
Solving Saddle Point Formulations of
Linear Programs with Frank-Wolfe

by

Matthew Hough

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2023

© Matthew Hough 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The problem of solving a linear program (LP) is ubiquitous in industry, yet in recent
years the size of linear programming problems has grown and continues to do so. State-of-
the-art LP solvers make use of the Simplex method and primal-dual interior-point methods
which are able to provide accurate solutions in a reasonable amount of time for most
problems. However, both the Simplex method and interior-point methods require solving
a system of linear equations at each iteration, an operation that does not scale well with
the size of the problem.

In response to the growing size of linear programs and poor scalability of existing algo-
rithms, researchers have started to consider first-order methods for solving large scale linear
programs. The best known first-order method for general linear programming problems is
PDLP [2, 3]. First-order methods for linear programming are characterized by having a
matrix-vector product as their primary computational cost.

We present a first-order primal-dual algorithm for solving saddle point formulations of
linear programs, named FWLP (Frank-Wolfe Linear Programming). We provide some the-
oretical results regarding the behavior of our algorithm, however no convergence guarantees
are provided. Numerical investigations suggest that our algorithm has error O(1/

√
k) after

k iterations, worse than that of PDLP, however we show that our algorithm has advantages
for solving very large LPs in practice such as only needing part of the matrix A at each
iteration.

iii

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Prof. Stephen Vavasis.
Steve’s guidance throughout the past two years has been paramount to my success and I
very much look forward to learning more from him over the coming years as I complete
my PhD.

I would also like to thank Dr. Lindon Roberts for mentoring me as an undergradu-
ate student in Australia. Lindon taught me so much about continuous optimization and
mathematics research in general. I find myself applying the lessons I learned while working
with Lindon on a weekly basis.

Over the past few years the advice and encouragement of Prof. Coralia Cartis, Prof.
Diane Donovan, Dr. Fred Roosta, and Prof. Simon Lucey has been a massive help and I
am very fortunate to have had their support. Thank you!

I am also very appreciative of my readers Prof. Henry Wolkowicz and Asst. Prof.
Walaa Moursi for their thorough reading of my thesis and insightful comments.

Most importantly, I would like to thank my friends and family. I am so grateful for
their presence in my life. Special thanks go to my roommate Antonio and girlfriend Tina.

iv

Dedication

For Judy, Alex, Betty, and Lex.

v

Table of Contents

List of Figures viii

List of Tables ix

List of Algorithms x

1 Introduction 1

2 Notation 3

3 Background 4

3.1 Continuous Optimization . 4

3.2 Linear Programming . 5

3.2.1 Linear Programming Geometry . 6

3.2.2 Linear Programming Duality . 7

3.2.3 Certificates of infeasibility . 9

3.3 Saddle Point Formulations . 9

3.4 The Frank-Wolfe Algorithm . 10

3.5 Splitting Algorithms . 11

vi

4 Literature Review 13

4.0.1 Saddle point problems . 13

4.0.2 Frank-Wolfe for saddle point problems 17

4.0.3 First order methods for linear programming 18

5 Algorithms for Linear Programming 19

5.1 The Simplex method . 19

5.2 Interior point methods . 23

5.3 First order algorithms . 27

5.3.1 ECLIPSE [4] . 27

5.3.2 PDLP [2, 3] . 30

6 Solving Saddle Point Formulations of Linear Programs with Frank-Wolfe 33

6.1 Theoretical results . 36

6.1.1 Relation to the primal-dual gap for saddle point problems 45

6.2 Connection to Hammond’s Generalized Fictitious Play Algorithm 48

6.3 Advantages of FWLP . 50

6.4 Choosing ξ and η . 50

6.5 Restarting FWLP . 56

6.6 Experimental analysis of convergence rate 61

7 Conclusions and Future Work 64

References 65

vii

List of Figures

6.1 Parameter heatmaps comparing the interaction between various ξ and η
values. 54

6.2 Problem 1: KKT error of averaged iterates for different restarting schemes. 58

6.3 Problem 2: KKT error of averaged iterates for different restarting schemes. 58

6.4 Problem 3: KKT error of averaged iterates for different restarting schemes. 59

6.5 Problem 4: KKT error of averaged iterates for different restarting schemes. 59

6.6 Problem 5: KKT error of averaged iterates for different restarting schemes. 60

6.7 Problem 1: KKT error of last and averaged iterates compared to C/
√
k and

C/k. 61

6.8 Problem 2: KKT error of last and averaged iterates compared to C/
√
k and

C/k. 62

6.9 Problem 3: KKT error of last and averaged iterates compared to C/
√
k and

C/k. 62

6.10 Problem 4: KKT error of last and averaged iterates compared to C/
√
k and

C/k. 63

6.11 Problem 5: KKT error of last and averaged iterates compared to C/
√
k and

C/k. 63

viii

List of Tables

6.1 The five random problems used for numerical experiments. 51

6.2 Problem 1: KKT error of the averaged iterates for the top 5 combinations
of η and ξ. 55

6.3 Problem 2: KKT error of the averaged iterates for the top 5 combinations
of η and ξ. 55

6.4 Problem 3: KKT error of the averaged iterates for the top 5 combinations
of η and ξ. 55

6.5 Problem 4: KKT error of the averaged iterates for the top 5 combinations
of η and ξ. 55

6.6 Problem 5: KKT error of the averaged iterates for the top 5 combinations
of η and ξ. 56

ix

List of Algorithms

3.1 The Frank-Wolfe algorithm. 11
5.1 The Simplex method. 20
5.2 A primal-dual interior-point method. 26
5.3 ECLIPSE: Extreme Scale Linear Program Solver. 28
5.4 PDHG for (LP). 30
6.1 FWLP: A primal-dual algorithm for (LP) based on Frank-Wolfe. 35
6.2 Generalized Fictitious Play applied to (6.1). 49
6.3 Numerical experiments comparing combinations of parameters η and ξ. . . 52
6.4 FWLP (restarted): FWLP with restarts. 57

x

Chapter 1

Introduction

Linear programming has been an essential tool in optimization since George Dantzig’s work
on the Simplex method in the 1940s. Industrial optimization problems such as scheduling,
chip design, budget allocation, and many more have long been modeled as linear programs
(LPs). Software for solving linear programs predates operating systems. The state-of-the-
art algorithms used in LP solvers, namely the Simplex method and primal-dual interior-
point methods (IPMs) are widely considered to be mature in that they reliably return
solutions with high accuracy. Despite the differences between the Simplex method and
primal-dual interior-point methods, both algorithms rely on the solution of a system of
linear equations.

In recent years, data science applications have given birth to problems of very large
scale. Now, it is not uncommon for linear programming problems to have billions of
variables. This poses a problem for mature LP solvers that require solving a system of
linear equations at each iteration. First-order methods for linear programming aim to solve
LPs in such a way that their most expensive operation at each iteration is the product
of a matrix and a vector. Their goal is to provide an alternative to the practitioner over
LP solvers such as Simplex or IPMs for large-scale problems. First-order methods are not
without fault, however. While their strength is their low cost per iteration, their weakness
is their inability to provide highly accurate solutions. The practitioner thus must make a
trade-off between accuracy and efficiency for the problem at hand.

1

Thesis outline

In this thesis we propose a first-order primal-dual algorithm for linear programming inspired
by the Frank-Wolfe algorithm [20]. We call our algorithm FWLP. The thesis begins by
introducing the necessary background for the algorithm in Chapter 3, and the related
literature in Chapters 4 and 5, before introducing FWLP and related theoretical results
in Chapter 6. While FWLP has been observed to converge empirically, we are unable to
provide a convergence proof for the algorithm. Nonetheless, we devise separate potential
functions for the case where the dual iterate is infeasible and feasible and show that in
each case such potential functions are equivalent by a constant factor to the standard
primal-dual gap used to measure optimality of saddle-point problems. We prove that these
potential functions decrease by a constant factor at each iteration. This work can be found
in Section 6.1 of Chapter 6. Section 6.2 relates FWLP to the Generalized Fictitious Play
algorithm proposed in [30]. In Chapter 6, Sections 6.4 and 6.5, we perform numerical
experiments on five random linear programs in order to determine parameters of FWLP
that work well in practice, and to test the effect restarting FWLP has on the observed
convergence rate of the algorithm. In Section 6.6, we investigate the convergence rate of
FWLP numerically. Our results suggest that FWLP reduces the error to O(1/

√
k) after k

iterations, which is slower than the best known first-order method for linear programming,
PDLP [2, 3]. However, in Section 6.3 we describe how FWLP can be implemented in a way
that only requires part of the matrix A at each iteration, making iterations very efficient
in comparison to other linear programming algorithms.

2

Chapter 2

Notation

Throughout this thesis we use boldface for vectors. For example, x ∈ Rn is a vector, while
ξ ∈ R is a scalar. The variable k ∈ N is always used to denote the kth iteration in an
algorithm, and we write xk to denote the value of x at the kth iteration. We also use
subscripts to index the entries of a vector, however this will always be done with a variable
other than k, and the vector being indexed will not be boldfaced. For example, xi refers
to the ith entry of x. If we want to index multiple entries of a vector, we use the notation
xS, where S is a set of the indices to be selected. xS is a vector of length |S|. Matrices
are always capitalized and are denoted by letters A and B. We use Matlab notation to
index matrices, so A(:, j) refers to the jth column of A (as a column vector), A(i, :) refers
to the ith row of A (as a row vector), and A(i, j) refers to the ijth entry of A, a scalar.
The identity matrix is denoted I. Where the size of a matrix cannot be easily inferred
from context, we use subscript notation to describe its size. For example, Am×n means A
is an m × n matrix. When dealing with operators, Id refers to the identity operator. NC

denotes the normal cone of the convex set C and PC(x) denotes the projection of x onto
the set C. The projection of x onto the nonnegative orthant receives special attention and
is denoted [x]+.

3

Chapter 3

Background

3.1 Continuous Optimization

Given a continuous function f : Rn → R and a set C ⊆ Rn, the continuous optimization
problem is

minimize
x ∈ Rn

f(x)

subject to x ∈ C.
(3.1)

We call f the objective function and C the feasible set. To solve (3.1) is to find a global
minimizer, defined as follows.

Definition 3.1.1. A point x ∈ Rn is a global minimizer of (3.1) if x ∈ C, and it satisfies
f(x) ≤ f(y) for all y ∈ C.

Definition 3.1.1 is not particularly useful from an algorithmic standpoint, since an
algorithm usually only has local information about the objective function. Algorithms
generally search for a local minimizer:

Definition 3.1.2. A point x ∈ Rn is a local minimizer of (3.1) if x ∈ C and there exists
a neighborhood N such that f(x) ≤ f(y) for all y ∈ N ∩ C.

Suppose the feasible set C is defined by the equations and inequalities

C = {x ∈ Rn : ci(x) = 0 for i ∈ E , ci(x) ≥ 0 for i ∈ I},

where ci are all differentiable, E and I are mutually exclusive sets of indices, and m :=
|E∪I|. In addition suppose now that f is differentiable and consider the following definition:

4

Definition 3.1.3. Given x ∈ Rn and y ∈ Rm, the Lagrangian L : Rn × Rm → R
associated with (3.1) is defined by

L(x,y) = f(x) +
∑
i∈E∪I

yici(x).

The following theorem gives the first-order necessary conditions for x∗ to be a local
minimizer of (3.1).

Theorem 3.1.4. Suppose that x∗ is a local minimizer of (3.1) and an appropriate con-
straint qualification1 holds. There must exist a y∗ ∈ Rm such that the following conditions,
known as KKT conditions are all satisfied:

∇xL(x∗,y∗) = 0, (3.2)

ci(x
∗) = 0, for all i ∈ E , (3.3)

ci(x
∗) ≥ 0, for all i ∈ I, (3.4)

y∗i ≤ 0, for all i ∈ I, (3.5)

y∗i ci(x
∗) = 0, for all i ∈ E ∪ I. (3.6)

First-order necessary conditions are the basis of most continuous optimization algo-
rithms. Iteratively, algorithms search for points that satisfy the necessary optimality con-
ditions of the problem.

In the next section, we consider the special case of continuous optimization where f is
linear and C is a polyhedron.

3.2 Linear Programming

Let m,n be positive integers, b ∈ Rm, c ∈ Rn, and A be an m × n real matrix. We call
any continuous optimization problem of the form

minimize
x ∈ Rn

c⊤x

subject to Ax = b,

x ≥ 0,

(LP)

1For a background on constraint qualifications, see [54].

5

a linear program, or LP for short2. By observing that both the objective and constraint
functions are affine, we conclude that linear programming is a special case of convex pro-
gramming, i.e. the minimization of a convex objective subject to convex constraints. It
follows that any local minimizer of (LP) is a global minimizer (cf. [48, Theorem 2.5]).

3.2.1 Linear Programming Geometry

Consider the feasible set of (LP),

P = {x ∈ Rn : Ax = b, x ≥ 0}.

P is a polyhedron in standard form. Throughout this thesis we will make the following
standard assumptions.

Assumption 1. The m rows of A are linearly independent.

Assumption 2. The feasible set P of (LP) is non-empty.

In fact, Assumption 1 can be made without loss of generality ([6, Theorem 2.5]). This
makes sense, as linearly dependent rows in A would correspond to redundant constraints
that are unnecessary for the representation of P . Assumption 1 implies that rank(A) = m,
and since the rows of A are n-dimensional, this requires m ≤ n.

The following gives a geometric definition of a ‘corner’ point of P .

Definition 3.2.1. The vector x ∈ P is a vertex of P if there exists a c ∈ Rn such that
c⊤x < c⊤y for all y ∈ P different from x.

We now give the definition of what it means to be at a ‘corner’ point of P in the
algebraic sense.

Definition 3.2.2. A point x ∈ Rn is a basic solution of P if Ax = b, and there exist
indices B(1), . . . , B(m) such that

(a) The columns AB(1), . . . , AB(m) are linearly independent.

(b) If i /∈ {B(1), . . . , B(m)}, then xi = 0.

If in addition, x ≥ 0, then x is a basic feasible solution (BFS).

2For a more complete introduction to linear programming, refer to [6].

6

If x is a basic solution, the variables xB(1), . . . ,xB(m) are known as the basic vari-
ables, while the remaining variables are known as the nonbasic variables. The columns
AB(1), . . . , AB(m) are called the basic columns, and since they are linearly independent,
they form a basis of Rm. If we set B := {B(1), . . . , B(m)}, we use AB to denote the basis
matrix, formed by

AB =
[
AB(1) AB(2) . . . AB(m)

]
.

Definition 3.2.3. A basic solution x ∈ Rn of P is said to be degenerate if more than
n−m entries of x are zero.

Intuitively, there can only be finitely many corners to a polyhedron. This is captured
in the following fact:

Fact 3.2.4 ([6, Corollary 2.1]). For any P , there can only be a finite number of basic
solutions.

We’ve been calling basic solutions ‘corner points’ but have not yet confirmed the relation
between the algebraic definition of a basic solution and the geometric concept of a vertex
of P . It can be shown that vertices of P are equivalent to basic feasible solutions. While
the definition of a vertex is useful in theory, it is the algebraic definition of a BFS that is
useful when designing algorithms.

Fact 3.2.5 ([6, Theorem 2.3]). Let x ∈ P . Then x is a vertex of P if and only if x is a
basic feasible solution of P .

Under our assumption that P is a non-empty polyhedron in standard form, it can be
shown that P always has at least one basic feasible solution [6, Corollary 2.2]. Moreover, if
we consider the linear programming problem corresponding to P , (LP), either the optimal
cost is unbounded, or there exists a vertex of P that is optimal for the linear program.

3.2.2 Linear Programming Duality

The dual of (LP) is given by the following linear program.

maximize
y ∈ Rm

b⊤y

subject to A⊤y ≤ c.
(DLP)

7

Assuming (LP) and (DLP) both have feasible solutions, the weak duality theorem in linear
programming tells us that the objective value of any feasible point of (DLP) is always a
lower bound on the objective value of (LP).

Consider the partial Lagrangian function associated with (LP), ignoring the sign con-
straints. This can be viewed as the objective in (LP) plus a weighted sum of the constraint
violations bi − A(i, :)x.

L(x,y) = c⊤x+ y⊤(b− Ax) (3.7)

Let d(y) = min{L(x,y) : x ≥ 0} and suppose there exists an optimal solution x∗ to (LP).
Since in d(y) we are minimizing over a supserset of the feasible set in (LP), we have that

d(y) ≤ c⊤x∗ + y⊤(b− Ax∗) = c⊤x∗ (3.8)

for any y ∈ Rm, where the equality follows from the fact that Ax∗ = b. We can view the
problem of maximizing d(y) over all y ∈ Rm, as looking for the greatest lower bound to
(LP). Moreover, note

d(y) = min
x≥0

{c⊤x+ y⊤(b− Ax)}

= y⊤b+min
x≥0

(c− A⊤y)⊤x (3.9)

where the second term in the above is either zero when c − A⊤y ≥ 0, or unbounded
otherwise. In looking for a y that maximizes d(y), we are implicitly looking for a y that
satisfies the constraint c−A⊤y ≥ 0. Otherwise, a maximum is not obtained. That is, we
want max{d(y) : c− A⊤y ≥ 0}, which is equivalent to (DLP).

If instead, we let p(x) = max{L(x,y) : y ∈ Rm} and suppose there exists an optimal
solution y∗ to (DLP), we obtain the following for all x ≥ 0.

p(x) ≥ b⊤y∗ + (c− A⊤y∗)⊤x ≥ b⊤y∗ (3.10)

Here the first inequality comes from the fact that in p(x) we are maximizing over a superset
of the feasible set in (DLP), and the second inequality comes from the feasibility of y∗ for
(DLP) and the assumption that x ≥ 0. Hence, we can view the problem of minimizing
p(x) over all x ≥ 0, as looking for the least upper bound to (DLP). Since we have

min
x≥0

p(x) = min
x≥0

max
y

{c⊤x+ y⊤(b− Ax)}

= min
x≥0

{c⊤x+max
y

y⊤(b− Ax)}

= min
x≥0

{
c⊤x, Ax = b,

+∞, otherwise,

8

and we only want to consider the bounded case as before, we find that our search for a
least upper bound to (DLP) is equivalent to min{p(x) : Ax = b,x ≥ 0}. But this is the
same problem as (LP).

From weak duality, we now have that

max{d(y) : y ∈ Rm} = b⊤y∗ ≤ c⊤x∗ = min{p(x) : x ≥ 0,x ∈ Rn} (3.11)

If in addition, we assume that (LP) has an optimal solution, then the theorem of strong
duality says that (DLP) also has an optimal solution, and the inequality in (3.11) becomes
an equality. This implies the following equation.

max
y∈Rm

min
x≥0

L(x,y) = min
x≥0

max
y∈Rm

L(x,y) (3.12)

3.2.3 Certificates of infeasibility

Consider the constraints of (LP), Ax = b and x ≥ 0. If there exists a vector p such that
p⊤A ≥ 0⊤ and p⊤b < 0, then for any x ≥ 0, we have p⊤Ax ≥ 0. However, since p⊤b < 0,
it is impossible for p⊤Ax = p⊤b, i.e. Ax ̸= b must hold for all x ≥ 0. Such a vector p is
called a certificate of infeasibility, because whenever we can find such a p, we can certify
that there do not exist any solutions to the standard form constraints. The following
lemma, known as Farkas’ lemma, states that whenever (LP) is infeasible, a certificate of
infeasibility must exist.

Theorem 3.2.6 (Farkas’ lemma). Exactly one of the following holds:

(a) There exists an x ∈ Rn, x ≥ 0 such that Ax = b.

(b) There exists a p ∈ Rm such that p⊤A ≥ 0 and p⊤b < 0.

3.3 Saddle Point Formulations

Consider a convex-concave function f : X × Y → R. The saddle point problem is

min
x∈X

max
y∈Y

f(x,y) (3.13)

where X ,Y are non-empty, closed, and convex sets. Solutions to (3.13) are known as saddle
points of f , defined as follows.

9

Definition 3.3.1. A point (x∗,y∗) ∈ X × Y is a saddle point of f if it satisfies

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗), for all x ∈ X , y ∈ Y .

By observing that the Lagrangian defined in (3.7) is a convex-concave function, and
that the sets Rn

+ and Rm are closed and convex, we find that (3.13) generalizes the linear
program (LP), assuming that the inner maximization is bounded. Moreover, it is not hard
to see that if x∗ is an optimal solution to (LP) and y∗ is an optimal solution to (DLP),
the pair (x∗,y∗) is a saddle point for L(x,y) over the feasible set Rn

+ × Rm. Because for
any x ∈ Rn

+ and y ∈ Rm,

L(x∗,y) = c⊤x∗ + y⊤(b− Ax∗) = c⊤x∗ = b⊤y∗ ≤ b⊤y∗ + (c− A⊤y∗)⊤x = L(x,y∗)

where the second equality comes from the feasibility of x∗, the third equality comes from
strong duality, and the inequality comes from the feasibility of y∗. Since c⊤x∗ = L(x∗,y∗),
we get that

L(x∗,y) ≤ L(x∗,y∗) ≤ L(x,y∗).

With this in mind, we may choose to instead solve the saddle point formulation of (LP).

3.4 The Frank-Wolfe Algorithm

Consider the optimization problem

minimize
x ∈ C

f(x) (3.14)

where f : Rn → R is convex, and C ⊆ Rn is a non-empty, compact, and convex set. The
Frank-Wolfe algorithm [20] (see Algorithm 3.1), also known as the Conditional Gradient
method, iteratively solves (3.14), with the defining feature being that at each iteration it
optimizes a linear function over the convex constraint set C. Throughout this thesis, we
use the step-size 1/(k + 1) for the Frank-Wolfe algorithm, analyzed in [21]

10

Algorithm 3.1 The Frank-Wolfe algorithm.

1: Choose x0 ∈ C.
2: for k = 1, 2, . . . do
3: Find a step that decreases the first-order approximation of f :

sk := argmin{f(xk) + ⟨∇f(xk), s⟩ : s ∈ C} (3.15)

4: Update xk+1 as a convex combination between xk and sk:

xk+1 :=

(
1− 1

k + 1

)
xk +

1

k + 1
sk (3.16)

Since f(xk) is a constant in (3.15), this step reduces to sk := argmin{⟨∇f(xk), s⟩ : s ∈
C}. For many convex sets C, this linear optimization problem can be much less costly to
solve than a projected gradient step, and often exhibits a closed-form solution [34].

3.5 Splitting Algorithms

Suppose X is some Hilbert space and consider the operators A,B : X ⇒ X. The next few
definitions will be useful in what follows.

Definition 3.5.1 ([5, Definition 23.1]). The resolvent of A is JA = (Id+A)−1.

Definition 3.5.2 ([5, Corollary 23.11 (ii)]). The reflected resolvent of A is RA = 2JA−
Id.

Definition 3.5.3 ([5, Definition 4.1 (ii)]). Suppose T : X → X. Then T is nonexpansive
if for all x, y ∈ X,

∥Tx− Ty∥ ≤ ∥x− y∥,
and T is firmly nonexpansive if 2T − Id is nonexpansive (cf. [5, Proposition 4.4]).

Definition 3.5.4 ([5, Definition 20.1]). A is monotone if for any (x, u), (y, v) ∈ grA,

⟨x− y, u− v⟩ ≥ 0.

Definition 3.5.5 ([5, Definition 20.20]). A is maximally monotone if it is monotone
and it is impossible to properly enlarge grA without losing monotonicity.

11

Definition 3.5.6 ([5, Definition 22.1 (iv)]). A is β-strongly monotone if there exists a
β > 0 such that for any (x, u), (y, v) ∈ grA,

⟨x− y, u− v⟩ ≥ β∥x− y∥2.

For the remainder of this section we will make the assumption that X is some Hilbert
space and that A and B are maximally monotone operators.

Splitting algorithms in optimization solve the monotone inclusion problem

0 ∈ Ax+Bx (3.17)

where A,B : X ⇒ X are maximally monotone and X is some Hilbert space. This is a
generalization of the convex optimization problem

minimize
x ∈ X

f(x) + g(x) (3.18)

where f and g are proper, lower semicontinuous, and convex functions on X. Under
appropriate constraint qualifications [51, Theorem 23.8], the sum-rule for subgradients
holds: ∂(f + g) = ∂f + ∂g, allowing us to apply Fermat’s Theorem to equivalently write
(3.18) as the problem of finding x ∈ X such that

0 ∈ ∂(f + g)x = ∂f(x) + ∂g(x).

By Fact 3.5.7, the above is a monotone inclusion problem in the framework of (3.17).

Fact 3.5.7 ([5, Theorem 20.25]). Suppose f : X → (−∞,+∞] is convex, lower semicon-
tinuous, and proper. The subgradient ∂f is maximally monotone.

The two splitting algorithms relevant to our work are the Forward-Backward splitting
method (FB) [5, Chapter 26.5] and the Douglas-Rachford algorithm, originally proposed
in [16] to solve certain partial differential equations, but extended to the case of solving
(3.17) in [43]. FB iteratively applies the operator T = JB ◦ (Id−A) until a fixed point
is reached, where A is assumed to be firmly nonexpansive. Since it can be shown that
zer(A + B) = FixT (for example, see the proof of [5, Corollary 28.9]), FB solves the
monotone inclusion problem (3.17).

The Douglas-Rachford algorithm iteratively applies the firmly nonexpansive operator
T = Id−JA+JBRA. Combettes [14, Lemma 2.6(iii)] showed that zer(A+B) = JA(FixT).
Hence, to solve (3.17) with DR, one would apply T to an initial point x0 until a fixed
point xF is reached. To obtain the solution, one would need to finally apply the resolvent:
x∗ = JAx

F .

12

Chapter 4

Literature Review

4.0.1 Saddle point problems

The saddle point problem (3.13) is generalized by the variational inequality problem (VIP)
first introduced in 1966 by Hartman and Stampacchia [31]. The VIP is to find a z∗ ∈ Z
such that

⟨F (z∗), z − z∗⟩ ≥ 0, ∀z ∈ Z, (4.1)

where F is a continuous and monotone mapping from Rp to itself and Z ⊆ Rp is nonempty,
closed and convex. Consider the sets X and Y from Section 3.3, as well as the func-
tion f , assuming it is continuously differentiable. By choosing Z = X × Y and F (z) =
(∇xf(z),−∇yf(z)), (4.1) becomes equivalent to finding (x∗,y∗) ∈ X × Y such that they
are optimal for (3.13), i.e. finding a point at which there does not exist a feasible descent
direction. Note that the constructed F is monotone by Proposition 4.0.1 and the convexity
assumption on f .

Proposition 4.0.1. Consider continuously differentiable f : Rp → R. f is convex if and
only if ∇f is monotone.

Proof. Suppose f is convex. By the subgradient inequality, we have that

f(x)− f(y) ≥ ⟨∇f(y),x− y⟩, ∀x,y ∈ Rp, (4.2)

and
f(y)− f(x) ≥ ⟨∇f(x),y − x⟩, ∀x,y ∈ Rp. (4.3)

13

Adding (4.2) and (4.3) gives the following

0 ≥ ⟨∇f(x)−∇f(y),y − x⟩,

which is equivalent to the monotonicity condition:

⟨x− y,∇f(x)−∇f(y)⟩ ≥ 0

For the other direction, let g(t) = f((1− t)x+ ty) be defined on t ∈ [0, 1]. Differentiating
g(t) gives g′(t) = ⟨y − x,∇f((1− t)x+ ty)⟩. Now choose any t1, t2 ∈ [0, 1] and set a =
(1− t1)x+ t1y and b = (1− t2)x+ t2y. We now observe that g is also monotone:

(t1 − t2) · (g′(t1)− g′(t2)) = (t1 − t2) · ⟨y − x,∇f((1− t1)x+ t1y)−∇f((1− t2)x+ t2y)⟩
= ⟨a− b,∇f(a)−∇f(b)⟩
≥ 0.

Since g′(t) is monotone in one dimension, the epigraph of g(t) is clearly convex, and g(t) is
a convex function. The convexity of f follows almost immediately, since for all λ ∈ [0, 1],

f(λx+ (1− λ)y) = g(1− λ) ≤ λg(0) + (1− λ)g(1) = λf(x) + (1− λ)f(y). (4.4)

Projection-based algorithms are widely used for solving VIPs and subsequently saddle
point problems. The original projection method used for solving the VIP is the Goldstein-
Levitin-Polyak gradient projection method, proposed first by Goldstein [26] and then inde-
pendently a year later by Levitin and Polyak [40]. The method uses the iteration scheme

zk+1 = PZ(zk − αF (zk)), k = 1, 2, 3, . . . (4.5)

where α > 0 is fixed. Under the assumptions that F is Lipschitz continuous and strongly
monotone, the Goldstein-Levitin-Polyak method can be shown to converge in the sense
that F (zk) → F (z∗) at a rate of O(1/k), assuming α > 0 is sufficiently small. Under such
assumptions, the gradient projection method is a special case of the Forward-Backward
splitting method. Of course, for any α > 0, 0 ∈ Ax+Bx ⇐⇒ 0 ∈ αAx+ αBx. If B is a
cone, we have that αA+αB = αA+B by the definition of a cone. Under the assumption
that F is β-strongly monotone and L-Lipschitz, we obtain

⟨w − z, F (w)− F (z)⟩ ≥ β∥w − z∥2,

≥ β

L2
∥F (w)− F (z)∥2,

14

for all w, z ∈ Z. The first inequality comes from the β-strong monotonicity of F , and
the second inequality comes from the Lipschitz assumption on F . If we set α := L2/β,
it follows that αF is firmly nonexpansive. To see the connection between the Goldstein-
Levitin-Polyak method and FB, let B = NZ , i.e. the normal cone of Z, and A = αF . The
FB operator becomes T = PZ(Id−αF), i.e. Tz = PZ(z − αF (z)), which is exactly the
operator used in the Goldstein-Levitin-Polyak gradient projection method.

For many use cases, the assumption of strong monotonicity may be too strong. This
motivates the development of the extragradient method (EGM) due to Korpelevich [38],
and its variants. EGM uses the iteration scheme for k = 1, 2, 3, . . .

z̄ = PZ(zk − αF (zk)), (4.6)

zk+1 = PZ(zk − αF (z̄)), (4.7)

where α > 0 is fixed. Of note here is the fact that we are now evaluating F twice and
computing two projections at each iteration. Korpelevich proves that EGM converges if
F is monotone and Lipschitz continuous on Z, assuming α > 0 is small enough [38]. In
view of Proposition 4.0.1, the assumption that F is monotone is much more reasonable for
solving (3.13), since we have that f is convex. Recent work [27, 10] has shown that under
the assumptions of strong monotonicity and Lipschitz continuity of F , EGM converges in
O(1/k) iterations for (4.1).

A classic algorithm for solving (3.13) directly is the proximal point method (PPM)
proposed by Martinet in 1970 [45] and extended by Rockafellar in 1976 [52]. The PPM
iterates by applying the proximal operator to the saddle point objective:

zk+1 = (xk+1,yk+1) ∈ argmin
x∈X

max
y∈Y

{
f(x,y) +

1

2η
∥x− xk∥22 +

1

2η
∥y − yk∥22

}
(4.8)

where the function f and sets X and Y are as in Section 3.3. As with the Goldstein-Levitin-
Polyak method and EGM, PPM is evaluating a quadratic at each iteration. However, it
comes with the added complexity of having to solve a minimax problem at each iteration as
well. The benefit of PPM here over the aforementioned two algorithms is that it achieves
a O(1/k) rate of convergence without any assumptions other than f being convex [29].
Eckstein and Bertsekas showed in 1992 that PPM is equivalent to the Douglas-Rachford
splitting method [19].

It is common for the saddle point objective to have a specific structure. One such
structure is the bilinear saddle point problem, which models the Lagrangian for linear
programming. Bilinear saddle point problems take the form L(x,y) = f(x) + x⊤Ay −
g(y), where f and g are convex. A popular algorithm that exploits this structure is the

15

Alternating Direction Method of Multipliers (ADMM) proposed in the 1970s by Glowinski
and Marrocco [25] and Gabay and Mercier [22]. ADMM solves problems of the form

minimize
x ∈ Rn, z ∈ Rm

f(x) + g(z)

subject to Ax+Bz = c.
(4.9)

where A ∈ Rp×n and B ∈ Rp×m. Observe that

minimize
x ∈ Rn

f(x)

subject to Ax = b.
(4.10)

is of the form in (4.9), and note the Lagrangian for (4.10) is bilinear:

L(x,y) = f(x) + x⊤Ay − b⊤y. (4.11)

ADMM solves maxy minx L(x,y) iteratively by first minimizing the augmented Lagrangian
Lρ(x,y) = L(x,y) + ρ

2
∥Ax− b∥22, and then taking a gradient ascent step in y:

xk+1 = argmin
x

Lρ(x,yk), (4.12)

yk+1 = yk + ρ (Axk+1 − b) , (4.13)

where ρ > 0 is fixed. The primal dual hybrid gradient algorithm (PDHG), otherwise
known as the Chambolle and Pock method, also exploits the bilinear saddle point problem,
iterating as follows

xk+1 = argmin
x∈X

f(x) + x⊤Ayk +
1

2η
∥x− xk∥22, (4.14)

yk+1 = argmin
y∈Y

b⊤y − y⊤A(2xk+1 − xk) +
1

2η
∥y − yk∥22. (4.15)

Notably, both ADMM and PDHG are a special case of the Douglas-Rachford algorithm
[43, 49], and both achieve an ergodic convergence rate of O(1/k) [32, 13]. In very recent
work, Lu and Yang develop a generic algorithm for which PPM, PDHG, and ADMM are all
special cases [44]. They then show in a simplified proof to that of the PDHG and ADMM
convergence proofs, that this generic algorithm has a O(1/k) ergodic convergence rate.

16

4.0.2 Frank-Wolfe for saddle point problems

Researchers have been studying the Frank-Wolfe algorithm (FW) since its discovery in
1956 by Frank and Wolfe [20]. Frank and Wolfe showed in their original paper a worst-case
convergence rate of O(1/k), but it took over a decade for this rate to be proven tight
[11]. Within the next twenty years, the original Frank-Wolfe algorithm was generalized
to solve problem (3.14) [18, 17, 50]. With this came the invention of variations to the
original algorithm, including the Away-Step Frank-Wolfe algorithm [56, 28] and the Fully-
Corrective Frank-Wolfe algorithm [33]. FW has gained interest in recent years thanks to
the fact that it only performs a linear minimization step at each iteration. The Frank-
Wolfe iteration is relatively cheap in comparison to that of the aforementioned algorithms
for saddle point problems, which all require the minimization of one or more quadratic
functions per iteration.

Until recently, very little work focused on developing algorithms based off of FW for
saddle point problems. In her 1984 PhD thesis [30], Hammond developed a generalization
of FW for solving the VIP (4.1). Her method converged under the assumptions that Z
is strongly convex1 and that there exists no point z ∈ Z satisfying F (z) = 0. Hammond
notes that these assumptions are stronger than one might wish, in particular because Z
being strongly convex implies that it cannot be polyhedral. Hammond conjectured that
if F is strongly monotone and Z is a bounded polyhedron, her generalized FW algorithm
will solve (4.1). Recent work by Lan [39] proposes to first apply some smoothing scheme to
the inner part of the saddle point problem I(x) := maxy∈Y f(x,y), obtaining some Ĩ(x),
and then running FW on minx∈X Ĩ(x). A major downside of this is that projection onto
Y is still required for Ĩ, while preprocessing the problem is not ideal. A 2017 paper by
Gidel et al. [24] made significant headway in applying the Frank-Wolfe algorithm to saddle
point problems, partially answering Hammond’s conjecture. Gidel et al. extend the Frank-
Wolfe algorithm to solve the saddle point problem (3.13), showing convergence for their
method over polyhedral sets, but under the assumption of strong convex-concavity of the
saddle point objective. The assumption of strong convex-concavity is quite restrictive for
our setting however, since it doesn’t cover the case where the objective is the Lagrangian
of a linear programming problem. It also means Hammond’s conjecture is only partially
solved. Very recently, Boroun et al. [9] propose a regularized Frank-Wolfe algorithm for
nonconvex-concave saddle point problems. However, they make the assumption that the
feasible set of the dual is strongly convex, discounting general polyhedra.

For algorithms that solve the linear programming problem without the minimization

1Hammond defines a strongly convex set C as one which for every x,y ∈ C with x ̸= y and every
λ ∈ (0, 1), there exists an r > 0 such that z ∈ C whenever ∥λx+ (1− λ)y − z∥2 < r.

17

of quadratic functions, we defer to the following section.

4.0.3 First order methods for linear programming

The ubiquity of linear programming in modern industrial applications has led to the de-
velopment of many commercial LP solvers that are able to consistently provide highly
accurate solutions. In recent years, data science applications have given rise to increas-
ingly large problems, such that it is not uncommon to see instances of linear programming
with billions of variables. State-of-the-art LP solvers typically use variations of the sim-
plex method or interior-point method, however, both methods require solving systems of
linear equations and thus do not scale well to very large problems. Over the last few years,
many researchers have focused on developing LP algorithms based on first-order methods
(FOMs), which are methods whose primary computational cost comes from matrix-vector
multiplication. Examples of such algorithms are the following:

• ECLIPSE [4] - a distributed solver for extreme scale problems that applies accelerated
gradient descent to the dual of a perturbed version of the original LP.

• PDLP [2, 3] - a specialization of PDHG to linear programs, PDLP applies PDHG to
a saddle-point formulation of the LP problem. PDLP is the best known first-order
method for linear programming.

These algorithms will be discussed in detail in the next chapter.

18

Chapter 5

Algorithms for Linear Programming

5.1 The Simplex method

Pioneered by George Dantzig in 1947, the Simplex method was the first algorithm for
solving general linear programs. Despite its development being almost 80 years ago, the
Simplex method is the most widely used algorithm for linear programming today. The idea
of the Simplex method is to start at a basic feasible solution and move to another adjacent
BFS if the cost of the adjacent BFS will lead to a better objective value. Eventually, a BFS
is reached such that no adjacent BFS leads to a reduction in the objective. In such a case,
the basic feasible solution we are at is optimal, and the Simplex method stops. Adjacent,
in this setting, means that both basic feasible solutions share all the same basic variables
except one. This implies that at each iteration of the method, we are only ever adding one
basic variable, and removing one basic variable.

We describe the Simplex method in Algorithm 5.1.

19

Algorithm 5.1 The Simplex method.

Input: A matrix A ∈ Rm×n and vectors b ∈ Rm, c ∈ Rn, according to (LP). An initial
basic feasible solution x of (LP) with corresponding basic indices contained in B.

1: for k = 1, 2, . . . do
2: For each i /∈ B, compute c̄i = ci − c⊤BA

−1
B A(:, i).

3: if c̄i ≥ 0 for all i ∈ [n] then
4: The current BFS xB is optimal.
5: break
6: else choose entering variable xi:
7: Choose some i with c̄i < 0.

8: Compute u = A−1
B A(:, i).

9: if uj ≤ 0 for all j ∈ B then
10: The problem is unbounded.
11: break
12: else choose leaving variable xℓ:
13: Choose some ℓ ∈ argmin{xj

uj
: uj > 0, j ∈ B}.

14: Update the set of basic indices: B = (B \ ℓ) ∪ {i}.
15: Update the basic feasible solution:

xj =

xℓ

uℓ
, if j = i;

xj − xℓ

uℓ
uj, if j ∈ B \ i;

0, if j /∈ B.

(5.1)

The quantity c̄i is known as the reduced cost of the variable xi. Lines 3-8 of Algo-
rithm 5.1 rely on the following theorem:

Theorem 5.1.1 ([6, Theorem 3.1]). Suppose x is a basic feasible solution with basic
variables given by the indices in B. If the corresponding vector of reduced costs c̄ is
nonnegative, then x is optimal.

Remark. For every i ∈ B, we have

c̄i = ci − c⊤BA
−1
B A(:, i) = ci − c⊤Bei = ci − ci = 0,

so for all basic variables, their reduced cost is zero.

20

To derive the reduced cost, we consider moving from the current BFS x to a new BFS
x + θd, where θ > 0. By setting di = 1 for some i /∈ B and dj = 0 for every j /∈ B, j ̸= i,
we ensure we are adding one previously non-basic variable to the new basis. We are free
to choose dB however we like, but we must ensure A(x + θd) = b to mainain feasibility.
Since, we already have that x is feasible, we need to choose the remaining elements of d
such that d ∈ NullA:

0 = Ad =
n∑

j=1

A(:, j)dj + A(:, i)di (5.2)

=
∑
j∈B

A(:, i)dj + A(:, i) (5.3)

= ABdB + A(:, i). (5.4)

So, the basic indices of d must be chosen as dB = −A−1
B A(:, i). The reduced cost is now

simply given by

c⊤(x+ d)− c⊤x = c⊤d = c⊤dB + c⊤di = ci − c⊤BA
−1
B A(:, i).

One should also note that if x is nondegenerate, xB > 0 holds. Hence, the only way the
nonnegativity constraints could be violated is if θ is chosen in xB + θdB to be too large.
To get around this, we need only choose a sufficiently small θ. If on the other hand x is
degenerate and we have xj = 0 for some j ∈ B, then no value of θ gives a feasible step if
dj < 0. It follows that d is not a feasible direction. We will cover this case later.

Lines 9-14 of the algorithm deal with choosing the step-size θ (note u = −d). We
know from our choice of i on line 8 that the objective strictly decreases as we move in the
direction d. Hence, we wish to choose θ such that it is as large as possible, while x + θd
remains feasible for (LP). By our choice of d, we know that A(x + θd) = b will always
hold, so we need only worry about satisfying x + θd ≥ 0. If d ≥ 0, then we can increase
θ to infinity and remain feasible. In this case, (LP) is unbounded (cf. lines 10-12). In the
case that there exists a j such that dj < 0 (note, this is only possible for j ∈ B), we must
satisfy θ ≤ −xj/dj, which is equivalent to xj/uj as seen on line 14 of Algorithm 5.1.

The final lines cover moving to the new BFS by updating x to be x + θd. Notably,
xℓ + θdℓ = xℓ − xℓ

uℓ
uℓ = 0, i.e. we remove xℓ from the basis. On the other hand, xi + θdi =

θdi =
xℓ

uℓ
, so xi enters the basis. The following theorem states that after an iteration of

the Simplex method, we are at a basic feasible solution, and by virtue of our choice of
which variable to add to the basis, the objective value under the new BFS must be an
improvement.

21

Theorem 5.1.2 ([6, Theorem 3.2]). After an iteration of the Simplex method, the columns
of the matrix AB are linearly independent, and the vector x+θd is a basic feasible solution
with corresponding basis AB.

If the LP we are dealing with is feasible, then we can always find an initial basic feasible
solution. Under the assumption of nondegeneracy, the Simplex method described in Algo-
rithm 5.1 terminates after a finite number of iterations (since there are only finitely many
BFS), returning either an optimal basic feasible solution, or a certificate of unboundedness.
As mentioned, if the current BFS x is degenerate, xj = 0, and dj < 0, then any value of
θ > 0 will give x+θdj < 0. In this case, we can continue the Simplex method by remaining
at the same BFS, but still update our basis in accordance with line 15 of Algorithm 5.1.
Changing basis like this can lead to the discovery of a new BFS, or it can lead back to the
same BFS, beginning an indefinite cycle. Cycling can be prevented by following a pivot
rule in the choice of the entering and leaving variables (cf. lines 8 and 14). For example,
the pivot rule known as Bland’s rule [7] gives rise to the following theorem.

Theorem 5.1.3 ([6, Theorem 3.3]). Assume that (LP) is feasible. The Simplex method
applied to (LP) with Bland’s rule terminates after a finite number of iterations, returning
either a basic feasible solution that is optimal or a certificate of unboundedness.

In Algorithm 5.1 we assumed the existence of an initial basic feasible solution. If we
are given a problem with constraints of the form Ax ≤ b, finding an initial BFS is easy;
we simply introduce a slack variable s ≥ 0 such that Ax + s = b. Our initial BFS is
simply s such that s = b, obtained by setting x = 0. If we are not in a case where a
similar trick can be applied, we have to resort to using techniques such as the two-phase
Simplex method, in which an auxillary linear program must be solved prior to applying
the Simplex method to solve the original problem.

The näıve implementation of Algorithm 5.1 incurs a computational cost of O(m3+mn)
per iteration, with most of the cost coming from solving the systems of equations associated
with lines 3 and 9. In practice, algorithms typically employ alternative implementations
of the Simplex method such as the revised Simplex method, or the full tableau implemen-
tation. Both alternative implementations have a worst-case computational cost of O(mn)
per iteration.

Famously, for most well-known pivot rules, it can be shown that the number of iterations
taken by the Simplex method in the worst case is superpolynomial in m and n. In fact, for
most pivot rules, including Bland’s rule, it can be shown that the number of iterations is at
worst exponential. The first example that the Simplex algorithm could run in exponential

22

time is due to Klee and Minty [37]. They showed that if the feasible set of (LP) is chosen to
be a perturbed hypercube known as a Klee-Minty cube, then the Simplex method will visit
every vertex of the cube before terminating. Since an n-dimensional cube has 2n vertices,
the number of vertices visited in this example by the Simplex method will be 2n. Since
Klee and Minty’s example in 1972, there have been many adaptations of the Klee-Minty
cube idea to other pivot rules, including Bland’s rule.

Despite the poor worst-case performance of the Simplex method, its practical perfor-
mance is much more favorable, usually terminating after O(m+ n) iterations. Theoretical
average case behavior of the Simplex method was first analyzed by Borgwardt in the 1980s.
As summarized in [8], on average the Simplex method takes polynomial time. Significant
progress toward closing the gap between runtime in practice and in theory was made
only recently with Spielman and Teng’s development of smoothed analysis for the Simplex
method [55]. The authors show that the Simplex method has smoothed complexity that
is polynomial.

In practice, solvers can improve the performance of the Simplex method by implement-
ing other techniques, such as applying the Simplex method to the dual linear program
(DLP), or exploiting the structure of the given data in another way. It is common for
solvers to default to the Simplex method for smaller problems, and then switch to an
interior point method for large, sparse problems.

5.2 Interior point methods

Upon the discovery that the Simplex method was indeed not polynomial, researchers began
to search for alternatives with the theoretical guarantee of polynomial runtime. The first
algorithm for linear programming that became known to run in polynomial time was the
Ellipsoid algorithm, initially developed in the 1970’s by Shor, Yudin, and Nemirovsky for
convex programs [53, 47]. Khachiyan famously applied the Ellipsoid algorithm to linear
programs in 1979, showing that LPs could be solved in polynomial time with the Ellipsoid
method [36, 23].

Despite its better theoretical performance in comparison to the Simplex method, the
Ellipsoid method always runs in time close to its worst-case bound and thus cannot com-
pete with the Simplex method in practice. Despite being impractical, Khachiyan’s method
opened the door for other polynomial time methods such as Karmarkar’s algorithm [35].
While Karmarker’s claims of the algorithms’ excellent practical performance never mate-
rialized, his algorithm gave rise to many new methods including primal-dual interior-point

23

methods. We will focus on such IPMs because they are the most widely used in practice
due to their efficiency in comparison to the alternatives.

Recall the Simplex method iterates by taking steps from vertex to vertex of the polyhe-
dron P until it lands on the optimal vertex. IPMs on the other hand, approach the optimal
vertex from either the interior or the exterior of P in the limit. The ideas of interior point
methods can be motivated by the difficulty of dealing with the nonnegativity constraint
x ≥ 0 in (LP). To avoid this, IPMs convert the LP into minimizing a linear function with
a log-barrier, subject to a linear constraint:

minimize
x ∈ Rn

c⊤x− µ

n∑
i=1

log xi

subject to Ax = b.

(LP-B)

Here, µ > 0 is a parameter and we define the objective to be infinity if xi ≤ 0 for any
i ∈ [n]. Observe the objective remains convex, since it is a sum of convex functions,
so any stationary point corresponds to a global minimum. As xi → 0, − log xi becomes
unbounded, preventing any entry of the variable x from ever reaching the boundary. Under
the same reasoning, we add a log-barrier term to the dual problem (note we have added the
slack variable s ≥ 0 to enforce equality of the constraint), keeping the objective concave:

maximize
y ∈ Rm

b⊤y + µ
n∑

i=1

log si

subject to A⊤y + s = c,

s ≥ 0.

(DLP-B)

The following are the KKT conditions for (LP-B) and (DLP-B) (cf. [6, Lemma 9.5]):

Ax = b, (5.5)

A⊤y + s = c, (5.6)

XSe = eµ, (5.7)

x, s ≥ 0, (5.8)

where X = Diag(x) and S = Diag(s). Unfortunately, the system of equations determined
by the above KKT conditions is not linear because of (5.7). This makes the system difficult
to solve directly and motivates the use of Newton’s method in interior point methods to
iteratively solve the KKT system. Ignoring the nonnegativity constraints, consider finding

24

a zero of the function F : R2n+m → R2n+m given by

F (x,y, s) =

 Ax− b
A⊤y + s− c
XSe− µe

 = 0. (5.9)

Newton’s method does this iteratively, so suppose we are at iteration k with feasible so-
lutions given by (xk,yk, sk), and parameter µk. The Newton update direction is r =
(rx, ry, rs), given by solving the system F (xk,yk, sk) = −J(xk,yk, sk)r, where J(xk,yk, sk)
is the Jacobian of F at the current iterate:A 0 0

0 A⊤ I
Sk 0 Xk

rxry
rs

 = −

 Axk − b
A⊤yk + sk − c
XkSke− µke

 (5.10)

After solving (5.10) for the Newton direction r = (rx, ry, rs), iterates are updated as
(xk+1,yk+1, sk+1) = (xk,yk, sk)+αkr by choosing the step length αk > 0 in such a way to
enforce xk+1, sk+1 > 0. In practice, µk is typically chosen to be µk = x⊤

k sk/n. Primal-dual
IPMs in practice also tend to modify the system of equations (5.10) to add a centering
parameter σk ∈ [0, 1]. When σk = 0, we are performing what is called an affine scaling
step. When σk = 1, we are taking what is known as a centering step. Choosing a σk

between 0 and 1 allows the practitioner to modulate between an affine scaling step and a
centering step. In this case, the Newton direction is found by solvingA 0 0

0 A⊤ I
Sk 0 Xk

rxry
rs

 = −

 Axk − b
A⊤yk + sk − c
XkSke− σkµke

 . (5.11)

Regardless, at each iteration primal-dual IPMs solve a (2n + m) × (2n + m) system of
equations, incurring a computational cost of O(n3) per iteration. We can set D2

k = S−1
k Xk

and write (5.11) as the system of equations

AD2
kA

⊤ry = c− A⊤yk − sk − AD2
k(Axk − b−X−1

k (XkSk − σkµk)e) (5.12)

rs = b− Axk − A⊤ry (5.13)

rx = −S−1
k (Xk(Ske+ rs)− σkµke), (5.14)

recalling that Xk and Sk are diagonal matrices. Writing (5.12) as AD2
kA

⊤ry = qk, we
can perform a Cholesky decomposition of the symmetric positive definite matrix AD2

kA
⊤,

obtaining a square lower-triangular matrix Lk such that AD2
kA

⊤ = LkL
⊤
k . Now the Newton

directions are obtained by first solving Lkv = q for v and then solving L⊤
k ry = q for ry.

25

Equations (5.13) and (5.14) follow immediately without the need for solving a system
of equations. The benefit of solving the Newton equations this way is that the systems
Lkv = q and L⊤

k ry = q can be solved in O(n2) operations, hence the whole system has
computational complexity O(n2). The caveat is that one still needs to form the Cholesky
decomposition at a cost ofO(n3), however the practical performance of computing Cholesky
factors L and then solving the above system is better than solving directly, particularly
when A is large and sparse. For this reason, primal-dual IPMs are usually preferred over
the Simplex method for solving large linear programs.

A general primal-dual interior point method is given in Algorithm 5.2 below.

Algorithm 5.2 A primal-dual interior-point method.

Input: A matrix A ∈ Rm×n and vectors b ∈ Rm, c ∈ Rn, according to (LP). Initial points
(x1,y1, s1) such that x1, s1 > 0.

1: for k = 1, 2, . . . do
2: Choose some σk ∈ (0, 1] and set µk = x⊤

k sk/n.
3: Solve the system of equations (5.11) for r = (rx, ry, rs):A 0 0

0 A⊤ I
Sk 0 Xk

rxry
rs

 = −

 Axk − b
A⊤yk + sk − c
XkSke− σkµke

4: Take a step in the Newton direction, choosing αk > 0 to ensure xk+1, sk+1 > 0:

(xk+1,yk+1, sk+1) = (xk,yk, sk) + αkr.

Notice that as input to Algorithm 5.2, we do not require the initial points (x1,y1, s1)
to be feasible; our only requirement is that x1, s1 > 0. Primal-dual IPMs started with
infeasible points are known as infeasible methods and are used widely in practice because
of their observed performance benefits, while still being convergent in theory [57, Chapter
6].

As alluded to, the runtime of Algorithm 5.2 is polynomial. If we set ϵ1 := s⊤1 x1 to be
the initial duality gap, it takes a primal-dual interior point method O(

√
n log ϵ1

ϵ
) iterations

to bring the duality gap down from ϵ1 to ϵ.

26

5.3 First order algorithms

5.3.1 ECLIPSE [4]

ECLIPSE, which stands for Extreme Scale Linear Program Solver, considers the linear
programming problem

minimize
x ∈ Rn

c⊤x

subject to Ax ≤ b,

xi ∈ Ci, ∀i ∈ [I],

(5.15)

where I will be defined later and Ci are simple in that projection onto them is efficient.
By noting that the standard form polyhedron P defined earlier is equivalent to {x ∈ Rn :
Ax ≤ b}, (LP) can be equivalently written as min{c⊤x : Ax ≤ b,x ∈ Rn}. Dropping the
xi ∈ Ci constraint in (5.15) gives an LP equivalent to the standard form problem (LP).
We will see later that in the case where we are dealing with a standard form LP with no
additional constraints, it will be necessary to introduce redundant constraints. For the
remainder of the section on ECLIPSE, we will consider the problem (5.15), but the reader
should keep in mind the aforestated equivalence.

ECLIPSE assumes the following structure on (5.15):

• Variable x is the concatenation of I vectors: x = (x1; . . . ;xI), where x1, . . . ,xI ∈ RJ .

• n = IJ ranges from 100s of millions to 10s of trillions or larger.

• A is sparse of the form (A1;A2), where A1 ∈ Rm1×n contains no zeros with m1 =
O(1) ≪ n, and

A2 =

 D11 . . . D1I
...

. . .
...

Dm21 . . . Dm2I

where Dij are J × J diagonal matrices.

• The diagonal of each Dij is sparse, with a maximum of K non-zero entries such that
K < J . It follows that the total number of non-zero entries in A is m1IJ +m2IK.

• Ci are simple in that projection onto them can be computed efficiently.

27

The authors claim that several important problems arising in web-applications satisfy
the above assumptions. However, these assumptions are not necessary for the ECLIPSE
algorithm (described below) from a theoretical standpoint.

Algorithm 5.3 ECLIPSE: Extreme Scale Linear Program Solver.

Input: A matrix A ∈ Rm×n, vectors b ∈ Rm, c ∈ Rn, scalar γ ∈ R, and constraints
{Ci}Ii=1. Initial point y1 ∈ Rm and step-size η ∈ (0, 1/L], where L = ∥A∥22/γ.

1: for k = 1, 2, . . . do
2: Perform the primal update:

x̂i(yk) = PCi

(
−1

γ

[
A⊤yk + c

]
i

)
, ∀i ∈ [n] (5.16)

3: Compute the dual gradient:

∇g(yk) := Ax̂(yk)− b (5.17)

4: Perform projected gradient ascent on the dual variable y:

yk+1 = [yk + η∇g(yk)]+ (5.18)

The authors derive Algorithm 5.3 by perturbing (5.15) by a quadratic term:

minimize
x ∈ Rn

c⊤x+
γ

2
x⊤x

subject to Ax ≤ b,

xi ∈ Ci, ∀i ∈ [I],

(5.19)

where γ > 0 is a parameter whose value determines how close the optimal objective of
(5.19) is to that of the LP (5.15), and the smoothness of the dual objective. In its current
stage, (5.19) cannot be solved by a first-order method. To rectify this, the authors consider
the Lagrangian, bringing the constraint Ax ≤ b into the objective, while keeping the simple
constraints Ci:

g(y) := minimize
x ∈ Rn

c⊤x+
γ

2
x⊤x+ y⊤(Ax− b)

subject to xi ∈ Ci, ∀i ∈ [I].
(5.20)

28

For dual solution y, we denote the corresponding primal variable that minimizes (5.20) by
x̂(y). It is not hard to see that the closed form solution for x̂(y) is

x̂i(yk) = PCi

(
−1

γ

[
A⊤yk + c

]
i

)
, ∀i ∈ [n].

The following lemma connects the parameter γ with the smoothness of the dual objective
from (5.20):

Lemma 5.3.1 ([4]). g(y) is differentiable with ∇g(y) = Ax̂(y)−b and ∇g(y) is Lipschitz
continuous with constant L = ∥A∥22/γ.

Having an L-smooth dual objective with L > 0 allows the authors to apply projected
gradient ascent as in step 4 of Algorithm 5.3. Define gγ(y) := minx∈C{c⊤x + γ

2
x⊤x +

y⊤(Ax − b)}. If we set γ = 0, g∗γ := maxy≥0 gγ(y) is equivalent to the dual of (5.15).
Unfortunately, without the quadratic perturbation γ

2
x⊤x, we would have L = 0 and would

not be able to apply first-order methods such as projected gradient ascent. Lemma 5.3.1
suggests choosing too small a γ is detrimental to the smoothness of ∇gγ(y). On the other
hand, the following lemma suggests that we also don’t want to choose γ too large.

Lemma 5.3.2 ([4]). For all y ∈ Rm, the dual objective gγ(y) satisfies the uniform bound

gγ(y)− γν/2− g0(y) ≤ gγ(y),

where ν = max{x⊤x : x ∈ C}.

The implication of the above is that the optimal value of (5.15) lies in the interval
[g∗γ − γν/2, g∗γ]. The dependence on ν in the error bound above is problematic. It suggests
that one must introduce a constraint C that ensures ν < +∞, and preferably also ensures
ν is not too large. For solving (LP) where max{x⊤x : x ∈ C} would be unbounded, one
would have to introduce a redundant constraint much like the e⊤x ≤ ξ constraint used in
Algorithm 6.1 of Chapter 6. Importantly, such a constraint should not be too restrictive
that it prevents the algorithm from finding an accurate primal solution.

Most of the computational complexity of the ECLIPSE algorithm comes from the gra-
dient computation (5.17), which performs a matrix-vector product at each iteration. This
assumes that the projection done in (5.16) is simple enough to not exceed the computa-
tional effort of the matrix-vector product. However, such low cost iterations come with the
sacrifice of accuracy. ECLIPSE is only able to compute approximate dual solutions (cf.
Lemma 5.3.2), from which an approximate primal solution can be constructed per (5.16).
Moreover, there exists no convergence analysis of Algorithm 5.3.

29

5.3.2 PDLP [2, 3]

The PDLP algorithm is a specialization of the previously stated PDHG algorithm to linear
programs. PDLP solves for the primal and dual solutions of the standard form problem
(LP) by considering the Lagrangian1

min
x∈X

max
y∈Y

L(x,y) := c⊤x+ y⊤(b− Ax), (5.21)

where X := {x ∈ Rn : x ≥ 0} and Y := Rm. A basic version of the PDHG algorithm
applied to (5.21) is the following.

Algorithm 5.4 PDHG for (LP).

Input: A matrix A ∈ Rm×n and vectors b ∈ Rm, c ∈ Rn, according to (LP). Initial points
(x1,y1) ∈ Rn × Rm, and step-size η > 0.

1: for k = 1, 2, . . . do
2: Perform the primal update:

xk+1 =
[
xk − η(c− A⊤yk)

]
+
. (5.22)

3: Using the new primal value, perform the dual update:

yk+1 = yk + η(b− A(2xk+1 − xk)). (5.23)

Notably, Algorithm 5.4 spends most of its computational effort on matrix-vector multi-
plications in both the primal and dual updates. PDHG, and thus Algorithm 5.4, is known
to converge to an optimal primal-dual pair when ∥A∥2 ≤ 1/η, at the aforementioned rate
of O(1/k) [2, 12, 15].

The authors in [3] note that in practice the most widely used algorithms for solving
(LP) are the Simplex method and interior-point methods. The reason being that both
algorithms are able to reliably find accurate solutions in reasonable time. As seen in
Sections 5.1 and 5.2, both the Simplex method and interior point methods rely on solving
systems of linear equations exactly, which can at times be slow for dense systems, or for
large enough problems, can result in memory usage that exceeds the capabilities of the
hardware being used.

1We can identify (5.21) with the bilinear saddle point form of (4.10) in Chapter 4 by setting A := −A
and g(y) = −b⊤y. Since y 7→ b⊤y is linear, it’s sign doesn’t affect its convexity.

30

Such issues motivate the authors search in [2, 3] for a linear programming algorithm that
requires only matrix-vector multiplications. In doing so, they develop PDLP, which builds
upon Algorithm 5.4 by modifying the step-sizes and adding restarts. Before running the
algorithm, PDLP also presolves the input problem and performs diagonal preconditioning
on the constraint matrix A.

Through an ablation study in [2], the authors show that each modification added on top
of PDHG results in an improvement numerically. Together, the modifications significantly
reduce the number of iterations required to reach a given stopping criterion on real-world
test problems compared to Algorithm 5.4. Despite this, there are no results guaranteeing
that the modifications made to Algorithm 5.4 improve the algorithm in theory. The authors
note in [2] that the presolve and diagonal preconditioning steps preserve the theoretical
guarantees of PDHG applied to (LP), and in [3] it is shown that restarting Algorithm 5.4
also preserves its theoretical guarantees.

Restarting PDLP

While we have defined Algorithm 5.4 above using the same step-sizes for both the primal
and the dual, PDLP defines a primal step-size τ = η/ω and a dual step-size σ = ωη, where
η > 0 and ω > 0. Under these definitions, PDLP still converges for all ∥A∥2 ≤ 1/η [2].
The authors call ω the primal weight and define the following norm:

∥(x,y)∥ω :=

√
ω∥x∥22 +

∥y∥22
ω

. (5.24)

In [3], the authors define the normalized duality gap. The normalized duality gap at restart
phase t for point (x,y) and radius r > 0 is defined as

ρtr(x,y) :=
1

r
max

{
L(x, ŷ)− L(x̂,y) : ∥(x̂, ŷ)− (x,y)∥ωt ≤ r,x ∈ X ,y ∈ Y

}
. (5.25)

The authors note in [3] that (5.25) is always finite and is computable in linear time. This
is in contrast to the standard primal-dual gap

ρ(x,y) := max
{
L(x, ŷ)− L(x̂,y),x ∈ X ,y ∈ Y

}
, (5.26)

which is not finite on the sets X and Y . For any value of r, ωt > 0, ρtr(x,y) = 0 if and
only if (x,y) is an optimal solution to (5.21). Hence, (5.25) is a valid convergence metric.

31

Let us use the notation (xt,k,yt,k) to denote the iterates of the kth iteration of the
tth restart phase. To choose the candidate iterate to use after the restart, denoted
(xc

t,k+1,y
c
t,k+1), PDLP considers the cases

(xc
t,k+1,y

c
t,k+1) =

{
(xt,k+1,yt,k+1), µt,k+1 < µ̄t,k+1;

(x̄t,k+1, ȳt,k+1), otherwise;
(5.27)

where µt,k+1 = ρtr(xt,k+1,yt,k+1) with

r = ∥(xt,k+1,yt,k+1)− (xt,1,yt,1)∥ωt ,

µ̄t,k+1 = ρtr(x̄t,k+1, ȳt,k+1) with

r = ∥(x̄t,k+1, ȳt,k+1)− (xt,1,yt,1)∥ωt ,

and (x̄t,k+1, ȳt,k+1) are the averaged iterates, given by

(x̄t,k+1, ȳt,k+1) =
1∑k+1

i=1 ηt,i

k+1∑
i=1

ηt,izt,i.

Below are two of the restart criteria PDLP uses related to our work. PDLP will restart if
one of the following are satisfied, where βsuff ∈ (0, 1) and βnec ∈ (0, βsuff).

• Sufficient decay in normalized duality gap:

ρt∥(xc
t,k+1,y

c
t,k+1)−(xt,1,yt,1)∥ωt

(xc
t,k+1,y

c
t,k+1) ≤ βsuffρ

t
∥(xt,1,yt,1)−(xt−1,1,yt−1,1)∥ωt

(xt,1,yt,1).

• Necessary decay and no local progress in normalized duality gap:

ρt∥(xc
t,k+1,y

c
t,k+1)−(xt,1,yt,1)∥ωt

(xc
t,k+1,y

c
t,k+1) ≤ βnecρ

t
∥(xt,1,yt,1)−(xt−1,1,yt−1,1)∥ωt

(xt,1,yt,1),

and

ρt∥(xc
t,k+1,y

c
t,k+1)−(xt,1,yt,1)∥ωt

(xc
t,k+1,y

c
t,k+1) > ρt∥(xc

t,k,y
c
t,k)−(xt,1,yt,1)∥ωt

(xc
t,k,y

c
t,k).

The PDLP algorithm uses the values βsuff = 0.9 and βnec = 0.1.

We will discuss the above restart criteria further in Section 6.5, where they will be
applied to the FWLP algorithm (Algorithm 6.1).

32

Chapter 6

Solving Saddle Point Formulations of
Linear Programs with Frank-Wolfe

Throughout this chapter, we will assume that optimal solutions exist for both (LP) and
(DLP), and that for each i ∈ [n], Aei ̸= 0.

FWLP (Algorithm 6.1) is derived from iteratively applying the Frank-Wolfe algorithm
to the primal and dual problems of a modified saddle point formulation of (LP):

min
x∈X

max
y∈Y

L(x,y) = c⊤x+ y⊤(b− Ax), (6.1)

where we define X = {x ∈ Rn : x ≥ 0, e⊤x ≤ ξ} and Y = {y ∈ Rm : ∥y∥∞ ≤ η} for
parameters ξ, η > 0.

Let (x∗,y∗) denote the optimal solutions to (LP) and (DLP). We will assume that ξ
and η are chosen large enough to ensure that ξ > e⊤x∗ and η > ∥y∗∥∞. That is, the
parameters ξ and η describe redundant constraints for (MLP) and (MDP) below. Despite
being redundant constraints, we will see that the constraints defined by e⊤x ≤ ξ and
∥y∥∞ ≤ η are necessary for boundedness of the Frank-Wolfe subproblems in FWLP.

FWLP amounts to simultaneously solving the modified linear programs

minimize
x ∈ Rn

c⊤x

subject to Ax = b,

e⊤x ≤ ξ,

x ≥ 0,

(MLP)

33

and
maximize
y ∈ Rm

b⊤y

subject to A⊤y ≤ c,

y ≤ ηe,

y ≥ −ηe.

(MDP)

It is important to note that (MLP) and (MDP) are not a primal-dual pair. At each iteration
k, we take steps to minimize L(x,yk) with respect to x and maximize L(xk+1,y) with
respect to y in the hope of converging to a saddle point of L(x,y). We will argue later
that a saddle point is equivalent to an optimal solution for (MLP) and (MDP), as well
as (LP) and (DLP), under the assumption that the constraints described by ξ and η are
redundant.

The primal Frank-Wolfe update is

s := argmin
s∈X

{c⊤xk + y⊤
k (b− Axk) + s⊤(c− A⊤yk)}

xk+1 =
k

k + 1
xk +

s

k + 1
,

which simplifies to

s := argmin
s∈X

s⊤(c− A⊤yk), (6.2)

xk+1 =
k

k + 1
xk +

s

k + 1
. (6.3)

Observe that the constraint e⊤x ≤ ξ in the definition of X is necessary to prevent the
problem (6.2) from being unbounded. We will dicuss how to choose ξ in Section 6.4.

Let us analyze (6.2) by considering the minimum entry of the second term in the inner
product. Say i = argmint[c − A⊤yk]t. If [c − A⊤yk]i ≥ 0, we know that no matter what
we choose for s ∈ X , (6.2) will be nonnegative. Hence, we should take s = 0. If on the
other hand [c − A⊤yk]i < 0, we should put all our resources towards multiplying by the
most negative entry, i.e. the ith entry. Thus, we take s = ξei.

Now that we have updated the primal variable, we use this new information in the dual
Frank-Wolfe update:

u := argmax
u∈Y

{c⊤xk+1 + y⊤
k (b− Axk+1) + u⊤(b− Axk+1)},

yk+1 =
k

k + 1
yk +

u

k + 1
.

34

which simplifies to

u := argmax
u∈Y

u⊤(b− Axk+1), (6.4)

yk+1 =
k

k + 1
yk +

u

k + 1
. (6.5)

As with the primal case, we can analyze (6.4) according to the sign pattern of b− Axk+1

and determine that the inner product is maximized by choosing u = η sgn(b − Axk+1).
Like in the primal case, the constraint ∥yk∥∞ ≤ η is important for the problem (6.4) to
have a solution.

The above analysis leads to the closed form updates described in equations (6.55),
(6.56), and (6.57) of Algorithm 6.1. Of note here is the low cost nature of the updates. Most
of the computational cost of FWLP comes from computing two matrix-vector products:
A⊤yk and Axk+1.

Algorithm 6.1 FWLP: A primal-dual algorithm for (LP) based on Frank-Wolfe.

Input: Starting points x1 ∈ Rn,y1 ∈ Rm, constraint data A and b, and objective c.

Parameters: ξ > 0 such that e⊤xk ≤ ξ, η > 0 such that ∥yk∥∞ ≤ η.
1: for k = 1, 2, . . . do
2: Determine i = argmint[c− A⊤yk]t.
3: if [c− A⊤yk]i ≥ 0 then
4: Step towards zero in x:

xk+1 =
k

k + 1
xk. (6.6)

5: else
6: Step toward ξ for xi, otherwise step toward zero for xj, j ̸= i:

xk+1 =
k

k + 1
xk +

ξ

k + 1
ei. (6.7)

7: Step towards ±η for each coordinate in y according to the sign pattern of b−Axk+1.

yk+1 =
k

k + 1
yk +

η

k + 1
sgn(b− Axk+1). (6.8)

35

6.1 Theoretical results

FWLP works by choosing the primal variable corresponding to the most infeasible dual
constraint xi, and taking a Frank-Wolfe step towards ξ in xi. Our first result considers
the case where we are dual infeasible and shows that Algorithm 6.1 cannot select the same
entry of x consecutively forever. We begin with a useful Lemma:

Lemma 6.1.1. Let A ∈ Rm×n and w,∆ ∈ Rn. Then

w⊤A⊤ sgn(A(w +∆)) = ∥A(w +∆)∥1 −∆⊤A⊤ sgn(A(w +∆)).

Proof. We may equivalently write the left hand side as

w⊤A⊤ sgn(A(w +∆)) = (w +∆)⊤A⊤ sgn(A(w +∆))−∆⊤A⊤ sgn(A(w +∆))

= ∥A(w +∆)∥1 −∆⊤A⊤ sgn(A(w +∆)).

The second equality follows because (w +∆)⊤A⊤ sgn(A(w +∆)) adds up the entries of
(w +∆)⊤A⊤ scaled by their signs.

Theorem 6.1.2. In Algorithm 6.1, the number of consecutive iterations such that the same
i ∈ [n] is chosen as the solution to argmint[c−A⊤yk]t, while also satisfying [c−A⊤yk]i < 0,
is finite.

Proof. Let us assume that the same i attains the min on all iterations k1 and after: k1, k1+
1, . . . , k1 + ℓ. We want to show a contradiction if ℓ is sufficiently large. We have the
recurrence

xk1+1 =
k1

k1 + 1
xk1 +

1

k1 + 1
ξei,

and

xk1+2 =
k1 + 1

k1 + 2

(
k1

k1 + 1
xk1 +

1

k1 + 1
ξei

)
+

1

k1 + 2
ξei

=
k1

k1 + 2
xk1 +

2

k1 + 2
ξei.

It is easy to see inductively that

xk1+ℓ =
k1

k1 + ℓ
xk1 +

ℓ

k1 + ℓ
ξei.

36

This implies that

b− Axk1+ℓ =
k1

k1 + ℓ
(b− Axk1)−

ℓ

k1 + ℓ
ξAei +

ℓ

k1 + ℓ
b. (6.9)

Let σk be used to denote sgn(b − Axk) (an m-vector of ±1’s). It then follows from
Algorithm 6.1 that

yk1+ℓ =
k1

k1 + ℓ
yk1 +

η

k1 + ℓ

ℓ∑
j=1

σk1+j.

Therefore,

c− A⊤yk1+ℓ =
k1

k1 + ℓ
(c− A⊤yk1)−

η

k1 + ℓ

ℓ∑
j=1

A⊤σk1+j +
ℓ

k1 + ℓ
c

=
k1

k1 + ℓ
(c− A⊤yk1)−

η

k1 + ℓ

ℓ∑
j=1

A⊤ sgn(b− Axk1+j) +
ℓ

k1 + ℓ
c

=
k1

k1 + ℓ
(c− A⊤yk1)

− η

k1 + ℓ

ℓ∑
j=1

A⊤ sgn

(
k1

k1 + j
(b− Axk1)−

j

k1 + j
ξAei +

j

k1 + j
b

)
+

ℓ

k1 + ℓ
c.

Let z0 := x∗ − xk1 , where x∗ is the primal optimizer. Then Az0 = b− Axk1 so we have

c− A⊤yk1+ℓ =
k1

k1 + ℓ
(c− A⊤yk1)

− η

k1 + ℓ

ℓ∑
j=1

A⊤ sgn

(
k1

k1 + j
Az0 −

j

k1 + j
ξAei +

j

k1 + j
b

)
+

ℓ

k1 + ℓ
c

=
k1

k1 + ℓ
(c− A⊤yk1)

− η

k1 + ℓ

ℓ∑
j=1

A⊤ sgn

(
A

(
k1

k1 + j
z0 −

j

k1 + j
ξei +

j

k1 + j
x∗
))

+
ℓ

k1 + ℓ
c.

37

Note the identities sgn(−u) = − sgn(u) and sgn(λu) = sgn(u) for any λ > 0. Therefore,
we rescale the argument of sgn in the previous formula by −(k1 + j)/(jξ) and reorder its
terms to obtain

c− A⊤yk1+ℓ =
k1

k1 + ℓ
(c− A⊤yk1) +

η

k1 + ℓ

ℓ∑
j=1

A⊤ sgn

(
A

(
ei −

k1
jξ

z0 − x∗/ξ

))
+

ℓ

k1 + ℓ
c.

Take the inner product of both sides with ei to obtain

e⊤
i (c− A⊤yk1+ℓ) =

k1
k1 + ℓ

e⊤
i (c− A⊤yk1) +

ℓ

k1 + ℓ
ci

+
η

k1 + ℓ

ℓ∑
j=1

e⊤
i A

⊤ sgn

A

(
ei −

k1
jξ

z0 − x∗/ξ

)
︸ ︷︷ ︸

w +∆ in Lemma 6.1.1

 .

We can apply Lemma 6.1.1 to the third term above, giving

e⊤
i (c− A⊤yk1+ℓ) =

k1
k1 + ℓ

e⊤
i (c− A⊤yk1) +

ℓ

k1 + ℓ
ci

+
η

k1 + ℓ

ℓ∑
j=1

∥∥∥∥A(ei −
k1
jξ

z0 − x∗/ξ

)∥∥∥∥
1

+
η

k1 + ℓ

ℓ∑
j=1

(
k1
jξ

z0 + x∗/ξ

)⊤

A⊤ sgn

(
A

(
ei −

k1
jξ

z0 − x∗/ξ

))
=: T1 + T2 + T3 + T4,

38

where

T1 =
k1

k1 + ℓ
e⊤
i (c− A⊤yk1),

T2 =
ℓ

k1 + ℓ
ci,

T3 =
η

k1 + ℓ

ℓ∑
j=1

∥∥∥∥A(ei −
k1
jξ

z0 − x∗/ξ

)∥∥∥∥
1

,

T4 =
η

k1 + ℓ

ℓ∑
j=1

(
k1
jξ

z0 + x∗/ξ

)⊤

A⊤ sgn

(
A

(
ei −

k1
jξ

z0 − x∗/ξ

))
.

Let us lower-bound T3:

T3 ≥
η

k1 + ℓ

ℓ∑
j=1

∥Aei∥1 −
η

k1 + ℓ

ℓ∑
j=1

∥∥∥∥k1jξAz0

∥∥∥∥
1

− η

k1 + ℓ

ℓ∑
j=1

∥b∥1/ξ (6.10)

≥ ηℓ∥Aei∥1
k1 + ℓ

− η∥Az0∥1k1(1 + ln(ℓ))

(k1 + ℓ)ξ
− ηℓ∥b∥1

(k + ℓ)ξ
. (6.11)

And lower bound T4 by taking the sign to be the worst case:

T4 ≥ − η

k1 + ℓ

ℓ∑
j=1

∥∥∥∥k1jξAz0

∥∥∥∥
1

− η

k1 + ℓ

ℓ∑
j=1

∥b∥1/ξ (6.12)

≥ −η∥Az0∥1k1(1 + ln(ℓ))

(k1 + ℓ)ξ
− ηℓ∥b∥1

(k1 + ℓ)ξ
. (6.13)

Hence, T3 + T4 has the following lower bound:

T3 + T4 ≥
ηℓ∥Aei∥1
k1 + ℓ

− 2η∥Az0∥1k1(1 + ln(ℓ))

(k1 + ℓ)ξ
− 2ηℓ∥b∥1

(k1 + ℓ)ξ
. (6.14)

Here, we have upper bounded
∑ℓ

j=1(1/j) by 1 + ln(ℓ). Note that T1 → 0 as ℓ → ∞, and
T2 → ci. The first term in the above approaches η∥Aei∥1 as l → ∞, the second term
approaches zero, and the final term approaches −2η∥b∥1/ξ. To ensure that eventually
T3 + T4 ≥ 0, we can choose ξ so that the first term dominates the final term. That is, we
wish to find a ξ such that

ηℓ∥Aei∥1
k1 + ℓ

≥ 2ηℓ∥b∥1
(k1 + ℓ)ξ

,

39

which holds for all ξ ≥ 2∥b∥1/∥Aei∥1. To ensure that T2 + T3 + T4 ≥ 0, we need to pick
η large enough so that the difference between the first term and the final term in (6.14) is
larger than T2. In other words, we require

ηℓ∥Aei∥1
k1 + ℓ

− 2ηℓ∥b∥1
(k1 + ℓ)ξ

≥ ℓ

k1 + ℓ
ci

which simplifies to

η

(
∥Aei∥1 −

2∥b∥1
ξ

)
≥ ci. (6.15)

By assumption, η > 0 and ξ ≥ 2∥b∥1/∥Aei∥1, so the left hand side of the above must be
nonnegative. Hence, in the case that ci < 0, any η > 0 satisfies (6.15). If ci ≥ 0, then we
must choose a η that satisfies

η ≥ ci
∥Aei∥1 − 2∥b∥1/ξ

(6.16)

which implies that for a choice of η to be possible, we need to set ξ > 2∥b∥1/∥Aei∥1. It
follows that e⊤

i (c − A⊤yk1+ℓ) approaches a nonnegative value for ℓ large enough. Hence,
the theorem is proved.

Observe that the choice of η above is inversely proportional to the choice of ξ. The
closer ξ is chosen to 2∥b∥1/∥Aei∥1, the larger η must be chosen to satisfy its own lower
bound (6.16). The above is the only theoretical result that gives insight into choosing
parameters η and ξ. More attention is given to the problem of choosing parameters in
Section 6.4, where we investigate numerically different choices of η and ξ.

The next two lemmas will prove useful in the theorem that follows.

Lemma 6.1.3. For any u, v ∈ R, |u| − |v| ≥ (u− v) sgn(v).

Proof. The inequality to be proved is rewritten |u|−|v| ≥ u·sgn(v)−|v|, i.e. |u| ≥ u·sgn(v),
which is true regardless of v.

Lemma 6.1.4. For any u,v ∈ Rn, ∥u∥1 − ∥v∥1≥ (u− v)⊤ sgn(v).

Proof. This follows by noting that the inequality to proved is equivalently written:

n∑
i=1

(|ui| − |vi|) ≥
n∑

i=1

(ui − vi) sgn(vi),

and this inequality holds term-by-term by Lemma 6.1.3.

40

Theorem 6.1.5. Consider one step of Algorithm 6.1 in the case that a dual constraint is
infeasible:

i := argmin{ci − e⊤
i A

⊤yk : i ∈ [n]}, (6.17)

xk+1 :=
k

k + 1
yk +

ξ

k + 1
ei, (6.18)

yk+1 :=
k

k + 1
yk +

η

k + 1
sgn(b− Axk+1). (6.19)

Then

Uk+1,i ≤
k

k + 1
· Uk,i,

where

Uk,i = −ci − e⊤
i A

⊤yk

η
+

∥b− Axk∥1
ξ

+
c⊤xk − b⊤yk

ηξ
,

and i as in (6.17).

Proof. Move the term η
k+1

sgn(b − Axk+1) to the LHS of (6.18), multiply both sides by

eiA
⊤, subtract ci · k

k+1
from both sides, and then divide by η to obtain

−ci − e⊤
i A

⊤yk+1

η
− 1

k + 1

(
e⊤
i A

⊤ sgn(b− Axk+1)−
ci
η

)
= − k

k + 1
· 1
η
· (ci − e⊤

i A
⊤yk).

(6.20)
Next, move the term ξ

k+1
ei to the LHS of (6.19), multiply both sides by A, change signs,

add b · k
k+1

to both sides, and then divide by ξ to obtain

1

ξ
(b− Axk+1) +

1

k + 1
Aei −

1

ξ(k + 1)
b =

k

ξ(k + 1)
(b− Axk), (6.21)

which, taking the 1-norm of each side, becomes∥∥∥∥1ξ (b− Axk+1) +
1

k + 1
Aei −

1

ξ(k + 1)
b

∥∥∥∥
1

=

∥∥∥∥ k

ξ(k + 1)
(b− Axk)

∥∥∥∥
1

. (6.22)

By Lemma 6.1.4, taking

u :=
1

ξ
(b− Axk+1) +

1

k + 1
Aei −

1

ξ(k + 1)
b,

v :=
1

ξ
(b− Axk+1),

41

yields∥∥∥∥1ξ (b− Axk+1) +
1

k + 1
Aei −

1

ξ(k + 1)
b

∥∥∥∥
1

≥
∥∥∥∥1ξ (b− Axk+1)

∥∥∥∥
1

+

(
1

k + 1
Aei −

1

ξ(k + 1)
b

)⊤

sgn(b− Axk+1).

(6.23)

Combining (6.22) and (6.23) yields∥∥∥∥1ξ (b− Axk+1)

∥∥∥∥
1

+

(
1

k + 1
Aei −

1

ξ(k + 1)
b

)⊤

sgn(b− Axk+1) ≤
∥∥∥∥ k

ξ(k + 1)
(b− Axk)

∥∥∥∥
1

.

(6.24)
Next, multiply (6.18) by 1

ηξ
c⊤ and rearrange to obtain

c⊤xk+1

ηξ
− ci

η(k + 1)
=

k

k + 1
· c

⊤xk

ηξ
. (6.25)

Next, multiply (6.18) by − 1
ηξ
b⊤ and rearrange to obtain

−b⊤yk+1

ηξ
+

b⊤ sgn(b− Axk+1)

ξ(k + 1)
=

k

k + 1
· b

⊤yk

ηξ
. (6.26)

Finally, the theorem is proved by adding (6.20), (6.24), (6.25) and (6.26) and noticing that
many terms cancel out.

Theorem 6.1.5 again considers the case where the dual is infeasible. It introduces
the potential function Uk,i where k is the current iterate and i corresponds to the most
infeasible dual constraint. The quantity Uk,i has three terms; the first measures dual
infeasibility (larger means more infeasible), the second measures primal infeasibility, and
the third measures the duality gap. The theorem says that the potential function, which
simultaneously measures both infeasibilities and the duality gap, goes down by a constant
factor on each iteration.

On its own, Theorem 6.1.5 is not strong enough to establish convergence of the algo-
rithm. The theorem only covers the case of an iteration when the dual is infeasible. It still
remains to show what happens in the case that the dual is feasible. Also, i given by (6.17)
on iteration k is not necessarily the same i given by (6.17) on iteration k + 1. Hence this
bound does not fully control dual infeasibility.

We consider the case where the dual is feasible in the next theorem.

42

Theorem 6.1.6. Consider one step of Algorithm 6.1 in the case that all dual constraints
are feasible:

xk+1 :=
k

k + 1
xk, (6.27)

yk+1 :=
k

k + 1
yk +

η

k + 1
sgn(b− Axk+1). (6.28)

Then

Uk+1 ≤
k

k + 1
· Uk,

where

Uk =
∥b− Axk∥1

ξ
+

c⊤xk − b⊤yk

ηξ
.

Proof. Using (6.27) and (6.28), we can expand the duality gap as

c⊤xk+1 − b⊤yk+1 =
k

k + 1
(c⊤xk − b⊤yk)−

η

k + 1
b⊤ sgn(b− Axk+1), (6.29)

and the primal infeasibility as

∥b− Axk+1∥1 = (b− Axk+1)
⊤ sgn(b− Axk+1) (6.30)

=
1

k + 1
b⊤ sgn(b− Axk+1) +

k

k + 1
(b− Axk)

⊤ sgn(b− Axk+1) (6.31)

≤ 1

k + 1
b⊤ sgn(b− Axk+1) +

k

k + 1
∥b− Axk∥1. (6.32)

Multiplying (6.29) by 1
η
and adding this to (6.32) gives the desired inequality if we multiply

again by 1
ξ
:

c⊤xk+1 − b⊤yk+1

η
+ ∥b− Axk+1∥1 ≤

k

k + 1

(
c⊤xk − b⊤yk

η
+ ∥b− Axk∥1

)
.

With Theorems 6.1.5 and 6.1.6, we have potential functions that decrease by a constant
factor on each iteration in both the dual infeasible and feasible cases.

The following theorem follows the same idea as the previous two, except instead of
making assumptions on the dual it considers the sign pattern of the primal constraint: if
the sign of each entry in b−Axk remains the same for all iterations from k to k′, then we
can construct a new potential function that decreases over those iterations.

43

Theorem 6.1.7. Let ℓ = k′ − k and consider iterations k through k′ in the case that
σ := sgn(b− Axt) remains constant for all k ≤ t ≤ k′. Then,

Dk+ℓ ≤
k

k + ℓ
·Dk, (6.33)

where

Dk := −

(∑ℓ
j=1 ei(k+j)

)T
(c− ATy)

ℓη
+

∥b− Axk∥1
ξ

+
cTxk − bTyk

ηξ
,

and i(k + j) = argmin{ci = e⊤
i A

⊤yk+j : i ∈ [n]}.

Proof. From the x and y updates, we have

xk+ℓ =
k

k + ℓ
xk +

ξ

k + ℓ

ℓ∑
j=1

ei(k+j) (6.34)

yk+ℓ =
k

k + ℓ
yk +

η

k + ℓ

ℓ∑
j=1

σ =
k

k + ℓ
yk +

ℓη

k + ℓ
σ. (6.35)

From (6.35),

c− ATyk+ℓ =
k

k + ℓ
(c− ATyk)−

ℓη

k + ℓ
ATσ +

ℓ

k + ℓ
c.

Multiplying the above by
(∑ℓ

j=1 ei(k+j)

)T
/(ℓη) gives(∑ℓ

j=1 ei(k+j)

)T
(c− ATyk+ℓ)

ℓη
=

(∑ℓ
j=1 ei(k+j)

)T
(c− ATyk)

ℓη
(6.36)

−

(∑ℓ
j=1 ei(k+j)

)T
ATσ

k + ℓ

+
1

(k + ℓ)η

(
ℓ∑

j=1

ei(k+j)

)T

c.

From (6.34),

b− Axk+ℓ

ξ
=

k

k + ℓ

(
b− Axk

ξ

)
− 1

k + ℓ

ℓ∑
j=1

Aei(k+j) +
ℓ

k + ℓ

b

ξ

44

which allows us to write∥∥∥∥∥b− Axk+ℓ

ξ
+

1

k + ℓ

ℓ∑
j=1

Aei(k+j) −
ℓ

k + ℓ

b

ξ

∥∥∥∥∥
1

=
k

ξ(k + ℓ)
∥b− Axk∥1 . (6.37)

If we set u := b−Axk+ℓ

ξ
+ 1

k+ℓ

∑ℓ
j=1Aei(k+j) − ℓ

k+ℓ
b
ξ
and v := b−Axk+ℓ

ξ
, we can apply

Lemma 6.1.4 to the left hand side of the above equation and rearrange to obtain the
following inequality:∥∥∥∥∥b− Axk+ℓ

ξ
+

1

k + ℓ

ℓ∑
j=1

Aei(k+j) −
ℓ

k + ℓ

b

ξ

∥∥∥∥∥
1

≥

(
1

k + ℓ

ℓ∑
j=1

Aei(k+j) −
ℓ

k + ℓ

b

ξ

)T

sgn(b− Axk+ℓ)

+
1

ξ
∥b− Axk+ℓ∥1.

The above can be rewritten as follows by applying (6.37):

k

ξ(k + ℓ)
∥b− Axk∥1 ≥

(
1

k + ℓ

ℓ∑
j=1

Aei(k+j) −
ℓ

k + ℓ

b

ξ

)T

sgn(b−Axk+ℓ)+
1

ξ
∥b−Axk+ℓ∥1.

(6.38)
Now, multiply (6.34) by 1

ηξ
cT and rearrange to obtain

cTxk+ℓ

ηξ
−
∑ℓ

j=1 c
Tei(k+j)

η(k + ℓ)
=

k

k + ℓ
· c

Txk

ηξ
. (6.39)

Similarly, multiply (6.35) by − 1
ηξ
bT and rearrange to obtain

−bTyk+ℓ

ηξ
+

∑ℓ
j=1 b

Tσ

ξ(k + ℓ)
= − k

k + ℓ
· b

Tyk

ηξ
. (6.40)

Finally, we achieve the desired inequality (6.33) by adding (6.38), (6.39) and (6.40), and
subtracting (6.36).

6.1.1 Relation to the primal-dual gap for saddle point problems

Recall the primal-dual gap defined in (5.26). Unlike in PDLP where (5.26) may be infinite,
our definitions of X and Y for the problem (6.1) force the primal-dual gap to be finite.

45

We will also see that in the setting of FWLP, the primal-dual gap is easy to compute,
especially in comparison to the normalized duality gap (5.25) used in PDLP. Observe that
the primal-dual gap function ρ(x,y) can be rewritten as

ρ(x,y) = max
ŷ∈Y

L(x, ŷ)−min
x̂∈X

L(x̂,y), (6.41)

where we may view the first term max{L(x, ŷ) : ŷ ∈ Y} as the primal objective function,
and the second term min{L(x̂,y) : x̂ ∈ X} as the dual objective function. From the form
in (6.41), it is easy to see that ρ(x,y) ≥ 0 for all (x,y) ∈ X × Y .

There is a connection between the potential functions Uk,i and Uk from Theorems 6.1.5
and 6.1.6 and the function ρ(x,y). Suppose the dual problem of (6.1) is infeasible with
i = argmin{ci − e⊤

i A
⊤yk : i ∈ [n]}. Then the primal objective evaluated at the current

iterate xk is

max
ŷ∈Y

L(xk, ŷ) = max
ŷ∈Y

{c⊤xk + ŷ⊤(b− Axk)} (6.42)

= c⊤xk + η∥b− Axk∥1, (6.43)

and the dual objective evaluated at the current iterate yk is

min
x̂∈X

L(x̂,yk) = min
x̂∈X

{(c− A⊤yk)
⊤x̂}+ b⊤yk (6.44)

= ci − e⊤
i A

⊤yk + b⊤yk. (6.45)

It follows that

ρ(xk,yk) = max
ŷ∈Y

L(xk, ŷ)−min
x̂∈X

L(x̂,yk) (6.46)

= −ξ(ci − e⊤
i A

⊤yk) + η∥b− Axk∥1 + c⊤xk − b⊤yk (6.47)

= ηξ · Uk,i. (6.48)

On the other hand, if the dual problem of (6.1) is feasible, then the primal objective
evaluated at xk remains the same as in (6.43), but the dual objective at yk becomes

min
x̂∈X

L(x̂,yk) = min
x̂∈X

{(c− A⊤yk)
⊤x̂}+ b⊤yk (6.49)

= b⊤yk, (6.50)

since the optimal choice of x̂ is zero in the case where all entries of c−A⊤yk are nonnegative.
Now we see that

ρ(xk,yk) = η∥b− Axk∥1 + c⊤xk − b⊤yk (6.51)

= ηξ · Uk. (6.52)

46

We may now write the primal-dual gap function another way:

ρ(xk,yk) =

{
Uk, c− A⊤yk ≥ 0;

Uk,i, i = argmin{ci − e⊤
i A

⊤yk : ci − e⊤
i A

⊤yk < 0, i ∈ [n]}.

Using the above equivalence, we state the below theorem. Along with the fact that
ρ(x,y) ≥ 0, Theorem 6.1.8 suggests that ρ(x,y) can be used to measure the optimal-
ity of the FWLP problem.

Theorem 6.1.8. Suppose x is feasible for X but e⊤x < ξ. Likewise, suppose y is feasible
for Y , but −ηe < y < ηe. Then ρ(x,y) = 0 if and only if (x,y) are optimal for (MLP)
and (MDP).

Proof. First, suppose ρ(x,y) = 0 and let y satisfy the constraint A⊤y ≤ c. Then

0 = ρ(x,y) =
∥b− Ax∥1

ξ
+

c⊤x− b⊤y

ηξ
.

If Ax = b, we have from the above that c⊤x = b⊤y. By weak duality, we have that (x,y)
are optimal for the primal-dual pair of LPs (LP) and (DLP). If we add the constraints
e⊤x ≤ ξ and ∥y∥∞ ≤ η, we are minimizing and maximizing over smaller sets and thus
c⊤x is a lower bound on (MLP) and b⊤y is an upper bound on (MDP). However, both
bounds are obtained for feasible x and y, so (x,y) must be optimal for the modified LPs.

If Ax ̸= b, ∥b−Ax∥1 > 0, and from the constraint A⊤y ≤ c, we obtain the inequality

c⊤x ≥ (A⊤y)⊤x = y⊤Ax,

so

ρ(x,y) ≥ ∥b− Ax∥1
ξ

+
y⊤(Ax− b)

ηξ
.

Using −y > −ηe on the above, we obtain the inequality

ρ(x,y) ≥ ∥b− Ax∥1
ξ

+
y⊤(Ax− b)

ηξ

>
∥b− Ax∥1

ξ
− ∥b− Ax∥1

ξ

= 0.

It follows that ρ(x,y) ̸= 0, contradicting the choice of Ax ̸= b.

47

Now we consider the case where y does not satisfy A⊤y ≤ c and i = argmin{ci −
e⊤
i A

⊤y}. In this case,

ρ(x,y) = −ci − e⊤
i A

⊤y

η
+

∥b− Ax∥1
ξ

+
c⊤x− b⊤y

ηξ
.

We may write

c⊤x− b⊤y = c⊤x− y⊤Ax− y⊤(b− Ax)

> x⊤(c− A⊤y)− η∥b− Ax∥1
> ξ(ci − e⊤

i A
⊤y)− η∥b− Ax∥1,

which if we divide by ηξ gives the inequality

−ci − e⊤
i A

⊤y

η
+

∥b− Ax∥1
ξ

+
c⊤x− b⊤y

ηξ
> 0.

Therefore, ρ(x,y) ̸= 0, so y satisfying A⊤y ≤ c is a necessary condition for ρ(x,y) = 0.

Now suppose x is an optimal solution to (MLP) and y is an optimal solution to (MDP).
Since x and y are feasible, we have that

ρ(x,y) =
c⊤x− b⊤y

ηξ
.

Since x and y are optimal for (MLP) and (MDP) such that the constraints described by ξ
and η are redundant, x and y must be optimal for (LP) and (DLP). It follows from strong
duality that ρ(x,y) = 0.

Remark. It is clear from the above proof that under the same assumptions as Theorem 6.1.8,
ρ(x,y) = 0 if and only if (x,y) are optimal for (LP) and (DLP).

6.2 Connection to Hammond’s Generalized Fictitious

Play Algorithm

In her thesis [30], Hammond describes an algorithm for solving the VIP (4.1). Given iterate
zk, the algorithm titled Generalized Fictitious Play Algorithm, finds zk+1 by first solving
the linear optimization problem

s := argmin
s∈Z

s⊤F (zk), (6.53)

48

and then updating as follows:

zk+1 =
k

k + 1
zk +

1

k + 1
s. (6.54)

From Section (4.0.1), we know that the problem of finding a saddle point of (6.1) is equiv-
alent to the VIP (4.1) with z := (x,y), F (z) := (c − A⊤y, Ax − b), and Z := X × Y .
Applying Hammond’s Generalized Fictitious Play algorithm to this case yields a very sim-
ilar algorithm to FWLP, the only difference being that yk is updated based on xk and not
the newly found xk+1:

Algorithm 6.2 Generalized Fictitious Play applied to (6.1).

Input: Starting points x1 ∈ Rn,y1 ∈ Rm, constraint data A and b, and objective c.

Parameters: ξ > 0 such that e⊤xk ≤ ξ, η > 0 such that ∥yk∥∞ ≤ η.
1: for k = 1, 2, . . . do
2: Determine i = argmint[c− A⊤yk]t.
3: if [c− A⊤yk]i ≥ 0 then
4: Step towards zero in x:

xk+1 =
k

k + 1
xk. (6.55)

5: else
6: Step toward ξ for xi, otherwise step toward zero for xj, j ̸= i:

xk+1 =
k

k + 1
xk +

ξ

k + 1
ei. (6.56)

7: Step towards ±η for each coordinate in y according to the sign pattern of b−Axk.

yk+1 =
k

k + 1
yk +

η

k + 1
sgn(b− Axk). (6.57)

Hammond’s conjecture states that if F is strongly monotone and Z is a bounded
polyhedron, Generalized Fictitious Play will solve (4.1). However, the F defined above does
not satisfy strong monotonicity and as such is not covered under Hammond’s conjecture.

49

6.3 Advantages of FWLP

FWLP is a first-order method in that at each iteration its most expensive operation is a
matrix-vector product. As mentioned, this is beneficial for solving large linear programming
problems because of the decreased operation cost, as well as the decreased memory usage.
A benefit of FWLP is that we only need to store Axk and yk, which we then update at
each iteration. For example, suppose we have stored Ax1 and Aei for each i ∈ [n]. Then
to update Ax1 we need only perform one of two operations:

Ax2 =
k

2
Ax1, or Ax2 =

k

2
Ax1 +

ξ

2
Aei, for some i ∈ [n].

Such an update runs in O(m) operations.

The update for y1 is

y2 =
k

2
y1 +

η

2
sgn(b− Ax2),

which also runs in O(m) since Ax2 has already been computed. The computation of A⊤y
can be improved if we note that in Algorithm 6.1 we only need to compute (Aei)

⊤yk for the
indices i such that there is a possibility that ci− (Aei)

⊤yk could become most infeasible at
the next iteration. This would require a data structure to store the indices [n] in some order
so that only the possibly most infeasible indices need to be considered at each iteration.
For example, if the majority of iterates yk satisfy the inequality

ct − (Aet)
⊤yk ≥ ci − (Aei)

⊤yk +D,

where t belongs to a subset of indices S ⊆ [n], i is the index of the most violated constraint,
and D > 0 is large enough so that t doesn’t become the most violated constraint on a
number of consecutive iterations. Then for the number of iterations that we don’t need to
consider the indices in S, the computation of A⊤yk costs O(|[n] \ S|m) plus the cost of
updating the data structure storing the indices.

One might not even be interested in the value of x∗. In this case, we don’t need to
store the iterates xk at each iteration, only Axk.

6.4 Choosing ξ and η

Although we lack theoretical results regarding the choice of parameters η and ξ, the proof of
Theorem 6.1.2 gives some insight into lower bounds. Suppose i is the index corresponding to

50

the most violated constraint in the dual. We know from the proof of Theorem 6.1.2 that the
lower bound on η (6.16) must be satisfied, along with the lower bound ξ > 2∥b∥1/∥Aei∥1.
Observe that

ci
∥Aei∥1 − 2∥b∥1/ξ

≤ max{ct : t ∈ [n]}
min{∥Aet∥1 : t ∈ [n]} − 2∥b∥1/ξ

,

and
2∥b∥1
∥Aei∥1

≤ 2∥b∥1
min{∥Aet∥1 : t ∈ [n]}

.

It follows that to satisfy the above lower bounds on η and ξ in Algorithm 6.1, we may first
choose some ξ satisfying

ξ >
2∥b∥1

min{∥Aet∥1 : t ∈ [n]}
and then define η as

η :=
max{ct : t ∈ [n]}

min{∥Aet∥1 : t ∈ [n]} − 2∥b∥1/ξ
.

Recall that the closer we choose ξ to its lower bound, the larger η becomes.

To investigate which parameter values tend to work best, we performed numerical
experiments on the five randomly generated linear programming problems described in
Table 6.1, where κ is the condition number of the optimal basis AB∗ for each problem:

κ =
σmax(AB∗)

σmin(AB∗)
.

Problem No. m n κ
1 2 5 9.0946
2 5 8 9.8995
3 6 10 105.28
4 6 10 60.396
5 7 11 12.463

Table 6.1. The five random problems used for numerical experiments.

For each problem, we ran FWLP for 100 million iterations, 100 times, varying the
parameters η and ξ each time. Define

ξmin :=
(
1 + 10−2

) 2∥b∥1
min{∥Aet∥1 : t ∈ [n]}

,

51

and

ηmin :=
max{ct : t ∈ [n]}

min{∥Aet∥1 : t ∈ [n]} − 2∥b∥1/ξ
.

For a given problem p, we performed the following algorithm, saving the KKT error of the
averaged iterates at each iteration. We denote the averaged iterates by (x̄k, ȳk).

Algorithm 6.3 Numerical experiments comparing combinations of parameters η and ξ.

Input: Problem data corresponding to p, ξmin, and ηmin.

1: for i = 1, 2, . . . , 10 do
2: for j = 1, 2, . . . , 10 do
3: Run FWLP for 100 million iterations on problem p with ξ = i · ξmin, η = j · ηmin.
4: Save KKT error for (x̄k, ȳk) for this value of i and j.

The KKT error1 measures how far away the primal-dual pair (xk,yk) is from satisfying
the KKT conditions of (LP). It is defined as ∥[h−Kz]+∥2, where z = (xk,yk) and

K :=

In×n 0n×m

−A 0m×m

A 0m×m

0n×n −A⊤

−c⊤ b⊤

 , h :=

0
−b
b
−c
0

 .

Figure 6.1 presents the results of the experiments in the form of a heatmap, where the
values along the x-axis represent the amount η is scaled (i.e. j in Algorithm 6.3), and the
values along the y-axis represent the amount ξ is scaled (i.e. i in Algorithm 6.3). The color
values of the heatmap represent the inverse of the KKT error corresponding to the chosen
parameters, normalized by the best inverse KKT error for that problem. In other words,
for a given problem p, let Ep

best denote the best KKT error of the averaged iterates after
100 million iterations for any η and ξ. Let Ep(η, ξ) denote the KKT error of the averaged
iterates after 100 million iterations for that specific combination of η and ξ. Then,

Heatmap color value for combination (p, η, ξ) =

{
1 Ep(η, ξ) = 0,
1/Ep(η,ξ)
1/Ep

best
otherwise.

This implies that a more red square in Figure 6.1 corresponds to a combination (η, ξ) with
a smaller KKT error, while a more blue square corresponds to a combination with a higher
KKT error.

1The KKT error is used in the PDLP paper [3] and is commonly used as a metric for the termination
of LP solvers [1].

52

In addition to the heatmaps, Tables 6.2-6.6 show the smallest five KKT error values and
their corresponding combination (η, ξ) for the averaged iterates after 100 million iterations.

Analyzing the results, it appears that for most of the problems tested, values of η around
2ηmin seem to give the smallest KKT errors. There is some variation from this for Problems
4 and 5. Looking at the heatmaps, there does appear to be some positive correlation
between the size of ξ and the size of η, particularly in the heatmaps corresponding to
Problem 4 and Problem 5, and to a lesser extent in Problem 2. Values of ξ that perform
well on our test problems appear to be concentrated between 2ξmin and 4ξmin. However,
Problems 2 and 5 suggest that choices of ξ between 2ξmin and 10ξmin perform well, so long
as a large enough η is selected. All heatmaps show that selecting η and ξ to be their
minimum values leads to poor performance in comparison to other choices.

Analyzing the values of ξ and η in Tables 6.2-6.6, we see that the best performing values
of η for the given test problems seem to be in the range of 1.5 to 4, while values for ξ in
the range [280, 480] perform well in our experiments.

In the numerical results, there seems to be no observable correlation between the size
of ξ and η and the problem size. However, the size of Problems 1-5 may not vary enough
to show such a correlation.

53

1 2 3 4 5 6 7 8 9 10

η scaling

1
2

3
4

5
6

7
8

9
10

ξ
sc

al
in

g

0.2

0.4

0.6

0.8

1.0

(a) Problem 1

1 2 3 4 5 6 7 8 9 10

η scaling

1
2

3
4

5
6

7
8

9
10

ξ
sc

al
in

g

0.2

0.4

0.6

0.8

1.0

(b) Problem 2

1 2 3 4 5 6 7 8 9 10

η scaling

1
2

3
4

5
6

7
8

9
10

ξ
sc

al
in

g

0.2

0.4

0.6

0.8

1.0

(c) Problem 3

1 2 3 4 5 6 7 8 9 10

η scaling

1
2

3
4

5
6

7
8

9
10

ξ
sc

al
in

g

0.2

0.4

0.6

0.8

1.0

(d) Problem 4

1 2 3 4 5 6 7 8 9 10

η scaling

1
2

3
4

5
6

7
8

9
10

ξ
sc

al
in

g

0.2

0.4

0.6

0.8

1.0

(e) Problem 5

Figure 6.1. Parameter heatmaps comparing the interaction between various ξ and η values.

54

ξ ξ Scaling η η Scaling KKT Error
436.86 3 4.2370 2 0.003568
582.48 4 3.7725 2 0.006909
291.24 2 5.6217 2 0.007320
728.10 5 3.5396 2 0.008396
1019.30 7 3.3063 2 0.011816

Table 6.2. Problem 1: KKT error of the averaged iterates for the top 5 combinations of η and ξ.

ξ ξ Scaling η η Scaling Average KKT Error
425.60 2 3.3718 2 0.027250
1276.80 6 3.0586 3 0.031112
638.41 3 2.5413 2 0.034511
1702.40 8 2.9146 3 0.035997
1489.60 7 2.9746 3 0.037376

Table 6.3. Problem 2: KKT error of the averaged iterates for the top 5 combinations of η and ξ.

ξ ξ Scaling η η Scaling Average KKT Error
481.17 3 1.5514 2 0.018702
320.78 2 2.0584 2 0.026696
641.56 4 1.3813 2 0.037801
962.34 6 1.8672 3 0.038138
641.56 4 2.0719 3 0.039077

Table 6.4. Problem 3: KKT error of the averaged iterates for the top 5 combinations of η and ξ.

ξ ξ Scaling η η Scaling Average KKT Error
287.77 2 2.5795 5 0.017490
431.66 3 2.3330 6 0.019754
575.54 4 2.4234 7 0.021200
431.66 3 2.7218 7 0.025605
863.32 6 2.4959 8 0.029688

Table 6.5. Problem 4: KKT error of the averaged iterates for the top 5 combinations of η and ξ.

55

ξ ξ Scaling η η Scaling Average KKT Error
407.71 4 2.4353 5 0.022427
305.79 3 2.7352 5 0.023667
203.86 2 2.9033 4 0.024882
611.57 6 2.1947 5 0.028071
509.64 5 2.2850 5 0.028567

Table 6.6. Problem 5: KKT error of the averaged iterates for the top 5 combinations of η and ξ.

6.5 Restarting FWLP

For Problems 1-5, we ran FWLP for 100 million iterations, for each of the following restart
schemes:

1. Constant restarts: Restart every τ iterations. We use τ = 106 and τ = 2 · 106.

2. Sufficient decay in primal-dual gap: Inspired by the similarly named restart
scheme used in PDLP (cf. Section 5.3.2), we restart when

ρ(x̄t,k+1, ȳt,k+1) ≤ βsuffρ(x̄t,1, ȳt,1).

This restart scheme is named ‘Adaptive 1’ in the below plots.

3. Necessary decay and no local progress in primal-dual gap: Also inspired by
the similarly named restart scheme used in PDLP and discussed in Section 5.3.2, we
restart when

ρ(x̄t,k+1, ȳt,k+1) ≤ βnecρ(x̄t,1, ȳt,1),

and

ρ(x̄t,k+1, ȳt,k+1) > ρ(x̄t,k, ȳt,k).

This restart scheme is named ‘Adaptive 2’ in the below plots.

56

Algorithm 6.4 FWLP (restarted): FWLP with restarts.

Input: Starting points x1 ∈ Rn,y1 ∈ Rm, (x̄1, ȳ1) = (x1,y1), constraint data A and b,
and objective c.

Parameters: ξ > 0 such that e⊤xk ≤ ξ, η > 0 such that ∥yk∥∞ ≤ η.
1: for k = 1, 2, . . . do
2: Perform FWLP step according to Algorithm 6.1 and store averaged iterates:

(xk+1,yk+1) = FWLP(k,xk,yk, A, b, c, ξ, η),

(x̄k+1, ȳk+1) =
k

k + 1
(x̄k, ȳk) +

1

k + 1
(xk+1,yk+1).

3: if restart criteria are satisfied then

(xk+1,yk+1) = (x̄k+1, ȳk+1).

Notably, we are using the primal-dual gap (5.26) instead of the normalized duality gap
(5.25). This is because the motivation for using the normalized duality gap in PDLP is that
(5.26) could be unbounded. In the setting of FWLP however, (5.26) is always bounded, so
the use of the normalized duality gap is unnecessary.

In our initial experiments comparing the above restart schemes, we chose the restart
candidate similar to (5.27):

(xc
t,k+1,y

c
t,k+1) =

{
(xt,k+1,yt,k+1), ρ(xt,k+1,yt,k+1) < ρ(x̄t,k+1, ȳt,k+1);

(x̄t,k+1, ȳt,k+1), otherwise.
(6.58)

However, we noted that ρ(xt,k+1,yt,k+1) < ρ(x̄t,k+1, ȳt,k+1) was never not satisfied numer-
ically for Problems 1-5. Hence, every restart candidate was chosen to be (xt,k+1,yt,k+1).
Since we do not update the step-sizes when restarting in FWLP (cf. Algorithm 6.4), this
made restarting redundant. For the numerical experiments presented here, the restart can-
didate is always chosen to be (x̄t,k+1, ȳt,k+1). This is reflected in the restart schemes listed
above.

In our numerical experiments we chose βsuff = 0.5 and βnec = 0.1.

Figures 6.2 through 6.6 show the KKT error of the averaged iterates (x̄k, ȳk) over
100 million iterations with different restarting schemes. The results show that for each
problem, no restarts and the ‘Adaptive 2’ restart scheme perform the best. This suggests
that restarting may not provide any benefit to FWLP.

57

Figure 6.2. Problem 1: KKT error of averaged iterates for different restarting schemes.

Figure 6.3. Problem 2: KKT error of averaged iterates for different restarting schemes.

58

Figure 6.4. Problem 3: KKT error of averaged iterates for different restarting schemes.

Figure 6.5. Problem 4: KKT error of averaged iterates for different restarting schemes.

59

Figure 6.6. Problem 5: KKT error of averaged iterates for different restarting schemes.

60

6.6 Experimental analysis of convergence rate

In order to gain some insight into the convergence rate of FWLP, we perform numerical
experiments comparing the KKT error of (xk,yk), (x̄k, ȳk), and the lines described by
k 7→ C/

√
k and k 7→ C/k, where k ranges from 1 to 100 million. C is chosen to be the

KKT error of (x1,y1). We use ‘KKT error (avg)’ in the plots below to refer to the KKT
error of the averaged iterates.

The below plots suggest a worst-case convergence rate of O(1/
√
k) for Algorithm 6.1.

Figure 6.7. Problem 1: KKT error of last and averaged iterates compared to C/
√
k and C/k.

61

Figure 6.8. Problem 2: KKT error of last and averaged iterates compared to C/
√
k and C/k.

Figure 6.9. Problem 3: KKT error of last and averaged iterates compared to C/
√
k and C/k.

62

Figure 6.10. Problem 4: KKT error of last and averaged iterates compared to C/
√
k and C/k.

Figure 6.11. Problem 5: KKT error of last and averaged iterates compared to C/
√
k and C/k.

63

Chapter 7

Conclusions and Future Work

Classical algorithms for solving linear programs require the solution of a system of lin-
ear equations at each iteration and thus do not scale well when it comes to large linear
programs with billions of variables that are common in modern day data science appli-
cations. We proposed FWLP, a first-order algorithm for linear programming inspired by
the Frank-Wolfe algorithm [20]. Potential functions that measure the primal feasibility,
dual feasibility, and duality gap of a modified version of (LP) are shown to decrease by a
constant factor at each iteration for FWLP. Moreover, these potential functions are shown
to be equivalent to a constant multiple of the primal-dual gap (5.26) commonly used in
the theory of saddle-point problems. While our numerical results suggest a worst-case con-
vergence rate of O(1/

√
k), slower than that of the best known first-order LP solver PDLP

[2, 3], FWLP has the advantage that it only needs part of the matrix A at each iteration
if one uses an appropriate data structure. We believe that this is a practical advantage of
FWLP for very large problems. In an attempt to speed up FWLP further in practice, we
tried different restart schemes similar to PDLP. However, numerical experiments seem to
suggest that no speed up can be obtained by restarting the algorithm.

While numerical results suggest a worst-case convergence rate for FWLP, this thesis
provides no convergence proof for the algorithm, nor does it provide an efficient implemen-
tation of FWLP based on the description of the algorithm’s numerical advantages. FWLP
would benefit from future research in both of these directions. Moreover, an efficient im-
plementation of FWLP would allow for numerical experiments to be performed on larger
problems, a topic that has not been investigated in this thesis.

64

References

[1] E.D. Andersen and K.D. Andersen. The Mosek Interior Point Optimizer for Linear
Programming: An Implementation of the Homogeneous Algorithm, pages 197–232.
Springer US, Boston, MA, 2000.

[2] D. Applegate, M. Dı́az, O. Hinder, H. Lu, M. Lubin, B. O’Donoghue, and W. Schudy.
Practical large-scale linear programming using primal-dual hybrid gradient. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 20243–
20257. Curran Associates, Inc., 2021.

[3] D. Applegate, O. Hinder, H. Lu, and M. Lubin. Faster first-order primal-dual methods
for linear programming using restarts and sharpness. Mathematical Programming,
201(1):133–184, Sep 2023.

[4] K. Basu, A. Ghoting, R. Mazumder, and Y. Pan. ECLIPSE: An extreme-scale linear
program solver for web-applications. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages 704–714. PMLR, 13–18 Jul 2020.

[5] H.H. Bauschke and P.L. Combettes. Convex Analysis and Monotone Operator Theory
in Hilbert Spaces. Springer, second edition, 2017.

[6] D. Bertsimas and J.N. Tsitsiklis. Introduction to Linear Optimization. Athena Scien-
tific, 1997.

[7] R.G. Bland. New finite pivoting rules for the simplex method. Mathematics of Oper-
ations Research, 2(2):103–107, 1977.

[8] K.H. Borgwardt. The Simplex Method: A Probabilistic Analysis. Springer, 1987.

65

[9] M. Boroun, E.Y. Hamedani, and A. Jalilzadeh. Projection-free methods for solving
nonconvex-concave saddle point problems, 2023. arXiv:2306.11944 [math.OC].

[10] Y. Cai, A. Oikonomou, and W. Zheng. Tight last-iterate convergence of the extragra-
dient and the optimistic gradient descent-ascent algorithm for constrained monotone
variational inequalities, 2022. arXiv:2204.09228 [math.OC].

[11] M.D. Canon and C.D. Cullum. A tight upper bound on the rate of convergence of the
Frank-Wolfe algorithm. SIAM Journal on Control, 6(4):509–516, 1968.

[12] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of Mathematical Imaging and Vision, 40(1):120–
145, May 2011.

[13] A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order primal–
dual algorithm. Mathematical Programming, 159(1):253–287, Sep 2016.

[14] P.L. Combettes. Solving monotone inclusions via compositions of nonexpansive aver-
aged operators. Optimization, 53(5-6):475–504, 2004.

[15] L. Condat. A primal–dual splitting method for convex optimization involving lips-
chitzian, proximable and linear composite terms. Journal of Optimization Theory and
Applications, 158(2):460–479, Aug 2013.

[16] J. Douglas and H. H. Rachford. On the numerical solution of heat conduction problems
in two and three space variables. Transactions of the American Mathematical Society,
82(2):421–439, 1956.

[17] J.C. Dunn. Rates of convergence for conditional gradient algorithms near singular and
nonsingular extremals. SIAM Journal on Control and Optimization, 17(2):187–211,
1979.

[18] J.C. Dunn and S. Harshbarger. Conditional gradient algorithms with open loop step
size rules. Journal of Mathematical Analysis and Applications, 62(2):432–444, 1978.

[19] J. Eckstein and D.P. Bertsekas. On the Douglas—Rachford splitting method and the
proximal point algorithm for maximal monotone operators. Mathematical Program-
ming, 55(1):293–318, Apr 1992.

[20] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3(1-2):95–110, 1956.

66

[21] Robert M. Freund and Paul Grigas. New analysis and results for the Frank–Wolfe
method. Mathematical Programming, 155(1):199–230, Jan 2016.

[22] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational
problems via finite element approximation. Computers & Mathematics with Applica-
tions, 2(1):17–40, 1976.

[23] P. Gács and L. Lovász. Khachiyan’s algorithm for linear programming, pages 61–68.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1981.

[24] G. Gidel, T. Jebara, and S. Lacoste-Julien. Frank-Wolfe algorithms for saddle point
problems. In Proceedings of the 20th International Conference on Artificial Intelligence
and Statistics (AISTATS), 2017.

[25] R. Glowinski and A. Marrocco. Sur l’approximation, par éléments finis d’ordre un,
et la résolution, par pénalisation-dualité, d’une classe de problèmes de Dirichlet non
linéaires. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge
Anal. Numér., 9(R-2):41–76, 1975.

[26] A.A. Goldstein. Convex programming in Hilbert space. Bulletin of the American
Mathematical Society, 70:709–710, 1964.

[27] E. Gorbunov, N. Loizou, and G. Gidel. Extragradient method: O(1/k) last-iterate
convergence for monotone variational inequalities and connections with cocoercivity.
In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera, editors, Proceedings
of The 25th International Conference on Artificial Intelligence and Statistics, volume
151 of Proceedings of Machine Learning Research, pages 366–402. PMLR, 28–30 Mar
2022.

[28] J. GuéLat and P. Marcotte. Some comments on Wolfe's ‘away step’. Mathematical
Programming, 35(1):110–119, May 1986.

[29] O. Güler. On the convergence of the proximal point algorithm for convex minimization.
SIAM Journal on Control and Optimization, 29(2):403–419, 1991.

[30] J.H. Hammond. Solving Asymmetric Variational Inequality Problems and Systems
of Equations with Generalized Nonlinear Programming Algorithms. PhD thesis, Mas-
sachussetts Institute of Technology, 1984.

[31] P. Hartman and G. Stampacchia. On some non-linear elliptic differential-functional
equations. Acta Mathematica, 115(1):271–310, 1966.

67

[32] B. He and X. Yuan. On the O(1/n) convergence rate of the Douglas–Rachford al-
ternating direction method. SIAM Journal on Numerical Analysis, 50(2):700–709,
2012.

[33] C.A. Holloway. An extension of the Frank and Wolfe method of feasible directions.
Mathematical Programming, 6(1):14–27, December 1974.

[34] M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In
S. Dasgupta and D. McAllester, editors, Proceedings of the 30th International Confer-
ence on Machine Learning, volume 28 of Proceedings of Machine Learning Research,
pages 427–435, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

[35] N. Karmarkar. A new polynomial-time algorithm for linear programming. Combina-
torica, 4(4):373–395, 1984.

[36] L.G. Khachiyan. A polynomial algorithm for linear programming. Doklady Akademii
Nauk SSSR, 244, 1979.

[37] V. Klee and G.J. Minty. How good is the simplex algorithm? In Inequalities, III
(Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the
memory of Theodore S. Motzkin), pages 159–175. 1972.

[38] G.M. Korpelevich. The extragradient method for finding saddle points and other
problems. Matecon, 12:747–756, 1976.

[39] G. Lan. The complexity of large-scale convex programming under a linear optimization
oracle, 2014. arXiv:1309.5550 [math.OC].

[40] E.S. Levitin and B.T. Polyak. Constrained minimization methods. USSR Computa-
tional Mathematics and Mathematical Physics, 6(5):1–50, 1966.

[41] X. Li, D. Sun, and KC Toh. An asymptotically superlinearly convergent semismooth
newton augmented lagrangian method for linear programming. SIAM Journal on
Optimization, 30(3):2410–2440, 2020.

[42] T. Lin, S. Ma, Y. Ye, and S. Zhang. An ADMM-based interior-point method for large-
scale linear programming. Optimization Methods and Software, 36(2-3):389–424, 2021.

[43] P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear operators.
SIAM Journal on Numerical Analysis, 16(6):964–979, 1979.

68

[44] H. Lu and J. Yang. On a unified and simplified proof for the ergodic convergence rates
of PPM, PDHG and ADMM, 2023. arXiv:2305.02165 [math.OC].

[45] B. Martinet. Brève communication. Régularisation d’inéquations variationnelles
par approximations successives. Revue Française d’Informatique et de Recherche
Opérationnelle. Série Rouge, 4(R3):154–158, 1970.

[46] A.S. Nemirovski. Prox-method with rate of convergence O(1/t) for variational in-
equalities with lipschitz continuous monotone operators and smooth convex-concave
saddle point problems. SIAM Journal on Optimization, 15(1):229–251, 2004.

[47] A.S. Nemirovsky and D.B. Yudin. Effective methods for solving convex programming
problems of large size. Ékonomika i Matematicčeskie Metody, 15, 1979.

[48] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, second edition, 2006.

[49] D. O’Connor and L. Vandenberghe. On the equivalence of the primal-dual hybrid gra-
dient method and Douglas–Rachford splitting. Mathematical Programming, 179(1):85–
108, Jan 2020.

[50] B.T. Polyak. Introduction to Optimization. Optimization Software, Inc., 1987.

[51] R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.

[52] R.T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM
Journal on Control and Optimization, 14(5):877–898, 1976.

[53] N.Z. Shor. Convergence rate of the gradient descent method with dilatation of the
space. Kibernetika, 2, 1970.

[54] M.V. Solodov. Constraint Qualifications. John Wiley & Sons, Ltd, 2011.

[55] D.A. Spielman and SH Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. J. ACM, 51(3):385–463, May 2004.

[56] P. Wolfe. Convergence theory in nonlinear programming. In Integer and Nonlinear
Programming, pages 1–36. North-Holland, 1970.

[57] S.J. Wright. Primal-Dual Interior-Point Methods. Society for Industrial and Applied
Mathematics, 1997.

69

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Notation
	Background
	Continuous Optimization
	Linear Programming
	Linear Programming Geometry
	Linear Programming Duality
	Certificates of infeasibility

	Saddle Point Formulations
	The Frank-Wolfe Algorithm
	Splitting Algorithms

	Literature Review
	Saddle point problems
	Frank-Wolfe for saddle point problems
	First order methods for linear programming

	Algorithms for Linear Programming
	The Simplex method
	Interior point methods
	First order algorithms
	ECLIPSE ECLIPSE2020
	PDLP PDLP1,PDLP3

	Solving Saddle Point Formulations of Linear Programs with Frank-Wolfe
	Theoretical results
	Relation to the primal-dual gap for saddle point problems

	Connection to Hammond's Generalized Fictitious Play Algorithm
	Advantages of FWLP
	Choosing and
	Restarting FWLP
	Experimental analysis of convergence rate

	Conclusions and Future Work
	References

