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Abstract

When designing encryption schemes, there are different levels of security that one can
achieve. Of the two main security levels, cryptographers generally strive for the stronger
notion of chosen ciphertext attack (CCA) security, which considers attackers who have the
ability to obtain decryptions of their choice, over the weaker notion of chosen plaintext attack
(CPA) security, which only considers attackers who have encryption abilities. However, it
is much easier to find public key encryption schemes (PKEs) that satisfy CPA security.
For this reason, a common technique for developing CCA-secure PKEs is to apply a CPA-
to-CCA transformation to an existing CPA-secure PKE. The general idea behind such a
transform is to somehow ensure that anyone who is capable of producing a valid ciphertext
must already know the corresponding plaintext, which renders the additional powers that a
CCA adversary has over a CPA adversary entirely useless. All existing transforms achieve
this property by performing a re-encryption check in the decryption algorithm. However,
this leaves the resulting PKE vulnerable to side-channel attacks, which can be used to carry
out chosen ciphertext attacks on the underlying PKE.

In this thesis, we present a generic CPA-to-CCA transform that uses a zero-knowledge
proof of knowledge in place of a re-encryption check. We prove security of our generic
construction in the random oracle model, and we provide an instantiation of it using existing
schemes. For the instantiation, we use ElGamal as our underlying PKE, and an application
of Fischlin’s transfomation to a variant of Schnorr’s protocol for our zero-knowledge proof
of knowledge, and prove that these protocols satisfy the required security definitions.
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Chapter 1

Introduction

The development of encryption is based on a need for confidentiality: when a message is en-
crypted, it should not be possible for an adversary to determine the contents of the message.
The ability of an adversary to do so is largely dependent on what computational powers
an adversary has. For this reason, there are multiple formal definitions of cryptographic
security, which differ by the strength of the adversary they are protecting against.

Two of the most common notions of security for any type of encryption schemes are indis-
tinguishability against chosen plaintext attacks (IND-CPA) and indistinguishability against
chosen ciphertext attacks (IND-CCA). In the context of public key encryption schemes
(PKEs), IND-CPA security is the most basic notion of security. It guarantees security
against adversaries who can encrypt messages of their choice, but since all the information
required to do so is public, this is a power that all adversaries have. On the other hand,
IND-CCA security is a bit more involved. It guarantees confidentiality against adversaries
who can also decrypt ciphertexts of their choice. Since an adversary does not have access to
the secret key, they cannot (in general) decrypt ciphertexts on their own, so they must be
provided with a decryption oracle.

Given that it is possible for resourceful adversaries to have access to such oracles in the
real world, it is important to have practical IND-CCA-secure PKEs. As IND-CPA-secure
PKEs are much more common than IND-CCA-secure PKEs, it is desirable to have a generic
transformation which converts an IND-CPA-secure PKEs into IND-CCA-secure PKEs. One
approach to doing this is to modify an IND-CPA-secure PKE in such a way to ensure plaintext
awareness ; that is, to ensure that anyone who is able to produce a well-formed ciphertext
must possess enough information to obtain the corresponding plaintext. This renders the
presence of a decryption oracle useless, since any adversary who is able to query the oracle
(without any outside help) on a valid ciphertext must already possess enough information
to answer the query themself. So, the decryption oracle is not providing them with any
information that they would not have as an IND-CPA-adversary, and the IND-CPA-security
of the scheme therefore reduces to IND-CPA security.

Most such existing transformations achieve plaintext awareness by performing a re-
encryption check before returning the plaintext in the decryption algorithm. Although they
are still provably secure, re-encryption checks are known to be vulnerable to side-channel
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attacks, which, similarly to Bleichenbacher’s padding oracle attack[2], can be used to carry
out chosen-ciphertext attacks on the underlying PKE. This is of increasing concern in recent
years, as all of the finalist key encapsulation mechanism (KEM) candidates of NIST’s post-
quantum cryptography standardization competition rely on re-encryption checks to achieve
IND-CCA security. A multitude of such attacks have already been found, and cryptogra-
phers are actively looking to reduce this risk [9, 16]. Although this work does not delve into
post-quantum security, it explores a new option for a classical IND-CPA-to-IND-CCA trans-
form that does not involve a re-encryption check. There is potential for the development of
an analogous transformation that provides post-quantum security.

1.1 Related Work

There are a few such IND-CPA-to-IND-CCA transforms that can be found in the literature.
One of the earliest and most widespread of these is the Fujisaki–Okamoto (FO) transform [8],
which is built from an IND-CPA-secure public key encryption scheme (KGenpke,Encpke,Decpke)
with message spaceMpke and distribution Σpke, an IND-CPA-secure symmetric key encryp-
tion scheme (Encsym,Decsym) with keyspaceKsym, and two hash functions, G : {0, 1}∗ 7→ Ksym

and H : {0, 1}∗ × {0, 1}∗ 7→ Σpke. The transform works as follows:

KGen(λ)

1 : return KGenpke(λ)

Enc(pk,m)

1 : σ ←$Mpke

2 : a← G(σ)

3 : c← Encsym(a,m)

4 : h← H(σ, c)

5 : e← Encpke(pk, σ;h)

6 : return (c, e)

Dec(sk, (c, e))

1 : σ̂ ← Decpke(sk, e)

2 : if σ̂ ̸∈ Mpke : return ⊥
3 : â← G(σ)

4 : ĥ← H(σ̂, c)

5 : if e ̸= Encpke(pk, σ̂; ĥ) :

6 : return ⊥
7 : return Decsym(â, c)

Figure 1.1: Fujisaki-Okamoto Transform

In this case, h and ĥ are the random coins used for encryption. Notice that the re-
encryption step (line 5) of the decryption algorithm will fail if ĥ ̸= H(σ, c). So, if the
decryption algorithm doesn’t fail, then this implies that the party which formed the cipher-
text knows both σ and c, in which case they are able to obtain m themselves by running
Decsym(G(σ), c). Hence, a decryption oracle would not provide them with any useful infor-
mation.

The re-encryption step is comparatively expensive, so in [12], Okamoto and Pointcheval
present a new IND-CPA-to-IND-CCA transform called REACT (Rapid Enhanced-Security
Asymmetric Cryptosystem Transform), which does not involve re-encryption. In a follow-up
paper, [5], Coron, Handschuh, Joye, Paillier, Pointcheval, and Tymen build upon REACT
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to form GEM (Generic Chosen-Ciphertext Secure Encryption Method), which also does not
involve re-encryption. Similar to the FO transform, REACT and GEM are built from a
weakly secure public key encryption scheme, (KGenpke,Encpke,Decpke), with message space
Mpke and distribution Σpke. However, instead of requiring it to be IND-CPA-secure, they
require a slightly stronger notion of scecurity: one-wayness against plaintext-checking at-
tacks (OW-PCA). They also require an IND-CPA-secure symmetric key encryption scheme
(Encsym,Decsym) with keyspace Ksym, and two hash functions, G : {0, 1}∗ 7→ Ksym and
H : {0, 1}∗ × {0, 1}∗ × {0, 1}λ × {0, 1}λ 7→ {0, 1}ℓ(λ). REACT is defined as follows:

KGen(λ)

1 : return KGenpke(λ)

Enc(pk,m)

1 : R←$Mpke

2 : r ←$ Σpke

3 : c1 ← Encpke(pk, R; r)

4 : k ← G(R)

5 : c2 ← Encsym(k,m)

6 : c3 ← H(R,m, c1, c2)

7 : return (c1, c2, c3)

Dec(sk, (c1, c2, c3))

1 : R̂← Decpke(sk, c1)

2 : if R̂ ̸∈ Mpke : return ⊥
3 : k̂ ← G(R̂)

4 : m← Decsym(k̂, c2)

5 : if c3 ̸= H(R̂, m̂, c1, c2) :

6 : return ⊥
7 : return m

Figure 1.2: Rapid Enhanced-Security Asymmetric Cryptosystem Transform

Instead of performing a re-encryption check, REACT uses the hash function H in line
4 of decryption to ensure that any party who is able to create a valid ciphertext must
also have knowledge of the message that was encrypted. GEM uses the same underlying
framework, but embeds this check value in c1, thus eliminating c3 and shortening the resulting
ciphertext. However, unlike REACT, GEM does not allow for session keys to be computed
in advance, since session keys in GEM are message-dependent. This decreases efficiency in
some cases, specifically when using public key encryption schemes that are based on the
discrete logarithm problem, such as ElGamal.

In [10], Hofheinz, Hövelmanns, and Kiltz describe various, similar transformations that
can ultimately be used to convert a weakly secure PKE into a strongly secure KEM. To do
this, they break up the FO transform into two parts: the T-transform and the U-transform.
The T-transform takes in a PKE which satisfies either IND-CPA or OW-CPA (one-wayness
against chosen plaintext attacks) security, upon which it performs a re-encryption check to
convert it into one which satisfies either OW-PCA (one-wayness against plaintext check-
ing attacks) or OW-PCVA (one-wayness against plaintext and validity checking attacks)
security. The U-transform then converts the resulting scheme into an IND-CCA-secure key
encapsulation mechanism (KEM). They provide a different versions of each of these trans-
forms to cater to the different input and output security levels. The authors note that all
known generic transformations to IND-CCA-security (or the KEM versions of these trans-
formations), including the original FO transform and the REACT and GEM transforms, can
be written as some combination of the various T and U transforms, which suggests that all
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known generic transforms are simply variants of the FO transform. In particular, this means
that all known IND-CPA-to-IND-CCA transforms require derandomization of the encryp-
tion scheme, and perform a re-encryption check. It should be noted that for the ElGamal
cryptosystem, the “twinning” technique presented in [4] avoids the use of derandomization
and re-encryption, but it cannot be generalized as it uses specific zero-knowledge proofs that
cannot be applied to all PKEs. The authors of [10] remark that “it is an interesting open
problem to come up with alternative transformations that get rid of derandomization or that
dispense with re-encryption (while preserving efficiency).”

1.2 Contributions

In this thesis, we present a new approach to an IND-CPA-to-IND-CCA transformation for
public key encryption schemes, which does not involve derandomization or re-encryption.

In Chapter 3, we describe a generic transfomation and provide a proof of its security in
the random oracle model. Our transformation takes in two pre-existing protocols. The first
is an IND-CPA-secure PKE for which there exists an algorithm to perform decryption of
a ciphertext via the random coins used to produce said ciphertext. The second is a non-
interactive straight-line extractable zero knowledge proof of knowledge. Suppose that PKE is
such a public key encryption scheme and that Π is such a proof system. Then our combined
PKE, PKEZK, encrypts a message m by first encrypting it under PKE to obtain a ciphertext
c, and then uses Π to produce a zero knowledge proof of knowledge π of the random coins
used to form c, which is appended onto c to form the PKEZK ciphertext. Decryption is
performed by first checking that (c, π) is a valid statement/proof pair under Π, and if so,
then returning the decryption of c under PKE. At a high level, since a decryption oracle will
only decrypt ciphertexts for which the adversary knows the random coins that were used to
produce them, which the adversary is able to use to decrypt the ciphertext, then access to a
decryption oracle does not provide the adversary with any information that they could not
obtain without one. So, security of the combined scheme reduces to security of PKE and of
Π. We show this formally using a game-hopping proof.

In Chapter 4, we provide an instantiation of our construction. We use ElGamal [6] as our
PKE, and apply Fischlin’s transformation, which converts a Sigma protocol into a straight-line
extractable non-interactive zero knowledge proof of knowledge, [7] to a modified version of
Schnorr’s protocol [14] to use as our proof system Π. We prove that each of the components
satisfies the required security properties.

4



Chapter 2

Preliminaries

In this chapter, we introduce the random oracle model, and present the definitions required
for our construction. All security definitions are presented as adversarial games.

2.1 Random Oracle Model

The random oracle model was first introduced by Bellare and Rogaway in [1]. It assumes
the existence of a truly random function, implemented as an oracle that all parties have
access to, which can be used to model hash functions in security experiments. The intent of
a cryptographic proof in the random oracle model is to show that a given protocol does not
have any design flaws; it does not guarantee the security of an instantiation of the protocol.
Truly random functions do not have efficient representations in the real world, so in practice,
the security of an instantiation is dependent on the hash function used.

In a game-based setting, the adversary lives in a world provided for them by the chal-
lenger. In particular, this means that the challenger provides the random oracle to the
adversary, and therefore the challenger gets to see the queries that the adversary makes, as
well as program the responses that the adversary receives back. These properties are known
as extractability and programmability, respectively. The only restrictions are that, if the
same value is queried to the oracle multiple times, the oracle must respond the same way to
each query, and the responses provided by the challenger must appear uniformly random.

In this paper, we model the random oracle OH as an oracle which performs lazy sampling,
as described below for a list HList (controlled by the challenger) of oracle queries.
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OH(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ←$ {0, 1}λ

4 : HList← HList ∪ {(x, y)}
5 : return y

Figure 2.1: Random Oracle with Lazy Sampling

The challenger’s access to HList models extractability, while programmability allows the
challenger to program OH in whichever way they like (as long as their responses appear
uniformly random).

2.2 Public Key Encryption Schemes

Our first primitive is a public key encryption scheme. Definitions 1, 3, 4, and 5 are all
standard definitions, which have been taken from [11]. Definitions 6 and 7 are novel. We
will start by defining a public key encryption scheme.

Definition 1. A public key encryption scheme PKE consists of a public key space K, a
message spaceM, a ciphertext space C, and a tuple of algorithms (KGen,Enc,Dec), where

• KGen(λ) $→ (pk, sk) is a probabilistic key generation algorithm, which takes as input a
security parameter λ and outputs a tuple (pk, sk) ∈ K consisting of a public key/secret
key pair.

• Enc(pk,m) $→ c is a probabilistic polynomial time encryption algorithm that takes as
input a public key pk and a message m ∈M, and outputs a ciphertext c ∈ C.

• Dec(sk,m)→ m is a deterministic polynomial time decryption algorithm that takes as
input a secret key sk and a ciphertext c ∈ C, and outputs either a message m ∈ M or
a distinguished error symbol ⊥.

The random coins used in Enc are generated during the execution of the algorithm. We
can make Enc deterministic by sending in the random coins as an additional input, rather
than having Enc generate them internally. This gives the following equivalent definition of a
public key encryption scheme:

Definition 2. A public key encryption scheme PKE consists of a key space K, a proba-
bility distribution Σ, a message space M, a ciphertext space C, and a tuple of algorithms
(KGen,Enc,Dec), where
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• KGen(λ) $→ (pk, sk) is a probabilistic key generation algorithm, which takes as input a
security parameter λ and outputs a tuple (pk, sk) ∈ K consisting of a public key/secret
key pair.

• Enc(pk,m; r) → c is a deterministic polynomial time encryption algorithm that takes
as input a public key pk, a message m ∈M and random coins r sampled from Σ, and
outputs a ciphertext c ∈ C, and outputs a ciphertext c ∈ C.

• Dec(sk,m; r) → m is a deterministic polynomial time decryption algorithm that takes
as input a secret key sk, a ciphertext c ∈ C and random coins r sampled from Σ, and
outputs either a message m ∈M or a distinguished error symbol ⊥.

In order for a public key encryption scheme to be useful, certain properties should be
satisfied. Arguably, the most important of these is correctness; i.e., that decrypting the
encryption of a message results in the original message. Formally, correctness is defined as
follows:

Definition 3. We say that a public key encryption scheme is ϵ-correct if for all m ∈ M
and r ←$ Σ,

Pr

[
m′ ̸= m :

(pk,sk)←$KGen(λ);
c←Enc(pk,m;r);
m′←Dec(sk,c)

]
< ϵ.

We also generally require that public key encryption schemes satisfy certain security
properties. The weakest of these is what we call indistinguishability against chosen plaintext
attacks, which guarantees that an adversary is unable to determine which of two chosen
messages a given ciphertext is the encryption of, while having access only to the public key.
Formally, we define this as follows:

Definition 4. We say that a public key encryption scheme PKE is ϵ-IND-CPA-secure if, for
all probabilistic polynomial time adversaries A,∣∣∣∣Pr[ExpIND-CPA

PKE (A) =⇒ 1
]
− 1

2

∣∣∣∣ < ϵ,

where ExpIND-CPA
PKE is defined as

ExpIND-CPA
PKE (A)

1 : (pk, sk)←$ PKE.KGen()

2 : (m0,m1, st)←$A(pk)
3 : b←$ {0, 1}
4 : ctxt←$ PKE.Enc(pk,mb)

5 : b′ ←$A(pk, ctxt, st)
6 : return Jb = b′K

A stronger notion of security is indistinguishability against chosen ciphertext attacks,
which guarantees that an adversary is unable to determine which of two chosen messages
a given ciphertext is the encryption of, while having access to both the public key and a
decryption oracle. Formally, this is defined as:

7



Definition 5. We say that a public key encryption scheme PKE is ϵ-IND-CCA-secure if, for
all probabilistic polynomial time adversaries A,∣∣∣∣Pr[ExpIND-CCA

PKE (A) =⇒ 1
]
− 1

2

∣∣∣∣ < ϵ,

where ExpIND-CCA
PKE is defined as

ExpIND-CCA
PKE (A)

1 : (pk, sk)←$ PKE.KGen()

2 : (m0,m1, st)←$APKE.Dec(sk,·)(pk)

3 : b←$ {0, 1}
4 : ctxt←$ PKE.Enc(pk,mb)

5 : b′ ←$AODec(sk,·)(pk, ctxt, st)

6 : return Jb = b′K

ODec(c)

1 : if c = ctxt : return ⊥
2 : return PKE.Dec(sk, c)

To prevent the adversary from trivially winning the experiment, we do not allow them to
query the decryption oracle with the challenge ciphertext. This is achieved by programming
the oracle to fail in this case.

The basis of our construction will be an IND-CPA-secure public key encryption scheme.
However, in order for it to work, we need some additional constraints. Specifically, we re-
quire that the random coins used during encryption can be used in place of the secret key for
decryption. We refer to such a scheme as a decryptable with randomness, or, DWR public
key encryption scheme, and define it below.

Definition 6. Let PKE be a public key encryption scheme. We say that PKE is decryptable
with randomness (DWR) if there is an algorithm DecRand, where

• DecRand(pk, c, r) → m is a deterministic polynomial time decryption algorithm that
takes as input the random coins r sampled from Σ as well as a ciphertext c ∈ C, and
outputs a message m ∈M or a distinguished error symbol ⊥.

Similarly to the regular decryption algorithm, we also require that DecRand satisfies some
notion of correctness. In our case, we need that it produces the same output as Dec whenever
Dec produces a correct output. Formally, this can be stated as:

Definition 7. Let PKE be a DWR public key encryption scheme with ciphertext space C and
probability distribution Σ. Additionally, define the relation Rpk as

Rpk = {(r, c) ∈ PKE.Σ× PKE.C : c = PKE.Enc(pk, PKE.Dec(sk, c); r)}.

We say that PKE is ϵ-DWR-correct if the underlying PKE scheme is correct, and for all
probabilistic polynomial time adversaries A,

Pr
[
ExpDWR

PKE (A) =⇒ 1
]
< ϵ,

where ExpDWR
PKE is defined as
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ExpDWR
PKE (A)

1 : (pk, sk)←$ KGen()

2 : (c, r)←$A(pk, sk)
3 : return JDecRand(pk, r, c) ̸= Dec(sk, c) ∧ (r, c) ∈ RpkK

IND-CPA- and IND-CCA-security of a DWR PKE are defined identically to that of a
PKE.

2.3 Sigma Protocols

Before introducing our second primitive, non-interactive zero knowledge proofs of knowledge,
we will introduce Sigma protocols, as many of the definitions used for non-interactive zero
knowledge proofs of knowledge build off those for Sigma protocols. Definitions 8, 9, and
10 are taken from [3], while definitions 11, 12, 13, and 14 are taken from [7]. Definition
15 is adapted from the collision resistance definition for hash functions.

For the remainder of this section, let R ⊆ W ×X be a relation where W , X , and R are
efficiently recognizable finite sets. Let L be the language defined by R; that is, let L be the
set of x ∈ X such that there exists w ∈ W with (w, x) ∈ R.

Definition 8. A Sigma protocol for relation R ⊆ W × X is a collection of probabilistic
polynomial time algorithms (P = (P1,P2),V = (V1,V2)). P is an interactive protocol called
the prover, and V is an interactive protocol called the verifier. The protocol flow is as follows:

• P1 takes as input a witness/statement pair (w, x) ∈ R, and outputs a commitment
com.

• V1 takes as input the statement x and the commitment com from above, and outputs a
challenge ch.

• P2 retains the state of P1, takes as input the challenge ch from above, and outputs a
response rsp.

• V2 retains the state of V1, takes as input the response rsp from above, and outputs
either true or false, as a deterministic function of x, com, ch, and rsp. In the case
where V2 outputs true, we say that (com, ch, rsp) is an accepting transcript for x.

We require that for all (w, x) ∈ R, when P(w, x) and V(x) interact with each other, the
output of V2 is always true.

Sigma protocols are generally used when the prover wants to convince the verifier that
they know the value of the witness corresponding to a given statement, without disclosing
the witness to the verifier. An accepting transcript for a statement functions as a proof of
knowledge of the witness corresponding to that statement. When used in this way, there are
three main things that we want to ensure:

9



• A valid proof should be able to be produced for any statement in the language, for any
given challenge.

• Malicious provers who do not know the witness for a given statement should not be
able to produce an accepting transcript for that statement.

• Anyone who sees the transcript should not be able to deduce any information about
the witness that they could not have deduced without seeing the transcript.

The first property listed is called completeness, and it is implicit in definition 8 by the
requirement that any honest interaction between a prover and verifier must produce a valid
transcript.

The second point is less straightforward. Proving that someone “knows” a witness is
rather ambiguous, so instead, we show that anyone capable of producing accepting transcripts
could easily compute the witness from these transcripts. We achieve this through a property
called special soundness, defined below.

Definition 9. Let Π = (P = (P1,P2),V = (V1,V2)) be a Sigma protocol for relation R ⊆
W × X . We say that Π provides ϵ-special soundness if there is an efficient, deterministic
algorithm Π.Ext, called a witness extractor, such that for all provers P,

Pr
[
ExpExtΠ (P) ≠⇒ 1

]
< ϵ,

where

ExpExtΠ (POH)

1 : HList← ∅
2 : (com, stP1

)←$ P1(w, x)
3 : ch←$ V1(x, com)
4 : rsp← P2(ch, stP1

)

5 : ch′ ←$ V1(x, com)
6 : rsp′ ← P2(ch′, stP2

)

7 : w ← Π.Ext((x, com, ch, rsp), (x, com, ch′, rsp′))

8 : return J(w, x) ∈ R ∧ ch ̸= ch′

9 : ∧ V2(x, com, ch, rsp) = true

10 : ∧ V2(x, com, ch′, rsp′) = trueK

OH(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ←$ {0, 1}λ

4 : HList← HList ∪ {(x, y)}
5 : return y

It is worth noting that special soundness assumes that the prover is able to create multiple
accepting transcripts for the same commitment, but different challenges. In practice, the
same commitment and challenge should not be used (and will not be used, if the protocol
is followed honestly, as these values are chosen uniformly at random), so this does not leak
information about the witness to the public.

The third point is captured through a property called special honest verifier zero knowl-
edge, defined below. The idea is that if an accepting transcript can be generated without
knowledge of the witness, then it cannot possibly leak information about the witness.

10



Definition 10. Let Π be a Sigma protocol. We say that Π is special honest verifier zero
knowledge (or SHVZK) if there exists a probabilstic polynomial time algorithm Π.Sim, such
that for all possible inputs (x, ch) where x is a statement and ch is a challenge, it out-
puts an accepting transcript (com, ch, rsp) for x that has the same distribution as an honest
conversation between the prover and the verifier.

In most cases, Π.Sim will write the transcript out of order (for instance, it might pick
the commitment last, based off the values for ch and rsp).

In Chapter 4, we require a Sigma protocol that also satisfies the following additional
properties:

Definition 11. Let Π be a Sigma protocol. We say that Π satisfies commitment entropy
if, for security parameter λ and any (w, x) ∈ R, the min-entropy of an honestly generated
commitment is superlogarithmic in λ.

Definition 12. Let Π be a Sigma protocol. We say that Π is public coin if, for security
parameter λ, any (w, x) ∈ R, and any honestly generated commitment com, an honestly
generated challenge ch is uniform on the challenge space.

Definition 13. Let Π be a Sigma protocol. We say that Π has quasi-unique responses if for
any probabilistic polynomial time algorithm A, security parameter λ, and (x, com, ch, rsp, rsp′)←$

A(k), we have that

Pr[V2(x, com, ch, rsp) = V2(x, com, ch, rsp′) = true ∧ rsp ̸= rsp′]

is negligible.

A Sigma protocol which satisfies all of these properties is called a Fiat–Shamir proof of
knowledge, which we formally define below. Essentially, this is a Sigma protocol to which
the Fiat–Shamir transform can be applied to create a non-interactive zero knowledge proof
of knowledge.

Definition 14. Let λ be a security parameter. A Fiat–Shamir proof of knowledge with
O(log(λ))-bit challenges for a relation R is a Sigma protocol consisting of a pair (P ,V)
of probabilistic polynomial time algorithms P = (P1,P2) and V = (V1,V2) which satisfies
completeness, commitment entropy, public coin, quasi-unique responses, special soundness,
and honest verifier zero knowledge.

Finally, we will be making use of a property we call collision resistance, in order to show
that the non-interactive zero-knowledge proof that we use in our instantiation satisfies an
analogous property. We define collision resistance similarly to how it is defined for hash
functions. The idea is that it is difficult to find two distinct statements which verify with
the same proof.

Definition 15. Let Π = (P ,V) be a Sigma protocol for relation R ⊆ W ×X with simulator
Sim. We say that Π satisfies ϵ-collision resistance if, for all probabilistic polynomial time
adversaries A, we have that

Pr
[
ExpCR

Π A =⇒ 1
]
< ϵ,

where ExpCR
Π is defined as

11



ExpCR
Π (A)

1 : HList← ∅
2 : (x, x′, (com, ch, rsp))←$AOH ()

3 : return JΠ.Vf(x, com, ch, rsp)

4 : ∧Π.Vf(x′, com, ch, rsp)

5 : ∧ x ̸= x′K

OH(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ←$ {0, 1}λ

4 : HList← HList ∪ {(x, y)}
5 : return y

2.4 Zero Knowledge Proofs

Our second primitive is a zero knowledge proof of knowledge. Definitions 16, 17, 18, 19,
and 21 are taken from [3], definition 20 was taken from [7], definition 23 was modified
from the one in [13], and definition 22 was adapted from the collision resistance definition
for hash function given in [11].

To begin with, we introduce the idea of non-interactive proof systems.

Definition 16. Let R ⊆ W×X be a relation, whereW, X , and R are efficiently recognizable
finite sets. A non-interactive proof system for R is a pair of algorithms (PfGen,Vf), where:

• PfGen(w, x) $→ π is an efficient probabilistic algorithm that takes in (w, x) ∈ R and
outputs a proof π in some proof space PS.

• Vf(x, π) → true/false is an efficient deterministic algorithm that takes in a statement
x ∈ X and proof π ∈ PS as input and outputs either true or false. If Vf(x, π) = true,
we say that π is a valid proof for x.

We require that for all (w, x) ∈ R, the output of PfGen(w, x) is a valid proof for x.

In our construction, we require that out proof system satisfies certain properties. To start
with, we need that proofs exist for every statement in our language. We call this property
completeness, and define it below.

Definition 17. We say that a proof system Π for language L is complete if, for every x ∈ L,
there exists a proof π such that Vf(x, π) = true.

Next, we require that someone who sees a valid proof of any x ∈ L is not able to determine
any more about the witness than they would be able to had they not seen a valid proof.
Similarly to the previous section, this is defined using the concept of a simulator. In this
case, the simulator responds to hash queries in place of the random oracle, and responds to
proof queries in place of the prover, without knowing the witness.

Definition 18. Suppose that Π is a non-interactive proof system which makes use of a hash
function H : U → C, and that we wish to model H as a random oracle. A simulator for Π is
an interactive machine Sim that responds to a series of queries, where each query is one of
the following two types:

12



• (proofQuery, x) where x ∈ X , to which Sim responds with π ∈ PS.

• (hashQuery, u) where u ∈ U , to which Sim responds with c ∈ C.

If there exists such a simulator for which no adversary is able to distinguish an execution
of the protocol where they are interacting with the simulator from a real execution of the
protocol, then we can be confident that the proof system does not leak information about the
witness: since the simulator does not know the witness, it cannot possibly leak information
about it, so if the adversary is unable to tell a simulated execution apart from a real execution,
then the real execution must not leak any witness information either. This property is known
as zero knowledge, and is defined below.

Definition 19. Let Π = (PfGen,Vf) be a non-interactive proof system for R ⊆ W × X
with proof space PS, which makes use of a hash function H : U → C modeled as a random
oracle. Let Sim be a simulator for Π, as above. We say that Π provides ϵ-non-interactive
zero-knowledge if ∣∣∣∣Pr[ExpniZKΠ (A) =⇒ 1

]
− 1

2

∣∣∣∣ < ϵ,

where ExpniZKΠ is defined as

ExpniZKΠ (A)

1 : HList← ∅
2 : b←$ {0, 1}
3 : b′ ← AOb()

4 : return Jb = b′K

O0(qType, query)

1 : if qType = proofQuery :

2 : return PfGen(query)

3 : if qType = hashQuery :

4 : if ∃y s.t. (x, y) ∈ HList :

5 : return y

6 : y ←$ {0, 1}λ

7 : HList← HList ∪ {(x, y)}
8 : return y

O1(qType, query)

1 : if qType = proofQuery :

2 : Parse (w, x)← query

3 : return Sim(proofQuery, x, HList)

4 : if qType = hashQuery :

5 : if ∃y s.t. (x, y) ∈ HList :

6 : return y

7 : y ←$ Sim(hashQuery, query, HList)

8 : HList← HList ∪ {(x, y)}
9 : return y

13



In order for a proof to be a proof of knowledge, there needs to be a way of ensuring that
only parties who possess knowledge of the witness are able to produce a valid proof. Again
similarly to the previous section, we specify the existence of an algorithm called an extractor,
whose input includes a statement and a valid proof of said statement (among other things),
and whose output is the witness to that statement. The reasoning here is that any party who
could come up with a valid proof of a statement could simply run the extraction algorithm
to recover the witness, thus ensuring possession of knowledge.

In our case, we require that for any statement x, the extractor only takes a single proof
π of x as input. To preserve the zero-knowledge property, it must also take another input:
for us, this is the list of queries, HList, that the prover made to the random oracle when
creating π. We call this property straight-line extractability, and define it below.

Definition 20. We say that a proof system Π is ϵ-straight-line extractable if there exists a
probabilistic polynomial time algorithm Π.SLE such that for all probabilistic polynomial time
algorithms A,

Pr
[
ExpSLEΠ (AOH ) =⇒ 1

]
< ϵ,

where ExpSLEΠ is defined as follows:

ExpSLEΠ (AOH )

1 : HList← ∅
2 : (x, π)←$AOH ()

3 : if x ̸∈ L : return ⊥
4 : w ← Π.SLE(x, π, HList)

5 : return J(w, x) ̸∈ R ∧Π.Vf(x, π) = trueK

OH(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ←$ {0, 1}λ

4 : HList← HList ∪ {(x, y)}
5 : return y

Notice that, unlike the extractor defined for Sigma protocols, the straight-line extractor
is only required to output a witness for statements in L. As such, its existence does not
guarantee that any statement with a valid proof must be in L. For this, we need some notion
of soundness.

Definition 21. Let Π = (PfGen,Vf) be a non-interactive proof system for language L. We
say Π satisfies ϵ-non-interactive soundness if, for all probabilistic polynomial time adversaries
A,

Pr
[
ExpniSoundΠ A =⇒ 1

]
< ϵ,

where ExpniSoundΠ is defined as

ExpniSoundΠ (A)

1 : HList← ∅
2 : (x, π)←$AOH ()

3 : return JVf(x, π) = true ∧ x ̸∈ LK

OH(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ←$ {0, 1}λ

4 : HList← HList ∪ {(x, y)}
5 : return y
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Finally, for our construction, we require two additional, non-standard properties. First,
we need that it is collision resistant, which we define analogously to how we defined it for
Sigma protocols.

Definition 22. Let Π = (PfGen,Vf) be a non-interactive proof system for relation R ⊆
W×X with simulator Sim. We say that Π satisfies ϵ-collision resistance if, for all probabilistic
polynomial time adversaries A, we have that

Pr
[
ExpCR

Π (A) =⇒ 1
]
< ϵ,

where ExpCR
Π is defined as

ExpCR
Π (A)

1 : HList← ∅
2 : (x, x′, π)←$AOH ()

3 : return JΠ.Vf(x, π) ∧Π.Vf(x′, π) ∧ x ̸= x′K

OH(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ←$ {0, 1}λ

4 : HList← HList ∪ {(x, y)}
5 : return y

The second additional property we require is a variation of what is called non-malleability,
which states that, given a valid statement/proof pair (x, π), it is difficult to find a different
valid proof π′ of a related statement x′. In our case, we need that the adversary has some
choice in the initial statement x that they are given: in particular, x is derived by applying
a function to an input of the adversary’s choice. We also only require that it is hard to find
a different, valid proof π′ of the statement x; in other words, the relation between x and x′

is the identity. Formally, this is captured in the following definition:

Definition 23. Let Π be a non-interactive zero-knowledge proof system for a language L, and
let F consist of probabilistic algorithms f and Gen, where Gen generates auxillary inputs for
f . We say that Π is ϵ-F-non-malleable if, for all outputs aux of F .Gen and all probabilistic
polynomial time adversaries A, there exists a probabilistic polynomial time machineM such
that ∣∣Pr[Exp1NM

Π,F(MA) =⇒ 1
]
− Pr

[
Exp2NM

Π,F(A) =⇒ 1
]∣∣ < ϵ,

where Exp1NM
Π,F and Exp2NM

Π,F are defined as

Exp1NM
Π,F(MA)

1 : HList← ∅
2 : aux←$ F .Gen()
3 : y ←$MA,OH (aux)

4 : x∗ ←$ F .f(aux, y)
5 : π ←$MA,OH (aux, x∗)

6 : return JΠ.Vf(π, x∗)K

Exp2NM
Π,F(A)

1 : HList← ∅
2 : aux←$ F .Gen
3 : y ←$AOH (aux)

4 : x∗ ←$ f(y)

5 : π∗ ←$ Π.Sim(proofQuery, x∗, HList)

6 : π ←$AOH (aux, x∗, π∗)

7 : return JΠ.Vf(π, x∗) ∧ π ̸= π∗K
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and OH is defined as

OH(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ← Π.Sim(hashQuery, x, HList)

4 : HList← HList ∪ (x, y)

5 : return y

The presence of the machineM is meant to capture the idea that the performance of any
adversary in Exp2NM

Π,F can be matched by some adversary A for Exp1NM
Π,F . We cannot simply

directly compare a given adversary’s performance in both experiments, since the difference
in inputs would allow for trivial wins. However,M should still have access to the algorithms
used by the adversary A.

Now that we have seen the main building blocks, we can begin describing our construc-
tion.

16



Chapter 3

Generic Construction

Our generic construction creates an IND-CCA-secure PKE, PKEZK, from an IND-CPA-secure
PKE, PKE, and a non-interactive zero knowledge proof of knowledge, Π. To encrypt a
message, we first encrypt it using PKE to get a ciphertext c, and then compute a proof of
knowledge π of the random coins used during encryption, using Π. Our resulting ciphertext
is then (π, c). For decryption, we decrypt c if and only if π verifies. We use a game-hopping
proof to reduce the security of PKEZK to the security of PKE and Π.

We require a few properties of PKE and Π in order for our construction to be secure. The
eventual goal of our proof is to show that an IND-CPA adversary for PKE can implement
the PKEZK decryption oracle, without knowing the secret key. In order for decryption to
be possible without the secret key, we require that PKE is DWR. This requires that, for
each query, the IND-CPA adversary for PKE is able to obtain the random coins used during
encryption. For this, we require that Π is straight-line extractable, since the adversary will
only have one proof to work with per query. In order to use our extractor, we require that
all queried ciphertexts are in the language of valid ciphertexts, which in this case, requires
Π to satisfy non-interactive soundness. To allow the adversary to respond to proof queries,
we need them to have access to a simulator algorithm, and hence we require that Π satisfies
non-interactive zero-knowledge. Finally, to prevent trivial wins, we require that Π is collision
resistant and non-malleable.

3.1 Construction

Let PKE be an ϵPKE−IND-CPA-secure public key encryption scheme with message spaceM,
ciphertext space C, and random distribution Σ that is decryptable with randomness. For
each public key pk for PKE, we require that the language

Lpk = {c ∈ PKE.C : ∃r ∈ PKE.Σ : c = PKE.Enc(pk, PKE.Dec(sk, c); r)}

that results from the relation

Rpk = {(r, c) ∈ PKE.Σ× PKE.C : c = PKE.Enc(pk, PKE.Dec(sk, c); r)}

17



on the set PKE.Σ× PKE.C is decidable.

Now, suppose that for each choice of pk, there is an ϵsound-sound, ϵSLE-straightline ex-
tractable, ϵCR-collision resistant, ϵZK-zero-knowledge proof of knowledge proof system Π.

Under these assumptions, we construct a new PKE, PKEZK, as follows:

PKEZK.KGen(λ)

1 : return PKE.KGen(λ)

PKEZK.Enc(pk,m; r)

1 : c← PKE.Enc(pk,m; r)

2 : π ← Π.PfGen(c, (r, c))

3 : return(π, c)

PKEZK.Dec(sk, c)

1 : Parse (π, c)← ctxt

2 : if Π.Vf(c, π) ̸= true : return ⊥
3 : return PKE.Dec(sk, c)

Figure 3.1: PKEZK Public Key Encryption Scheme

Theorem 1. PKEZK is an (2ϵsound+2ϵniZK+ϵCR+2ϵSLE+2ϵDWR+ϵNM+2ϵPKE)-IND-CCA-secure
public key encryption scheme.

3.2 Proof Strategy

We will start with the IND-CCA experiment for PKEZK, and through a series of game hops (as
Shoup described in [15]), show that the probability of an adversary winning the IND-CCA
experiment for PKEZK is only negligibly different from the probability of an adversary winning
the IND-CPA experiment for PKE. The idea is to show that the decryption oracle in the
IND-CCA-experiment does not give the adversary any information that they could not have
computed themselves.

Let Si be the event that the adversary A wins game i. Then, the proof is outlined as
follows:

• In G1, we begin with the IND-CCA experiment for PKEZK.

• In G2, our PKEZK decryption oracle fails on all PKEZK ciphertext queries (c, π) such that
(c, π) is a valid ciphertext/proof pair for Π, but the PKE ciphertext component c is not
in the language Lpk. Since Π satisfies non-interactive soundness, the probability of an
adversary producing such a pair is ϵsound, and we get that

|Pr[S2]− Pr[S1]| < ϵsound.

• In G3, our PKEZK decryption oracle fails on all PKEZK ciphertext queries (c, π) such
that π is equal to the proof in the PKEZK challenge ciphertext, πb, but c is not equal to
the ciphertext in the PKEZK challenge ciphertext, cb. Since Π is collision resistant, the
probability of the adversary producing such a pair is ϵCR, and we get that

|Pr[S3]− Pr[S2]| < ϵCR.
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• In G4, we respond to all proof queries and hash queries using the simulator, rather than
responding honestly. Since Π satisfies non-interactive zero-knowledge, an adversary can
only distinguish between these two worlds with a probability of (a constant factor of)
ϵniZK, and we get that

|Pr[S4]− Pr[S3]| < 2ϵniZK.

• In G5, for each query (c, π), our PKEZK decryption oracle uses the straight-line extractor
to extract the random coins used during the encryption of c, and checks that this was
done properly by decrypting c using the secret key, re-encrypting using the random
coins extracted by the straight-line extractor, and checking that the resulting value
is equal to c. Since we have already ensured that c ∈ Lpk, PKE.Dec is guaranteed
to output the correct result, so the only way this step can fail is if the straight-line
extractor does not output the correct value of r. So, we get that

|Pr[S5]− Pr[S4]| < ϵSLE.

• In G6, we replace all instances of PKE.Dec with PKE.DecRand in our PKEZK decryption
oracle. Since PKE satisfies DecRand-correctness, we get that

|Pr[S6]− Pr[S5]| < ϵDWR.

• In G7, our PKEZK decryption oracle rejects all PKEZK decryption queries (c, π) in which
the PKE ciphertext c is equal to the PKE challenge ciphertext cb. First, since PKE is
assumed to be ϵPKE-IND-CPA-secure and ϵDWR-correct, and Π is assumed to be ϵSLE-
straight-line extractable and ϵsound-sound, we are able to show that for any efficient
machineM,

Pr
[
Exp1NM

Π,PKE.Encpk
(M)

]
< ϵDWR + ϵSLE + ϵsound + ϵPKE.

Then, we show how any adversary who can distinguish between G6 and G7 can be used
to win Exp2NM

Π,PKE.Encpk
, giving us that

|Pr[S6]− Pr[S7]| ≤ Pr
[
Exp2NM

Π,PKE.Encpk
=⇒ 1

]
.

Finally, since Π is non-malleable, we get that∣∣∣Pr[Exp1NM
Π,PKE.Encpk

(MA) =⇒ 1
]
− Pr

[
Exp2NM

Π,PKE.Encpk
=⇒ 1

]∣∣∣ < ϵNM,

giving a final result of

|Pr[S7]− Pr[S6]| < ϵDWR + ϵSLE + ϵsound + ϵPKE + ϵNM(A).

• Finally, we present an algorithm, which, given access to an adversary who can win the
G7, is able to win the IND-CPA game for PKE, to complete our proof.
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3.3 Game-Hopping Proof

In each game, we highlight the lines that are different from the previous game.

3.3.1 Game 1

In G1, we start out with the usual IND-CCA experiment for public key encryption, with the
addition of a list HList to keep track of hash queries, since we are working in the random
oracle model. Our adversary is provided with a PKEZK decryption oracle and a hash oracle.

G1(λ,AOPKEZK.Dec,OH)

1 : HList← ∅
2 : (pk, sk)←$ PKE.KGen(λ)

3 : r ←$ PKE.Σ

4 : (m0,m1, st)←$AOPKEZK.Dec,OH(pk)

5 : b←$ {0, 1}
6 : cb ← PKE.Enc(pk,mb; r)

7 : πb ← Π.PfGen(cb, r)

8 : ctxtb ← (πb, cb)

9 : b′ ←$AOPKEZK.Dec,OH(pk, ctxtb, st)

10 : return Jb = b′K

OPKEZK.Dec(ctxt)

1 : if ctxt = ctxtb : return ⊥
2 : Parse (π, c)← ctxt

3 : if Π.Vf(c, π) ̸= true : return ⊥
4 : return PKE.Dec(sk, c)

OH(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ←$ {0, 1}λ

4 : HList← HList ∪ {(x, y)}
5 : return y

3.3.2 Game 2

In G2, our decryption oracle rejects all queries where the queried ciphertext c is not in Lpk.

G2(λ,AOPKEZK.Dec,OH)

1 : HList← ∅
2 : (pk, sk)←$ PKE.KGen(λ)

3 : r ←$ PKE.Σ

4 : (m0,m1, st)←$AOPKEZK.Dec,OH(pk)

5 : b←$ {0, 1}
6 : cb ← PKE.Enc(pk,mb; r)

7 : πb ← Π.PfGen(cb, r)

8 : ctxtb ← (πb, cb)

9 : b′ ←$AOPKEZK.Dec,OH(pk, ctxtb, st)

10 : return Jb = b′K

OPKEZK.Dec(ctxt)

1 : if ctxt = ctxtb : return ⊥
2 : Parse (π, c)← ctxt

3 : if Π.Vf(c, π) ̸= true : return ⊥
4 : if c ̸∈ Lpk : return ⊥
5 : return PKE.Dec(sk, c)

OH(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ← {0, 1}λ

4 : HList← HList ∪ {(x, y)}
5 : return y
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We will write a reduction which uses the failure event introduced in G2 to win the non-
interactive soundness attack game. Let A be an adversary who is attempting to distinguish
between G1 and G2, and consider the following reduction B = (B1,BOPKEZK.Dec

,BOH
), which

acts as a challenger for the indistinguishability game between G1 and G2 and an adversary
for the non-interactive soundness game:

B1(λ)

1 : HList← ∅
2 : (xsound, πsound)← (null, null)

3 : (pk, sk)←$ PKE.KGen(λ)

4 : r ←$ PKE.Σ

5 : (m0,m1, st)←$ABOPKEZK.Dec
,BOH (pk)

6 : b←$ {0, 1}
7 : cb ← PKE.Enc(pk,mb; r)

8 : πb ← Π.PfGen(cb, r)

9 : ctxtb ← (πb, cb)

10 : b′ ←$ABOPKEZK.Dec
,BOH (pk, ctxtb, st)

11 : return (xsound, πsound)

BOPKEZK.Dec
(ctxt)

1 : if ctxt = ctxtb : return ⊥
2 : Parse (π, c)← ctxt

3 : if Π.Vf(c, π) ̸= true : return ⊥
4 : if c ̸∈ Lpk :
5 : (xsound, πsound)← (c, π)

6 : return ⊥
7 : return PKE.Dec(sk, c)

BOH
(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ← {0, 1}λ

4 : HList← HList ∪ {(x, y)}
5 : return y

Since B returns a non-null pair if and only if the failure event from G2 is triggered, and
any non-null pair returned by B must be a valid statement/proof pair for Π by a previous
failure event of O, then

|Pr[S2]− Pr[S3]| = Pr
[
ExpniSoundΠ (B) =⇒ 1

]
.

But, by non-interactive soundness,

Pr
[
ExpniSoundΠ B =⇒ 1

]
< ϵsound.

So,
|Pr[S2]− Pr[S3]| < ϵsound.

3.3.3 Game 3

In G3, our decryption oracle rejects all queries in which the queried proof π is equal to the
challenge proof πb.
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G4(λ,AOPKEZK.Dec,OH)

1 : HList← ∅
2 : (pk, sk)←$ PKE.KGen(λ)

3 : r ←$ PKE.Σ

4 : (m0,m1, st)←$AOPKEZK.Dec,OH(pk)

5 : b←$ {0, 1}
6 : cb ← PKE.Enc(pk,mb; r)

7 : πb ← Π.PfGen(cb, r)

8 : ctxtb ← (πb, cb)

9 : b′ ←$AOPKEZK.Dec,OH(pk, ctxtb, st)

10 : return Jb = b′K

OPKEZK.Dec(ctxt)

1 : if ctxt = ctxtb : return ⊥
2 : Parse (π, c)← ctxt

3 : if Π.Vf(c, π) ̸= true : return ⊥
4 : if π = πb : return ⊥
5 : if c ̸∈ Lpk : return ⊥
6 : return PKE.Dec(sk, c)

OH(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ← {0, 1}λ

4 : HList← HList ∪ {(x, y)}
5 : return y

We will write a reduction which uses the failure event introduced in G3 to win the collision
resistance attack game. Let A be an adversary who is attempting to distinguish between
G2 and G3, and consider the following reduction B = (B1,BOPKEZK.Dec

,BOH
), which acts as a

challenger for the indistinguishability game between G2 and G3, and an adversary for the
collision resistance attack game:

BA1 (λ)

1 : HList← ∅
2 : x′ ← null

3 : (pk, sk)←$ PKE.KGen(λ)

4 : r ←$ PKE.Σ

5 : (m0,m1, st)←$ABOPKEZK.Dec
,BOH (pk)

6 : b←$ {0, 1}
7 : cb ← PKE.Enc(pk,mb; r)

8 : πb ← Π.PfGen(cb, r)

9 : ctxtb ← (πb, cb)

10 : b′ ←$ABOPKEZK.Dec
,BOH (pk, ctxtb, st)

11 : return (cb, x
′, πb)

BOPKEZK.Dec
(ctxt)

1 : if ctxt = ctxtb : return ⊥
2 : Parse (π, c)← ctxt

3 : if Π.Vf(c, π) ̸= true : return ⊥
4 : if π = πb :

5 : x′ ← c

6 : return ⊥
7 : if c ̸∈ Lpk : return ⊥
8 : return PKE.Dec(sk, c)

BOH(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ← {0, 1}λ

4 : HList← HList ∪ {(x, y)}
5 : return y

Since B returns a non-null result if and only if the failure event from G3 is triggered, and
any non-null result returned by B must be a valid statement/proof pair for Π by a previous
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failure event of O, then

|Pr[S3]− Pr[S2]| = Pr
[
ExpCR

Π (B) =⇒ 1
]
.

But, by collision resistance,

Pr
[
ExpCR

Π (B) =⇒ 1
]
< ϵCR.

So,
|Pr[S3]− Pr[S2]| < ϵCR.

3.3.4 Game 4

In G4, we respond to all proof queries and hash queries using the simulator, rather than
responding honestly.

G3(λ,AOPKEZK.Dec,OH)

1 : HList← ∅
2 : (pk, sk)←$ PKE.KGen(λ)

3 : r ←$ PKE.Σ

4 : (m0,m1, st)←$AOPKEZK.Dec,OH(pk)

5 : b←$ {0, 1}
6 : cb ← PKE.Enc(pk,mb; r)

7 : πb ← Π.Sim(proofQuery, cb, HList)

8 : ctxtb ← (πb, cb)

9 : b′ ←$AOPKEZK.Dec,OH(pk, ctxtb, st)

10 : return Jb = b′K

OPKEZK.Dec(ctxt)

1 : if ctxt = ctxtb : return ⊥
2 : Parse (π, c)← ctxt

3 : if Π.Vf(c, π) ̸= true : return ⊥
4 : if π = πb : return ⊥
5 : if c ̸∈ Lpk : return ⊥
6 : return PKE.Dec(sk, c)

OH(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ← Π.Sim(hashQuery, x, HList)

4 : HList← HList ∪ {(x, y)}
5 : return y

We will write a reduction that reduces the indistinguishability of G3 and G4 to the indis-
tinguishability game for simulators. Let A be an adversary who is attempting to distinguish
between G3 and G4, and consider the following reduction B = (B1,BOPKEZK.Dec

,BO), which
acts as a challenger for the indistinguishability game between G3 and G4 and an adversary
for the indistinguishability game for simulators, where O is the oracle provided to B in the
indistinguishability game for simulators:
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BA,O1 (λ)

1 : HList← ∅
2 : (pk, sk)←$ PKE.KGen(λ)

3 : r ←$ PKE.Σ

4 : (m0,m1, st)←$ABOPKEZK.Dec
,BO(pk)

5 : b←$ {0, 1}
6 : cb ← PKE.Enc(pk,mb; r)

7 : π ← O(proofQuery, cb, HList)
8 : ctxtb ← (πb, cb)

9 : b′ ←$ABOPKEZK.Dec
,BO(pk, ctxtb, st)

10 : if b = b′ : return 1

11 : else : return 0

BOPKEZK.Dec
(ctxt)

1 : if ctxt = ctxtb : return ⊥
2 : Parse (π, c)← ctxt

3 : if Π.Vf(c, π) ̸= true : return ⊥
4 : if π = πb : return ⊥
5 : if c ̸∈ Lpk : return ⊥
6 : return PKE.Dec(sk, c)

BO(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ← O(hashQuery, x)
4 : HList← HList ∪ {(x, y)}
5 : return y

Notice that when O = O0 from ExpniZKΠ , B is identical to G3, and when O = O1 from
ExpniZKΠ , then B is identical to G4. Since Π is ϵniZK-secure, we have that∣∣∣∣Pr[B wins]− 1

2

∣∣∣∣ < ϵniZK.

However,

Pr[B wins] =
1

2
Pr[B wins | O = O0] +

1

2
Pr[B wins | O = O1]

=
1

2
Pr[A loses | O = O0] +

1

2
Pr[A wins | O = O1]

=
1

2
(1− Pr[A wins | O = O0]) +

1

2
Pr[A wins | O = O1]

=
1

2
+

1

2
(Pr[A wins | O = O1]− Pr[A wins | O = O0]) .

So, this gives us that∣∣∣∣12 +
1

2
(Pr[A wins | O = O1]− Pr[A wins | O = O0])−

1

2

∣∣∣∣
=

1

2
|(Pr[A wins | O = O1]− Pr[A wins | O = O0])|

< ϵniZK,

and hence that

|Pr[A wins | O = O1]− Pr[A wins | O = O0]| < 2ϵniZK.

But Pr[S4] = Pr[A wins | O = O1] and Pr[S3] = Pr[A wins | O = O0], so we get that

|Pr[S4]− Pr[S3]| < 2ϵniZK.
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3.3.5 Game 5

In G5, we use the straightline extractor to extract the randomness used during encryption,
and check that encrypting under that randomness results in the given ciphertext.

G5(λ,AOPKEZK.Dec,OH)

1 : HList← ∅
2 : (pk, sk)←$ PKE.KGen(λ)

3 : r ←$ PKE.Σ

4 : (m0,m1, st)←$AOPKEZK.Dec,OH(pk)

5 : b←$ {0, 1}
6 : cb ← PKE.Enc(pk,mb; r)

7 : πb ← Π.Sim(proofQuery, cb, HList)

8 : ctxtb ← (πb, cb)

9 : b′ ←$AOPKEZK.Dec,OH(pk, ctxtb, st)

10 : return Jb = b′K

OPKEZK.Dec(ctxt)

1 : if ctxt = ctxtb : return ⊥
2 : Parse (π, c)← ctxt

3 : if π = πb : return ⊥
4 : if Π.Vf(c, π) ̸= true : return ⊥
5 : if c ̸∈ Lpk : return ⊥
6 : r ← SLE(c, π, HList)

7 : if c ̸= PKE.Enc(pk, PKE.Dec(sk, c); r) :

8 : return ⊥
9 : return PKE.Dec(sk, c)

OH(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ← Π.Sim(hashQuery, x, HList)

4 : HList← HList ∪ {(x, y)}
5 : return y

We will write a reduction which uses the failure event introduced in G5 to win the SLE

attack game. Let A be an adversary who is attempting to distinguish between G4 and G5,
and consider the following reduction B = (B1,BOPKEZK.Dec

,BOH
), which acts as a challenger for

the indistinguishability game between G4 and G5, and an adversary for the SLE attack game:
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BA1 (λ)

1 : HList← ∅
2 : r̃ ← null

3 : (pk, sk)←$ PKE.KGen()

4 : r ←$ PKE.Σ

5 : (m0,m1, st)←$AOPKEZK.Dec,OH(pk)

6 : b←$ {0, 1}
7 : cb ← PKE.Enc(pk,mb; r)

8 : πb ← Π.Sim(proofQuery, cb, HList)

9 : ctxtb ← (πb, cb)

10 : b′ ←$AOPKEZK.Dec,OH(pk, ctxtb, st)

11 : return r̃

OPKEZK.Dec(ctxt)

1 : if ctxt = ctxtb : return ⊥
2 : Parse (π, c)← ctxt

3 : if Π.Vf(c, π) ̸= true : return ⊥
4 : if π = πb : return ⊥
5 : if c ̸∈ Lpk : return ⊥
6 : r ← SLE(c, π, HList)

7 : if c ̸= PKE.Enc(pk, PKE.Dec(sk, c); r) :

8 : r̃ ← r

9 : return ⊥
10 : return PKE.Dec(sk, c)

OH(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ← Π.Sim(hashQuery, x, HList)

4 : HList← HList ∪ {(x, y)}
5 : return y

Since B returns a non-null result if and only if the failure event from G5 is triggered,
any non-null result returned by B is a valid proof/statement pair for Π by a previous failure
event of O, and PKE.Dec(sk, c) will be correct with probability 1 since c ∈ Lpk, then

|Pr[S5]− Pr[S4]| ≤ Pr
[
ExpSLEΠ (BA) =⇒ 1

]
.

But, by straight-line extractability,

Pr
[
ExpSLEΠ (BA) =⇒ 1

]
< ϵSLE.

So,
|Pr[S5]− Pr[S4]| < ϵSLE.

3.3.6 Game 6

In G6, we replace all instances of PKE.Dec with PKE.DecRand.
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G6(λ,AOPKEZK.Dec,OH)

1 : HList← ∅
2 : (pk, sk)←$ PKE.KGen()

3 : r ←$ PKE.Σ

4 : (m0,m1, st)←$AOPKEZK.Dec,OH(pk)

5 : b←$ {0, 1}
6 : cb ← PKE.Enc(pk,mb; r)

7 : πb ← Π.Sim(proofQuery, cb, HList)

8 : ctxtb ← (πb, cb)

9 : b′ ←$AOPKEZK.Dec,OH(pk, ctxtb, st)

10 : return Jb = b′K

OPKEZK.Dec(ctxt)

1 : if ctxt = ctxtb : return ⊥
2 : Parse (π, c)← ctxt

3 : if Π.Vf(c, π) ̸= true : return ⊥
4 : if π = πb : return ⊥
5 : if c ̸∈ Lpk : return ⊥
6 : r ← SLE(c, π, HList)

7 : if c ̸= PKE.Enc(pk, PKE.DecRand(pk, c, r); r) :

8 : return ⊥
9 : return PKE.DecRand(pk, c, r)

OH(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ← Π.Sim(hashQuery, x, HList)

4 : HList← HList ∪ {(x, y)}
5 : return y

We will write a reduction which uses the failure event introduced in G6 to win the
DecRand-correctness attack game. Let A be an adversary who is attempting to distinguish
between G5 and G6, and consider the following reduction B = (B1,BO0 ,BO1 ,BOH

), which is
a challenger for the indistinguishability game between G6 and G7, and an adversary for the
DecRand-correctness attack game.
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BA1 (pk, sk)

1 : HList← ∅
2 : FList← ∅
3 : bb←$ {0, 1}
4 : (m0,m1, st)←$ABObb

,BOH (pk)

5 : b←$ {0, 1}
6 : cb ← PKE.Enc(pk,mb; r)

7 : πb ← Π.Sim(proofQuery, cb, HList)

8 : ctxtb ← (πb, cb)

9 : b′ ←$ABObb
,BOH (pk, ctxtb, st)

10 : foreach (c, r) in Flist do :

11 : if PKE.DecRand(pk, c, r) ̸= PKE.Dec(sk, c) :

12 : return (c, r)

13 : return null

OH(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ← Π.Sim(hashQuery, x, HList)

4 : HList← HList ∪ {(x, y)}
5 : return y

BO0(ctxt)

1 : if ctxt = ctxtb : return ⊥
2 : Parse (π, c)← ctxt

3 : if Π.Vf(c, π) ̸= true : return ⊥
4 : if π = πb : return ⊥
5 : if c ̸∈ Lpk : return ⊥
6 : r ← SLE(c, π, HList)

7 : if c ̸= PKE.Enc(pk, PKE.Dec(sk, c); r) :

8 : Flist← Flist ∪ {(c, r)}
9 : return ⊥

10 : return PKE.Dec(pk, c, r)

BO1(ctxt)

1 : if ctxt = ctxtb : return ⊥
2 : Parse (π, c)← ctxt

3 : if π = πb : return ⊥
4 : if Π.Vf(c, π) ̸= true : return ⊥
5 : if c ̸∈ Lpk : return ⊥
6 : r ← SLE(c, π, HList)

7 : if c ̸= PKE.Enc(pk, PKE.DecRand(pk, c, r); r) :

8 : Flist← Flist ∪ {(c, r)}
9 : return ⊥

10 : return PKE.DecRand(pk, c, r)

Since BO0 and BO1 behave identically unless the failure event on line 7 gets triggered, we
have that

|Pr[S6]− Pr[S5]| ≤ |Pr[Line 7 returns true in BO0 ]− Pr[Line 7 returns true in BO1 ]|.

Notice that in BO0 , line 7 will return true if and only if the straight-line extractor does
not return the correct value of r, or PKE.Dec does not decrypt c properly. However, since a
previous failure event ensures that c ∈ Lpk, the probability PKE.Dec not decrypting c properly
is 0. So,

Pr[Line 7 returns true in BO0 ] ≤ Pr[Π.SLE returns incorrect value] < ϵSLE

by the previous reduction. Similarly, in BO1 , line 7 will return true if and only if the straight-
line extractor does not return the correct value of r, or PKE.DecRand does not decrypt c
properly. So,

Pr[Line 7 returns true in BO1 ]

≤Pr[Π.SLE returns incorrect value]

+ Pr[PKE.DecRand returns incorrect value ∧ Π.SLE returns correct value].
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If PKE.DecRand returns an incorrect value but Π.SLE returns a correct value, then B will be
a successful adversary for ExpDWR

PKE . In this case, FList will contain at least one pair (c, r)
such that (c, r) ∈ Rpk, since the previous failure event ensures that c ∈ Lpk and hence that
there exists r such that (c, r) ∈ Rpk, and by assumption, the value of r returned by Π.SLE
satisfies this relation. But PKE.DecRand is assumed to be ϵDWR-correct, so

Pr[PKE.DecRand returns incorrect value ∧ Π.SLE returns correct value]

≤ Pr
[
ExpDWR

PKE (B) =⇒ 1
]

< ϵDWR.

Since
Pr[Π.SLE returns incorrect value] < ϵSLE

by a previous reduction, we get that

Pr[Line 7 returns true in BO1 ] < ϵSLE + ϵDWR.

So,
|Pr[S6]− Pr[S5]| < |ϵSLE + ϵDWR − ϵSLE| = ϵDWR.

3.3.7 Game 7

In G7, our decryption oracle rejects all queries in which the queried ciphertext c is equal to
the challenge ciphertext cb. Notice that since we are now comparing c with cb and π with πb

individually, the line of code comparing ctxt with ctxtb is now redundant and can therefore
be removed.

G7(λ,AOPKEZK.Dec,OH)

1 : HList← ∅
2 : (pk, sk)←$ PKE.KGen(λ)

3 : r ←$ PKE.Σ

4 : (m0,m1, st)←$AOPKEZK.Dec,OH(pk)

5 : b←$ {0, 1}
6 : cb ← PKE.Enc(pk,mb; r)

7 : πb ← Π.Sim(proofQuery, cb, HList)

8 : ctxtb ← (πb, cb)

9 : b′ ←$AOPKEZK.Dec,OH(pk, ctxtb, st)

10 : return Jb = b′K

OPKEZK.Dec(ctxt)

1 : Parse (π, c)← ctxt

2 : if Π.Vf(c, π) ̸= true : return ⊥
3 : if π = πb : return ⊥
4 : if c = cb : return ⊥
5 : if c ̸∈ Lpk : return ⊥
6 : r ← SLE(c, π, HList)

7 : if c ̸= PKE.Enc(pk, PKE.DecRand(pk, c, r); r) :

8 : return ⊥
9 : return PKE.DecRand(pk, c, r)

OH(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ← Π.Sim(hashQuery, x, HList)

4 : HList← HList ∪ {(x, y)}
5 : return y

29



The non-malleability experiments are defined in terms of a probabilistic algorithm f ,
with auxiliary inputs generated from an algorithm Gen. In our case, we set f to be PKE.Enc,
for a specific public key pk, which is generated by KGen. We also allow the random coins
to be given as input, rather than having them be generated by PKE.Enc, as we have done
throughout this thesis. The experiments, with these changes inlined, are defined as follows:

Exp1NM
Π,PKE.Encpk

(M)

1 : HList← ∅
2 : (pk, sk)←$ PKE.KGen()

3 : r ←$ PKE.Σ

4 : m←$MA,OH(pk)

5 : c∗ ← PKE.Enc(pk,m; r)

6 : π ←$MA,OH(pk, c∗)

7 : return JΠ.Vfπ, c∗K

Exp2NM
Π,PKE.Encpk

(A)

1 : HList← ∅
2 : (pk, sk)←$ PKE.KGen()

3 : r ←$ PKE.Σ

4 : m←$AOH(pk)

5 : c∗ ← PKE.Enc(pk,m; r)

6 : π∗ ← Π.Sim(proofQuery, c∗, HList)

7 : π ←$AOH(pk, c∗, π∗)

8 : return JΠ.Vfπ, c∗ ∧ π ̸= π∗K

where OH is the same as in the non-malleability definition:

OH(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ← Π.Sim(hashQuery, x, HList)

4 : HList← HList ∪ (x, y)

5 : return y

Lemma 1. For all probabilistic polynomial time adversaries A for Exp2NM
Π,PKE.Encpk

and all
probabilistic polynomial time machinesM,

Pr
[
Exp1NM

Π,PKE.Encpk
(MA) =⇒ 1

]
< ϵDWR + ϵSLE + ϵsound + ϵPKE.

Proof. To show this, we will write a reduction B = (B1,B2,BOH
) that can win the IND-CPA

game for PKE wheneverM is able to win Exp1NM
Π,PKE.Encpk

. Consider the following algorithm:
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B1(pk)

1 : HList← ∅
2 : m0 ←$MA,BOH ()

3 : m1 ←$ PKE.M
4 : return (m0,m1)

B2(cb,m0,m1)

1 : π ←$MA,BOH (pk, cb)

2 : if c ̸∈ Lpk : return ⊥
3 : r ← Π.SLE(c∗, π, HList)

4 : if c ̸= PKE.Enc(pk, PKE.DecRand(pk, c∗, r); r) :

5 : return ⊥
6 : mb ← DecRand(pk, cb, r)

7 : if mb = m0 : return 0

8 : else : return 1

BOH
(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ← Π.Sim(hashQuery, x, HList)

4 : HList← HList ∪ {(x, y)}
5 : return y

By the same steps as were taken in earlier (and later) reductions in the proof, since
DecRand is ϵDWR-correct, and Π is ϵSLE-straight-line extractable and ϵsound-sound, we get that∣∣∣Pr[ExpIND-CPA

PKE (B) =⇒ 1
]
− Pr

[
Exp1NM

Π,PKE.Encpk
(MA)

]
=⇒ 1

∣∣∣ < ϵDWR + ϵSLE + ϵsound + ϵPKE.

■

Now, we’ll write a reduction (B1,B2,BOPKEZK.Dec
,BOH

) that is able to use any adversary A
who can distinguish between games G6 and G7 in order to win Exp2NM

Π,PKE.Encpk
. Consider the

following algorithm:
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BA,OH
1 (pk)

1 : HList∗ ← ∅
2 : π̃ ← null

3 : (m0,m1, st)←$ABOPKEZK.Dec
,BOH

G (pk)

4 : b←$ {0, 1}
5 : return mb

BA,OH
2 (pk, c∗, π∗)

1 : ctxtb ← (π∗, c∗)

2 : b′ ←$ABOPKEZK.Dec
,BOH (pk, ctxtb, st)

3 : return π̃

BOPKEZK.Dec
(ctxt)

1 : Parse (π, c)← ctxt

2 : if Π.Vf(c, π) ̸= true : return ⊥
3 : if π = πb : return ⊥
4 : if c = cb :

5 : π̃ ← π

6 : return ⊥
7 : if c ̸∈ Lpk : return ⊥
8 : r ← SLE(c, π, HList∗)

9 : if c ̸= PKE.Enc(pk, PKE.DecRand(pk, c, r); r) :

10 : return ⊥
11 : return PKE.DecRand(pk, c, r)

BOH
(x)

1 : if ∃y s.t. {(x, y)} ∈ HList∗ :

2 : return y

3 : y ← OH(x)

4 : HList∗ ← HList∗ ∪ {(x, y)}
5 : return y

Since B2 returns a non-null result if and only if the failure event from G7 is triggered, we
get that

|Pr[S6]− Pr[S7]| ≤ Pr
[
Exp2NM

Π,PKE.Encpk
(BA) =⇒ 1

]
.

Since Π is non-malleable, we have that∣∣∣Pr[Exp1NM
Π,PKE.Encpk

(MBA) =⇒ 1
]
− Pr

[
Exp2NM

Π,PKE.Encpk
(BA) =⇒ 1

]∣∣∣ < ϵNM

and by Lemma 1, we have that

Pr
[
Exp1NM

Π,PKE.Encpk
(M) =⇒ 1

]
< ϵDWR + ϵSLE + ϵsound + ϵPKE.

Combining these probabilities gives us that

|Pr[S6]− Pr[S7]| < ϵNM + ϵDWR + ϵSLE + ϵsound + ϵPKE.

3.3.8 Reduction to IND-CPA-security

Suppose A is an adversary for G7, and consider the reduction B = (B1,B2,BODec
,BOH

) which
acts as an IND-CPA adversary for PKE:

32



B1(pk)

1 : return ABODec
,BOH (pk)

B2(pk, cb, st)

1 : πb ← Π.Sim(proofQuery, cb, HList)

2 : ctxtb ← (πb, cb)

3 : return ABODec
,BOH (pk, ctxtb, st)

BODec
(ctxt)

1 : Parse (π, c)← ctxt

2 : if Π.Vf(c, π) ̸= true : return ⊥
3 : if π = πb : return ⊥
4 : if c = cb : return ⊥
5 : if c ̸∈ Lpk : return ⊥
6 : r ← SLE(c, π, HList)

7 : if c ̸= PKE.Enc(pk, PKE.DecRand(pk, c, r); r) :

8 : return ⊥
9 : return PKE.DecRand(pk, c, r)

BOH
(x)

1 : if ∃y s.t. {(x, y)} ∈ HList :

2 : return y

3 : y ← Π.Sim(hashQuery, x, HList)

4 : HList← HList ∪ {(x, y)}
5 : return y

Let S8 be the event that B wins the IND-CPA experiment for PKE. Then we have that

Pr[S8] = Pr[S7],

since inlining B into the IND-CPA experiment for PKE gives us

ExpIND-CPA
PKE (λ, (B1,B2))

1 : HList← ∅
2 : (pk, sk)←$ PKE.KGen(λ)

3 : r ←$ PKE.Σ

4 : (m0,m1, st)←$AOPKEZK.Dec,OH(pk)

5 : b←$ {0, 1}
6 : cb ← PKE.Enc(pk,mb; r)

7 : πb ← Π.Sim(proofQuery, cb, HList)

8 : ctxtb ← (πb, cb)

9 : b′ ←$AOPKEZK.Dec,OH(pk, ctxtb, st)

10 : return Jb = b′K

BODec
(ctxt)

1 : Parse (π, c)← ctxt

2 : if Π.Vf(c, π) ̸= true : return ⊥
3 : if π = πb : return ⊥
4 : if c = cb : return ⊥
5 : if c ̸∈ Lpk : return ⊥
6 : r ← SLE(c, π, HList)

7 : if c ̸= PKE.Enc(pk, PKE.DecRand(pk, c, r); r) :

8 : return ⊥
9 : return PKE.DecRand(pk, c, r)

BOH
(x)

1 : if ∃y s.t. (x, y) ∈ HList :

2 : return y

3 : y ← Π.Sim(hashQuery, x, HList)

4 : HList← HList ∪ {(x, y)}
5 : return y
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which is exactly G7.

3.3.9 Final Result

Combining all of the above gives us that

|Pr[S1]− Pr[S8]| < 2ϵsound + 2ϵniZK + ϵCR + 2ϵSLE + 2ϵDWR + ϵNM + ϵPKE.

But PKE is assumed to be ϵPKE-IND-CPA-secure, so

Pr[S8] < ϵPKE.

Thus,
Pr[S1] < 2ϵsound + 2ϵniZK + ϵCR + 2ϵSLE + 2ϵDWR + ϵNM + 2ϵPKE,

and hence PKEZK is an (ϵPKE+2ϵsound+2ϵniZK+ ϵCR+2ϵSLE+2ϵDWR+ ϵNM+2ϵPKE)-IND-CCA-
secure public key encryption scheme. This concludes the proof of the theorem.

34



Chapter 4

Instantiation

To instantiate our construction, we use ElGamal [6] as our base public key encryption scheme.
For the zero knowledge proof of knowledge, we start with a modified version of Schnorr’s
protocol [14], and then apply Fischlin’s transformation [7] to convert this into a straight-line
extractable zero knowledge proof of knowledge in the random oracle model. In this section,
we describe each of these compenents in detail.

4.1 The ElGamal Public Key Encryption Scheme

Let G be a polynomial-time algorithm that, on input λ, outputs (a description of) a cyclic
group G, the prime order q of G, and a generator g of G. The Elgamal encryption scheme
consists of the tuple of algorithms (KGen,Enc,Dec), defined as follows:

KGen(λ)

1 : (G, q, g)←$ G(λ)
2 : x←$ Zq

3 : h← gx

4 : return (pk = (G, q, g, h), sk = (G, q, g, x))

Enc(pk,m ∈ G, r ∈ Zq)

1 : c1 ← gr

2 : c2 ← m · hr

3 : return ctxt = (c1, c2)

Dec(sk, ctxt)

1 : return
c2
cx1

Figure 4.1: ElGamal Public Key Encryption Scheme

It is shown in [6] that this encryption scheme satisfies perfect correctness and IND-CPA
security, under the assumption that computing discrete logarithms is hard. It remains for
us to show that it is decryptable with randomness, and satisfies DWR-correctness.

Lemma 2. The ElGamal public key encryption scheme satisfies DWR-correctness.

Proof. Suppose c is a well-formed ElGamal ciphertext and consider the following algorithm:
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DecRand(pk, c = (c1, c2), r)

1 : return
c2
hr

For any r ∈ Zq and m ∈ G, we have that

c2
hr

=
m · hr

hr
= m,

as desired, and hence the algorithm described above is correct. ■

4.2 Schnorr’s Protocol

The base of the non-interactive zero knowledge proof used in our instantiation is a modified
version of Schnorr’s Sigma protocol. We will begin by defining Schnorr’s protocol [14].

Let G be a cyclic group of prime order q. Schnorr’s protocol is a Sigma protocol which
proves knowledge of a discrete logarithm; that is, it is a proof that one knows x such that
gx = y, for a known generator g of G and (public) commitment y. The protocol proceeds as
follows:

P1(G, q, x, y)

1 : k ←$ Zq

2 : cmt← gk

3 : return (gk, stP )

P2(ch, stP )

1 : rsp← k + ch · x
2 : return rsp

V1(G, q, y, cmt)

1 : ch←$ Zq

2 : return (ch, stV )

V2(rsp, stV )

1 : return Jgrsp = cmt · ychK

Figure 4.2: Schnorr’s Protocol

Schnorr’s protocol is known to satisfy completeness, soundness, and SHVZK [3].

Recall that for our construction, we require that the statement for our zero knowledge
proof of knowledge is a ciphertext, and the witness is the random coins that were used
to produce that ciphertext. With no further conditions on the proof, an adversary could
“cheat” by choosing a random ciphertext as the statement, and proving knowledge of any
valid set of random coins. For PKE’s such as ElGamal, where for any choice of ciphertext and
random coins, there exists a valid message which encrypts under those random coins into
the given ciphertext, this makes the addition of the proof of knowledge completely useless,
since anyone could come up with such a proof.
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In our construction, we eliminate this issue by requiring our proofs to be collision resis-
tant. Notice that any proof system which does not “bind” the proof of knowledge of the
random coins to the message that gets encrypted (as is described above) does not satisfy
collision resistance, since the random coins can (and should) be chosen independently of the
message, so the proof does not necessarily need to be dependent on the statement.

Example 1. Using Schnorr’s protocol to prove knowledge of random coins used in ElGamal
encryption falls victim to the problem described above. Let pk = (G, q, g, h) be an ElGamal
public key and sk = (G, q, g, x) be an ElGamal secret key, as defined in the previous section.
Let (c1, c2) be an ElGamal ciphertext, where c1 = gr and c2 = m · hr for message m and
random coins r. Let π be a Schnorr proof of knowledge of r such that gr = h, i.e., a proof of
knowledge of the random coins used during encryption. Then, for any choice of α ∈ Zq, π is
also a valid Schnorr proof of knowledge for the ciphertext (c1, α · c2), which is the encryption
of α ·m using random coins r.

For our instantiation, it only matters that the final non-interactive zero knowledge proof
system formed through Fischlin’s transformation is collision resistant. However, proving the
collision resistance of that reduces to proving the collision resistance of the Sigma protocol
used. For this reason, we present a modification of Schnorr’s protocol that satisfies collision
resistance.

Let (c1, c2) be the ElGamal encryption of message m using random coins r. The modified
Schnorr protocol is as follows:

P1(G, q, r, (c1, c2))

1 : k ←$ Zq

2 : cmt← gk

3 : return (gk, stP )

P2(ch, stP )

1 : rsp← k + H(ch, c2) · r
2 : return rsp

V1(G, q, c1, cmt)

1 : ch←$ Zq

2 : return (ch, stV )

V2(rsp, stV )

1 : return Jgrsp = cmt · cH(ch,c2)
1 K

Figure 4.3: Modified Version of Schnorr’s Protocol

Lemma 3. The modified version of Schnorr’s protocol is collision resistant.

Proof. Let G be a cyclic group with prime order q and generator g. Let x be an ElGamal
secret key and let h = gx be the corresponding ElGamal public key. Suppose by contradiction
that there exists a probabilistic polynomial time adversary A which can find two distinct
ElGamal ciphertexts (c1, c2) = (gr,m · hr) and (c1, c2) = (gr,m · hr) for messages m, m and
random coins r, r, which verify with the same accepting transcript (com, ch, rsp). Then, we
get that

cmt · cH(ch,c2)
1 = cmt · c1H(ch,c2),
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and hence that
c
H(ch,c2)
1 = c1

H(ch,c2).

If c1 = c1, then A has found a collision for H (since H outputs a value in Zq), so this case
is only negligibly probable and hence we can assume that c1 ̸= c1. So, we have that c1 = gr

and c1 = gr for some r ̸= r, which implies that

gr·H(ch,c2) = gr·H(ch,c2),

and hence that
r · H(ch, c2) = r · H(ch, c2) mod q.

At this point, A can perform a birthday attack to find a collision on the output given by
the random oracle. This decreases its bit security by a factor of 2, which contradicts the
assumption on the random oracle’s bit security. So, no such adversary exists, and hence the
modified version of Schnorr’s protocol is collision resistant. ■

Completeness, special soundness, and SHVZK of this modified protocol follow imme-
diately from the completeness, special soundness, and SHVZK of the original version of
Schnorr’s protocol. Furthermore, our modified protocol satisfies commitment entropy, as
honestly generated commitments are uniformly random over Zq, and it is public coin, since
the challenges are generated uniformly at random. Lastly, it has quasi-unique responses, by
the collision resistance of the hash function.

4.3 Fischlin’s Transformation

In [7], Fischlin presents a way to convert Sigma protocols into non-interactive proofs of
knowledge in the random oracle model, which support a straight-line extractor. The trans-
formation is described as a pair of algorithms (P ,V) for which we can build a corresponding
straight-line extractor SLE. We start by assuming we have access to a Fiat–Shamir proof
of knowledge (PFS,VFS) with logarithmic challenge length1 and corresponding extractor Ext.
The idea is to force the prover P to make multiple hash queries of accepting transcripts,
which have the same statement and commitment, but a different challenge and response.
This way, since SLE (i.e., the challenger) has access to all of P ’s random oracle queries, it
can find a set of valid inputs for Ext, which it can then use to extract the witness. To
decrease the soundness error, multiple parallel executions are run for the same statement x,
but different commitments. The final proof produced is then the set of transcripts which
result from each execution.

In order to force the prover P to make multiple random oracle queries, the verifier V im-
poses the condition that the hash of the final accepting transcript must also be sufficiently

1Fischlin notes that one can vary the challenge length of a Fiat–Shamir proof of knowledge to make it
logarithmic by running parallel repetitions if the challenge is too short, or by restricting the challenge length
to the required length, and that in both these cases, the desired properties are conserved. In our case, the
challenge length of the modified Schnorr’s protocol needs to be restricted.

38



small. Since a hash output of this size is unlikely to occur for the first input used, the prover
computes consecutive transcripts for a predetermined list of challenge values, and chooses
the first transcript that results in the smallest hash output.

We will now describe the transformation. Let λ be a security parameter and let (PFS,VFS)
be a Fiat–Shamir proof of knowledge protocol for the relation R ⊆ W×X with challenges of
length ℓ = O(log(λ)) and distribution Σ. Let b, r, S, and t be functions of λ, where b is the
length of the output of the hash function, r is the number of parallel repetitions performed, S
is the maximum allowed sum of the hashes of the transcripts resulting from each repetition,
and t is the length of the challenges used. We require that br = ω(log(λ)), 2t−b = ω(log(λ)),
b, r, t = O(log(λ)), S = O(r), and b ≤ t ≤ ℓ. The Fischlin transformation then defines a
non-interactive proof system (P ,V) for relation L, written in the random oracle model.

In all constructions below, the random oracle OH can be modelled as an oracle which
performs lazy sampling. First, we define the prover as follows:

Prover POH(x,w)

1 : coins← ∅, com← ∅, ch← ∅, rsp← ∅
2 : for i = 1, . . . , r :

3 : coins[i]←$ Σ

4 : com[i]← PFS,1(x,w, coins[i])
5 : for i = 1, . . . , r :

6 : ch[i]← 0

7 : rsp[i]← 0 // this is a dummy value

8 : minHash← 1b

9 : for j = 0, . . . , 2t − 1 :

10 : rsp j← PFS,2(x,w, coins[i], com[i], j)
11 : if OH(x, com, i, j, rsp j) = 0b :

12 : ch[i]← j

13 : rsp[i]← rsp j

14 : elseif OH(x, com, i, ch[i], rsp[i]) < hashValue :

15 : ch[i]← j

16 : rsp[i]← rsp j

17 : hashValue← OH(x, com, i, ch[i], rsp j)

18 : return (com[i], ch[i], rsp[i])i=1,...,r

Figure 4.4: Fischlin Prover

It is worth noting that the purpose of the dummy value on line 7 in P is to simplify the
algorithm and prevent the prover from trying to return a null value in the case that all hash
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queries evaluate to 1b. This will only happen with negligible probability, and in this case,
the verification algorithm will fail regardless of whether the transcript is accepting, since the
hash value of this transcript will exceed the value S.

Next, we define the verifier as follows:

Verifier VOH(x, (com[i], ch[i], rsp[i])i=1,...,r)

1 : for i = 1, . . . , r :

2 : if VFS,2(x, (com[i], ch[i], rsp[i])) = false :

3 : return false

4 : if

r∑
i=1

OH(x, com, i, ch[i], rsp[i]) > S :

5 : return false

6 : return true

Figure 4.5: Fischlin Verifier

The straight-line extractor for the above construction can then be defined as follows:

Straight-line extractor SLE(x, (com[i], ch[i], rsp[i])i=1,...,r)

1 : π1 ← null

2 : π2 ← null

3 : for i = 1, . . . , r :

4 : π1 ← (x, com[i], ch[i], rsp[i])

5 : if ∃(x, com, i, chj , rspj) ∈ HList s.t. ch[j] ̸= ch[i] :

6 : π2 ← (x, com[i], chj , rspj)

7 : break

8 : return Ext(x, π1, π2)

Figure 4.6: Fischlin Straight-line Extractor

Fischlin proves that his construction satisfies a stronger version of straight-line extractabil-
ity than what we require here; namely, he shows that his staight-line extractor can produce
a witness for any valid statement proof pair (x, π), not just those where x ∈ L. In addition
to implying our definition of straight-line extractability, Fischlin’s definition also implies
soundness. Furthermore, Fischlin proves that his construction satisfies completeness and
zero knowledge.

It remains to show that Fischlin’s transformation satisfies collision resistance and non-
malleability.
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Lemma 4. An instantiation of Fischlin’s transformation is collision resistant if the under-
lying Fiat–Shamir proof of knowledge is collision resistant.

Proof. Suppose by contradiction that there exists a probabilistic polynomial time adversary
A who is able to find two statements x and x′ that verify with the same proof
(com[i], ch[i], rsp[i])i=1,...,r. Then, for each i, (com[i], ch[i], rsp[i]) is an accepting transcript
for both x and x′ for the underlying Fiat–Shamir proof of knowledge. But this contradicts
the assumption that the underlying Fiat–Shamir proof of knowledge is collision resistant. ■

We proved in the previous section that the modified version of Schnorr’s protocol is
collision resistant, so by lemma 4, the proof system we obtain by applying Fischlin’s trans-
formation to this protocol is collision resistant.

Lemma 5. The proof system that results from applying Fischlin’s transformation to a Fiat–
Shamir proof of knowledge is non-malleable.

Proof. Suppose that there exists a probabilistic polynomial time adversary A who, given a
valid proof (com[i], ch[i], rsp[i])i=1,...,r for a statement x = f(y) for a value y of their choosing,
can produce a different valid proof (com′[i], ch′[i], rsp′[i])i=1,...,r for the same statement x.

First, suppose that there exist indices i and j such that com[i] = com′[j], ch[i] = ch′[j], but
rsp[i] ̸= rsp′[j]. This is impossible by the assumption that the underlying Sigma protocol
has quasi-unique responses, so we may assume that this is not the case.

Now, suppose that there exist indices i and j such that com[i] = com′[j], but ch[i] ̸= ch′[j].
Then A can use the extractor for the underlying Sigma protocol on these two proofs in order
to compute the witness. But this contradicts the assumption that Fischlin’s transformation
is zero knowledge, so we may assume that this is not the case.

So, we must have that, for all indices i and j, com[i] ̸= com[j]. As our hash func-
tion is modeled as a random oracle whose output is required to verify the proof, this
means that the proof (com′[i], ch′[i], rsp′[i])i=1,...,r is entirely independent of the original proof
(com[i], ch[i], rsp[i])i=1,...,r. So, A contains a subroutineM which, without being given a valid
proof of x, can produce a valid proof of x. Thus, the non-malleability definition has been
satisfied. ■

So, applying Fischlin’s transformation to our modified version of Schnorr’s protocol re-
sults in a proof system satisfying the requirements of the PKEZK construction.
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Chapter 5

Conclusion

In this work, we presented a new approach for transforming an IND-CPA-secure PKE into
an IND-CCA-secure PKE, which has a tight security reduction and does not involve deran-
domization or re-encryption. We provided a security proof in the random oracle model for
the generic construction, and provided an instantiation that builds upon existing protocols.

5.1 Comparison with Existing Work

While our transformation does not involve a re-encryption step and provides tight secu-
rity, it is less efficient and results in larger ciphertexts than pre-existing constructions. The
table below provides a comparison between our transform and some of the more popular
pre-existing transforms: FO and REACT [8, 12]. We do not compare directly to the modu-
larized transforms in [10] as they result in KEMs instead of PKEs. The size and efficiency
measurements are done assuming ElGamal is used as the underlying PKE. Ciphertext size
is given assuming a λ-bit modulus, and run time is given in terms exponentiations that need
to be performed, as this is the dominating operation. For the PKEZK row, the number of
repetitions, r and the challenge bitlength, t are as defined in Chapter 4.
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PKEZK FO REACT FO̸⊥

Underlying Enc security IND-CPA OW-CPA OW-PCA IND-CPA
Underlying Enc correctness ϵ Perfect Perfect ϵ

Uses re-encryption No Yes No Yes
Uses derandomization No Yes Yes Yes

Tight? Yes No Yes Yes
Resulting scheme PKE PKE PKE KEM
Ciphertext size 3r + 1 3 ≈ 3 ≈ 2

Run time (Encryption) r(2t − 1) + 2 2 2 2
Run time (Decryption) r + 1 2 1 2

Table 5.1: Comparision of various IND-CPA-to-IND-CCA transforms, where ciphertext size
is given in terms of a λ-bit modulus and run time is given in terms of the number of modular
exponentiations

Of all the transformations described in [10], we have chosen to include FO ̸⊥ in our com-
parison, as it is an IND-CPA-to-IND-CCA transform and does not require the underlying
PKE to be γ-spread. It is worth noting that the second module of this transform, U ̸⊥, is the
KEM version of REACT.

The ciphertext sizes of REACT and FO̸⊥ are shown as ≈3 and ≈2, respectively, because
they are dependent on the output length of the hash function H described in Chapter 1. It
is reasonable to assume that this is approximately equal to λ. Also, it is worth noting that
in practice, the values of s and t would be in the ballpark of 10 and 12, respectively [7].

The size and efficiency drawbacks of our instantiation come from the zero knowledge
proof system used. To the best of our knowledge, there do not currently exist straight-line
extractable zero knowledge proof systems that are smaller and/or more efficient, however, if
one is constructed in the future, then this could improve our instantiation.

5.2 Future Work

Our construction arose from a few observations:

1. The random coins used during ElGamal encryption can be used for decryption pur-
poses.

2. Attaching a zero knowledge proof of knowledge of the random coins used for ElGamal
encryption to an ElGamal ciphertext forces plaintext awareness from any party who is
capable of creating a well-formed ciphertext.

3. Schnorr’s protocol is compatible with ElGamal as a zero knowledge proof of knowledge
of the random coins used during ElGamal encryption.
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With this instantiation in mind, we came up with the generic transform which forces
plaintext awareness by proving knowledge of the random coins used. However, a similar
generic transform could be obtained by proving knowledge of the message instead of proving
knowledge of the radom coins. This transform would be more widely applicable, since it
would not require the the underlying PKE to be decryptable with randomness. It would
also admit a simpler security proof, for the same reason. However, to our knowledge, there
are no obvious ways to instantiate such a transformation, so its interest is more theoret-
ical than practical. However, this provides motivation to explore efficient non-interactive
straight-line extractable zero knowledge proof protocols that can be used for this purpose.
Similarly, development of smaller and faster straight-line extractable zero-knowledge proofs
of knowledge for discrete logarithms are of interest, to improve the size and efficiency of our
instantiation.

Additionally, with the looming possibility of quantum computers and the resulting in-
terest in post-quantum secure cryptosystems, it could be useful to have an IND-CPA-to-
IND-CCA transformation that is secure in the quantum random oracle model. The instanti-
ation we provided is not, as it relies on the hardness of the discrete logarithm problem, but
we have not yet analyzed our generic transformation under this lens. This could also be an
avenue for future work.
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