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Abstract

With the high use of over-parameterized data in deep learning, the choice of optimizer
in training plays a big role in a model’s ability to generalize well due to the existence of
solution selection bias. We consider the popular adaptive gradient method: Adagrad, and
aim to study its convergence and algorithmic biases in the underdetermined linear regres-
sion regime. First we prove that Adagrad converges in this problem regime. Subsequently,
we empirically find that when using sufficiently small step sizes, Adagrad promotes diffuse
solutions, in the sense of uniformity among the coordinates of the solution. Addition-
ally, when compared to gradient descent, we see empirically and show theoretically that
Adagrad’s solution, under the same conditions, exhibits greater diffusion compared to the
solution obtained through gradient descent. This behaviour is unexpected as conventional
data science encourages the utilization of optimizers that attain sparser solutions. This
preference arises due to some inherent advantages such as helping to prevent overfitting,
and reducing the dimensionality of the data. However, we show that in the application
of interpolation, diffuse solutions yield beneficial results when compared to solutions with
localization; Namely, we experimentally observe the success of diffuse solutions when in-
terpolating a line via the weighted sum of spike-like functions. The thesis concludes with
some suggestions to possible extensions of the content in future work.
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Chapter 1

Introduction

The use of machine learning techniques have exploded in the past decade, and many
industries are attempting to leverage the power present in these techniques today [41]. A
certain subset of these techniques known as deep learning (DL) has taken the world by
storm due to their impressive feats in computer vision [14] and natural language processing
[54, 45], to name a few. The potential capabilities achievable in this regime of artificial
intelligence (AI) has sparked a massive wave of interest which, in turn, has sparked a
revolution in machine learning research and development. Machine learning is a category
of AI that allows a machine to learn patterns hidden in data to be leveraged in completing
a task in an automated fashion. Deep learning is a subset of machine learning in the sense
that its techniques for pattern recognition are built from a class of model known as a neural
network. The deep in deep learning comes from the fact that modern neural networks are
trained with a large amount of parameters and layers and are very complex in nature.

To achieve the generalization performance seen in modern neural networks, the machine
needs to choose its parameters in a way that its output yields the best possible results.
The best possible result depends on the task at hand, for example, if we are classifying
whether an image is that of a dog or cat, then the best possible result would be the machine
properly classifying the images. The idea of finding the best parameters can be framed
as an optimization problem where the machine is required to pick the parameters that
minimize the amount of errors made. This is done by minimizing something called the
loss function. The loss function tells the machine how well it is performing based on the
selected parameters. The act of minimizing this loss function is called training the model.
The way one trains such a model is by using something called an optimizer whose goal is to
find the parameters that minimize the loss function. The problem is, many state of the art
deep learning models, such as OpenAI’s GPT-3 model [10], contain billions of parameters
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[55, 10]. In comparison to the amount of data available to be used to train such models,
we are left with having to estimate more parameters than there is data to estimate from.
This causes the space of solutions (i.e., space of optimal parameters) to be very large. Due
to this, different optimizers will tend to bias towards a particular choice of solution which
one calls the implicit bias of the optimizer. Due to these biases, the choice of optimizer
plays a key role in the generalization performance of a model.

A class of optimizers that have shown to enable a model to have strong generalization
performance are gradient-based optimizers, in particular, stochastic gradient descent (SGD)
and its variants. Apart from their ability to choose solutions that generalize well, SGD and
its variants are also favourable due to their ability to be efficient in large-scale problems
[38]. The question becomes, given we know that an optimizer will have such biases, can we
characterize these behaviours? That is, what special minimum will it choose from given
the vast amount of choices, and does this choice enable strong generalization abilities?

SGD has been a central figure in the study of implicit biases in the regime of neural
networks due to its ability to pick ”favourable” parameters that enables a model to gen-
eralize well [34]. Because of this, there is a rich theory on its implicit biases all while new
theoretical and experimental results continue to be exposed. However, a new stream of
SGD variants known as adaptive-gradient methods, such as Adagrad [18] and Adam [36],
have taken the charge as the de facto optimizers used in current neural network training.
Yet, there is a lack of theoretical analysis on the generalization behaviours of these adaptive
algorithms that warrants the same treatment as SGD.

The motivation behind this thesis comes from the desire to study and understand
adaptive gradient methods, and to perform theoretical and experimental analyses on their
convergence behaviours in an overparameterized regime like that of neural networks in an
attempt to discover their generalization behaviours.
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1.1 Thesis Outline

This thesis aims to study algorithmic behaviours of adaptive gradient optimization algo-
rithms, specifically with a focus on the Adagrad algorithm. Prior to delving into the main
content, Chapter 2 briefly covers related works that helped inspire the work done in this
thesis, and to catalogue such works with the intention of informing the reader of the ex-
istence of such works which are connected to this area of research. We officially begin in
Chapter 3 by covering the basics we’ll need to grasp the contents of later chapters. Section
2.1 covers a primer on supervised deep learning with an emphasis on the methods and dif-
ficulties of training them. Section 3.2 covers the two fundamental optimization algorithms:
gradient descent (section 3.2.1), and stochastic gradient descent (section 3.2.2), in which
the construction of the adaptive methods introduced in Chapter 4 are based on. Section
3.2.4 briefly discusses subgradients and the subgradient descent algorithm. Sections 3.3, 3.4
cover the basics of online learning used in Chapter 4, and radial basis function interpolation
for which a variant is used in our experiments in section 6.2, respectively. In Chapter 4, we
introduce four highly used adaptive methods starting from the first adaptive variant known
as AdaGrad [18], all the way to the current trending optimizer in DL known as Adam [36].
Moving forward, we set our focus on exploring the algorithmic behaviours of Adagrad in
the underdetermined linear regression regime. Chapter 5 goes over our theoretical results
which mainly include a proof of convergence for Adagrad, and a proof related to our main
experimental finding seen in Chapter 6 section 6.1 which shows that Adagrad promotes
diffuse solutions in the underdetermined linear regression regime. Section 6.2 shows an
application where diffuse solutions tend to interpolate a line better using a weighted sum
of spike-like functions. Chapter 7 wraps up the thesis and presents possible avenues of
future work.
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Chapter 2

Related Works

Connection Between Neural Networks and Linear Models

The overarching theme of this research is the study of interpolators, specifically complex
deep neural networks, which have been seen to generalize well in practice contrary to
conventional statistical beliefs. These deep NNs tend to be hard to analyze theoretically
so instead, the studies usually limit themselves to the least-squares regime. This choice
of regime is not studied arbitrarily, and there exists work connecting the linear regime to
the NN regime. The work by Jacot et al. [31] aids in showing this connection by studying
the behaviours of infinite-width neural networks. They showed that for an infinite-width
feed-forward neural network with certain activation functions, the dynamics of the network
can be approximated using a kernel method. Dubbed the Neural Tangent Kernel (NTK),
this kernel allows one to describe the behaviour of such a network as a Gaussian process
(GP) where the NTK captures the covariance of said GP. The NTK can be thought of as
a kernel matrix (seen in kernel methods), and therefore one can use linear models to learn
the non-linear patterns of the data by applying these models on the function space induced
by the kernel function.

Understanding the Behaviours of Deep Neural Network Interpolators

Following the theme of understanding the ”why” in strong generalization performance of
interpolators in the NN regime, Hastie, et al. [27] studies the behaviour of NN interpolators
via the ℓ2-norm least squares regression regime trained using gradient descent. In the paper,
the authors study the prediction risk on the out-of-sample (test) data in the asymptotic
regime for both the overparameterized and underparameterized regime. They conduct this
study using data generated from two types of models: the first is a linear model where the
samples are of the form xi = Σ1/2zi, where the zi ∈ Rd such that the coordinates are i.i.d
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and generated using a random normal with mean zero and unit variance, and Σ ∈ Rd×d

is deterministic and positive semi-definite; the second is a non-linear model of the form
xi = σ(Wzi). In the non-linear model, zi is constructed the same as the linear model, σ is
an activation function, and W ∈ Rp×d has entries generated from a random normal with
mean zero and variance (1/d). For brevity, we focus on the result of the linear data.

In their asymptotic setup, the number of observations, n, and the number of features,
d, diverge (n, d→∞), such that the ratio between them converges to a constant: d/n→
γ > 0. When γ < 1, one is working in the underparameterized regime. When γ > 1, then
one is working in the overparameterized regime. From this setup, the following results were
found for the linear modelled data: In the underparameterized regime (γ < 1), as n, d→∞
such that d/n → γ < 1 then the risk offered by the minimum ℓ2-norm solution of least
squares, θ̂, depends purely on variance and not bias. Likewise, in the overparameterized
regime (γ > 1) the risk offered from θ̂ depends on both bias and variance.

The authors limit their study to the minimum ℓ2-normed solution (i.e. gradient descent)
and do not consider the effects of other first order methods such as the adaptive ones we
wish to study. It is worth mentioning that similar work was produced by Advani and Saxe
[1] which also focused on the asymptotic analysis but in a broader setting.

Another behavioural aspect of the out-of-sample prediction risk which garners interest
is the study of the bias-variance trade off and the rise of the double-descent phenomenon
exhibited by NN in the overparameterized regime. This phenomenon was first posited by
Belkin et al. [4] where they provided evidence of the existence of the double descent curve
for a wide range of ML models and data sets. Classically, the bias-variance trade off is a
summary term for the idea that one must find a balance between the bias and variance
of their model in order to avoid both under- and over-fitting the training data. If one
were to plot the test error based on the capacity of the model (the larger the capacity, the
lower the bias, and the higher the variance) one should expect to see a U -shaped graph
indicating that low capacity models which underfit the training data perform poorly, large
capacity models which overfit the training data perform poorly, and existence of a sweet
spot between bias and variance exists in which we gain the best out-of-sample prediction
performance. The double-descent phenomenon arises in the over-parameterized regime
where the out-of-sample prediction error exhibits a second descent after the original U -
shape. In other words, in the right setting, and for certain classes of models, having
extremely high capacity will allow the emergence of a second round of descent. Explicitly,
what was seen is that as the number of features d approaches the number of observations
n from below, we experience the typical U -curve in the test prediction risk plot. When
d = n the risk diverges, and as d continues to grow past n (d > n), the test prediction risk
begins to descend again. This reconciles the strong generalization performance witnessed
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in interpolators and the bias-variance trade off.

From this discovery, Belkin et al. [5] theoretically show the double-descent phenomenon
with respect to the ℓ2-norm least-squares regime studied by Hastie et al. [27]. The authors,
however, focuses on finite-sample analysis where the features and and labels are jointly
Gaussian. Specifically, they prove that, under this setting, around when d = n, the out-
of-sample prediction risk is infinite, and when d > n the risk decreases (i.e. achieve the
double-descent). Additionally, when the signal to noise ratio (SNR)1 is high, the authors
prove that the minimum risk is achieved in the second descent regime where d > n. This
result pertaining to SNR was also witnessed in Hastie et al. [27] under their linearly
modelled data regime mentioned above.

Implicit Bias and Convergence Behaviour

So far, the works mentioned above used gradient descent as a means of optimizer when
analyzing these regimes. Ideally, we’d also like to study these regimes under different first-
order methods, specifically the adaptive gradient methods. The PhD dissertation of Vastal
Shah [52, Chapter 3] contains a chapter on the convergence behaviour of adaptive gradient
methods in the overparameterized linear regression regime. Specifically, the author aims
to compare the convergence behaviour of different classes of adaptive methods and how
they compare to the non-adaptive methods. Denoting Dk to be a general preconditioner
matrix, Shah shows the existence between two classes of preconditioner matrices: the first
class behaving similar to (stochastic) gradient descent (GD) in that they converge to the
minimum ℓ2-norm solution, and the second are those that do not.

For the class of Dk such that the convergence behaviour is not the same as the non-
adaptive methods, the difference comes from the fact that, for such a class of preconditioner,
the solution will have an in-span component and an out-of-span component. Here, by
”span” we are referring to the span of the data matrix. The author presents a closed form
solution of an iterate, w(T ) at some time T and shows that for correct choice of Dk, the
iterates w(t) can lie outside the span of the data.

Shah also considers the overparameterized regularized linear regression regime. Under
this regime, the author shows that if the preconditioner matrix Dk is positive definite, the
adaptive method will converge to the same solution as that of (stochastic) GD (under the
same regularized regime).

Wang et al. [56] also analyze the implicit bias of adaptive methods, however, they
focus their study on homogeneous neural networks2 with separable data under the logistic

1SNR is the ratio between relevant information compared to the irrelevant information of the data.
2Homogeneous neural networks are those in which all the layers (outside of the input) share the same

number of neurons and activation functions.
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regression setting. Similar to Shah [52, Chapter 3], the authors aim to study two classes
of preconditioners: the first class are those from the Adagrad [18] family in which the
preconditioner utilises the average of past squared gradients, and those that utilise expo-
nentially weighted moving averages of the gradients such as RMSProp [29] and Adam [36]
(see chapter 4 for more information on these algorithms). In the non-adaptive case, it
is well known that gradient descent converges to the max-margin solution3 under logistic
regression for separable data [53], and furthermore, was shown to maximize the margin of
homogeneous neural networks with separable data under logistic regression [40].

In the logistic setting for separable data, the global minimizer of the logistic loss function
is not attainable, and, therefore, the convergence behaviours of algorithms are described
via the asymptotic direction of their iterates: limk→∞

wk

∥wk∥2
. Under this setting, the authors

show that the asymptotic direction of Adagrad is affected by its preconditioner, while the
direction given by RMSProp is independent of its preconditioner, and, in fact, follows
the same direction as gradient descent and thus yields the max-margin solution. The max-
margin solution is known to generalize well which shows that, under this regime, RMSProp
tends to generalizes better than Adagrad.

On the topic of the Adagrad family of adaptive methods, Antonakopoulos et al. [2]
aimed at studying the tradjectory of Adagrad and whether they avoid saddle points. They
focus on the general unconstrained non-convex problem in Rd, and show that the trajec-
tories induced by the family of Adagrad algorithms avoid saddle points from almost any
initial condition. To be able to perform proper analysis of said result, the authors showed
the existence of a positive definite limit for the preconditioner matrix which enabled the
ability to perform stability analysis4 on the preconditioner. From this analysis, the authors
were able to produce a stable manifold theorem5 with respect to Adagrad which was then
additionally extended globally. This allowed them to reach their conclusion.

Finally, we add here that a recent work by Défossez, et al. [20] provides proof of con-
vergence for Adagrad and Adam when applied to smooth (possibly non-convex) objective
functions with bounded gradient. We go into more detail about their result pertaining to
Adagrad at the end of Section 5.3.

3The max-margin solution refers to the solution that emits a decision boundary that maximizes the
margin between classes of features.

4Stability analysis refers to analyzing the behaviour of a system and how likely it is to converge to
a desirable state in the presence of disturbances. With respect to saddle points, stability analysis of a
trajectory can provide insight on the trajectory’s behaviour near the saddle point.

5This stable manifold theorem provides existence of a stable manifold for Adagrad and therefore must
imply that the set of initial values which lead to a saddle point is of measure 0.
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Generalization Performance of Adaptive vs. Non-Adaptive Methods

While it has been seen that the convergence speeds for adaptive methods such as
Adagrad, RMSProp, and Adam, tend to outperform the non-adaptive methods in the deep
learning setting, Wilson et al. [57] argue that this may not be the case when it comes to
generalization performance. The authors construct an empirical example [57, Section 3.3]
of a binary classification where the data is linearly separable where Adagrad, RMSProp,
and Adam each fail to classify out-of-sample data with probability close to 0.5; Meanwhile
SGD attains zero out-of-sample prediction error. This holds even when the training losses
for the aforementioned adaptive methods are lower than that of SGD. Furthermore, the
authors performed some additional tests where they compared generalization performance
of SGD and heavy-ball SGD against Adagrad, RMSProp, and Adam on known datasets
such as image classification using CIFAR-10 [37]. They found that the adaptive methods
did not provide any advantage in the generalization performance when compared to the
non-adaptive algorithms. This indicates that there exists cases where the non-adaptive
methods output solutions that may generalize better than their adaptive counterparts.

Due the the results above, many researchers have attempted to close the generalization
gap presented. The work by Keskar and Socher [35] attempts to combine the best of
both worlds. Namely, they propose to start training using Adam to reap the rewards of a
faster training rate, then swap to SGD to close the generalization gap of [57]. They dub
this process by Switching from Adam to SGD (SWATS) which is designed such that the
switch is automatic, and does not require additional hyperparameters. The way SWATS
achieves this is by allowing the switch over point and the step size of SGD to be learned
during training. Briefly, the switch over happens by monitoring a value γk ∈ R such that
the orthogonal projection of the regular SGD update with respect to γk, −γkgk (where gk is
a stochastic gradient), equals the Adam update, (denoted by pk) at that same iteration, i.e.
Proj−γkgk

pk = pk. When γk no longer varies from each iteration, it triggers the switch over
and an exponentially weighted moving average of γk with decay parameter being Adam’s
β2 parameter (see section 4.4) is invoked as the learning rate for SGD. The authors show
that in experiments similar to those performed in [57] where Adam does worse than SGD,
SWATS performs similar to SGD.

We must be careful, however, as there are applications that have shown greater gen-
erality success when it comes to adaptive methods. Zhang et al. [64] talk about the
successes seen training attention models (e.g. BERT [16]) with adaptive methods, when
compared to SGD, and study why this is the case. Their study arises from the fact that
the distribution of stochastic gradients of attention models are heavy-tailed; This leads the
authors to pose the question of whether adaptive models are able to better stabilize opti-
mization under heavy-tailed stochastic gradient noise. The authors experimentally show
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that tasks with heavy-tail distributed stochastic gradients, such as BERT pre-training,
will yield outcomes where Adam outperforms SGD, while on tasks where SGD outper-
forms Adam, the distribution of the stochastic gradients are well concentrated around the
mean. The bad performance from SGD can intuitively be described by the fact that these
heavy-tailed stochastic gradients will have a strong influence in SGDs trajectory leading
to poor performance.

The authors attempt to reduce this influence by considering SGD with gradient clipping.
Gradient clipping refers to limiting the norm of a gradient to be contained within a certain
range. This technique does not close the gap between Adam and SGD however; The authors
thus additionally propose a novel algorithm called Adaptive Coordinate-wise Clipping
(ACClip). This algorithm performs adaptive gradient clipping on a coordinate level, and
was experimentally shown to outperform Adam on BERT related tasks.
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Chapter 3

Background

3.1 Deep Learning Basics

3.1.1 Neural Networks

Inspired by the neuron structure of the brain, neural networks (NN) (once called artificial
neural networks (ANN)) are highly parameterized machine learning models used to find
patterns in data. In other words, they are functions that use data in order to approximate
other functions such as the data’s distribution function or a function relating the parameters
of an observation from the data. One can think of a NN as an interconnected graph where
the vertices are nodes.

A key note to mention here is that NNs are not a specific model but a class of models.
Most NNs can be split further into separate classes. Two large classes of NNs which
encapsulate many models are feed forward neural networks (FFNN), and recurrent neural
networks (RNN). FFNNs are a common form of NN in which the data we feed into the
algorithm will flow forward through the network without cycling back to previous nodes or
layers. RNNs are are like FFNNs but with the additional ability to cycle back to previous
nodes and/or layers. A common yet simple example of an FFNN is the perceptron [42]
and its multi-layered extension known as the multi-layer perceptron (MLP).

Perceptron and Multi-layer Perceptron

The perceptron is the simplest example of a feed forward neural network. It is comprised
of a single layer of nodes called threshold logic units (TLU) (see Figure (3.1) Left and
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Middle) where each input is connected to every TLU. Such a connection configuration is
known as a dense layer. The TLU performs two steps; first, it computes a weighted sum
of the inputs, then it applies an almost everywhere differentiable, non-linear function, to
the entries of the weighted sum of the inputs. This function is referred to as an activation
function. The activation function defines the output of the node. For a perceptron, one
uses step functions such as the Heavyside step function (3.1), or the sign function (3.2) as
its activation function:

Heaviside step function:

H(x) =

{
1 x > 0

0 x ≤ 0
(3.1)

Sign function:

sgn(x) =

{
1 x > 0

−1 x ≤ 0
(3.2)

which returns either 0 or 1, or −1 or 1, respectively, depending on a threshold (here the
threshold δ = 0). Using a single TLU, one can interpret the perceptron as a linear binary
classifier as it computes a linear combination of the inputs and classifies the observation
based on whether the weighted sum is greater than a threshold δ.

Given an input vector x ∈ Rd, an associated weight vector w ∈ Rd, a bias value b ∈ R,
and an activation function σ : R→ R we can represent the (single TLU) perceptron as the
function fw,b : Rd → R described by

fw,b(x) = σ(w⊤x+ b) (3.3)

The bias term, b in (3.3) is an additional component that allows one to shift the activation
function. This allows one to have an extra degree of freedom when searching for an optimal
solution. A basic, but common, initialization for b is b = 1. We note that, like w, the bias,
b, also updates during training.

With additional TLUs, the perceptron can be treated as a multiple linear classifier. In
general, given a perceptron with K TLUs, we have that the perceptron can be written as
the function fW,b(x) : Rd → RK described by

fW,b(x) = σ(Wx+ b). (3.4)
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Figure 3.1: Left: Single TLU perceptron. Middle: Perceptron. Right: Multi-layer
perceptron.

where W ∈ RK×d, b ∈ RK , the vector of 1’s, and σ is applied entry-wise. Unlike logistic
regression which returns a class probability, the perceptron returns either a ”is of positive
class” or ”is of negative class” style output. The question becomes, how does one optimize
the choice of weightsW such that the perceptron can accurately perform classification? For
simplicity let us focus on the single-TLU perceptron described in (3.3) with sign activation
function (3.2).

Let X = (x1, . . . ,xn)
⊤ ∈ Rn×d, so that each observation xi has d parameters, i =

1, . . . , n, be the matrix of observations. Let y = {1,−1}n ∈ Rn be the vector of true
outcomes (also called labels). Then define the dataset D = (X,y) to be the matrix in
Rn×(d+1) in which y is concatenated column-wise to the end of X. Then we can think of
each row of D to be an observation-label pair, and our goal would be to use the observation
to construct a function such that, when given such an input, it can determine the output
label. Since we only have one TLU, let w ∈ Rd be the vector of weights such that the j-th
coordinate of w, wj, represents the weight assigned to the j-th parameter xij of observation
xi, for all j = 1, . . . , d, and all i = 1, . . . , n. Finally, let b = 1 be the bias term. The goal
would be to minimize the following problem

min
w∈Rd, b∈R

L(D,w, b). (3.5)

where L(D,w, b) is the perceptron loss function represented by

L(D,w, b) =
n∑

i=1

max{0,−yi · sgn(w⊤xi + b)}. (3.6)

If w is chosen such that the sign of the weighted sum matches the label, then we have 0
error for that observation. By taking the sum in (3.6) we are considering every input in X.
This particular problem was solved by Rosenblatt using the following algorithm [49, 61].
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Algorithm 1 Perceptron Algorithm

Input: D = (X,y); where X ∈ Rn×d and y ∈ Rn

1: Initialize: w ∈ Rd, b ∈ R, δ ≥ 0
2:

3: for t = 1, 2, . . . do
4: Get index i ∈ {1, . . . , n}
5: if yi(w

⊤
i xi + b) ≤ δ then

6: w← w + yixi

7: b← b+ yi

8: end if
9: end for

Since our activation function is the sign function, we choose δ = 0 in Algorithm (1).

The perceptron has its limitations however. A classic example was shown by Minsky
and Papert [42] that a perceptron cannot properly classify the XOR dataset. The XOR
data set and a picture of its plot is presented in Figure 3.2. The issue here is that the
perceptron outputs a single line to classify inputs. That is, an observation will be classified
based on which side of the optimal line it lands in. However, the XOR dataset is designed
such that its outputs cannot be separated by any line. This is known as the data being not
linearly separable. That is, perceptrons can only classify linearly separable data. However,
a multi-layer perceptron can correctly classify the XOR dataset.

x1 x2 x3 x4

0 1 0 0
0 0 1 1

y - + + -

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

(a): XOR dataset (b): Plot of XOR dataset

Figure 3.2: (a) The XOR dataset, and (b) its plot.

13



A multi-layer perceptron can be thought of as a perceptron but with multiple layers
(see Figure (3.1) Right). Consider an MLP with L layers. Let X ∈ Rd0×d1 be the matrix of
inputs, where we denote d0 as the number of inputs and di to be the number of parameters
of layer i = 1, . . . L. Let bi ∈ Rdi+1 be the bias vector for layer i, and let Wi ∈ Rdi+1×di be
the weight matrix for layer i. Finally, let σi : R→ R be the activation function of layer i.
Then we may represent this MLP by the function fMLP (x) : Rd1 → RdL as

fMLP (xi) = WLσL(...σ3(W2σ2(W1xi + b1) + b2)...) + bL (3.7)

again, where σi is applied element-wise. We note that one can again apply an activation
function to the output of fMLP depending on the desired task as described just below. We
note here that in this definition of MLP, we designate a bias value to each node per layer.

While MLPs are more flexible in their abilities compared to a perceptron, the ability
to train them requires a more complex approach which will be briefly discussed at the end
of this section.

Depending on how one structures the output, MLPs can be used for both regression
and classification tasks. If one chooses to perform regression, then it is necessary to have
no restriction on our output and thus require that no activation function be used on the
output nodes. This allows an output to be of any value. For such tasks, a potential choice
of loss function to find the optimal weights and biases is the mean squared error loss

Lreg(D,W,b) =
n∑

i=1

(yi − fMLP (xi))
2. (3.8)

However, if one is dealing with a scenario in which output does need to be controlled, say
non-negative outputs only, then there exists a handful of activation functions to apply to
fMLP such as the rectified linear unit (ReLU) function [21] presented in (3.9)

ReLU(x) = max {0, x}. (3.9)

For classification tasks, the choice of binary or multi-class classification boils down to
the number of output nodes you have as well as a choosing a suitable activation for the
output nodes to allow for a representation that signifies a classification. For example, if
we wish to perform a binary classification, we require to set the count of the final output
nodes to one and choose an activation function that bounds the output between two values
such as the sign function in (3.2) or if one wishes to have a probabilistic output then the
sigmoid activation (3.10) can be used

ϕ(x) =
1

1 + e−x
. (3.10)
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The sigmoid function restricts the output to be between 0 and 1. The output ϕ(x) could be
seen as a probability of the input being part of the positive class. If the problem contains
multiple binary classifications, also called multi-label binary classification, and would like
the MLP to, for example, classify whether a vegetable is green or not, and whether said
vegetable is expired or not, then, depending on how many binary labelled classifications
are needed, the number of output nodes of the MLP should match the number of said
labels. Using the sigmoid activation here, each output would get the probability of being
the positive class of that specific binary label choice. Using the vegetable example, the
MLP would have two output nodes with the sigmoid activation applied to them. The first
output node may output a high probability for ”is green”, and output a high probability for
”not expired” for the second node, yielding the final result of non-expired green vegetable.

As was mentioned previously, in order to train an MLP (and NNs in general), one re-
quires a different approach to that used with the perceptron. The main way in which
researchers achieved training NNs came from the breakthrough training algorithm by
Rumelheart, Hinton, and Williams known as back propagation [51]. At a high level, back
propagation is a method to minimize the loss function by calculating the gradient of the
loss function of a NN and performing gradient descent using such gradients. While this
sounds simple, given a deep NN with many parameters which depend on one another, back
propagation enables one to find the gradient of said loss function with respect to all the
parameters in an efficient manner. By efficient, we mean that it requires only ”two passes”
of the network in order to calculate the gradient of the loss function. The way it does
this is via reverse-mode automatic differentiation. Other gradient-based optimizers may
be used as well. Stochastic gradient descent and its (adaptive) variants, which are the
focus of this thesis, are among the current top choices to use when using back propagation
to optimize the loss. Both gradient descent and its stochastic counterpart are discussed
next in Section 2.2 which are the foundational building blocks for the adaptive methods
introduced and discussed in Chapter 3.

3.2 Gradient-Based Optimization Methods

In this section, we cover the two fundamental optimization methods used to train most
machine and deep learning models. As was mentioned in the previous section, the main
way to train neural networks is through the use of back propagation. We saw that back
propagation is broken down into two parts, the first phase was to find the gradients of
the loss function with respect to each weight parameter using reverse-mode automatic
differentiation, then perform a correcting step via gradient descent. In this section, we
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will now explain both gradient descent and, its more popular variant, stochastic gradient
descent.

Unless specified, letX denote an Euclidean space with inner product ⟨· , ·⟩, and induced
norm ∥ · ∥ =

√
⟨· , ·⟩. Primarily we will be working with X = Rd such that ⟨x,y⟩ = x⊤y

for x,y ∈ X.

3.2.1 Gradient Descent

Gradient descent (GD) is a type of optimization algorithm known as a first-order iterative
method. First-order comes from the fact that gradient descent uses first derivatives as
information to optimize an objective, and iterative comes from the idea that one starts with
an initial starting point and progressively the algorithm will generate new approximations
to the solution using the previous point, that is, the (n+ 1)th iteration is generated using
the nth iteration, and the initial value is our starting point just mentioned. The idea behind
gradient descent can best be described by the following analogy. Assume it is a foggy day
and a person is on a hill. This person wishes to find the bottom of the hill so that they can
go home. Since it is foggy, they cannot see the entire hill around them, only a small radius
around them. Then, to get down, this person decides to walk down the path of steepest
descent with the hope that they will eventually reach the bottom. Taking the hill to be the
objective function, and the bottom of the hill to be the minimum of said function, gradient
descent finds minima by traveling the path of steepest descent.

Definition 3.2.1 (Convex Set). Let C ⊂ Rd. Then C is convex if, for ∀λ ∈ (0, 1), x,y ∈ C,

λx+ (1− λ)y ∈ C. (3.11)

Definition 3.2.2 (Convex Function). Let f : Rd → (−∞,+∞] be an extended real-valued
function. Then f is convex if, ∀λ ∈ (0, 1), ∀x,y ∈ domf ,

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (3.12)

where the effective domain of f , domf = {x ∈ X | f(x) < +∞}, is a convex set.

Remark. If we change the inequality in (3.12) to be strict, then we say f is strictly convex.
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Let f : Rd → R be a continuously differentiable function, and define the following
minimization problem

min
w∈Rd

f(w) (3.13)

which is called a smooth unconstrained problem since the domain {w | w ∈ Rd} is uncon-
strained and f is smooth by definition. In general, f need not be convex, however, if it is,
we gain the benefit that any local minimizer is automatically a global minimizer:

Theorem 3.2.1. Let f : Rd → R be convex. If x ∈ X is a local minimizer of f , then it is
a global minimizer of f .

Proof. Assume, for eventual contradiction, that x is a local, but not the global, minimizer
for a convex function f . Then there exists a point y satisfying f(y) < f(x). However, by
convexity of f , for all λ ∈ (0, 1), we get that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) < f(x) (3.14)

that is, we may always find a point z such that, for any λ-ball around x, we have f(z) <
f(x), but this contradicts x being a local minimizer of f . This concludes the proof.

A simple example that satisfies the assumptions of f being smooth and convex is the
quadratic function f : R → R s.t f(x) = x2. By inspection of the graph (see Figure (3.3)
c)), the global minimum is at x = 0. The question becomes, how does gradient descent
find this minimum? To answer this we need to inspect the gradient descent [8, Sect. 9.3]
algorithm (2):

Algorithm 2 Gradient Descent

Input: initial value w0 ∈ Rd, continuously differentiable function f : Rd → R
Output: optimal solution w∗ ∈ Rd

1: for t = 0, 1, 2, . . . do
2: gt ← ∇f(wt)
3: choose step-size ηt
4: wt+1 ← wt − ηtgt

5: end for

For each iteration t in algorithm (2), we compute the gradient of f at the previously
computed value wt (when t=0, it uses the inputted initial value w0). The gradient is the
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direction of steepest ascent, so to ”move down the hill” we update our location wt+1 by
moving in the negative direction (opposite) of the gradient, i.e. the direction of steepest
descent. To see that we are, indeed, decreasing f as we move in this direction, we can use
the first-order Taylor’s approximation and expand f(wt+1) about wt as

f(wt+1) = f(wt − ηt∇f(wt))

≈ f(wt) +∇f(wt)
⊤(wt − ηt∇f(wt)−wt)

= f(wt)− ηt∇f(wt)
⊤∇f(wt)

= f(wt)− ηt∥∇f(wt)∥22

(3.15)
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a) Iterates of convergent GD on f(x) = x2 b) Iterates of divergent GD on f(x) = x2
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c) Graph of f(x) = x2

Figure 3.3: (c) Graph of the function f(x) = x2, (a) convergent iterates of gradient descent
(green) when step size ηt is chosen small enough, and (b) divergent iterates of gradient
descent (red) when step size ηt chosen too large.

and so for ηt > 0 small enough, and wt not a critical point, we have that f(wt+1) < f(wt),
since ∥∇f(wt)∥22 > 0. The parameter ηt is called a step-size. It determines how much we
move in such a direction and is important for reaching convergence. From our analogy, we
can think of the step-size as the radius of vision we have for every step we take. The choice
of ηt will be discussed in a moment.
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Now, if we have a candidate minimizer x∗ of an objective f , what necessary conditions
must this minimizer have? That is, given any minimizer, what properties must they
consistently hold? The following theorem tells us that, when we are working in Euclidean
space, if a point x∗ is a minimizer of f then the gradient at x∗ must be zero. This is known
as Fermat’s theorem.

Theorem 3.2.2 (Fermat’s Theorem). Let f : Rd → R be a differentiable function. If
x∗ ∈ Rd is a local extremum of f , then ∇f(x∗) = 0.

Proof. See [60].

Remark. The domain of f in Theorem (3.2.2) is specifically Rd and not a general vector
space X.

We must be careful, however. Theorem (3.2.2) is a necessary condition and therefore the
converse is not true in general. It is possible to have objective functions such that there
exists points x satisfying ∇f(x) = 0 but are not extrema of f . Take, for example, the
function f(x, y) = 1

2
x2 + 1

4
y4 − 1

2
y2; this function has a saddle point at (0, 0), and two

global minima at (0, 1) and (0,−1). If we choose our initial point to be (x0, 0) for any x0,
then our updated points (via GD) would be of the form (xt, 0). This will converge to (0, 0)
which has ∇f(0, 0) = (0, 0), but is not a minima of f .

In order for the converse to be true, in other words ∇f(x) = 0 =⇒ x is an extremum,
we require the additional constraint that f be convex. Going back to our example case:
f(x) = x2, we have that f is smooth and convex, therefore if we can find a point x∗

satisfying ∇f(x∗) = 0, then x∗ is a minimizer of f . Under a good choice of ηt, Figure (3.3)
a) shows us iterates of GD which converge to the point x∗ = 0. Since f is smooth and
convex, and ∇f(x∗) = 0, we can conclude that x∗ = 0 is a minimizer for f . Furthermore,
by Theorem (3.2.1), x∗ must be the global minimizer for f . This shows the advantage of
working with convex objective functions.

So far, we have omitted details on the choice of step size ηt. The choice of step size
is important because improper selection of the step size can lead to divergence when in
actuality, convergence was possible. To see this in action, observe Figure (3.3) b). If we
step too far in the direction of steepest descent, we may end up jumping to a new point
with higher gradient value. This can cause a chain reaction and cause gradient descent to
diverge via exploding gradient values (this term is similar to that seen for back propagation,
however, the cause is different).

To properly choose a step size, there exists many techniques, some common methods we
explain here. First we have constant step size, that is, ∀t, ηt = η > 0. Constant step size is
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the most practical but to choose a value of η which satisfies descent for each iteration is hard
to find. There exists a choice to guarantee convergence which will be shown soon. Another
method is to adaptively adjust the step size. exact line search is an example of an adaptive
step size selector. In short, for iteration t, we choose ηt = argminα>0 f(xt − α · ∇f(xt)).
In general, it is not possible to get an exact minimizer η which satisfies the minimization,
and therefore this technique is not widely used in practice. Backtracking line search [3] is
an alternative popular adaptive method for choosing ηt. Fix 0 < α < 1, for iteration t,
initialize ηt =

1
2
. If

f(xt − ηt∇f(xt)) > f(xt)−
ηt
2
∥∇f(xt)∥22 (3.16)

then update ηt = α ·ηt and repeat until (3.16) is no longer satisfied, i.e. when the inequality
sign becomes equal or flips. To see which value of η to choose if using the constant rule,
or why we use (3.16) in order to find a particular ηt for backtracking requires us to dive
into the convergence analysis of gradient descent which we do now.

In order to tackle the convergence analysis of gradient descent, we introduce a few
definitions and results:

Definition 3.2.3 (Lipschitz Continuous). Let (X, dX) and (Y, dY ) be metric spaces. Let
T : (X, dX) → (Y, dY ) be a function from X to Y . Then T is Lipschitz continuous if
∃L > 0 such that ∀x1,x2 ∈ X, T satisfies

dY (Tx1 − Tx2) ≤ L · dX(x1 − x2). (3.17)

For example, if T : (Rd, ∥ · ∥2) → (R, | · |) is a real-valued function, then T is L-Lipschitz
continuous if, ∀x1,x2 ∈ Rd, T satisfies

|Tx1 − Tx2| ≤ L · ∥x1 − x2∥2.

Theorem 3.2.3 (Lipschitz Continuous ⇐⇒ Bounded Derivative). Let T : (Rd, ∥ ·∥(1))→
(Rm, ∥ · ∥(2)) be differentiable. Then T is L-Lipschitz continuous if and only if ∀x ∈ Rd,
∥T ′x∥op ≤ L, where ∥ · ∥op is the operator norm defined by

∥T ′x∥op = sup
∥x∥(1)≤1

∥T ′x∥(2).

where T ′ is the derivative/gradient of T .

Proof. See [61].
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Definition 3.2.4 (L-Smooth). Let T : (Rd, ∥ · ∥(1))→ (Rm, ∥ · ∥(2)) be differentiable. Then
T is called L-smooth (L > 0) if, ∀x1,x2 ∈ Rd, it satisfies

∥T ′x1 − T ′x2∥(M) ≤ L · ∥x1 − x2∥(1) (3.18)

where ∥ · ∥(M) is a matrix norm, and T ′ denotes the derivative/gradient of T .

For example, given a differentiable real-valued function f : (Rd, ∥ · ∥2) → (R, | · |), f is
L-smooth if, ∀x1,x2 ∈ Rd, f satisfies

∥∇f(x1)−∇f(x2)∥2 ≤ L · ∥x1 − x2∥2.

A function which is L-smooth is one that guarantees that the difference in gradients between
two points is no larger than the difference between the two points themselves, up to a
constant factor L. By Theorem (3.2.3) it is easy to see that if a twice-differentiable function
f is L-smooth, then it has a bounded second derivative / Hessian. We’ll see soon that the
update to gradient descent depends on the rate of change of the gradient; Under a L-
smooth function, this rate is bounded because the rate of change of the gradient is the
Hessian. We now prove the convergence of gradient descent when f is convex differentiable
smooth, and ηt is fixed, i.e. ∀t, ηt = η > 0.

Theorem 3.2.4 (Convergence of Gradient Descent for L-Smooth, Convex, Differentiable
Functions). Let f : Rd → R be convex, differentiable, and L-smooth for some L > 0. Then
gradient descent with fixed step size η ∈ (0, 1/L] satisfies

f(xt)− f(x∗) ≤ ∥x0 − x∗∥22
2ηt

. (3.19)

This theorem tells us that, under the given assumptions, gradient descent will converge at a
rate of O(1/t), in fact this convergence rate is tight [12]. We briefly mention that Theorem
3.2.4 pertains to the convergence of the objective function values, however, the iterates of
GD also converge. The following proof for Theorem (3.2.4) was taken from [25]. We write
out the proof here to utilize certain results to explain the step size methods above.

Proof. Since ∇f is Lipschitz with constant L (f is L-smooth), which means ∇2f ⪯ L · I
(Theorem (3.2.3)), we have ∀x,y, z ∈ Rd

⟨ (x− y), (∇2f(z)− L · I)(x− y) ⟩ ≤ 0

=⇒ L∥x− y∥22 ≥ ⟨ (x− y), ∇2f(z)(x− y) ⟩

22



Using Taylor’s Remainder Theorem, we have that ∀x,y ∈ Rd, ∃z ∈ [x,y] such that

f(y) = f(x) + ⟨∇f(x), (y − x)⟩+ 1

2
⟨ (x− y), ∇2f(z)(x− y) ⟩

≤ f(x) + ⟨∇f(x), (y − x)⟩+ L

2
∥y − x∥22

(3.20)

plugging in y = x+ ≡ x− η∇f(x) we get

f(x+) ≤ f(x) + ⟨∇f(x), (x− η∇f(x)− x)⟩+ L

2
∥x− η∇f(x)− x∥22

= f(x)− (1− Lη

2
)η∥∇f(x)∥22.

(3.21)

Taking 0 < η ≤ 1/L, which implies that (1− Lη/2) ≥ 1/2 we get that

f(x+) ≤ f(x)− η

2
∥∇f(x)∥22 (3.22)

since f is convex we have that f(x) ≤ f(x∗) + ⟨∇f(x), (x− x∗)⟩ and so

f(x+) ≤ f(x)− η

2
∥∇f(x)∥22

≤ f(x∗) + ⟨∇f(x), (x− x∗)⟩

= f(x∗) +
1

2η
(∥x− x∗∥22 − ∥x− x∗ − η∇f(x)∥22)

= f(x∗) +
1

2η
(∥x− x∗∥22 − ∥x+ − x∗∥22).

(3.23)

Summing over iterations, we have

t∑
i=1

(f(xt)− f(x∗)) ≤ 1

2η
(∥x0 − x∗∥22 − ∥xt − x∗∥22) (3.24)

≤ 1

2η
∥x0 − x∗∥22 (3.25)

by (3.22), f(xt) is non-increasing therefore we have

f(xt)− f(x∗) ≤ 1

t

t∑
i=1

(f(xt)− f(x∗)) ≤ ∥x0 − x∗∥22
2ηt

. (3.26)

This concludes the proof.
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Coming back to the question of constant step size selection, we can use the upper bound
in (3.19) in order to derive an ηt. Notice in the proof that we restricted η ∈ (0, 1/L]. If we
choose ηt ≡ 1/L, then the upper bound is minimized. That is, under the choice of constant
step size ηt ≡ 1/L, we will get the smallest possible upper bound to (3.19) compared to
any other choice in (0, 1/L]. If η is chosen to be greater than 2/L, then the proof can no
longer guarantee convergence.

As for the backtracking method, notice equation (3.21) in the proof of Theorem (3.2.4).
Since L > 0, we have that 0 < (1− Lη/2) < 1, and this value is multiplied by η to satisfy
the inequality. That is, there exists some β∗ ∈ (0, 1) (≡ (1 − Lη/2)) such that b∗ · η will
satisfy (3.21) given η ∈ (0, 1/L]. This is where (3.16) comes from. We do not know (or
have to know) L, we can just pick some β ∈ (0, 1) and iteratively update η by β · η until
the inequality in (3.16) satisfies

f(xt − η∇f(xt)) ≤ f(xt)− η∥∇f(xt)∥22. (3.27)

This idea of starting η at 1/2 and iteratively reducing the value by a factor of β until we
satisfy (3.27) is where the name ”backtracking” comes from. Recommended choices of β
are between 0.1 and 0.8 [8].

As was concluded by Theorem (3.2.4), the rate of convergence of gradient descent for
L-smooth convex functions with constant step size was O(1/t) where t is the number of
iterations. This rate is known as sub-linear convergence which we define now

Definition 3.2.5 (Sub-Linear Convergence). Let {an}∞n=m be a positive sequence such
that limn→∞ an = 0, and

lim
n→∞

an+1

an
= C (3.28)

for some C > 0. If C = 1, then {an}∞n=m is said to converge sub-linearly.

By the definition, we can easily conclude sub-linear convergence of gradient descent under
Theorem (3.2.4) since

lim
t→∞

1/(t+ 1)

1/t
= lim

t→∞

t

t+ 1
= 1.

where at = 1/t comes from the convergence rate upper bound O(1/t). Sub-linear conver-
gence is considered slow. The reason for this is that the computational time to compute
a correct new right digit of the solution is similar to the total amount of time taken of all
previous work done [44].

It is possible to improve the convergence rate for gradient descent if we tack on the
constraint that the objective function we are minimizing is also strongly convex:
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Definition 3.2.6 (α-Strongly Convex). Let f : X → R be differentiable. Then f is
α-strongly convex if, ∀x,y ∈ X, it satisfies

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
α

2
∥y − x∥2 (3.29)

for some α > 0.

Under strong convexity, gradient descent can achieve a linear convergence rate:

Definition 3.2.7 (Linear Convergence). An algorithm is said to converge at a linear rate
if, given the sequence of its iterates {xt}∞t=0 → x∗, we have that the distance between an
iterate xt and the optimal solution x∗ is bounded by an exponential of the iteration number

∥xt − x∗∥ ≤ c(1− q)t (3.30)

where c > 0, q ∈ (0, 1).

Theorem 3.2.5 (Convergence of Gradient Descent for L-Smooth, Strongly Convex, Dif-
ferentiable Functions). Let f : Rd → R be L-smooth, α-strongly convex, and differentiable.
Then gradient descent with fixed step-size η = 1/L satisfies

∥xt − x∗∥2 ≤
(
1− α

L

)t
· ∥x0 − x∗∥2. (3.31)

Proof. See [33].

Setting q = α/L, and c = ∥x0 − x∗∥2, we see by definition (3.2.7) that GD converges
linearly under Theorem (3.2.5).

3.2.2 Stochastic Gradient Descent

In the domain of machine learning, many state of the art models require large amounts
of data in order to properly be trained. Due to being in a large data regime, gradient
descent becomes a very slow algorithm to use when optimizing because the computational
cost of computing the full gradient at each iteration is expensive. To see this problem
in action, assume we have a data set with 1′000′000 data points each with 10 features.
That is, our data matrix has dimensions 1′000′000 × 10. If our loss function is set to be
the mean squared error loss seen in (3.8), then for each gradient computation, we have
n = 1′000′000 terms each of which need to have their partial derivative taken with respect
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to the d = 10 features. That is, it will take 10 · (1′000′000) = 10′000′000 computations in
order to calculate the full gradient for one iteration. To overcome this, stochastic gradient
descent (SGD) tackles this problem by randomly selecting a single data point per iteration
in order to calculate the derivative. SGD was first introduced by Robins and Monro [48]
as a Markov chain method and not the gradient based method it is today. With that in
mind, in this section we’ll formally tackle SGD as it is used in machine learning today.

The notion of a loss function was already introduced in the previous sections. Recall
that we may write a loss function as the form L(D,w,b), where D is the data set containing
feature-label pairs (x, y). For more clarity, we rewrite this representation as ℓ(f(·,w,b),y),
where f(·,w,b) is the predictor function (for example fMLP from (3.7)). It is possible to
integrate the bias into the weight vector so we’ll write the loss as ℓ(f(·,w),y) for simplicity.
This interpretation is more clear because we may now see that the loss is a function of the
predictor and true label, and we aim to minimize ℓ by finding the f(·,w) that minimizes
it.

Since the goal would be for the model to perform well when presented with unseen
data, it is better to find the weights w which minimize the loss function given those data
points. However, when training a model, we don’t have this data at hand, only a training
sample. To overcome this, we would like to choose w that minimizes the expected loss
for any input-output pair [7]. Formally speaking, our input-output pair can be viewed
as random variables (X,Y) ∼ P (X = x,Y = y) where P : (Rdx × Rdy) → [0, 1] is
the probability distribution of the true x - y relationship, and dx and dy are the respec-
tive dimensions for x and y. This new objective is known as expected risk and is defined as:

(Expected Risk I)

R(w) =

∫
Rdx×Rdy

ℓ(f(x,w),y) dP (x,y) = E[ℓ(f(X,w),Y)] (3.32)

In practice, it is impractical to minimize (3.32) since this requires access to the entire
probability distribution, which is generally not known. Instead, one uses an estimate of R
in (3.32) [7]. This estimate is known as empirical loss and is defined by:

(Empirical Risk I)

Rn(w) =
1

n

n∑
i=1

ℓ(f(xi,w),yi) (3.33)

where n is the number of data points in the training sample.
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In order to proceed, we take a moment to simplify the notation of (3.32) and (3.33)
to the more common form used in practice. Let ζ be a random variable such that the
realization of ζ is either a single input-output sample (xi,yi) ∈ (Rdx × Rdy) or a set of
samples {(xi,yi)}i∈S where S ⊂ (Rdx × Rdy) is a subset of the sample space. Next, we
rewrite the loss function as h(w; ζ) = ℓ(f(·x,w), ·y), where (·x, ·y) ∼ ζ. That is, h is the
composition of ℓ and f . Then we can rewrite (3.32) as:

(Expected Risk II)

R(w) = E[h(w, ζ)]. (3.34)

Continuing from our definition of ζ, we denote ζ̂i to be the realization of ζ for a single
training sample (xi,yi), i ∈ {1, . . . , n}, from the set of n-realized samples given to ζ. In
other words, given a set of n realizations for ζ, ζ̂i is the i

th element of that set. We can,
therefore, represent the set of all realized samples of ζ to be {ζ̂i}ni=1 = {(xi,yi)}ni=1. Given
a realized set of samples, {ζ̂i}ni=1 for the random variable ζ, let hi(w) denote the loss with
respect to the ith realized sample ζ̂i, i.e. hi(w) = h(w; ζ̂i). Then we rewrite (3.33) as:

(Empirical Risk II)

Rn(w) =
1

n

n∑
i=1

hi(w). (3.35)

Going forward, unless specified, any use of the notation R(w) or Rn(w) refers to (3.34)
and (3.35), respectively.

We now present the stochastic gradient descent algorithm. Let k ∈ N be such that
ζk denotes the kth random variable of a sequence of jointly independent random variables
{ζk}∞k=0. Each ζk can be seen as a sample generated from an unknown data distribution.

We denote the realization of ζk as ζ̂k = (xk,yk) some point from the data distribution.

Algorithm 3 Stochastic Gradient Descent

Input: initial value w0 ∈ Rd

1: for t = 0, 1, 2, . . . do
2: Get realization ζ̂t from ζt
3: gt ← ∇ht(wt) [≡ ∇h(wt; ζ̂t)]
4: choose step-size ηt
5: wt+1 ← wt − ηtgt

6: end for
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At line 3 of Algorithm (3), we wrote the gradient of a general loss function hi(w) = h(w; ζi).
With respect to empirical risk (3.35), we would simply change line 3 of Algorithm (3) to
be:

gt ← ∇Rn(w).

The following convergence analysis of stochastic gradient descent works for both ex-
pected and empirical risk, where the difference comes from how one picks the samples [7].
As such, we denote our objective to be

f(wt) :=


R(wt)

or

Rn(wt)

(3.36)

and denote the stochastic gradient as

gt := ∇h(wt; ζt) (3.37)

and require the assumptions that our objective is L-smooth, α-strongly convex, and the
following additional assumption [7]:

(First and Second Moment Limits)
The objective function, f , and the SGD algorithm must satisfy the following three require-
ments:

(a) The sequence of iterates {wt} is contained in an open set over which f is bounded
below by a scalar finf.

(b) There exist scalars µG and µ satisfying µG ≥ µ > 0, such that, ∀t ∈ N,

∇f(wt)
⊤Eζt [gt] ≥ µ∥∇f(wt)∥22, and (3.38)

∥Eζt [gt]∥2 ≤ µG∥∇f(wt)∥2. (3.39)

(c) There exist scalars M ≥ 0 and MV ≥ 0 such that, ∀t ∈ N,

Varζt [gt] ≤M +MV ∥∇f(wt)∥22 (3.40)

where Varζt [gt] = Eζt [∥gt∥22] − ∥Eζt [gt]∥22 is the variance of gt. (a) requires our objective
function to be bounded below, (b) requires the direction −gt to satisfy being a sufficient
descent direction of f at the point wt in terms of the norm of the full gradient, and (c)
weakly constrains the variance of gt.
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Theorem 3.2.6. Let f : Rd → R be L-smooth, α-strongly convex, and differentiable.
Additionally, assume the First and Second Moment Limits above with finf = f∗ (f∗ is the
minimum of f). Furthermore, suppose that SGD is run with a fixed step size ηt ≡ η > 0
for all t ∈ N such that η satisfies:

η ≤ µ

LMG

,

where MG = MV + µ2
G ≥ µ2 > 0. Then the expected optimality gap satisfies the following

inequality for all t ∈ N:

E[f(wt)− f∗] ≤
ηLM

2αµ
+ (1− ηαµ)t−1

(
f(w1)− f∗ −

ηLM

2αµ

)
→ ηLM

2αµ
(3.41)

as t→∞.

Proof. See [7].

If our direction gt is an unbiased estimator of ∇f(wt), i.e. E[gt] = ∇f(wt), and gt has
no noise, then we get that µ = 1 and MG = 1 [7]. This yields η ∈ (0, L] which was the
requirement for η in Theorem (3.2.4).

In practice, it is often not wise to choose a constant step size η. The reason for this
is that, while a constant step size can guarantee convergence to a neighborhood of the
optimal solution, the noise of the estimated gradient gt will prevent any further progress
towards the optimum [7]. Inspecting (3.41), it is possible to tighten the optimality gap by
reducing the value of η at the cost of a worse contraction constant. One can take advantage
of this fact to get the following result:

Theorem 3.2.7. Let f : Rd → R be L-smooth, α-strongly convex, and differentiable.
Additionally, assume the (First and Second Moment Limits) assumptions above with
finf = f∗ (f∗ is the minimum of f). Furthermore, suppose that SGD is run with a step size
sequence, ηt, such that ∀t ∈ N:

ηt =
β

γ + t

for some β > 1/(αµ) and γ > 0 such that η1 ≤ µ/(LMG). Then, ∀t ∈ N, the expected
optimality gap satisfies

E[f(wt)− f∗] ≤
ν

γ + t
(3.42)
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where

ν = max
β2LM

2(βαµ− 1)
, (γ + 1)(f(w1)− f∗). (3.43)

Proof. See [7].

A strategy that may be used in practice which takes advantage of the diminishing step
size effect is as follows: choose a constant step size and run the algorithm until progress is
no longer made. When this stall happens, a smaller step size is chosen and the algorithm
continues. This process is repeated only when the algorithm stalls. However, it is generally
not easy to detect such a ”lack of progress”.

The assumption of α-strong convexity of the objective function for the convergence of
SGD is crucial in that it is a critical component of ensuring a O(1/t) convergence rate. If
the strong convexity parameter is incorrectly estimated, even with unbiased gt and µ = 1,
a solution can fail to close the optimality gap [43]. We further note that, even under these
stronger assumptions, SGD converges at a sub-linear rate while GD converges linearly. This
is a trade-off between GD and SGD that needs to be made in order to reap the beneficial
computational speeds of SGD. It is worth noting that there do exist ways to guarantee
a linear convergence rate for SGD if even more information is provided. For example,
stochastic variance reduced gradient (SVRG) [32] is an alternative to SGD in which the
stochastic gradient is updated in an amortized fashion. This requires, on average, two
gradient computations per step, but has the guarantee of linear convergence [58].

3.2.3 A Practical Compromise Between GD and SGD: Mini-
Batch Gradient Descent

While it is true that, per iteration, SGD is computationally faster than standard GD,
this speed is some-what balanced out by the fact that SGD requires a large number of
iterations in order to get close to a minima. This was due to the fact that SGD’s update
direction is a descent direction on average; it may not be at each iteration. Even then, it
was seen that SGD usually fails to converge to a minima, but instead jumps around in a
neighborhood of the solution. In contrast, gradient descent is computationally inefficient
for large data sets yet satisfies a more direct direction of descent and can converge. In
practice, it is more advantageous to choose an option somewhere in between SGD and GD
that has trade offs between gradient descent and stochastic gradient descent. This is called
mini-batch gradient descent (MBGD).
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As we saw, SGD randomly picks a single sample point (x,y) to compute the update.
Mini-batch GD does something similar in that, instead of randomly selecting a sample
point, we split the entire dataset into approximately equal partitions, then perform an
update using a single partition of data which is called a mini-batch. After training on
each of the partitions, the process is repeated; one pass through all the mini-batches is
called an epoch. It is common to iterate through a large number of epochs before attaining
convergence to a solution.

As a quick example, say we had a dataset consisting of 100’000 sample pairs D =
{(x,y)}100000; a possible partitioning of the dataset into mini-batches would be every 1000
sample points:

batch1 : {(x,y)}[0:1000]

batch2 : {(x,y)}[1000:2000]
...

where the square bracket notation here [a : b] represents taking a slice from sample a to
sample b− 1 of the dataset.

If we chose our mini-batch sizes to be of size 1, then we retrieve stochastic gradient
descent, while on the other extreme, choosing the mini-batch sizes to be the full batch (i.e.
one mini-batch contains the entire dataset), then we retrieve gradient descent (also called
full-batch gradient descent). In practice, the rule of thumb for choosing a mini-batch size is
above 10 to take advantage of the higher computation speed-ups of matrix-matrix product
compared to matrix-vector products [6]. It is also recommended to stick with values that
are powers of 2 due to potential computational speed ups based on how computer memory
is stored and accessed.

To conclude, mini-batch GD is widely used in practice over full-batch GD and stochastic
GD. It is a method used to enhance training speed performance; theoretically, the choice
of mini-batch size does not affect the model’s generalization performance [6].

3.2.4 Subgradient Descent

So far, we’ve considered the strong assumption of smoothness for our objective functions. In
practice however, it is very common that our objective functions don’t have the structural
properties of differentiability/smoothness. As an example, the ReLU function (3.9) is
not differentiable at x = 0. How can we deal with this? The answer lies in the use of
subgradients.
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Recall that the proper domain of a function f : Rn → [−∞,+∞], denoted dom(f), is
the set:

dom(f) := {x ∈ Rn | f(x) < +∞}.

Definition 3.2.8 (Proper Function). The function f : Rn → [−∞,+∞] is proper if
dom(f) ̸= ∅ and for all x ∈ Rn, f(x) > −∞.

Definition 3.2.9 (Subgradient). Let f : Rn → [−∞,+∞] be a proper function. The
subgradient of f at x ∈ Rn is defined to be a vector g ∈ Rn that satisfies:

f(y) ≥ f(x) + ⟨g,y − x⟩ (3.44)

for all y ∈ Rn.

It is important to note that a subgradient at a point x may not be unique. We denote the
set of vectors that satisfy (3.44) at x by: ∂f(x), which we can write as:

∂f(x) := {g ∈ Rn | f(y) ≥ f(x) + ⟨g,y − x⟩, ∀y ∈ Rn}. (3.45)

We call ∂f(x) the subdifferential of f at x. Intuitively, the subdifferential of a function f
at the point x is the set of all vectors g such that we may construct a linear lower bound
for the function f .

As an example, the function f : R→ R such that x→ |x| is not differentiable at x = 0
and therefore does not have a derivative over R. However, it does have a subgradient which
is written as:

∂f(x) =


{−1} x < 0

[−1, 1] x = 0

{+1} x > 0

(3.46)

One result before we get to the main algorithm and analysis results is the analogous
statement of Theorem (3.2.3) but for subgradients:

Theorem 3.2.8. Let f : Rn → (−∞,+∞] be proper and convex. Then f is L-Lipschitz
continuous in the interior of dom(f) (with respect to ∥ · ∥2) if and only if for all x in the
interior dom(f) and g ∈ ∂f(x) we have that ∥g∥2 ≤ L.

Proof. See [46].
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The subgradient descent algorithm is as follows:

Algorithm 4 Subgradient Descent

Input: initial value w0 ∈ Rd

Output: optimal solution w∗ ∈ Rd

1: for t = 0, 1, 2, . . . do
2: choose gt ∈ ∂f(wt)
3: choose step-size ηt
4: wt+1 ← wt − ηtgt

5: end for

As we can see, subgradient descent is similar to gradient descent except we simply sub-
stitute the gradient of f with a subgradient of f , at a point x. We now present the
convergence analysis results:

Theorem 3.2.9. Let f : Rd → R be proper, convex, and L-Lipschitz continuous with
respect to ∥ · ∥2, i.e. ∥g∥2 ≤ L, ∀g ∈ ∂f(x). Let {xt}∞n=1 be a sequence generated by
Algorithm (4). Then:

min
0≤t≤T−1

f(xt)− f(x∗) ≤ ∥x0 − x∗∥22 +
∑T−1

t=0 η
2
i ∥gt∥22

2
∑T−1

t=0 ηt
≤ ∥x0 − x∗∥22 + L2

∑T−1
t=0 η

2
i

2
∑T−1

t=0 ηi
. (3.47)

Moreover, if we assume, in addition, that f is α-strongly convex (with respect to ∥ · ∥2),
and setting ηt = 1/(α(t+ 1)) we have:

min
0≤t≤T−1

f(xt)− f(x∗) ≤
T−1∑
t=0

1

T
(f(xt)− f(x∗)) ≤

L2
∑T−1

t=0
1

1+t

2αT
(3.48)

Proof. See [62].

Under the strongly convex case, we have that the right hand side of (3.48) converges to 0
at a rate of O(log T/T ) [62].
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3.3 Online (Convex) Learning

As we will come to see later on, the results of the adaptive methods we discuss are catered
towards the online convex optimization setting. It is worth noting that this setting is
almost equivalent to working in the stochastic setting [13]. To maintain consistency with
these results, we give a quick high-level introduction to online (convex) learning.

To better grasp what online learning is, we’ll build up the main intuition via an exam-
ple. The following example and build up to online learning was heavily inspired by the
following monograph by Orabona [46]. To begin, consider the following example: you and
an adversary are playing a game consisting of t = 1, 2, . . . , T rounds. In each round, the
adversary draws an independent and identically distributed (i.i.d) number yt constrained
to the interval [0, 1]. Your goal is to choose an xt ∈ [0, 1] such that it minimizes some loss
function ℓt(xt; yt), for example the squared loss ℓ(xt; yt) = (xt−yt)2. If the distribution was
known before hand, then the best pick would be the expected value of that distribution,
and thus, under the squared loss, we’d have an expected loss of σ2T by the end of the
game, where σ2 is the variance of the distribution that the adversary drew from. In the
general case, however, one does not know the distribution. So we aim to pick xt such that
we’d like to minimize the following ”regret”:

EY

[
T∑
t=1

ℓ(xt)

]
− σ2T = EY

[
T∑
t=1

(xt − Y )2

]
− σ2T (3.49)

or the average:

1

T
EY

[
T∑
t=1

ℓ(xt)

]
− σ2 =

1

T
EY

[
T∑
t=1

(xt − Y )2

]
− σ2 (3.50)

where Y ∼ Distribution is a random variable drawn from the unknown distribution. In
the online learning world, winning at this game is governed by if you are able to choose
xt such that (3.49) grows sub-linearly over time, or, equivalently, if (3.50) goes to 0 as
T →∞. That is, these are the (equivalent) measures of success.

Instead of being drawn from a distribution, let yt be an arbitrary sequence of realized
values (no longer random nor are each element drawn from the same distribution). In fact,
the choice of yt can be selected adversarially in order to make us ”lose”. In this regime,
we therefore cannot rely on statistical modeling of the data, and the σ2T is no longer the
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optimal choice. We therefore rewrite (3.49) as:

RegretT :=
T∑
t=1

l(xt; yt)− min
x∈[0,1]

T∑
t=1

l(x; yt)

(
=

T∑
t=1

(xt − yt)2 − min
x∈[0,1]

T∑
t=1

(x− yt)2
)

(3.51)

where we win if (3.51) grows sub-linearly with respect to T. In the literature, (3.51) is
called the regret. We now have the foundation to extend this example to a generalized
notion.

Let V ⊂ Rn, called the feasible set, and let xt ∈ V . Here xt is the output from your
model. Attached to this output is a loss function ℓt : V → R that measures how good the
output prediction was to the true value. Next, let u ∈ V be an arbitrary predictor for the
same true value. u is not outputted by the model, but instead is used to compare against
the output xt of the model. Then we can write the Regret function as a function of u as:

RegretT (u) =
T∑
t=1

ℓt(xt)−
T∑
t=1

ℓt(u). (3.52)

We can see now why the function is called a regret function. We are essentially calculating
how much ”regret” the model has for choosing its parameter xt over the arbitrary one u.

The question becomes, how do we ”win” this game? i.e. can we formulate an algorithm
such that it guarantees sub-linear regret over T? Of course the answer is yes, and there
exists many algorithms out there. We will demonstrate Online Gradient Descent (OGD)
as this is the algorithm the adaptive methods aim to improve on. Before we get to the
algorithm, we notice that our choice of xt is constrained to a feasible set V . A simple way
of maintaining our updated xt such that they are contained in V is to project them back
to the set if they leave it.

Definition 3.3.1 (Projection). Let V ⊂ Rn, V ̸= ∅, be a closed convex subset. The
projection of an arbitrary point u ∈ Rn to the subset V is defined as:

ΠV (u) = argmin
v∈V
∥v − u∥2. (3.53)

The algorithm for OGD is as follows:
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Algorithm 5 Online Gradient Descent

Input: initial value x1 ∈ V .
Require: V ⊆ Rn closed, convex, and non-empty.

1: for t = 1, 2, . . . , T do
2: Receive loss function ℓt : Rn → (−∞,+∞]
3: Pay ℓt(xt)
4: gt ← ∇ℓt(xt)
5: choose step-size ηt
6: xt+1 ← ΠV (xt − ηtgt) (= argminv∈V ∥v − xt + ηtgt∥2)
7: end for

It is evident that OGD is similar to SGD in that each iteration updates via one sample.
The only significant difference is that the general OGD can have different loss functions
depending on the iteration. As for the projected step in line (6), this is not specific to
OGD. If we choose to restrain our updates xt in vanilla GD or SGD, then we can also
apply a projection at the update steps. This is known in the field as projected (stochastic)
gradient descent. Of course, if we don’t have any constraint set V , then we simply drop
the projection operation and are left with the update we’ve seen previously.

In terms of regret guarantees while using OGD, we have the following result:

Theorem 3.3.1. Let V ∈ Rn be a non-empty, closed convex set that has diameter D, i.e.

max
x,y∈V

∥x− y∥2 ≤ D.

Let ℓt : V → R be convex, and differentiable in open sets which contain V, t = 1, . . . , T .
Pick any x1 ∈ V and assume that ηt+1 ≤ ηt, t = 1, . . . , T . Then for all u ∈ V the following
regret bound holds:

T∑
t=1

(ℓt(xt)− ℓt(u)) ≤
D2

2ηT
+

T∑
t=1

ηt
2
∥gt∥22. (3.54)

Moreover, if ηt ≡ η, ∀t = 1, . . . , T , i.e. ηt is constant, we have:

T∑
t=1

(ℓt(xt)− ℓt(u)) ≤
∥u− x1∥22

2η
+
η

2

T∑
t=1

∥gt∥22. (3.55)

Proof. See [46].
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An important observation to make is that of the step size ηt. As was mentioned earlier,
this is an adversarial game, and therefore we cannot simply find the η that would minimize
(3.55) (say, for the constant step size case). That is, if we do decide to choose the η that
minimizes (3.55), we get that:

η∗ =
∥x1 − u∥2√∑T

t=1 ∥gt∥22
(3.56)

which would yield the regret bound:

∥x1 − u∥2

√√√√ T∑
t=1

∥gt∥22 (3.57)

but this requires knowledge of future gradient values, and knowing the distance between
the initial value, x1 and u. So the adversary can simply change the sequence of yt’s such
that this step size no longer holds. It possible, instead, to choose η that can give us sub-
linear regret if we impose that the norm of loss functions ℓt are bounded above by L, i.e.
∥gt∥2 ≤ L (or in other words, ℓt’s are L-Lipschitz continuous by Theorem (3.2.3)), and
maintaining the assumption of bounded diameter, we get:

η∗ = argmin
η

D2

2η
+
ηL2T

2
=

D

L
√
T
. (3.58)

This gives the regret bound:

DL
√
T (3.59)

which is a sub-linear regret over time. As we will see, the adaptive methods apply adaptive
step sizes such that the regret bounds are closer to that of the optimal regret bound (3.57).

Having the differentiability assumption on the ℓt’s is a strong assumption and often
enough, we deal with loss functions that are convex, but not differentiable. As we saw
in Section (3.2.4), we can replace the gradient calculation in Algorithm (5) with a sub-
gradient gt ∈ ∂ℓt(xt). In fact, up to changing the assumptions from differentiability to
sub-differentiability, and using subgradients instead of gradients, the regret bounds in
Theorem (3.3.1) also hold for online subgradient descent [46].
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3.4 Radial Basis Function Interpolation

In this section we briefly touch upon radial basis function (RBF) interpolation as it is used
as the basis for our results found in chapter 6 section 6.2. In general, interpolation is a
general method used to approximate an unknown function f in which the only data we
have on it is a finite number of pairs (ζ, f(ζ)), where f(ζ) ∈ R is an explicit function value
of f at the point ζ ∈ Rn. That is, we’d like to formulate an approximation s : Rn → R
of f . These ideas are extendable to the more general case of approximating an unknown
function f : Rn → Rm by approximating each component independently [11].

Let S be the linear space of approximating functions, and let Θ ⊆ Rn be the set of
points, ζ, such that we know the corresponding explicit function value f(ζ). Interpolation
requires that we find approximating functions s ∈ S such that they match up with f at
the points ζ ∈ Θ, that is, for ζ ∈ Θ, s(ζ) = f(ζ). In other words, we’d like to find
an approximating function, s, such the function values computed by s are equal to f
when computed at the points ζ ∈ Θ, and then with this information, interpolate unknown
function values of the points between the known ζ.

In the special case of RBF interpolation, the approximating function s of f is usually
a linear combination of translated real-valued functions known as radial basis functions,
ψ(∥ · ∥), where ∥ · ∥ is the ℓ2 norm. RBF’s are such that the value of their output depends
only on the ℓ2 distance of the input to the origin, or to a translated point ζ ∈ Θ which are
called the centres, i.e. ψ(∥ · −ζ∥). Since the centres are from Θ, this creates a dependence
between S on Θ. Asides from certain geometry of Θ, this dependence is important in order
to avoid constructing a singular problem [11]. The term basis in RBF comes from the fact
that a collection of these function {ψk} are used to form a basis for a function space.

As was mentioned, the general form for the s ∈ S are linear combinations of translated
RBFs. This general form can be written explicitly as

s(x) =
∑
ζ∈Θ

λζ · ψ(∥x− ζ∥) (3.60)

for x ∈ Rn, real coefficients λζ ∈ R, and ψ a RBF. Some well known choices of RBFs are:
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Gaussian: ψ(r) = exp−(αr)2;
Multiquadrics: ψ(r) =

√
1 + (αr)2;

and Thin-Plate Splines: ψ(r) = r · log r

where α is a shape tuning parameter. For example, The Gaussian RBF looks like the
classic bell-shaped curve, and different choices of α determine the width of the bell.

Coming back to the general form of s(x) in (3.60), it is worth noting that this form
strikes a similar resemblance to a feed-forward neural network. We can think of the RBF
as being synonymous with the activation function discussed in section 3.1. In fact, this
interpretation is known as a radial basis function network (RBFN) which was first intro-
duced by Broomhead and Lowe in 1988 [9]. RBFNs usually have three layers, the input,
the hidden layer, and the output layer. The hidden layer has a RBF activation function
and the neurons of that layer can be thought of as performing a comparison between the
input vector and the centres ζ ∈ Θ. The output layer is a linear combination of the RBF
of each neuron in the hidden layer.

Again, referring to the general form (3.60), we see that the function s is parameterized
by weights λ; in other words, we may rewrite s(x) as s(x;λ) to show dependence on these
weights. Ideally, there exists optimal weights, λ∗, such that we satisfy s(ζ;λ∗) = f(ζ) for
all ζ ∈ Θ (finite). In order to compute the optimal weights boils down to solving a least
squares problem. to see this, recall that we are equipped with a finite, say N ∈ N, number
of data points of the form:

D := {(ζi, f(ζi)) : ζi ∈ Rn, f(ζi) ∈ R, ∀i = 1, . . . , N}.

Using these ζi’s, we can form radial basis functions in which their centres are the ζi’s, i.e.
ψ(∥x− ζi∥) for i = 1, . . . , N . So we want to find the weights λi, i = 1, . . . , N such that

s(ζi) =
N∑
k=1

λk · ψ(∥ζi − ζk∥) = f(ζi) (3.61)

for all i = 1, . . . , N . This can be written in the form Aλ = b, where the entries of A are
expressed as:

aij = ψ(∥ζj − ζi∥) i, j = 1, . . . , N (3.62)

and the solution vector is:

bi = f(ζi) i = 1, . . . , N. (3.63)
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As was mentioned above, uniqueness of the ζi is a necessary condition for the matrix A to
be invertible.

3.5 ℓp Norm Minimization of Linear Regression

To close off the background, we briefly talk about a form of minimization problem that
will be often used as comparison in the experiments of this thesis. In this section (and the
in the majority of the thesis) we will be dealing with underdetermined linear regression
(LR). That is, answering the problem of finding x such that Ax = b when A ∈ Rn×d is
such that n < d. In such a scenario, there exists an infinite number of solutions. From
this space of solutions, a follow up question to ask is: which vector in this space has the
smallest ℓp norm for p ∈ [0,∞]?

This optimization problem can be be explicitly written as follows: let A ∈ Rn×d and
b ∈ Rn. Out of the set of solutions x ∈ Rd satisfying Ax = b, we wish to find the the x
with the minimum ℓp norm, i.e.:

min
x
∥x∥p

s.t Ax = b.
(3.64)

The solution to such a problem is denoted as the minimum p-norm solution where p ∈
[1,∞]. In this thesis, we make use of ℓp when p = 1, 2, and ∞. Given a vector x =
(x1, . . . xn) ∈ Rn, the ℓ1 norm is:

∥x∥1 =
n∑

i=1

|xi|,

the ℓ2 norm is:

∥x∥2 =

(
n∑

i=1

x2i

)1/2

,

and the ℓ∞ norm is:
∥x∥∞ = max {|x1|, . . . , |xn|}.

When p = 2 in (3.64), we get the well known least squares problem.

As was mentioned, ℓp-norm minimization of overparameterized linear regression will
be considered when we characterize the convergence behaviour of the adaptive method
Adagrad [18]. Namely, we use the solutions outputted by the minimum p-norm LR (p ∈

40



{1, 2,∞}) as benchmarks to compare and designate how diffuse the solutions outputted by
(stochastic) Adagrad are. We’ll see that, under a metric to compute how diffuse a solution
is, (stochastic) Adagrad promotes diffuse solutions like the minimum∞-norm LR solution
(see Chapter 6 Section 6.1).
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Chapter 4

Adaptive Gradient Methods

In this section, we dive into explaining three highly used adaptive gradient methods. Before
that, however, we briefly discuss momentum as it helps us in the discussion of the adpative
methods, mainly RMSProp, and Adam.

4.1 Momentum

In Section (3.2.3), we discussed mini-batch GD. In short, it is a trade off between between
SGD and GD by running each iteration on a partition (larger than 1 and less than the
total number of samples) of the data. By updating our weights in this fashion, we end up
with a zigzag motion towards the solution, see Figure (4.1)(a). If we refer to the direction
pointing to the minimum as ”down”, then it is evident from the zigzagging pattern that our
steps are spending too much time moving left and right. The idea behind momentum is to
modify the update in a way such that we reduce movement in the left and right directions,
and promote movement in the downward direction. That is, we are attempting to smooth
out the zigzag such that the majority of the step is spent in the downward direction.
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(a) (b)

Figure 4.1: (a): Arbitrary contour plot with optimal minimum in green. Red arrows
represent the direction of descent of mini-batch gradient descent. (b) red arrows: normal
GD update, blue arrows: momentum adjusted updates.

In order to represent this smoothing idea mathematically requires knowledge of the
exponentially weighted moving average (EWMA) (also referred to as exponentially weighted
average). Given data over a time frame (think time series data), EWMA is a method to
calculate the trend of the data over time using the average of local data points, or, in other
words, a moving average of the data. Let θt be a data point at time t, and let Vt be the
EWMA of the data at time t. Then we have that:

V0 = 0

Vt = βVt−1 + (1− β)θt t > 0
(4.1)

where β ∈ (0, 1) is a hyperparameter. The choice of β tells us how far back in time we
wish to use data in the computation of the current EWMA. It is important to note that
as time passes, the weight given in the average to farther points θt are exponentially less
pronounced than closer data points in time. To see this exponential decay more clearly,
one can expand out (4.1), to get:

Vt = (1− β)
t∑

i=1

βt−iθi (4.2)

so we see that, as we move further away from the current time t, the weight associated
with data point θi in the average decays exponentially by (1− β)βi.
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We are now in a position to introduce the momentum algorithm. Recall the weights
update for gradient descent:

xt+1 = xt − η∇f(xt)

what momentum does, is replace the gradient update with the exponentially weighted
moving average of the past gradients. That is, if we define V∂xt to be the EWMA of
∇f(xt) at time t, we get the following update rule:

xt+1 = xt − ηV∂xt (4.3)

which is the momentum algorithm’s update rule. The full algorithm applied to gradient
descent is as follows:

Algorithm 6 Gradient Descent with Momentum

Input: initial value x0 ∈ Rd, continuously differentiable function f : Rd → R, EWMA
hyperparameter β ∈ (0, 1)
Output: optimal solution x∗ ∈ Rd

1: V∂x0 ← 0
2: x1 ← x0

3: for t = 1, 2, 3 . . . do
4: gt ← ∇f(xt)
5: V∂xt ← βV∂xt−1 + (1− β)gt

6: choose step-size ηt
7: xt+1 ← xt − ηtV∂xt

8: end for

simply changing line (4) in Algorithm (6) to mini-batch gradients converts the algorithm
to mini-batch GD with momentum.

To intuitively see why this promotes a less oscillatory ”downward” direction we spoke
of above, notice that when we take the averages of the steps, the left and right directions
that promote the zigzag behaviour will average to approximately 0 since they roughly point
in opposite directions, while every step always moves in the downward direction so that
when taking the average among the steps, we continue to point down, see Figure (4.1)(b).

44



4.2 Adagrad

The theme of large data has been a staple throughout the text so far. With this setting
comes data sets with large dimensional feature spaces, many features of which are irrele-
vant. However, it is common to have feature spaces that contain certain, more rare, features
that are information rich. Under the gradient-based methods discussed so far, we apply
the same learning rate across all features. Additionally, we briefly spoke of momentum
as a method to promote a better direction of descent by updating the weights equally in
terms of exponentially weighted moving averages. However, doing so, the optimizer fails to
promote these more sparse, yet highly informative, features compared to other less-sparse
features. Adagrad [18], short for Adaptive Gradient, aims to correct this shortcoming by
dynamically applying feature specific learning rates catered towards each feature based on
the geometry of past gradient information. Informally, Adagrad will give frequently seen
features a lower learning rate, while giving infrequent features a higher learning rate [18].

Adagrad was originally written in the online learning setting which we briefly discussed
in section (3.3). However, as was mentioned, there is a connection between the online
learning setting and the stochastic setting which will allow us to easily connect the regret
bound to a convergence guarentee for the stochastic convex setting. For now, we dive into
the construction of Adagrad and its results in the online setting as it was originally.

Recall the online learning setting. In this setting, one wishes to minimize the regret
with respect to a static predictor u∗ ∈ V where V ⊆ Rn is a closed convex set and
u∗ = argminu∈V

∑T
t=1 ft(u). Specifically, given a sequence of functions ft, one aims to get

the smallest possible solution to:

R(T ) =
T∑
t=1

ft(xt)−
T∑
t=1

ft(u
∗). (4.4)

From here, at each iteration t, we are given a subgradient gt = ∂ft(xt), and one can use
stochastic projected gradient update (see Algorithm (5)) to get

xt+1 = ΠV (xt+1) = argmin
u∈V
∥u− xt + ηgt∥22 (4.5)

and we’d get the same analysis as we saw in section (3.3). Namely, we’d get the regret
bound (3.55) which we rewrite here with respect to ft:

T∑
t=1

(ft(xt)− ft(u)) ≤
1

2η
∥u− x1∥22 +

η

2

T∑
t=1

∥gt∥22. (4.6)
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Duchi et al, [18] proposed to change the the L2 norm of the projection to the Mahalanobis
norm. Given a matrix A ⪰ 0, the Mahalanobis norm is defined to be

∥ · ∥A =
√
⟨·, A·⟩. (4.7)

Using this norm, we’ll define the projection onto a set V using the Mahalanobis norm with
respect to the matrix A as:

ΠA
V (x) = argmin

v∈V
∥v − x∥2A = argmin

v∈V
⟨(v − x), A(v − x)⟩. (4.8)

The new generalized update to (4.5) is then written as:

xt+1 = ΠA
V (xt − ηA−1gt) = argmin

v∈V
∥v − (xt − ηA−1gt)∥2A. (4.9)

Under this generalized update, the standard regret (4.6) has the form:

T∑
t=1

(ft(xt)− ft(u)) ≤
1

2η
∥u− x1∥2A +

η

2

T∑
t=1

∥gt∥2A−1 . (4.10)

From here, we wish to minimize the regret upper bound with respect to A. That is, we
want to find the optimal value of the following minimization problem:

min
A

T∑
t=1

⟨gt, A
−1gt⟩

s.t A ⪰ 0

tr(A) ≤ C

(4.11)

where tr(·) is the trace of the input. The A that minimizes (4.11) is proven to be [18]:

A = c

(
T∑
t=1

gtg
⊤
t

)1/2

(4.12)

where c is chosen to satisfy tr(A) ≤ C from (4.11). The authors derive this optimal solution
in the proof of [18, Appendix E, Lemma 15] by considering two cases, where in each case
they utilize the Lagrangian of (4.11). The first case our matrix A is full rank and therefore
positive definite; This allows the authors to directly solve for the solution. In the second
case, they consider A not full rank (hence positive semi-definite by the first constraint of
(4.11)). In this case, the authors work with the dual and show that strong duality holds
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and that the limiting solution which closes the gap is of the same form as the first case,
except under the pseudo-inverse.

Under the generalized update (4.9) and choosing A to satisfy (4.12), we get the following
Adagrad algorithm for online learning:

Algorithm 7 Online Adagrad

Input: Step size η > 0, perturbation parameter ϵ ≥ 0
Initialize: x1 = 0, G0 = 0d×d, H0 = 0d×d

Output: optimal solution x∗ ∈ V

1: for t = 1, 2, . . . , T do
2: Receive loss function ft : Rn → (−∞,+∞]
3: Pay ft(xt)
4: gt ← ∂ft(xt)
5: Gt = Gt−1 + gtg

⊤
t

6: Ht = (Gt + ϵI)1/2

7: xt+1 ← ΠHt
V (xt − ηH−1

t gt) (= argminv∈V ∥v − xt + ηH−1
t gt∥2Ht

)
8: end for

In practice, however, Algorithm (7) requires one to compute the root and inverse of
a matrix at each iteration t which is not practical to compute when dealing with a high
number of dimensions. To overcome this, we simply use the diagonal of Ht at each iteration
[18], that is, we change line (7) to

xt+1 ← Π
Diag(Ht)
V (xt − ηDiag(Ht)

−1gt) (4.13)

where Diag(·) returns the the input with its diagonal elements unchanged, and the rest are
set to 0.

With (both full and diagonal) Adagrad constructed, we now turn to their theoretical
regret guarantees. Let

R2 := max
t≤T
∥xt − x∗∥2 (4.14)

and, R∞ := max
t≤T
∥xt − x∗∥∞ (4.15)

where x∗ = infx∈V
∑T

t=1 ft(x). Furthermore, we denote g1:t = [g1,g2, . . . ,gt], to be the
matrix of concatenated subgradients from the sequence up to time t. Finally, we denote
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the j-th row of the matrix g1:t as g1:t,j, which can be viewed as the j-th coordinate of
each subgradient in the sequence up to time t. Then we have the following regret bound
guarantees:

Theorem 4.2.1. Let {xt}Tt=1 be the sequence generated by Algorithm (7) for full-matrix
Ht. Then Adagrad suffers the following regret bound:

T∑
t=1

ft(xt)− ft(x∗) ≤ R2 · tr(HT ). (4.16)

Furthermore, if we consider the sequence {xt}Tt=1 generated by Algorithm (7) but with update
(4.13), i.e. diagonal matrix Ht, then Adagrad suffers the following regret bound:

T∑
t=1

ft(xt)− ft(x∗) ≤ 2R∞

d∑
j=1

∥g1:T,j∥2 . (4.17)

Proof. See [18].

A consequence of these regret bounds is that we may use them to formulate convergence
guarantees for Adagrad in the stochastic convex optimization setting. Recall that in the
stochastic setting, we aimed at minimizing the expected risk (3.34). For simplicity we’ll
define f(x) to be the empirical risk, i.e. f(x) := E[h(x; ζ)], and define ft(x) := h(x; ζt).
Then we have the following convergence guarantee for diagonal approximated Adagrad in
the stochastic convex setting [19]:

E

[
f

(
1

T

T∑
t=1

xt

)]
− f(x∗) ≤ 2R∞

T

d∑
i=1

E [∥g1:T,j∥2] (4.18)

where d is the number of dimensions. Unless specified otherwise, when we speak of
Adagrad, moving forward, we speak of the diagonal approximated version of
Adagrad.

One disadvantage to using Adagrad in the ”offline” setting is that over time, the diago-
nal entries of H−1

t will shrink to zero. This causes Adagrad to converge more more slowly.
To see why they shrink to zero, lets focus on the unconstrained Adagrad update:

xt+1 = xt − ηDiag(Ht)
−1gt. (4.19)
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If we inspect the update at an arbitrary coordinate of xt+1, say:

(xi)t+1 = (xi)t − η
1√∑t

τ=1(gτ )2i + ϵ
(gτ )i (4.20)

for some i ∈ {1, . . . , d}, then we see that as t → ∞, the denominator grows to infinity
under the assumption that the (gτ )i ̸= 0. Taking the reciprocal, the learning rate goes to
0. This disadvantage is overcome in both RMSProp and Adam, both which are discussed
in this chapter.

4.3 RMSProp and Adadelta

It was briefly spoken about that Adagrad suffers slow training times due to the accu-
mulation of all past gradients in its preconditioner Ht. RMSProp, short for Root Mean
Squared Propagation is an unpublished adaptive method proposed by Geoffrey Hinton
in his Coursera lecture titled ”Neural Networks for Deep Learning”, lecture 6e [29]. This
method can be seen as an extension of Adagrad with the ability to overcome the slow
training times commonly present with Adagrad. At a high level, RMSProp follows the
same style of update rule as Adagrad but opts to accumulate past squared gradients over
a window instead of considering all previous squared gradients. Using a window of past
square gradients prevents H−1

t in Adagrad to possibly go to infinity.

To be more concrete, RMSProp creates this ”window” by utilising the exponentially
weighted moving average of the previous squared gradients g2

t (here the squared is applied
entry-wise via Hadamard product). The choice of using an EWMA is used to overcome
the inefficiencies of having to store an actual range of past squared gradients [63]. Let us
denote the EWMA of the squared gradient at time t to be E[g2]t. Then, by equation (4.1),
we have that

E[g2]t = γE[g2]t−1 + (1− γ)g2
t . (4.21)

Now recall the Adagrad update step, namely,

∆xt = −
η√

G
1/2
t + ϵI

· gt (4.22)

where ∆xt = xt+1 − xt, and the inverse square root operations on Gt and G
1/2
t + ϵI are

applied entry-wise. RMSProp then exchanges G
1/2
t with the EWMA (4.21) to get the new
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update rule:

∆xt = −
η√

E[g2]t + ϵI
· gt. (4.23)

We note that the denominator term
√
E[g2]t is exactly the root of the mean of squared

gradients and hence where the name comes from. Letting RMS(gt) :=
√

E[g2]t + ϵI we
may rewrite (4.23) as

∆xt = −
η

RMS(gt)
· gt. (4.24)

Around the same time, another adaptive method was developed (independent of RM-
SProp) by Zeiler known as Adadelta [63]. This method derived the same update rule (4.23)
as RMSProp. The key difference then was in the additional observation made by the author
in which he noticed that, under the learning rates present in SGD, momentum, Adagrad,
or (4.23), the learning rates do not share the same ”units” as that of the parameter x.
Using Adagrad as an example, the adaptive learning rates are of units proportional to one
over the unit of the gradient. As such, the update, which is a ratio of gradients is unitless.

To ensure consistency of the units when updating the parameter, the author utilises
the fact that the inverse Hessian (or an approximation of) do have the correct units; if H
denotes the Hessian matrix then [63]:

∆x ∝ H−1g ∝
∂f
∂x
∂2f
∂x2

∝ units of x. (4.25)

Using this information, we can come up with additional terms to add to (4.23) such that
the units match that of the parameter x. Specifically, under the assumption that the
Hessian is diagonal, the author utilises Newton’s method to get

∆x =
∂f
∂x
∂2f
∂x2

=⇒ 1
∂2f
∂x2

=
∆x
∂f
∂x

. (4.26)

As there is already units of the gradient in the denominator thanks to RMS(gt), we just
need to include ∆x in the numerator to get the update rule:

∆xt = −
∆xt

RMS(gt)
· gt. (4.27)
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Of course, ∆xt is not known at time t, so we must add the extra assumption that the
curvature is locally smooth to then approximate ∆xt by using RMS(∆xt−1). Specifically,
we consider the EWMA of ∆x2

t by

E[∆x2]t = γE[∆x2]t−1 + (1− γ)∆x2
t . (4.28)

and then writing the update rule to be

∆xt = −
RMS(∆xt−1)

RMS(gt)
· gt. (4.29)

Note that the step size η was replaced with RMS(∆xt−1) in that Adadelta does not have
a tuneable step size parameter. Since this is the case, it is important that RMS(∆xt−1)
contains the same ϵ perturbation parameter present in RMS(gt) to allow the start off of
the first iteration, and to allow for progress in the event where the parameters end up being
small. Additionally, both Hinton and Zeiler recommend setting γ = 0.9 in practice for the
EWMA γ parameter (for both RMSProp and Adadelta).

4.4 Adam

The theme we’ve seen in chapter (4) so far is that each succeeding section builds off the
previous section(s). This theme continues with the introduction to the Adam optimizer.
Adam, short for Adaptive moment estimation, is the final adaptive gradient method we’ll
introduce in this thesis. Proposed by Kingma and Ba [36], Adam aims to combine the
advantages present in Adagrad in which good training performance remains under the
event of sparse gradients, and RMSProp which has seen strong success in online learning
(and thus stochastic optimization). It is also common to compare Adam to RMSProp with
momentum, but it has certain tweaks and construction differences that give it stronger
advantages.

Like RMSProp, Adam utilises the EWMA of past squared gradients. Additionally, it
also utilises the EWMA of past gradients. We can think of these as estimates of the second
(raw) and first moments of the gradient (uncentered variance, and mean), respectively. If
we let mt denote the EWMA of the first moment of gt, and vt as the EWMA of the second
moment of gt, we have

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g2
t .

(4.30)
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where the authors’ recommend setting β1 = 0.9, and β2 = 0.999. Using these, we get the
update rule:

∆xt = −
η√
vt + ϵ

·mt. (4.31)

One issue with this update rule is that, since they are initialized to zero, i.e. m0 = v0 = 0,
these estimates of the first moment and second (raw) moment are biased towards zero,
especially at the early iterations of the algorithm [36]. It is possible to overcome this bias
by considering the following analysis for the second (raw) moment (the analysis for the first
moment is similar). Given a stochastic objective function f , let the sequence of gradients
of f up to time step T each be drawn from some distribution P (gt), i.e. gt ∼ P (gt). Next,
recall the EWMA update for the squared gradient:

v0 = 0

vt = β1vt−1 + (1− β1)g2
t

(4.32)

our goal is to see if we can find some relation between E[v]t and E[g2]t such that we can

derive a ”bias correction” term, say v
(t)
fix, such that v

(t)
fix · E[v]t = E[g2]t. Recalling that we

may write the EWMA as in equation (4.2), we have that [36]:

E[vt] = E

[
(1− β2)

t∑
i=1

βt−i
2 g2

i

]
(4.33)

= E[g2]t · (1− β2)
t∑

i=1

βt−1
2 + ζ (4.34)

= E[g2]t · (1− βt
2) + ζ. (4.35)

Here, ζ is kept small due to choosing β1 such that the weight assigned to gradients far
in the past are small, or ζ = 0 if the E[g2]i are stationary (i.e. mean and variance are

constant over time). So we see that if we choose v
(t)
fix = 1/(1 − βt

2), then we have that

v
(t)
fix · E[v]t ≈ E[g2]t. Similarly, it can be derived that the bias correcting term for the first

moment, m
(t)
fix = 1/(1 − βt

1). Using these bias correcting terms, we get the official Adam
update:

∆xt = −
η√

vt
(1−βt

2)
+ ϵ
· mt

(1− βt
1)
. (4.36)
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Letting m̂t := mt/(1− βt
1) and v̂t := vt/(1− βt

2), we neatly rewrite (4.36) as

∆xt = −
η√
v̂t + ϵ

· m̂t. (4.37)

This yield the following algorithm for Adam:

Algorithm 8 Adam

Input: Step size η > 0, perturbation parameter ϵ ≥ 0, decay β1, β2 ∈ [0, 1)
Initialize: x0 = 0, m0 = 0, v0 = 0.
Output: optimal solution x∗ ∈ Rn

1: for t = 1, 2, . . . do
2: Receive loss function ft : Rn → (−∞,+∞]
3: gt ← ∂ft(xt−1)
4: mt ← β1mt−1 + (1− β1)gt

5: vt ← β2vt−1 + (1− β2)g2
t

6: m̂t ← mt/(1− βt
1)

7: v̂t ← vt/(1− βt
2)

8: xt ← xt−1 − η · m̂t/
√
v̂t + ϵ

9: end for

With the algorithm established, we turn to the convergence analysis of Adam. Similar
to Adagrad, the authors of Adam analyse convergence of Adam using the online learning
setting. Let gt = ∇ft(xt), g1:t = [g1, . . . ,gt] where g1:t,j = [g1,j, . . . ,gt,j] is the j-th
coordinate of each gradient in the sequence up to time t, the regret function R(T ) defined
as in equation (4.4) with u = argminu∈Rn ft(u), and γ := β2

1/
√
β2. Then we have the

following regret bound for Adam

Theorem 4.4.1. Assume the gradients of ft are bounded as: ∥∇ft(x)∥2 ≤ G and ∥∇ft(x)∥∞ ≤
G∞ for all x ∈ Rd. Assume that the distance between any xt generated by Adam is bounded,
∥xj − xk∥2 ≤ D and ∥xj − xk∥∞ ≤ D∞ for any j, k ∈ {1, . . . , T}. Finally, assume that
β1, β2 ∈ [0, 1) such that they satisfy β2

1/
√
β2 < 1. Let step size ηt = η/

√
t, and β1,t = β1λ

t−1,
λ ∈ (0, 1). Adam suffers the follow regret bound, for all T > 1:

R(T ) ≤ D2

2η(1− β1)

d∑
i=1

√
T v̂T,i +

η(1 + β1)G∞

(1− β1)
√
1− β2(1− γ)2

d∑
i=1

∥g1:T,i∥2 +
d∑

i=1

D2
∞G∞

√
1− β2

2η(1− β1)(1− γ)2
.

Proof. See [36].
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We note that in order for the theorem to hold, one requires that the learning rate η
decays by a rate of 1/

√
t and that the EWMA decay parameter β1 decays exponentially

with λ which is represented with β1,t in the theorem. Using Theorem (4.4.1), we have the
following corollary which tells us that the average regret produced by Adam converges

Corollary 4.4.1.1. Assume the gradients of ft are bounded as: ∥∇ft(x)∥2 ≤ G and
∥∇ft(x)∥∞ ≤ G∞ for all x ∈ Rd. Assume that the distance between any xt generated by
Adam is bounded, ∥xj − xk∥2 ≤ D and ∥xj − xk∥∞ ≤ D∞ for any j, k ∈ {1, . . . , T}. Then
Adam achieves the following regret guarantee:

R(T )√
T
≤ O

(
1√
T

)
. (4.38)

Proof. See [36].

We conclude this section by noting that Adam has some extensions one which can be
found in the original paper [36] called AdaMax which extends proportionality of vt from
the L2 norm to Lp norm, and another example being Nadam [17] which combines Adam
with Nesterov accelerated gradient (NAG) [44], and hence the name Nesterov-accelerated
adaptive moment estimation.
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Chapter 5

Algorithmic Behaviour of Adagrad in
Underdetermined Linear Regression

5.1 Motivation and the Setting of Study

As was briefly discussed in the introduction, it is common when training deep learning
models that the number of parameters/features outnumber the number of training in-
stances. In this regime, known as over-parameterized, there will exist a large number of
elements in the space of solutions. That is, there are plenty of minima one can land in
when optimizing the loss function. Many of these solutions, while optimal in the training
phase, do not yield parameters that allow the model to generalize well. It turns out that
when using SGD to minimize, the minima that the algorithm biases towards (i.e. the one
it chooses) tends to generalize well [34]. The study of the algorithmic behaviour, or in
other terms its implicit bias, is thus an important factor since it can determine whether
your model generalizes well or not.

We’d like to carry over this study of implicit biases for the adaptive methods. In par-
ticular, we explore the behaviour of the Adagrad algorithm. We saw in chapter (3.1) that
MLPs, a basic deep learning structure, is the composition of many possibly non-linear
functions (see equation (3.7)). The number of compositions depends on the number of
layers the network sports, and the functions composed are heuristically chosen activation
functions. Attempting to study the algorithmic behaviours of Adagrad under such a com-
plex function is difficult. We therefore limit our study to the following linear regression
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(LR) case:

f(x) = Ax− b (5.1)

where A ∈ Rn×d is underdetermined (n ≤ d), and where one can think of (5.1) as a single
layered perceptron with activation function equal to the identity function σ(x) = x. So,
while basic in nature, studying the algorithmic behaviour under this regime, which we’ll
denote as the underdetermined LR regime, can be thought of as a very simple analog of a
MLP. Furthermore, we study the implicit biases of Adagrad under this regime using the
sum of squared errors loss function

ℓ(x) =
1

2
∥Ax− b∥22. (5.2)

In all, we aim to study and discover the behaviours of Adagrad when minimizing the
following unconstrained optimization problem:

min
x∈Rd

1

2
∥Ax− b∥22. (5.3)

5.2 A Simple Scenario: Fixed Preconditioned Gradi-

ent Descent

Based on our initial study of Adagrad in section (4.2), we saw that we may write the
Adagrad update rule as the following:

xk+1 = xk − η(G1/2
k )−1 · gk (5.4)

where gk = ∇f(xk), and the preconditioner matrix (G
1/2
k )−1 ∈ Rd×d is a diagonal positive

definite matrix where the i-th diagonal element is written as:

(G
1/2
k )−1

i =
1√∑k

τ=0(gτ )2i + kϵ
(5.5)

where (gk)i is the i-th coordinate of the gradient of f at xk. We note here that the update
(5.5) is slightly different than the update provided in section (4.2) in that we include the
perturbation parameter ϵ in the sum of the update. This was chosen due to the fact that
the ϵ perturbation parameter is chosen in a data-dependent manner in order to prove the
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regret bounds [18, Theorem 5]. In order to satisfy this in a universal manner, we grow ϵ
on each iteration so that we are assured that this dependence is eventually met.

As the preconditioner matrix changes with each iteration k, this behaviour increases
the difficulty in showing convergence of Adagrad under (5.3). Instead, we initially consider
an iterative method when the preconditioner matrix is diagonal, positive definite and fixed
for each iteration k. Let G represent this fixed preconditioner, then we have the update
rule:

xk+1 = xk − ηG · gk (5.6)

which can be thought of as gradient descent but with fixed weights applied to each partial
derivative of the gradient independently. With respect to the underdetermined problem
(5.3), theorem 5.2.1 shows us that fixed preconditioner gradient descent implicitly biases
its solution towards the minimum 2-norm solution of (AG1/2)x = b.

Theorem 5.2.1. Let f(x) be as in (5.2) where A ∈ Rn×d (n < d) and full row rank,
x ∈ Rd, and b ∈ Rn, and let gk = ∇f(xk). Let G ∈ Rd×d be a fixed positive definite
matrix. Consider the fixed preconditioner GD update

xk+1 = xk − ηG · gk, (5.7)

where x0 = 0. Then the sequence generated by this update, {xk}∞k=0 converges to

x∗ = (AG1/2)T (AG1/2(AG1/2)T )−1b (5.8)

Proof. We show this as follows. Let yk = G−1/2xk. Then we can rewrite f(x) as:

1

2
∥AG1/2y − b∥22 (5.9)

which we can think of as the least-squares problem using the underdetermined matrix
AG1/2. From here, we show that running gradient descent on (5.9) is equivalent to running
fixed-preconditioner GD on f(x). Deriving the GD update of (5.9) we get:

∇y

[
1

2
∥AG1/2y − b∥22

]
= (AG1/2)T (AG1/2y − b). (5.10)

This yields us the standard GD update:

yk+1 = yk − η(AG1/2)T (AG1/2yk − b). (5.11)
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Since (AG1/2) is underdetermined, and x0 = 0, we know that this sequence of updates will
converge to the minimum 2-norm solution of (5.9). Now, substituting back for xk, we get
that this update is equivalent to:

xk+1 = xk − ηG1/2(AG1/2)T (Axk − b) (5.12)

= xk − ηGAT (Axk − b) (5.13)

which is the update for fixed-preconditioner GD. Since these updates are equivalent, we
conclude that fixed-preconditioner GD applied to f(x) converges to the minimum 2-norm
solution of (5.9).
This concludes the proof.

Theorem (5.2.1) tells us that fixed preconditioner gradient descent converges to the
minimum 2-norm solution of (AG1/2)x = b. To see this, we note that for an underdeter-
mined full row-rank matrix A and vector b we have that the minimum 2-norm solution is
given by

x∗ = X⊤(XX⊤)−1b. (5.14)

In this case, we set X := AG1/2 to retrieve our result.

5.3 Convergence of Adagrad

Now that we’ve dealt with the simple case of fixed preconditioner gradient descent, we now
move onto the main case of proving convergence of Adagrad in the underdetermined LS
regime (5.3) under update rule (5.5). Unlike fixed preconditioner GD, we do not supply a
result similar to theorem (5.2.1) for Adagrad.

The following two results are some preliminary facts that will be used in the lemmas
and theorems that follow:

Fact 5.3.1. Let A ∈ Rn×d. The eigenvalues of ATA and AAT are nonnegative.

Corollary 5.3.1.1. Let A ∈ Rn×d, and let M ∈ Rn×n be a diagonal positive semi-definite
matrix. The eigenvalues of AMAT and ATMA are nonnegative.

Proof. We prove the case for AMAT . The work for ATMA is identical with a difference
in transpose placement.
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Since M is a positive semi-definite diagonal matrix (i.e. its diagonal entries are all
nonnegative), we may write M =M1/2M1/2. Then,

AMAT = (AM1/2)(M1/2AT )

= (AM1/2)(AM1/2)T [M symmetric]

Letting B = (AM1/2) we get

AMAT = BBT

we conclude by fact 5.3.1

From here, we work with a recurrence relation derived based on the update (5.4) where

the diagonal entries of the diagonal matrix (G
1/2
k )−1 are described by (5.5). Let uk =

Axk − b. For simplicity, let’s rewrite Gk as:

Gk :=
η√
Ĝk

, (5.15)

where Ĝk is a diagonal matrix where the i-th diagonal entry is given by

Ĝk(i,i) =
k∑

l=0

(AT
i ul)

2 + kϵ. (5.16)

Here the reciprocal and square root operations are applied entry wise. Here, we combine
the step-size η into Gk because our following results hold regardless of our choice of η > 0,
and thus we combine it into Gk to make the formulations easier to read. We may thus
rewrite (5.4) as

xt+1 = xk −Gk∇f(xk)

=⇒ Axk+1 − b = Axk − b− AGk∇f(xk)

=⇒ Axk+1 − b = Axk − b− AGkA
⊤(Axk − b)

=⇒ Axk+1 − b = (I − AGkA
⊤)(Axk − b)

=⇒ uk+1 = (I − AGkA
⊤)uk

(5.17)

where the matrix (I − ηAGkA
⊤) enjoys the property of being symmetric. Lemma 5.3.2

will allow us to guarantee that after some finite iteration of k, the matrix (I − AGkA
⊤)

will have its spectral norm contained in the interval between 0 and 1.
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Lemma 5.3.2. Let ∥ · ∥2 denote the spectral norm of a matrix, and, for fixed η > 0, let
Gk be as in (5.15). Then, ∃k∗ ∈ N such that ∀k ≥ k∗ the symmetric matrix (I − AGkA

⊤)
satisfies

0 < ∥I − AGkA
⊤∥2 ≤ 1− a√

k
< 1

for some constant a > 0.

Proof. First, by Corollary (5.3.1.1), (AGkA
T ) is positive semi-definite. Next, by the con-

struction of Ĝk, it continually grows by (at least) an ϵ > 0 per iteration and is therefore
unbounded. Thus, ∃k∗ ∈ N such that ∀k ≥ k∗, the diagonal elements of Ĝk satisfy

|Ĝk(i,i)| ≥ 4η · ∥AA⊤∥2. (5.18)

The choice of lower bound on |Ĝk(i,i)| is chosen to ensure that (∀k ≥ k∗) AGkA
⊤ ≺ I. We

show this by showing that (∀k ≥ k∗) ∥AGkA
⊤)∥2 < 1. By (5.18) we have that

∥∥AGkA
⊤∥∥

2
≤

∥∥∥∥∥
(

1

4∥AA⊤∥22

)1/2

AA⊤

∥∥∥∥∥
2

(5.19)

=

(
1

4∥AA⊤∥22

)1/2 ∥∥AA⊤∥∥
2

(5.20)

=

(
1

2∥A∥22

)
∥A∥22 (5.21)

=
1

2
< 1 (5.22)

where the inequality in (5.19) holds since, by Lemma (5.3.1),
(

1
2∥A∥22

)
AA⊤ is positive

semi-definite and

AGkA
T ⪯

(
1

2 · ∥A∥22

)
AA⊤ ⇐⇒ AGkA

⊤ −
(

1

2 · ∥A∥22

)
AA⊤ ⪯ 0 (5.23)

⇐⇒ A(Gk −
(

1

2 · ∥A∥22

)
I)A⊤ ⪯ 0 (5.24)

⇐⇒ ∀i, Gk(i,i) −
(

1

2 · ∥A∥22

)
< 0 (5.25)
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where (5.25) is satisfied by (5.18). From here, we have that

(∀k ≥ k∗) ∥AGkA
⊤)∥2 < 1. (5.26)

=⇒ (∀k ≥ k∗) ∥uk+1∥2 ≤ ∥uk∥2 (5.27)

=⇒ (∀k ≥ k∗) (∃s > 0) s.t (A⊤
i uk)

2 ≤ s (∀i) (5.28)

=⇒ (∀k ≥ k∗) Ĝk(i,i) ≤ Ĝk∗
(i,i)

+ (k − k∗)s+ (k − k∗)ϵ (∀i) (5.29)

=⇒ (∀k ≥ k∗) (∃s′ ∈ R) s.t Ĝk(i,i) ≤ ks′ (∀i) (5.30)

Where, in line (5.29),

Ĝk∗
(i,i)

=
k∗∑
l=1

(A⊤
i ul)

2 + k∗ϵ

and

(k − k∗)s ≥
k∑

l=(k∗+1)

(A⊤
i ul)

2.

Line (5.30) introduces a new constant s′ ∈ R which can be chosen as follows, ∀i

Gk(i,i) ≤ Gk∗
(i,i)

+ (k − k∗)s+ (k − k∗)ϵ

=
k∗∑
l=1

(A⊤
i ul)

2 + k∗ϵ+ (k − k∗)s+ (k − k∗)ϵ

=

(
k∗∑
l=1

(A⊤
i ul)

2 − k∗s

)
+ (ks− kϵ)

letting constant C = max
{∑k∗

l=1(A
⊤
i ul)

2 − k∗s, 0
}
we continue to get

≤ C + k(s+ ϵ)

≤ kC + k(s+ ϵ)

= k(C + s+ ϵ)

finally, we set constant s′ = C + s+ ϵ.

Taking the reciprocal square root of line (5.30) gives us (Ĝk(i,i))
−1/2 ≥ (ks′)−1/2. Then

61



we have that

(∀k ≥ k∗) 0 ≺ (a · k−1/2)I ⪯ AGkA
⊤ ≺ I

=⇒ (∀k ≥ k∗) 0 ≻ −(a · k−1/2)I ⪰ −AGkA
⊤ ≻ −I

=⇒ (∀k ≥ k∗) I ≻ I − (a · k−1/2)I ⪰ I − AGkA
⊤ ≻ 0

=⇒ (∀k ≥ k∗) 1 > 1− (a · k−1/2) ≥ ∥I − AGkA
⊤∥2 > 0

where a := (s′)−1/2 ∈ R a constant.

This concludes the proof.

The reason we need lemma 5.3.2 is to ensure that, in the limit, the recurrence remains
a contraction at each iteration. For the iterations k < k∗ there is no control on the bound.
With this result, we may prove the following lemma:

Lemma 5.3.3. Given the recurrence (5.17), we have that

u∞ := lim
k→∞

uk =
∞∏
k=1

(I − AGkA
⊤)u0 = 0. (5.31)

Proof. The left hand side of (5.31) comes directly from the derived recurrence itself

uk = (I − AGk−1A
⊤)uk−1

= (I − AGk−1A
⊤) · ... · (I − AG1A

⊤)u0

=
k−1∏
j=1

(I − AGjA
⊤)u0

=⇒ lim
k→∞

uk =
∞∏
j=1

(I − AGjA
⊤)u0.

To show the equality of (5.31), it suffices to show that

∞∏
k=1

∥I − AGkA
⊤∥2 = 0 (5.32)

since we have that

∥u∞∥2 ≤
∞∏
k=1

∥I − AGkA
⊤∥2 · ∥u0∥2.
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We show (5.32) by applying the infinite product theorem and Lemma (5.3.2). The infinite
product theorem states that if {an}∞n=0 is a sequence such that (∀n) 0 < an < 1 then

∞∏
n=1

(1− an)→ 0 ⇐⇒
∞∑
n=1

an =∞.

In our case, Lemma (5.3.2) tells us that (∃k∗) s.t (∀k ≥ k∗) (∃a > 0) constant such that

0 < ∥I − AGkA
⊤∥2 ≤ (1− a/

√
k) < 1. (5.33)

Using the infinite product theorem while setting an = a/
√
n (∈ (0, 1) (∀n ≥ k∗)), we have

that
∞∑

n=k∗

a√
n
=∞ (5.34)

which is true due to the integral test for infinite sums∫ ∞

k∗

a√
x
dx =

[
2a
√
x
]∞
k∗

=∞

=⇒
∞∑

n=k∗

a√
n
=∞.

So we may conclude that

∞∏
n=k∗

∥I − AGkA
⊤)∥2 ≤

∞∏
n=k∗

(1− a/
√
n) = 0

=⇒
∞∏
k=1

∥I − AGkA
⊤)∥2 = 0

This concludes the proof.

Lemma 5.3.3 tells us that under the equivalent recurrence (5.17) to the Adagrad update
(5.4), the limiting value of ∥uk∥ converges to 0 which implies that ∥Axk − b∥ converges
to 0 in the limit. This, however, is not enough to conclude convergence of Adagrad. We
now need to show the existence of some x∗ such that xk → x∗ as k → ∞. From this,
we can conclude by lemma 5.3.3 that Adagrad reaches an x∗ such that Ax∗ = b. This is
bundled into theorem 5.3.6. Before we get to that theorem, however, we require the result
presented in Lemma 5.3.5. To prove this lemma requires the following result:
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Lemma 5.3.4. For all k, p ∈ N satisfying k ≥ 2 and p > 1, the following inequality holds:

(k − 1)p ≥ kp − pkp−1. (5.35)

Proof. Dividing both sides of (5.35) by k, and letting x := 1/k we have that

x

(
1

x
− 1

)p

≥
(
1

x

)p−1

− p
(
1

x

)p−2

⇐⇒ xp
(
1

x
− 1

)p

≥ xp−1

(
1

x

)p−1

− pxp−1

(
1

x

)p−2

⇐⇒ (1− x)p ≥ 1− px
⇐⇒ (1− x)p − (1− px) ≥ 0. (†)

To show that † holds, we observe that the function value at x = 0 is 0, and consider the
first and second derivatives:

d

dx
†(x) = p(1− x)p−1 − p (5.36)

d2

dx2
†(x) = p(p− 1)(1− x)p−2. (5.37)

When x = 0, the first derivative also evaluates to 0 implying a critical point. For p > 1 and
|x| < 1 we have that the second derivative is positive. All together, we have that for p > 1
and |x| < 1, † holds. Substituting k back, we conclude that (5.35) holds for k ≥ 2 and p > 1.

This concludes the proof.

We now state and prove Lemma 5.3.5:

Lemma 5.3.5. Let a ∈ R and k̂∗ ∈ N be the constant and iteration (respectively) in which
the results from lemma 5.3.2 hold. Let k∗ ∈ N be such that k∗ ≥ k̂∗ and a

√
k∗ ≥ 3. Choose

b ∈ R satisfying

b ≥ kp∗ ·

(
k∗∏
n=1

(
1− a√

n

))
(5.38)

for fixed p ∈ R satisfying 1 < p < a
√
k∗. Then, ∀k ≥ k∗, the following bound holds:

k∏
n=1

(
1− a√

n

)
≤ b

kp
. (5.39)
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Proof. We show this holds by induction. We begin with the base case: k = k∗. Clearly, by
our choice of b, we must have that

k∗∏
n=1

(
1− a√

n

)
≤ b

kp∗
. ✓ (5.40)

Now, assume the hypothesis holds for all integers from k∗ up to and including (k−1) where
(k − 1) ≥ k∗. We show that the hypothesis holds for k ≥ k∗:

k∏
n=1

(
1− a√

n

)
=

k−1∏
n=1

(
1− a√

n

)
·
(
1− a√

k

)
≤ b

(k − 1)p
·
(
1− a√

k

)
(induction hypothesis)

≤ b

kp − pkp−1
·
(
1− a√

k

)
(by lemma 5.3.4)

=
b

kp − pkp−1
− ab√

k (kp − pkp−1)

=

√
kb− ab√

k (kp − pkp−1)

=

√
k
(
1− a√

k

)
b

√
k (kp − pkp−1)

=

(
1− a√

k

)
b(

1− p
k

)
kp

=

(
1− a√

k

1− p
k

)
b

kp

≤ b

kp
. (by choice of p)

By induction, we conclude the proof.

Lemma 5.3.5 tells us that the sequence
∏k

n=1

(
1− a√

n

)
, with respect to k, converges to

zero as fast as (or faster than) the sequence b
kp
. We now present the convergence theorem

for Adagrad in the underdetermined linear regression regime:
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Theorem 5.3.6. Let f(x) be as in (5.2) where A ∈ Rn×d (n < d), fix η > 0, x ∈ Rd,
and b ∈ Rn. Let Gk ∈ Rd×d be the Adagrad preconditioner matrix (5.15). Consider the
Adagrad update

xk+1 = xk −Gk∇f(xk), (5.41)

with inital value x0 = 0. Then there exists an x∗ ∈ argminx∈Rd
1
2
∥Ax− b∥22 such that

∥xk − x∗∥ → 0 as k →∞.

Proof. In order to prove this, we need to show two things. First we need to show existence
of some point x∗ ∈ Rd such that ∥xk − x∗∥ → 0 as k →∞, then we need to show that the
converged point x∗ lies in the set of solutions to (5.3). From Lemmas (5.3.2) and (5.3.3)
we have that the Adagrad update ensures that ∥Axk − b∥ → 0 as k → ∞. Therefore, if
we can show that there exists some x∗ such that ∥xk − x∗∥ → 0 as k →∞ we are done.

Let uk = Axk − b. From the Adagrad update (5.41), we can unravel the recurrence to
get the following representation for xk:

xk = xk−1 −Gk−1A
⊤uk−1

= x0 −
k−1∑
i=0

GiA
⊤ui

= −
k−1∑
i=0

GiA
⊤ui.

(5.42)

To show that this sum converges when taking the limit as k → ∞, it is enough to show
that

∥GkA
⊤uk∥ → 0 as k→∞ (5.43)

faster than b
kp

for some b ∈ R and p > 1. Here we denote ∥ · ∥ as the 2-norm. To show
this, we simply note that

∥GkA
⊤uk∥ ≤ ∥Gk∥ · ∥A∥ · ∥uk∥ ≤ ∥G0∥ · ∥A∥ · ∥uk∥. (5.44)

Let k̂∗ ∈ N and a ∈ R be the iterate and constant, respectively, that satisfy Lemma 5.3.2,
and let k∗ ∈ N such that k∗ ≥ k̂∗ and a

√
k∗ ≥ 3. Let b′ ∈ R and p ∈ R be chosen as in

Lemma 5.3.5, and let

b := max {b′, (∥G0∥ · ∥A∥ · ∥u0∥) · b′} . (5.45)
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Then ∀k ≥ k∗, we have that

∥G0∥ · ∥A∥ · ∥uk∥ ≤ (∥G0∥ · ∥A∥ · ∥u0∥)
k∏

n=1

(
1− a√

n

)
(by Lemma 5.3.2)

≤ ∥G0∥ · ∥A∥ · ∥u0∥ ·
b′

kp
(by Lemma 5.3.5)

≤ b

kp
.

Due to such an upper bound, we have shown that,

lim
k→∞

∥GkA
Tuk∥(

b
kp

) ≤ 1 (5.46)

and therefore, ∥GkA
Tuk∥ converges to 0 faster than b/kp. Therefore, there exists an x∗

such that
lim
k→∞

xk = x∗

.
This concludes the proof.

We conclude this section by noting that, unlike the fixed preconditioner GD scenario,
we do not have an explicit representation of x∗. In the next section, however, we look into
a property that x∗ has when attained via Adagrad, and in Section 5.6 we present a solution
for Adagrad in the over-parameterized binary least-squares classification regime from the
work by Wilson, et al. [57].

As was mentioned earlier in Chapter 2, there exists recent work on the convergence of
both Adagrad and Adam in a more general regime [20]. We note that the discovery of this
work came only after our own analysis above, however, we still summarise the authors’
results briefly here.

In their paper, the authors provide a proof of convergence for both Adam and Adagrad
in the regime of smooth (possibly non-convex) objective functions with bounded gradient.
Proof of convergence is also shown for heavy-ball momentum variants of both Adagrad and
Adam. Let N ∈ N∗ be a certain number of iterations and denote τN to be a random index
with value in {0, . . . , N − 1}, so that

∀j ∈ N, j < N. P[τ = j] ∝ 1− βN−j
1 (5.47)
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where 0 < β1 < 1 is the same β1 parameter used in Adam seen in Section 4.4. In order
to cover their results, we must also consider three assumptions made by the authors:
First, they assume that the objective function F is bounded below by F∗, i.e., ∀x ∈ Rd,
F (x) ≥ F∗; Second, they assume that the ℓ∞-norm of the stochastic gradients is uniformly
almost surely bounded, that is, there is an R >

√
ϵ so that

∀x ∈ Rd, ∥∇F (x)∥∞ ≤ R−
√
ϵ (5.48)

almost surely; Finally, they assume smoothness of the objective function, i.e., its gradient
is L-Lipschitz continuous with respect to the ℓ2-norm.

With the notation defined for τ and the assumptions just posed, the authors’ propose
the following convergence result which pertains to the convergence of Adagrad in a non-
momentum setting:

Theorem 5.3.7 (Adagrad). Given the three assumptions above, τ defined as in (5.47), and
the iterates xn ∈ Rd generated by the Adagrad update with constant step-size αn ≡ α > 0,
we have for any N ∈ N∗,

E
[
∥∇F (xτ )∥2

]
≤ 2R

F (x0)− F∗

α
√
N

+
1√
N
(4dR2 + αdRL) ln

(
1 +

NR2

ϵ

)
. (5.49)

Proof. See [20].

While this result provides a convergence result for Adagrad in a more general regime
of study, we contrast the results present in [20] from our own by noting that the results
pertain to the convergence of the function values to the optimal. In our proof of the
over-parameterized least-squares regime, we show that the iterates of Adagrad themselves
converge to an optimal solution x∗.
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5.4 Adagrad Promotes Diffuse Solutions

So far we have shown the asymptotic convergence of Adagrad as well as results related
to a simple case of fixed preconditioner GD, all in the underdetermined linear regression
regime. Unlike the simple case, we’ve yet to showcase any algorithmic behaviours of Ada-
grad in the underdetermined LR regime. In this section we flesh out an experimental
behaviour we encountered pertaining to Adagrad in this regime. While the discussion and
the experimental results are left to the following chapter, we introduce our finding here
and present an analytical result which gives us some theoretical guarantee of the behaviour
under certain assumptions.

In short, what we encountered experimentally was that under problem (5.3), with a step
size, η > 0 small enough, we notice that, compared to standard GD and SGD, the solution
to (5.3) produced by Adagrad, when x0 = 0, is noticeably more equally balanced. That is,
if we think of the coordinates of the Adagrad solution x∗ to be the weights assigned to each
feature to determine an output, then the weights tend to be closer together in absolute
value than GD and SGD. Before we jump into the details, we begin with some motivating
results which guided us to running such an experiment in the first place.

It is common knowledge that when running (stochastic) gradient descent in the under-
determined LR regime with an initial value of x0 = 0, that the algorithms converge to the
minimum two-norm (or least two-norm) solution. That is, out of the infinite number of
solutions, both algorithms bias towards the solution x∗ satisfying:

min
x∈Rd

1

2
∥x∥22

s.t Ax = b.
(5.50)

where A ∈ Rn×d is underdetermined (i.e. n < d), and b ∈ Rn. To see this, consider the
following special case of Theorem 5.2.1:

Lemma 5.4.1. Let A ∈ Rn×d, n < d and full row rank, x ∈ Rd, and b ∈ Rn. Consider
the minimum 2-norm optimization problem (5.50); then a solution to such a problem is

x∗ = A⊤(AA⊤)−1b. (5.51)

To see why Lemma 5.4.1 is a special case of Theorem 5.2.1, set the preconditioner
in 5.2.1 to G = I, the identity matrix, then we recover (5.51). This confirms that GD
converges to the minimum two-norm solution when the initial point x0 = 0.
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The follow up to such a result would be to understand what sort of solution Adagrad
converges to when x0 = 0. Does its solution have any relation to the minimum norm
solution as did GD? After running experiments, it turns out that, in general, it does not
converge to the minimum two-norm solution. Instead what we noticed while running our
experiments was that if we chose the step size η to be small (η ≤ 0.01), then when compared
with the weights assigned to each feature generated by the minimum two-norm solution,
the weights assigned to each feature generated by the Adagrad solution were more diffuse.

To concretely describe this behaviour, we used the following metric as a way to compare
solutions of algorithms when running on the same problem.

Definition 5.4.1 (The Local-Sparsity Metric (LSM)). Given a vector x ∈ Rd \ {0}, we
measure its local sparsity, i.e. how similar its coordinates are to one another, based on the
following metric LSM : Rd \ {0} → R where

LSM(x) :=
∥x∥2
∥x∥1

. (5.52)

This metric and the theory on the relationship between the 2-norm and 1-norm arises
in the theory of compressive sensing covered by a Russian paper written by Garnaev and
Gluskin [22], and quoted in English by Zhang in his tech report [65]. Compressive sensing
deals with the problem of finding the sparsest solution to an underdetermined system of
linear equations. Our observations show that Adagrad promotes solutions opposite to what
is trying to be achieved in compressive sensing. LSM captures approximate sparsity, or, in
other words, localization of a vector’s coordinates.

To better grasp what is approximate sparsity/locality, we consider the following exam-
ple: Two algorithms, algo. 1 and algo. 2, are run on the same loss function of a regression
task in order to generate an optimal set of weights, which we’ll denote w1 and w2 respec-
tively. The weights designate the importance of each feature when generating a result.
The following optimal weights are produced:

w1 = (0.25, 0.25, 0.15, 0.35)⊤

w2 = (0.90, 0.02, 0.02, 0.06)⊤.

If we look at the weights of w1, we see that the total weight is diffuse pretty evenly among
each of the coordinates. That is, the solution is not approximately sparse; each feature has
similar power in determining the output. When we compare this to w2, we see that a large
portion of the weight is given to the first feature compared to the other features. That is,
the coordinates are approximately sparse with respect to the first coordinate, or, in other

70



words, w2 has strong locality at the first coordinate, and is not diffuse like w1. Using the
LSM, we should have that LSM(w2) > LSM(w1), i.e. w2 is more approximately sparse
than w1. Indeed we have

LSM(w2) ≈ 0.90244 > 0.51962 ≈ LSM(w1).

Lemma 5.4.2. For any vector x ∈ Rd \ {0}, its LSM is bounded as follows:

1√
d
≤ LSM(x) ≤ 1. (5.53)

Proof. We note that by the sign invariance under the norms, it suffices to prove this for
x ≥ 0. So, let x = (x1, . . . , xd)

⊤ > 0. To show the lower bound, we have by the Cauchy-
Schwartz inequality that

∥x∥1 =
d∑

k=1

|xk| ≤

(
d∑

k=1

|xk|2
)1/2

·

(
d∑

k=1

12

)1/2

=
√
d∥x∥2

=⇒ 1√
d
≤ ∥x∥2
∥x∥1

.

(5.54)

For the upper bound, squaring both sides we get that

∥x∥21 = (x1 + · · ·+ xd)
2 ≥ x21 + · · ·+ x2d = ∥x∥22 (5.55)

which holds due to our assumption that x ≥ 0. Rearranging yields our upper bound:

∥x∥22 ≤ ∥x∥21 =⇒ ∥x∥2
∥x∥1

≤ 1. (5.56)

This concludes the proof.

We can think of a vector attaining the lower bound as one which diffuses its total weight
equally in absolute value to each coordinate such as x = (1, 1,−1, 1)⊤. We can think of a
vector attaining the upper bound as one in which approximate sparsity becomes true spar-
sity around a single coordinate such as x = (0, 0, 1, 0)⊤. This can be seen mathematically
as follows: for the lower bound, if we are given a vector x = (a, . . . , a)⊤ ∈ Rd, a ̸= 0, of
equal (absolute) value across each coordinate, then we get

LSM(x) =
∥x∥2
∥x∥1

=

√
a2 + · · ·+ a2

|a|+ · · ·+ |a|
=

√
d|a|
d|a|

=

√
d

d
=

1√
d
. (5.57)
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For the upper bound, if given a vector x = (a, 0, . . . , 0)⊤ ∈ Rd, a ̸= 0, then we get

LSM(x) =
∥x∥2
∥x∥1

=

√
a2

|a|
= 1 (5.58)

where the coordinate in which we set a is arbitrary.

Using this metric, our experiments show that the Adagrad solution xada generated
using a small η, yields an LSM that is closer to the lower bound than the upper bound in
(5.53). Furthermore, this LSM is lower when compared against the LSM calculated using
the GD solution xGD (or, in other words, the least norm solution), that is, LSM(xada) <
LSM(xGD). Intuitively, this can be thought of as Adagrad promoting the coordinates of
sparsely present features while suppressing the formation of locality of coordinates of non-
sparse features (including when compared to GD). To further explore this in a non-rigorous
manner (for now), let’s look at what happens to the preconditioner of Adagrad in the face
of sparse features versus non-sparse features.

Recall the Adagrad preconditioner (5.5) for each coordinate xi of x, i = 1, . . . , d. If we

ignore the ϵ and focus on the main portion of the preconditioner, namely,
√∑k

τ=1(gτ )2i ,

we see that if our past i-th partial derivatives are large, then the preconditioner value for
that coordinate will be small since we take the reciprocal. Likewise, if our past i-th partial
derivatives are small, then the preconditioner value for that coordinate will be large. If we
are dealing with a sparse feature, then its gradient values are small since

(gk)i = (A⊤(Axk − b))i = A(:, i)⊤(Axk − b)

where A(:, i) is the sparse i-th feature column of the data matrix A. So under a sparse
feature, ∥(gk)i∥ is small. On the contrary, if we are dealing with non-sparse features, there
is a higher chance that the partial derivatives pertaining to those features are larger in
value (compared to the sparse features) as there is less multiplication by 0. So in the face
of sparse features, Adagrad will take larger steps in those dimensions, while for non-sparse
features, Adagrad will not step as fast. In comparison, GD provides equal promotion of
features since we multiply every coordinate of the gradient by the same step size parameter
η. In other words, one should expect that on a given step, k, the size of the step taken in
the direction of a non-sparse feature coordinate should be larger for GD when compared
to Adagrad, and larger for Adagrad when compared to GD when stepping in the direction
of a sparse feature coordinate.

This intuition is made concrete with the following theorem:
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Theorem 5.4.3. Let A ∈ Rn×d such that n < d and let A(:, i) ∈ Rn denote the i-th column
of A for i = 1, . . . , d. Let xada

k ,xgd
k ∈ Rd denote the k-th iterate generated by Adagrad and

gradient descent, respectively, and b ∈ Rn. Let f : Rd → R be the least squares function

f(x) =
1

2
∥Ax− b∥22. (5.59)

Finally, consider the magnitudes of both the Adagrad and gradient descent updates at the
i-th coordinate:

|∆xada
k (i)| = η ·

∣∣∣∣∣∣ 1√∑k
τ=0(g

ada
τ (i))2 + kϵ

· gada
k (i)

∣∣∣∣∣∣ (5.60)

and

|∆xgd
k (i)| = η ·

∣∣∣ggd
k (i)

∣∣∣ (5.61)

respectively, where both algorithms start at x0 = 0. Assume that there exist coordinates, i,
such that

|A(:, i)⊤b| ≥ δ∥A(:, i)∥ (5.62)

where δ > 0. That is, we consider the coordinates in which |A(:, i)⊤b| are at least a constant
factor greater than the norm of the column ∥A(:, i)∥. Then, for η > 0 chosen small enough
such that, if η1 is such that ∥I − η1ATA∥2 ≤ 1, and η2 is such that ∥I − η2G0A

TA∥2 ≤ 1,
we have that η ≤ min{η1, η2}, where G0 is the Adagrad preconditioner matrix at iteration
k = 0 where each diagonal entry is of the form (5.5) for k = 0, and for iterations k ≤
min

{(
δ

2η∥A∥·∥AT b∥

)
,
(

δ
2η∥A∥·∥G0∥·∥AT b∥

)}
the following bounds hold∣∣∣∣∣∣ 3

√
k ·
√

(3
2
(A⊤b)i)2 + ϵ

∣∣∣∣∣∣ ≤
∣∣∣∣∣∆xada

k (i)

∆xgd
k (i)

∣∣∣∣∣ ≤
∣∣∣∣∣∣ 3
√
k ·
√
(1
2
(A⊤b)i)2 + ϵ

∣∣∣∣∣∣ (5.63)

for i satisfying our assumption, where (A⊤b)i is the i-th coordinate of the vector A⊤b.
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Proof. Under our hypothesis, there exists coordinates, i, such that we satisfy (5.62). Under
such i, we note that the i-th coordinate of ∇f(x) is

g(i) = (A⊤Ax− A⊤b)i = (A⊤Ax)i − (A⊤b)i

Now, for such i respecting (5.62), we must have for small enough iterations k that the
following inequality holds: ∣∣(A⊤Axk)i

∣∣ ≤ 1

2

∣∣(A⊤b)i
∣∣ (5.64)

for both xada
k and xgd

k . We show this holds for both gradient descent and Adagrad under
our hypothesis and assumptions. First we show this holds for gradient descent which has
the following update:

xk = xk−1 − ηA⊤(Axk−1 − b).

This can be rewritten into the following recursive form:

xk = (I − ηA⊤A)xk−1 + ηA⊤b (5.65)

which can be expanded and written in terms of x0:

xk = (I − ηA⊤A)x0 + ATb ·
k−1∑
i=1

(I − ηA⊤A)i (5.66)

= A⊤b ·
k−1∑
i=0

(I − ηA⊤A)i (5.67)

since x0 = 0. Applying the 2-norm on both sides, we have

∥xk∥ = η∥A⊤b ·
k−1∑
i=0

(I − ηA⊤A)i∥ (5.68)

≤ η∥A⊤b∥ ·
k−1∑
i=0

∥I − ηA⊤A∥i (5.69)

≤ η∥A⊤b∥ ·
k−1∑
i=0

1 (5.70)

= ηk∥A⊤b∥. (5.71)
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where the inequality from (5.69) to (5.70) is due to our choice of η. Now, for i satisfying
our assumption, we have

|(A⊤Axk)i| = |A(:, i)⊤(Axk)| (5.72)

≤ ∥A(:, i)∥ · ∥A∥ · ∥xk∥ (5.73)

≤ 1

δ
|A(:, i)⊤b| · ∥A∥ · kη∥A⊤b∥ (5.74)

= k ·
(
η∥A∥ · ∥A⊤b∥

δ

)
|A(:, i)⊤b|. (5.75)

By our choice of k in the hypothesis, we must have that

|(A⊤Axk)i| ≤ k ·
(
η∥A∥ · ∥A⊤b∥

δ

)
|A(:, i)⊤b| ≤ 1

2
|A(:, i)⊤b|. (5.76)

Now we show the case for Adagrad. Recall the Adagrad update to be:

xk = xk−1 − ηGk−1A
⊤(Axk−1 − b) (5.77)

where Gk is the diagonal matrix with diagonal entires (5.5). Then similar to gradient
descent we can express the update as a recursion:

xk = (I − ηGkA
⊤A)xk−1 + ηGkA

⊤b (5.78)

and can be expanded to be written in terms of x0

xk = (I − ηGkA
⊤A)x0 + ηGkA

⊤b ·
k−1∑
i=0

(I − ηGkA
⊤A)i (5.79)

= ηGkA
⊤b ·

k−1∑
i=0

(I − ηGkA
⊤A)i (5.80)

where the last equality comes from the fact that x0 = 0. From here, we apply the 2-norm
to get the following bound on ∥xk∥:

∥xk∥ ≤ η∥GkA
⊤b∥ ·

k−1∑
i=0

∥I − ηGkA
⊤A∥i. (5.81)
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By definition of Gk, we must have ∥G0∥ ≥ ∥Gk∥ for all k > 0 since the denominator of
any diagonal entry of Gk grows by at least kϵ. Therefore, by our choice of η we continue
to have

≤ η∥GkA
⊤b∥ ·

k−1∑
i=0

∥I − ηG0A
⊤A∥i (5.82)

≤ η∥GkA
⊤b∥ ·

k−1∑
i=0

1 (5.83)

= η(k − 1)∥GkA
⊤b∥ (5.84)

≤ ηk∥Gk∥ · ∥A⊤b∥ (5.85)

≤ ηk∥G0∥ · ∥A⊤b∥. (5.86)

So by similar manipulation as in the gradient descent case, we have that

|(A⊤Axk)i| ≤ ∥A(:, i)∥ · ∥A∥ · ∥xk∥ (5.87)

≤ 1

δ
|A(:, i)⊤b| · ∥A∥ · kη∥G0∥ · ∥A⊤b∥ (5.88)

= k ·
(
η∥A∥ · ∥G0∥ · ∥A⊤b∥

δ

)
|A(:, i)⊤b|. (5.89)

Again, by our choice of k in the hypothesis, we must have that

|(A⊤Axk)i| ≤
1

2
|A(:, i)⊤b|. (5.90)

This concludes the work and we continue with the main proof: Using (5.64), we derive the
following upper and lower bounds for both |gada

k (i)| and |ggd
k (i)|:

|gk(i)| = |(ATAxk)i − (ATb)i|
≤ |(ATAxk)i|+ |(ATb)i|

≤ 1

2
|(ATb)i|+ |(ATb)i|

=
3

2
|(ATb)i|

(5.91)
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and

|gk(i)| = |(ATAxk)i − (ATb)i|
≥
∣∣|(ATb)i| − |(ATAxk)i|

∣∣
≥
∣∣∣∣|(ATb)i| −

1

2
|(ATb)i|

∣∣∣∣
=

1

2
|(ATb)i|

(5.92)

where xk depends on whether we set gk(i) to be with respect to Adagrad or GD. Combining
(5.92) and (5.91) we get:

1

2
|(ATb)i| ≤ |gk(i)| ≤

3

2
|(ATb)i|. (5.93)

We therefore have an upper and lower bound for ∆xgd
k (i) with respect to |(ATb)i|:

η

2
|(ATb)i| ≤

∣∣∣∆xgd
k (i)

∣∣∣ ≤ 3η

2
|(ATb)i|. (5.94)

Now consider the denominator of (5.5) for the diagonal entries i satisfying our assumption,

and denote it as (G
1/2
k )i:

(G
1/2
k )i :=

√√√√ k∑
τ=0

g2
τ,i + kϵ. (5.95)

Using (5.93) with respect to gada
k , we establish the following bound for (G

1/2
k )i:

√
k ·
√

(
1

2
(ATb)i))2 + ϵ ≤ (G

1/2
k )i ≤

√
k ·
√

(
3

2
(ATb)i))2 + ϵ. (5.96)

Taking the inverse of (G
1/2
k )i, our bounds become:

1
√
k ·
√

(3
2
(ATb)i))2 + ϵ

≤ (G
1/2
k )−1

i ≤
1

√
k ·
√

(1
2
(ATb)i))2 + ϵ

. (5.97)

We can then bound our update ∆xada
k (i) with respect to |(ATb)i|:∣∣∣∣∣∣ η

2
√
k ·
√

(3
2
(ATb)i))2 + ϵ

(ATb)i

∣∣∣∣∣∣ ≤ ∣∣∆xada
k (i)

∣∣ ≤
∣∣∣∣∣∣ 3η

2
√
k ·
√

(1
2
(ATb)i))2 + ϵ

(ATb)i

∣∣∣∣∣∣
(5.98)
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Using (5.98) and (5.94) we get the following final bound for our ratio:∣∣∣∣∣∣ 3
√
k ·
√

(3
2
(ATb)i)2 + ϵ

∣∣∣∣∣∣ ≤ |∆xada
k (i)|

|∆xgd
k (i)|

≤

∣∣∣∣∣∣ 3
√
k ·
√

(1
2
(ATb)i)2 + ϵ

∣∣∣∣∣∣ . (5.99)

Theorem (5.4.3) tells us that when a feature has small or potentially sparse entries, the
Adagrad update for that feature will be larger in magnitude compared to GD. Likewise,
when the feature has large or non-sparse entries, Adagrad will give a smaller update to
that feature compared to GD. In all, the ratio between the update with respect to Adagrad
and GD varies inversely with the magnitude of the column ∥A(:, i)∥ for columns satisfying
our assumption. Intuitively, Adagrad will converge to solutions where weights for features
that are small in norm, and weights for features that are large in norm are closer together
in absolute value, when compared to gradient descent.

5.5 Connection Between ℓ∞-Norm Solution and Fixed

Preconditioned Gradient Descent

In section 5.4, we established the idea of local vs diffuse solutions to the underdetermined
system Ax = b via the introduction of the local-sparsity metric. From here we introduced
our experimental findings stating that Adagrad promoted diffuse solutions with respect to
the LSM, as well as when compared to gradient descent. We concluded by theoretically
showing that Adagrad promoted more diffuse solutions when compared to gradient descent
when features are relatively more sparse.

Another key observation that was made from our observations, which are presented in
chapter 6, was that the LSM of the minimum ℓ∞-norm solution and the Adagrad solution
share a very similar (low) LSM score. This leads us to question whether the Adagrad pre-
conditioner matrix allows for some sort of connection between the∞-norm solution and the
Adagrad solution. To simplify this question, we, instead, consider the following question:
is there a fixed diagonal preconditioner G, such that the ∞-norm solution is equal to the
fixed preconditioned gradient descent solution? The idea here is that the∞-norm solution
produces very diffuse solutions compared to the other common p-normed solutions, and
Adagrad’s solution shares similar diffusion properties, so does the preconditioner matrix
somehow steer the training to reach a solution close to the ∞-norm solution?
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The following two theorems show that there does exist a construction of G which
enables fixed preconditioner GD to converge to the minimum ∞-norm solution. Theorem
5.5.2 shows how, under the right construction of a diagonal weight matrix D, weighted least-
squares (WLS) converges to the minimum∞-norm solution, and theorem 5.5.3 shows that
under the correct selection of the fixed preconditioner G (chosen with respect to D), we
have that fixed preconditioner GD is equivalent to WLS.

Before we jump in, however, we require the knowledge of a well known result called the
Karush-Kuhn-Tucker (KKT) conditions.

Definition 5.5.1 (Relative Interior). Let S ⊆ Rd. The relative interior of S, denoted as
relint(S), is the interior of the affine hull (set of all affine combinations of elements in S
denoted aff(S)) of S. That is,

relint(S) := {s ∈ S : ∃ϵ > 0 s.t. B(s; ϵ) ∩ aff(S) ⊆ S } . (5.100)

Definition 5.5.2 (Slater’s Condition). For a convex problem:

min
x∈Rd

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

where f0, f1, . . . , fm are convex functions, and D := ∩mi=1dom(fi) (convex), Slater’s condi-
tion states that strong duality holds if there exists a point x∗ ∈ relint(D) which is strictly
feasible, i.e. satisfies

fi(x
∗) < 0, i = 1, . . . ,m

Ax∗ = b.

Such a point is called a Slater point.

Fact 5.5.1 (KKT Conditions for Convex Problems). Consider the following general convex
problem which is in standard form:

min
x∈Rd

f(x)

s.t. hi(x) ≤ 0, i = 1, . . . ,m

gi(x) = 0, i = 1, . . . , r

(5.101)

where f : Rn → R is convex, hi are convex for all i = 1, . . . ,m, and gi are affine trans-
formations for all i = 1, . . . , r. Then, if problem (5.101) satisfies Slater’s Condition1, then

1Other constraint qualifications such as LICQ and MFCQ may also be considered.
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x∗ ∈ Rd is said to both necessarily and sufficiently be an optimum to the convex problem if
it satisfies the following conditions, known as KKT conditions:

0 ∈ ∂f(x∗) +
m∑
i=1

µi∂hi(x
∗) +

r∑
j=1

λi∂gi(x
∗) (Stationarity)

µi · hi(x∗) = 0, ∀i (Complementary Slackness)

hi(x
∗) ≤ 0, gi(x

∗) = 0, ∀i, j (Primal Feasibility)

µi ≥ 0, ∀i (Dual Feasibility)

for some constants µi and λi ∈ R called KKT multipliers.

Theorem 5.5.2. Let x∗
∞ be the solution to the minimum ∞-norm problem which we’ll

denote as (P1) and written as:

(P1)

min
x∈Rd
∥x∥∞

s.t Ax = b.

Similarly, let x∗
WLS be the solution to the weighted minimum 2-norm problem which we’ll

denote as (P2) and written as:

(P2)

min
x∈Rd

1

2
∥Dx∥22

s.t Ax = b

where D ∈ Rd×d is a diagonal matrix assigning independent weights to each coordinate of
x. Then there exists a D such that x∗

∞ = x∗
WLS.

Proof. In order to show that (P1) and (P2) converge for the same solution for a specific
D, we require to construct D such that both x∗

WLS and x∗
∞ satisfy the KKT conditions of

their opposing problem. Let D ∈ Rd×d be diagonal. Then the KKT conditions of (P2) are:

ATz = D2x (Stationarity)

Ax = b (Primal Feasibility)
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where z is the vector of KKT multipliers. Now we’d like to write out the KKT conditions
for (P1). Instead, we reframe (P1) to an equivalent linear program (LP) which we’ll denote
as (P1’) and is written as:

(P1′)

min
t∈R

(t)

s.t Ax = b

−x+ et ≥ 0

x+ et ≥ 0

where t > 0 and e is the vector of ones with dimension adapted to that of x. Then we
have the following KKT conditions for (P1’):

Ax = b

−et ≤ x ≤ et
(Primal Feasibility)

λi(−xi + t) = 0 ∀i
µi(xi + t) = 0 ∀i

(Complementary Slackness)

1 = e⊤(λ− µ)

A⊤w = (λ− µ)
(Stationarity)

λ ≥ 0

µ ≥ 0
(Dual Feasibility)

where w,λ, and µ are d-dimensional vectors of KKT multipliers. Comparing the KKT
conditions of (P1’) and (P2), we see that they are the same if

D2x = (λ− µ). (5.102)

We therefore choose the diagonal entries, Dii, of D depending on the following 4 cases of
λ and µ:

Case 1: if λ = µ = 0
Then taking Dii = 0 we must have that:

D2
iixi = λi − µi.
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Case 2: if λ > 0, µ = 0
Then we must have that xi = t which implies that xi > 0. Since xi > 0 we choose Dii > 0
satisfying:

D2
iixi = λi.

Case 3: if λ = 0, µ > 0
Then we must have that xi = −t which implies that xi < 0. Since xi < 0 we choose
Dii > 0 satisfying:

D2
iixi = −µi.

Case 4: if λ ≥ 0, µ ≥ 0
This scenario would not happen as this will contradict complementary slackness of (P1’).
That is, under this case, we would have that xi = t and xi = −t which is a contradiction.

This concludes the proof.

So we have shown that it is possible to construct a diagonal weight matrix D such that
the solution to (P2) will equal the solution of (P1). The following theorem shows how to
select the fixed preconditioner, G, such that fixed preconditioner GD applied to problem
(5.3) converges to the same solution as (P2):

Theorem 5.5.3. Let A ∈ Rn×d be underdetermined and full row rank. Let D be the
diagonal weight matrix from (P2). If the problem (P1) is such that D can be constructed
to be positive definite, set G = D−2. Using G as the preconditioner matrix for fixed
preconditioned gradient descent under problem (5.3), fixed preconditioner GD will converge
to the solution of (P2).

Proof. First, since D is diagonal, we may rewrite (P2) as

min
x∈Rd

x⊤D2x

s.t Ax = b
(5.103)
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Letting z = Dx, we get

min
z∈Rd

zTz = ∥z∥22

s.t AD−1z = b
(5.104)

Thus, by the minimum 2-norm solution of least-squares (theorem 5.2.1 when G = I), we
have that

z∗ = (AD−1)T ((AD−1)(AD−1)T )−1b (5.105)

=⇒ x∗ = D−1(AD−1)T ((AD−1)(AD−1)T )−1b (5.106)

Letting D−1 = G1/2 (or rearrange to choose G = D−2), we get (5.14) where X = AG1/2.

This concludes the proof.

Theorems 5.5.2 and 5.5.3 together show that for a correct choice of preconditioner, fixed
preconditioned gradient descent can achieve the minimum ℓ∞-norm solution of overparam-
eterized LR.

Additionally, we notice that in the construction of the weight matrix D in the proof
of Theorem 5.5.2, to achieve the minimum ∞-norm solution of overparameterized LR, we
must have that Dii = 0 whenever |xi| < ∥x∥∞2. In other words, we have that Dii = 0 for
all smaller entries (in magnitude) of x. This corresponds to what we witness in Adagrad’s
behaviour, namely that smaller entries (or features) of x yield smaller entries of the gradient
g, which implies smaller entries of the Adagrad preconditioner, Gii. Recall that in order
to achieve the ∞-norm solution, we need the preconditioner to satisfy G = D−2 where D
is constructed to satisfy Theorem 5.5.2. So if Dii = 0 whenever we have small entries of x
(in magnitude), then D−2

ii will be infinite and therefore cannot attain a G that will satisfy
the ∞-norm solution, but we can get close if the Gii is large which is what is observed for
the Adagrad preconditioner.

2This follows from primal feasibility and complementary slackness of (P1′) which yields case 1 in the
proof of Theorem 5.5.2.
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5.6 Diffusivity of Adagrad May Not Always General-

ize Well

This brief section will cover the connection between our observations of diffusivity of Ada-
grad’s solution in the underdetermined least-squares regime to those posed in the work
by Wilson et al. [57]. Recalling from the related-works chapter 2, the work in the paper
argues that adaptive optimization methods, like Adagrad, tend to generalize worse than
stochastic GD. In their study, the setting of focus is that of over-parameterized binary
least-squares classification:

min
x∈Rd

RS[x] :=
1

2
∥Ax− b∥22 (5.107)

where A ∈ Rn×d (n < d), and b ∈ Rn is a vector of labels in {−1, 1}. We notice that this
is a similar regime of study to our own except that they limit the space of the solution
vector b ∈ {−1, 1}. As was discussed previously, (stochastic) GD under this regime will
converge to the minimum 2-norm solution xSGD = AT (AAT )−1b, which is considered as
the solution with largest margin out of all solutions of the form: Ax = b when speaking
of the task of classification.

In terms of adaptive methods, the authors propose the following lemma which captures
the solution form of general adaptive methods of the form:

xk+1 = xk − αkH
−1
k ∇̃f(xk + γk(xk − xk − 1)) + βkH

−1
k Hk−1(xk − xk−1) (5.108)

where Hk is a positive definite preconditioner matrix and ∇̃ denotes the use of either a
full or stochastic gradient. For the case of Adagrad, setting Hk to be (4.12), αk ≡ α > 0,
βk = 0, and γk = 0 in equation (5.108) we retrieve the Adagrad update. Denote sign(x)
to be the function which maps each component of its input to its sign. The following holds
for diagonal Hk’s:

Lemma 5.6.1. Suppose there exists a scalar c ∈ R such that A sign(ATb) = cb. Then,
when initialized at x0 = 0, Adagrad, Adam, and RMSProp all converge to the unique
solution x ∝ sign(ATb).

Proof. See [57].

What this lemma is concluding at is that, if there exists a solution of Ax = b that
is proportional to sign(ATb), then Adagrad (as well as the other adaptive methods men-
tioned) will converge to said value. In other words, the solution generated by Adagrad
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xada, will have coordinates of the form ±τ for some positive constant τ . Furthermore, the
authors construct a particular example demonstrating how Adagrad will classify all unseen
data as the positive class [57, Section 3.3]. As we’ll discuss in a moment, the construction
of the problem is such that solutions which are locally sparse will perform better than
those which are diffuse.

This behaviour aligns with our findings in sections 5.4 and 5.5. First, we saw that
Adagrad promoted diffuse solutions to the over-parameterized least-squares regime. By
Lemma 5.6.1 we have that solutions of Adagrad, xada, under this particular case of binary
least-squares classification, will yield solutions in which the coordinates of xada will have
equal magnitude. The LSM of such a solution will yield us a value which reaches the lower
bound of the LSM (refer to (5.57)). That is, we should expect that Adagrad produces
diffuse solutions in this special case regardless of what we set the step-size α to.

Additionally, the converged solutions produced by Adagrad in this particular case yield
low ℓ∞-norm values, more so than when compared to the solution’s ℓ2-norm [57]. This
connects to what we spoke about in section 5.5 and what we will see in our experiments
in section 6.1 in that there exists similarities between the solutions produced by Adagrad
and the minimum infinity-norm solution. As such, training using optimizers that yield
diffuse solutions on cases in which a locally sparse solution is needed in order to generalize
well will cause Adagrad’s generalization performance to suffer. The particular example
constructed in [57, Section 3.3] benefits optimizers that select sparser solutions as only the
first entry of each sample is needed to perfectly classify the sample; a diffuse solution will
inevitably distribute the weight given to its parameters more evenly.

The question then becomes, will solutions with low infinity norm (or in our terminol-
ogy, low LSM) always generalize poorly? In section 6.2, we demonstrate that one may
also construct certain problems of over-parameterized least-squares in which these diffuse
solutions generalize better than those solutions with low ℓ2-norm. This contrast lends its
hand to why, in practice, adaptive methods sometimes still out-perform the non-adaptive
methods in certain deep learning regimes. This leads to the train of thought that adaptive
methods are not universal optimizers, and that one should not blindly select an optimizer
when training their models. It also highlights the importance of understanding different
optimizers’ solution biases.
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Chapter 6

Experimental Results

In this chapter we present and discuss our experimental findings based off what was dis-
cussed in chapter 5. Specifically, we first show empirical evidence of Adagrad promoting
more diffuse solutions when compared to the least squares minimization scenario (i.e. gra-
dient descent). From this, we present a case where such solutions chosen by Adagrad are
advantageous, namely in the interpolation of a line using bump functions.

6.1 Adagrad Promotes Diffuse Solutions

In chapter 5 we introduced the local-sparsity metric as a way of measuring the approxi-
mate sparsity of a solution generated by an algorithm. In short, the output of the LSM is
bounded as in (5.52) where the output being closer to the lower bound implies the input
is diffuse or not approximately sparse, while the output being closer to the upper bound
implies the input is approximately sparse in the sense that certain coordinates dominate
the rest. From such a metric, we should expect that the minimum∞-norm solution of over-
parameterized LR, which promotes solutions in which the coordinates are approximately
equal, and the minimum one-norm solution which promotes sparse solutions should be on
opposite ends of the bound’s spectrum. Denoting these as the infinity-norm and one-norm
solutions respectively, we expect that the infinity-norm solution lies very close to the lower
bound of the LSM, while the one-norm lies close to the upper bound of the LSM. As such,
we can also think of the two-norm solution as being somewhere in between. As a quick
recall, we denote the minimum α-norm solution to be the solution outputted by problem
(5.50) where the norm on x is chosen to be α.
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The tables that follow contain the average LSM-score computed on the outputs of se-
lected optimizers over five runs. Each column represents the runs performed using the
indicated step-size η = [0.001, 0.01, 0.1, 1], where a single run, used to calculate the av-
erage, consists of solving (5.3) where we randomly generate an underdetermined matrix,
A, and random solution b. The runs computed are independent across tables. Each row
represents the LSM-scores generated by the two-norm, one-norm, infinity-norm, Adagrad,
and stochastic Adagrad, respectively. Each table generates the data based off of a fixed
number of observations n, and features d, under the rule n ≈

√
d. Figure 6.1 contains the

table such that n = 5 and d = 40. Figure 6.2 contains the table such that n = 20 and
d = 400, and Figure 6.3 contains the table such that n = 63 and d = 4000.

Between each table: 6.1, 6.2, and 6.3, the step-sizes η that vary between the tables only
affects the performance of both Adagrad and stochastic Adagrad as these are the only two
iterative algorithms programmed. The α-norm solutions (α ∈ {1, 2,∞}) are generated
using the Matlab convex programming solver CVX which does not utilise η. We also note
that we do not include gradient descent as an optimizer since GD converges to the 2-Norm
solution as was seen in chapter 5.

Following these tables are four bar graphs (Figure 6.1) of the LSM scores computed in
Table 6.3. Each bar graph captures these averaged LSM scores with respect to one of the
four step-sizes η = [0.001, 0.01, 0.1, 1]. Figure 6.2 captures the same data but focusing just
on Adagrad and stochastic Adagrad as they are the two optimizers that are affected by η.

* We note that stochastic Adagrad is trained with a step-size of η/n where n is the
number of observations (or rows) in the data matrix A since each step only considers a
single observation.
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Observations n = 5; Features d = 40
η = 0.001 η = 0.01 η = 0.1 η = 1

2-Norm 0.19832 0.19865 0.19770 0.19317
1-Norm 0.53652 0.59118 0.52983 0.50106
∞-Norm 0.16254 0.16195 0.16151 0.16210
Ada. 0.16352 0.16410 0.17927 0.28220
S-Ada.* 0.18383 0.18307 0.18727 0.20697

Table 6.1: Table consisting of the average of 5 runs across the 5 optimizers. Each column
represent the runs with step-size chosen from η = [0.001, 0.01, 0.1, 1] respectively, and
each row represents the results produced by ℓ2-norm, ℓ1-norm, ℓ∞-norm, Adagrad, and
stochastic Adagrad, respectively. Each run used to calculate the average generates a new
random data matrix A and target b such that n = 5, d = 40. The lower bound for the
LSM ≈ 0.1581.

Observations n = 20; Features d = 400
η = 0.001 η = 0.01 η = 0.1 η = 1

2-Norm 0.06241 0.06209 0.06213 0.06165
1-Norm 0.29995 0.30501 0.29326 0.28905
∞-Norm 0.05033 0.05037 0.05036 0.05039
Ada. 0.05126 0.05177 0.07989 0.09937
S-Ada.* 0.06096 0.06085 0.06110 0.06308

Table 6.2: Table consisting of the average of 5 runs across the 5 optimizers. Each column
represent the runs with step-size chosen from η = [0.001, 0.01, 0.1, 1] respectively, and
each row represents the results produced by ℓ2-norm, ℓ1-norm, ℓ∞-norm, Adagrad, and
stochastic Adagrad, respectively. Each run used to calculate the average generates a new
random data matrix A and target b such that n = 20, d = 400. The lower bound for the
LSM ≈ 0.05.
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Observations n = 63; Features d = 4000
η = 0.001 η = 0.01 η = 0.1 η = 1

2-Norm 0.01980 0.01983 0.01979 0.01982
1-Norm 0.16770 0.16908 0.17042 0.17876
∞-Norm 0.01585 0.01586 0.01585 0.01586
Ada. 0.01608 0.02095 0.03688 0.03820
S-Ada.* 0.01959 0.01963 0.01997 0.02027

Table 6.3: Table consisting of the average of 5 runs across the 5 optimizers. Each column
represent the runs with step-size chosen from η = [0.001, 0.01, 0.1, 1] respectively, and
each row represents the results produced by ℓ2-norm, ℓ1-norm, ℓ∞-norm, Adagrad, and
stochastic Adagrad, respectively. Each run used to calculate the average generates a new
random data matrix A and target b such that n = 63, d = 4000. The lower bound for the
LSM ≈ 0.01581.

Figure 6.1: Bar charts of the LSM scores of Table 6.3. Each chart presents the data of
one column of the table which represents the LSM result of each optimizer for the given
step-sizes η ∈ [0.001, 0.01, 0.1, 1].
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Figure 6.2: Bar Charts combining the LSM scores of (left) Adagrad, and (right)
Stochastic Adagrad from Figure 6.1. Each bar indicates the LSM score for a step-size
η ∈ [0.001, 0.01, 0.1, 1]. This data is deduced from Table 6.3.

It is evident that, across the tables 6.1, 6.2, and 6.3, the same pattern occurs as the
step size varies; That is, the size of the data does not seem to have an affect on the nature
of the diffusion pattern; It only decreases the lower bound attainable by the LSM. What
we do notice, however, is that the step-size η does have an affect on Adagrad’s LSM score.
Namely, as step size decreases, the Adagrad LSM score decreases. This is telling us that,
for small enough step size, Adagrad promotes non approximately sparse solutions, but for
large enough step size, the behaviour no longer holds and, in fact, promotes approximately
sparser solutions to that compared with the two-norm solution.

We also confirm what was discussed at the beginning of this section in that the ∞-
norm stays very close to the lower bound while the 1-norm has a very high score when
compared to the other optimizers. To understand this intuitively, we may think of the
geometry that each norm induces when considering the set of vectors x s.t ∥x∥ = 1 in R2.
For the 1-norm, we have a diamond centered at the origin where each vertex is located
on (1, 1), (0, 1), (−1, 1), (0,−1). Therefore, when attempting to find the 1-norm solution,
these vertices will be the first to intersect the hyperplane of solutions generated by the
underdetermined system Ax = b. So, intuitively, the 1-norm solution will promote sparse
solutions and therefore have a high LSM score. A similar idea is applied to the ∞-norm,
only now we note that the ∞-norm is a square centered at zero with each vertex located
at (1, 1), (−1, 1), (−1,−1), (1,−1). So for the ∞-norm solution, these vertices will likely
be the first to intersect with the hyperplane of solutions and we see that these vertices are
diffuse giving us a low LSM score.

Moreover, when comparing the LSM score of Adagrad to the LSM score of the 2-norm
(or, in other words, the LSM score of GD), we see that LSM-Adagrad is less than LSM-
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2-Norm when η is sufficiently small, but then no longer holds when η is sufficiently large.
This observation matches up with Theorem (5.4.3) in that, in order for the bound on the
ratio (5.63) to hold, we require η small enough. Intuitively, the preconditioner matrix of
Adagrad suppresses the growth of strong signaled features while promoting the growth
of low signaled features. When equipped with a small step-size η, this suppresses the
strong signaled features even more while only dampening the promotion of low signaled
features. With such restriction on the strongly signaled features and net promotion on the
low signaled features, we can imagine that early iterations of Adagrad shift the direction
of descent towards the low signaled features enough to converge to a more diffuse solution.

Turning to stochastic Adagrad, there does seem to be a slight increase in LSM as we
vary η towards 1, however it is hard to tell if it is noise or not. To ensure that this is
not just noise, we perform additional runs with higher step-sizes. The following two bar
graph shows the average LSM score of stochastic Adagrad, and Adagrad for comparison,
over 5 runs when n = 63, d = 4000, and we vary η = [2, 4, 6, 10, 20, 40]. We chose these
dimensions in order to remain consistent with Figure 6.2.

Figure 6.3: Bar charts containing additional averaged LSM score runs for a large magnitude
of varying step-sizes η, for (Left) Adagrad, and (right) stochastic Adagrad. Runs were
performed on generated data with n = 20, d = 400.

In the case for Adagrad, we see that, except for the anomaly at η = 10, the LSM seems
to stabilize after η = 1. For stochastic Adagrad we see some additional growth towards
the LSM of full-gradient Adagrad at around step-size η = 6. The same anomaly occurs
at η = 10 and then the step-size drops back to the more lower LSM scores realized. We
thus see that stochastic Adagrad does grow its LSM but required a larger step-size than
full-gradient Adagrad.
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6.2 A Case For Diffuse Solutions: Interpolation

In this section, we present our empirical findings for an application where having a low
LSM score has an advantage. Such a case is the problem of interpolating a function
using bump-like functions. The inspiration behind this problem comes from radial basis
function (RBF) interpolation which was briefly discussed in the background section 3.4.
Recall that in RBF interpolation, we are attempting to find optimal weights x such that
s(ζi;x) = f(ζi) for i = 1, . . . , N for some, possibly unknown, function f . We concluded
that this was equivalent to solving a linear regression problem Ax = b where A is a matrix
with entries satisfying the form aij = ψ(∥ζj−ζi∥), and the vector b is such that bi = f(ζi).

In this experiment, we aim to interpolate a line in R2 using a system similar to RBF
interpolation. That is, we attempt to solve for weights x such that

s(ζi;x) =
N∑
k=1

xi · ψ(∥ζi − ζk∥2) = f(ζi) ∀i = 1, . . . , N (6.1)

except we don’t use a common RBF. Instead, we consider the following spike-like functions:

ϕ (∥r − ζ∥2) := max

{
0,
α− ∥r − ζ∥2

α2

}
(6.2)

where ζ ∈ Rm, m > 0, is a centre, and α ∈ R is a shape parameter which affects both the
width and height of the spike. This function is constructed such that the integral evaluates
to 1. Figure 6.4 shows an example when α = 0.39 and ζ = 0.87.

Figure 6.4: Spike function generated by (6.2) when α = 0.39, and the centre ζ = 0.87.
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Our experiment set up is therefore the following: we’d like to consider the scenario
where we randomly generate a data set A ∈ R2n×d where 2n < d and labels b ∈ R2n such
that the entries of A are defined by

aij = max

{
0,
αj − ∥ri − ζj∥2

α2
j

}
(6.3)

for all i = 1, . . . , 2n and j = 1, . . . d; where ri ∈ R are randomly generated using a
(0,1)-uniform distribution, i = 1, . . . , 2n, αj are randomly generated using a (0,1)-uniform
distribution scaled by 0.1, j = 1, . . . , d, and the centres ζj are randomly generated using a
(0,1)-uniform distribution, j = 1, . . . , d. The coordinates of b are taken to be the ri, that
is, bi = ri, for i = 1, . . . , 2n.

From here, we solve the underdetermined system Āx = b̄ where Ā ∈ Rn×d and b̄ ∈ Rn

are taken to be the reduced data-label pair used for training. The goal is to see how well
each optimizers’ solution generalizes to the entire data, i.e. how well does each optimizers’
solution do in interpolating a linear line in R2. We measure how well an optimzers’ solution
generalizes to the entire data set by comparing their residuals:

ℓ(x∗) = ∥Ax∗ − b∥2. (6.4)

Since each run randomly generates a new line and points to interpolate, the results found
below are normalized with respect to the ℓ2 norm of b. Ideally, under such spike functions,
we should expect solutions that are non-approximately sparse to perform better since using
more spike functions allows us to get a better interpolation.

In the following tables, we compare the residuals that each optimizers’ solution (trained
on a partitioned training set) outputs when ran on the entire data set. In this experiment,
we only vary the number of observations n per group of tables, and within each group we
vary the step-size η = [0.001, 0.01, 0.1, 1]. Varying d does not seem to have any noticeable
effects. The optimizers used are the 2-norm, 1-norm, ∞-norm, Adagrad, and Stochastic
Adagrad.

Following these tables are visual plots of the performance of each model on a select
number of runs. Namely, the plots associate with data from the columns with step-sizes
η = {0.001, 1} of Table 6.4, and of Table 6.6. These were selected to visually show the two
ends of the spectrum, namely, smallest step size vs. largest step size, and smallest data set
vs. largest data set.

** We note that stochastic Adagrad is trained with a step-size of η/n where n is the
number of observations (or rows) in the data matrix A since each step only considers a
single observation.
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Observations 2n = 80; Features d = 2000
η = 0.001 η = 0.01 η = 0.1 η = 1

2-Norm 0.24751 0.23289 0.25968 0.24879
1-Norm 0.56325 0.53794 0.57983 0.55057
∞-Norm 0.15973 0.17003 0.16318 0.18108
Ada. 0.10292 0.11475 0.10378 0.33027
S-Ada.** 0.09711 0.09249 0.24902 2.20948

Table 6.4: Each column is the average normalized full-data (both in and out-of-sample)
residual of the 2-norm, 1-norm, infinity-norm, Adagrad, and stochastic Adagrad optimizers
for a particular step-size η = [0.001, 0.01, 0.1, 1] over 5 runs. The full data set is of shape
(A,b) ∈ R80×2000 × R80.

Observations 2n = 160; Features d = 2000
η = 0.001 η = 0.01 η = 0.1 η = 1

2-Norm 0.11218 0.10684 0.17305 0.12093
1-Norm 0.42642 0.39539 0.48096 0.42496
∞-Norm 0.08294 0.08363 0.12303 0.08865
Ada. 0.05502 0.05632 0.21842 0.11038
S-Ada.** 0.05002 0.04421 0.11949 0.86796

Table 6.5: Each column is the average normalized full-data (both in and out-of-sample)
residual of the 2-norm, 1-norm, infinity-norm, Adagrad, and stochastic Adagrad optimizers
for a particular step-size η = [0.001, 0.01, 0.1, 1] over 5 runs. The full data set is of shape
(A,b) ∈ R160×2000 × R160.

Observations 2n = 200; Features d = 2000
η = 0.001 η = 0.01 η = 0.1 η = 1

2-Norm 0.08696 0.07428 0.1099 0.09000
1-Norm 0.32866 0.34824 0.42222 0.40572
∞-Norm 0.07141 0.05749 0.08477 0.06877
Ada. 0.05099 0.04406 0.07445 0.05695
S-Ada.** 0.07531 0.02878 0.07157 0.59742

Table 6.6: Each column is the average normalized full-data (both in and out-of-sample)
residual of the 2-norm, 1-norm, infinity-norm, Adagrad, and stochastic Adagrad optimizers
for a particular step-size η = [0.001, 0.01, 0.1, 1] over 5 runs. The full data set is of shape
(A,b) ∈ R200×2000 × R200.
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(a) ℓ2 Norm (b) ℓ1 Norm

(c) ℓ∞ Norm

(d) Adagrad (e) Stochastic Adagrad

95



Figure 6.5: Visualized plot of (a) 2-norm, (b) 1-norm, (c)∞-norm, (d) Adagrad, and (e)
Stochastic Adagrad interpolated line on full data set corresponding to Table 6.4, η = 0.001.
All points present on the graphs are the interpolated points of the line by the respective
model. The green points are the interpolated points in which the model had access to the
true values for training. The red points are the interpolated points at the unseen data.
Together, both green and red points make up all the data. The red line is the true function,
y = x that is trying to be interpolated.
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(a) ℓ2 Norm (b) ℓ1 Norm

(c) ℓ∞ Norm

(d) Adagrad (e) Stochastic Adagrad
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Figure 6.6: Visualized plot of (a) 2-norm, (b) 1-norm, (c)∞-norm, (d) Adagrad, and (e)
Stochastic Adagrad interpolated line on full data set corresponding to Table 6.4, η = 1.
All points present on the graphs are the interpolated points of the line by the respective
model. The green points are the interpolated points in which the model had access to the
true values for training. The red points are the interpolated points at the unseen data.
Together, both green and red points make up all the data. The red line is the true function,
y = x that is trying to be interpolated.
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(a) ℓ2 Norm (b) ℓ1 Norm

(c) ℓ∞ Norm

(d) Adagrad (e) Stochastic Adagrad
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Figure 6.7: Visualized plot of (a) 2-norm, (b) 1-norm, (c)∞-norm, (d) Adagrad, and (e)
Stochastic Adagrad interpolated line on full data set corresponding to Table 6.6, η = 0.001.
All points present on the graphs are the interpolated points of the line by the respective
model. The green points are the interpolated points in which the model had access to the
true values for training. The red points are the interpolated points at the unseen data.
Together, both green and red points make up all the data. The red line is the true function,
y = x that is trying to be interpolated.
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(a) ℓ2 Norm (b) ℓ1 Norm

(c) ℓ∞ Norm

(d) Adagrad (e) Stochastic Adagrad
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Figure 6.8: Visualized plot of (a) 2-norm, (b) 1-norm, (c)∞-norm, (d) Adagrad, and (e)
Stochastic Adagrad interpolated line on full data set corresponding to Table 6.6, η = 1.
All points present on the graphs are the interpolated points of the line by the respective
model. The green points are the interpolated points in which the model had access to the
true values for training. The red points are the interpolated points at the unseen data.
Together, both green and red points make up all the data. The red line is the true function,
y = x that is trying to be interpolated.
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We notice that our intuition that more diffuse solutions will perform better holds. This
can be seen by comparing the 2-norm, 1-norm, and ∞-norm. We saw from our previous
experiments that the 1-norm and ∞-norm sit at opposite ends of the spectrum when it
comes to the LSM, while the 2-norm hangs somewhere in between, usually closer to the
∞-norm score. Our intuition told us that the 1-norm and 2-norm should perform worse
than the ∞-norm because both the 1 and 2-norms promote more approximately sparse
solutions. When this happens, a lot of the weights set to the different spike functions
have a higher chance of being zero (or local to a select few weights) when compared to
the ∞-norm. This prevents us from being able to use more of the spike functions leading
to only a handful of spikes having to compensate. Ideally, since we are interpolating
using very ”ugly” functions, using a larger number of them can enable better interpolation
performance. The resulting interpolated line is much more jagged for the 1-norm (and
somewhat for the 2-norm) when compared to the ∞-norm; see, for example, Figure 6.5
(a), (b), (c). This is also confirmed with our residual data found in the Tables 6.4, 6.5 and
6.6. We see that, when comparing the three norms (ℓ1, ℓ2, ℓ∞), the∞-norm has the lowest
residual across each table, and, as well, we see that by increasing the training sizes (e.g.
results from Table 6.4 vs. Table 6.6), the more spike functions we provide, the better each
optimizer performs. This lends its hand to both intuitive ideas expressed above, namely,
lower LSM scoring optimizers have lower residuals, and more spike functions allow for a
better interpolation.

Bringing Adagrad and its stochastic variant into the picture, we see that it, as well,
satisfies these intuitions, however, the residual results of Adagrad allow us to realize some-
thing additional to the above intuition. From the previous experiments involving the LSM
scores, we saw that, on average, the LSM of Adagrad was on par with the LSM of the
∞-norm solution. Yet, we see that the residuals of Adagrad (and stochastic Adagrad when
step size is low) out performs the ∞-norm solution, i.e. are lower. Does this mean lower
LSM scoring is not the only factor in the picture? One possibility is that, under this con-
struction of A, Adagrad is getting a lower LSM score than the ∞-norm. This intuition
seems to be holding experimentally by observing Table 6.7 1 and 2. We see that, in these
tables, Adagrad has the lower average LSM score and a lower residual score when compared
to the ∞-norm. We note that in Table 6.7 table 1, that stochastic Adagrad has a slightly
better LSM than Adagrad but slightly worse average residual. However, the difference in
LSM between Adagrad and its stochastic variant, here, is very small and can very likely
be noise.

The next thing that jumps out at us from the Tables 6.4, 6.5, and 6.6, is that, unlike the
Tables 6.1, 6.2, and 6.3, increasing the step size does not seem to be affecting the residual
of Adagrad. If residual is correlated to the LSM score, then our
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Table 1: 2n = 80, d = 2000, η = 0.001 Table 2: 2n = 80, d = 2000, η = 1
Avg. LSM Avg. Residual

2-Norm 0.03119 0.26298
1-Norm 0.21681 0.59386
∞-Norm 0.03036 0.19285
Ada. 0.0288 0.12773
S-Ada.** 0.02842 0.1737

Avg. LSM Avg. Residual
2-Norm 0.03067 0.26447
1-Norm 0.22333 0.55092
∞-Norm 0.02913 0.17707
Ada. 0.02813 0.13734
S-Ada.** 0.03106 2.48108

Table 3: 2n = 80, d = 2000, η = 10
Avg. LSM Avg. Residual

2-Norm 0.03131 0.22139
1-Norm 0.22045 0.5679
∞-Norm 0.03014 0.16115
Ada. 0.20481 0.57744
S-Ada.** 0.03138 20.71838

Table 6.7: Tables consisting of the averages over 5 runs of the LSM score and normalized
residuals for the 2-norm, 1-norm, ∞-norm, Adagrad, and stochastic Adagrad. Each table
differs by the step size used. Runs across tables are independent.

previous experiment tells us that we should expect the residual of Adagrad to increase as
the step-size η increases. This seems to be holding for stochastic Adagrad, but not for full
gradient Adagrad. It turns out that the behaviour is still holding. To see this, observe
the tables in Table 6.7, we see that the behaviour is present but we needed our step-size
to be much larger in this scenario. Why is this the case? Recall that, by Theorem 5.4.3,
under the assumption that a column of A satisfies (5.62), then up to some iteration k that
depends inversely on ∥A∥2, Adagrad will satisfy a larger growth for sparser features when
compared to the 2-norm. In our construction of A, it turns out that many features are
very sparse, so ∥A∥2 will be very small causing the number of iteration of k to be quite
large before our effect no longer holds. So it is possible that convergence is reached before
such a k takes effect. Likewise, since ∥A∥2 is very small, we also have, by Theorem (5.4.3),
that our choice of η can be very large. So indeed, nothing is breaking down here, just that
our upper bounds for both k and η, such that the effects of Theorem 5.4.3 holds, for this
class of problem are larger than the problem considered in Tables 6.1, 6.2, and 6.3.

Referring back to Table 6.7, we still notice that, the average LSM of stochastic Adagrad
stays close to the LSM of the ∞-norm, but its ability to generalize becomes worse when
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step size increases. It is possible that the optimizer is failing to train. The following plots
visualize the training and full-data errors with respect to the error ∥Axk − b∥2:

Figure 6.9: (left) Error plot of (Dark Blue) full-data, and (red) training-data of stochas-
tic Adagrad on the interpolation problem with η = 1, 2n = 80, and d = 2000 normalized
with respect to the target; (right) zoom-in of left plot showing training error compared
to zero error at the final iterations.

From Figure 6.9, it is evident that the training stagnates roughly around a training
error of 0.1. It is possible that, due to the large step-size, stochastic Adagrad is jumping
around a neighborhood of the solution. We saw in section 3.2.2 that a decaying step-size
is required in order to converge. As we increase the step-size, the neighborhood of the
solution stochastic Adagrad bounces around gets larger which in turn provides a worse
training error, and therefore, a worse generalization error.
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Chapter 7

Conclusion

In this thesis, we introduced a class of first order methods known as adaptive gradient
methods with the intent on studying their algorithmic biases in the underdetermined lin-
ear regression regime. Focusing particularly on the Adagrad algorithm, we first analyzed
the simpler case of fixed preconditioned gradient descent. We showed convergence in the
underdetermined linear regression regime, and, in particular,showed it converges to the
minimum 2-norm solution of the underdetermined problem AG1/2x = b, where G is the
fixed diagonal preconditioner matrix (Theorem 5.2.1). Moving to full gradient diagonal-
ized Adagrad, we showed convergence in the underdetermined LR regime (Theorem 5.3.6),
and proved that when features of our underdetermined matrix A are small in norm, and
our step size is small enough, Adagrad will promote the training in the direction of those
sparser features, while suppressing the training in the direction of frequent features, when
compared to gradient descent (Theorem 5.4.3). Additionally, we showed that one can con-
struct a diagonal matrix D such that weighted least-squares converges to the minimum
ℓ∞-norm solution of underdetermined linear regression (Theorem 5.5.2), and likewise the
same result under the correct choice of preconditioner when optimizing with fixed pre-
conditioner gradient descent (Theorem 5.5.3). This allowed us to better understand why
Adagrad promotes small LSM scored solutions like the ∞-norm solution does.

The formation of Theorem 5.4.3 came from experimental findings that showed that,
under the underdetermined LR regime, and for small enough step sizes, Adagrad promoted
diffuse (or non-approximately sparse) solutions when compared with gradient descent. This
was measured using a metric derived from compressive sensing which we dubbed the ”local-
sparsity metric” that measures approximate sparsity of a vector.

Finally, we show the benefit of such a behaviour in the application of interpolating a
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line via spiked functions. Namely, we experimentally observe that optimizers that sport a
low local-sparsity metric score correlate with smaller residuals when interpolating a line.
Specifically, we see that for step size small enough, the solution produced by Adagrad
has the best residual results and lowest LSM score when compared to minimum 2-norm,
1-norm, and ∞-norm solutions.

Possible future work on this subject includes the analysis of what sort of solution
full gradient Adagrad converges to in the underdetermined LR regime, extensions to the
stochastic Adagrad scenario, and as well as studying the algorithmic behaviours and biases
of the other adaptive algorithms such as Adam and its stochastic variant in this regime.
Extension to studying the algorithmic behaviour to the non-linear setting is another path
of possibility as well.
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