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Abstract

Sequencing proteins and glycans have important clinical applications, as glycosylation is
shown to play a significant role in cellular communication and immune response. Certain
glycans are linked to the diagnosis of cancer as well as targeted immunotherapy. Mass
spectrometry is a powerful tool that helps us gain insight into peptide sequences and glycan
structures, by using database search, spectral library, or de novo sequencing. Spectrum
and retention time prediction using deep learning has gained popularity with studies on
non-glycosylated peptides and has been shown to improve database search results via
rescoring. This thesis proposes deep learning models to predict spectrum and retention
time for N-glycopeptides and then discusses the applications of these models with respect
to glycopeptide sequencing.

Chapter 3 presents a graph deep learning model to predict fragment ion intensities of
observed spectrums and define a spectrum representation for glycan fragments with up to
three cleavages. The spectrum prediction model has a median cosine similarity of 0.921,
which is 20% higher than previous attempts at glycopeptide spectrum prediction.

For retention time prediction in Chapter 4, we propose a model with two parallel
encoders for both peptide and glycan input and apply transfer learning for the sequence
encoder. The retention time prediction model has a Pearson correlation of 1.0, which is
higher than the previous 0.98 and 0.96 attempts. We also introduce the 95 percentile delta
as an evaluation metric, as well as discuss the interpretability of our model.

Finally in Chapter 5, we apply our spectrum and retention time prediction models
in glycopeptide sequencing pipelines, including database search and de novo search. We
show that our model improves identification by rescoring and has the potential to be
used as a filter for false positives. We also demonstrate that our model improves de novo
identification when used in the scoring function.
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Chapter 1

Introduction

1.1 The Study of Proteins and Glycans

Proteomics is the study of proteins, which is one of the most important yet varied building
blocks of life. Proteins are responsible for all kinds of inter- and intra-cellular functions,
and knowing a protein’s structure helps the understanding of the functions and properties
of said protein. Protein sequencing is the first step in discovering protein structures.

Glycosylation is one of the post-translational modifications (PTMs) on proteins. A
PTM is adding a modifying group to an amino acid in the protein sequence, thereby
altering the functions and properties of the modified protein. Glycosylation is a common
PTM that happens to more than 50% of proteins in humans, but correctly identifying
the glycan that is added to the protein remains a difficult task. It has been shown that
glycosylation is vastly different in cancerous cells compared to normal cells, and the glycans
on cancerous cells play important roles in the growth and metastasis of cancer [25]. Glycans
can be used in the diagnosis of cancer as well as targeted immunotherapy [28].

In glycosylation, a glycan, which is a tree-like structure composed of monosaccharides,
is added to an amino acid. Monosaccharides are diverse in structure, but for the course
of this thesis, we only consider five main categories of monosaccharides: Hexose (Hex),
N-Acetylhexosamine (HexNAc), Fucose (Fuc), N-Glycolylneuraminic acid (NeuGc) and N-
Acetylneuraminic acid (NeuAc). Other monosaccharides are not in our particular concern
for the makeup of glycans. Table 1.1 lists the five monosaccharides, their symbols, and
their residue masses.

There are two types of glycosylation: N-linked glycosylation attaches a glycan to the
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Symbol Name Abbr. Residue Mass

Hexose Hex 162.0528

N-Acetylhexosamine HexNAc 203.0794

Fucose Fuc 146.0579

N-Glycoylneuraminic acid NeuGc 307.0903

N-Acetylneuraminic acid NeuAc 291.0954

Table 1.1: 5 common monosaccharides in glycans, their symbols, abbreviations, and residue
masses

Figure 1.1: N-glycan core structure

nitrogen atom on the amino acid Asparagine (denoted as N), whereas O-linked glycosy-
lation happens when a glycan is linked to the oxygen atom in Serine (S) or Threonine
(T). N-glycans all have a common core structure composed of two HexNAc and three Hex
monosaccharides, whereas O-glycans do not have a common core structure. In this thesis,
we will focus on N-glycans only. Figure 1.1 illustrates the core structure of N-glycans.

1.2 Mass Spectrometry

Tandem Mass Spectrometry (MS/MS) [21] is a powerful tool that can be used to study
proteins and glycans, among many other applications. Given a sample of proteins, one first
digests it into shorter sequences, called peptides, using enzymes such as Trypsin. Then,
one feeds the sample with peptides into a mass spectrometer, which has five stages. In the
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first stage, the ion source produces gas phase ions from the peptide sample, then in the
second stage, the mass analyzer separates the ions according to their mass to charge (m/z)
ratio. The relative abundance, or intensity, for each m/z value is recorded, generating an
MS1 spectrum. Each pair of m/z values and its intensity in the spectrum is called a peak,
and in the MS1 spectrum, each m/z value is also called a precursor ion, often associated
with a peptide in the sample. During the third phase, some precursor ions are selected and
further fragmented into fragment ions by different dissociation methods such as collision-
induced dissociation (CID) or higher energy collision dissociation (HCD). These fragment
ions are again separated by m/z in the fourth stage and the peaks are recorded in the fifth
stage, resulting in an MS2 spectrum for each selection of precursor ions.

Figure 1.2 illustrates a brief diagram of the process of tandem mass spectrometry and
examples of MS1 and MS2 spectrums.

Liquid Chromatography (LC) [38] is a technology to separate a mixture by its physical
and chemical properties. A sample in a solvent is carried through a column that is fixed
with a certain material called the stationary phase. Different components in the mixture
may interact with the stationary phase (in other words, retained in the column) for a
different amount of time, resulting in their separation by time, so the output particles are
each associated with a retention time value. In proteomics, LC is often used in conjunction
with Tandem MS, and we call the process LC-MS/MS.

During stage three of MS/MS, there are two main types of strategies for selecting
the precursor ions to proceed: data-dependent acquisition (DDA) or data-independent
acquisition (DIA). DIA proceeds to fragment all the precursor ions within a certain range
ofm/z and retention time, whereas DDA’s goal is to only select one precursor ion at a time.
The resulting MS2 spectrums for DIA include all the fragment peaks for all the peptides
included, while each MS2 spectrum for DDA only shows the fragment peaks for each
precursor ion. Practically, DIA tools produce higher accuracy in generating spectrums,
but sequencing with DIA data is more complicated.

Glycosylated proteins are processed similarly to normal proteins. The samples for the
mass spectrometer may include peptides with glycans, and the mass of the precursor ion
is the mass of the peptide plus the mass of the glycan. During the fragmentation, not
only can links between amino acids be cleaved, but so can the links between the peptide
and the glycan, as well as links between monosaccharides. Depending on the experiment,
researchers may opt to use an additional step after enzyme digestion, called enrichment,
where chemical processes are used to prioritize the selection of glycopeptides over regular
peptides, allowing a larger percentage of MS2 scans to correlate with glycopeptides [22].

Sequencing peptides from DIA data is already met with challenges due to the highly
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Figure 1.2: Tandem mass spectrometry illustration

complex spectrums, but it is even more complex with glycopeptides, as fragmentation
with glycopeptides introduces many more peaks. Currently, mass spectrometry data on
glycopeptides mostly use the DDA method, so this thesis will focus on the sequencing
strategies for DDA.

1.3 Database Search for Peptides and Glycopeptides

When MS/MS produces the MS2 spectrums, each scan only contains peak intensities re-
sulting from fragmentation from a precursor ion. Since each precursor ion is associated
with a peptide, we wish to find out the exact peptide sequence matched to each MS2 scan.
If we have a database of all proteins, and therefore peptides, that the sample is taken
from, then theoretically we can search through the database to find the best candidate
that matches the scan. This process is called database search, in opposition to the other
method de novo, which builds the peptide from scratch, without information from the
protein database.

The precursor mass is the mass of the peptide, which is the sum of the residue mass of
each amino acid, plus the mass of one water molecule. This is because one Hydrogen (H)
is attached to one end of the peptide, and one hydroxide (OH) is on the other end. When
a precursor ion is fragmented in MS/MS, one link between amino acids is broken, resulting
in two fragments. The one fragment with the hydrogen molecule on one end is called the
b-ion, whereas the other is the y-ion. Consequently, the mass of the b-ion is the sum of the
residue mass of the amino acids in the corresponding fragment plus 1.0078 Da, the mass
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of Hydrogen, and vice versa for the y-ion. Given a peptide and a table of residue masses
for each amino acid, one can calculate all the theoretical fragment masses (and therefore
also m/z) that can be produced from fragmentation.

From the MS2 scan, we are given all the peaks, which are pairs of m/z values and their
intensities. When the theoretical m/z of an ion fragment is within the tolerance threshold
of a peak on the spectrum, we say that the peak is a match. Experimentally, we set the
tolerance to be between 0.02 Da and 0.05 Da. From here, one can design a metric for how
well a peptide matches to a spectrum, based on the theoretical fragment ions and peaks
in the spectrum.

In database search, we look at one MS2 at a time, and first filter out all the peptides
in the database whose precursor mass is within a tolerance level. That is to say, we only
keep the peptides whose mass is close to the precursor mass, and go from there. Again,
the precursor tolerance can be set depending on the experiment. Then for each filtered
candidate, one can use the previously mentioned metric to score how well the peptide
matches the scan and select the best candidate. The final candidate peptide and the
spectrum form a peptide-spectrum match (PSM).

The target decoy strategy [7] ensures that we only output the PSMs that are correct
with high confidence. Given that we do not know whether a PSM is correct, one makes the
assumption that the probability of matching an incorrect peptide to a spectrum is close to
that of matching a random peptide with the same precursor mass. We call the database of
all possible peptides the target database and generate a decoy database by either revers-
ing or randomly shuffling the protein sequences. The assumption is that the probability
of selecting an incorrect peptide from the target database is equal to the probability of
selecting a peptide from the decoy database. Therefore, the false discovery rate (FDR)
can be defined as the number of decoys divided by the number of targets being produced.
In most sequencing pipelines we opt to use FDR ≤ 1% and use the number of PSMs as
a criterion for the performance of a search engine. Many search engines and software are
proposed to perform database searches, such as SEQUEST [24], Mascot[8], MaxQuant[5],
and PEAKS[32].

Database search for glycopeptides is similar to that of peptides. Given a glycan and
peptide pair, one can also calculate the theoretical fragment m/z values and match them
to the peaks in a spectrum. In this case, a fragment may be a partial peptide, a partial
glycan, or a partial glycan attached to the peptide. A glycopeptide matched to an MS2
scan is also called a GPSM (glycopeptide spectrum match). For the rest of this thesis,
since we are mainly concerned with glycopeptides, we may use both PSM and GPSM to
refer spectrum matches to glycopeptides.
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Figure 1.3: Example of Glycopeptide Spectrum Match by PEAKS Glycan Annotation

Search engines for glycopeptides include MSFragger [15], pGlyco3 [35], and PEAKS
Glycan [31]. It is worth noting that MSFragger produces Glycopeptide PSMs that only have
the glycan composition, that is the number of monosaccharides in each of the five categories,
whereas pGlyco3 and PEAKS Glycan both output PSMs containing the matched glycan
structure.

Figure 1.3 shows an example of matching a spectrum to a glycopeptide. The high-
lighted peak around m/z = 2371.08 is matched to a HexNAc molecule attached to the
peptide, where the short wavey line attached to the blue square represents the entire pep-
tide sequence. We arrive at this m/z value by adding all the residue mass of amino acids in
the peptide sequence, plus the residue mass of the HexNAc, and the mass of a hydroxide
molecule. The peak is highlighted because it is within the tolerance of 30 ppm of the
theoretical m/z. This peak is a y-ion because it is attached to a hydroxide molecule. As
another example, the highlighted peak at around m/z = 204.087 is matched to the b-ion
of just a HexNAc. The HexNAc monosaccharide at the leaf of the glycan is attached to a
Hydrogen molecule and when fragmented, results in a b-ion.

1.4 Other Searching Methods

In addition to database search, spectral library search is another method for matching
spectrums to peptides. If one can build a library of peptides with their expected spectrums,
one can compare the experimental spectrum with the spectrums in the library using a
similarity metric. This can be advantageous over simple database searches because the
similarity of relative peak intensity is taken into consideration. However, the main hurdle
is to create an accurate yet comprehensive spectral library. For spectral library search, it
is also proposed that instead of the decoy protein database, one permutes the spectrum
peaks to generate decoy spectrums, and then proceeds with the FDR strategy.
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Generating a spectral library with peak intensities can be difficult, so efforts are made to
predict spectrums using deep learning. Once the database search has generated the top N
candidates for each spectrum, one can run spectrum prediction for each candidate peptide,
and obtain a similarity score between the experimental spectrum and predicted spectrum.
From there, one can rescore the candidates based on previous database searching criteria
and spectrum similarity. PROSIT [10] and pDeep [40] are examples of spectrum prediction
models for rescoring. Besides spectrum prediction, PROSIT also proposes retention time
prediction, where retention time (RT) is the recorded time that the precursor takes during
the chromatography column. By comparing the predicted RT with the experimental RT,
one can add yet another scoring feature to the rescoring process.

Besides database search, spectral library search, and rescoring, another prominent area
for peptide sequencing is called de novo sequencing. As the name suggests, the sequencing
means to start from scratch. Without the use of a protein database or spectral library,
one may attempt to build the peptide just based on information of the spectrum. The
advantage of de novo sequencing is its ability to discover peptides that are not in the
database. The main obstacle for de novo sequencing is the abundant noise in the spectrum,
so when finding the next probable amino acid, the search space may be large. Attempts
at de novo algorithms include spectrum graph algorithms [6, 20], dynamic programming
[4, 19], hidden markov model [9], and deep learning models [33, 27, 20].

With respect to Glycans, there have been non-deep-learning-based attempts at spec-
trum library search [39], as well as spectrum prediction [12] and RT prediction [14, 1]. There
are also de novo methods for glycopeptide identification such as StrucGP [30]. There will
be more in-depth discussions on glycan search methods in Chapter 2.

1.5 Overview and Structure of This Thesis

The main contributions of this thesis are designing deep learning models to predict gly-
copeptide spectrum and retention time, as well as applying these models in glycopeptide
search. Our spectrum prediction model (Chapter 3) outperforms previous models on gly-
copeptides by at least 20%. As for the retention time prediction model in Chapter 4, the
prediction accuracy of our RT prediction model improves upon other RT prediction models
from R2 = 0.98 to 1.0, and additionally, we will introduce another metric to evaluate RT
prediction that previous works on glycopeptides did not use. In Chapter 5, we will demon-
strate how our spectrum and RT prediction models help in glycopeptide search, when used
in the filtering and rescoring of database search, as well as in de novo search.
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Chapter 2

Previous Works and Background

2.1 Spectrum Prediction on Glycopeptides

2.1.1 Kinetic Model for Peak Intensity Prediction

Zhang et al. [39] proposed a kinetic model for predicting the peak intensity of a fragment
on glycans. They use the mobile proton hypothesis [3] as a kinetic model of fragmentation
and mathematically define the intensities of each fragment. Given a precursor ion P with
possible fragments F1, F2, . . . , FN , each with kinetic rate constants k1, k2, . . . , kn, let [P ]t
be the abundance of the precursor ion P at time t. Then we can define

[P ]t = [P ]0e
−ktotalt (2.1)

where ktotal is the sum of rate constants
∑N

i=1 ki. Therefore, the relative intensity of the
fragment Fi at time t can be expressed as

[Fi]t = ki[P ]0

∫ t

0

e−ktotaltdt

=
ki[P ]0
ktotal

(1− e−ktotalt)

(2.2)

By calculating the rate constants k1, . . . , kN , one can calculate the predicted fragment
intensities. They build a mathematical model containing hundreds of parameters and
train on 1831 spectra to obtain the prediction model. When testing the model on a testing
set with glycans not seen in the training set, the median similarity between predicted and
experimental spectrums (using cosine similarity) achieves 0.71 ± 0.08.
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2.1.2 Probabilistic Model for Peak Intensity Prediction

Klein et al. [12] considers the kinetic model by partitioning precursors into three cate-
gories: mobile, partially mobile, and immobile. Together with a list of features from the
glycopeptide, such as glycan and peptide composition, charge, and so on, they model the
intensity of a fragment as a probability drawn from a multinomial distribution parame-
terized by these features. They train their model on a mouse tissue dataset, withholding
the mouse brain subset. When testing on the mouse brain dataset alone, they achieve a
median similarity score (using cosine similarity) of 0.76.

2.2 Retention Time Prediction on Glycopeptides

Ang et al. [1] introduce the idea of retention time shifts by glycans. In a sample with both
glycosylated and deglycosylated peptides, one can then calculate the shift in retention time
for a glycan g: the retention time of the glycosylated peptide Pglyco minus the retention
time of its deglycosylated counterpart Pdeglyco.

∆RTg = RT (Pglyco)−RT (Pdeglyco) (2.3)

Using a database to obtain experimental retention time shifts, and using an accurate RT
prediction tool for peptides SSRCalc [16], the predicted retention time for a glycopeptide
Pg can be calculated as

RT (Pg) = SSRCalc[RT ](Pdeglyco) + ∆RTg (2.4)

The accuracy of this model achieves R2 = 0.967.

Klein et al. [14] also build upon the RT prediction for peptides, and train a linear
model with the peptide RT, normalized abundance of Hex, HexNAc, Fuc, NeuAc, and
sulfate. They train both peptide-specific models and a cross-peptide model. The peptide-
specific models achieve R2 = 0.98 for a select few peptides, whereas the cross-peptide model
achieves R2 = 0.897.

Park et al. [23] propose a novel metric of Ln/Nn, which is a weighted ratio between
HexNac intensities and NeuAc intensities. They observed that for the same precursor
mass, isomers with sialic acids (NeuAc and NeuGc) tend to shift the retention time early,
whereas the addition of HexNAc results in a later retention time. For a sample glycan, let
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nA, nB denote the number of HexNAc and NeuAc respectively, and let SA, SB denote the
sum of peak intensities from HexNAc and NeuAc ions respectively. Then

Ln/Nn =
SA

SB

× nB

nA

. (2.5)

They find that for the same precursor mass, the Ln/Nn value and the relative retention
time are positively correlated, although they do not propose a predictive model for the
retention time.

2.3 Deep Learning Models on Non-Glycosylated Pep-

tides

The works described above all employ a relatively small regression model with at most
hundreds of parameters. Deep learning exploits computational power and by using models
of a much larger scale, has been shown to achieve extremely high accuracy in regression
and prediction tasks. To the day of writing this thesis, we have not been made aware of
attempts at predicting the peak intensities of glycopeptide spectrums or retention time
using deep learning. Despite this, deep learning models have achieved success in spectrum
and retention time prediction for regular peptides.

PROSIT [10] and pDeep [40] are examples of deep learning models on fragment ion
intensity prediction. While pDeep employs an LSTM model that takes the peptide as
one-hot vector input and predicts the relative intensity for the fragment corresponding
to each link between amino acids, PROSIT uses an encoder-decoder model with GRU to
achieve the same task. PDeep achieves cosine similarities of over 0.90 for many testing
datasets, while PROSIT manages to arrive at a median cosine similarity of 0.99. There
have also been attempts at full spectrum prediction such as by Liu et al. [17]. Instead
of only predicting the intensities of fragment ions, they also predict all other peaks in
the spectrum, arguing that the non-backbone peaks are also crucial in peptide spectrum
matches. In this approach, they have a cosine similarity of 0.820 ± 0.088 for full spectrum
prediction.

2.4 Graphormer

Graphormer proposed by Ying et al. [34] revolutionalized the area of deep learning on
graphs. Based on a transformer architecture, Graphormer uses four different encodings
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Figure 2.1: Graphormer’s Illustration of Centrality, Edge and Spatial Encodings

to translate graph information and structure into the deep learning network. First, the
node feature intuitively encodes the information at each node of the graph. The centrality
encoding embeds the indegree and outdegree of each node. The edge encoding keeps track
of graph information along the edges. Finally, the spatial encoding records the relative
spatial relationships between nodes, with one example being the shortest path distance
between two nodes. Figure 2.1 shows Graphormer’s illustration of its encodings.

Graphormer performs both experimentally and provably better than its predecessor
GNN, manifesting that the leap of performance achieved by transformers in sequential
deep learning can be replicated in graphs. Given that glycans and glycopeptides are no
longer sequential, but actually trees, a deep learning model like Graphormer shows good
potential in processing glycopeptide data.
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Chapter 3

Spectrum Prediction

In this chapter, we focus on the task of spectrum prediction for glycopeptides. The goal
is to train a deep-learning model that takes a glycopeptide as input and predicts the
corresponding spectrum as output. In particular, we do not predict the full spectrum but
instead, output the predicted relative intensities of each glycopeptide fragment ion.

3.1 Model Design and Structure

3.1.1 Glycan’s Tree Structure as Inputs

Graphormer [34] is a graph-based deep learning network that takes in graph-based inputs,
which is a good foundation for our model, whose inputs are tree structures. Given a
glycopeptide, we can define a graph input for Graphormer as follows. Each amino acid
and each monosaccharide is considered a node. The node feature is of L×d, where L is the
maximum number of amino acids and monosaccharides in the glycopeptide, and d is the
node embedding dimension. Between each pair of amino acids, is a directed edge pointing
in the direction of the peptide, and from the Asparagine (N) amino acid to the glycan, edges
point to the leaves of the tree. We distinguish all the edges into three categories: between
two amino acids, between an amino acid and the glycan, and between monosaccharides
in the glycan. The node feature, therefore, is the embedded vector of each node, and the
edge encoding is the embedding of each edge type in the adjacency matrix. Centrality
encoding is defined as in Graphormer, and spatial encoding is taken to be the shortest
path distance between each two nodes. It is noteworthy, that because a glycopeptide can
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be considered a tree, the shortest path distance can be calculated very easily. The node
feature, centrality encoding, edge encoding, and spatial encoding are all padded to the
maximum glycopeptide size at L = 64.

3.1.2 Modeling Spectrum Information as Outputs

In PROSIT [10], the model outputs an (N − 1) × 6 matrix, where N is the length of the
peptide sequence, and 6 represents the 1+, 2+, and 3+ charged y-ions and b-ions for each
fragment. Each value in the matrix represents the predicted relative peak intensity for the
fragment ion. Given an experimental spectrum, one simply finds the matching peaks for
each fragment ion m/z, and records the relative intensities in a matrix of the same size.
Thus, one can use any similarity metric, such as cosine similarity, Pearson Correlation
Coefficient (PCC), or spectral angle to determine the loss between the predicted spectrum
and experimental spectrum.

For our task with graph input, we can adopt a similar method, by recording the y and b
ions resulting from cutting each edge into a (N+M−1)×2 matrix, where N is the peptide
length, M is the number of monosaccharides in the glycan, (N +M − 1) being the number
of edges that can be fragmented, and 2 denoting y and b ions. Here, we make no attempts
at predicting peak intensities for fragment ions with multiple charges, because experiments
with glycan search data show that the other peaks have insignificant intensities.

Although the method described above is intuitive and works, upon further investigation
into glycopeptide spectrum match data (Figure 1.3 shows an example), we find the following
properties:

1. Although theoretically possible, there are no fragments where a full or partial glycan
is attached to a partial peptide. If a partial peptide fragment is detected, the glycan
has already been removed.

2. Fragments that result from cleavages on the glycan have significantly higher peak
intensities, whereas fragments from peptides alone show very low intensities.

3. Among the glycan fragment ions, those attached to the peptide, namely y-ions, have
higher peak intensities, in contrast to their b-ion counterparts, with the exception of
a single HexNAc or Hex b-ion.

4. Some glycan fragment y-ions with high intensities result from not one fragment along
an edge, but two or in rare cases, more fragments. In the example in Figure 1.3,
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the matched peak right before m/z = 3000 cannot be the product of one single
fragmentation.

In light of these properties, we can modify our spectrum representation as follows:

1. We can focus on fragments from glycans only, which can greatly reduce the prediction
space.

2. We can also overlook the peak intensities of b-ions, and only predict the spectrum
intensities for glycan y-ions that are attached to the peptide.

3. We need to allow for at least two fragments on a glycan.

With respect to modification 2, we experiment with removing glycan b-ions and or glycans
fragments that are not attached to the peptide.

From modification 3 above, we propose a spectrum representation as a M × M × k
matrix, where M is the number of monosaccharides in a glycan. k varies depending on our
decision on the previous two modifications. In the simplest case of only predicting glycan
y-ion peaks attached to the peptide, we set k = 1. Before filling in the values of the matrix,
we now need to define the types of fragments below. Using the N-glycan core in Figure
1.1 as an example, the following table 3.1 shows the types of fragments and corresponding
examples. Among the four categories of fragment ions, our observation shows that the Y
and YY fragments have high peak intensities, whereas B and BY fragments in most cases
do not.

Now we attempt to fill in an M × M × 1 matrix A, considering only Y and Y-Y
type glycans that are attached to the peptide. We number the monosaccharides in the
glycan from 1 to M , with 1 being the root HexNAc connected to the peptide, traversing
in breadth-first search order, and M being a leaf node. Due to the tree-like property of a
glycan, we can therefore label each edge ei to be the unique edge connecting node i to its
parent.

When there is a single cut at edge ei, we record the intensity of the resulting Y fragment
at A1,i. Note that at A1,1, the corresponding peak is the deglycosylated peptide. When
two cuts at edges ei, ej, i < j form a YY type fragment, we record the intensity of said
fragment at Ai,j. In order to form a YY-type fragment, there cannot be a cut at edge e1,
so the values of YY fragments do not conflict with Y fragments. Note that this matrix is
an upper triangular matrix.
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Type Examples Explanation

Y
The fragment from one cut at-
tached to the peptide

B
The fragment from one cut at-
tached to the Hydrogen on a leaf
node

Y-Y
The fragment from two cuts at-
tached to the peptide, resulting
from the y-ends of both cuts

B-Y

The fragment from two cuts that
is not a y-ion, resulting from the
b-end of one cut and the y-end of
another

Table 3.1: Categories of fragment ions resulting from at most two cuts.

If we consider other fragment types from modification 2, we set k = 3. The first channel
is the same as when k = 1. The second channel records B and BY type fragments, whereas
the third channel records Y and YY glycan fragments while removing the peptide. A B-
type fragment ion resulting from a cut at edge ei is filled in Ai,1,2. A BY-type fragment
from edges ei, ej, i < j must result from the b-end of cut ei and the y-end of cut ej due
to the BFS order, and therefore is filled in Aj,i,2. Note that the second channel is a lower
triangular matrix. For the third channel, for each Y and YY fragment, we remove the mass
of the peptide and record the relative intensity of the matching peak in the same way as
in the first channel.

A final consideration is a case where a Fucose is attached to the root HexNAc as in
Figure 3.1a. We observe in the PSMs for these types of glycans, that the Fuc is easily
fragmented, and could often result in high-intensity peaks for fragments such as in Figure
3.1c. In this case, the fragment is a result of three cleavages. If we were to include all
three-cut fragments in glycans, our model would greatly multiply in scale and complexity,
and given that this situation is only abundant in cases with a Fuc attached to the root, we
can make the following modification.

For glycans with a Fuc at the root node, we add two more channels by setting k = 5:
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(a) Example glycan with Fuc
attached to the root node

(b) Fragment from two cuts (c) Possible high-intensity
fragment from cutting off the
Fuc, in addition to two other
cuts

Figure 3.1: Example of possible glycan fragments with the presence of Fuc attached to the
root node.

copies of the first and third channels while removing the Fucose molecule on the fragments.
We should also note that this situation only occurs on Y and YY fragments, with or without
the peptide.

Eventually, our model has the output dimension of M × M × k, with k = 1, 3, 5. In
the later Section 3.3, the performance for each k value is discussed. Given an experimental
spectrum as the truth label for training, we find all matching peaks for the identified
fragments and fill in the matrix. In this way, we can use mean squared error (MSE loss)
to fit our model. It is important to note, that more than half of the matrix entries do
not have a matching intensity, either because the fragment is undefined, or because the
experimental spectrum does not have a matching peak. In these cases, the values in the
entries are set to 0. Later we describe a modified MSE loss to deal with the sparsity of the
output matrix.

3.1.3 Model Structure for Spectrum Prediction

The model for spectrum prediction takes the general form of an encoder-decoder structure.
The encoder is modeled after Graphormer, where the node feature and centrality encoding
are fed to a multi-head attention (MHA) network, where the spatial encoding and edge
encoding are added as bias terms for the attention. Afterward, layer normalization (LN)
and feed-forward network (FFN) are applied as in a standard transformer. One layer of the
Graphormer encoder includes the MHA and FFN, each with layer normalization applied
and added afterward. In our spectrum prediction model, 32 layers of Graphormer encoder
are stacked and eventually added to a learnable charge embedding. From our observation,
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the same glycopeptide with different precursor charges can have very different spectrums,
so the charge embedding is also added as a trainable part of the encoding. The Graphormer
encoder outputs an encoding of dimension L ×D, where L is the maximum input length
of the node feature, and D is the hidden embedding dimension. After adding the charge
embedding and an FFN layer, the final output of the Graphormer is of dimension L × 1.
During each Graphormer layer, a graph representation of dimension L× L is kept during
MHA, and the graph representation in the final layer is kept as another output of the
model encoder.

The decoder takes in the L× 1 Graphormer encoding, the L×L graph representation,
and a pre-annotated edge mask of size L×L as input. The edge mask is a binary masking
of possible peak predictions because we only care about the predicted intensities at possible
fragments. We take the Graphormer encoding and multiply it with its transpose to obtain
an L × L matrix. Then, we stack the three matrices to form a L × L × 3 input for the
decoder. We use a convolutional neural network (CNN) as the decoder whose output is a
M ′ ×M ′ × k matrix, where M ′ is the maximum size of a glycan, taken to be 32, and k is
the hyperparameter for the number of channels of prediction.

Figure 3.2 demonstrates the structure of my spectrum prediction model for glycopep-
tides.

3.2 Training

3.2.1 Data Acquisition

Our training and testing data were first published by Liu et al. for pGlyco2.0 [18], which in-
clude enriched glycopeptides from mouse brain (PXD005411), kidney (PXD005412), heart
(PXD005413), liver (PXD005553), and lung (PXD005555) tissues. PEAKS Studio with
the Glycan Module [31] was used to analyze the data and produce glycopeptide spectrum
matches. The protein database with UniProt Reference Mouse Proteome UP000000589
and the built-in mouse-yeast-N-glycans dataset from PEAKS were used respectively for
the database search. The precursor tolerance was set at 10 ppm, and fragment tolerance
at 30 ppm. The output PSMs were selected to be above 1% FDR.

Out of the five datasets, a total of 148812 PSMs were produced. The training, vali-
dation, and testing datasets are randomly selected with a fixed seed, to not include any
glycans that appear in the other two datasets. The training dataset is further restricted by
setting a minimum PEAKS glycan score of 29.0, selected manually. The validation dataset
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Figure 3.2: Illustration of Spectrum Prediction Model
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is used to monitor overfitting during training, and the testing dataset is used for the final
evaluation of the model.

3.2.2 Training and Loss Functions

A masked MSE loss is used as a loss function for training. Let IP and IE be the predicted
and experimental spectrums in the form discussed in Section 3.1.2. Let B be a matrix of
the same size with binary values, where 1 is filled if there is a theoretical fragmentation
at the corresponding position, and 0 otherwise. For ease of documentation, we can flatten
these matrices into 1-dimensional vectors of size n. We can then define our loss function

L(IP , IE) =

∑n
i=1(I

P
i − IEi )

2 ·Bi∑n
i=1Bi

(3.1)

Using the Adam optimizer with a learning rate of 0.001 and a batch size of 64, the
model is trained on an NVIDIA GeForce RTX 3060 GPU for 30 epochs. Additionally, the
Python package Glypy [13] was used for data processing.

3.3 Model Evaluation

We evaluate the similarity of each predicted spectrum to its experimental counterpart in
the testing dataset with cosine similarity. We define the similarity metric differently from
the masked MSE function during training. In the predicted matrix of peak intensities,
it is likely that two entries in the matrix, although representing different fragments, are
correlated to the same m/z value, and therefore are matched to the same peak intensity.
This phenomenon may result in a bias for the true similarity of spectrums. Thus, from the
predicted spectrum matrix, we can calculate the predicted relative intensity for each m/z
value, taking the mean if there are multiple entries. From here, we apply cosine similarity
to the processed spectrums. For each spectrum in the testing dataset, if the number of
matched peaks is less than 3, it is discarded and not counted towards later evaluations,
as the cosine similarities for these spectrum matches do not reflect the accuracy of the
intensity predictions.

We observe an increase in median cosine similarity if we include the two Fucose channels
in contrast to the three channels, with the median going from 0.893 when k = 3 to 0.909
when k = 5. However, the case of k = 1 outperforms the others, with a median cosine
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similarity of 0.921. One conjecture is that there are significantly fewer predicted peaks,
sometimes less than 50%, which leads to a higher cosine similarity score.

We compare our spectrum prediction results against previous attempts for glycopeptide
data, namely Zhang et al. [39] and Klein et al. [12]. Zhang et al.’s work arrives at a median
cosine similarity of 0.71, using their own generated dataset of 196 spectra in the testing
set. Klein et al.’s work arrives at a median similarity score of 0.76 when testing on the
mouse brain dataset. Although Klein et al.’s work used the same mouse tissues dataset
as our experiment, their probabilistic regression model did not separate the training and
testing dataset by glycans. Both Zhang et al. and Klein et al.’s works define features in
the models manually, which makes it difficult to replicate their methods on our dataset.
To make a meaningful comparison with Klein et al.’s work, our model was trained on the
mouse tissues dataset other than the mouse brain, and tested on the mouse brain dataset.
In this experiment, our median cosine similarity becomes 0.943, which is 24% higher than
Klein et al.’s results. However, it is important to note that this number of 0.943 is only
used to show our improvement over previous work, and cannot be taken as the true testing
performance, as the deep learning model may overfit on previously seen data.

Figure 3.3 shows an example of predicted versus experimental spectra. In the mirror
plot, the observed, or experimental spectrum is shown above the x-axis, without unmatched
peaks, and the predicted spectrum is shown below the x-axis.

3.4 Discussion

3.4.1 Case Study on Charge

We examine the poorer-performing spectrum prediction results with the hopes of gaining
insight into the reason for inaccuracy. One observation is that charge greatly affects the
peak intensities of a spectrum.

Figure 3.4 shows an example of how the charge affects the spectrum of a glycopeptide.
Observing the top portions of each plot (the experimental spectrum), we see that different
charges may drastically affect the peak intensities of the same glycopeptide, but different
glycopeptides are not equally affected by the charge of the precursor. Although we have
added a charge embedding into the spectrum prediction model, for the case of different
charges on the same glycopeptide, we do not see a significant difference in the predicted
spectrum. Our conjecture for our model’s failure at distinguishing charge is that examples
like in Figure 3.4 are rare, and the majority of our training data display a general trend
for spectrum intensities, which is what our model picks up in the end.
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Figure 3.3: Example mirror plot of experimental versus predicted spectra for peptide
AEPPLNASAGDQEEK and glycan id 23. The top graph shows the experimental spectrum
and the bottom the predicted spectrum.
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(a) (b)

(c) (d)

Figure 3.4: Examples of experimental and predicted spectrums. In each subfigure, the top
panel is the experimental spectrum, and the bottom is the predicted. z in the plots refers
to the charge of the precursor. The pair of (a) and (b) show that different charges on the
same glycopeptide will result in different spectrum intensities. So does the pair of (c) and
(d). However, we observe that (a) and (d), although having the same charge, show different
spectrum intensities, while (a) and (c) are similar in the general trend of the spectrum.
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3.4.2 Conclusion and Future Research Directions

To conclude the chapter on spectrum prediction, we have described our deep learning
model and presented its testing results, which are shown to have significantly improved
over previous works on spectrum prediction for glycopeptides. The application of this
model to the practical glycopeptide search will be investigated and discussed in Chapter
5.

As mentioned earlier, our model does not learn well how charge affects the spectrum,
due to an overwhelming abundance of “normal” spectrums that show a similar trend. One
possible way to correct this is by augmenting data that represent the effects of charge.

Another direction of future work is to investigate other deep learning models. For
example, diffusion models have shown promising results in image generation lately and
may be applied in the decoding stage of our model to generate the predicted spectrum.
For our work, however, we decided against the use of diffusion models because they are
massive deep-learning architectures that require a large dataset to train, which we do not
have for glycopeptides. With more high-quality glycopeptide data, either from experiments
or from data augmentation, diffusion models may become more possible.
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Chapter 4

Retention Time Prediction

4.1 Model Design and Structure

4.1.1 Pre-training on Peptide Inputs

In contrast to spectrum prediction, the prediction of retention time requires an output of
only a floating point value. The encoder model of a glycopeptide remains the same as the
spectrum prediction model (see Chapter 3), but with 3 layers in contrast to 32 layers. The
decoder takes the Graphormer encoder output and applies a fully connected network to
output one single value.

From previous works on glycopeptide RT prediction, we notice that many only predict
the shift in RT when a glycan is added. However, we attempt to predict the RT for a
glycopeptide directly. Unlike spectrum prediction, where the peptide sequence may play a
rather small role in the model, we recognize that RT prediction highly depends on peptide
information.

Besides the Graphormer encoder on glycopeptide input, we decided to emphasize the
peptide sequence by adding a sequence encoder, taking the peptide sequence as its input.
We combine both encoders before feeding the latent representation into a decoder. In
addition to the added attention to the peptide sequence, this proposed model structure
has the advantage that the sequence model can be trained separately on non-glycosylated
data.

Therefore, we decide to pre-train a peptide RT prediction model on peptide data, the
model structured like one from PROSIT, but using Transformer layers instead of GRU. The
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Figure 4.1: Illustration of RT prediction models, transferring the sequence encoder from
peptide RT pretraining

peptide RT prediction model includes a Transformer-based sequence encoder and a decoder
comprised of ResNet blocks and two fully connected nets. Then, the sequence encoder’s
learned weights are transferred to our sequence encoder in the glycopeptide prediction
model. After the transfer, we train the entire model together on glycopeptide data to
finetune the RT predictions.

Figure 4.1 shows a diagram of the RT prediction procedure for glycopeptides, as de-
scribed above.

4.2 Training

4.2.1 Regression to Normalized Retention Time with iRT

Retention time records the time that a particle stays in the liquid chromatograph column.
Depending on different experiment setups, the retention time for the same peptide may vary
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Maximum variance for the same
glycopeptide (in minutes)

iRT RT

Mean 2.5 4.9
Median 0.29 0.41
95 Percentile 12.8 32.5

Table 4.1: Statistics on RT and iRT variance for the same glycopeptide across samples

greatly. The variation in RT introduces noise to the training process. Here, we introduce
the idea of an indexed retention time (iRT), which is a way to normalize retention time
across different samples. Given a library that records the iRT for peptides, one can use
regression to fit the retention times of peptides from any sample. Isolating peptides in the
sample that are in the library, one can use their sample retention time and the recorded
iRT to fit a regression. Using the iRT for peptides across different samples ensures that
sample variance does not change the final training result.

There is not an iRT library for glycopeptides, but our data samples (from [18]) contain
both glycosylated and non-glycosylated peptides. Using the regular peptides as anchors
and finding their iRT in a peptide iRT library, we can still map the retention times for
glycopeptides into iRTs.

To show the significance of converting to iRT, we record the maximum difference in
RT and iRT for each glycopeptide across all samples. For example, one glycopeptide has a
retention time of 101.3 minutes from Mouse Kidney Sample 1 and another retention time
of 145.6 from Mouse Liver Sample 5. After regression to iRT, the respective iRTs become
54.4 and 53.4 minutes. The mean, median, and 95 percentile statistics of these differences
are shown in Table 4.1.

In light of the advantages of iRT, later discussions on “RT prediction” will generally
refer to iRT prediction unless specifically stated otherwise. We preprocess all the label
retention time to be mapped into iRT and have our models trained to predict iRT. We
further make the assumption that with a good RT to iRT regression, if our model performs
well on iRT prediction, it does so too on RT prediction.

To prepare our data for each sample, we find anchor peptides from each sample that
are in the iRT library and use them in a polynomial regression for other glycopeptides in
the sample. We perform a separate regression for each sample, thereby eliminating the
sample variance problem.
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4.2.2 Using Feature RT Instead of Spectrum RT

While calibrating each sample to iRT solves the problem of variance across samples, there
are situations where different retention times are reported for the same glycopeptide within
the same sample. We eliminate this problem by using the feature RT. During the database
search by PEAKS, a feature detection step is performed, grouping several MS2 scans
associated with the same peptide into the same “feature”. Each feature spans a range of
retention times. So for each MS2 scan, instead of using the retention time of its precursor,
we use the mean retention time of its feature. This new feature RT is then used in the
regression above and calibrated to iRT.

Replacing precursor RT with feature RT reduces variance within each sample, and our
experiments find that it improves the model accuracy.

4.2.3 Data Acquisition

The peptide database with iRT information is taken from the Westlake Spectral Library
with human peptides [36] with 8175517 peptides. This dataset is used both for peptide
iRT prediction pretraining and as an iRT library for sample calibration.

Glycopeptide data for training and testing are the same as that for spectrum prediction,
using the mouse tissues dataset from pGlyco 2.0 [18]. We conduct an evaluation on an
additional dataset of fission yeast, also taken from the pGlyco 2.0 paper. We ensure that
the testing datasets do not contain glycans or peptides seen in the training database. The
additional constraint for distinct peptides in the testing dataset is due to the high influence
of peptide sequence on retention time. The glycan database is PEAK’s [31] mouse yeast
glycan database, and the protein database is the combination of Uniprot Protein databases
with species of S. pombe (yeast) and Mus musculus (mouse). Running the yeast samples
on PEAK Glycan, we set the precursor tolerance at 10 ppm and fragment ion tolerance at
30 ppm. We then output the PSMs under 1% FDR.

4.2.4 Training and Loss Functions

As mentioned in the model design and structure, as well as illustrated in Figure 4.1, we first
train a peptide model, and then transfer the sequence encoder and train the glycopeptide
iRT model. Both models are trained with the Adam optimizer with a learning rate of 0.0001
and a batch size of 64. The peptide model is trained for 5 epochs, and the glycopeptide
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model is trained for an additional 50 epochs, both on the same Nvidia GeForce RTX 3060
GPU.

With the output being a single floating point value, we use L1 loss over each batch.
Later we show during evaluation, that the model trained on L1 loss outperforms that with
L2 as well as Huber loss.

4.3 Model Evaluation

4.3.1 95 Percent Delta and Ablation Studies

Previous RT prediction attempts on glycopeptide use Pearson Correlation R as a criterion
for prediction accuracy, with Ang et al. [1] getting at 0.967 on a small dataset and Klein
et al. [14] getting at 0.98 and 0.897 respectively for fixed peptide and cross peptide pre-
dictions. We experiment with different training options such as using feature RT, different
model hidden dimensions, and different loss functions, as well as evaluate both the test-
ing dataset from mouse tissues and fission yeast. For all these experiments, the resulting
Pearson R for iRT prediction is at least 0.98. Although this number is on par with previ-
ously reported results (and actually higher, because we predict on different peptides), it is
neither convincing as an evaluation metric, nor demonstrative of the differences across our
experiments.

PROSIT [10] predicts iRT for peptides and proposes the evaluation metric of 95 per-
centile delta ∆t95%, which is the 95 percentile of the absolute difference in predicted and
target iRT. For example, they report a ∆t95% = 85 seconds on a testing dataset. Although
we cannot compare our results with peptide iRT prediction models, we can use this metric
to compare our experiments and optimize for the best hyperparameters.

We also implement two other iRT prediction methods to compare against our main
model: a k-nearest neighbor method, and a composition-based model. For the k-nearest
neighbor method, we take k = 5, and for each glycopeptide in the testing dataset, we find
five glycopeptides in the training dataset that are the “closest” to it and use the mean
iRT of the five examples as the predicted iRT. To define closeness, we use the Graphormer
encoder to project a glycopeptide onto its latent embedding, and then use cosine similarity
to measure distance in the latent space.

As for the composition-based model, we wanted to investigate whether different glycan
structures with the same composition affect retention time. In previous works such as Klein
et al. [14] and Park et al. [23], they only use the number of Hex, HexNAc, Fuc, etc. as
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Experiment ∆t50% (median) ∆t95%
Precursor RT instead of feature RT 2.14 16.02
L2 loss instead of L1 loss 1.89 10.33
Composition model 2.21 14.66
5-nearest neighbor 1.73 13.95
Final model 1.15 9.24

Table 4.2: Median and 95 percentile delta (in minutes) for predicted versus experimental
iRT across different experiments

features in their prediction. That is to say, they only consider the composition of a glycan
rather than its structure. Also for the glycopeptide search engine MSFragger [15], they
only produce PSM matches with glycan composition. In Chapter 5, we apply our models
to rescore results from different search engines. In order to comply with MSFragger, we
decided to train a model that takes the glycan composition as input. The model contains a
sequence encoder transferred from peptide iRT prediction, and the glycan encoder portion
takes an input as a vector of five integers, representing the number of monosaccharides of
each of the five types in the glycan. The encoder includes a trainable embedding and fully
connected nets, and its results are concatenated with that of the sequence encoder, before
being fed into the decoder portion kept the same as the glycan structure model.

Table 4.2 shows our ablation study that compares the performance between several
modifications described above. The final model with feature RT and L1 loss outperforms
the others in both median and 95 percentile delta. In Figure 4.2, we plot the correlation
of observed and predicted retention times. By contrasting the two plots generated from
the final glycopeptide model and the composition model, one interesting observation is the
horizontal line of dots in the lower right quadrant in the composition plot 4.2b. This is
the case when PSMs with different observed iRT are given the same predicted iRT. One
conjecture on the reason for this phenomenon is that structural information is not fed to
the composition model.

4.3.2 Interpretation of Results

With the Pearson R and with the 95 percentile delta, we still need to answer the following
questions:

1. Does the model learn peptide information?
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(a) Correlation plot of observed versus pre-
dicted iRT for final model

(b) Correlation plot of observed versus pre-
dicted iRT for composition model

Figure 4.2: Correlation plots for iRT prediction models

2. What about glycan information?

3. Does glycan structure affect the retention time, or is it just the composition that
matters?

To further interpret our model’s understanding of peptide and glycan information, we
conduct two small experiments on our iRT prediction model: plotting the predicted versus
observed iRT in the testing data with the same glycan but different peptides (Figure 4.3a),
and plotting the reverse: with the same peptide but different glycans (Figure 4.3b).

PSMs with the same glycan cover a wide range of iRT and show a highly correlated
linear trend, so we can be confident in saying that the model understands peptide infor-
mation. PSMs with the same peptide generally cover a smaller range or iRT, which is to
be expected from earlier work on retention time shifts caused by glycosylation [1, 23]. In
the example in Figure 4.3b, with the exception of one PSM, the data points show a highly
correlated linear trend as well. This indicates that our model is able to pick up nuances in
glycans that affect the retention time of the glycopeptide. The interesting phenomenon is
that the PSMs are separated into clusters in contrast to the case with fixed glycans.

Further investigation into the clusters and the composition of each PSM for the fixed
peptide example NLSYEAAPDHK, we observe that each composition is confined to a
cluster, indicating that variance in observed and predicted iRT for the same peptide-
composition pair is generally small. In fact, the 95 percentile variance of peptide-composition
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(a) Correlation plot of observed versus pre-
dicted iRT for fixed glycan

(b) Correlation plot of observed versus
predicted iRT for fixed peptide, where
PSMs with the same glycan composition
are given the same color

Figure 4.3: Correlation plots for fixed glycan or peptide

pairs in the testing dataset is 9.10 minutes, with the median being 0.02 minutes. From this
observation, one can say that the composition of the glycan is the major factor in retention
time difference, while different structures within the same composition have little variance
in observed and predicted iRT. However, the glycopeptide structure model reduces the 95
percentile delta from the composition model by almost 37%. Increasing the scale of the
composition model does not improve its performance, so we can only conjecture that there
is structural information learned by our Graphormer-based model that composition-only
input fails to include.

To gain insight into the rules or patterns in the structures and compositions that are
grouped in the same cluster, we observe that the clusters with higher predicted and ex-
perimental iRT values often have a higher number of sialic acids (NeuAc and NeuGc),
and therefore a higher ratio of sialic acids to HexNAc’s. For the same peptide NL-
SYEAAPDHK, we plot the correlation between the sialic acid to HexNAc ratio and the
predicted iRT in Figure 4.4. The Pearson correlation is 0.87, and we can say that in gen-
eral, higher iRT values are only observed when the ratio is high. Similar trends are seen
with experimental iRT in contrast to predicted iRT, with a Pearson correlation of 0.80.
We also calculate the Pearson correlations for the ratio of NeuAc to HexNAc and the iRT
values and discover similar results. This result corroborates that of Park et al.’s findings
[23], where the Ln/Nn metric, which is the ratio of NeuAc to HexNAc, combined with
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Figure 4.4: Correlation between the sialic acid to HexNAc ratio and predicted iRT

corresponding peak intensities, is also positively correlated to relative retention time.

4.4 Discussion

In this chapter, we introduce our model for retention time (iRT) prediction, joining a
Transformer sequence encoder with a Graphormer glycopeptide encoder. In our ablation
studies, we construct the best model using iRT regression, feature RT, and L1 loss and
compare our model with two other models: k nearest neighbor and a composition model.
Comparing our model against previous RT prediction models on glycopeptide data, we
achieve a higher Pearson correlation than the earlier works. We also inherit the evaluation
criteria of 95 percentile delta from PROSIT and achieve ∆t95% = 9.24 minutes on the
mouse tissues testing dataset. We attempt to interpret our model’s understanding of both
peptide and glycan information, and the experiments with fixed glycan and peptide show
that the model learns well on both peptide and glycan differences.

One area of concern in our approach is that earlier on, we make the assumption that
the regression from RT to iRT is well-fitted. This is the case for most samples, especially
larger ones, but the worst case in a smaller Mouse Heart sample reveals a 95 percentile
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regression loss of 12.5 minutes, with the median being 1.2 minutes. This then introduces
loss during regression from RT to iRT, but this loss is not manifested in the performance
evaluation of our model, as we only compared the predicted and experimental iRTs. We
now face the problem that our experimental iRTs, used as training targets, may include a
large noise.

To fix this issue, larger data samples with more anchor peptides will provide more
accurate regression. We circle back to the same issue we had with spectrum prediction:
We are in need of more large-scale and high-accuracy data to train and evaluate our model.
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Chapter 5

Using Prediction Models in
Glycopeptide Search

5.1 Database Search

5.1.1 Rescoring

Our spectrum prediction and iRT prediction models show high performance in cosine simi-
larity and 95 percentile delta respectively. However, we need to investigate whether the pre-
diction models actually help glycopeptide search. We first take inspiration from PROSIT
[10] to use our prediction models for database search rescoring, the process of which is
described below.

We use the mouse tissues dataset as our target dataset, and generate an equally sized
decoy dataset, by permuting the spectrum peaks for each MS2 scan. We then combine
the target and decoy datasets as the input for glycopeptide search engines. We ask the
database search to produce all PSMs, without limiting FDR. In the output, each PSM
includes the scan number (and consequently whether it comes from the target or decoy
database), the matched peptide, the matched glycan, and the match scores. The match
scores generally include a glycan score, a peptide score, and a combined total.

For each output PSM, we run spectrum and iRT prediction models and obtain the
spectrum match score with cosine similarity, and the iRT match score, which is the absolute
difference between predicted and observed iRT. Combining the search engine PTM scores
and our prediction scores, we can fit an SVM to fit a final score for each PTM, with 1 being
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Search Engine # Target PSMs # Decoy PSMs
# PSMs with 1% FDR
(before rescoring)

PEAKS Glycan [31] 19235 4001 11023
pGlyco3 [35] 20050 933 19539

Table 5.1: Number of PSMs outputted by PEAKS Glycan and pGlyco3

the maximum score for the best possible match, and 0 being the lowest score. We then
sort all PSMs by their final score and record the number of PSMs, number of identified
glycopeptides, and number of identified glycans with FDR ≤ 1%.

It is worth noting, that although our generated target and decoy databases have the
same number of MS2 scans as input to the search engines, not all MS2 scans will be
matched with a PSM for output. The search engines will filter out MS2 scans that do not
match any glycopeptide first. Table 5.1 records the number of output scans from PEAKS
glycan [31] and pGlyco3 [35], with the same target decoy input generated from the Mouse
Brain Sample 1 dataset. There are 110004 MS2 scans in total in the generated target
decoy input. We see that the numbers of identified PSMs in the target dataset are similar
for both search engines, whereas PEAKS glycan outputs about three times as many decoy
PSMs as pGlyco3. We also observe that there are many more target PSMs than there are
decoy PSMs. This is to be expected, as the randomly shifted peaks in the decoy spectrums
are more likely to be filtered out by the search engines.

From here, we proceed with rescoring as described above. Table 5.2 shows the numbers
of PSMs, glycans, and glycopeptides after 1% FDR, by using different rescoring methods,
that is, including different scores in the SVM classifier, for PEAKS Glycan and pGlyco3.
For PEAKS Glycan, significant increases from the search engine results are shown in bold-
face, while the best rescoring results are colored in red, whereas the rescoring attempts
for pGlyco3 show no significant increase or decrease. The reason that pGlyco3 results are
not affected by rescoring is likely due to its highly unbalanced target-to-decoy ratio, and
also because their 1% FDR is already very high from the search engine scores. This makes
it more difficult to fit the SVM otherwise, even though we use a weighted SVM model
to account for the class imbalance already. In contrast to pGlyco3, rescoring on PEAKS
Glycan seems much more promising. When using the spectrum score in conjunction with
the search engine scores, we increase the PSM, glycan, and glycopeptide identification rates
by 5.2%, 5.5%, and 5.6% respectively. The numbers drop when combining spectrum and
iRT scores into the rescoring, which is likely because another dimension is introduced to
the SVM.
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Scoring Methods
PEAKS Glycan pGlyco3

PSMs Glycans Gly-pep PSMs Glycans Gly-pep
Search engine 11023 1168 6886 19539 1934 11606
+ iRT score 11021 1207 6865 10537 1935 11605
+ Spec score 11596 1230 7273 10538 1935 11607
All scores 11235 1222 7016 10535 1934 11607

Table 5.2: Number of PSMs, glycans, and glycopeptides after 1% FDR, according to
different scoring and rescoring methods for PEAKS Glycan and pGlyco3

We have demonstrated above, that using spectrum and iRT prediction models can be
used in rescoring to increase identification from the database search. However, we need
to point out the flaws of this approach. The numbers of decoy PSMs from search engine
outputs are much lower than those of target PSMs when we prefer a more balanced output.
To increase the number of decoy PSMs, the decoy spectrums need to pass the filtering,
which means that they need to have characteristics similar to a target spectrum. However,
if the decoy spectrums are too close to the target spectrums, the purpose of the target decoy
approach is lost, as a decoy spectrum may actually represent a real spectrum. Hence, there
is a trade-off of how random the decoy spectrums are, and it is difficult to design a perfect
decoy database.

PROSIT [10] is not faced with this issue in their rescoring process, because they use
decoy proteins (and consequently peptides) instead of decoy spectrums. For each protein
in the search database, the decoy protein is generated by reversing or randomly shuffling
the protein sequence, and the peptides are generated following the same digestion rules.
In this way, the search engine does not filter out the decoy entries and cannot distinguish
between target and decoy entries. When it comes to glycopeptides, however, a decoy
protein database is not enough and we would need a decoy glycan database as well. The
generation of a decoy glycan database such as in [29] again faces the trade-off like decoy
spectrums. Generating a decoy glycan by randomly building a tree of monosaccharides is
too different from the real N-glycans and the decoy glycans can be easily told apart from
real glycans, making the FDR estimation unreliable. On the other hand, if a decoy glycan
is similar to a real glycan in structure and composition, our current knowledge of existing
glycans is not enough to say for certain whether the generated decoy glycan cannot be a
real one.

In any case, generating a convincing decoy database is the key to obtaining conclusive
results on our rescoring attempt. During the database search process in search engines,
they also use the target and decoy method to compute the 1% FDR for their final outputs,
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and currently, different glycopeptide search engines use different decoy databases that are
not openly disclosed. This can be an issue because simply comparing the number of PSMs
produced after 1% FDR between search engines is not convincing as their FDR criteria are
different. Building a universal decoy database that can be used across search engines can
also unify an evaluation metric and enable us to compare search engine performance.

5.1.2 Filtering

Besides rescoring we can use the spectrum and iRT prediction models as filters for database
search: if a PSM has a high glycan score produced by the search engine, but has low cosine
similarity with the predicted spectrum, or has a high iRT difference, then we can say that
it is likely to be an incorrect match. In this section, we show that the iRT prediction
model has the potential in filtering out incorrect PSMs. The spectrum prediction model,
however, does not show to be useful in filtering, so this section will be focused on the iRT
model.

Fission Yeast Data

Zeng et al. [35] introduce two criteria on the correctness of glycopeptide identification for
fission yeast data (PXD005565 [18]):

1. If the identified glycan contains Fuc, NeuAc, or NeuGc, the PSM is a false positive.
This is because the glycans in fission yeast samples are highly mannose, which means
to only contain Hex and HexNAc monosaccharides.

2. If the identified peptide is from the mouse protein database, then the PSM is a false
positive.

We can then evaluate the iRT difference for PSMs that are false positives, and examine if
the iRT difference can be used to filter the false positives.

We evaluate the iRT prediction model on the fission yeast data, with outputted PSMs
from PEAKS Glycan [31], pGlyco3 [35], and MSFragger [15]. Specifically, we use the
composition model because MSFragger does not provide a glycan structure in the output
PSMs. For each search engine, we plot a scattered graph to see the correlation between
the glycan score given by the search engine and the iRT difference calculated from our
prediction model. We wish to see high glycan scores correlated to low iRT differences,
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(a) PEAKS Glycan [31] (b) pGlyco3 [35] (c) MSFragger [15]

Figure 5.1: Glycan score versus iRT difference plots for fission yeast data with different
search engines

and vice versa. Figure 5.1 show the plots for each search engine. In each plot, possible
false positive PSMs as introduced above are highlighted in different colors. For example
in the PEAKS Glycan plot, we see that three out of four PSMs with mouse peptide and
three out of four PSMs with NeuAc are out of distribution with very high iRT differences.
These outliers can be filtered out by iRT difference and can further increase the search
engine precision. For pGlyco3, only two PSMs with Fucose are shown as outliers, whereas
a majority of others are within the distribution of other normal PSMs. The distribution
for MSFragger is more scattered, and we see outliers from both false positive PSMs and
normal PSMs. Note that even if a PSM is labeled as normal, it could still be an incorrect
match, but we do not have enough information to tell.

In Table 5.3, we calculate the mean, median, and 95 percentile of iRT differences (in
minutes) from three search engines, with the lowest differences in boldface. We also want
to see the effects of filtering by setting the iRT difference to be below 30 minutes and
discarding the PSMs with high iRT differences. From the table, we observe that the
percentage of discarded PSMs is twice as much for MSFragger as for the other two search
engines, which is manifested in Figure 5.1, where there seem to be more outlier PSMs for
MSFragger. In Table 5.4, we further investigate the percentage of PSMs and the percentage
of false positives discarded by the filtering of retention time prediction. For each search
engine, the percentage of false positives discarded varies, but are all significantly higher
than that of total PSMs. It is worth noting that PSMs that contain Fucose (red dots
in Figure 5.1) are not counted towards false positives, because when dealing with Yeast
data, the user can set the allowed number of fucose to zero and these PSMs would not be
outputted.
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iRT ∆ Mean Median ∆t95% # PSM # PSM after
iRT ∆ ≤ 30

% Discarded

MSFragger 11.59 9.05 32.38 4720 4386 7.08 %
pGlyco3 10.54 8.94 27.64 3553 3425 3.60%
PEAKS 10.17 8.55 27.67 4035 3890 3.59%

Table 5.3: Statistics on the iRT difference with fission yeast PSMs from different search
engines

Software # PSM % Discarded # FP (no Fuc) % FP Discarded
MSFragger 4720 7.08 % 19 42.1%
pGlyco3 3553 3.60% 5 20%
PEAKS 4035 3.59% 8 75%

Table 5.4: When discarding PSMs with ∆iRT > 30, the percentage discarded in total as
well as the percentage of false positives (excluding Fucose) discarded for each software

Mouse Tissues Data

Besides the false positive criteria on fission yeast by Zeng et al. [35], another collective
study by Kawahara et al. [11] reveals a criterion on mouse tissues data. They state
that search engines that report a low percentage of PSMs with NeuGc or multiple Fucose
(> 2) tend to have low actual mass error. Therefore, we can examine how iRT difference
correlates with PSMs with NeuGc or multiple Fucose. Using the PTMs generated from
PEAKS Glycan (without the 1% FDR limit), we plot the glycan score versus iRT difference
scatter plot, highlighting PSMs with NeuGc or at least three Fucose (Figure 5.2).

PTMs with high glycan scores and high iRT differences are considered outliers, as they
could be incorrect. From Figure 5.2, the two outliers with glycan scores above 10.0 are
both highlighted with color: one with NeuGc, and the other with multiple Fucose.

In another experiment, we have PEAKS Glycan produce the top 10 glycopeptide can-
didates for each spectrum and select the one with the lowest iRT difference. From Figure
5.3, we observe a general reduction in outliers, which is to be expected, since we choose
based on low iRT difference. Additionally, another useful phenomenon is that the number
of data points with NeuGc and multiple Fucose are reduced in Figure 5.3b. Therefore, we
can make the important conclusion that using iRT difference to choose the search engine
candidates can result in reduced identification of NeuGc and multiple Fucose PTMs.
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Figure 5.2: Glycan score versus iRT difference plot for mouse brain data

(a) All candidate PTMs for mouse brain
data

(b) Choosing the best candidate by iRT
difference

Figure 5.3: Choosing the best candidate by lowest iRT difference for each PTM reduces
outliers and the identification of glycans with NeuGc and multiple Fucose
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5.2 De Novo Search

Apart from the database search, we wish to investigate if our spectrum and iRT prediction
models can be used during de novo glycopeptide search. The de novo glycopeptide search
program written by Q. Zhang [37] in personal communication (later modified and pub-
lished in [31]) is used. For each MS2 scan with an identified peptide, the de novo program
produces two glycan structure candidates, at least one of which is an exact match to the
target glycan. We incorporate spectrum and iRT prediction models to score the candi-
dates. There are 834 sets of targets and candidates for this evaluation. To evaluate the
performance of the de novo model in conjunction with the scoring, we have two strategies:

1. For any scoring scheme, if the candidate with a strictly better score matches the
target glycan, we count it as a successful identification.

2. For any scoring scheme, we select the better-scoring candidate and in the case of
a tie, we randomly select one. We then count the number of matches of selected
glycans with target glycans as the number of successful identifications.

We look at five scoring functions:

A. The number of peaks from theoretical fragments matching the experimental spectrum

B. The average relative intensity of the matched peaks

C. Cosine similarity between predicted and experimental spectra

D. Difference between predicted and observed iRT (inversed)

E. Linear combination of C and D

Using the five scoring functions with the two counting strategies, we generate Table
5.5. We observe that using strategy 1 with strictly higher scores, the iRT model has the
highest rate of identification at 64.1%, whereas using strategy 2, which is a looser count
allowing ties, the combination model achieves 70.0% identification. For either strategy,
the identifications using the deep learning models in this thesis significantly improve upon
those without deep learning.
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Scoring Function % identification by strategy 1 % identification by strategy 2
A # Peaks 26.7 61.6
B Avg. Intensity 31.4 60.6
C Cosine Sim 52.6 62.7
D iRT Diff 64.1 64.1
E Comb. 55.3 70.9

Table 5.5: Glycan identification rates from de novo model using different scoring functions
and counting strategies

5.3 Discussion

In this chapter, we apply our spectrum and iRT prediction models to glycopeptide search-
ing pipelines including database search and de novo search. In rescoring, we see that
the spectrum model increases the identification of PTMs, glycans, and glycopeptides for
PEAKS Glycan. However, we also uncover the flaw of decoy databases and therefore the
persuasiveness of the rescoring results. When the iRT model is used in filtering, we see
that it successfully reports the false positive PSMs for fission yeast data as outliers. For
mouse data, our model reduces the number of PTMs with NeuGc and multiple Fucose
by selecting the best candidate according to iRT difference. Hence, the iRT model shows
potential to be used as a filter for database search. With respect to de novo searching,
higher identification rates are achieved when the spectrum and iRT models are used in the
scoring function, also indicating that future research in de novo searching could incorporate
spectrum and iRT prediction results.
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Chapter 6

Conclusion

6.1 Contributions of This Thesis

In Chapter 3, we propose a spectrum prediction model for glycopeptides using a Graphormer-
based deep learning model. We define the inputs of the model based on the tree-like struc-
ture of glycopeptides. We further define the output of the model to match with the target
spectrum, by designing a matrix to record theoretical fragments resulting from up to three
cleavages. The model achieves a median cosine similarity of 0.92, which is more than 20%
higher than any previous spectrum prediction attempts.

In Chapter 4, we describe an iRT prediction model for glycopeptides, using transfer
learning from a peptide iRT prediction model. We discuss the importance of using iRT,
feature RT, and conduct ablation studies to optimize the iRT model. Eventually, our glycan
structure iRT prediction model achieves a Pearson R correlation of 1.0, which is higher than
previous works. We also evaluate with 95 percentile delta and our best-performing model
achieves that for 9.24 minutes. We also show that our model can accurately understand
both peptide and glycan information by fixing either peptide or glycan.

In Chapter 5, we employ our models in both database search and de novo search
procedures, and show that our model is applicable in glycopeptide sequencing. We show
that our spectrum prediction model improves identification during rescoring. We apply
the iRT prediction model on both fission yeast and mouse data to show that it can be used
as a filter during database search. Finally, we run a small experiment with a relatively
premature de novo model to show that when used as a scoring function, our spectrum and
iRT prediction models increase identification rates.
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6.2 Issues and Direction for Future Research

We discuss in Chapters 3 and 4, that more high-quality glycopeptide data would greatly
boost our models’ performance. With respect to spectrum prediction, we are in need of
more balanced data showing the effects of precursor charge on spectrum intensities, and
for iRT prediction, we raise the issue of RT to iRT regression loss, which can be mitigated
by higher-quality data with less RT variance. Research on generating a large volume of
high-quality mass spectrometry data can be very useful in this regard. On the other hand,
data augmentation techniques may be considered, in order to create more balanced data.

In Chapter 5, we uncover the urgent issue of decoy database generation for glycopeptide
database search. We argue that a well-crafted decoy database is very difficult to generate
and that FDR and rescoring results would be more convincing if one existed. Future
research should focus on finding a universal decoy database, or a coherent decoy generation
algorithm so that results from different search engines are more comparable.

Throughout this thesis, we only consider the spectrum and iRT prediction for N-
glycopeptides and not O-glycopeptides, because N-glycans are more regularized, and there-
fore more easily and accurately identified by search engines. Thus, there are more high-
quality glycan PSM data for our training. Future work may extend our methods to O-
glycopeptides, and given the fact that O-glycan structures are less predictable, spectrum
and iRT prediction may show significant improvement in identification.

We have also limited our research on DDA data for glycopeptides, while spectrum pre-
diction has been shown to aid in DIA sequencing as well [10]. The high accuracy produced
by DIA technology is appealing in glycopeptide identification. When DIA data is more
available for glycopeptides, and when the DIA sequencing pipeline is more mature, spec-
trum prediction shows great promise in improving DIA identification for glycopeptides.
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