength of
our bottom-up approach when compared with the recent powerful instance segmentation
E2EC.

Results on COCOA

Table 7.2 presents the results obtained from evaluating our proposed approaches for
instance segmentation. As in Table 7.1, for KINS, our top-down approach is assessed
using two distinct instance segmentation models, namely Mask R-CNN [40] and E2EC
[128]. We also examine the performance of each model when incorporating the three
overlap resolution techniques proposed in Chapter 5. Additionally, the performance of our
bottom-up approach is reported.

As outlined, all of our approaches produce unambiguous instance segmentation, i.e.
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Table 7.2: Performance of our different approaches on semantic instance segmentation on
the COCOA dataset.

Model Instance Detection Overlap Resolution
Unambiguous Instance Segmentation

mAP0.5:0.95 ↑ Weighted Coverage ↑

Top-down M-RCNN
Random 0.1 41.4

Low Confidence 2.2 38.3
High Confidence 15.2 56.5

Top-down E2EC
Random 6.7 49.2

Low Confidence 4.1 46.5
High Confidence 16.7 57.7

Bottom-up Optimization By Construction 9.1 61.2

each pixel is associated with only one instance label (or the background). Notably, the
results in Table 7.2 indicate superior performance of the top-down models employing E2EC
compared to those utilizing M-RCNN. Moreover, overlap resolution by higher confidence
consistently outperforms other techniques for handling overlaps. While the bottom-up
approach demonstrates the highest Weighted Coverage metric, it exhibits a lower mAP.
As explained previously and in Section 7.6, and [7], the Weighted Coverage score is more
equitable when comparing bottom-up approaches with top-down ones, due to the reliance
of mAP on the instance confidence scores and the lack of meaningful instance confidence
scores in the bottom-up approach.

7.9 Evaluation of Occlusion Ordering Consistency

Consistent occlusion ordering is important for scene analysis. To assess the consistency
of occlusion ordering, we measure the percentage of detected instances involved in cyclic
occlusion ordering for each method.

Results on KINS: In Tab.7.3, we evaluate the baselines and our approaches on KINS
dataset. The ground truth is cycle-free. As can be seen, the baselines perform poorly,
having a large number of cycles. Our top-down approach with overlap resolution by higher
confidence, significantly reduces cycles. The bottom-up approach is inherently cycle-free,
providing further evidence of its efficacy.

Results on COCOA: Table 7.4 presents the results on COCOA dataset. It is worth
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Table 7.3: % of predicted instances involved in cyclic occlusion ordering. (H) is mask
overlap removal by higher confidence. The results are on the KINS dataset.

Model % of Instances
in Cycles ↓

Baseline: M-RCNN InstaOrder 55.4
Baseline: M-RCNN OrderNet 55.7

Baseline:E2EC InstaOrder 46.3
Baseline:E2EC OrderNet 44.5

Top-down:M-RCNN (H) InstaOrder 7.6
Top-down:M-RCNN (H) OrderNet 5.7

Top-down:E2EC (H) InstaOrder 9.1
Top-down:E2EC (H) OrderNet 6.4

Bottom-up - 0 -

Table 7.4: % of predicted instances involved in cyclic occlusion ordering. (H) is mask
overlap removal by higher confidence. The results are on the COCOA dataset.

Model % of Instances
in Cycles ↓

Baseline: M-RCNN InstaOrder 72.4
Baseline: M-RCNN OrderNet 82.9

Baseline:E2EC InstaOrder 68.3
Baseline:E2EC OrderNet 78.9

Top-down:M-RCNN (H) InstaOrder 27.5
Top-down:M-RCNN (H) OrderNet 46.7

Top-down:E2EC (H) InstaOrder 32.2
Top-down:E2EC (H) OrderNet 55.6

Bottom-up - 0 -

noting that the ground truth for COCOA dataset is cycle-free, as it is for the KINS dataset.
As shown in Table 7.4, the baselines, regardless of their instance segmentation model,
exhibit a remarkably high cycle percentage, which indicates their inconsistent outputs.
Our proposed top-down approaches mitigate the issue, reducing the occurrence of cyclic
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occlusion ordering by anywhere from 25% to 45%. Nonetheless, they still exhibit a notable
number of instances with cyclic occlusion ordering. This is attributed to the inconsistent
pairwise occlusion orderings generated by InstaOrder and OrderNet. COCOA dataset
is considerably more difficult for pairwise occlusion order estimation (compare to KINS
dataset, Table 7.3). In contrast, our bottom-up approach achieves a cycle-free occlusion
ordering, consistent with the ground truth.

7.10 Evaluation of OOSIS using Our Metric (AOR

Curves)

In an occlusion order graph, instances are nodes and directed edges connect occluders to
their occludees. We construct occlusion graphs G, based on ground truth, and Ĝ, based on
the predicted instances and occlusion relations. To establish the correspondence between
predicted instances and ground-truth instances, we follow a standard instance segmentation
procedure [63] [83]. Specifically, we begin by selecting the predicted instance with the
highest confidence and seek a matching ground-truth instance with the same semantic class
and the highest Intersection-over-Union (IoU). If the IoU exceeds a minimum threshold,
the instances are matched, and we proceed to the next predicted instance. By raising
the IoU threshold, we can reduce the number of matched instances. Additionally, we can
establish a minimum confidence score below which predicted instances are not considered
for matching. Once we have a matching, we consider two nodes g1 and g2 in G, where
g1 occludes g2, i.e. endpoints of edges. If both g1 and g2 have a matched detection in Ĝ,
we label the pair as ”recovered,” otherwise as ”missed”. We define a pair as ”correctly
ordered” if there is a directed path from the matched detected instance of g1 to that of g2
in Ĝ and no path vice versa, i.e. one single order in the correct direction exists between
the two.

We compute recall and accuracy, where recall is the ratio of recovered pairs to the total
number of recovered and missed pairs, and accuracy is the ratio of correctly ordered pairs
to the total number of recovered pairs. We plot the Accuracy vs. Recall (AOR) curve by
varying thresholds in node matching, either based on IoU or confidence score. Our AOR is
similar to what [113] use for occlusion boundaries. The curve evaluates mask and occlusion
order simultaneously.

Results on KINS Fig.7.6a gives AOR curves of our methods and the baselines. Our
bottom-up approach achieves the highest accuracy for similar recalls, outperforming the
best top-down method by a margin of ∼ 2% in accuracy for similar recalls above 30%. Our
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(a) Our approaches compared to baselines.
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(b) Classifiers vs. simpler ideas for pairwise ordering in our top-down approach.

Figure 7.6: Left: AOR curves for IoU thresholds ranging from 0.5 to 0.95 in steps of
0.05 with confidence score threshold fixed at 0. Right: AOR curves for varying minimum
confidence score, with six thresholds covering 0 to the maximum recall of each method
with the minimum IoU threshold fixed to 0.5. (H) is overlap removal by higher confidence.
A higher curve is better performance.
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(b) Classifiers vs. simpler ideas for pairwise ordering in our top-down approach.

Figure 7.7: Left: AOR curves for IoU thresholds ranging from 0.5 to 0.95 in steps of
0.05 with confidence score threshold fixed at 0. Right: AOR curves for varying minimum
confidence score, with six thresholds covering 0 to the maximum recall of each method
with the minimum IoU threshold fixed to 0.5. (H) is overlap removal by higher confidence.
A higher curve is better performance.
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top-down approach with E2EC for instance segmentation performs as the next best alter-
native and has a slight ∼ 2% advantage in recall over the bottom-up approach. Notably,
while InstaOrder outperforms OrderNet in the pairwise occlusion ordering task [62], it
performs slightly weaker than OrderNet when used in the top-down approach for OOSIS.
Besides, our top-down method with M-RCNN performs worse than both our top-down
approach with E2EC and our bottom-up one. This shows the importance of the chosen
instance segmentation model on the top-down approach. Nevertheless, it still outperforms
the baselines by a huge margin, stressing the inadequacy of simply combining prior works
for OOSIS.

Fig.7.6b gives the AOR curves for our top-down approach with different pairwise oc-
clusion ordering techniques including the discussed CNNs, InstaOrder and OrderNet, and
other simpler ideas. We consider depth: the instance with a smaller mean depth estimate
occludes the other, area: the bigger mask occludes the smaller, and y-coordinate: the mask
with a lower center occludes the other. The depth is by monocular estimator MiDaS [85]
or by HR-Depth [66], where the former is trained on a mixture of datasets and the latter is
trained on KITTI [36], which is the mother dataset of KINS. The two CNN classifiers per-
form significantly better than the simple ideas, for both E2EC and M-RCNN. It is notable
that depth works significantly weaker than using classifiers, which shows the inefficacy of
monocular depth estimation for this task.

Results on COCOA: In this section, we conduct an evaluation of the baselines and
our proposed approaches on the COCOA dataset, utilizing AOR curves. Figure 7.7a vi-
sualizes the efficacy of our bottom-up approach. Firstly, it achieves the highest accuracy
across all recall values, surpassing both the baselines and top-down models. The perfor-
mance gap amounts to approximately 50% compared to the baselines and around 20%
compared to the best-performing top-down model. Secondly, in contrast to the KINS
dataset, our bottom-up approach achieves higher recalls than the best top-down model,
exhibiting a margin of approximately 6%. Among the top-down models, the one utilizing
E2EC and InstaOrder demonstrates superior performance on COCOA. Importantly, all of
our proposed approaches and models exhibit significantly improved performance compared
to the baseline methods.

Fig. 7.7b also shows the AOR curves for comparing different pairwise occlusion ordering
methods for our top-down approach. We employ the same simpler strategies we explained
for the KINS dataset. Note that depth works poorly on the KINS dataset. This is because
KINS images are driving scenes where objects can be very far making it significantly harder
for depth estimation and increasing the chance that far objects will get similar/wrong depth
estimates. In COCOA, images are mostly indoor scenes with objects being very closer to
the camera helping the depth estimation to be more reliable. However, it is still weaker
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(a) Comparison of Random Decycling on KINS Dataset.
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(b) Comparison of Random Decycling on COCOA Dataset.

Figure 7.8: Left: AOR curves for IoU thresholds ranging from 0.5 to 0.95 in steps of 0.05.
Right: AOR curves for varying minimum confidence score, with six thresholds covering 0
to the maximum recall of each method. (H) is overlap removal by higher confidence. A
higher curve is better performance.

than the bottom-up approach for establishing the occlusion order.

7.11 Cycle Removal Experiment

The presence of cyclic occlusion orderings is highly undesirable, as discussed in Chapter 1,
and Chapter 5. While our bottom-up approach guarantees a cycle-free occlusion ordering,
the top-down approach does exhibit cyclic orderings, albeit to a lesser extent compared to
the baselines. As mentioned in Chapter 5, it is hard to come up with an efficient intelligent
strategy for cycle removal. For example, one may want to remove the smallest set of edges
which results in an acyclic ordering graph. However, this is an NP-hard ’feedback arc set’
problem. In this section, we investigate decycling by applying a post-hoc random cycle
removal on the occlusion ordering graph of each method. The procedure is as follows. We
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Table 7.5: The performance of our deep model for oriented occlusion boundary detection
vs. the state-of-the-art, P2ORM. OIS, ODS, are F-measures based on the best threshold
per image, or for the whole dataset, respectively. AP is average precision. All are based
on POR curves for NMS-applied oriented occlusion boundaries on KINS.

Model Oriented Occ Boundary
ODS↑ OIS↑ AP↑

P2ORM 77.8 80.6 79.4
Ours 84.5 86 88.3

find a cycle, remove a random edge from it and check if there are still any cycles left. We
repeat this procedure until we get an acyclic graph.

Figures 7.8a and 7.8b present the performance results of this technique on the KINS
and COCOA datasets, respectively. As observed, the bottom-up approach remains the
top performer in terms of accuracy at similar recall values. Both the top-down approach
and the baselines benefit from the random decycling technique, although the baselines still
exhibit a significantly poorer performance compared to the top-down approach.

These findings underscore the importance of addressing cyclic occlusion orderings. It
also demonstrates that random decycling improves the performance of both top-down and
baseline methods, although they still fall short of the performance achieved by the bottom-
up approach.

7.12 Evaluation of Oriented Occlusion Boundaries

In Chapter 6.1, we describe our oriented occlusion boundaries approach, which we then
use in Chapter 6.2 for optimization. While optimization is crucial for high-quality globally
consistent OOSIS, it heavily relies on the quality of the occlusion boundaries. We evaluate
our performance against the state-of-the-art occlusion boundary method, P2ORM [84].
We use the standard oriented occlusion boundary metrics based on Precision vs. Recall
curves (POR) [111]. Tab.7.5 shows our superior performance in all metrics by a margin,
underscoring the effectiveness of our novel boundary model.

It is worth noting that P2ORM and previous works were originally developed for ex-
tracting all oriented occlusion edges in an image, while in our case, we only focus on the
edges relevant to objects with classes of interest. As shown in Table 7.5, P2ORM performs
weaker when trained and tested on this specific task.
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Prior works [113, 111, 84] compare their methods using the angle of boundary using
POR curves. Hence, to compare, we also convert our quantized predictions to an angle. To
convert, we proceed as follows, keeping in mind that our orientation vector estimates are
noisy. An orientation cannot be simultaneously to the left and to the right. Therefore, we
take the maximum of the left and right components from “o”. Similarly, orientation cannot
be simultaneously to the top and bottom, therefore, we take the maximum of the top and
bottom components from “o”. We set the normal’s angle by finding the arc tangent of
the achieved vector of the two mentioned maximums and their directions. For example,
if op = [0.5, 0.1, 0.4, 0.0] the angle is α = arctan0.5

0.4
. Furthermore, we convert the angle of

the normal to the angle of the boundary using the left rule [113], which involves adding or
subtracting π

2
.

7.13 Ablation Experiment on Oriented Occlusion Bound-

ary Model

Here, we show the effect of the joint upsampling for heads “e” and “b”. Tab.7.6, shows
the joint upsampling improves the performance on AP metric of POR curves for oriented
occlusion boundaries, and also on AP metric for just detecting boundaries, i.e. the “b”
branch performance alone. This indicates the efficacy of sharing information in upsampling
by the logits of “e” and “b”.

Table 7.6: Ablation on the effect of joint upsampling of heads “b” and “e”. All are for
NMS-applied oriented occlusion boundaries on KINS.

Model Oriented Occ Boundary Boundary Detection
ODS↑ OIS↑ AP↑ AP↑

Ours (Separate “b” and “e” Upsampling) 84.5 85.9 87.1 90.2
Ours (Joint “b” and “e” Upsampling) 84.5 86 88.3 92.4

As another ablation, we test different loss functions for the ‘b’ branch of the boundary
model instead of the used Weighted Cross-Entropy. In particular, we evaluate Dice++ [123],
Tversky++ [123], and also Combo [100] loss. For Dice++, we use γ = 2, and for Tver-
sky++, we use γ = 2, α = 0.8, β = 0.2. For Combo, we set α = 0.1. Table 7.7 shows the
performance using each of the losses in terms of Average Precision for occlusion boundary
detection on the KINS dataset. The results show the effectiveness of Weighted CE. This
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ablation is interesting because several prior works advocate complicated boundary losses
such as the mentioned ones, while we show that simple cross-entropy, with a carefully
chosen weight parameter, works better at least on the KINS dataset and for occlusion
boundary detection.

Loss Boundary Detection (AP)

Dice++ 91.7
Tversky++ 91.2

Combo 88.9
Weighted CE 92.4

Table 7.7: The performance of different loss functions for the ‘b’ branch of our boundary
model in terms of boundary detection using AP metric on the KINS dataset.

7.14 Compute

All deep models, E2EC, Mask-RCNN, IntaOrder, OrderNet, and ours were trained and
tested on a single GPU of NVIDIA RTX3090 using PyTorch. Optimization for our bottom-
up was done on CPU using Python and Jupyter Notebook environment. Training our
PSPNet-based deep model for joint semantic segmentation and occlusion boundary detec-
tion using the explained configurations specified in Section 7.2 took ∼ 12 hours for KINS
and ∼ 4 hours for COCOA. For our bottom-up approach optimization, testing on a sin-
gle image of KINS on CPU with no parallelization took ∼ 12 seconds. This was ∼ 13
seconds for COCOA. Training E2EC for KINS took ∼ 15 hours for KINS and ∼ 4 hours
for COCOA. Testing each of InstaOrder or OrderNet on any of (instance segmentation,
overlap removal technique) configuration pair took ∼ 1.5 hours. We did not have to train
InstaOrder and OrderNet as we used pre-trained networks (on both KINS and COCOA
datasets).
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Chapter 8

Conclusion and Future Work

This thesis focused on occlusion-ordered semantic instance segmentation (OOSIS), which
aims to address two key outputs: 1- segmentation masks and semantic classes for each ob-
ject instance in an input image, and 2- the occlusion ordering among the objects. OOSIS
goes beyond conventional semantic instance segmentation by incorporating a coarse 3D
representation of the scene, achieved through the estimation of partial relative depth or-
dering.

Unlike prior works that relied on simple visual cues and pre-dated deep learning, we
introduced two deep learning-based approaches to tackle OOSIS. The first approach fol-
lows a top-down strategy, where instance masks are initially extracted using standard
instance segmentation methods. The next step involves resolving overlaps between dif-
ferent instance masks, aiming to accurately determine the occlusion relationship between
neighboring objects, which is achieved by a CNN classifier designed to classify pairwise
occlusion relations. While this approach benefits from the use of state-of-the-art instance
segmentation methods, the pairwise nature of occlusion ordering leads to undesired cyclic
orderings, thus lacking global ordering consistency.

The second approach takes a bottom-up approach. It involves grouping pixels into in-
stances and assigning occlusion order labels using discrete energy optimization techniques.
This approach aims to ensure global occlusion consistency, addressing the challenge of
undesired cyclic orderings that may arise in the pairwise occlusion approach. Addition-
ally, we have developed a novel occlusion-oriented boundary model, which surpasses the
performance of previous methods in this domain.

In addition, we have proposed a novel evaluation metric, in Chapter 7 in the Sec-
tion 7.10, specifically designed to assess the performance of OOSIS methods. This metric
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takes into account both instance segmentation and occlusion ordering, enabling a com-
prehensive evaluation of OOSIS approaches. By simultaneously evaluating segmentation
and ordering aspects, our evaluation metric provides a fair and effective means for future
research in OOSIS to compare and analyze different methods. This metric serves as a
valuable tool to benchmark and advance the field, fostering further improvements in both
the segmentation and ordering capabilities of OOSIS methods.

An interesting direction for future research could involve the incorporation of Condi-
tional Random Fields (CRF) formulation to effectively resolve the overlaps among predicted
instance masks in the top-down approach. Such an approach would not only enhance the
quality of the masks but also improve the accuracy of occlusion ordering. Besides, as we
are utilizing deep learning for OOSIS for the first time, there are many other interesting
directions for exploration. For instance, investigating the use of deep learning for a one-
stage bottom-up approach instead of our current two-stage method would be an interesting
direction for further exploration enabling a faster and more powerful OOSIS.

The main limitation of our work is that occlusions provide only a partial instance
order. The relative depth order between two instances not connected by a monotone chain
is unknown. Also, with neither of the two approaches a real-time OOSIS is possible. Future
works can aim for such improvements as well.
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[61] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[62] Hyunmin Lee and Jaesik Park. Instance-wise occlusion and depth orders in natu-
ral scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 21210–21221, 2022.

[63] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Gir-
shick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014.

[64] Yiding Liu, Siyu Yang, Bin Li, Wengang Zhou, Jizheng Xu, Houqiang Li, and Yan
Lu. Affinity derivation and graph merge for instance segmentation. In Proceedings
of the European conference on computer vision (ECCV), pages 686–703, 2018.

[65] Rui Lu, Feng Xue, Menghan Zhou, Anlong Ming, and Yu Zhou. Occlusion-shared
and feature-separated network for occlusion relationship reasoning. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 10343–10352,
2019.

[66] Xiaoyang Lyu, Liang Liu, Mengmeng Wang, Xin Kong, Lina Liu, Yong Liu, Xinxin
Chen, and Yi Yuan. Hr-depth: High resolution self-supervised monocular depth esti-
mation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pages 2294–2301, 2021.

[67] Mateusz Malinowski and Mario Fritz. A multi-world approach to question answering
about real-world scenes based on uncertain input. Advances in neural information
processing systems, 27, 2014.

[68] John Martinsson and Olof Mogren. Semantic segmentation of fashion images using
feature pyramid networks. In Proceedings of the IEEE/CVF International Conference
on Computer Vision Workshops, pages 0–0, 2019.

[69] Gloria Menegaz and Rosa Lancini. Semantic segmentation of angiographic images.
In Proceedings of 18th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, volume 2, pages 670–671. IEEE, 1996.

92



[70] David J Michael and Alan C Nelson. Handx: a model-based system for automatic
segmentation of bones from digital hand radiographs. IEEE transactions on medical
imaging, 8(1):64–69, 1989.

[71] Pierangelo Migliorati, Federico Pedersini, L Sorcinelli, and Stefano Tubaro. Seman-
tic segmentation applied to image interpolation in the case of camera panning and
zooming. In 1993 IEEE International Conference on Acoustics, Speech, and Signal
Processing, volume 5, pages 25–28. IEEE, 1993.

[72] Andres Milioto, Philipp Lottes, and Cyrill Stachniss. Real-time semantic segmenta-
tion of crop and weed for precision agriculture robots leveraging background knowl-
edge in cnns. In 2018 IEEE international conference on robotics and automation
(ICRA), pages 2229–2235. IEEE, 2018.

[73] T.K. Moon. The expectation-maximization algorithm. IEEE Signal Processing Mag-
azine, 13(6):47–60, 1996.

[74] Josh Myers-Dean and Scott Wehrwein. Semantic pixel distances for image edit-
ing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 534–535, 2020.

[75] Ken Nakayama. Biological image motion processing: a review. Vision research,
25(5):625–660, 1985.

[76] Neural network - Wikipedia — en.wikipedia.org. https://en.wikipedia.org/

wiki/Neural_network. [Accessed 13-Jul-2023].

[77] Davy Neven, Bert De Brabandere, Marc Proesmans, and Luc Van Gool. Instance
segmentation by jointly optimizing spatial embeddings and clustering bandwidth. In
Proceedings of the IEEE/cvf conference on computer vision and pattern recognition,
pages 8837–8845, 2019.

[78] Kemal Oksuz, Baris Can Cam, Emre Akbas, and Sinan Kalkan. Localization recall
precision (lrp): A new performance metric for object detection. In Proceedings of the
European conference on computer vision (ECCV), pages 504–519, 2018.

[79] Anton Osokin, Denis Sumin, and Vasily Lomakin. Os2d: One-stage one-shot ob-
ject detection by matching anchor features. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XV 16,
pages 635–652. Springer, 2020.

93

https://en.wikipedia.org/wiki/Neural_network
https://en.wikipedia.org/wiki/Neural_network


[80] Ralph HJM Otten and Lukas PPP van Ginneken. The annealing algorithm, vol-
ume 72. Springer Science & Business Media, 2012.

[81] Sida Peng, Wen Jiang, Huaijin Pi, Xiuli Li, Hujun Bao, and Xiaowei Zhou. Deep
snake for real-time instance segmentation. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages 8533–8542, 2020.

[82] Renfrey Burnard Potts. Some generalized order-disorder transformations. In Mathe-
matical proceedings of the cambridge philosophical society, volume 48, pages 106–109.
Cambridge University Press, 1952.

[83] Lu Qi, Li Jiang, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Amodal instance segmen-
tation with kins dataset. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019.

[84] Xuchong Qiu, Yang Xiao, Chaohui Wang, and Renaud Marlet. Pixel-pair occlusion
relationship map (p2orm): formulation, inference and application. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part IV 16, pages 690–708. Springer, 2020.

[85] René Ranftl, Katrin Lasinger, David Hafner, Konrad Schindler, and Vladlen Koltun.
Towards robust monocular depth estimation: Mixing datasets for zero-shot cross-
dataset transfer. IEEE Transactions on Pattern Analysis and Machine Intelligence,
44(3), 2022.

[86] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. Advances in neural information
processing systems, 28, 2015.

[87] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals
of mathematical statistics, pages 400–407, 1951.

[88] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Mu-
nich, Germany, October 5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer,
2015.

[89] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In Medical Image Computing and
Computer-Assisted Intervention, pages 234–241, 2015.

94



[90] Reuven Y Rubinstein and Dirk P Kroese. The cross-entropy method: a unified ap-
proach to combinatorial optimization, Monte-Carlo simulation, and machine learn-
ing, volume 133. Springer, 2004.

[91] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning repre-
sentations by back-propagating errors. Nature, 323:533–536, 1986.

[92] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus, and
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