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Abstract

Spatial-temporal data are information about real-world entities that exist in a loca-
tion, the spatial dimension, and during a period of time, the temporal dimension. These
real-world entities, such as vehicles, people, or parcels and called spatial-temporal objects,
may move, group, and continue the movement together, forming clusters. Although there
have been significant research efforts to understand clusters, there is a lack of research that
provides methods and software tools to support the representation, analysis, and implemen-
tation of graph-based spatial-temporal cluster evolution. Understanding this evolution is
critical for dealing with spatial-temporal problems encountered in domains, such as service
supply and demand, supply chain management, traffic and travel flows, human mobility,
and city planning.

This thesis presents an approach to graph-based cluster evolution and its representa-
tion, analysis, and implementation. The proposed solution introduces a representation of
the structure of a spatial-temporal cluster with the identification of the cluster at several
timestamps and linkages, and a representation of 14 spatial-temporal relationships clusters
have during their existence. The proposed solution also introduces a graph representation
of cluster evolution with nodes acting as clusters and edges as relationships. This solu-
tion provides analysis methods for the structure of spatial-temporal clusters that monitor
the cluster changes in both location and size over time, and analysis methods for the
spatial-temporal cluster relationships the clusters have during existence that calculate the
frequency or density of such relationships in specific locations. The solution also provides
analysis methods for a graph-based representation of spatial-temporal cluster evolution
including integrated results that examine spatial-temporal clusters and their connections,
and can provide, for example, aggregated results at a location or time of the day, identify
ever-increasing or ever-decreasing regions, growth or decay rates, and measure the similar-
ity between the evolution of two clusters. The approach also provides an implementation
of the proposed representation and analysis methods. The effectiveness of the approach is
evaluated through four case studies using different spatial-temporal datasets to show the
results that can be produced, which include, exploratory analyses and specific analyses on
ever-increasing and ever-decreasing regions, similarity values, and the movements the clus-
ters represent. Overall, the proposed approach advances research in the spatial-temporal
domain by providing novel representation and analysis methods as well as implementation
tools that can improve the understanding about how clusters evolve in space and time.
Such results can lead to many advantages such as higher income, reduced costs, and bet-
ter transportation services, as well as the discovery of trends in cluster movement and
improved decision-making processes in city planning.
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Chapter 1

Introduction

1.1 Motivation

Spatial-temporal data hold information about the location of an object at regular time
intervals [4]. For example, Global Positioning System (GPS) devices attached to taxis
show the location of the taxis in the city at every minute of the day.

The analysis of spatial-temporal data impacts society in different ways [33]. For ex-
ample, ridesharing applications allow anyone to move in a city by finding a driver who is
willing to give a ride [145]. Ridesharing applications set the price of a ride based on many
parameters, such as traffic conditions and the supply and demand of rides at the start lo-
cation. Estimating traffic conditions and supply and demand of rides at a specific location
usually requires the analysis of spatial-temporal data of many cars. Therefore, analyses
on the spatial-temporal data generated by many cars, some of which are presented in this
thesis, contribute to a better estimation of traffic condition and offer and demand of trans-
portation services, which results in improved pricing of these services. Affordable prices
mean that more people take rides to their destinations, improving the revenue of car riding
companies and offering suitable prices for customers. Another example is analyzing the
path of a shopper in a supermarket. The shopper may have a mobile phone with GPS ca-
pabilities and may share location and time information with the supermarket. The analysis
of the spatial-temporal information of several shoppers inside the supermarket assists the
supermarket in analyzing the many different paths created by the shoppers and in offering
discounts to a shopper at the time specific products are approached, which increase the su-
permarket’s profit and assures that customers find products they want. A third example is
human mobility, characterized by the study of the movement of individuals and the groups
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they form. Information about human movement can be used in the generation of targeted
advertisement and of insights for city planning to improve the well-being of a population.

These impacts relate to some areas. For example, ridesharing apps seeking affordable
prices act on the area of spatial-temporal methods, using analysis techniques, such as
clustering, to find interesting patterns in data and adaptation strategies. A supermarket
seeking to increase profits relates to the area of Machine Learning (ML) because of the
ML methods that can be used in the analysis of the movement of several customers to
predict the behavior of a new customer. The city hall of a city may attempt to improve
mobility of citizens and visitors by leveraging insights developed in the area of graph-
based representation and analysis, such as the modeling and analysis of people and the
placement of advertisement or tourist groups and points of interest. Each of the related
areas described are further explained in the next section.

In summary, spatial-temporal data and its analysis provide a wide range of benefits. It
is important to continue investigating novel impacts that this type of data and its analysis
has on people with the goal of improving how people interact with the world around them.

1.2 Related Areas

This section describes three major research areas and positions the study of this thesis in
the literature. These research areas are: Spatial-Temporal Methods, Machine Learning
Approaches, and Graph-Based Representation and Analysis. Details are provided in the
following subsections.

1.2.1 Spatial-Temporal Methods

Spatial-temporal analysis contains methods to analyze data described in terms of spatial
dimensions and a temporal dimension [39]. Although the number of areas and methods
change constantly, the studies in [150] and [88] describe five areas and some methods for
spatial-temporal analysis. A description of these areas and methods follows.

Spatial-temporal methods are grouped into five major areas: uncertainty, frequent
pattern mining, group pattern mining, classification, and clustering. The uncertainty in
the movement of objects exists because of spatial-temporal data about their movements
are captured in a discrete manner, as opposed to a continuous manner. Therefore, the
location of an object during the time passed between the times of two discrete location
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measurements must be estimated. Common solutions include probabilistic models [99]. In
frequent pattern mining, routes that have been frequently taken are identified. Usually,
these routes are modeled based on the sequence of locations visited. The study in [49]
introduces the main concepts and reviews several approaches. In group pattern mining,
movement patterns of objects that move together are identified and extracted. Common
studied patterns are flocks [10], convoys [60], and swarms [81]. Alternative patterns can
be found in [77, 76]. Classification, in the spatial-temporal context, relates to the task
of categorizing trajectories or segments of a trajectory. The categories can be activities,
such as going to the supermarket or stopped at a parking lot, or modes of transportation,
such as walking and driving. Several methods can be used to classify spatial-temporal
data, including decision trees [68] and Support Vector Machines (SVMs) [24]. Clustering,
in the spatial-temporal context, relates to the task of grouping trajectories based on their
properties or moving characteristics. They can be used for classification and outlier detec-
tion tasks. One popular method is Spatial-Temporal Density-Based Spatial Clustering of
Applications with Noise (ST-DBSCAN).

1.2.2 Machine Learning Approaches

Machine Learning (ML) is a research area whose intent is to understand and develop
methods that learn, i.e. methods that improve their performance based on the amount
of available data [136, 118]. There are several ML methods published in the literature
and an extensive overview of the methods is a challenging task. However, ML methods
can be grouped in three major categories: supervised learning, unsupervised learning, and
reinforcement learning.

Supervised learning is the learning paradigm that describes methods that use labeled
data to learn. During the learning phase, methods are presented with data whose final
label has been given, usually by humans. For example, when training methods to estimate
car prices, data with characteristics of several cars, which are the features, and a final price,
which is the label, is presented to the method so it can learn. Once trained, the method
can estimate the price of a new car based on features of the new car and past prices it
has learned. Some common supervised learning methods are Neural Networks [50, 35, 73],
Naïve Bayes Classifier [38, 126, 86], and Linear Regression [45].

Unsupervised learning is the learning paradigm that describes methods that use unla-
beled data to learn. During the learning phase, methods are presented data whose final
label has not been given. For example, when training methods to identify whether a house
is expensive, data with characteristics of several houses, which are the features, including
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their prices, which is also a feature, is presented to the method so it can learn. Once
trained, the method can divide houses in several groups based on the features, and some
contextual knowledge is required to name the groups as expensive. Some common unsuper-
vised learning methods are clustering techniques such as K-Means [82, 43] and K-Nearest
Neighbors [25].

Reinforcement learning is the learning paradigm that describes methods that use a
rewards system to learn. During the execution, methods interact with the environment
and are rewarded if they improve their performance for the task at hand. The method
then tries to maximize rewards through several trials. For example, when learning to play
a game, the method performs several movements that may or may not lead to a victory.
At each trial, a reward is calculated based on the distance from the position at the end of
the trial and the victory position, expected to be achieved. Movements that end up distant
from the victory position receive lower rewards, so that the method discards them. Some
common reinforcement methods are Q-Learning [133] and Monte-Carlo methods [70].

1.2.3 Graph-Based Representation and Analysis

A graph is a mathematical structure with nodes and edges connecting these nodes, usu-
ally used to model pairwise relationships between objects [31]. Graphs are used in several
different domains, such as computer science, mathematics, linguistics, or biology, to rep-
resent domain-specific entities and several graph analysis techniques are used to uncover
interesting results.

Graph-based representations relates to the modeling of data using graphs. There are
several domains where this happens, including the study of social networks [98], natural
language [105, 92], prestige [34], molecules [90], or genes [47]. For example, the study in [51]
integrates graph data from several different social networks to build a single unified graph
representation of user data. Moreover, the study in [115] performs a systematic literature
review on studies related to the representation of patient data in graphs. The goal is to
investigate the use of decision support systems for diagnosis, medication, or therapy of
patients.

Graph-based analysis relates to the task of using analytical tools and algorithms to
perform analysis on graphs. Some of these tools are statistical methods while others
are algorithms. The study in [44] surveys several statistical methods for graph analysis,
including estimations of the size or order of the graph, or the degree distribution of its
nodes. The study in [41] and [75] describe several algorithms for graph analysis including
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shortest path, depth and breadth search, graph coloring, graph matching, and network
flow.

1.3 Problem

This section describes the problem addressed in this thesis and identified in graph based
spatial-temporal cluster evolution. The problem comprises several issues identified in three
main categories: representation, analysis, and implementation. These categories are de-
scribed in the following subsections.

Spatial-temporal objects may change their location with time. For example, cars in
a city may have their location changed when moving on a highway. Moreover, spatial-
temporal objects may group or disperse as they move. For example, cars group in the
parking lot of a company in the morning and disperse at the end of the day. As they move,
group, or disperse, spatial-temporal objects produce spatial-temporal data. Analyzing
spatial-temporal data is valuable and can uncover important results, such as the locations
where supply or demand of transportation services are high or the general direction of
movement in a city. One way to analyze the produced spatial-temporal data is through
clustering methods.

Clustering methods such as ST-DBSCAN [14] and Trajectory Clustering (TraClus) [78]
identify clusters of objects taking into consideration their spatial and temporal dimensions.

The clusters of spatial-temporal objects identified by these methods do not move. These
clusters are formed based on the similarity of the spatial (location) and the temporal
(time) dimensions of spatial-temporal data, but they are limited to a given timestamp.
For example, consider the situation illustrated in Figure 1.1. In the figure, the spatial
dimension (location) is described with a Cartesian coordinate system and the temporal
dimension (time) is described implicitly with annotations.

Assuming that a cluster of three data points can be formed, there are two clusters: one
cluster whose center is at the location (1, 1), after 1 second, containing three data points,
and another cluster whose center is at the location (10, 10), after 10 seconds, containing
other three data points. These clusters have indeed been formed based on the spatial
and temporal dimensions of the available spatial-temporal data, but each is limited to its
own timestamp. Analysis on these clusters of spatial-temporal objects are limited and do
not take into consideration the entire movement, or evolution, of the cluster between two
different timestamps.
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Figure 1.1: A cluster is formed at the bottom left at t = 1 second and another cluster is
formed at the top right at t = 10 seconds. Current cluster analysis methods do not take
into consideration the movement or evolution of the cluster between timestamps.
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t = 1s t = 10s

Figure 1.2: An evolving cluster that exists from time t = 1s to time t = 10s.

An evolving cluster, on the other hand, is not limited to a timestamp. Consider the
situation illustrated in Figure 1.2. In the figure, the temporal dimension is represented
by the horizontal axis and the spatial dimension is represented by a rectangle, drawn in
perspective, that is the Cartesian coordinate system. The values of the axes x and y are
omitted. The figure shows a cluster at the bottom left of the coordinate system at t = 1
second and that moved to during nine seconds to the top right part of the coordinate system
at t = 10 seconds. Notice that an evolving cluster, like the one in the figure, has a different
structure. It is not limited to one timestamp since it exists for several timestamps. Evolving
clusters have their location changed according to the movement of the spatial-temporal
objects contained. In addition, evolving clusters have some interactions, or relationships,
during their evolution: spatial-temporal objects may enter or leave the clusters, clusters
may enter or leave another cluster, clusters may merge or split as they evolve in time.
Analysis on cluster evolution, with respect to both their structure and relationships, helps
uncover novel results.

Finally, the evolution of many such clusters, including changes to their structure and
including their relationships can be connected, as in a graph, providing an overview of
cluster evolution. One example is shown in Figure 1.3. The figure shows one possible
way to present the evolution of a cluster c1 with a graph. Depending on the information
presented, details about the structure and the relationships of the cluster can be identified.
In this representation, for example, it is possible to identify that cluster c1 changed its
structure at the beginning, thus the repetition. It is also possible to identify that cluster
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Figure 1.3: This graph is a possible way to represent cluster evolution. The graph repre-
sents the evolution of a cluster c1.
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c1 formed clusters c2 and c3, or that cluster c10 is part of the evolution of cluster c1. A
complete graph shows how each cluster evolved in time, detailing changes to the structure
of each cluster and presenting every relationship each cluster has. Analysis on this graph
can improve the understanding of the movement of spatial-temporal clusters and lead to
novel results.

1.3.1 Representation

There is a lack of studies on the representation of cluster evolution. This evolution is based
on the movement of the spatial-temporal objects contained in the evolving clusters.

Representing the structure of evolving clusters is challenging because information about
these clusters is discretized throughout several timestamps. This requires a way to identify
the same cluster in different timestamps and a way to link the identified parts, forming the
evolving cluster.

There is also a lack of studies on the representation of the relationships the evolving
clusters have with spatial-temporal objects or other clusters. Representing these relation-
ships is challenging because identifying them is not trivial. Evolving clusters may change
properties at each timestamp, such as the number of spatial-temporal objects contained.
These changes may indicate that a relationship, such as a split, is taking place. However,
differentiating between a split or a cluster that left a larger evolving cluster based on the
properties that change between timestamps is essential and not easy.

Additionally, there is a lack of research on a connected representation of cluster evo-
lution. Since evolving clusters change their structure and have relationships with other
clusters during evolution, it is possible to build a connected representation of the evolution
of these many clusters. Such representation can show, for example, the name and the
time of each relationship evolving clusters had, including when these relationships involve
more than one evolving cluster. One possible solution for such representation is the use
of a graph. However, there are no approaches that can process information about cluster
evolution, i.e. changes in the structure of clusters and presence of relationships cluster
have, and produce a representation in a graph format. Representing cluster evolution in a
graph containing all this information creates opportunities for several novel applications.

Some questions about the representation of the cluster evolution, related to the struc-
ture of clusters, the relationships clusters have with spatial-temporal objects or other clus-
ters, as well as a graph-based representation of this information are in presented Table
1.1.
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1.3.2 Analysis

There is a lack of analysis methods for cluster evolution that take into consideration the
changes in the structure of evolving clusters, the relationships they have with other spatial-
temporal objects or other clusters, or a connected, graph-based representation of cluster
evolution.

Current cluster analysis methods consider a restricted representation of clusters, limited
to a timestamp. For example, the intracluster distance, i.e. the distance between data
points inside the cluster, and the intercluster distance, i.e. the distance between data points
in different clusters, are two cluster analysis methods for the measurement of clusters.
These methods do not consider the evolution of clusters with time. For example, changes
to the location of the cluster generate a direction of movement, or changes to the number
of spatial-temporal objects contained indicate a growth of the cluster. The current analysis
methods do not capture information about the structure of evolving clusters and miss the
opportunity to deliver novel results.

In addition, the current cluster analysis methods do not consider the relationships
evolving clusters have with spatial-temporal objects or other evolving clusters. Information
about the location, time, or the number of occurrences of the relationship of a cluster are
not captured or analyzed by the current analysis methods and, therefore, remain to have
its value assessed.

Moreover, a connected representation of cluster evolution allows several novel analysis
techniques to be used. Such representation is suitable for a graph. Therefore, analysis on
this graph-based representation implies the use of graph analysis methods. However, the
current graph analysis methods, such as distance between edges, radius of a graph, and
the shortest path, are specific for generic graphs. The current graph analysis methods do
not take into consideration cluster evolution, with its changes in cluster structure and the
presence of relationships between clusters, represented in a graph, which highlights the
need for novel methods. For example, a cluster that, during its evolution, receives many
other smaller clusters, and is in a highway may indicate the start of a traffic jam. The
current and limited graph analysis techniques do not consider cluster evolution and miss
important results. Cluster analysis methods that consider the cluster evolution produce
novel results and help reach new conclusions.

Some questions about the lack of analysis methods for the evolution of clusters, includ-
ing changes in their structure, the presence of relationships during the evolution, and the
connected, graph-based representation of the evolution of many clusters of spatial-temporal
objects are in presented Table 1.1.
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1.3.3 Implementation

There is a lack of implementation tools, that is software support, for the representation and
analysis of cluster evolution, including changes in cluster structure, presence of relationships
and a connected, graph-based representation of the evolution.

The current software tools alone are limited in their representation of evolving clusters.
For example, one of the most popular libraries for machine learning currently is scikit-learn1

for Python. This library contains the implementation of 11 clustering methods, including
K-Means [82, 43] and DBSCAN [40]. None of them considers an evolving cluster, where its
representation spans several timestamps. Moreover, no software tool identifies relationships
that evolving clusters have with spatial-temporal objects and other evolving clusters.

The current software tools alone are limited in their analysis of evolving clusters. R2

is a popular language and environment for statistical computing. It contains packages for
several analysis methods on graphs. R and the library scikit-learn for Python offers analysis
methods for graphs such as the average distance between clusters, the average distance
between data points within clusters, the Adjusted Rand Index, the Fowlkes-Mallows Score,
the Silhouette Coefficient, and the Dunn index. These analytical methods are limited to
a representation of clusters that do not take into consideration an evolving aspect, with
changes in the structure of the cluster and the presence of relationships.

Some questions about the lack of software support for the representation and analysis
of cluster evolution are in presented Table 1.1.

1.3.4 Research Questions

Here is a list of the research questions related to this thesis.

RQ How to define an approach to support graph-based spatial-temporal cluster evolution
representation, analysis, and implementation?

RQ 1 How to represent graph-based spatial-temporal cluster evolution?

RQ 2 How to analyze graph-based spatial-temporal cluster evolution?

RQ 3 How to provide implementation tools to support graph-based spatial-temporal cluster
evolution?

1https://scikit-learn.org
2https://www.r-project.org
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Table 1.1: Questions about the problems identified in cluster evolution.

Aspect Questions
Representation 1. How to model a cluster that evolves during a period of time?

2. How to model the structure, formed by the contained spatial-
temporal objects, of a cluster that evolves with time?

3. How to calculate the position of a cluster that evolves with time
based on the spatial-temporal objects it contains?

4. How to model the relationships a cluster that evolves with time
has with spatial-temporal objects or other clusters?

5. How to model the cluster evolution of several clusters in a con-
nected, graph-based format?

Analysis 1. What is the AROC of the size of a cluster that evolves with time?
2. What is the direction of movement of a cluster that evolves with

time?
3. What is the distribution of the direction of movement of a set of

clusters that evolve with time?
4. At what time does a cluster that evolves with time start / end its

movement?
5. What are the relationships that a cluster has during its evolution?
6. How many clusters split during their evolution into a set of clusters

that evolve with time?
7. How to visualize clusters that evolve with time?
8. What graph analysis methods can be used to analyze cluster evo-

lution?

Implementation 1. What implementation tools can be used to identify a cluster that
evolves with time based on spatial-temporal data?

2. What implementation tools can be used to identify the same cluster
that evolves with time at different times during evolution?

3. What current tools or libraries can be adapted to support the rep-
resentation and analysis of cluster evolution and the relationships
clusters have during their evolution?
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1.4 Approach

The approach proposed in this thesis allows for the representation of evolving clusters,
including their structure and relationships, and allows for a graph-based representation
of cluster evolution. The approach also allows for the analysis of these evolving clus-
ters, including changes to their structure and presence of their relationships, with suitable
analytical methods and a visualization of how clusters evolve in time and of their relation-
ships. Finally, the proposed approach provides the full implementation of the structure of
evolving clusters and their relationship and of appropriate analytical tools as the software
support needed for cluster evolution representation and analysis.

1.4.1 Representation

The proposed approach provides the representation of graph-based spatial-temporal cluster
evolution by identifying and modeling the structure of evolving clusters, the relationships
they have with other clusters, and by using a graph structure to model a connected repre-
sentation of the evolution of several clusters.

The proposed approach provides the representation of evolving clusters, that is clusters
that evolve with time based on the spatial and temporal dimensions of the spatial-temporal
objects the clusters contain. For example, the approach identifies clusters at consecutive
timestamps and links them based on several rules about the objects that remain in the
cluster in both timestamps. This is fundamental for the representation of an evolving
cluster as it creates the structure of such a cluster. More details are found in Subsection
3.2.1

The approach also identifies the relationships these evolving clusters have with spatial-
temporal objects and other clusters during the evolution. For example, one cluster may
enter another cluster, or merge with another cluster to form a third cluster. Identifying
these relationships based on the spatial-temporal data for each timestamp is not trivial be-
cause clusters appear, disappear, or change from one timestamp to another. The proposed
approach identifies and represents the relationships clusters have while evolving based on
a set of rules described in Subsection 3.2.2.

The proposed approach uses a graph to represent cluster evolution. Representations
of evolving clusters at specific timestamps are transformed into nodes of a graph and
relationships are modeled as edges of a graph. This results in a representation of cluster
evolution in which evolving clusters are connected based on the relationships they have
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during their evolution. Details about the construction of such graph are found in Subsection
3.2.3

1.4.2 Analysis

The proposed approach provides analysis methods for graph-based spatial-temporal cluster
evolution, taking into consideration the structure of the evolving cluster, the relationships,
and a graph-based representation of such clusters.

The proposed approach provides analysis methods that examine the structure of evolv-
ing clusters. For example, it is possible to identify the times when a cluster has the number
of contained spatial-temporal objects growing or decaying, indicating for example, if such
cluster is expected to grow or decay in the morning, afternoon, or evening. Another ex-
ample is based on the changes in the location of the cluster. The proposed approach
provides analysis methods to calculate the distribution of movement, the distribution of
the time where movement happens, or the distance traveled in the movement. Details on
the analysis methods for the structure of cluster evolution are found in Subsection 3.3.1.

Analysis of the relationships clusters have during evolution can also be performed be-
cause the approach provides methods for the analysis of these relationships, such as the
ratio of clusters that were formed by the merging of two or more evolving clusters, or the
number of times spatial-temporal objects entered or left clusters. The result of these anal-
yses are patterns that can be used for many applications, such as classification. Details on
the analysis methods for the relationships of evolving clusters can be found in Subsection
3.3.2.

The proposed approach uses a graph to provide a graph-based cluster evolution analysis
of spatial-temporal objects. This graph allows for a connected representation of cluster
evolution in which evolving clusters are linked based on the relationships they have during
evolution. As a result, the approach includes graph-based analysis methods for novel
results. For example, when analyzing the location and relationships of clusters, it is possible
to identify clusters which spatial-temporal objects migrate to or from and identify, based
on the locations of such clusters, regions of high or low offer or demand of services, such
as taxis. More details on analysis on a graph-based representation of cluster evolution are
found in Subsection 3.3.3.
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1.4.3 Implementation

The proposed approach provides the implementation tools, as a software support, for the
representation and analysis of graph-based spatial-temporal cluster evolution.

The proposed approach provides the implementation tools for the representation of
evolving clusters, including the changes to their structure and the presence of relationships.
For example, the approach defines ways to identify and represent the structure of a cluster
uniquely as it evolves using libraries such as scikit-learn from Python for clustering and
similarity of clusters in consecutive timestamps, ways to represent the relationships that
an evolving cluster has in its evolution alongside the identification of other participants,
spatial-temporal objects or clusters, in the relationship, using novel rules. The approach
also supports the representation of a graph based spatial-temporal cluster evolution using
the support of Neo4j3, a graph data platform. Details about software support provided for
the representation of graph based spatial-temporal cluster evolution are found in Subsection
3.4.1.

The proposed approach provides the implementation tools for the analysis of evolving
clusters, including the changes to their structure and the presence of relationships. Analysis
is possible after evolving clusters have been translated to a graph format and imported in
Neo4j. For that reason, conversion routines that change the representation of evolving
clusters to a graph format, based on nodes and edges, are required and provided. Once
imported in Neo4j, several previously saved routines can be executed on the structure of
clusters and their relationships to analyze data and generate novel results. Moreover, since
the graph is a connected representation of cluster evolution, presaved routines can examine
the links between clusters, producing results that were not possible without this support.
Presaved routines are written in Cypher4, a graph query language. Details about software
support provided for the analysis of graph based spatial-temporal cluster evolution are
found in Subsection 3.4.2

In summary, the proposed approach represents cluster evolution by, first,
1. clustering data at each timestamp to identify parts of spatial-temporal clusters,
2. calculating a similarity between cluster parts in consecutive timestamps,
3. linking similar cluster parts to form a complete spatial-temporal cluster,
4. identifying cluster relationships based on the definition of 14 cluster relationships,

and
3https://neo4j.com
4https://neo4j.com/developer/cypher/
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5. transforming the representation of spatial-temporal clusters to a graph format, show-
ing a complete cluster evolution.

Then, the proposed approach analyzes cluster evolution by running methods to
1. examine cluster properties, such as size or location, of several spatial-temporal clus-

ters,
2. evaluate cluster relationships, such as MERGE or SPLIT, and how they contribute

to, for example, the demand of taxis, and
3. inspect the graph containing the evolution of several clusters and to identify, for

example, improvements to the city transit network.
The proposed approach provides implementation tools to support the representation and
analysis of cluster evolution, such as

1. Neo4j, a graph data platform, to visualize and analyze, with custom analysis meth-
ods, the graph containing the evolution of clusters,

2. QGIS, a geographic information system to visualize data on maps,
3. cluster-to-graph transformation routines that allow the graph to be built.

1.5 Evaluation

The evaluation of the proposed approach is done in terms of four case studies. These case
studies are chosen to discuss interesting phenomena that can be found in spatial-temporal
data when using the proposed approach. The case studies deal with the exploratory analysis
of the data, the identification of ever-increasing regions, the calculation of a similarity value,
and the analysis of the movement represented by cluster evolution. Spatial-data used in
this proposed approach comes from four datasets. Each dataset and case study is described
briefly in the next paragraphs.

The four datasets used in the case studies describe the movement of vehicles or people
in different regions. The dataset Athens Trucks contains the movement of cement trucks in
Athens, Greece and the dataset Rome Taxis contains the movement of taxis in Rome, Italy.
Geolife and T-Drive contain measurements taken in Beijing, China. The former dataset
has the movement of individuals during daily activities, such as commuting or leisure, while
the latter dataset has the movement of taxis. Measurements are taken at regular intervals
that can be as low as 1 minute. The time period over which these measurements are taken
can range from a week to three years.

Case Study 1 is an exploratory analysis. The case study contains 23 questions that
investigate the structure and relationships of spatial-temporal clusters as well as their
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graph-based evolution. These questions are translated into database queries and performed.
Their results are discussed and summarized in a table or in a figure. Examples of such
questions relate to the identification of spatial-temporal clusters with the greatest number
of spatial-temporal objects or the identification of clusters that start at a particular time.
The results contribute to several applications, such as offer and demand calculation, or can
be used in additional investigation steps.

Case Study 2 relates to the identification of ever-increasing and ever-decreasing regions
in the evolution of a spatial-temporal cluster, as well as the calculation of an AROC of size
of a cluster. An ever-increasing region in the evolution of a cluster is a moment in which
the cluster either grows or maintains its current size. The definition of an ever-decreasing
region is analogous. Identifying these regions help in the assessment of the location of time
of important phenomena, such as traffic jams or events in a city. Once ever-increasing
regions, or ever-decreasing regions, are identified, the average rate of change of size can
be calculated based on the size at the start and end of the region. This rate quantifies
the increase, or decrease, in the number of spatial-temporal objects in a cluster and can
be used, for example, to assess the readiness of spatial-temporal services. The case study
identifies and discusses ever increasing regions of two clusters and calculates the average
rate of change of the size of each of them. Later, they are compared and insights for these
rates are discussed.

Case Study 3 relates to the calculation of a similarity value between the evolution of
two clusters. The evolution of a cluster is represented in a graph. This evolution has a
single start, but may have several ends because of the cluster relationships that the cluster
may have during its existence. Comparing the evolution of two clusters can be performed
based, for example, on the size of each cluster at several timestamps during its evolution
between the one start and one end. If one cluster evolution is said to be, for example, an
optimal way to navigate in a given day in a city, such similarity value can be used to identify
optimal ways to navigate in other days or in other cities. Additionally, the calculation of
a similarity value is a fundamental step in several ML tasks, such as classification and
clustering. The case study compares the evolution of clusters based on their hour of the
day they start and discusses the impacts of the resulting values in the price of profitability
of spatial-temporal services, as well as the use of these similarities in other algorithms.

Case Study 4 relates to the analysis of the movement represented by the evolution of
spatial-temporal clusters. Movement can be represented in several ways, such as by its
start location or time, direction, or distance. Analyzing individual movements, either of
spatial-temporal objects or spatial-temporal clusters, may give important insights about
spatial-temporal phenomena, but an improved approach is the analysis of an aggregation
of movements of several spatial-temporal objects or clusters. In the improved approach the
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movements can be distributed by space, time, or other extended measurement unit. The
case study identifies the evolution of clusters that start at specific position and analyze
them based on four questions, related to the direction of movement, the distribution by
region and day, the time they start, and the largest distance. The results can be used, for
example, in improvements in city infrastructure related to city planning, traffic flow, or
the road network.

1.6 Contributions

Cluster evolution analysis offers many opportunities for novel discoveries and conclusions
in the spatial-temporal domain. These opportunities may lead to a better understanding of
the vehicle network in a city, offer and demand of transport services, similarity of cluster
evolution or trends in the movement of spatial-temporal clusters, that can be used to
increase revenue, reduce costs, offer better transportation services, or improve decision-
making processes in city planning, to name a few. However, the lack of representation,
analysis, and implementation tools hinders its exploration and, as a consequence, hides its
value. This study is one fundamental step towards the full potential of cluster evolution,
proposing the representation, analysis, and implementation tools to be used in studies,
laying the groundwork for novel research in the area.

The study in this thesis has several contributions. The study identifies and represents
evolving clusters, their structure and their relationships with spatial-temporal objects and
other evolving clusters. The study also represents cluster evolution using a connected,
graph-based description of evolving clusters. The study has analysis methods for cluster
evolution, which analyzes the structure and the relationships of evolving clusters, as well
as a graph-based representation of cluster evolution. The study also has implementation
tools, providing software support for the representation and analysis of graph-based spatial-
temporal cluster evolution.

1.6.1 Representation

The proposed approach has contributions in the representation of graph-based spatial-
temporal cluster evolution.

The proposed approach has contributions in the representation of the structure of evolv-
ing clusters and their relationships. Current clustering techniques identify clusters at a
particular time. The approach described in this thesis can identify and represent a cluster
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throughout time, i.e. an evolving cluster, including its changes in location or number of
participants. The approach combines the execution of a clustering technique at several
timestamps with a modified Jaccard similarity index [58] for the similarity of clusters in
different timestamps.

The approach can identify when clusters have relationships with other clusters. This
identification is based on the spatial-temporal objects participating in clusters in each
timestamp involved in the relationship. A set of rules was developed to identify the rela-
tionship. There are 22 relationships identified and represented, including C_ENTER or
C_LEAVE when a cluster enters or leaves another, and MERGE or SPLIT when two or
more clusters merge to form a larger cluster or split to form several smaller clusters.

The proposed approach has contributions in the graph-based representation of cluster
evolution. Since the representation uses a graph, is based on nodes and edges. Moreover,
the approach transforms representation of the cluster structure and the relationships to a
graph format, based on nodes and edges.

1.6.2 Analysis

The proposed approach has contributions in the analysis of graph based spatial-temporal
cluster evolution.

During its evolution, clusters may undergo some changes in structure, such as a change
in the location or a change in the number of participants. The approach proposed in this
thesis provides cluster analysis methods to be used for novel results. For example, the
approach allows for the calculation of cluster growth or decay parameters, which relate to
moments during the existence of the cluster when the number of participants increase or
decrease. The approach also allows for the calculation of ever-increasing or ever-decreasing
regions, which are moments when the number of participants of clusters always increase
or always decrease, indicating interesting phenomena.

The approach provides analysis methods for the relationships evolving clusters have
as well. For example, the approach allows for the calculation of the number of MERGE
relationships in specific locations, which may indicate the start of a traffic jam or another
relevant event. Conversely, the presence of several SPLIT relationships at a specific location
may indicate the end of an event.

Using the graph-based representation of cluster evolution, in which clusters assume
a graph format and are linked based on their relationships, the approach has analysis
methods to identify locations where the offer or demand of a particular service, such as
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taxi, is high or low based on the size of the evolving clusters and the relationships they are
having around location of interest.

1.6.3 Implementation

The proposed approach has contributions in the implementation tools used to provide
software support for the representation and analysis of graph based spatial-temporal cluster
evolution.

The proposed approach has contributions in the implementation of, or software sup-
port for, the representation of cluster evolution. The approach unites Python libraries
and Neo4j, a graph data platform, to provide complete support for the representation of
evolving clusters. Some examples are the scikit-learn library, for clustering techniques and
geopy5 for the calculation of distance between coordinates considering the curvature of
Earth.

The proposed approach has contributions in the implementation of or software support
for, the analysis of cluster evolution. The approach uses Neo4j’s Cypher, a graph querying
language, to provide complete support for the analysis of evolving clusters. The approach
includes a set of routines for analysis of cluster evolution, including routines for identifying
temporal regions during which an evolving cluster has its number of participating spatial-
temporal objects increasing or decreasing, evolving clusters that exist for a long time, or
that move to a distant place, and geographical regions to which clusters migrate indicating
a high demand for a specific service.

1.7 Publications

The following publications were produced as a result of this study (in chronological order):

[1] Ivens Portugal, Paulo Alencar, and Donald Cowan. Towards a provenance-aware
spatial-temporal architectural framework for massive data integration and analysis.
In Proceedings - 2016 IEEE International Conference on Big Data, Big Data 2016,
pages 2686–2691. IEEE, 2016. doi: 10.1109/BigData.2016.7840912.

[2] Ivens Portugal, Paulo Alencar, and Donald Cowan. Developing a spatial-temporal
contextual and semantic trajectory clustering framework, 2017. doi: 10.48550/ar
Xiv.1712.03900.

5https://geopy.readthedocs.io
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[3] Ivens Portugal, Paulo Alencar, and Donald Cowan. Cluster lifecycle analysis: chal-
lenges, techniques, and framework, 2018. doi: 10.48550/arXiv.1901.02704.

[4] Ivens Portugal, Paulo Alencar, and Donald Cowan. A software framework for clus-
ter lifecycle analysis in transportation. In Proceedings - 2018 IEEE International
Conference on Big Data, Big Data 2018, pages 4534–4539. IEEE, 2019. doi: 10.1
109/BigData.2018.8622576.

[5] Ivens Portugal, Paulo Alencar, and Donald Cowan. Modeling dynamic spatial-
temporal cluster relations. In Proceedings - 2019 IEEE International Conference
on Big Data, Big Data 2019, pages 3590–3598. IEEE, 2019. doi: 10.1109/BigDat
a47090.2019.9006496.

[6] Ivens Portugal, Paulo Alencar, and Donald Cowan. Spatial-temporal cluster rela-
tions: a foundation for trajectory cluster lifetime analysis, 2019. doi: 10.48550/ar
Xiv.1911.02105.

[7] Ivens Portugal, Paulo Alencar, and Donald Cowan. Trajectory cluster lifecycle anal-
ysis: an evolutionary perspective. In Proceedings - 2018 IEEE International Con-
ference on Big Data, Big Data 2018, pages 3452–3455. IEEE, 2019. doi: 10.1109
/BigData.2018.8621966.

[8] Ivens Portugal, Paulo Alencar, and Donald Cowan. A framework for spatial-temporal
trajectory cluster analysis based on dynamic relationships. IEEE Access, 8:169775–
169793, 2020. doi: 10.1109/ACCESS.2020.3023376.

[9] Ivens Portugal, Paulo Alencar, and Donald Cowan. From spatial-temporal cluster
relationships to lifecycles: framework and mobility applications. In Proceedings -
2020 IEEE International Conference on Big Data, Big Data 2020, pages 2410–
2415. IEEE, 2020. doi: 10.1109/BigData50022.2020.9377763.

[10] Ivens Portugal, Paulo Alencar, and Donald Cowan. Computational cluster lifetime
analysis to capture cluster lifetime dynamics. In Proceedings - 2021 IEEE Interna-
tional Conference on Big Data, Big Data 2021, pages 2909–2918. IEEE, 2021. doi:
10.1109/BigData52589.2021.9671317.

[11] Ivens Portugal, Paulo Alencar, and Donald Cowan. A graph-based analysis approach
to cluster lifetime dynamics. In Proceedings - 2022 IEEE International Conference
on Big Data, Big Data 2022, pages 3831–3837. IEEE, 2022. doi: 10.1109/BigDat
a55660.2022.10020802.

Other related publications produced during this study include (in chronological order):

21

https://doi.org/10.48550/arXiv.1901.02704
https://doi.org/10.1109/BigData.2018.8622576
https://doi.org/10.1109/BigData.2018.8622576
https://doi.org/10.1109/BigData47090.2019.9006496
https://doi.org/10.1109/BigData47090.2019.9006496
https://doi.org/10.48550/arXiv.1911.02105
https://doi.org/10.48550/arXiv.1911.02105
https://doi.org/10.1109/BigData.2018.8621966
https://doi.org/10.1109/BigData.2018.8621966
https://doi.org/10.1109/ACCESS.2020.3023376
https://doi.org/10.1109/BigData50022.2020.9377763
https://doi.org/10.1109/BigData52589.2021.9671317
https://doi.org/10.1109/BigData55660.2022.10020802
https://doi.org/10.1109/BigData55660.2022.10020802


[1] Ivens Portugal, Paulo Alencar, and Donald Cowan. Requirements engineering for
general recommender systems, 2015. doi: 10.48550/arXiv.1511.05262.

[2] Ivens Portugal, Paulo Alencar, and Donald Cowan. A preliminary survey on domain-
specific languages for machine learning in big data. In Proceedings - 2016 IEEE
International Conference on Software Science, Technology and Engineering, SwSTE
2016, pages 108–110. IEEE, 2016. doi: 10.1109/SWSTE.2016.23.

[3] Ivens Portugal, Paulo Alencar, and Donald Cowan. A survey on domain-specific
languages for machine learning in big data, 2016. doi: 10.48550/arXiv.1602.076
37.

[4] Ivens Portugal, Paulo Alencar, and Donald Cowan. The use of machine learning
algorithms in recommender systems: a systematic review. Expert Systems with Ap-
plications, 97:205–227, 2018. doi: 10.1016/j.eswa.2017.12.020.

[5] Ivens Portugal, Toacy Oliveira, Paulo Alencar, and Donald Cowan. Mylynsdp -
process-aware artifact filtering based on interest. Journal of the Brazilian Computer
Society, 26(1), 2020. doi: 10.1186/s13173-020-00100-8.

[6] Peng Peng, Ivens Portugal, Paulo Alencar, and Donald Cowan. A face recognition
software framework based on principal component analysis. PLoS ONE, 16(7), 2021.
doi: 10.1371/journal.pone.0254965.

1.8 Structure of the Thesis

This thesis is structured as follows. Chapter 2 describes the related work and Chapter
3 describes the proposed approach. Chapter 4 describes four case studies and Chapter 5
concludes the thesis.
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Chapter 2

Related Work

This chapter describes research initiatives related to the study proposed in this thesis.
It starts with an overview of the domain of spatial-temporal data analysis followed by a
description of clustering techniques. Later, the chapter describes possible cluster relation-
ships and ends with a discussion of how they are used to identify and construct the notion
of cluster evolution.

2.1 Spatial-Temporal Data Analysis

Objects, such as a car or a phone, that move in space are called spatial-temporal objects.
When observed, spatial-temporal objects produce spatial-temporal data. Spatial-temporal
data refers to data that is described based on location and time [84, 131]. For example,
mobile phones with GPS capabilities produce spatial-temporal data about the position of
the phone at several moments during the day. The study in [66, 103] describes spatial-
temporal data in an extensive way.

The spatial dimension of spatial-temporal data refers to the location of the spatial-
temporal object being observed. Important considerations about the spatial dimension
are (i) whether the spatial-temporal object moves, (ii) the physical dimensions of the
spatial-temporal object, and (iii) what physical dimension is the spatial-temporal object
in. These considerations impact the type of the spatial-temporal data.

Some spatial-temporal objects have a fixed location. As described in [66], they are
usually spatial-temporal-events, such as earthquakes. The spatial-temporal data that de-
scribe the spatial-temporal events include the fixed location and the fixed time these events
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happened. Some spatial-temporal objects move in space in several directions, such as cars
or people moving in a city. Usually, the spatial-temporal data that describe the movement
of spatial-temporal objects has the history of the entire movement of the spatial-temporal
object. According to [66], when the whole history of the movement of a spatial-temporal
object is available for analysis, the spatial-temporal data is said to refer to a trajectory.

Spatial-temporal objects have physical dimensions, like a truck having its length and
width. However, for analysis purposes, spatial temporal objects are usually summarized by
the spatial-temporal data type point. This enables, for example, the visualization of the
location of every truck of a truck company on a map. This summary may not always be
possible, and thus lines or areas could be used as the spatial-temporal data type describing
a spatial-temporal object. Some examples are trains in a city or states in a country.

In most cases, the spatial-temporal data describing the movement of a spatial-temporal
object does so by using a two-dimensional representation for location of the object, such
as latitude and longitude coordinates. However, a third physical dimension, the altitude,
may be needed for some analyses. For example, the analysis of the position of airplanes in
the air may consider the altitude of the planes for more accurate results.

The temporal dimension of spatial-temporal data refers to the time at which observa-
tions of the spatial-temporal object happen. According to [103] an important consideration
about the temporal dimension is its granularity. Granularity is specified based on a point in
the time axis and a partitioning length [61]. Some observations can happen every minute,
in the case of the trajectories of cars, or every day, in the case of the trajectories of planets.

Data analysis refers to the task of using techniques on data to uncover patterns and
discover value [54]. Using these techniques on spatial-temporal data characterizes spatial-
temporal data analysis. There are many different spatial-temporal data analysis tech-
niques, but [88] separates them into two types based on their primary goal: the clustering
and the classification types. According to [127] two common spatial-temporal data analysis
techniques for classification tasks are Markov Random Field (MRF) and SVM. MRF [65]
requires the set of variables observed to follow the Markov property, that is, future states
depend only on the present and not on the past, which is not true for spatial-temporal
data in many practical situations. SVM [24] is a technique that attempts to create a hy-
perplane that divides data into a predefined number of classes. The study in [26] creates a
new classifier based on SVM and applies it to the trajectory of tourists. Spatial-temporal
data analysis techniques with the goal of clustering are relevant to the development of this
thesis and have their own section, presented in the next section.

With respect to performance of spatial-temporal data techniques, the study in [148]
evaluates 25 trajectory simplification techniques. Trajectory simplification minimizes in-
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formation for compression and storage purposes. The study in [130] proposes a quantiza-
tion technique for a compact representation of trajectories. Quantization is the process of
mapping continuous infinite values to a smaller set of discrete finite values. The study in
[3] investigates the trajectory search problem, which is informally defined as the search for
a set of facilities that maximize a service measure for a set of user trajectories. However,
the solution discussed here does not address performance issues directly.

2.2 Clustering

In general, clustering is the task of dividing data into groups such that data in the same
group are more similar than data in different groups [139, 140, 59]. There are different types
of clustering techniques, including centroid-based [37], density-based [12, 83], distribution-
based [142, 141], and hierarchical clustering [110].

Centroid-based clustering techniques [55] partition the data space into regions, which
are the clusters, and uses a point, which is the cluster centroid, to determine which cluster
each data point belongs. Determination is usually based on the distance from the data
point to the centroid. The choice of the number of clusters is important in the execution.
The most popular centroid-based clustering technique is K-means [82, 43]. Given a fixed
number of clusters, the K-means algorithm attempts to minimize the sum of the distances
from each data point to each centroid, updating the centroids and the membership of data
points if needed. Other centroid-based clustering techniques are K-medoids clustering [64],
which uses data points as cluster centers, and Fuzzy c-Means clustering [36, 11], which
allows data points to belong to more than one cluster by assigning a membership degree.
A centroid-based cluster technique can be used, for example, in customer segmentation to
find types of customers with the same characteristics.

Density-based clustering techniques [113] identify clusters based on the density of data
points in regions of the data space. Usually, these techniques can identify clusters of
any shape, but may not perform well if clusters have different densities. The most popular
density-based clustering technique is DBSCAN, which is explained in this section. Another
popular density-based clustering technique is Ordering Points To Identify the Clustering
Structure (OPTICS) [6, 5]. The algorithm is similar to DBSCAN and solves DBSCAN’s
problem of varying density by monitoring a core distance of data point p, that is the
distance required to make p a core point. Points of a dense cluster have a small core
distance. Density-based clustering techniques can be used in the identification of groups
of vehicles or different animals in aerial photos.
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Distribution-based clustering techniques [141] use the distribution of data to identify
clusters. Often, a data point is assigned a probability to belong to a cluster. A popular
distribution-based clustering technique is the Expectation-Maximization (EM) algorithm
[91, 89]. EM uses a statistical model to assign data points to clusters. The algorithm
is divided in two steps. The expectation step estimates the expected value for variables
that are missing in the dataset. The maximization step optimizes the parameters of sta-
tistical models. A common statistical model is the Gaussian distribution [46, 28, 29].
Distribution-based clustering techniques can be used in applications in which data is miss-
ing or incomplete but the distribution of the data is known, such as in the medical or
security domains, where not all data is captured for privacy reasons.

Hierarchical clustering techniques [94, 95] group data in clusters such that a hierarchy
of clusters is formed. There are two strategies: the divisive and the agglomerative. In the
divisive or top-down strategy, all data points start in the same cluster and any clustering
algorithm attempts to partition the data in two clusters. The process is repeated until
each data point is its own cluster. In the agglomerative or bottom-up strategy, each data
point starts as its own cluster and a similarity is calculated between the existing clusters.
Then, the two most similar clusters are joined. The process is repeated until there is only
a single cluster. Hierarchical clustering techniques can be used in applications where the
data follows a hierarchical structure, such as identifying animal species or the development
of a disease.

Real-time clustering [1, 52, 53, 122] is the task of clustering data as it becomes avail-
able. Typically, a continuous stream of data is captured, and a clustering algorithm is
responsible to cluster data while considering restrictions of memory and time. EvolveClus-
ter [100] is a clustering algorithm with the goal of modeling how data evolves in real time.
EvolveCluster can identify clusters in a data segment, which is similar to a timestamp, and
uses the cluster centroids of the previous segment to identify the clusters of the current data
segment. Although EvolveCluster can identify a split relationship between clusters, that
is when a cluster splits into two clusters, other relationships are not identified, including a
merge relationship. This limits analysis on the evolution of a cluster. The resulting mod-
eling created by EvolveCluster is comparable to the modeling created by the algorithms
PivotBiCluster [2] and Merge-Split [15]. PivotBiCluster identifies clusters in a bipartite
graph, that is a graph that can be separated in two parts, by treating objects as nodes
and relationships as edges and connecting related nodes. The two parts of the graph can
be the objects in two different timestamps. This is the problem of Bipartite Correlation
Clustering (BCC), a variant to the more general problem of Correlation Clustering (CC).
The PivotBiCluster algorithm is based on probabilities, meaning that two runs of the al-
gorithm may produce different results. The Merge-Split algorithm also identifies clusters
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in a bipartite graph by identifying bi-cliques, which are connections between the two parts
of the graph. Although a spatial-temporal clusters can be identified, relationships between
these clusters are limited to split and merge, and the representation of spatial-temporal
objects is not discussed. The study in [48] contains a more extensive list of real time
clustering algorithm.

Graph clustering is the task of finding sets of vertices in a graph that are related
[114]. Applications range from analysis on voter behavior to formation of new trends.
The literature includes the study of an evolutionary graph clustering algorithm [13]. An
evolutionary algorithm, also known as genetic algorithm, use nature mechanisms such as
evolution, mutation, and selection to approximate an optimal solution to a problem [134,
135]. In the study, an evolutionary graph clustering algorithm is developed to maximize
modularity, which relates to the connections between vertices within a cluster in a graph.
Graphs with high modularity have many connections within a cluster and few connections
outside of the cluster. Although an evolutionary approach can be used in the identification
of spatial-temporal clusters, the amount of spatial-temporal objects in all timestamps need
to be analyzed. This may not be feasible especially when considering the number of
iterations needed by the algorithm to produce a solution.

There is a plethora of clustering techniques, but one, DBSCAN [40], is further described
here because of its relevance for this thesis.

DBSCAN is a density-based clustering technique that groups together a set of points
based on density, in other words, that are close to each other. It does so by having two main
parameters: ε and minPts. The first parameter, ε, specifies the radius of a neighborhood
for each point in space. The second parameter, minPts, specifies the minimum number
of points in the neighborhood of a point. This is used to classify the point in one of the
three types: core point, directly-reachable point or outliers. The classification follows these
rules:

• A point p is a core point if at least minPts points are within distance ε of it (including
p).

• A point q is directly reachable from p if point q is within distance ε from core point
p.

• A point q is reachable from p if there is a path p1, …, pn with p1 = p and pn = q
where each pi+1 is directly reachable from pi.

• All points not reachable from any other point are outliers.
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The DBSCAN algorithm starts by picking any point in space that has not been visited.
If this point contains sufficiently many points in its neighborhood, ı.e. if there are at least
minPts reachable from the initial point, then a new cluster is started. If a point is found
to be reachable from some point of the cluster, it is part of the cluster as well, either as a
core point or a border point, depending on the number of points in its neighborhood. This
process continues until the entire cluster is found. The algorithm then retrieves another
point that has not been visited, leading to the discovery of a new cluster or labeling this
point as an outlier. One interesting case is when a border point belongs to the neighborhood
of core points of different clusters. In theory, the border point can belong to either cluster.
However, the original implementation of DBSCAN assigns it to the first cluster that claims
it [116].

DBSCAN works on data of different densities and can identify clusters regardless of
their densities. This is possible because DBSCAN extends a cluster, including each data
point that is reachable from any of the cluster’s points based on the parameter ε. However,
for clusters of different densities, the parameter ε needs to be carefully chosen such that
DBSCAN does not include too many data points in one cluster or too little in another
cluster. Usually, the parameter ε is specific to the data under analysis and is chosen after
some experimentation.

Spatial-temporal clustering techniques attempt to group spatial-temporal objects based
on the similarity of their path, that is, the spatial-temporal data produced [7, 150]. Spatial-
temporal data here refers to trajectories because the history of the movement is available
for analysis, as opposed to moving points, described in [66]. The study in [7, 120, 88, 127,
144, 66] present an extensive analysis on many spatial-temporal clustering techniques, such
as Trajectory - Ordering Points To Identify the Clustering Structure (T-OPTICS) [96, 5],
Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH) [149], and TraClus
[78].

Another spatial-temporal clustering technique is ST-DBSCAN [14]. Because of its
importance for this thesis, it is detailed in its own paragraph. In general, ST-DBSCAN
works like its parent algorithm DBSCAN, but it differs in the calculation of similarity
and in the identification of adjacent clusters. To check if a point p has a point q in
its neighborhood, a distance function is used. The most common distance function is
the Euclidean distance, defined in Equation 2.1, but the Manhattan distance and the
Minkowski distance are popular as well [85].

dist(p, q) =
√

(xq − xp)2 + (yq − yp)2 (2.1)

where p = (xp, yp) and q = (xq, yq) are two 2-dimensional points. Smaller distances mean
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higher similarity. ST-DBSCAN stores the distance for spatial values in a variable called
Eps1 and introduces a new variable for the distance of non-spatial values called Eps2. Eps2
can be used for temporal values or for any non-spatial values, such as temperature. Eps1
and Eps2 are calculated using the Euclidean distance. For the identification of adjacent
clusters, the authors of ST-DBSCAN claim that points in opposite sides of a cluster may
have very different values and two points in adjacent clusters may not, making it difficult to
classify points correctly. ST-DBSCAN solves this problem by comparing the cluster average
value and comparing it with the value in the point being visited by the algorithm. This
difference should be smaller than a threshold of ∆ε set at the beginning of the algorithm
and introduced by ST-DBSCAN.

2.3 Cluster Relationships

Spatial-temporal clusters are clusters of spatial-temporal objects. They exist for some pe-
riod of time and move during existence. During its movement, a spatial-temporal cluster
may enter another spatial-temporal cluster, resulting in the end of the first spatial-temporal
cluster. Moreover, two spatial-temporal clusters moving in space may meet and merge, cre-
ating a third larger spatial-temporal cluster. Situations like the ones presented show that
spatial-temporal clusters have relationships with each other. These spatial-temporal clus-
ter relationships are patterns in movement that can be identified, analyzed, and processed
to reach useful conclusions. The study of spatial-temporal starts with understanding spa-
tial relationships and temporal relationships before the more advanced spatial-temporal
relationships and the analysis of semantics. The next sections detail each step.

2.3.1 Spatial Relationships

In general, spatial relationships refer to the relationships that objects have with respect to
their location in space [79, 56]. Note that this definition is generic and applies to objects of
any geometry. The study in [79] has an extensive description about spatial relationships.
There are three types of spatial relationships: topological, directional, and metric. They
are explained in the following paragraphs.

Topological relationships are based on the topology or geometry of the objects. There
are three common geometries: point, line, region. The main topological relationships found
in the approach in this thesis are between a point and a region, and a region and a region.
The study in [79] describes six region and region topological relationships: disjoin, meet,
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Table 2.1: Region and region topological re-
lationships. Adapted from [79].

Disjoin

Meet

Overlap

Contain & Meet

Contain

Equal

Table 2.2: Point and region topological rela-
tionships. Adapted from [79].

Disjoin

Meet

Contain

overlap, contain, contain & meet, and equal. They can be seen in Figure 2.1. These region
and region relationships simulate the relationships that spatial-temporal clusters can have.
The study in [79] also describes three point and region topological relationships: disjoin,
meet, and contain. They can be seen in Figure 2.2. These point and region relationships
simulate the relationships spatial-temporal clusters have with spatial-temporal objects.

Directional relationships are based on the relative location of the objects being com-
pared. In the case of spatial-temporal objects, they are first summarized in a point and
then their relative position is analyzed to identify the directional relationship. The study
in [56] describes four basic directional relationships: left, right, front, and back. The study
in [79] uses cardinal points for a more descriptive set of directional relationships: north,
northwest, west, southwest, southeast, east, northeast, and equal. These relationships can
be seen in Figure 2.1.

Metric relationships are based on the distance between the objects being compared. In
the case of spatial-temporal objects, they are first summarized in a point and then their
distance is calculated to identify the metric relationship. The study in [79] describe four
relationships: equal, near, medium, far. They can be seen in Figure 2.2.
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Figure 2.1: Directional relationships based on eight cardinal points. Adapted from [79].

equal
near
medium

far

Figure 2.2: Metric relationships. Adapted from [79].
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Figure 2.3: Temporal relationships. Adapted from OWL’s time ontology1.

2.3.2 Temporal Relationships

In general, temporal relationships refer to relationships that objects have with respect to
the moment they exist in time [56]. The World Wide Web Consortium (W3C) maintains
the OWL project which describe ontologies for several domains. The OWL has a time
ontology1, which includes temporal relationships. There are 13 temporal relationships de-
scribed in OWL’s time ontology: before, after, meets, metBy, overlaps, overlappedBy,
starts, startedBy, during, contains, finishes, finishedBy, equals. They are visually repre-
sented in Figure 2.3. The figure contains seven pairs of relationships, each in one line,
starting with the pair Before-After, and ending with the pair Equals-Equals. Each arrow
represents the duration of an event of interest, such as a sports match. The uppermost
leftmost arrow is the event duration of reference. The vertical dashed lines indicate that
the event duration of reference is repeated on each line. Other arrows represent the event
duration that is compared to the event duration of reference. Relationships shown on the
left side of the figure refer to the event duration of reference and relationships shown on
the right side of the figure refer to the event duration compared. For example, on the first
line, the event duration of reference happens before the other event duration. On the fifth
line, the relationship During indicates that the event duration of reference happens during
another event. The same set of temporal relationships is described in [56].

1https://www.w3.org/TR/owl-time/
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Table 2.3: Spatial-temporal relationships described in [80].

Relationship Description
Appear An object appears in the system.
Disappear An object disappears from the system.
Update An object updates its properties, e.g. velocity.
Exit An object exits a cluster.
Join An object joins a cluster.
Expire A cluster expires.
Merge At least two clusters merge.
Split A cluster splits into multiple clusters.

2.3.3 Spatial-Temporal Relationships

In general, spatial-temporal relationships refer to relationships that objects have with re-
spect to both their location in space and the moment they exist in time [56, 18]. One way
to discover spatial-temporal relationships is to pick a spatial relationship and a temporal
relationship and make sense of the resulting combination. For example, the combina-
tion between the spatial relationship north and the temporal relationship before produce
a spatial-temporal relationship indicating that an object was to the north of a reference
object moments ago. This is the approach followed in [56] and [18]. However, a more
robust approach is to identify relationships that objects have based on both the spatial
and temporal relationships and natural language. These spatial-temporal relationships are
expected to translate to spatial-temporal objects without effort. The study in [27] iden-
tifies seven spatial-temporal relationships: appears, disappears, survives, splits, merges,
shrinks, and expands. These spatial-temporal relationships describe patterns on moving
object data. The study in [80] expands this list of spatial-temporal relationships, identify-
ing eight relationships: appear, disappear, update, exit, join, expire, merge, split. These
two lists of spatial-temporal relationships are the starting point for the proposal in this
thesis, which is described in Chapter 3.

2.3.4 Semantic Relationships

A higher-level set of spatial-temporal relationships involves the semantic meaning of each
relationship. This is the closest to natural language and attempts in this direction benefit
non-technical users the most. The study in [21, 20, 22, 93, 19] observes the movement of
objects in video and identifies 10 motion verbs that are the semantic relationships: go back,
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go through, come back, enter, go out, go to, arrive, go into, depart, and leave. Note that
one semantic relationship can be described by many spatial-temporal relationships. For
example, the semantic relationship go through can be described by the spatial-temporal
relationships join and exit described in the previous section. The study in [138, 137]
divides the situations in which objects can be observed into 4 groups: move outside, move
inside, move on the boundary, and move while englobing. For each of these 4 situations,
some semantic relationships are described, totaling 14 semantic relationships. For example,
when moving outside, the semantic relationships are approach, aroundOutside, and leave.
The study in [69] observes the German language and identifies prepositions related to
the description of movement and create a correspondence to semantic relationships. The
identified semantic relationships are: towards, up to, into, to, against, away from, out of,
along, past, through, and around.

2.4 Cluster Evolution

Clusters, in general, do not evolve in time, that is, cluster properties such as the number
of participants or domain-specific properties such as the average height for a cluster of
people stay the same once the clustering technique finishes. A novel perspective considers
clusters having some properties changed with time, which characterizes an evolving cluster.
Therefore, cluster evolution refers to the idea of clusters having their properties changing
with time [109]. For example, wild animals may group forming clusters and, since animals
enter and leave the cluster, this cluster has its properties changed with time and is said to
be an evolving cluster. In the case of spatial-temporal clusters, the location of the cluster
may change with time, as well as domain-specific properties.

The study in [109] creates a methodology for the analysis of cluster evolution based
on five steps: clustering per time period; between-period similarity identification; forming
cluster trajectories; detection of prominent migration patterns; and detailed migration
pattern detection. The same model was followed by other researchers in different domains,
such as the academic and the software engineering domains [107, 74].

The first step relates to clustering per time period. There are different ways to cluster
temporal data or time-series data [132]. One common way is to run a clustering technique
at regular time intervals. The main drawback of this approach is that clusters at different
time intervals are not easily associated and additional processing is required. In [109] data
about corporate bonds, which are one type of security in the financial domain, are divided
into five groups based on the year of measurement. The authors use a k-means clustering
algorithm on data for each year to cluster bonds based on their risk. An interpretation
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of this step in the spatial-temporal domain has spatial-temporal data being clustered at
regular time intervals. However, additional processing is required in the handling of the
spatial-temporal dimension.

The second step relates to the between-period similarity. This is the natural result of
running clustering techniques at regular time intervals. The study in [109] describes two
ways to compare clusters obtained at different timestamps: comparing shared objects and
comparing cluster characteristics. The former way refers to comparing the participants of
each cluster and defining a similarity of these clusters. One common way to define such
similarity is to use a Jaccard similarity [58]. The Jaccard similarity is calculated as follows:

J(c1, c2) =
|c1 ∩ c2|
|c1 ∪ c2|

where c1 and c2 are clusters and | · | calculates the number of participants in a cluster. The
latter way refers to comparing cluster characteristics and checking if they are similar in
nature. It is common to use statistical tests such as the T-test [125] or the Chi-square [102,
23] to compare clusters. One interpretation of this step in the spatial-temporal domain
is the linkage between the clusters found in each regular interval. However, unlike in the
finance domain, changes in the number of objects in clusters can happen rapidly, which
poses additional challenges to the linkage task.

The third step relates to identifying the formed cluster trajectories. By cluster trajec-
tories, the authors mean the path that objects, or bonds in the financial domain, generate
with its movement between clusters. In [109], the authors build a matrix with the move-
ment of bonds between clusters. The authors use the Generalized Sequential Patterns
(GSP) algorithm [123] to identify the most common patterns in the movement of bonds
and filters the bonds based on user-defined parameters. The authors seek to identify paths
that indicate stability or reduced loss of value among the paths that these bonds create
when moving from cluster to cluster. One interpretation of this step in the spatial-temporal
domain is to capture the clusters that all spatial-temporal objects belonged to. However,
the feasibility of this interpretation is challenged by the amount of data that is available
for processing. In the case of [109], the paths are identified from year to year for four years.
In contrast, in the spatial-temporal domain, spatial-temporal data about objects, such as
cars or people, can be based on much smaller regular intervals, usually involving a period
of one to a few minutes. Additionally, spatial-temporal data about objects may involve
millions of vehicles or people. A new interpretation that leverages the spatial-dimension
of clusters and analyzes their movement needs to be explored.
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The fourth step relates to detecting prominent migration patterns. In [109], a migra-
tion is when a corporate bond moves from one cluster to another cluster based on risk
assessment. The authors seek to identify migration repeated paths that characterize bond
deterioration, for example. One interpretation of this step in the spatial-temporal domain
relates to spatial-temporal objects that leave a spatial-temporal cluster and enter another.
In this case, leave and enter are relationships between a spatial-temporal object and a
spatial-temporal cluster. As an area of further investigation, this interpretation can be
extended to analyze clusters that leave and enter other spatial-temporal clusters because
of the spatial dimension. In summary, this interpretation is related to the identification of
spatial-temporal cluster relationships.

The fifth step relates to detailing the detected migration patterns. In [109], the au-
thors use well-defined risk groups for corporate bonds and create a diagram with bars and
arrows indicating the movement of bonds among these risk groups. The authors seek a
visual representation of the movement of bonds. One interpretation of this step in the
spatial-temporal domain assumes that the risk groups are spatial-temporal clusters and
that corporate bonds are spatial-temporal objects, so they can be represented in the di-
agram. However, such a diagram with bars and arrows is very limited to represent the
sheer amount of relationships that happen in the spatial-temporal domain. Additionally,
this visual representation limits analysis on the movement of spatial-temporal clusters. In
summary, this interpretation motivates the need for an improved visualization of spatial-
temporal clusters and spatial-temporal cluster relationships for analysis.

The methodology for cluster evolution analysis described in [109] serves as an inspira-
tion for the proposal of this thesis. The several limitations of the methodology are overcome
with novel steps, algorithms, and approaches that consider the spatial and temporal di-
mensions to represent and analyze graph-based cluster evolution. A detailed description is
given in Chapter 3.
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Chapter 3

Graph-Based Spatial-Temporal
Cluster Evolution

This chapter describes the proposed approach for graph-based spatial-temporal cluster
evolution. It starts with an overview of the approach, followed by a detailed description.
Next, individual contributions and solutions are discussed.

3.1 Overview

The proposed approach captures spatial-temporal data and delivers cluster evolution repre-
sentation, analysis, and implementation tools through a series of steps, which are described
in this section. Figure 3.1 shows a workflow including the steps of the proposed approach.

The first step is to preprocess the data. Because spatial-temporal data can be repre-
sented in different formats, the approach has a preprocess step to standardize data. The
approach reads spatial-temporal data from a repository, represented in Figure 3.1 by the
entity called “Original ST data” and stores the resulting data in a repository, represented
in Figure 3.1 by the entity called “Preprocessed ST data”. Activities performed during this
step are mainly related to the format and order that latitude and longitude coordinates
and the time are represented. Because of the technical nature of the explanation, a detailed
description of these activities is deferred to Section 3.4.1.

The second step is to process the spatial-temporal data. Three major tasks happen dur-
ing this step: the preprocessed spatial-temporal data is clustered, spatial-temporal clusters
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Figure 3.1: A workflow describing the steps performed by the proposed approach.

of different timestamps are discovered and linked, and spatial-temporal cluster relation-
ships are identified. In simple terms, spatial-temporal data is clustered at each timestamp,
then clusters at different timestamps are linked, forming spatial-temporal clusters, and
finally spatial-temporal cluster relationships are identified. Details about these tasks are
given in Sections 3.2.1 and 3.2.2. At the end of this step, each spatial-temporal cluster
has a set of all spatial-temporal cluster relationships from the beginning to the end of
its existence described. This set of relationships is its spatial-temporal cluster lifetime.
Spatial-temporal cluster lifetimes are then stored in a repository represented in Figure 3.1
by the entity called “Cluster Lifetimes”.

The third step is to generate a graph representation. Spatial-temporal cluster lifetimes
of all spatial-temporal clusters are processed to create a graph representation, in which
it is possible to identify the evolution of a spatial-temporal cluster based on the spatial-
temporal cluster relationships it has. Details about the graph representation are given in
Section 3.2.3. At the end of this step, a graph with its nodes and edges is created and
stored in a repository represented in Figure 3.1 by the entity called “Graph Nodes and
Edges”.

The fourth step is to perform cluster evolution analysis. There are many analytical
techniques that can be used on graphs for analysis, ranging from visualization tools or
calculating relevant metrics, to classification. In this step, analysis methods are used to
generate results. Details about the analysis methods used on the structure of spatial-
temporal clusters are given in Section 3.3.1, while those on the relationships of clusters are
given in Section 3.3.2. Details about the analysis methods on the graph-based representa-
tion of cluster evolution are given in 3.3.3. The result of this step is a set of analysis results
that are stored in a repository represented in Figure 3.1 by the entity called “Analysis
Results”.
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Notice that spatial-temporal data resides in the repository at the beginning of the
workflow to be processed. This means that the entire dataset has to be available before
the workflow describing the solution is started. This need not be the case. An alternative,
more continuous, strategy can be adopted, since the solution takes only data about two
timestamps at a time to process. However, this strategy is not adopted in the solution
because the primary goal is to provide representation, analysis, and implementation tools
for spatial-temporal cluster evolution. The continuous strategy, with stream data, available
in real time is discussed as future work.

Notice also that to represent clusters and identify relationships, the solution needs only
the latitude and longitude coordinates of the location of each spatial-temporal object and
its identification. Other types of information about spatial-temporal objects or the clusters
they form, such as speed, number of passengers, purpose of trip, or other information is
passed along the cluster to the third step for analysis tasks. This means that higher
dimensional datasets can still be processed with little to no additional accommodations
required.

The implementation tools to support the tasks of representing and analyzing graph-
based spatial-temporal cluster evolution are not included in Figure 3.1. However, they are
detailed in Sections 3.4.1 and 3.4.2.

The source code of the approach is available at https://git.uwaterloo.ca/ivens/phd.

3.2 Representation

This section describes the representation of spatial-temporal clusters with respect to their
structure and relationships. The section also describes the representation of a connected,
graph-based cluster evolution.

3.2.1 Structure

Spatial-temporal clusters differ from other types of clusters in that they exist during a
period of time. Time is a continuous dimension. Devices, such as those acquiring spatial
coordinates GPS, do not acquire data continuously. Instead, these devices acquire data
at discrete time steps, associating a timestamp with each reading. Therefore, spatial-
temporal clusters really exist at several timestamps. Because of this discrete acquisition of
position, identifying a spatial-temporal cluster means that an approach has to first identify
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the cluster in several timestamps and then link the many clusters creating a complete
representation of the spatial temporal cluster. This task is challenging because spatial-
temporal clusters change their structure, such as location or size, between timestamps. To
solve this problem of change, a similarity function is used. The following subsections give
more detail about how the proposed approach identifies and represents spatial-temporal
clusters.

One note about the notation used. In the subsections and sections that follow, examples
of spatial-temporal clusters moving in space and time are given. These examples follow
a notation that is explained now for better understanding. A spatial-temporal cluster is
represented by the simplified notation ci. This refers to the spatial-temporal cluster as
a whole and is irrespective of the timestamps during which the cluster exists. Examples
are c1, c2, or even ci itself for a generic spatial-temporal cluster. When appropriate, a
reference to a particular timestamp uses the notation tj. A timestamp is really a slice of
the continuous time. Examples are t1, t2, or even tj itself for a generic timestamp. Lastly,
since spatial-temporal clusters exist and change during many timestamps, sometimes it is
required to refer to the existence of a cluster during a particular timestamp. For that end,
the notation ci,tj is used. Examples are c1,t1 for the first cluster during the first timestamp
or c2,t2 for the second cluster during the second timestamp. Note that tj can be used as
a basis timestamp, and other timestamps can refer to it, such as tj−1 and tj+1 for the
previous and next timestamps. Thus, the notation for a spatial-temporal cluster during a
specific timestamp is updated accordingly. A ci,tj−1

refers to the spatial-temporal cluster
ci during the previous timestamp and ci,tj+1

refers to spatial-temporal cluster ci during the
next timestamp.

Clustering Technique

Identifying and representing a spatial-temporal cluster starts with the choice of a clustering
algorithm. In general, different clustering algorithms produce different clusters with their
own characteristics, such as shape, density, rules for accepting data points, or hierarchies.

Clusters are groups of objects and are, usually, assumed to have a circular shape. For
instance, a flock of wild animals walking together to protect themselves from predators
is somewhat circular. However, clusters can assume any shape. For instance, a flock of
migrating birds sometimes assume a V-shape or are linear. Clusters that are constructed
from generic data points tend to assume any shape because data points are not limited
by geographical barriers, like animals are. However, data points of other types, such as
spatial-temporal data, are limited by geographical barriers and must conform to the space
available around them, thus influencing the shape of the clusters.
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Several clustering approaches, such as the popular centroid-based clustering method
K-Means [82, 43], do not work well with clusters of arbitrary shape [55]. The reason is
that they assume that data points cluster around a central point, a centroid, making it
difficult to identify clusters in other formats, such as clusters in a V-shape or concentric
clusters, especially when they are close to other clusters.

Spatial-temporal data usually comes from real life entities, such as cars, buses, or
people. These entities cluster based on the real-life limitations. For example, a traffic jam
is a cluster of cars and is limited by the shape of the road. People in a train form a cluster
that is limited by the elongated shape of the train. It is not reasonable to expect that a
traffic jam or a train will have a circular shape, or that cars in a traffic jam or people in a
train cluster around a centroid. Therefore, spatial-temporal data, can group into clusters
of many different shapes and an appropriate clustering method is necessary to identify
clusters of spatial-temporal data. For this reason, centroid-based clustering techniques,
such as K-Means are not used in the solution.

In summary, the workflow is as follows. Given a specific dataset, the solution pre-
processes the data to standardize it, making sure that dates and latitude and longitude
are formatted as expected. To process data, the solution queries the preprocessed dataset
at regular intervals, usually 1 minute, called timestamps, and performs DBSCAN. This
is done to identify clusters at each timestamp. The solution links clusters of consecutive
timestamps using a similarity metric and forms spatial-temporal clusters. The solution
proceeds to identify relationships between these clusters. After that, the solution persists
a list of events for each cluster, called cluster lifetimes. The solution then generates a
graph representation of all clusters for analysis, which is passed to an appropriate graph
data platform. Analyses are performed and results are stored in a dataset.

Often, spatial-temporal objects in a space, such as vehicles in a city, do not follow a
distribution. Different from the number or the movement of planets or atoms, for example,
the number of taxis grouping at certain locations or the movement of taxis in the city are
unique in a day and may not repeat a specific pattern. This is because each passenger has
a different reason to move and a different destination or city events happen at different
times impacting the traffic flow in unpredictable ways. This undermines the use of a
distribution-based clustering technique in the solution, as distributions are not suitable
to describe the movement of spatial-temporal objects. For this reason, distribution-based
clustering techniques, such as EM are not used in the solution.

Clusters of spatial-temporal objects and their relationships can be observed from many
different perspectives. For example, special characteristics of a transportation service can
differentiate a cluster of taxis from a cluster of ridesharing cars. Novel relationships can
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be identified when these characteristics are taken into consideration. For example, a taxi
that enters a cluster of ridesharing cars can be different from a taxi that enters a cluster of
taxis. This means that, in a higher perspective, every vehicle is a spatial-temporal object,
but in a fine-grained perspective, the difference between taxis and ridesharing cars is made
explicit. However, more complicated representation and analysis techniques are required.
For this reason, hierarchical clustering techniques, either divisive or agglomerative, are not
used in the solution.

DBSCAN [40] is a density-based clustering method that identifies clusters based on
their proximity, or density, irrespective of a centroid. DBSCAN examines the number of
data points that exist in the neighborhood of a chosen data point, effective analyzing the
density around the chosen data point. The DBSCAN analysis method then can identify
clusters of arbitrary shape because it does not assume that data points cluster around a
centroid.

These characteristics of the DBSCAN clustering method support its use in the proposed
approach.

There also exists an extended version of DBSCAN for the spatial-temporal domain
called ST-DBSCAN. ST-DBSCAN [14] is a spatial-temporal density-based clustering algo-
rithm that identifies clusters based on the similarity of their space and time dimensions.
However, ST-DBSCAN acts on the entire dataset of spatial-temporal data points, which
results in substantial memory use. DBSCAN, on the other hand, acts on the slice of
the dataset defined by the timestamp under investigation. This reduces the memory re-
quirements and eliminates the use of ST-DBSCAN as the clustering method used in the
approach. The unavailability of ST-DBSCAN, and availability of DBSCAN, on one of the
main Python libraries for data analysis is another main reason the latter method is chosen
in the solution.

Therefore, the first step to represent a spatial-temporal cluster, that exists throughout
several timestamps, is to use DBSCAN at each timestamp. Figure 3.2 illustrates this
process. The Figure shows slices of time, the timestamps, from 1 to n. In each slice, the
Figure shows clusters that exist at that slice. The step just discussed is to use DBSCAN
on each of these time slices to identify the clusters that exist in them.

DBSCAN uses two parameters: ε for the radius of the neighborhood of a point and
minPts to classify a given point, here called min_cluster. The first parameter, ε, is
used to define the size of the neighborhood of a point. The value of this parameter is
domain-specific, but, in the context of spatial-temporal objects, it is reasonable to expect
the neighborhood around a person to be a few meters and the neighborhood around a car
to be a few tens of meters. The second parameter, min_cluster represents the minimum
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Figure 3.2: Slices of time, the timestamps, in which DBSCAN is used to identify clusters.

number of points in the neighborhood of a point, including itself, for it to be classified as
a core point or an outlier. The value of this parameter is domain-specific or even specific
to the task at hand, given size limitations. It is not reasonable to expect to have 50 people
within 1 meter from a person, or 500 cars within 1 meter from a car. Since DBSCAN is
a density-based clustering method, it uses these two parameters, ε and min_cluster, to
calculate the density around a data point. A high-density data point and the points in its
neighborhood are a candidate to form a cluster, if they are not part of a cluster already. A
low-density point is a candidate to not take part in any cluster and be deemed an outlier.

Once clusters at consecutive timestamps have been identified, the approach then has
the task of linking appropriate clusters to form a spatial-temporal cluster. This new task
is explained in the next subsection.

Between-Timestamp Cluster Similarity

Once clusters have been identified at each timestamp, the approach attempts to link them,
forming a true spatial-temporal cluster. The identification of clusters is done for each
consecutive pair of timestamps and, therefore the linkage of clusters happens at the same
time. Figure 3.3 illustrates this process. Cluster ci exists from timestamp t1 to timestamp
tn. At timestamp tj, the approach has identified three clusters, ci,tj and two others. At
timestamp tj+1, the approach has identified three clusters, cα,tj+1

, cβ,tj+1
, and cγ,tj+1

. The
task is to identify which of the three clusters at timestamp tj+1 is the continuation of cluster
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Figure 3.3: The identification of a spatial-temporal cluster in consecutive timestamps.

ci. The task seems trivial when having the location of clusters and if they are distant
from each other, but since spatial-temporal clusters enter, leave, merge with, or split into
other clusters, their locations are frequently very similar. The solution to the problem of
identifying the same spatial-temporal cluster in different timestamps used in the approach
is a similarity metric. The similarity metric is an extension of Jaccard similarity [58]
and is based on the spatial-temporal objects that clusters have at each timestamp. Once
similarities have been calculated they are compared with a similarity threshold. Similarity
values equal or greater than a certain threshold mean that the clusters they relate to are
the same spatial-temporal cluster. Therefore, the approach links clusters accordingly.

The Jaccard similarity [58] is a similarity metric used to calculate the similarity between
two sets of objects. The calculation is based on the number of shared objects in each set.
Let A and B be two sets of objects. Therefore, the Jaccard similarity is calculated according
to Equation 3.1, where | · | calculates the number of objects in a set.

J(A,B) =
|A ∩ B|
|A ∪ B|

(3.1)

Consider the situation illustrated on the left-hand part of Figure 3.4. Cluster c1,tj
contains spatial-temporal objects 1 through 6 and is to be compared with cluster cα,tj+1

,
which exists one timestamp later and contains spatial-temporal objects 2 through 7. The
objective is to check if they are the same spatial-temporal cluster. Let the sets of the

44



c1,tj cα,tj+1

1
2

3

4
5

6

2
3

4

5
6

7

(a)

c1,tj cα,tj+1

1 2

3
4

5

2 3

4
5

6

(b)

Figure 3.4: Two situations in which clusters are somewhat similar. The Jaccard similarity
works well for the situation on the left-hand side, but not for the situation on the right-
hand side.

Jaccard similarity formula be clusters and the calculation is:

J(c1,tj , cα,tj+1
) =

|c1,tj ∩ cα,tj+1
|

|c1,tj ∪ cα,tj+1
|
=

5

7
≈ 0.71

Assuming that clusters whose Jaccard similarity are equal or greater than 0.7 are the
same spatial-temporal cluster, clusters c1,tj and cα,tj+1

would be deemed to be the same
spatial-temporal cluster by the approach.

However, Jaccard similarity does not perform well for smaller clusters. Consider the
situation illustrated on right-hand side of Figure 3.4. Cluster c1,tj contains spatial-temporal
objects 1 through 5, one less than in the previous situation, and is to be compared with
cluster cα,tj+1

, which exists one timestamp later and contains spatial-temporal objects 2
through 6, one less that in the previous situation as well, to check if they are the same
spatial-temporal cluster. The Jaccard similarity calculation is:

J(c1,tj , cα,tj+1
) =

|c1,tj ∩ cα,tj+1
|

|c1,tj ∪ cα,tj+1
|
=

4

6
≈ 0.67

Assuming a similarity threshold of 0.7, clusters c1,tj and cα,tj+1
would be deemed differ-

ent spatial-temporal clusters by the approach, although they share a significant number of
spatial-temporal objects. One simple solution is to lower the similarity threshold to 0.65,
but doing this has other implications. For example, if a similar situation is under analysis,
in which clusters had two less spatial-temporal objects than the original situation, their
Jaccard similarity would be approximately 0.6. This raises a question about lowering the
threshold again to accept even more situations. In addition, lowering the threshold leads
to accepting cluster links that are not supposed to happen.
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This problem is solved with an extended similarity calculation. In fact, that are two
similarity values S1 and S2 and only if both of them are equal to or greater than a certain
similarity threshold, are the two clusters deemed to be the same spatial-temporal cluster.
Equation 3.2 shows how S1 and S2 are calculated for sets. A discussion using the examples
of Figure 3.4 follows.

Let A and B be two sets. The new similarity values S1 and S2 are calculated as
Equation 3.2 shows, where | · | counts the number of objects in a set.

S1(A,B) =
|A ∩B|
|A|

and S2(A,B) =
|A ∩ B|
|B|

(3.2)

Consider again the situation presented on the left-hand side of Figure 3.4. The new
similarity values are S1 = S2 ≈ 0.83. Since both S1 and S2 are greater than the assumed
similarity threshold of 0.7, the clusters are deemed to be the same spatial-temporal cluster
by the approach.

S1(c1,tj , cα,tj+1
) =

|c1,tj ∩ cα,tj+1
|

|c1,tj |
=

5

6
≈ 0.83 and

S2(c1,tj , cα,tj+1
) =

|c1,tj ∩ cα,tj+1
|

|cα,tj+1
|

=
5

6
≈ 0.83

Now consider the situation presented on the right-hand side of Figure 3.4. The new
similarity values are S1 = S2 = 0.8. Since both S1 and S2 are greater than the assumed
similarity threshold of 0.7, the clusters are deemed to be the same spatial-temporal cluster
by the approach. Notice that the new similarity metric is more stable than the Jaccard
similarity for smaller values. A small change in the number of spatial-temporal objects in
the cluster did not perturb the final similarity values significantly.

S1(c1,tj , cα,tj+1
) =

|c1,tj ∩ cα,tj+1
|

|c1,tj |
=

4

5
= 0.8 and

S2(c1,tj , cα,tj+1
) =

|c1,tj ∩ cα,tj+1
|

|cα,tj+1
|

=
4

5
= 0.8

As a final example and to see how the Jaccard similarity and the new similarity met-
ric differs, consider the situation illustrated in Figure 3.5. Cluster c1,tj contains spatial-
temporal objects 1 through 6 and is to be compared with cluster cα,tj+1

, which exists one
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Figure 3.5: A situation in which a cluster loses one spatial-temporal object, wins other
two, but Jaccard similarity fails to consider them as the same cluster, and the similarity
values S1 and S2 succeed.

timestamp later and contains spatial-temporal objects 2 through 8, to check if they are
the same spatial-temporal cluster. The Jaccard and the S1 and S2 similarity values are
calculated below.

J(c1,tj , cα,tj+1
) =

|c1,tj ∩ cα,tj+1
|

|c1,tj ∪ cα,tj+1
|
=

5

8
= 0.625

S1(c1,tj , cα,tj+1
) =

|c1,tj ∩ cα,tj+1
|

|c1,tj |
=

5

6
≈ 0.83 and

S2(c1,tj , cα,tj+1
) =

|c1,tj ∩ cα,tj+1
|

|cα,tj+1
|

=
5

7
≈ 0.71

These results show that, assuming a similarity threshold of 0.7, using Jaccard similarity,
the clusters are deemed different spatial-temporal clusters. The conclusion is different if the
proposed similarity value is used. Both S1 and S2 are greater than the assumed similarity
threshold of 0.7, and therefore clusters are deemed the same spatial-temporal cluster.

Note that the original cluster c1,tj loses one spatial-temporal object and wins two others.
This indeed is not enough to state that a new cluster has started. Note also that situations
where spatial-temporal clusters lose or win spatial-temporal objects are frequent during
cluster evolution analysis. Therefore, choosing the right similarity value impacts the final
result.

The current method to identify spatial-temporal cluster relationships takes into con-
sideration only the membership of a data point to a cluster. This means that the method
checks only whether a data point belongs or not to a cluster. A more advanced method
to identify spatial-temporal cluster relationships take into consideration the type of data
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points: core points, border points, or noise points. This impacts the Jaccard-based simi-
larity calculation as well as the similarity threshold. Although this method is not the one
used in the solution, further investigations are encouraged so that new relationships can
be identified.

Once the structures of spatial-temporal clusters are built, that is the several parts of the
clusters are identified and linked, the approach can then start to identify the relationships
these clusters have with spatial-temporal objects and other spatial-temporal clusters. This
is explained in the next section.

3.2.2 Relationships

This section discusses the representation of spatial-temporal cluster relationships. It starts
with an explanation of what these relationships are, then it describes the rules used to
identify these relationships, and ends with the 14 relationships that the approach can
identify.

Spatial-Temporal Cluster Relationships

Spatial-temporal cluster relationships are the interactions spatial-temporal clusters have
with other clusters or spatial-temporal objects. For example, if a spatial-temporal object
leaves a spatial-temporal cluster, a relationship takes place. Similarly, if a spatial-temporal
cluster leaves another cluster, another relationship takes place. For a visual illustration,
consider the situation described in Figure 3.6. The figure shows two spatial-temporal
clusters c1 and c2 approaching each other during the first two timestamps. But the figure
shows only one cluster during timestamp t3. The reason is that from timestamp t2 to
timestamp t3, spatial-temporal clusters c1 and c2 merged to form c3. Figure 3.6 shows a
MERGE relationship.

Identifying and representing spatial-temporal cluster relationships is challenging be-
cause they happen between timestamps, where cluster structure properties such as the
number of contained spatial-temporal objects change. Another reason for why this task is
challenging is the similarity between these relationships. As an example, consider again
the MERGE relationship shown in Figure 3.6. Another interpretation of this relationship
is that cluster c2 entered cluster c1, producing another spatial-temporal relationship called
C_ENTER. This highlights the need for clear rules that differentiate spatial-temporal
cluster relationships.
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Figure 3.6: A MERGE spatial-temporal cluster relationship.

The proposed approach uses rules, similar to first-order logic rules, to describe the
conditions necessary for a spatial-temporal cluster relationship to be identified and repre-
sented. The rules are described in the form of one or more statements, all of which need to
be true for a spatial-temporal cluster relationship to be present. Spatial-temporal clusters,
like ci are assumed to be sets of spatial-temporal objects.

As an example, consider the rules to identify and represent a MERGE relationship.
A visual representation is presented in Figure 3.7a. A cluster ci undergoes a MERGE
relationship from timestamp tj−1 to timestamp tj if

• ci,tj−1
= ∅;

• ci,tj ̸= ∅;
• there exists at least two clusters ck,tj−1

and cℓ,tj−1
, k ̸= i, ℓ ̸= i, such that |ci,tj ∩

ck,tj−1
| ≥ min_cluster and |ci,tj ∩ cℓ,tj−1

| ≥ min_cluster.

The two first conditions simply assert that ci does not exist at timestamp tj−1 and
exists at timestamp tj. The third condition has two parts. It first asserts that ck and cℓ
are different from ci based on the similarity metric described in the previous subsection,
and it also asserts that clusters ck and cℓ share a minimum number of spatial-temporal
objects with ci. This minimum number is min_cluster, described in subsection 3.2.1 as one
parameter for DBSCAN. This is done to verify that the clusters are indeed participating
in a relationship.
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(a) The MERGE relationship.

ci,tj−1

ck,tj−1

ci,tj

(b) The C_ENTER relationship.

Figure 3.7: A visual representation of spatial-temporal relationships MERGE and
C_ENTER.

For comparison purposes, consider the rules to identify and represent a C_ENTER
relationship. A visual representation is presented in Figure 3.7b. A cluster ci undergoes a
C_ENTER relationship from timestamp tj−1 to timestamp tj if

• ci,tj−1
̸= ∅;

• ci,tj ̸= ∅;
• there exists a cluster ck,tj−1

, k ̸= i, such that |ci,tj ∩ ck,tj−1
| ≥ min_cluster;

• ck,tj = ∅.

The two first conditions simply assert that ci exists at timestamps tj−1 and tj. This
is somewhat different from the representation of a MERGE relationship that required a
cluster to exist only in timestamp tj. The third condition also has two parts. It first
asserts that ck is different from ci based on the similarity metric described in the previous
subsection, and it also asserts that the cluster ck shares a minimum number of spatial-
temporal objects with ci. A fourth condition asserts that cluster ck does not exist in
timestamp tj.

Note the importance of the similarity function in the identification of relationships. One
major difference between the MERGE and the C_ENTER relationships is the similarity
of cluster ci,tj with the clusters in the previous timestamp. If the approach, based on the
similarity value, deems that ci,tj is the same spatial-temporal cluster than one of the clus-
ters in the previous timestamp, then the approach identifies and represents a C_ENTER
relationship because cluster ci already existed. Conversely, if the approach, based on the
similarity value, deems that ci,tj is not the same spatial-temporal cluster than any of the
clusters in the previous timestamp, then the approach identifies and represents a MERGE
relationship because ci just started to exist.
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The previous discussion compared the rules to identify and represent two spatial-
temporal cluster relationships. They were chosen because of their similarity. However,
there are more relationships and therefore more rules. A full list of rules for spatial-
temporal cluster relationships can be found in [106] and is also available in Appendix A.

The proposed approach identifies and represents 14 spatial-temporal cluster relation-
ships. Table 3.1 contains all relationships with a small description about each one. One
important consideration is that these relationships are used to build a spatial-temporal
cluster lifetime. Therefore, a relationship such as C_ENTER must be recorded in the
cluster lifetime of both participating clusters. However, the approach differentiates the
relationship being recorded based on the perspective of the cluster from which it is being
described. For instance, suppose cluster c2 enters cluster c1. Recording the relationship
C_ENTER on both cluster lifetimes will lead to ambiguous interpretations about which
cluster entered which. Instead, the approach records C_ENTER and JOIN based on how
the relationship took place.

The literature contains the description of a MOVE relationship [124]. This relationship
describes the event where a cluster changes one of its properties. For example, if the
location of a cluster changes from one timestamp to another, a MOVE relationship takes
place. The proposed approach does not consider the MOVE relationship for two reasons.
The first reason is the lack of interaction between a spatial-temporal cluster and another
cluster or object. The second reason is the large number of relationships created, since it is
expected that one MOVE relationship happens between each pair of timestamps. If cluster
properties, such as location, are to be analyzed, they can be accessed directly instead of
using a relationship for it.

3.2.3 Graph

This section discusses the graph-based representation of spatial-temporal cluster evolution.
It starts with a discussion about the types of graphs and how clusters and relationships
can be represented in such structure. The section ends with some details about how the
conversion between formats can be addressed.

Graph Transformation

A graph-based representation of cluster evolution is one in which spatial-temporal clus-
ters are represented from their start to their end and have their relationships connecting
them at suitable timestamps. An example is shown in Figure 3.8. If the spatial-temporal
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Table 3.1: The 14 spatial-temporal cluster relationships identified and represented by the
proposed approach.

Relationship Description
START The spatial-temporal cluster begins to exist.
END The spatial-temporal cluster ceases to exist.
GROUP A number of spatial-temporal objects assemble to form a spatial-temporal

cluster.
DISPERSE A spatial-temporal cluster disassembles in a number of spatial-temporal

objects.
T_ENTER The spatial-temporal cluster accepts a spatial-temporal object.
T_LEAVE The spatial-temporal cluster releases a spatial-temporal object.
C_ENTER The spatial-temporal cluster accepts a cluster. This relationship is writ-

ten from the perspective of the receiving cluster.
C_LEAVE The spatial-temporal cluster releases the cluster. This relationship is

written from the perspective of the expelling cluster.
JOIN The spatial-temporal cluster enters a cluster. This relationship is written

from the perspective of the incoming cluster.
DETACH The spatial-temporal cluster leaves a cluster. This relationship is written

from the perspective of the outgoing cluster.
MERGE Two or more spatial-temporal clusters assemble to form a cluster.
SPLIT A spatial-temporal cluster divides into two or more clusters.
C_IN Two spatial-temporal clusters transfer a considerable number of spatial-

temporal objects, enough to form a cluster, but quick enough for this
cluster to not exist. This relationship is written from the perspective of
the receiving cluster.

C_OUT Two spatial-temporal clusters transfer a considerable number of spatial-
temporal objects, enough to form a cluster, but quick enough for this
cluster to not exist. This relationship is written from the perspective of
the expelling cluster.
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Figure 3.8: The connected, graph-based representation of spatial-temporal cluster evolu-
tion.

cluster c1 undergoes a SPLIT relationship, forming spatial-temporal clusters c2 and c3, the
graph-based representation shows the beginning of cluster c1, the SPLIT relationship as a
connection between cluster c1 and clusters c2 and c3, which is also the end of cluster c1,
and finally the end of clusters c2 and c3. Notice that the representation of the structure
and the relationships of spatial-temporal clusters are now connected. The structure chosen
for this connected representation is a graph.

A graph is a mathematical structure that represents the connection between objects
[31]. Formally, a graph is a pair G = (V,E) where V is a set of vertices and E is a set of
paired vertices, called edges. Graphs can be undirected or directed. In undirected graphs,
edges do not have a direction and are represented by lines. In directed graphs, edges do
have a direction and are presented by arrows. A cycle in a graph is a sequence of vertices
connected by edges such that only the first and the last vertices repeat. In some graphs, a
vertex has a connection with itself, which creates an edge that starts and ends on the same
vertex. This is called a loop. Loops are cycles, but not all cycles are loops. A Directed
Acyclic Graph (DAG) is a graph whose edges are directed and does not contain a cycle.
DAGs are important and useful in the representation and organization of flows.

To have a graph-based representation of cluster evolution, the approach uses a directed
graph that can include loops. This graph is directed because it represents cluster evolution
in time, which creates a temporal order between vertices. It sometimes includes loops
because of limitations on the representation of several spatial-temporal cluster relation-
ships between timestamps. The graph used to represent spatial-temporal cluster evolution
includes loops and, for that reason, is not a DAG.

One note about the terminology. Graph vertices are also called nodes. Since this is
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a valid term, and this is the term used by the graph platform used in this approach, the
description that follows also uses the term nodes to refer to graph vertices.

The approach has the task of turning spatial-temporal cluster lifetimes into a graph
format, that is reading a list of spatial-temporal cluster relationship for each cluster, pro-
cessing these many lists, and producing a set of nodes and edges. The process has two main
foci, one for nodes and one for edges. When a spatial-temporal cluster lifetime is ready to
be processed, each relationship is inspected for nodes and edges, such inspection may gen-
erate nodes, edges, or both. For example, the spatial-temporal relationship T_ENTER,
when inspected for nodes, generates two nodes, one for the previous timestamp and one
for the current timestamp. The structure of the cluster changes because the cluster has
a new spatial-temporal object. This is reflected on these nodes. The same relationship,
T_ENTER, when inspected for edges, generates one edge, connecting the nodes for this
cluster in the previous and current timestamps.

The example just discussed illustrates the process of transforming one spatial-temporal
relationship into a set of nodes and edges for a graph-based cluster evolution. The approach
can transform all of the fourteen spatial-temporal relationships described in subsection
3.2.2, including more complex relationships such as MERGE and SPLIT that involve at
least three clusters. When spatial-temporal clusters are represented, including their struc-
ture and relationships, and a graph-based representation is constructed, the approach turns
to the analysis of spatial-temporal cluster evolution. This is detailed in the next section.

3.3 Analysis

This section describes analysis methods that can be used on the structure of clusters or on
their relationships to produce novel results. This section also describes analysis methods
for a graph-based representation of cluster evolution. Analyses on the representation are
at the core of the approach described here.

3.3.1 Structure

The analysis of the structure of spatial-temporal clusters is based on the changes to the
clusters over time. The analysis is on a single cluster, from start to end, and cluster
relationships are not considered.

Changes to the structure of spatial-temporal clusters are usually related to their size or
location. For example, an increase or decrease of the number of spatial-temporal objects
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Figure 3.9: Analysis on a spatial-temporal cluster that has its structure changed with time.

contained in the cluster, the cluster size, are changes to the structure of the cluster. In
addition, alterations to the location of the cluster, based on latitude and longitude coor-
dinates, because of its movement are also changes to the structure of the spatial-temporal
cluster.

These changes happen from one timestamp to another and are relatively easy to detect.
However, analyzing long-term changes that span several timestamps is more challenging,
but more valuable.

Describing an extensive list of analysis methods is not the goal of this subsection,
but it includes some possible options. Examples of analysis methods for the structure of
spatial-temporal clusters include the detection of growing or decaying temporal regions, the
calculation of a growth or decay factors, and inferences about the movement of a cluster,
such as its direction or time of the day.

For instance, consider a cluster c1 that has its number of contained spatial-temporal
objects, or size, changed with time according to Figure 3.9. Notice that the figure shows
a spatial-temporal cluster throughout several timestamps having its number of contained
spatial-temporal objects changed. In addition, notice that its size is shown in the middle of
the cluster. Analysis of the structure of the spatial-temporal cluster based on its size can
identify a temporal region of growth and a temporal region of decay of spatial-temporal
objects. The growth temporal region starts at timestamp t3 and ends at timestamp t6 and
the decay temporal region starts at timestamp t6 and ends at timestamp t8, as illustrated
in Figure 3.9. Depending on the interpretation of the analysis method, growth and decay
temporal regions can admit some small decreases or increases inside the region. A growth
or decay parameter can also be calculated based on the size of the cluster at its start
and end. Figure 3.9 shows the value of these parameters for the regions identified in the
example.

3.3.2 Relationships

The analysis of the relationships of spatial-temporal clusters is based on the occurrences of
the relationships with time. The analysis is focused on a single cluster, from start to end,
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Figure 3.10: Two spatial-temporal clusters can be compared for similarity based on their
spatial-temporal cluster relationships.

although conclusions of the analysis of some relationships, such as C_ENTER or MERGE,
may involve other spatial-temporal clusters.

The occurrences of spatial-temporal cluster relationships can be analyzed individually
and are relatively simple, but analyzing these occurrences based on time is what gener-
ates novel results. An even more valuable analysis happens when individual results are
compared.

Describing an extensive list of analysis methods is not the goal of this subsection, but
it includes some possible options. Examples of analysis methods for the relationships of
spatial-temporal clusters include the identification of the starting or ending relationship,
the frequency of certain relationships during cluster existence, and the similarity of clusters
based on their relationships.

For instance, consider Figure 3.10. The figure shows two spatial-temporal clusters c1
and c2 and the relationships they have in time. The other clusters that participate in
these relationships are not shown as the analysis methods are concerned with just the
relationships. Notice that, for each cluster, the relationships can be represented as an
ordered list, or sequence, similar to a spatial-temporal cluster lifetime. There are several
analysis methods for the comparison of sequences [97]. Most of these methods are based
on an edit distance [97], which calculates how similar strings are, based on their letters.
One such analysis method is the Wagner-Fischer algorithm [97].

3.3.3 Graph

The analysis of a graph-based representation of spatial-temporal cluster evolution is based
on the structure and relationships of spatial-temporal clusters and their representation in
a graph. The analysis is focused on several clusters, from start to end.

Spatial-temporal clusters move based on the movement of the spatial-temporal objects
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contained in the clusters. These objects move freely and are not limited by the boundaries
of the spatial-temporal cluster. As a consequence, at some point in time, spatial-temporal
objects may decide to enter or leave a cluster, or migrate to a new cluster. These decisions
create spatial-temporal cluster relationships. Spatial-temporal cluster relationships are
somewhat bound by the cluster relationship in which they take part. For example, a SPLIT
relationship binds, or connects, the original clusters with the two or more new clusters.
These connections can be represented in a graph, creating a connected representation for
graph-based cluster evolution.

Analysis of this graph extends the analysis described in the previous subsections 3.3.1
and 3.3.2, in which only a single spatial-temporal cluster evolution is considered. Therefore,
if a spatial-temporal cluster c1 SPLITs into clusters c2 and c3, the analysis starts at c1 and
continues with data about c2 or c3. Evidently, if a spatial-temporal cluster does not have
cluster relationships with any other cluster, then the analysis is limited to only this cluster.

Analysis on the graph-based representation of spatial-temporal cluster evolution can be
done considering a graph path, a tree, or a subgraph. In graph theory, a path is a sequence
of vertices in a graph such that every two consecutive vertices are connected by an edge,
vertices are distinct, and edges are distinct. Some authors do not require that all vertices
of a path be distinct. Furthermore, a directed path is a path where all edges have the same
direction. Given these definitions, analysis on the graph-based representation of spatial-
temporal cluster evolution considers a graph directed path, which, simply put, is a path
from a vertex to another. In the context of spatial-temporal clusters, a graph directed path
is a path of nodes from the occurrence of a cluster during a timestamp to the occurrence
of a cluster during another timestamp, or a path from ci,tj to ck,tj+m, m > 0, without
restrictions on i or j. Consider the situation illustrated in Figure 3.11. The figure shows
two spatial-temporal clusters c1 and c2 that merge, forming the spatial-temporal cluster
c3. Cluster c3 then splits, creating spatial-temporal clusters c4, c5, and c6. A path from c1
to c6 is (c1,t1 , c1,t2 , c3,t3 , c3,t4 , c6,t5 , c6,t6). The term path is borrowed from graph theory and
is used in the graph-based cluster evolution as a spatial-temporal cluster evolution path,
a cluster evolution path, or simply a path. Note, however, that not every graph directed
path is a cluster evolution path, as some conditions must be met. The conditions assert
that the first and last clusters in a cluster evolution path are truly starting and ending
clusters. The conditions are:

i) if ci,tj is the start of a cluster evolution path, there should not be a cluster ck,tj−1

with a relationship with ci, tj; and

ii) if ci,tj is the end of a cluster evolution path, there should not be a cluster ck,tj+1
with

which ci,tj has a relationship with.

57



T_ENTER

T_ENTER

MERGE

MERGE
T_ENTER

SPLIT

SPLIT

SPLIT

T_LEAVE

T_LEAVE

T_LEAVE

c1

c2
c3

c4

c5

c6

t1 t2 t3 t4 t5 t6

Figure 3.11: A graph-based representation of the evolution of three clusters. A path, a
tree, and a subgraph are shown.

Under these definitions, the directed graph path (c1,t1 , c1,t2 , c3,t3 , c3,t4 , c6,t5 , c6,t6) is a cluster
evolution path but the graph directed path (c1,t2 , c3,t3 , c3,t4 , c6,t5) is not.

Analysis on the graph-based representation of spatial-temporal cluster evolution also
considers a tree. In graph theory, a tree is an undirected graph in which any two vertices
are connected by a single path. Furthermore, a polytree, or directed tree is a tree in which
edges have directions. In the context of spatial-temporal clusters, analysis happens in a
structure similar to a tree, in which it has a clear starting point, and several end points.
Consider, again, the situation illustrated in Figure 3.11. A tree can be found from the
start of the spatial-temporal cluster c3 to the end of the spatial-temporal clusters c4, c5,
and c6. Trees usually refer to future relationships.

Analysis on the graph-based representation of spatial-temporal cluster evolution also
considers a subgraph. In graph theory, a subgraph S of a graph G is a graph whose set of
vertices is a subset of the set of vertices of G and whose set of edges is a subset of the set
of edges of G. In the context of spatial-temporal clusters, analysis happens in a structure
that is not similar to a tree or a path, having several starting points and one or many end
points. Consider, one more time, Figure 3.11. A subtree can be found from the start of the
spatial-temporal clusters c1 and c2 to the end of the spatial-temporal cluster c3. Another
subgraph considers the entire graph. Usually, subgraphs refer to relationships of the past,
but they can also refer to situations in which several staring points and end points exist.

Describing an extensive list of analysis methods for the graph-based representation
of spatial-temporal cluster evolution is the goal of this subsection, but it includes some
possible options. Examples of analysis methods include the identification of points of
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Figure 3.12: A map with the movement of spatial-temporal clusters. Demand is high at a
specific location.

interest, the identification of peaks of growth or decay during spatial-temporal cluster
evolution, the distribution of movement of spatial-temporal clusters based on the paths
and the cardinal points or the time of the day, and the analysis of offer or demand of
spatial-temporal services at specific locations.

For instance, consider the situation illustrated in Figure 3.12. The figure shows the
movement of spatial-temporal clusters c1, c2, and c3. The figure is a bit different from
previous ones because it does not show the timestamps for the time of the movement, but
this can be understood based on the occurrences of the cluster on each node of the graph. If
the task at hand is to identify regions of high-demand of spatial-temporal services, such as
taxis, it is reasonable to expect that these regions attract more and more spatial-temporal
objects. An analysis method then can observe the movement of groups of spatial-temporal
clusters by querying data about the direction of movement of clusters and identify these
regions. Notice that, since regions of high-demand attract more spatial-temporal objects, it
is likely that regions turn into new, large, spatial-temporal clusters that receive many other
clusters. An analysis method can use this information and identify regions of high demand
of spatial-temporal services by querying the graph about clusters with rapid growth. Lastly,
it is expected that several cluster relationships of the type C_ENTER or MERGE happen
next to regions of high demand. An analysis method can then use this information and
identify regions of high demand of spatial-temporal services based on the density of these
spatial-temporal cluster relationships.

The analysis of either the structure or the relationships of spatial-temporal clusters
or the analysis of a graph-based representation of spatial-temporal cluster evolution is
possible with the implementation tools, or the software support, that underlines it. The
next section details these tools, or this support, for the representation and analysis of
graph-based cluster evolution.
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3.4 Implementation

This section describes the implementation tools that are developed and used in the pro-
posed approach. The section also describes existing implementation tools that, together
with the developed tools, contribute to graph-based cluster evolution. The discussion is
divided into the representation and the analysis of spatial-temporal data and follows the
steps that spatial-temporal data take from its raw format, through transformations and
manipulations that create different representations, to its analysis and the extraction of
its value. The repository containing the source code of the proposed approach is available
at https://git.uwaterloo.ca/ivens/phd.

Figure 3.13 guides the discussion and shows the internal steps that data goes through.
The figure has four main steps: “Preprocess”, “Process”, “Graph Transformation”, and
“Graph Processing”, which are detailed in this section. The figure also shows the imple-
mentation tools used in each step to provide the software support for graph-based cluster
evolution.

In Figure 3.13, a dataset of raw spatial-temporal data available for analysis is repre-
sented by the repository named “Raw Data”. From a general perspective, there is only
one internal repository for data, represented by the repository named “Internal Storage”.
Figure 3.13 includes entities for perspectives for analysis methods named “Graph Visual-
ization”, “Structure”, “Relationship”, and “Graph” and “Others” as the approach allows
for these tasks to be implemented and performed. Each of the four main steps are detailed
in the next subsections.

3.4.1 Representation

In the proposed approach, spatial-temporal data assumes different representations. It
starts with the raw format and then is preprocessed to prepare for manipulation. Data
is then processed and the structure of spatial-temporal clusters are identified as well as
their spatial-temporal relationships. A spatial-temporal cluster lifetime is built. Lastly,
the cluster lifetime is converted to a graph format so that a connected, graph-based repre-
sentation can be constructed and used for analysis. The steps of this process are described
in Figure 3.13 and in the next paragraphs.

The first step is “Preprocess”, which is responsible for preprocessing spatial-temporal
data. Spatial-temporal data can be described in many ways. For example, for the spatial
dimension of data, latitude and longitude can be expressed in degrees, minutes, and sec-
onds, such as 43◦28'22.0''N 80◦32'32.0''W, or in decimal degrees, such as 80.542222,

60

https://git.uwaterloo.ca/ivens/phd


Raw
ST data

Internal Storage

Preprocess Process Graph
Transformation

Graph
Processing

Graph
Visualization

Structure

Relationship

Graph

Others

Preprocessed
Data

Cluster
Lifetimes Graph

• ciso8601
• scikit-learn
• Haversine formula
• Python

• Python • Neo4j
• Cypher
• QGIS
• OSM

Figure 3.13: The implementation and tools used in the proposed approach and the process
that spatial-temporal data goes through from its original representation to analysis and
value extraction.

43.472778. The temporal dimension of data can be described in several different formats,
including the difference between the representation of dates, dd/mm/yyyy or mm/dd/yyyy,
the local time zone or the conversion to the Coordinated Universal Time (UTC), and the
inclusion of the day of the week. In addition to this, spatial-temporal data can be described
in either regular intervals, such as every minute, or irregular intervals. Because of the many
ways spatial-temporal data can be described, in the “Preprocess” step, data coming from
the “Raw Data” dataset is preprocessed such that it follows the format degrees, minutes,
and seconds for the spatial dimension and the format dd-mm-yyyy hh:mm:ss in either the
local or the UTC time zone for the temporal dimension. No treatment on the regularity
of data is given in this step as it is left for the next step. The resulting preprocessed
spatial-temporal data is stored in the internal storage.

The second step is “Process”, which is responsible for identifying spatial-temporal clus-
ters and spatial-temporal cluster relationships. To query spatial-temporal data, it must
be noted that the data is divided into timestamps. These timestamps can be regular,
such as one measurement per minute, or irregular. Spatial-temporal data available to the
approach is queried at regular intervals. If the time the query is seeking does not match
with the time in the timestamp, the most recent timestamp is used, provided that it is not
obsolete, i.e., it has not been processed already. This condition is necessary because the
approach may query data at a regular interval that is smaller than the regular interval of
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the actual data, for instance seeking timestamps for each minute when timestamps in data
have intervals of 5 minutes. The choice of a regular interval to query data is important
and the impact on the representation and analysis, its sensitivity, is dependent on the data
available and the domain. For example, data produced by GPS devices in vehicles may
have a 1-minute regular interval. A vehicle may enter, remain a few minutes, and leave
a cluster of cars stopped at a traffic light in less than 3 minutes. In that case, choosing
a query regular interval of 5 minutes makes some interactions to go unnoticed. Analysis
on racing cars is different, since data is available at a smaller regular interval and clusters
relationships happen constantly. A GPS device on a vessel crossing an ocean may produce
spatial-temporal data at every minute, but cluster relationships in this domain take longer
to happen because of the slow movement of vessels. In that case, the choice of a query
regular interval of 10 minutes or more may not have significant impacts in the analysis
results. Note that there is a difference between the timestamp in the spatial-temporal
data and the regular interval the approach uses to query the data, which is also called
a timestamp. To simplify the terminology, the remaining of this section uses the term
timestamp to refer to the internal regular interval the approach uses to query data. The
Python library ciso860112 is used for high-performance time manipulation in this task.

To identify spatial-temporal clusters, spatial-temporal data is queried at each regular
interval, or timestamp, a clustering technique is executed on the spatial-temporal data
retrieved, producing results per timestamp. A precise description of how it is done in the
proposed approach is found in Section 3.2.1. Once the clustering technique has identified
clusters at each timestamp, the approach links clusters that exist on a particular timestamp
tj with clusters that exist on the timestamp tj+1 based on the similarity of clusters. This
results in the actual identification of spatial-temporal clusters. A precise description of
how the similarity is calculated and the spatial-temporal cluster identification is done is
found in Section 3.2.1. The Python library scikit-learn345 for ML in Python provides the
implementation of DBSCAN for clustering spatial-temporal data retrieved for a specific
timestamp. The same library provides the implementation of the Haversine formula [30,
128] for distance measurements on the surface of the Earth, whose results are used by
DBSCAN to calculate similarities and perform clustering tasks.

Given that parts of spatial-temporal clusters are identified, the approach can examine
their interactions and identify spatial-temporal cluster relationships. This identification

1https://pypi.org/project/ciso8601/
2https://github.com/closeio/ciso8601
3https://scikit-learn.org
4https://pypi.org/project/scikit-learn/
5https://github.com/scikit-learn/scikit-learn
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is based on rules about the number of participants of each cluster in consecutive times-
tamps. The proposed approach can identify 14 different types of spatial-temporal cluster
relationships. A precise description of how it is done is found in Section 3.2.2. In the
end, each spatial-temporal cluster can be represented by a set of spatial-temporal cluster
relationships it has from its start to its end. This is the spatial-temporal cluster lifetime
of a cluster.

In fact, a spatial-temporal cluster lifetime contains more important information about
the relationships of spatial-temporal clusters, such as the location and time it happened,
the spatial-temporal objects that entered or left the cluster, and the other spatial-temporal
clusters included in the relationship, either because of merging, splitting, having a cluster
entering, or leaving. Spatial-temporal lifetimes are represented in simple text format and
are human-readable. Listing 3.1 shows one such spatial-temporal cluster lifetime. The
listing shows the lifetime of a spatial-temporal cluster c1. This is the reason why every line
in Listing 3.1 ends in 1. Note that each line starts with the date, the time, and the location,
represented by its latitude and longitude coordinates, of the moment when or place where
each spatial-temporal cluster relationship happened. Each line also contains the name of
the relationship followed by a pair of parentheses. The content between the parentheses
is based on the relationship. If the relationship is a T_ENTER, which is when a spatial-
temporal object enters the cluster, then the content between the parentheses identifies the
spatial-temporal object, followed by a zero, to indicate that the spatial-temporal object
did not come from any other cluster, followed by the identification of the cluster. If the
relationship is a C_ENTER, which is when a cluster receives another cluster, then the
content between the parentheses identifies the spatial-temporal objects that entered the
cluster with a notation using square brackets, followed by the identification of the entering
spatial-temporal cluster, followed by the identification of the receiving spatial-temporal
cluster. In Listing 3.1, cluster c1 started with the grouping of spatial temporal objects
100, 101, 102, and 103. A minute later, spatial-temporal object 108 also enters the cluster.
Notice that at 14:03:00 two spatial-temporal objects, namely 109 and 110, enter the cluster
at the same time. Then spatial-temporal object 103 leaves the cluster. At 14:05:00, cluster
c2, containing spatial-temporal objects 155, 156, and 157, enters cluster c1. This is followed
by the spatial-temporal objects 108, 109, and 110, leaving the cluster at the same time
and forming a new spatial-temporal cluster c3. Cluster c1 ends its existence with a SPLIT
relationship, creating spatial-temporal clusters c4 and c5.

Each spatial-temporal cluster has its own cluster lifetime, which is stored in the internal
storage. These files contain important information about the existence of all clusters and
are the starting point for an improved representation. Because of this, they are then passed
on to the next step.
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Listing 3.1: Spatial-temporal cluster lifetime of a given spatial-temporal cluster.

2023-07-24 14:00:00 043.473026 -080.541530 start(1)
2023-07-24 14:00:00 043.473026 -080.541530 group([100, 101, 102, 103], 1)
2023-07-24 14:01:00 043.472454 -080.540848 t_enter(108, 0, 1)
2023-07-24 14:03:00 043.468978 -080.539810 t_enter(109, 0, 1)
2023-07-24 14:03:00 043.468978 -080.539810 t_enter(110, 0, 1)
2023-07-24 14:04:00 043.468129 -080.540369 t_leave(103, 0, 1)
2023-07-24 14:05:00 043.466825 -080.540998 c_enter([155, 156, 157], 2, 1)
2023-07-24 14:06:00 043.467371 -080.543486 c_leave([108, 109, 110], 3, 1)
2023-07-24 14:08:00 043.470352 -080.544379 split([100, 101, 102], 4, 1)
2023-07-24 14:08:00 043.470352 -080.544379 split([155, 156, 157], 5, 1)
2023-07-24 14:08:00 043.470352 -080.544379 end(1)

The third step is “Graph Transformation”, which is responsible for converting spatial-
temporal cluster lifetimes to a graph format. This graph is used for a connected repre-
sentation of cluster evolution. A graph is represented by its vertices, also called nodes,
and edges. The proposed approach represents the structure of spatial-temporal clusters in
a graph format by a sequence of nodes, each one for the timestamps in which the clus-
ter has a spatial-temporal relationship. The information for this is extracted from the
spatial-temporal cluster lifetime, which contains the time, location, and the relationship
of a spatial-temporal cluster stored in each line. Therefore, the proposed approach starts
the transformation by reading each cluster lifetime file and writing specific information in
the lines of a file for nodes. The information extracted is the identification of the cluster,
the date, time, location, represented by the latitude and longitude coordinates, of spatial-
temporal clusters at each occurrence of a relationship. The information extracted also
includes the number of spatial-temporal objects that the cluster has when the relationship
happens, which is its size, and the identification of such spatial-temporal objects. Note
that, since spatial-temporal relationships are identified between two consecutive times-
tamps, the approach creates two nodes, one with information about the spatial-temporal
cluster before the relationship happens and another node with information about the clus-
ter after the relationship happens.

The proposed approach represents the relationships of spatial-temporal clusters in a
graph format by edges connecting nodes. These edges may connect nodes related to
the same spatial-temporal cluster, such as when the relationship is a T_ENTER or a
T_LEAVE, or they may connect nodes related to different spatial-temporal clusters, such
as when the relationship is a C_ENTER or a C_LEAVE. The information for this is ex-
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tracted from the spatial-temporal cluster lifetime, which contains the time, location, and
the relationships of a spatial-temporal cluster stored in each line. Therefore, the proposed
approach ends the transformation by reading each cluster lifetime file and writing specific
information in the lines of a file for edges. The information extracted is the identification
of the cluster at the start and end of the edge, the date and time at the start and end
of the edge, the name of the spatial-temporal cluster relationship, and the identification
of the spatial-temporal objects that relate to the relationship. Note that, for performance
optimization, spatial-temporal cluster lifetime files are read only once, and therefore nodes
and edges are created at the same time. For this reason, sometimes, edges refer to spatial-
temporal clusters whose lifetime file is read later.

The information for the nodes and edges of a graph are stored in comma separated
value (.csv) files. Once the transformation process ends, the structure of spatial-temporal
clusters, their relationships, and therefore their evolution can be represented in a graph
format. The files for nodes and edges are then imported into Neo4j, a graph data platform,
for a complete and graph-based representation of spatial-temporal cluster evolution.

3.4.2 Analysis

In the proposed approach, spatial-temporal data is analyzed after it is converted to a graph
format. The graph contains the evolution of all spatial-temporal clusters. This is the last
of the four main steps in Figure 3.13. The simplest analysis that can be performed is a
visualization of the data, but improved analysis methods can also be performed on the
structure or the relationships of spatial-temporal clusters, or on the graph-based repre-
sentation of spatial-temporal cluster evolution. The proposed approach also enables other
analysis methods, for example ML analysis methods, to be created and performed on the
available data.

The fourth step is “Graph Processing”, which is responsible for providing analysis
methods and support for the graph-based representation of cluster evolution. An important
step in any analysis task is the visualization of data. When visualizing data, similarities,
differences, or patterns can be more easily identified or understood. The proposed approach
provides a visualization of the nodes and edges of the graph. The nodes and edges can refer
to the evolution of a single cluster, or the evolution of several spatial-temporal clusters that
have relationships. Graph data visualization happens in Neo4j after spatial-temporal data
in a graph format has been imported.

Analysis on the graph containing the spatial-temporal cluster evolution happens on the
structure of a spatial-temporal cluster, the spatial-temporal relationships that these clus-
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ters have, on the entire connected, graph-based representation of spatial-temporal cluster
evolution. Analysis on the structure of clusters relates to the changes in location or in the
number of spatial-temporal objects clusters contain, such as identifying the distance trav-
eled by the spatial-temporal objects that a cluster contains. Analysis on the relationships
of clusters relates to the frequency or density of the occurrence of such relationships, such
as identifying the rate of T_ENTER relationships that happened during the existence of
the cluster. Analysis of the graph-based representation of cluster evolution relates to a
complete examination of the data available, including the calculation of the distribution of
clusters, their movement, and similarity. Because analysis methods are performed in Neo4j,
they are written in Cypher, the graph query-language created for the Neo4j platform.

During analysis, it is often necessary to visualize data in many different perspectives.
A graph visualization is one of these perspectives, but it does not include a geographic map
of the location being studied, and some important information may be missed. For this
reason, the approach includes support for data to be visualized in a Geographic Informa-
tion System (GIS). Any GIS is useful to visualize spatial-temporal data about clusters or
objects. Quantum GIS (QGIS)6 is an open-source GIS that supports the visualization of
spatial-temporal data. In QGIS, an OpenStreetMap (OSM) map can be opened and data
can be imported to be visualized on this map. OSM7 is a collaborative geographic database
that includes a world map. In QGIS, some operations can be performed on spatial-temporal
data, such as changing the size and color of markers, observing the movement of individual
spatial-temporal objects in time, connecting timestamp-specific markers with arrows, or
even making use of a Python console for further processing.

An explanation of the types of analysis that can be performed in the proposed approach
is not extensive because novel methods are created. Figure 3.13 represents the analysis
methods not discussed here with an entity named “Others”. These analysis methods include
those that extend the methods discussed for the structure and relationships of clusters and
the graph-based representation of cluster evolution, but it also includes traditional graph
analysis methods or ML methods, such as the shortest path in a graph or neural network.

There are a number of graph data platforms where the converted spatial-temporal data
can be imported and a graph-based cluster evolution can be analyzed. The list includes
Apache Giraph8, ArangoDB9, and Amazon Neptune10. The choice of Neo4j relates to the
graph-querying language Cypher, which became a standardized query language for graph

6https://www.qgis.org
7https://www.openstreetmap.org
8https://giraph.apache.org
9https://www.arangodb.com

10https://aws.amazon.com/neptune/
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processing together with its open-source implementation openCypher11.
In general, graph data platforms, such as Neo4j, are built to process many nodes or

edges efficiently. However, some optimizations are necessary to make sure that results
are computed in a timely manner. These optimizations are now discussed. First, several
analysis methods look for the beginning and the end of a cluster or a sequence of clusters
in an evolution, called a spatial-temporal path. These nodes are marked with additional
properties called cStart, cEnd, pStart, and pEnd. Second, these properties are indexed.
Database indexes are structures kept by database management systems, usually in the for-
mat of a table, with important values that are frequently retrieved. These indexes enhance
the performance of queries because a search on the table of indexes is much smaller than
a search on the entire database. Therefore, the second optimization stores the cStart,
cEnd, pStart, and pEnd properties in indexes for faster retrieval of nodes. Third, some
restrictions are included to limit the search space when retrieving nodes for analysis. Since
every spatial-temporal cluster has exactly one start node and exactly one end node, the
pairs (clusterId, cStart), (clusterId, cEnd) are unique in the database. A similar situ-
ation happens with cluster evolution paths. Therefore, the pairs (clusterId, pStart) and
(clusterId, pEnd) are unique in the database. One additional restriction relates to the
unique existence of the node of a spatial-temporal cluster for a given timestamp. Simply
put, a spatial-temporal cluster should not happen more than once for each timestamp.
Therefore, the pair (clusterId, timestamp) is unique. Lastly, some edges representing
spatial-temporal cluster relationships are marked. Analysis methods that investigate clus-
ters or cluster evolution paths usually examine a sequence of nodes. However, in some
cases, several edges exist between two nodes. This is to represent a situation in which a
spatial-temporal cluster has several relationships between two timestamps. For example,
a T_ENTER and a T_LEAVE. This means that in a long cluster evolution path, there
could be many ways from its start to end, which greatly impacts the performance of queries.
Since analysis queries are usually interested in the path as a sequence of connected nodes,
and for performance issues, every two nodes have at most one relationship marked with
the property pMain, indicating that methods only need this relationship to connect these
two nodes. Analysis methods that seek to investigate all relationships between two nodes
can do so by not restricting results based on this property.

11https://opencypher.org
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Chapter 4

Case Studies

This chapter contains a description of four case studies used to evaluate the proposed
approach. The case studies are examples of graph-based cluster evolution. In the case
studies, spatial-temporal clusters and their relationships are analyzed and the value of the
results of these analyses is explained. The presented case studies demonstrate how graph-
based spatial-temporal cluster evolution is critical in handling spatial-temporal problems,
such as service supply and demand, traffic and travel flows, human mobility, and city
planning, and how the proposed approach provides the needed support. The chapter
starts with an explanation of the four datasets used in the case studies followed by sections
for each case study.

In each case study, the workflow of the approach is performed, starting with prepro-
cessing the chosen dataset, processing the resulting data, obtaining cluster lifetimes, gen-
erating a graph-based representation of cluster evolution, and finally analyzing the graph.
When processing the data, one parameter (rate) specifies the size of the regular interval
in which data is queried and another (min_shared) specifies the minimum percentage of
spatial-temporal objects for the Jaccard-extended similarity function to identify clusters
in consecutive timestamps. Additionally, DBSCAN uses two parameters for density calcu-
lation, namely ε and min_cluster. In all analysis tasks performed in the case studies, the
regular interval has a size of 1 minute, because the dataset already has a 1-minute interval,
and min_shared = 0.66, following the discussion in Section 3.2.1. DBSCAN parameters
have the values ε = 50 meters and min_cluster = 3. This means that the radius of the
neighborhood of data points is 50 meters. As explained in the next subsections, most of
the data points are vehicles (e.g. taxis and trucks) and 50 meters is a reasonable distance
between vehicles in the same cluster. Other values, such as 100 meters and 25 meters have
been tested, but created strange clusters or excluded important clusters, respectively, from
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the analysis. This also means that the minimum number of data points to start a cluster
is 3. A value of 2 means that two vehicles passing by each other form a cluster, which
is not ideal. Tests with values of 4 or greater showed that some interesting clusters are
not captured. In summary, these values are reached after failed attempts to find interest-
ing phenomena using other values. One exception is analysis tasks that use the T-Drive
dataset because of an irregular measurement interval. In this case, the size of the regular
interval in which data is queried is five minutes.

The feasibility of the automation of the analysis of spatial-temporal clusters in the
solution is assessed through four case studies. The execution of each case study resulted in
the expected outcomes. In the end, analysis and visualization of spatial-temporal cluster
evolution produced results, which are explained in each cases study. Furthermore, as the
analysis of static clusters is demonstrated to be feasible [17, 101, 57], case studies presented
here show the feasibility of the cluster evolution analysis workflow.

To illustrate the complexity of the algorithms used in the case studies, note that typi-
cally the algorithms take less than 300 milliseconds to finish. One notable exception is one
execution during Case Study 3 that takes 16 hours to finish because of the amount of data
available. Parallelism or concurrency is possible, helpful, and is attempted. However, the
algorithm is executed in low concurrency mode, which explains the result. Some optimiza-
tions are discussed in the case studies. When querying a database, a query plan possibly
with many steps is built and executed. In the query plans built for the case studies, most
of the steps use less than 1 kilobyte (KB). Some steps in Case Study 3 use 17 KB and
some steps in Case Study 4 use 59 KB.

4.1 Datasets

This section describes the datasets used in the case studies. Four datasets of spatial-
temporal data are used: the Athens Trucks, the Rome Taxis, the Geolife, and the T-Drive
datasets. All the datasets relate to vehicles moving, such as personal cars, taxis, and trucks.
These datasets vary in size, number of spatial-temporal objects, and time of observation.

4.1.1 The Athens Trucks Dataset

The Athens Trucks dataset1 contains spatial-temporal data about the movement of 50
trucks in Athens, Greece, collected during 33 distinct days. These trucks deliver concrete

1http://chorochronos.datastories.org/?q=node/5
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to several construction sites around the Athens metropolitan area.
The spatial-temporal data about the trucks form 276 trajectories. The representation

of the data is as follows: the spatial dimension, the location of the trucks, is represented
by latitude and longitude coordinates and the temporal dimension is represented by times-
tamps in the local time. Measurements start on August 7, 2002 and end on September 16,
2002. The entire dataset has an uncompressed size of 7.7 megabytes (MB).

4.1.2 The Rome Taxis Dataset

The Rome Taxis dataset2 [16] contains spatial-temporal data about the movement of ap-
proximately 320 taxis in Rome, Italy, collected over 30 days. These taxis serve passengers,
many of whom are tourists, in the center of Rome.

The representation of the spatial-temporal data is as follows: the spatial-dimension, the
location of the taxis, is represented by latitude and longitude coordinates and the temporal
dimension is represented by timestamps in the local time. The sampling rate is every seven
seconds. Measurements start on February 1, 2014 and end on March 2, 2014. The entire
dataset has an uncompressed size of 1.61 gigabytes (GB).

4.1.3 The Geolife Dataset

The Geolife dataset3 [153, 151, 152] contains spatial-temporal data about the movement of
182 users mostly in Beijing, China, collected over three years. These users moved around
outdoors, including not only domestic routines such as go home and go to work but also
entertainment and sports activities, such as shopping, sightseeing, dining, hiking, and
cycling. The Geolife dataset is the result of a project by Microsoft Research Asia4.

The spatial-temporal data about the users form 17,621 trajectories with a total distance
of about 1.2 million kilometers and a total duration of more than 48,000 hours. The
representation of spatial-temporal data is as follows: the spatial-dimension, the location of
the users, is represented by latitude, longitude, and altitude coordinates and the temporal
dimension is represented by timestamps recorded in the local time. The sampling rate
varies from 5 seconds to a few minutes. Measurements start on April 12, 2007 and end on
July, 27, 2012. The entire dataset has an uncompressed size of 1.15 GB.

2https://ieee-dataport.org/open-access/crawdad-romataxi
3https://www.microsoft.com/download/details.aspx?id=52367
4https://www.microsoft.com/research/lab/microsoft-research-asia/
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4.1.4 The T-Drive Dataset

The T-Drive dataset5 [146, 147] contains spatial-temporal data about the movement of
10,357 taxis in Beijing, China, collected during seven days. These taxis serve passengers
in the center of Beijing.

The spatial-temporal data about the taxis is described by about 15 million points with
a total distance of about 9 million kilometers. The representation of spatial-temporal data
is as follows: the spatial-dimension, the location of the taxis, is represented by latitude
and longitude coordinates and the temporal dimension is presented by timestamps in the
local time. The sampling rate varies from a few seconds to a few minutes, averaging about
177 seconds. Measurements start on February 2, 2008 and end on February 8, 2008.

4.2 Case Study 1

Case Study 1 is an exploratory study in which several queries are executed to extract value
from the graph-based cluster evolution present in the dataset. This is not an extensive list of
possible queries, but a list of important and possible queries related to the representation,
analysis methods, and implementation tools, or software support, used in the proposed
approach. Each query is presented and its results are discussed. This case study uses the
Athens Trucks and the Rome Taxis datasets.

Table 4.1 shows the 23 queries for Case Study 1 and is a guide for the next subsections.
They are divided into queries about the structure of spatial-temporal clusters, their rela-
tionships, and the graph-based representation of spatial-temporal cluster evolution. These
queries are written in Cypher, the graph query language from Neo4j, and their code is
available in Appendix B.1.

4.2.1 Structure

This subsection describes queries executed on the structure of spatial-temporal clusters.
The subsection is further divided into subsections in which each query is discussed.

5https://www.microsoft.com/research/publication/t-drive-driving-directions-based-on-taxi-
trajectories/
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Table 4.1: Queries of Case Study 1.

Type Query
Structure Show a specific cluster.

How many clusters are there in the dataset?
How many clusters are there around a specific location?
What clusters start (end) around a specific location?
What clusters exist for more than a number of minutes?
What is the shortest (or longest) cluster with respect to the time it exists?
What is the largest cluster with respect to the number of spatial-temporal
objects?
What clusters have more than a given number of spatial-temporal objects?

Relationships What clusters start with a MERGE relationship? (Or What clusters end
with a SPLIT relationship?)
Show the locations where T_ENTER (or T_LEAVE, MERGE, SPLIT,
etc.) relationships happen.
What clusters have more than a given number of T_ENTER (or
T_LEAVE) relationships?
What clusters have a MERGE relationship before a given time?

Graph Show the evolution of a given cluster, that is, all the cluster evolution paths
starting at the given cluster.
How many cluster evolution paths exist in the database?
Show all cluster evolution paths and the location they start and end.
What cluster evolution paths start (end) around a specific location?
Show the location of every cluster change in all cluster evolution paths.
What are the cluster evolution paths that start in the morning and end in
the afternoon?
Show all cluster evolution paths and the time they start and end.
What is the cluster evolution path with the greatest number of relation-
ships?
What cluster evolution paths have more (or less) than a given number of
relationships?
What is the cluster evolution path with the greatest number of spatial-
temporal objects during its existence?
What is the cluster evolution path with the greatest average number of
spatial-temporal objects during its existence?
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Figure 4.1: The result of the query: cluster c100 is shown from start to end.

Show a specific cluster

When analyzing spatial-temporal clusters, it is worthwhile to have a visualization of the
cluster from start to end. Visualization is helpful in the observation of the properties of
the cluster, such as size or location. This query is executed on the dataset Rome Taxis.

Figure 4.1 shows the result of this query. The figure shows cluster c100 from the time
it starts to the time it ends. Note that the cluster c100 existed during several timestamps.
Properties about cluster c100, such as its size or location, are not shown but can be accessed
when the occurrence of the cluster at a timestamp is accessed.

How many clusters are there in the dataset?

When analyzing spatial-temporal clusters, it is important to know the number of clusters
that exist in the dataset, regardless of their spatial-temporal relationships. This result can
be used in frequency or density calculations later. This query is executed on the dataset
Geolife.

Table 4.2 shows the result of this query. The table shows that there exist 2 clusters of
vehicles in Beijing during the time measurements were taken. This result does not take
into consideration spatial-temporal relationships that these clusters might have or the time
during which these clusters existed.

This query is also executed on the dataset Rome Taxis for a more expressive result
and because most of the remaining queries are also executed in this dataset. Table 4.3
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Table 4.2: The number of spatial-temporal clusters that exist in the Geolife dataset.

Number of spatial-temporal clusters
1,146

Table 4.3: The number of spatial-temporal clusters that exist in the Rome Taxis dataset.

Number of spatial-temporal clusters
18,699

shows the result of this query. The table shows that there exist 18,699 clusters of taxis
in Rome during the time measurements were taken. As before, this result does not take
into consideration spatial-temporal relationships that these clusters might have or the time
during which these clusters existed.

How many clusters are there around a specific location?

Several analysis methods require the identification of spatial-temporal clusters that are
near a specific location and the number of such clusters. The results of this query can
be used, for example, to calculate interest, assuming a high number of clusters around a
location means high interest and a low number of clusters around a location means low
interest. In reality, however, other cluster properties, such as cluster density, can also be
used to improve interest calculation, but the number of clusters can provide initial results.

This query is executed on the dataset Rome Taxis. Since Rome receives many tourists
during the year, the query is executed for the location of one of the tourist sites in Rome,
the Colosseum. The Colosseum (Italian: Colosseo) is an amphitheater built under the Fla-
vian emperors of the Roman Empire. Its construction began under the Roman Emperor
Vespasian between the years of 70 and 72. He intended the Colosseum to be an enter-
tainment venue, hosting gladiator fights, animal hunts, and even mock naval battles. The
Colosseum is located at the latitude and longitude coordinates 41.890278, 12.492222 in
decimal format. In this query, “near” or “around” a specific location is defined to be at
most 500 meters between the places being compared. The value of 500 meters is chosen
after some tests to find a reasonable number of clusters.

Table 4.4 shows the result of this query. There are 61 clusters that, at some point
during their existence, are near the Colosseum. These clusters can be further investigated
for improved results. One interesting improvement is to observe the distribution of these
clusters over time. To achieve this, time is divided into intervals of one hour and the
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Table 4.4: The number of clusters and the clusters of taxis around the Colosseum.

Number Clusters
61 c8954, c4473, c8021, c12125, c11515, c17301, c9208, c16431, c16487, c10073, c7999, c1405,

c2733, c16006, c3393, c9210, c6741, c5447, c16900, c17564, c4978, c1026, c17289, c15349,
c3301, c17761, c14685, c518, c17170, c17529, c6976, c13338, c18068, c17742, c7160, c7751,
c7078, c6945, c7065, c13345, c3001, c4662, c13352, c9236, c13355, c15220, c6035, c17534,
c11951, c8020, c18069, c15841, c4705, c10593, c17539, c9238, c13598, c9775, c15329, c10068,
c18067

timestamp of the clusters is used to pick the appropriate interval for the cluster. Table
4.5 shows the same 61 clusters distributed by the hours of the day. Notice the hours 10,
17, and 19, when the number of clusters exceed 8. This indicates that these are likely
the peak times for tourists near the Colosseum. Results in Table 4.5 do not take into
consideration the day when the cluster exists, showing an aggregation by the hour of the
day. Another improvement is to consider the full date, including the day, month, and
year, of the existence of clusters. Another way to visualize the data from Table 4.4 is in a
distribution by day of the week.

What clusters start (end) around a specific location?

Inspecting the clusters that start at a specific location can give insights about how many
clusters are being formed at that location. Extra information about the clusters, such as
the time during which clusters exist, can expand on this investigation.

This query is executed on the dataset Rome Taxis. As the inspected dataset contains
trajectories of taxis in Rome, it is interesting to investigate the clusters formed near popular
tourist sites in Rome. One such place is Piazza Venezia, a square near some of the most
important tourist sites in Rome, such as the Roman Forum and the Colosseum. The
latitude and longitude coordinates of Piazza Venezia are 41.8964, 12.4825 in decimal
format. In this query, “near” or “around” a specific location is defined to be at most 100
meters between the places being compared. The value of 100 meters is chosen after some
tests to find a reasonable number of clusters.

There are 928 clusters that start around Piazza Venezia in the dataset. The map in
Figure 4.2 shows the result of this query. In the figure, dots are the location where clusters
start and end. Green dots represent the start location and black dots represent the end
location. Each dot has the cluster ID below it. While most clusters end around the same
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Table 4.5: The distribution of the 68 clusters that exists near the Colosseum per hour of
the day.

Hour Number Clusters
1 3 c11951, c15841, c13598
9 2 c3001, c9775
10 6 c12125, c1405, c16006, c6741, c15220, c10593
11 3 c17529, c17534, c17539
12 3 c11515, c17564, c6035
13 4 c15349, c3301, c6945, c15329
14 4 c16900, c6976, c7751, c10068
15 4 c10073, c1026, c518, c17742
16 5 c3393, c5447, c17761, c7078, c7065
17 8 c9208, c9210, c14685, c13338, c7160, c13345, c4662, c13352
18 1 c13355
19 9 c8021, c16431, c7999, c2733, c17170, c9236, c8020, c4705, c9238
20 1 c16487
21 1 c8954
22 5 c4978, c17289, c18068, c18069, c18067
23 2 c4473, c17301
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Figure 4.2: Spatial-temporal clusters that start around Piazza Venezia in Rome. Green
dots represent their start location and black dots represent the end location.

place, a few clusters move to another, nearby, spot, namely clusters c6143, c6724, and c18361.
Further investigation on the reasons these clusters remained together may reveal interesting
insights into the movement of taxis in this area.

What clusters exist for more than a number of minutes?

There are many reasons for spatial-temporal clusters to form. There could be an event
in a city, or an accident, or a festival. Usually, these clusters last for some minutes and
are the object of investigation. However, some clusters take a significant amount of time
before they stop existing. Analyzing spatial-temporal clusters that exist for more than a
number of minutes can give insights as to why they last for a greater amount of time or
identify new opportunities for improvement. For example, spatial-temporal objects that
are together, forming a cluster, for several timestamps are an opportunity for car-sharing
or ridesharing.

This query is executed on the dataset Rome Taxis. In this query, the value of 60
minutes is chosen for investigation. The value of 60 minutes is chosen after some tests to
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Figure 4.3: A total of 129 spatial-temporal clusters last more than 60 minutes.

find a reasonable number of clusters.
The map in Figure 4.3 shows the result of this query. A total of 129 spatial-temporal

clusters exist for more than one hour. Some of these clusters are taxi stands, where several
taxis arrive, wait for passengers, and go. The fact that clusters start and end at the same
location strengthens this idea. The number of long-term spatial-temporal clusters formed
at these locations provides insights about the importance of the location. Some locations
have only one cluster, while other locations have more than 10.

What is the shortest (or longest) cluster with respect to the time it exists?

Analyzing the extremes is a good way to find outliers, edge cases, or problems in the
dataset. This query finds the shortest and longest spatial-temporal clusters with respect
to the time they exist. This query is similar to the one described earlier, but they differ in
that the previous one assigns limits in the search, while this does not, because it searches
for the extremes. This query is executed on the dataset Rome Taxis.

Table 4.6 shows the result of this query. A total of 11,695 spatial-temporal clusters
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Table 4.6: Longest spatial-temporal clusters with respect to the time they existed in the
Rome Taxis dataset.

Cluster Duration
c9547 259
c8657 244
c4103 230
c4921 228
c12466 225
c16282 207
c1187 207
c1280 191
c9215 171

last less than a minute. They are detected at a specific timestamp and are not detected
at the next timestamp. A total of 1,690 clusters exist for exactly 1 minute, meaning that
the difference between the timestamps at which they end and start is 1 minute. These are
a significant number of spatial-temporal clusters that are short with respect to the time
they existed considering that a total of 18,699 clusters are inspected. These clusters seem
to represent cases in which taxi drivers test their GPS devices or taxis pass by each other.
Table 4.6 shows the 10 longest spatial-temporal clusters in the dataset and the time they
last in minutes. Cluster c9547 exists for more than 4 hours. It represents a parking lot near
the airport of Rome where taxi drivers wait for passengers. The duration of a cluster of
taxis in this parking lot relates to the demand for taxis in the airport at that time of the
day.

What is the largest cluster with respect to the number of spatial-temporal
objects?

A large spatial-temporal cluster grows or shrinks depending on the surrounding conditions.
Analyzing the size of the cluster, that is the number of spatial-temporal objects it contains,
indicates whether the demand for services is high and helps interested parties to consider
reallocating spatial-temporal objects accordingly. This query is executed on the dataset
Rome Taxis.

Table 4.7 shows the result of this query. The table shows the 10 largest clusters with
respect to the number of spatial-temporal objects they contain. Spatial-temporal cluster
c8657 is present in the previous table, as one of the longest existing clusters in the dataset,
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Table 4.7: The largest spatial-temporal clusters with respect to their size in the Rome
Taxis dataset.

Number of
Cluster Spatial-Temporal

Objects
c8657 12
c8904 12
c9507 11
c9547 11
c12466 11
c15118 11
c1475 10
c14228 10
c10408 10

and now as one of the largest as well. The cluster similar to cluster c9547 also in Table
4.7 exists next to the airport of Rome where taxis wait for passengers. Spatial-temporal
cluster c8904 exists in the center of Rome, next to the Piazza Navona. Further inspection
shows that this cluster existed from 8:52 PM to 9:35 PM on February 14, 2014, which is
Valentine’s Day. It is then likely that cluster c8904 was formed expecting those who had
celebrated Valentine’s Day to return home.

What clusters have more than a given number of spatial-temporal objects?

Analyzing properties of spatial-temporal clusters, such as the number of spatial-temporal
objects in a cluster, is the way to examine the structure of these clusters. Sometimes,
limiting the range of these properties improves the quality of the results or is a technical
requirement. This query searches for the spatial-temporal clusters that contain more than
a given number of spatial-temporal objects. This query is similar to the one described
earlier, but they differ in that the previous one searches for extremes, while this query
assigns limits to the inspected clusters.

This query is executed on the dataset Rome Taxis. The query searches for spatial-
temporal clusters that contain more than 10 spatial-temporal objects. The value of 10
spatial-temporal objects is chosen to demonstrate the query and can be changed to any
desired value.
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Table 4.8: Spatial-temporal clusters that contain more than 10 spatial-temporal objects
in the Rome Taxis dataset (a) and spatial-temporal clusters that contain more than five
spatial-temporal objects on the Athens Trucks dataset (b).

Cluster
c8657
c8904
c9507
c9547
c12466
c15118

(a)

Cluster
c34
c55
c109
c122

(b)

Table 4.8a shows the result of this query. As expected, Table 4.8a is very similar to
Table 4.7. Clusters c1475, c14228 and c10408 contain exactly 10 spatial-temporal clusters and
are not included in Table 4.8a because of the restriction on the wording of the query that
means “strictly greater than”.

As the results in Table 4.8a are very similar to those in Table 4.7, the query is then
executed on the dataset Athens Trucks as well. The query is updated to search for spatial-
temporal clusters that contain more than five spatial-temporal objects.

Table 4.8b shows the result of this query. Only one spatial-temporal cluster, namely
cluster c55, contains more than five trucks. Further inspection reveals that this cluster
exists at a garage of a cement company with loading docks and machinery to load trucks.
Three other spatial-temporal clusters, namely c34, c109, and c122 contain exactly five trucks
and are not shown as the result of the query because of the limitation of the wording of
the query that means “strictly greater than”. These clusters also exist at garages of a truck
company. It is reasonable to expect that larger clusters happen at start or end points of a
trip, in the case of a truck company, because these are the places where trucks naturally
cluster.

4.2.2 Relationships

This subsection describes queries executed on the relationships of spatial-temporal clusters.
The subsection is divided into subsections in which each query is discussed.
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What clusters start with a MERGE relationship? (Or What clusters end with
a SPLIT relationship?)

Analysis on the spatial-temporal clusters that start with a MERGE relationship provides
more information about the existence of these clusters. For example, traffic jams start
with clusters merging, which are represented by several MERGE relationships. Similarly,
the end of events, for example, are represented by large spatial-temporal clusters splitting
multiple times as spatial-temporal objects leave in groups to other parts of a city. This
produces many SPLIT relationships. This query is executed on the Rome Taxis dataset.

Table 4.9 shows the result of this query. There are 66 spatial-temporal clusters that
start with a MERGE relationship. Figure 4.4 shows the locations where these clusters exist.
Note that most of the clusters are grouped around two locations. The top location is a
region in Rome with many hotels. Taxis at this location might be waiting for passengers.
The bottom location is a region near a bus, taxi, and train terminal. Taxis at this location
are waiting for passengers to continue their commute. Spatial-temporal clusters start with
a MERGE relationship when two or more clusters that are initially apart group together,
forming a large cluster. The main reason for this happening in the dataset can be the
parameter ε used by the approach. A small ε means a stricter interpretation of a distance
between near points in a cluster, tending to break clusters into many smaller ones. A larger
ε admits larger distances between points in a cluster, tending to produce larger clusters
both in size and shape. The value of ε = 50 is used for this analysis in this dataset. This
value can break what should be a large spatial-temporal cluster into small clusters that
eventually approach each other and effectively create the larger spatial-temporal cluster,
in these regions. A larger ε can filter out these cases, allowing other situations of MERGE
relationships to appear, but it also makes the clustering algorithm accept spatial-temporal
clusters where spatial-temporal objects are fairly distant.

Table 4.10 also shows the result of this query. There are 75 spatial-temporal clusters
that end with a SPLIT relationship. All of them split into exactly two other clusters. No
split into three or more clusters is observed. The map in Figure 4.5 shows the locations
where these clusters exist. Among the 75 spatial-temporal clusters, 12 have a SPLIT
relationship in the taxi parking lot near the airport, not shown in the figure because of
space limitation, other 23 have the SPLIT relationship near the terminal for taxi, train,
and bus, and 34 have the SPLIT relationship in a street called Via Boncompagni where
many luxury hotels are located.
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Table 4.9: Spatial-temporal clusters that start with a MERGE relationship in the Rome
Taxis dataset.

Clusters
c41 c3067 c4851 c8327 c12869 c14926
c755 c3196 c4960 c8372 c13187 c14929
c759 c3434 c5060 c8384 c13277 c14941
c807 c3451 c5064 c8454 c14253 c15137
c898 c3453 c5899 c9532 c14260 c15141
c1080 c3458 c6019 c9544 c14265 c15145
c1169 c3870 c6033 c9547 c14270 c15259
c1499 c4013 c6326 c10055 c14316 c15865
c2129 c4018 c6923 c10145 c14546 c16618
c2132 c4172 c8273 c12186 c14808 c16836
c2199 c4177 c8275 c12233 c14920 c17442

Figure 4.4: The location of spatial-temporal clusters that start with a MERGE relationship
in the Rome Taxis dataset.
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Figure 4.5: The location of spatial-temporal clusters that end with a SPLIT relationship
in the Rome Taxis dataset.
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Table 4.10: Spatial-temporal clusters that end with a SPLIT relationship in the Rome
Taxis dataset.

Clusters
c794 c4172 c8358 c14223 c15078
c798 c4219 c8372 c14228 c15118
c885 c4845 c8444 c14250 c15137
c1463 c4960 c8454 c14253 c15141
c1475 c5048 c9507 c14260 c15262
c1499 c5060 c9544 c14265 c15854
c2129 c5064 c10032 c14298 c15857
c3047 c5090 c10553 c14316 c16323
c3067 c5722 c11290 c14319 c16407
c3390 c5805 c11381 c14381 c16447
c3429 c5830 c11967 c14525 c16604
c3434 c5837 c12213 c14896 c16755
c3453 c5969 c12216 c14920 c16836
c3927 c6923 c12233 c14926 c17076
c4013 c7910 c13231 c14929 c17437

Show the locations where T_ENTER (or T_LEAVE, MERGE, SPLIT, etc.)
relationships happen.

Analysis of the location of spatial-temporal cluster relationships uncover important in-
formation about how spatial-temporal objects behave during observation. For example,
several T_ENTER relationships happening at a specific part of a highway may indicate
the location where congestion starts.

This query is executed on the Rome Taxis dataset. The query searches for the location
of every T_ENTER relationship in the dataset.

Figure 4.6 shows the result of this query. There exist 8,439 occurrences of the T_ENTER
relationship. The figure shows some of these locations and marks them with a dot. Not all
locations are shown in Figure 4.6 because of space restrictions. Some locations are distant
from the center of Rome, such as the Rome airport, and showing them would reduce the
level of detail in the figure. By omitting these dots, the figure prioritizes details in the cen-
ter of Rome. Notice that the T_ENTER relationships happen at somewhat well-defined
locations. These are taxi stands where taxis wait for passengers, but they can now be
ranked by importance. Taxi stands where many T_ENTER relationships happen indicate
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Table 4.11: Spatial-temporal clusters that have more than 15 T_ENTER relationships in
the Rome Taxis dataset.

Clusters
c3210 c4921 c9547 c16282
c3390 c5810 c9679 c16601
c3458 c8280 c10408 c17373
c4103 c8657 c12466 c17797
c4908 c9507 c13237

a greater interest in the location.

What clusters have more than a given number of T_ENTER (or T_LEAVE)
relationships?

The analysis of the number of spatial-temporal cluster relationships during the existence
of spatial-temporal cluster is important for frequency or rates calculation. For example,
a cluster where several spatial-temporal objects entered, generating T_ENTER relation-
ships, that grows, indicates an important cluster or a cluster in an important location, and
give insights about the movement of the spatial-temporal objects.

This query is executed on the Rome Taxis dataset. The query searches for spatial-
temporal clusters that have more than 15 T_ENTER relationships during their existence.
The value of 15 T_ENTER relationships is chosen to demonstrate the query and can be
changed to any desired value.

Table 4.11 shows the result of this query. There are 19 spatial-temporal clusters that
have more than 15 T_ENTER relationships. Further inspection shows that these clusters
end around the same location where they start. It also shows that some of these clusters
happen at the taxi parking stop near the Rome airport and the street Via Boncompagni
where luxury hotels are located. However, three of these clusters happened at two other
locations and this is worth noting. The locations are Piazzale Don Giovanni Minzoni to
the north of Rome and Obelisco di Marconi to the south of Rome. Both locations are near
museums of Art or History, which results in a higher interest in the regions and explains
in part the increased number of T_ENTER relationships.
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Figure 4.6: The locations where T_ENTER relationships happened in the Rome Taxis
dataset.
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Table 4.12: Spatial-temporal clusters that have a MERGE relationship before 8 AM in the
Rome Taxis dataset.

Clusters
c41 c8275
c5060 c14253
c5064 c15865
c8273 c16618

What clusters have a MERGE relationship before a given time?

Analysis on the occurrence of spatial-temporal cluster relationships limited by some tem-
poral restriction allows for the observation of interesting phenomena during specific times
of the day. For example, interesting taxi stands in the morning may not be the same in
the afternoon, or at night. Limiting the analysis to some times during the day can lead to
more in-depth results.

This query is executed on the Rome Taxis dataset. The query searches for spatial-
temporal clusters that have a MERGE relationship before 8 AM. The value of 8 AM is
chosen to demonstrate the query and can be changed to any desired value.

Table 4.12 shows the result of this query. Eight spatial-temporal clusters are created
as a result of a MERGE relationship before 8 AM in the Rome Taxis dataset. Table
4.12 shows the resulting cluster and not the two or more clusters that merged. Further
inspection shows that most of these clusters are formed after 7 AM, indicating that this is
the time where taxis cluster around taxi stands waiting for passengers.

4.2.3 Graph

This subsection describes queries executed on the graph-based representation of spatial-
temporal cluster evolution. The structure of spatial-temporal clusters as well as the re-
lationships these clusters have are considered. Moreover, analyses are not limited to one
cluster, as the connections between these clusters are also considered in the analyses. The
subsection is divided into subsections in which each query is discussed.
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Show the evolution of a given cluster, that is, all the cluster evolution paths
starting at the given cluster.

Spatial-temporal clusters have different relationships with other clusters or spatial-temporal
objects. Visualizing these relationships helps in the identification of patterns or outliers in
these relationships. For example, a spatial-temporal cluster that has multiple T_ENTER
and T_LEAVE relationships happening at the same time may indicate a full parking lot,
where one car enters only when another leaves.

This query is executed on the Rome Taxis dataset. The query results in the spatial-
temporal cluster evolution of a cluster, that is, a graph representing all cluster evolution
paths starting from this cluster. Spatial-temporal cluster c5805 is chosen for this query

Figure 4.7 shows the evolution of spatial-temporal cluster c5805. The cluster has several
changes in the number of participants with many T_ENTER or T_LEAVE relationships
and then splits into clusters c5829 and c5830. The first of these two has changes until it
eventually ends. The second of these two has other cluster relationships until it splits
again into cluster c5837 and c5838. Cluster c5838 ends a few timestamps later, but cluster
c5837 continues to exist, changes its size, and splits again into clusters c5841 and c5842, which
stops existing moments later. It is interesting to observe that one spatial-temporal cluster,
namely cluster c5805, resulted in four other clusters. It is also interesting to note that Figure
4.7 provides a graph-based representation of the complete cluster evolution of cluster c5805.

How many cluster evolution paths exist in the database?

Visualizing cluster evolution from beginning to the many possible ends is a great tool for
generating insights, even if the evolution is limited to that of a single spatial-temporal
cluster. However, since the analysis of cluster evolution is graph-based, most analysis
methods investigate paths from the root node to the leaf node, i.e. from the start of a
spatial-temporal cluster to one end of the evolution of this cluster. Results can be used to
understand the behavior of the cluster among the many transformations it has undergone
during its existence. This query is executed on the Rome Taxis dataset.

Table 4.13 shows the result of this query. There are 18,639 cluster evolution paths in
the Rome Taxis dataset. This means that, given the starting point of spatial-temporal
clusters formed by the GROUP relationship, there exist 18,639 paths starting at these
clusters. Note that although there are 18,699 clusters in the dataset, not all of them are
the start of a path. Many are in the middle of a path. In fact, there are 18,483 clusters
that start a path. This results in an average of approximately 1.0084 cluster evolution
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Figure 4.7: The evolution of spatial-temporal cluster c5805 in the dataset Rome Taxis.
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Table 4.13: Number of cluster evolution paths in the Rome Taxis dataset.

Number of
Cluster Evolution

Paths
18,639

paths per clusters that start a path. One important consideration is that, sometimes, a
cluster ci has both a T_ENTER and a T_LEAVE relationship between timestamps. This
is represented by two arrows from ci,tj to ci,tj+1

in the graph. When calculating a path,
the two arrows are not considered different paths since they connect the same nodes of the
graph.

Show all cluster evolution paths and the location they start and end.

When performing exploratory analysis, it is worthwhile to have a tabular view of the data
of interest with additional data alongside. For example, in ML, training data is usually the
data of interest in a tabular format having the labels as the last column. In the context
of spatial-temporal clusters, additional data can give insights about why some clusters are
selected by the analysis method.

This query is executed on the Rome Taxis dataset. Note that, although cluster evolution
paths are represented visually, in a graph, by several nodes at many different timestamps,
here, in text, this representation would not be appropriate because many paths would be
very long. Instead, cluster evolution paths are represented by the different clusters they
contain. So, for example, if cluster c1 exists for three timestamps and becomes cluster c2
for another three timestamps, this is represented here and in the remainder of this chapter
as a list of two elements, with both clusters.

Table 4.14 shows the result of this query. First, from the result of the previous query,
there exist 18,639 cluster evolution paths in the Rome Taxis dataset. It is not possible
to represent all paths here because of space limitations, although the analysis does show
results for all paths. Instead, Table 4.14 shows results for some cluster evolution paths.
Second, note the cluster evolution path in the first row of the table. It shows that the
path starts with cluster c758, which has several relationships and eventually merges into
cluster c759. More complex cluster evolution paths can be found at the bottom of the
table. Third, note the second and third rows of the table. It shows a MERGE relationship
between clusters c14796 and c14807 that creates the spatial-temporal cluster c14808, which
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eventually disperses. It is possible to observe the latitude and longitude coordinates of
the start and end of all cluster evolution paths. This information then can be used for
visualization or other types of analyses.

What cluster evolution paths start (end) around a specific location?

Analysis on cluster evolution may benefit significantly when it is restricted to a location.
Cluster evolution paths that started at a specific place may or may not develop in similar
ways. For example, migration patterns from a specific city to another or a commuting trip
from a specific residential area to a city center are restrictions that, when applied, increase
the detail of the results. Their cluster evolution paths can be analyzed and compared to
draw novel conclusions.

This query is executed on the Rome Taxis dataset. The query searches for cluster
evolution paths that start around the Aeroporto di Roma Fiumicino Leonardo da Vinci.
Like many airports, the Rome airport has more than one terminal. This means that proper
coordinates and a large enough radius must be chosen to be able to capture relevant cluster
evolution paths. One of the airport terminals is located at the latitude and longitude
coordinates 41.794700, 12.250700 in decimal format. In this query, “near” or “around”
a specific location is defined to be distance of at most 500 meters between the places being
compared. The value of 500 meters is chosen after some tests to find a reasonable number
of cluster evolution paths.

Table 4.15 shows the result of the query. There are 150 cluster evolution paths starting
near the airport in Rome. Not all paths are shown in Table 4.15 because of space limita-
tions. One interesting thing to note is that all 113 cluster evolution paths include only one
cluster. This means that they start and end on the same cluster, and no MERGE or SPLIT
relationship happens. The map in Figure 4.8 shows the airport and the start, represented
as green dots, and end, represented as black dots, points of all 150 cluster paths. Cluster
evolution paths start at the start of the first cluster and end at the end of the last cluster.
Since all cluster evolution paths are made of only one spatial-temporal cluster, they are
represented by the start and end of the cluster. All cluster evolution paths end around the
airport and none reach the Rome city center. However, if long-lasting cluster evolution
paths are encountered, then the analysis would indicate the need for improvements in the
transportation system, such as a new bus line.
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Table 4.14: Some of the cluster evolution paths in the Rome Taxi dataset and the location
they start and end.

Cluster Start Start End End
Evolution Paths Latitude Longitude Latitude Longitude
[c758,c759] 41.907832 12.491429 41.907483 12.49021
[c14796,c14808] 41.903484 12.488224 41.903643 12.48877
[c14807,c14808] 41.90322 12.487057 41.903643 12.48877
[c15247,c15259] 41.901673 12.501347 41.901047 12.500748
[c15256,c15259] 41.901906 12.501304 41.901047 12.500748
[c752,c755,c759] 41.907535 12.490407 41.907483 12.49021
[c754,c755,c759] 41.907878 12.491641 41.907483 12.49021
[c798,c805,c807] 41.901363 12.501137 41.900838 12.500388

[c3390,c3423,c3434, 41.795414 12.276264 41.795203 12.276342
c3439,c3453,c3455,c3458]
[c3390,c3424,c3434, 41.795414 12.276264 41.795203 12.276342
c3439,c3453,c3455,c3458]
[c15118,c15132,c15137, 41.907971 12.491983 41.907512 12.49004
c15138,c15141,c15143,c15145]
[c15118,c15131,c15137, 41.907971 12.491983 41.907512 12.49004
c15139,c15141,c15144,c15145]
[c14896,c14917,c14920,c14922, 41.907921 12.491503 41.907502 12.490215
c14926,c14927,c14929,c14939,c14941]
[c14896,c14917,c14920,c14922, 41.907921 12.491503 41.907502 12.490215
c14926,c14927,c14929,c14940,c14941]

Table 4.15: Some of the cluster evolution paths that start near the Rome airport in the
Rome Taxis dataset.

Cluster Evolution Paths
[c10071] [c11105]
[c10390] [c11187]
[c10391] [c11195]
[c10872] [c11196]
[c11102] [c11197]
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Figure 4.8: The start and end location of cluster paths near the Rome airport in the Rome
Taxis dataset.
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Show the location of every cluster change in all cluster evolution paths.

A cluster evolution path is a sequence of clusters ci,tj . At some point in this sequence,
a cluster change happens, that is, the index i changes from, say, 1 to 4. This cluster
change indicates a spatial-temporal cluster relationship, such as MERGE or C_ENTER.
Analysis on cluster change in cluster evolution paths show the moment when or location
where spatial-temporal objects decide to follow a different direction, which may include
other clusters. When analyzing human behavior, this may represent a change of opinion
or choice, when a group of individuals have their classification, and thus the clusters they
belong to, changed. In the context, of spatial-temporal clusters, this means a better route,
or the arrival or departure places. This query is executed on the Rome Taxis dataset.

Table 4.16 shows the result of this query. There are 621 locations where cluster changes
happen. Note that not all locations are shown in the table because of space limitations.
The first two lines of Table 4.16 show a split from spatial-temporal cluster c10032 into
clusters c10043 and c10047. Taking each cluster evolution path individually, there exists only
one cluster change. For instance, in the path of the first line of the table, there is a cluster
change from cluster c10032 to c10047. The location where this cluster change happened is
shown in the other columns of the table. Note that a cluster evolution path can have several
cluster changes, as shown in line 3 of the table. Spatial-temporal cluster c16834 merges with
c16835 to form cluster c16836, which then eventually splits forming clusters c16840 and c16841.
The location of the cluster changes from c16834 to c16836 and from c16836 to c16840 of the
cluster evolution path in line 3 are shown in the other columns of the table.

What are the cluster evolution paths that start in the morning and end in the
afternoon?

Analyzing the start and end times of cluster evolution paths provides insights into their
nature. For example, cluster evolution paths starting and ending at the commute time
indicate a group of vehicles trying to find the best route to work.

This query is executed on the Rome Taxis dataset. The definitions of morning and
afternoon are not precise. For this query, morning is defined as the time between 6 AM
(inclusive) to 12 PM (exclusive), and afternoon is defined as the time between 12 PM
(inclusive) to 6 PM (exclusive). The tool uses a 24-hour clock, so results for 6 PM will be
shown as hour 18.

Table 4.17 shows the result of this query. There are 74 cluster evolution paths that
start in the morning and end in the afternoon. The table does not show all 74 cluster
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Table 4.16: Some cluster changes of all cluster evolution paths in the Rome Taxis dataset.

Cluster Evolution Paths Latitude Longitude
[c10032,c10043] 41.907799 12.4913470
[c10032,c10047] 41.9076365 12.4908065

[c16834,c16836,c16840] 41.901389 12.501104
41.901306 12.5009395

[c16834,c16836,c16841] 41.901389 12.501104
41.901432 12.4998215

[c16835,c16836,c16840] 41.901814 12.501151
41.901306 12.5009395

[c16835,c16836,c16841] 41.901814 12.501151
41.901432 12.4998215

[c5805,c5829] 41.907695 12.4906565
[c5805,c5830,c5838] 41.9078325 12.491307

41.907769 12.4912135
[c5805,c5830,c5837,c5841] 41.9078325 12.491307

41.907578 12.490627
41.907467 12.4904055

[c5805,c5830,c5837,c5842] 41.9078325 12.491307
41.907578 12.490627
41.9076515 12.491019

96



Table 4.17: Some of the cluster evolution paths in the Rome Taxis dataset that start in
the morning and end in the afternoon.

Cluster Evolution Paths Start Time End Time
[c848] 2014-02-03 11:08:01 2014-02-03 12:17:01
[c12187] 2014-02-20 11:30:01 2014-02-20 12:12:01
[c129] 2014-02-01 11:56:01 2014-02-01 12:03:01
[c17561] 2014-02-28 11:58:01 2014-02-28 13:13:01
[c3184,c3196] 2014-02-06 11:46:01 2014-02-06 12:16:01
[c3186,c3196] 2014-02-06 11:47:01 2014-02-06 12:16:01
[c5969,c6018,c6019,c6033] 2014-02-11 11:34:01 2014-02-11 12:43:01
[c5969,c6017,c6019,c6033] 2014-02-11 11:34:01 2014-02-11 12:43:01
[c1463,c1475,c1493,c1499,c1502] 2014-02-04 11:34:01 2014-02-04 12:02:01
[c1463,c1475,c1493,c1499,c1503] 2014-02-04 11:34:01 2014-02-04 12:05:01
[c1463,c1475,c1494,c1499,c1502] 2014-02-04 11:34:01 2014-02-04 12:02:01
[c1463,c1475,c1494,c1499,c1503] 2014-02-04 11:34:01 2014-02-04 12:05:01

evolution paths because of space limitations. The table includes the start and end time for
further analysis. Note that the cluster evolution paths in lines 1 and 4 of the table existed
for more than one hour. The same can be said for the cluster evolution paths in lines 7
and 8 of the table in which a SPLIT and a MERGE happens. All clusters start between
the hours 11 and 12 of the day and most end within an hour after the start.

Show all cluster evolution paths and the time they start and end.

A previous query searched for the start and end location of cluster evolution paths to give
insights on the movement of clusters. This query searches for the start and end times of
all cluster evolution paths in the dataset. While the previous query focuses on the spatial
dimension of data, this query focuses on the temporal dimension of data. As before, the
goal of the query is to include important information alongside the cluster evolution paths
for further analysis. This query is executed on the Rome Taxi dataset.

Table 4.18 show the result of this query. A previous query showed that there exist
18,639 cluster evolution paths in the Rome Taxis dataset. It is not possible to represent
all paths here because of space limitations, although the analysis does show results for all
paths. Instead, Table 4.18 shows results for some cluster evolution paths, which are the
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same as a previously similar query, for comparison. The start and end timestamp can be
integrated for an improved analysis.

What is the cluster evolution path with the greatest number of relationships?

In exploratory analysis of graph-based cluster evolution, it is important to query the dataset
looking for outliers or special cases because they may hold important information of the
phenomenon being analyzed. For example, in the case of cluster evolution, a path with a
great number of relationships may indicate an interesting route in the city, or a common
way to tour a city. This query is executed on the Rome Taxis dataset.

Table 4.19 shows the result of the query. The greatest number of relationships that any
cluster evolution path has in the Rome Taxis dataset is 215 relationships. There are two
cluster evolution paths that have these many relationships. These paths are very similar,
except for a SPLIT into and a MERGE of clusters c9530 and c9531. Further inspection reveals
that the two cluster evolution paths exist in the parking lot of taxis near the airport of
Rome. It is expected that many relationships happen in such places as taxis arrive and
leave.

What cluster evolution paths have more (or less) than a given number of rela-
tionships?

The result of an analysis method becomes more specific when some restrictions are applied
to the queries. This query is similar to the one explained earlier, but it expands the
previous results to all cluster evolution paths that have at least (or at most) a given
number of spatial-temporal cluster relationships.

This query is executed on the Rome Taxis dataset. This query searches for cluster
evolution paths that have more than 100 relationships. The value of 100 relationships is
chosen to demonstrate the query and can be changed to any desired value.

Table 4.20 shows the result of this query. There are 21 cluster evolution paths that have
more than 100 spatial-temporal cluster relationships. The table also shows the number of
relationships. Note that the cluster evolution path in the first line of this table has 102
relationships without ever having any cluster change.
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Table 4.18: Some of the cluster evolution paths in the Rome Taxi dataset and the time
they start and end.

Cluster Start End
Evolution Paths Timestamp Timestamp
[c758,c759] 2014-02-03 09:29:01 2014-02-03 09:33:01
[c14796,c14808] 2014-02-24 18:38:01 2014-02-24 19:13:01
[c14807,c14808] 2014-02-24 18:50:01 2014-02-24 19:13:01
[c15247,c15259] 2014-02-25 11:07:01 2014-02-25 11:22:01
[c15256,c15259] 2014-02-25 11:13:01 2014-02-25 11:22:01
[c752,c755,c759] 2014-02-03 09:21:01 2014-02-03 09:33:01
[c754,c755,c759] 2014-02-03 09:26:01 2014-02-03 09:33:01
[c798,c805,c807] 2014-02-03 10:07:01 2014-02-03 10:15:01

[c3390,c3423,c3434, 2014-02-06 16:08:01 2014-02-06 20:14:01
c3439,c3453,c3455,c3458]
[c3390,c3424,c3434, 2014-02-06 16:08:01 2014-02-06 20:14:01
c3439,c3453,c3455,c3458]
[c15118,c15132,c15137, 2014-02-25 08:04:01 2014-02-25 09:00:01
c15138,c15141,c15143,c15145]
[c15118,c15131,c15137, 2014-02-25 08:04:01 2014-02-25 09:00:01
c15139,c15141,c15144,c15145]
[c14896,c14917,c14920,c14922, 2014-02-24 20:10:01 2014-02-24 21:31:01
c14926,c14927,c14929,c14939,c14941]
[c14896,c14917,c14920,c14922, 2014-02-24 20:10:01 2014-02-24 21:31:01
c14926,c14927,c14929,c14940,c14941]

Table 4.19: The cluster evolution path with the greatest number of relationships in the
Rome Taxis dataset.

Cluster Evolution Path Number of
Relationships

[c9507,c9530,c9532,c9544,c9545,c9547] 215
[c9507,c9531,c9532,c9544,c9545,c9547] 215
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Table 4.20: Cluster evolution paths that have more than 100 spatial-temporal cluster
relationships in the Rome Taxis dataset.

Cluster Evolution Path Number of
Relationships

[c4103] 102
[c4921] 107
[c8657] 109
[c12466] 109
[c9539,c9544,c9545,c9547] 123
[c9539,c9544,c9546,c9547] 123
[c9539,c9544,c9545,c9547] 124
[c3390,c3423,c3434,c3438,c3453,c3456,c3458] 125
[c3390,c3423,c3434,c3438,c3453,c3455,c3458] 126
[c3390,c3423,c3434,c3439,c3453,c3456,c3458] 127
[c3390,c3423,c3434,c3439,c3453,c3455,c3458] 128
[c3390,c3424,c3434,c3438,c3453,c3456,c3458] 128
[c3390,c3424,c3434,c3438,c3453,c3455,c3458] 129
[c3390,c3424,c3434,c3439,c3453,c3456,c3458] 130
[c3390,c3424,c3434,c3439,c3453,c3455,c3458] 131
[c9507,c9531,c9532,c9544,c9545,c9547] 214
[c9507,c9531,c9532,c9544,c9546,c9547] 214
[c9507,c9530,c9532,c9544,c9545,c9547] 214
[c9507,c9530,c9532,c9544,c9546,c9547] 214
[c9507,c9531,c9532,c9544,c9545,c9547] 215
[c9507,c9530,c9532,c9544,c9545,c9547] 215
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Table 4.21: The cluster evolution path with the greatest number of spatial-temporal objects
in the Rome Taxis dataset.

Cluster Number of
Evolution Spatial-Temporal
Path Objects
[c8657] 12
[c8904] 12

What is the cluster evolution path with the greatest number of spatial-temporal
objects during its existence?

The analysis of the number of spatial-temporal objects contained in a cluster evolution
path provides insights about concepts such as spatial-temporal service demand. An earlier
query searched for the path with the greatest number of relationships. This query searches
for the cluster evolution path with the greatest number of spatial-temporal objects.

This query is executed on the Rome Taxis dataset. The query ranks all cluster evolution
paths based on the greatest number of spatial-temporal objects paths have at any point
during their existence, not limited to the start or the end. The query then filters the results
to show the cluster evolution path sought.

Table 4.21 shows the result of this query. The greatest number of spatial-temporal
objects any cluster path in the Rome Taxis dataset has is 12. Two cluster evolution paths
have these many spatial-temporal objects. Note that these cluster evolution paths do not
include more than one cluster. Such a number of taxis clustered together in a place may not
necessarily be a good indicator of demand. For example, a high number of taxis clustered
in a parking lot at times different than rush hours may indicate low demand. Inspections
on the time may help confirm this statement.

What is the cluster evolution path with the greatest average number of spatial-
temporal objects during its existence?

Analyzing the number of spatial-temporal objects in cluster evolution paths is valuable
and results such as the one in the previous query are a great starting point for more
investigations. However, analyses methods that identify the greatest or lowest number of
some property may be affected by peaks in the values being monitored. For example, in
the previous query, cluster c8657 could have undergone a sudden and rapid increase of the
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Table 4.22: The cluster evolution path with the greatest average number of spatial-
temporal objects in the Rome Taxis dataset.

Average
Cluster Number of
Evolution Spatial-Temporal
Path Objects
[c8657] 9
[c8904] 9

number spatial-temporal objects followed by a quick decrease of the number. Although
the investigation is still important, sometimes it is required to remove such outlier cases
from the observations. One solution is to search for average values, which is the function
of this query.

This query is executed on the Rome Taxis dataset. There are several ways to calculate
the average number of spatial-temporal objects in cluster evolution paths. They can be
averaged by time, by cluster, or by relationship. This query chooses to average spatial-
temporal objects by the number of clusters in the cluster evolution path. In this case, the
previous result, in Table 4.21 is also the result of this query, since the cluster evolution path
with the greatest number of spatial-temporal objects has only one cluster. However, this
query attempts to avoid peaks of growth or decay in the numbers being observed and find
cluster evolution paths that keep a consistent number of spatial temporal objects during
existence. Therefore, this query does not use the greatest number of spatial-temporal
objects, but instead the difference between the greatest and the smallest number of spatial-
temporal objects in a cluster evolution path.

Table 4.22 shows the result of this query. The cluster evolution paths in the result of
the previous query appear as ones with the greatest average number of spatial-temporal
objects per cluster in the Rome Taxis dataset. The two cluster evolution paths are further
inspected, which consists of inspecting the only cluster they have. Cluster c8657 starts and
ends at the taxi parking lot near the airport of Rome. Such elevated number of spatial-
temporal objects is consistent with expectations. Cluster c8904 exists near Piazza Navona,
a square in Italy famous for several art masterpieces by well-known Baroque artists. Both
clusters exist on February 14, but the first exists from around 5 PM to almost 9 PM and
the second one exists from 9 PM to 9:30 PM. Notice the importance of this square during
Valentine’s Day. Although interesting, the clusters do not share any spatial-temporal
objects.
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4.3 Case Study 2

This section details Case Study 2, and the ideas of ever-increasing or ever-decreasing regions
in graph-based cluster evolution, average rate of change (AROC), and the connections with
offer and demand of spatial-temporal services.

Graph-based cluster evolution can be analyzed by considering the cluster evolution
paths that start from a spatial-temporal cluster. Recall that a cluster evolution path is
a sequence of clusters ci,tj or a path in a graph. Each cluster ci,tj has several properties
including the number of spatial-temporal objects in it, called the size of the cluster. Given
these definitions, the ever-increasing region of a cluster evolution path is a subpath where
the size of the clusters ci,tj either increases or stays the same when compared to the size
of the cluster at the previous timestamp ci,tj−1

. An ever-decreasing region is similar but
having the size of clusters decreasing or staying the same. Note that these regions do not
need to start at the first cluster of a cluster evolution path, and that a cluster-evolution
path may have several ever-increasing or ever-decreasing regions. These regions can be
represented by a pair of clusters, the one at the start of the region and another at the end.
Alternatively, ever-increasing or decreasing regions can be represented by the timestamps
at their start and end.

Ever-increasing or ever-decreasing regions can provide insights about the behavior of
spatial-temporal clusters or the contained spatial-temporal objects especially when an-
alyzed with other contextual information. For example, a cluster path with an ever-
decreasing region indicates the place or time where spatial-temporal objects disperse in
the road network, leaving the city center.

The identification of ever-increasing or ever-decreasing regions allows for the calculation
of AROC in cluster size. This rate quantifies how fast a spatial-temporal cluster grows
or shrinks. If ci,tj and ck,tℓ are the clusters at the start and end of an ever-increasing or
ever-decreasing region, respectively, and | · | calculates the size of a cluster, then AROC
can be calculated as follows, which simply divides the difference in size by the difference
in time.

AROC =
|ck,tℓ | − |ci,tj |

tℓ − tj

Positive values for AROC mean that the cluster grows and negative values for AROC
mean that the cluster shrinks.
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Case Study 2 identifies the lengthiest ever-increasing region of all cluster evolution
paths in the Rome Taxis dataset. Then, two cluster evolution paths, one with a short ever-
increasing region and another with a long ever-increasing region, are selected for further
analysis. Their growth pattern is plotted and analyzed. The query to identify the longest
ever-increasing regions of all cluster evolution paths in the dataset is written in Cypher,
the graph query language from Neo4j, and its code is available in Appendix B.2.

Table 4.23 shows the result of this query. There are 7,666 longest ever-increasing regions
in the Rome Taxis dataset. The table does not include all 7,666 regions because of space
limitations, but some regions are shown for a discussion of the results. The number of
regions is smaller than the total of 18,639 cluster evolution paths in the dataset found
in a query in the previous section for two reasons. First, if a cluster evolution path has
more than one ever-increasing region, then the query selects the longest one with respect
to the number of spatial-temporal cluster relationships. If there is more than one, then
the query selects all of them. Second, some cluster evolution paths are short, ending at
the timestamp where they started. This does not produce any subpath for the query to
examine. Table 4.23 contains the cluster evolution path in the first column, followed by
information about the identified ever-increasing region: the start and end cluster, the start
and end timestamp, and the start and end size.

The map in Figure 4.9 shows the locations in green where the ever-increasing regions
start. The map also shows the locations in black where these regions end, but some are
below the symbols for start locations. The overall map shows that these regions start in
several places in Rome, including the Rome international airport, at the bottom left part
of the figure. The overall map does not include details. For this reason, part of the overall
map is highlighted. The detailed map shows the center of Rome and several of the locations
where ever-increasing regions start and end. Note that there is no particular pattern to
the start or end locations of the regions, as they start or end in several different places,
including tourism sites, terminals, or regular taxi stands in the city.

Consider the cluster evolution path in the first line of Table 4.23. It contains only the
spatial-temporal cluster c15995. Its start and end cluster, therefore, are the cluster c15995
as shown in the second and third columns of the table. The identified ever-increasing
region starts at 10:30 AM and ends at 11:18 AM. At the start, the cluster contains three
spatial-temporal objects and it ends with seven.

It is interesting to note that the largest end size observed is 12. This does not mean
that the largest cluster in the dataset has at most 12 spatial-temporal objects. It does
mean that, among all ever-increasing regions in this dataset, the largest one has at most
12 spatial-temporal objects. A cluster formed by 20 spatial-temporal objects grouped
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Figure 4.9: The locations where ever-increasing regions of all cluster evolution paths start,
in green, and end, in black, for Case Study 2.
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Table 4.23: The ever-increasing regions of every cluster evolution path in the Rome Taxis
dataset.

Cluster Start End Start End Start End
Evolution Path Cluster Cluster Timestamp Timestamp Size Size
[c15995] c15995 c15995 2014-02-26 10:30:01 2014-02-26 11:18:01 3 7
[c7442] c7442 c7442 2014-02-13 06:26:01 2014-02-13 06:34:01 4 8
[c15854,c15871] c15854 c15854 2014-02-26 06:33:01 2014-02-26 06:39:01 5 8
[c6919,c6923,c6928] c6919 c6919 2014-02-12 13:31:01 2014-02-12 13:32:01 3 4
[c6919,c6923,c6928] c6923 c6923 2014-02-12 13:33:01 2014-02-12 13:34:01 3 7
[c6921,c6923,c6928] c6921 c6923 2014-02-12 13:32:01 2014-02-12 13:34:01 3 7
[c1280] c1280 c1280 2014-02-04 05:49:01 2014-02-04 07:07:01 3 9
[c14228,c14231] c14228 c14228 2014-02-24 06:15:01 2014-02-24 06:23:01 3 10

together and decreasing in size as time passes would not be listed in the table because
there is no ever-increasing region, despite having more spatial-temporal clusters. However,
it happens that the largest size of all spatial-temporal clusters in the dataset is 12. This
indicates that taxi drivers are aware of the size of the clusters and avoid clusters composed
of more than 12 taxis. In the analyses below, two cluster evolution paths are selected. The
largest size of these cluster evolution paths is not greater than 10 as the figures show. This
number is not chosen, but it may be a natural consequence of the reason explained here.

Further inspection of the results shows that the cluster evolution path containing the
spatial-temporal cluster c1280 and the other path containing the clusters c14228 and c14231
are one of the shortest and one of the longest paths in the dataset. They are selected for
a detailed analysis. The first cluster evolution path happens at the taxi parking spot near
the Rome airport and the second path happens at the street Via Boncompagni, where
many luxury hotels are located. Both end near the locations where they started.

Figure 4.10 shows a plot of the size per minute of cluster c1280 in the ever-increasing
region. In the figure, the x-axis starts at the time the ever-increasing region starts, which
is the same time cluster c1280 starts, which is 2014-02-24 05:49:01. Other points on the
axis show the amount of time, in minutes, that has elapsed since this start time. The plot
shows one small increase in the number of spatial-temporal objects contained in cluster
c1280, followed by a steady moment, which is followed by a high increase. The plot is divided
into these three sections and the AROC in cluster size is calculated for each section. Results
are shown in the plot. The first section, with a small increase, has an AROC of 1 spatial-
temporal object per minute, represented as 1 sto/min, while the second section has an
AROC of 0 sto/min. These are trivial results. The third section yields more interesting
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Figure 4.10: A plot of the size of cluster c1280 per minute in the ever-increasing region.

calculations. In this section, the AROC is calculated from the x value of +51 to +64 and
is 0.38 sto/min. This confirms a slow growth of the cluster and of the cluster evolution
path containing it.

When analyzing the plot and the spatial and the temporal dimension of the cluster,
it is possible to conclude that cluster c1280 is formed by taxis waiting for passengers to
take them to their destinations. However, no passenger needed a taxi at that moment.
For example, since no relationship related to spatial-temporal objects leaving the cluster
is detected, the three taxis that formed the cluster wait at least 1 hour and 20 minutes
for the first passenger. It can be concluded that this is a situation of low demand and
high offer. Analyses such as this can have a great impact on the price of spatial-temporal
services at certain locations.

Figure 4.11 shows a plot of the size of cluster c14228 per minute in the ever-increasing
region. In the figure, the x-axis starts at the time the ever-increasing region starts, which
is the same time at which cluster c14228 starts, namely 2014-02-24 06:15:01. Other points
on the axis show the amount of time, in minutes, elapsed since this start time. The plot
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also shows a small increase, a steady moment, and a longer increase, and there can be a
comparison with the plot in Figure 4.10. However, in general, the plot shows a steady
increase in the number of spatial-temporal objects and dividing the plot into sections
does not seem to add value. Instead, the graph is analyzed as a whole. An AROC of
0.875 sto/min is calculated for the entire graph and it is shown in the plot. If the small
steady region at the top of the plot is excluded from the analysis, that is if only the data
from +0 to +7 is considered, then the AROC is exactly 1 sto/min. Considering that this
ever-increasing region takes less than 10 minutes, this result shows and confirms a rapid
growth of the cluster and the cluster evolution path that contains it.

When analyzing the plot and the spatial and temporal information of the data about
the cluster, that is its location and timestamp, it is possible to conclude that cluster c14228
is formed by several taxi drivers turning on their GPS devices at the moment they start to
work, beginning to record spatial-temporal measurements and become ready for passengers.
The fact that they share a common time to start working explains the rapid growth of the
cluster. It is possible therefore, to identify the start time of the work shift. Analyses
such as this one have impacts on the readiness to provide spatial-temporal services as they
quantify it, leading to other types of analysis, such as those in the fields of economy or
health, that can assess, for example, the wages or health of taxi drivers.

4.4 Case Study 3

This section details Case Study 3. It describes what cluster evolution path similarities are,
how they can be calculated, and some analysis opportunities that can be considered.

Similarity is a fundamental concept in ML, as analysis methods compare features of
a new data point under examination with features of other data points for classification
or clustering tasks. However, in some cases, defining similarity can be challenging. For
instance, it can be trivial to define a similarity metric for house prices, but defining a
similarity metric for faces requires more studies. In general, though, a similarity value
is calculated based on quantifiable measurements about the nature or property of the
data points. One such property is the sequential nature of data. Words can be viewed
as a sequence of letters and a list of student grades can be interpreted as a sequence
of numbers. A simple way to calculate similarity between two sequences is to sum the
differences between the values on each position in the sequence, which produces a distance
value, and take its reciprocal. In the case of two words, or sequences of letters, the distance
can be the difference between the position of the letters in the alphabet. This simple
method, however, assumes that the sequences have the same length. In the context of
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Figure 4.11: A plot of the size of cluster c14228 at every minute.
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graph-based cluster evolution, sequences are derived from cluster evolution paths and their
lengths may differ.

Dynamic Time Warping (DTW) [9, 117, 32] is an algorithm to calculate the similarity
between two temporal sequences of possibly different lengths. One common application
of DTW is speech recognition. The DTW algorithm proceeds by iterating over the two
sequences and choosing the minimum difference between the value stored current or next
position in the first sequence and the value stored in the current or next position in the
second sequence. For DTW to be used in the context of graph-based cluster evolution,
some adaptations are required. First, cluster evolution paths are formed by clusters of
spatial-temporal data ci,tj . Previous sections have described a way to compare two such
clusters using an extended version of Jaccard similarity, but it assumed that the clusters
are at consecutive timestamps. When comparing clusters in two cluster evolution paths,
this assumption does not hold. In fact, the clusters may not even share a single spatial-
temporal object. Calculating a “difference” between these clusters becomes a challenging
task. The solution is to derive two new sequences based on the properties of the clusters
in the cluster evolution paths. For example, a new sequence can contain the number of
spatial-temporal objects at the timestamp of the cluster, that is the size of the cluster, at
each position. Comparisons between these new sequences then become the calculation of
difference between these sizes, allowing DTW to be used.

Case Study 3 analyzes cluster evolution paths by calculating their similarity, and then
shows useful results that can be derived from this calculation, before suggesting novel
analysis methods that can use the similarity value. Data for this case study comes from
the T-Drive dataset, more specifically of cluster evolution paths that start near the Beijing
Capital International Airport, around Terminals 1 and 2. To calculate the similarity value
between two cluster evolution paths, two new sequences are derived containing the number
of spatial-temporal objects that each cluster in the path contains and, then, the DTW
algorithm is used to compare these two new sequences. Time is divided into 24 slots, each
representing one hour, and comparison happens between cluster evolution paths within
the time slots, but regardless of the day. The query to identify cluster evolution paths
in the dataset and to create part of the results table are written in Cypher, the graph
query language from Neo4j, and their code are available in Appendix B.3. The query for
the calculation of the similarity is written in Python using libraries for pandas6, a Python
Data Analysis library, and fastdtw78, an implementation of FastDTW [111, 112], which
is a fast implementation of the DTW algorithm with optimal linear time and memory

6https://pandas.pydata.org
7https://pypi.org/project/fastdtw/
8https://github.com/slaypni/fastdtw
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complexity.
Some considerations are discussed. In the entire T-Drive dataset, there are 244,737

clusters that can start cluster evolution paths. In an attempt to reduce the number of
these clusters, cluster evolution paths that exists for just one timestamp, and those that
start in a timestamp and end on the next one, are filtered out of the analysis. This reduces
the number of clusters that can start cluster evolution paths to 5404. These clusters now
should be filtered to capture only those which are near the Beijing airport. The map in
Figure 4.12 shows the airport building, its terminals, and the locations of clusters that start
cluster evolution paths near the airport. In the middle of the figure, the road network forms
a rectangle where cars can access terminals 1 and 2. These terminals are located at the top
and left sides of this rectangle. The locations of clusters that start cluster evolution paths
are represented with dots on the map. The difference in colors of the dots is explained
shortly. Selecting the relevant locations can be done by using the latitude and longitude
coordinates of the airport and using a radius that spans from the location represented by
these coordinates, creating a circular region whose contained dots are selected. However,
based on the geometry of the roads near the airport, a circular selection would include
dots that are relatively far from the airport terminals, that is the clusters around the
right or bottom sides of the rectangle. Instead, selection of the relevant dots, representing
the location of clusters that start cluster evolution paths, is done manually, based on the
visualization of these dots. In Figure 4.12, the dots in yellow, and the respective locations
they represent, are selected for the Case Study 3.

There are 175 different locations selected. The locations in the Figure 4.12 come from
the spatial-temporal clusters that start cluster evolution paths. Therefore, selecting loca-
tions effectively selects the clusters for the analysis. Cluster evolution paths from these
clusters are identified and a new sequence containing the size of the cluster at the times-
tamps they have spatial-temporal cluster relationships is created for each path. Cluster
evolution paths are grouped based on their starting hour of the day, their new sequences
are compared using the FastDTW algorithm. Results are as follows.

Tables 4.24 and 4.25 show the results of this analysis. Data in the tables is grouped by
the hour of the day as shown in the first column. It uses a 24-hour clock. For instance,
the row for hour 8 effectively relates to the time from 8:00:00 AM to 8:59:59 AM. In Table
4.24, the second column shows the list of clusters that can start cluster evolution paths
near the Beijing airport for a specific hour. Note that this table does not show any cluster
evolution path. Table 4.25 shows the number of clusters that can start cluster evolution
paths in that hour in the second column. The third column relates to an aggregated value
over all the cluster evolution paths starting on the hour for that row. Specifically, it shows
the number of different spatial-temporal clusters that exist in all cluster evolution paths
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Figure 4.12: The many locations where cluster evolution paths start near the Beijing
airport. The locations in yellow are the selected ones for Case Study 3.
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for the hour of a specific row. The fourth column has the number of cluster evolution
paths that start in the hour of a specific row. The fifth column contains the number
of cluster evolution paths performed. Notice that this column can be calculated from
the value in the fourth column since the number of comparisons is the combination of
the number of cluster evolution paths taken in pairs, or C(n, k), where n is the number
of cluster evolution paths and k = 2. FastDTW calculates a distance, or dissimilarity,
value. As comparisons happen, the sum of distance values is updated. The sixth column
shows this sum of distance values. Finally, the seventh value shows the effective similarity
value for that hour of the day. However, some considerations are discussed. In general, a
similarity value is the reciprocal of the distance value. However, calculating the reciprocal
of the value in the sixth column would create similarity values for different hours that are
not comparable because the number of cluster evolution paths, and therefore the number
of comparisons, is different for each hour. To solve this, the similarity value is averaged
by dividing it by the number of cluster evolution path comparisons. This normalizes the
similarity value and allows comparison between rows.

Among the results in Table 4.25, note that no cluster evolution paths are detected at
the hours 5 or 6 of the day and, therefore, no similarity value can be calculated. A similar
situation happens at hour 7, where only one cluster evolution path is detected. The lack
of cluster evolution paths starting near the airport at hours 5 or 6 can be explained by
the work hours. Naturally, taxi drivers stop working in the evening and restart working in
the morning. This impacts the number of cluster paths formed. Additionally, as explained
previously, cluster evolution paths whose existence is short are filtered out. Some of these
clusters can be listed on hours 5 or 6, but are not analyzed because of this restriction. Note
also that, based on the number of clusters in all cluster evolution paths for an hour, as in
the fourth column, hours 8 and 16 rank at the top with 46 and 57 clusters respectively.
Lastly, note the number of cluster evolution paths detected starting at hours 15 and 16
and the consequent number of comparisons. Results for these two rows are challenging to
calculate and computations are divided into parts and then aggregated.

The results in Table 4.25 are plotted in Figure 4.13 for an improved visualization. The
figure shows six plots, each for one of spatial-temporal clusters that start cluster evolution
paths, the number of spatial-temporal clusters in all cluster evolution paths, the number
of cluster evolution paths, the number of cluster evolution path comparisons, the sum of
distance values, and the similarity value. The plots are aligned based on the hour of the
day, in the x-axis, so that they can be compared. Note also that some values are very
high and showing them would reduce the details of other values that are not so high. In
the interest of displaying more information in the plots, the plots of these values are not
shown, but their exact numerical value and a mark on the hour they happen are shown in
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Table 4.24: The spatial-temporal clusters that start cluster evolution paths around the
Beijing airport alongside the hour they are formed.

Hour Spatial-Temporal Clusters that Start Cluster Evolution Paths
0 c41834,c104054,c166213,c213306,c239066
1 c43160,c43316,c44241,c44625,c105586,c106508,c167169,c167566,c213856
2 c44881,c106984,c107009,c107329,c213989
3 c107860,c108156,c168581,c214257
4 c46295,c46435,c214581
5 -
6 -
7 c109437
8 c47459,c47779,c47879,c48080,c109801,c170675,c170824,c215011,c215139,c215140,c215239,c215327,c229419
9 c48662,c49244,c110580,c110710,c112032,c170979,c171800,c171945,c215511,c215693,c240080
10 c50393,c50417,c51045,c52042,c115074,c229788
11 c55351,c116911,c117628,c176553,c176734,c177109,c217116,c217658,c230205
12 c57052,c58723,c120405,c181357,c218880,c230739,c242385
13 c702,c61029,c62159,c63638,c124175,c126225,c127797,c184405,c184512,c220424,c231146,c242977,c243746
14 c4131,c4430,c4463,c65752,c186010,c187017,c187409,c221012,c244908
15 c7177,c7366,c7530,c8414,c69171,c69474,c71594,c189344
16 c11846,c72463,c72505,c74161,c75991,c136500,c138982,c192196,c223119,c234148,c246231,c246938
17 c14441,c76250,c76346,c77187,c77523,c78860,c80113,c144171,c196190,c197621,c224179,c234621,c247757
18 c18263,c145633,c200096,c225739,c225973
19 c24226,c25812,c85714,c86310,c87096,c88388,c150049,c152640,c202530,c204574,c226418,c236838
20 c27097,c27494,c29246,c89645,c90704,c154717,c205729,c227611
21 c33652,c34745,c95667,c158180,c158708,c208777,c227707,c237883,c238119
22 c36534,c98326,c98479,c98964,c161382,c210929,c238543
23 c40931,c162750,c163471,c164324,c211505,c211924
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Table 4.25: A summary of the results of Case Study 3.

Number of Number of
Spatial- Spatial-

Temporal Temporal
Clusters Clusters Number of

that Start in All Number of Cluster
Cluster Cluster Cluster Evolution Sum of

Evolution Evolution Evolution Path Distance Similarity
Hour Paths Paths Paths Comparisons Values Values

0 5 5 5 10 96 0.10417
1 9 13 16 120 1,352 0.08876
2 5 9 19 171 1,309 0.13063
3 4 5 5 10 269 0.03717
4 3 3 3 3 14 0.21429
5 0 0 0 0 0 0.00000
6 0 0 0 0 0 0.00000
7 1 1 1 0 0 0.00000
8 13 46 188 17,578 451,674 0.03892
9 11 39 136 9,180 365,521 0.02511

10 6 23 583 169,653 1,989,121 0.08529
11 9 14 16 120 1,497 0.08016
12 7 32 718 257,403 10,184,999 0.02527
13 13 19 38 703 14,859 0.04731
14 9 20 28 378 9,119 0.04145
15 8 42 38,241 731,167,920 26,497,775,571 0.02759
16 12 57 9,503 45,148,753 1,934,382,580 0.02334
17 13 35 334 55,611 1,384,936 0.04015
18 5 7 6 15 219 0.06849
19 12 13 12 66 801 0.08240
20 8 13 19 171 2,232 0.07661
21 9 13 16 120 5,357 0.02240
22 7 9 9 36 483 0.07453
23 6 9 8 28 195 0.14359
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the plots.
Based on the number of clusters formed at cluster evolution paths, shown in the second

plot in Figure 4.13, it is possible to conclude that the hours 8 and 16 are the busiest hours
and hours 5, 6, and 7 are the least busy hours at the Beijing airport. This is consistent
with what is expected in most airports, whose busiest hours happen sometime from 8am to
6pm. The reason why hours 8 and 16 are the busiest hours in this airport can be explained
by the preference of passengers for morning or early evening flights. The price of flight
tickets is the main reason as early morning or late afternoon flights tend to be cheaper,
but this is not the only one. Long international flights happen at night when possible, and
passengers are advised to arrive early for these flights. This may explain part of the high
number of clusters in hour 16. Moreover, several of these flights arrive at their destinations
in the morning of the following day, which explains part of the results for hour 8.

The third plot in Figure 4.13 shows the elevated number of cluster evolution paths
that start at hours 15 and 16. The plot also shows that hours 10 and 12 have a high
number of cluster evolution paths. This usually happens when spatial-temporal clusters
have several relationships with other clusters around them. Depending on when these
relationships happen, several other cluster evolution paths can be formed. Moreover, when
spatial-temporal clusters have several relationships with clusters around them, it means
that there are many clusters nearby and that clusters exist for a long period of time.
The main conclusion of this plot is that, at hours 10 and 12, but specially at hours 15
and 16, there are many spatial-temporal clusters of taxis around the Beijing airport, these
clusters are close enough such that many relationships happen, and they form longer cluster
evolution paths. Further analysis of the data about spatial-temporal objects of these paths
can indicate, for example, the most profitable terminal or position to wait for passengers.

Figure 4.13 shows, in its sixth plot, the average similarity value of cluster evolution
paths for each hour of the day. Note that hours 4 and 23 have the highest similarity.
The comparison between the average similarity value, in the sixth plot, with the number
of cluster evolution paths, in the third plot, yields interesting results. Note that data is
inversely proportional. In other words, the greater the number of cluster evolution paths
in an hour, the lower the overall similarity between these paths. This indicates that cluster
evolution paths are developing different, at least with respect to the size of their spatial-
temporal clusters. The correlation between these two sets of data is approximately -0.182.
When comparing the average similarity of cluster evolution paths in an hour of the day and
the number of clusters in all cluster evolution paths in that hour, the inverse correlation is
even more explicit, with a value of approximately -0.297. Comparisons between different
times of the day are to be carried out and may uncover additional insights.
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Figure 4.13: The plot of six metrics about cluster evolution paths near the Beijing airport
in the T-Drive dataset.
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As stated at the beginning of this section, a similarity value is essential for many ML
analysis methods. The calculation of a similarity value between cluster evolution paths
allows for several other analysis tasks. For example, given that one driver knows how to
avoid traffic jams, or bad roads, or any other traffic problems in a city, the cluster evolution
path, that is the sequence of spatial-temporal clusters, in which this driver participates is
deemed favorable. Similar cluster evolution paths can then be found, perhaps in other
cities, or be discovered. ML tasks, such as classification or clustering, are enabled for
cluster evolution as well as other similarity-based analysis methods.

4.5 Case Study 4

This section describes the Case Study 4. The section discusses important analysis points
related to graph-based cluster evolution, such as the direction and distance of movement,
the distribution of cluster evolution paths per region or day, and temporal aspects of such
paths.

Clusters can be used for several tasks, including classification or outlier detection.
Therefore, the presence and identification of these clusters can bring many benefits to
interested parties, depending on the domain. In the spatial-temporal domain, clusters can
be used to identify people or vehicles that move together, thus sharing some characteristics,
which assists in the classification of outlier detection tasks. However, some spatial-temporal
clusters, such as those of taxis, are not always desirable, whether stopped or moving. For
instance, taxis clustered stopped together in a cluster may indicate idle taxis or a traffic
jam. This could produce higher costs for the taxi driver, the taxi company, and eventually
the passenger. In addition, taxis moving together in a cluster may indicate car-sharing or
ridesharing opportunities, especially if the cluster exists for a long time. Ways to analyze
the movement of spatial-temporal clusters and, in a broader sense, the cluster evolution
paths that they eventually form has the potential to bring important improvements to a
city.

In graph-based cluster evolution, cluster evolution paths are formed when spatial-
temporal objects group together, creating clusters, and these clusters have relationships
with other clusters. Cluster evolution paths have well-defined start and end points as well
as other characteristics, such as the number of spatial-temporal clusters or objects in a
cluster, ever-increasing or ever-decreasing regions, and a similarity with other cluster evo-
lution paths. Cluster evolution paths contain spatial-temporal clusters, and these clusters
move. It is then possible to analyze the movement that a cluster evolution path describes.
Analyzing features such as the direction, distance, time, region of the movement are novel
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aspects of cluster evolution paths that contain valuable data to be explored. In addition,
analyzing a single cluster evolution path can uncover novel results, but graph-based cluster
evolution allows for an aggregated analysis of all cluster evolution paths either in a day,
region, or in the entire data set. This enables novel perspectives on spatial-temporal data
and allows for many opportunities for improvements, such as improvements to the road
network leading to crowded regions of a city or improvements to the public transportation
system at given days or hours when demand is high.

Case Study 4 analyzes the movement of cluster evolution paths starting at specific
points. The analysis takes into consideration the direction, distance, time, and region
of the movement and produces aggregated results that can be used for improvements in
several aspects of a city, such as city planning, its traffic, or its road network.

The data used in the analysis of Case Study 4 comes from the T-Drive dataset, which
contains spatial-temporal data about taxis in Beijing, China, in 2008, the year in which
the city hosted the Olympic Games. The city of Beijing has four main train stations, one
on each side of the main square. Because of their locations, and to simplify the names,
they are called here Beijing North, Beijing South, Beijing West, and Beijing East train
stations. The analysis in Case Study 4 considers cluster evolution paths that start near
the Beijing West and Beijing East stations.

Some limitations are considered and discussed. Unfortunately, there are not enough
cluster evolution paths starting near the Beijing North and Beijing South train stations for
analysis, thereby impacting aggregated results. For this reason, only cluster evolution paths
that start near the Beijing West and Beijing East stations are considered. In addition, in
an attempt to identify relevant cluster evolution paths, some paths are filtered out. First,
cluster evolution paths that start and end at the same timestamp or that start at some
timestamp tj and end at the next timestamp tj+1 are not considered for analysis because
of their brief existence. Second, the analysis seeks cluster evolution paths that moved at
least 500 meters from their start location and does not consider other cluster evolution
paths. The number 500 is arbitrary and is chosen to make sure that the movement of
cluster evolution paths are observed and that interesting phenomena are analyzed.

In summary, Case Study 4 analyzes the movement of cluster evolution paths that start
near the Beijing West and Beijing East stations that moved for at least 500 meters in the
T-Drive dataset. More specifically, the direction of movement, based on cardinal points
of the compass and a distribution of the movement by day and region are calculated and
discussed. In addition, analysis on the time of cluster evolution path formation and the
distance traveled is performed. The four analysis questions below guide the results and
the conclusions.
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1. What is the general destination of the cluster evolution paths?

2. What is the distribution of cluster evolution paths by region and by day?

3. What time of the day are clusters evolution paths forming?

4. What is the largest distance traveled in the movements represented by cluster evo-
lution paths formed near each train station?

There are 244,737 locations where cluster evolution paths start in the entire T-Drive
dataset, but this value reduces to 5,404 after some of the limitations discussed. Figures
4.14 and 4.15 show the two train stations in Beijing and some locations where cluster
evolution paths start. In this analysis “near” or “around” a specific location is not precise.
Cluster evolution paths near the two train stations are manually selected using subjective
best judgment. In the maps in Figures 4.14 and 4.15, the locations marked in yellow are
selected for analysis. The data about the location where cluster evolution paths start comes
from the first cluster of each path. Thus, selecting locations effectively means selecting the
first cluster of each cluster evolution path.

A total of 116 clusters that start cluster evolution paths exist near the Beijing West
train station, but only 8 of these clusters developed 26 cluster evolution paths that describe
movements of at least 500 meters. The situation is different at the other train station.
A total of 152 clusters that start cluster evolution paths exist near the Beijing East train
station, and 59 of these clusters developed an expressive number of 35,002 cluster evolution
paths that describe movements of at least 500 meters.

A conclusion can be drawn from these figures. In the case for the Beijing West train
station, very few cluster evolution paths describe movements of at least 500 meters, in-
dicating that spatial-temporal clusters tend to disperse as soon as they move away from
the train station. In the case for the Beijing East train station, almost half of the clusters
that start cluster evolution paths generated a significant number of paths that represent
movements of at least 500 meters, which indicates that, for example, car-sharing or ride
sharing should be considered.

The remainder of this section discusses the results and conclusions for each of the four
analysis questions described.

What is the general destination of the cluster evolution paths?

The direction of the movement described by cluster evolution paths can be described
based on the cardinal points: north (N), south (S), west (W), and east (E). To express the
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Figure 4.14: The location where cluster evolution paths start near the Beijing West train
station in the T-Drive dataset. Locations marked in yellow are considered for analysis.
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Figure 4.15: The location where cluster evolution paths start near the Beijing East train
station in the T-Drive dataset. Locations marked in yellow are considered for analysis.
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Table 4.26: The direction of movement represented by cluster evolution paths near the
Beijing West and Beijing East train stations in the T-Drive dataset.

Cardinal Beijing West Beijing East
Direction Train Station Train Station
E 61.54% 4.58%
NE 11.54% 95.13%
N 26.92% 0.29%
NW 0.00% 0.00%
W 0.00% 0.00%
SW 0.00% 0.00%
S 0.00% 0.00%
SE 0.00% 0.00%

direction of movement in an improved way, the intercardinal points can also be included:
northwest (NW), northeast (NE), southwest (SW), and southeast (SE). All eight directions
are used in this analysis.

Identifying the direction of the movement represented by the cluster evolution paths
happens as follows. Since cluster evolution paths are a sequence of occurrences of spatial-
temporal clusters at timestamps, the location of the cluster at the first and last timestamps
are captured. Since the curvature of Earth does not have significant effects in relatively
small distances, the region of the movement can be seen as a plane, such as a map on a
table. The two locations then are two points that form a line connecting them. The angle
that this line forms with a horizontal line in this map is calculated based on the differences
between latitude and longitude coordinates at the end and start points and using either
the arcsine or arccosine functions. This angle is then compared with the angles in the
8-point compass rose, finally defining the direction. The code for this operation is written
in Cypher, the graph query language from Neo4j, and is available in Appendix B.4.

Table 4.26 shows the results for this analysis. Note that the table has columns of results
for each train station analyzed and values in percentages are relative to the respective train
station. In the case of the Beijing West train station, there are 16 (61.54%) movements
represented by cluster evolution paths in the East direction, while in the case of Beijing
East train station, there are 33,298 (95.13%) movements represented by cluster evolution
paths in the northeast direction. Overall, the results tend to show a movement of spatial-
temporal clusters towards the Eastern region of Beijing. Improvements to the road network
should focus on this region.
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What is the distribution of cluster evolution paths by region and by day?

The T-Drive dataset contains spatial-temporal data about several taxis serving passengers
in the city of Beijing that was captured in a week, from February 2, 2008 to February
8, 2008. This short amount of time allows for analysis of any distribution by day and a
compact view of the results. The distribution by region is the same as observed in the
previous analysis, based on cardinal points. In this analysis, results are aggregated and
distributed over two dimensions, instead of just one as in the previous result.

As explained in the previous analysis, the identification of the direction of the move-
ments represented by the cluster evolution paths is calculated based on the angle that the
line passing through the start and end points of the movement has with a horizontal line in
a plan, like a map on a table. Results are then aggregated based on the 8-points compass
rose. This time, results are also aggregated by day, using both the spatial and temporal
dimensions of the data. The code for this operation is written in Cypher, the graph query
language from Neo4j, and is available in Appendix B.4.

Table 4.27 shows the results for this analysis. Note that the table has columns of results
for each train station analyzed and values in percentages are relative to the respective train
station. The first column of the table has rows for each day of measurements. The other
columns are described in pairs, one column for the case in the Beijing West train station
and another column for the case in the Beijing East train station. The first pair of columns
shows the percentage of cluster evolution paths that started at the date specified by the
row. The second pair of columns shows the region where the greatest number of movements
represented by cluster evolution paths is directed at the date specified by the row. Finally,
the third pair of columns show percentage of movements represented by cluster evolution
paths that moved in the direction of the second pair of columns in the date specified by
the row.

Overall, the same trend in movement observed in the previous analysis can be observed
in the results of this analysis. The second pair of columns of Table 4.27, the fourth and
fifth columns, shows a movement towards the east and northeast direction. It is interesting
to note a trend in movement towards the north. Results for February 3, for example, show
equal movement between the regions of North and Northeast. In addition, note that,
according to the first pair of columns, the second and the third columns, February 4
(Monday) and February 5 (Tuesday) are the days when the greatest number of cluster
evolution paths are detected. This is independent of the train station considered in the
analysis. This indicates that most cluster evolution paths are formed at the beginning of
the week and not at the end of it. This result is confirmed by the values at the bottom
of the table, showing that no cluster evolution path exists at the end of the week. This

124



Table 4.27: The distribution of the region and date of the movement represented by cluster
evolution paths near the Beijing West and Beijing East train stations in the T-Drive
dataset.

Percentage
Percentage Region Following Region

Beijing Beijing Beijing Beijing Beijing Beijing
West East West East West East
Train Train Train Train Train Train

Date Station Station Station Station Station Station
February 2nd, 2008 7.69% 0.05% NE NE 100.00% 100.00%
February 3rd, 2008 7.69% 1.09% N/NE NE 50.00% 50.13%
February 4th, 2008 23.08% 94.66% N NE 100.00% 99.19%
February 5th, 2008 61.54% 4.19% E E 100.00% 84.57%
February 6th, 2008 0.00% 0.01% - E - 100.00%
February 7th, 2008 0.00% 0.00% - - - -
February 8th, 2008 0.00% 0.00% - - - -

result indicates the region and the day where improvements in the city infrastructure can
be directed. In addition, since clusters that move for a long time represent car-sharing or
ridesharing opportunities, changes in the price of such services can be considered based on
the spatial and temporal dimensions of data.

What time of the day are clusters evolution paths forming?

Identifying and analyzing the time of the day cluster evolution paths start assists in the
decision-making process related to improvements in the road network or traffic system
controls in a city. For example, during long trips, vehicles tend to enter or leave several
clusters of vehicles, which may form cluster evolution paths. If several paths tend to start
at a specific time, or time of the day, then additional measures could be taken at the
specific time of the day to avoid congestion or other problems.

In this analysis, time is divided into four times of the day, namely, early morning, morn-
ing, afternoon, and evening. Early morning comprises the time from 12 AM (midnight) to
6 AM (exclusive). Morning represents the time from 6 AM to 12 PM (noon) (exclusive)
and afternoon is the time from 12 PM (noon) to 6 PM (exclusive). Lastly, evening is
defined as the time from 6 PM to 12 AM (exclusive). The starting point of every cluster
evolution path is queried from the dataset, their times are captured and classified into one
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Table 4.28: A distribution of the movement represented by cluster evolution paths near
the Beijing West and Beijing East train stations in the T-Drive dataset by the time of the
day.

Time of Beijing West Beijing East
the Day Train Station Train Station
Early Morning 0.00% 2.98%
Morning 69.23% 3.28%
Afternoon 23.08% 1.95%
Evening 7.69% 91.79%

of the four times of the day. The code for this operation is written in Cypher, the graph
query language from Neo4j, and is available in Appendix B.4.

Table 4.28 shows the results for this analysis. Note that the table has columns of results
for each train station analyzed and values in percentages are relative to the respective train
station. The first column of the table contains the four times of the day discussed, followed
by two columns with results for each train station in the analysis. Note that, for the case
of the Beijing West train station, 18 (69.23%) cluster evolution paths exist in the morning,
showing that this station is chosen by passengers arriving in Beijing in the morning. Note
also that, for the case of the Beijing East train station, 32,127 (91.79%) cluster evolution
paths start in the evening, showing that this station is chosen by passengers returning to
Beijing in the evening. It is an interesting phenomenon that indicates that passengers may
start the day in one station and end it in another. One possible reason is traffic. These
results assist in the allocation of time and resources when investing in improvements in a
city.

What is the largest distance traveled in the movements represented by cluster
evolution paths formed near each train station?

Cluster evolution paths are not a movement, but rather a sequence of clusters. Since
these clusters have a location, it is possible to identify the movement that spatial-temporal
objects have within the path. This query investigates cluster evolution paths by calculating
the distance of the movement that cluster evolution paths represent and identifying the
largest distance for cluster evolution paths starting at each train station. Depending on the
domain, such as taxis, long-distance clusters may not be desirable because they may lead
to redundant trips, which increase costs of operation, and can be solved with car-sharing
or ridesharing opportunities.
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Table 4.29: The longest movements represented by cluster evolution paths with respect to
distance near the Beijing West and Beijing East train stations in the T-Drive dataset.

Train Station Cluster Evolution Path Distance
Beijing West Train Station [c97057] 1598.43 m
Beijing East Train Station [c61462,c61791,c66349,c67692,c68740] 2414.08 m

In this analysis, the movement represented cluster evolution paths starting near each
train station are examined for their distance. In other words, the difference in location
between the first and last cluster occurrence in all cluster paths is calculated, ranked, and
the top results are presented. In Neo4j, the distance between two locations represented
in latitude and longitude coordinates are calculated using the Haversine formula [30, 128]
over a spherical Earth approximation. The results of the calculation are in meters. The
code for this operation is written in Cypher, the graph query language from Neo4j, and is
available in Appendix B.4.

Table 4.28 shows the results for this analysis. Note that the table has rows of results for
each train station analyzed and distance values are in meters and relative to the respective
train station. The first column of the table shows each train station. The second column
shows the cluster evolution path in the respect train station whose represented movement is
the most distant. Finally, the third column shows the distance value of this most distance
movement in meters.

The most distant movement starting from near the Beijing West train station is repre-
sented by the cluster evolution path containing only the spatial-temporal cluster c97057 and
has moved 1,598.43 meters. As it can be seen from the table, the most distant movement
starting from near the Beijing East train station is represented by the cluster evolution
path containing the spatial temporal clusters c61462, c61791, c66349, c67692, and c68740 and has
moved 2,414.08 meters. Such long cluster evolution paths indicate that there are opportu-
nities for car-sharing or ridesharing services or improvements in the public bus system in
the region.
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Chapter 5

Conclusion

This chapter concludes this thesis. The chapter starts with a section containing a summary
of the context of this thesis, followed by a description of the problems and the proposed
solution. The description of the solution is divided into three perspectives: representation,
analysis, and implementation. Then, the four case studies are summarized. Later, the
chapter discusses the limitations of the proposed approach. The chapter ends presenting
some opportunities for future work.

5.1 Conclusion

Spatial-temporal objects are real-world entities that move, such as vehicles on a road.
Their movement can be described by their location, thus the spatial dimension, and the
time, thus the temporal dimension. During their movement, they may group and stay
as a group for some time. A spatial-temporal cluster is a group of spatial-temporal ob-
jects that stay together for some time. During this time, if a spatial-temporal cluster
approaches another cluster, it may enter the second cluster, or they can merge and form
a larger cluster. Similarly, a larger cluster may split into two or more spatial-temporal
clusters. These interactions between clusters happen based on the movement of spatial-
temporal objects a cluster contains. Spatial-temporal relationships are the interactions
that spatial-temporal clusters have with other clusters or spatial-temporal objects. The
structure of spatial-temporal objects and the occurrence of spatial-temporal relationships
happen throughout time. Spatial-temporal cluster evolution refers to the development of
all clusters and their interactions in space and time. Spatial-temporal relationships bind
spatial-temporal clusters such that the evolution of a cluster, from its start, going through
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several relationships, to its end, can be visualized in a connected representation using a
graph. Graph-based cluster evolution refers to the representation of the structure and
relationships of all spatial-temporal clusters in a graph format.

However, there is a lack of studies in three major areas: the representation, the analysis,
and the implementation of graph-based cluster evolution.

There is a lack of studies in the representation of the structure of spatial-temporal
clusters. These clusters exist throughout time and several changes happen to their shape
or number of spatial-temporal objects they contain. There is also a lack of studies in
the representation of the relationships these clusters have with other clusters or spatial-
temporal objects. Identifying these relationships becomes challenging when clusters are
very close to each other. Moreover, there is a lack of studies in the representation of
spatial-temporal cluster evolution in a connected structure, as in a graph. Representing the
structure and the relationships of spatial-temporal clusters in such a connected structure
requires a conversion of representations, from spatial-temporal to a graph notation.

There is also a lack of studies in the analysis methods for the structure of spatial-
temporal clusters. Analysis on properties of clusters such as their location or size are not
available. There is a lack of studies in the analysis methods for the relationships of spatial-
temporal clusters. Analysis on the frequency, or density of these relationships during the
existence of a spatial-temporal cluster are not performed and important conclusions are
not drawn. Moreover, there is a lack of studies in the analysis methods for the graph-
based representation of spatial-temporal cluster evolution. Analysis of the location, time,
or movement of spatial-temporal clusters, including aggregated results among all clusters
in a dataset, are not performed and significant value is missed.

Moreover, there is a lack of studies in the implementation tools, or software support,
for the representation of graph-based cluster evolution. The tools and libraries available
for clustering tasks do not take into consideration the nature of spatial-temporal clusters,
which move in time, or their relationships. There is a lack of studies in the implementation
tools, or software support, for the analysis of graph-based cluster evolution do not exist,
as most tools are available for just general analysis tasks.

The proposed solution in this thesis is an approach for graph-based cluster evolution.
The approach contributes in three main areas: the representation, the analysis, and the
implementation of graph-based cluster evolution.

The solution makes contributions in the representation of the structure of spatial-
temporal clusters. The identification and representation of spatial-temporal clusters follow
a two-step process. First, as spatial-temporal clusters exist at several timestamps, the
approach identifies the slice of a cluster at each timestamp. Second, after each slice of
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a spatial-temporal cluster has been identified, the approach then links them. The ap-
proach uses DBSCAN, a clustering technique, on each timestamp to identify slices of
spatial-temporal clusters and links each slice using a similarity value that is an extension of
Jaccard similarity. The approach makes contributions in the representation of the relation-
ships spatial-temporal clusters have with other clusters or spatial-temporal objects. The
approach identifies 14 spatial-temporal relationships that describe the spatial-temporal life-
time of a spatial-temporal cluster. The approach makes contributions in the construction
of a graph-based representation for spatial-temporal cluster evolution. Once the structure
and the relationships of spatial-temporal clusters are identified, the approach has the in-
formation to represent cluster lifetimes describing information about the evolution of a
cluster, such as its location, relationships, and size. The lifetime is then converted to a
graph format where graph vertices, or graph nodes, are occurrences of this cluster in each
timestamp and graph edges are spatial-temporal relationships.

The solution makes contributions in the analysis of the structure of spatial-temporal
clusters. Several analysis methods can be performed on the location or size of spatial-
temporal clusters to identify size changes, most frequent locations, or the location of in-
teresting phenomena, such as opportunities for car sharing and city improvements. The
solution makes contributions in the analysis of the relationships spatial-temporal clusters
have with other clusters or spatial-temporal objects. Several analysis methods can be per-
formed on the frequency of these relationships or the density at some interval of time,
facilitating discoveries such as clusters that grow or shrink rapidly. The approach makes
contributions in the analysis of a graph-based representation of spatial-temporal cluster
evolution. Several analysis methods can be performed on the movement or evolution of
spatial-temporal clusters, leading to the representation of spatial-temporal cluster paths
and several analysis results in an aggregated format, such as the longest cluster path or a
similarity between cluster paths.

The solution makes contributions in the implementation of the representation of graph-
based cluster evolution. The identification of spatial-temporal clusters uses clustering
techniques present in the scikit-learn library for Python. The linking of slices of spatial-
temporal clusters per timestamp is done in Python, as well as the identification of spatial-
temporal cluster relationships. To have a graph-based representation of spatial-temporal
cluster evolution, the approach converts spatial-temporal cluster lifetimes to a graph for-
mat, using Python, to generate a list of graph nodes and edges. These nodes and edges are
then imported into Neo4j, a graph data platform. The solution has contributions in the
implementation of the analysis of graph-based cluster evolution. Analysis on the structure
and relationships of spatial-temporal clusters or in a connected, graph-based representation
of cluster evolution happens mostly in Neo4j, with several queries to the data imported.
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These queries are written in Cypher, a graph query language, and are saved for reuse.
Four case studies show applications of the approach and its contributions to real spatial-

temporal data in popular datasets. The datasets are Athens Trucks, containing the trajec-
tory of cement trucks in Athens, Rome Taxis, containing the trajectory of taxis in Rome,
Geolife, containing the spatial-temporal data about the movement of people and cars in
everyday activities mostly in Beijing, and T-Drive, containing the trajectory of taxis in
Beijing.

The first case study is exploratory and shows some queries that can be executed on the
graph containing the graph-based cluster evolution. It describes 23 queries divided among
queries about the representation, analysis, and implementation of graph-based cluster evo-
lution. Each query is executed, explained, and their results are discussed, such as the
identification of spatial-temporal clusters that start at a location, start by a merge of other
clusters, or that produce cluster evolution paths containing a certain number of spatial-
temporal cluster relationships. Results help identify interesting phenomena in the dataset,
such as the time when the demand for taxis is highest or a common destination during
Valentine’s day, or outliers, that can be further investigated for novel results.

The second case study investigates moments in the existence of a spatial-temporal
cluster during which the number of spatial-temporal objects contained only increase or
decrease. These moments are called ever-increasing or ever-decreasing regions. The average
rate of change (AROC) of cluster size is discussed and calculated. Two cluster evolution
paths, one with a long ever-increasing region and another with a short one, are discussed,
their growth rates are calculated, and some conclusions about the offer and demand of
spatial-temporal services are presented.

The third case study introduces the similarity between cluster evolution paths in graph-
based cluster evolution. The case study discusses the process to calculate such similarity
value and shows how it can be calculated. It then proceeds to divide time into 24 slots,
corresponding to hours of the day, and calculates the similarity of cluster evolution paths
starting in each slot. Comparisons between the similarity value and the number of cluster
paths at each hour of the day are made, and a correlation is discussed. It ends with a
discussion on the importance of a similarity value for ML tasks such as classification and
clustering.

The fourth case study analyzes important aspects of the movement represented by
cluster evolution paths, such as its distance and direction, and provides aggregated results
on the distribution of cluster evolution paths by hour, day, and region. The case study
contains a list of four analysis questions related to the analysis aspects just presented that
guides the discussion of the results. These results can be used for identifying phenomena

131



such as car-sharing opportunities and improvements in traffic planning, the traffic system,
and the road network of cities.

5.2 Limitations

The proposed approach is a solution for the representation, analysis, and implementation
of graph-based spatial-temporal cluster analysis. Although the approach can manipulate
spatial-temporal data, transform it, represent it in a graph, analyze it and extract its value,
this solution still has some limitations. This section discusses these limitations and divides
them into three groups: representation, analysis, and implementation.

In the representation of graph-based spatial-temporal cluster evolution, spatial-temporal
data is described by latitude and longitude coordinates. This is because most spatial-
temporal objects are vehicles or people. However, some studies consider the movement
of airplanes, in which the altitude becomes a third spatial dimension [104]. The current
version of the approach does not consider a third spatial dimension, such as altitude, and
does not consider other theoretical spatial dimensions. Therefore, one limitation of the
proposed approach is the description of data in two dimensions.

The proposed approach identifies 14 spatial-temporal relationships that describe the
interactions a cluster has during its existence. Although effort is put to describe sev-
eral interactions that cluster may have, it is understood that these 14 relationships are
a starting point in the identification of spatial-temporal cluster relationships. Other re-
lationships can be discovered or extended from this initial set. One such relationship is
the GO_THROUGH relationship [69]. The current version of the approach does not con-
sider extended relationships. Therefore, one limitation of the proposed approach is the
description of only 14 primitive spatial-temporal cluster relationships.

Spatial-temporal clusters can assume any shape and are not limited to a circular one.
This is the main reason for the choice of a density-based clustering technique in the iden-
tification of the clusters. However, in some situations, spatial-temporal objects inside a
cluster can be represented as other clusters. For example, a parking lot can be divided into
VIP parking and regular parking. Another example is a group of tourists in a city that
can be divided in smaller groups based on the travel agency. In both examples, spatial-
temporal objects can be represented as smaller clusters within the larger cluster. This
raises the concept of hierarchical clustering [110]. The current version of the approach
does not capture hierarchical spatial-temporal clusters. Therefore, one limitation of the
proposed approach is the description of cluster in a “flat”, not a nested, representation.
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In the analysis of graph-based spatial-temporal cluster evolution, spatial-temporal data
is obtained from a single repository. The reason for this is partly because spatial-temporal
datasets are usually centralized and partly because the “Preprocess” step of the approach
adopts the strategy to centralize data in one repository. However, because the amount
of data that can be manipulated can be very high, it is best to leave spatial-temporal
data in different datasets and query them at analysis time. The current version of the
approach does not support the representation and analysis of spatial-temporal data in
several repositories. Therefore, one limitation of the proposed approach is the description
of spatial-temporal data in a single repository.

The analysis of graph-based cluster evolution happens in Neo4j because of the use of
Cypher, a graph query language, that becomes the standard for graph analysis. Cypher is a
declarative language similar to Structured Query Language (SQL) for relational databases.
Because Cypher is optimized for query and retrieval of graph data, new libraries simplify
other manipulations of the data. One such library is Awesome Procedures on Cypher
(APOC)12. However, some queries would be more understandable and intuitive if a proce-
dural language was used. For example, checking properties of objects on a list or subqueries
that return data could be simpler in Python. For this reason, sometimes, the result of a
query is further processed in Python or on the rows and columns of a spreadsheet appli-
cation. The current version of the approach does offer support for a procedural query and
retrieval of spatial-temporal data from the graph format. Therefore, one limitation of the
proposed approach is a declarative, SQL-like, syntax to query and retrieve data.

In the implementation of graph-based spatial-temporal cluster evolution, spatial-temporal
data is transformed from a tabular format into a graph format and imported in a graph
data platform called Neo4j. The choice of Neo4j is based on its graph query language
Cypher. However, other graph data platforms are available to process the graph format
of cluster evolution. Some adaptations are required, especially in the conversion between
representations. The current version of the approach does not integrate with other graph
data platforms. Therefore, one limitation of the proposed approach is the integration with
only Neo4j for graph data processing.

When analyzing spatial-temporal data in Neo4j, data is queried from a centralized
repository and processed in a single processing unit, called a computation node or simply
a node. This is not a graph node, but a computer with processing capabilities. The research
area of distributed systems [67] studies the systems that use computation capabilities of
several machines, or computation nodes, so that calculations can be performed in parallel,

1https://neo4j.com/apoc/
2https://github.com/neo4j/apoc
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delivering results more efficiently. The current version of the approach does not provide
support for distributed analysis of spatial-temporal data. Therefore, one limitation of the
proposed approach is the analysis of graph-based cluster evolution in a centralized way.

5.3 Future Work

Some opportunities for future work relate to the use of contextual information in the anal-
ysis of graph-based cluster evolution, the introduction of real-time analysis to graph-based
cluster evolution, the use of Artificial Intelligence (AI) or ML methods for prediction tasks
in graph-based cluster evolution, and the use of more advanced graph analysis methods,
such as graph comparison, in graph-based cluster evolution. Each opportunity is further
discussed.

Spatial-temporal clusters are identified by performing a clustering technique on temporal-
spatial data present at every timestamp and linking the resulting clusters based on their
similarity. This process is completely based on the spatial-temporal data that describe
spatial-temporal objects, namely their location, the time, and an identification. However,
other types of information about spatial-temporal objects are not used, such as the veloc-
ity, the number of passengers, color, weather, lane, or purpose of the trip. These types of
information relate to the environment in which the spatial-temporal object resides and are
usually referred to as contextual information [121, 119]. The use of contextual informa-
tion can enrich the data about that cluster, assist in the calculation of similarity between
timestamps, help identify novel spatial-temporal relationships, and yield a more accurate
representation of spatial-temporal clusters in graph-based cluster evolution.

Analysis on graph-based cluster evolution in the proposed approach happens after the
spatial-temporal data has been measured and made available in a dataset. Although
important phenomena are captured and identified, the decision-making process is impacted
because no immediate action can be taken in a city to improve conditions if necessary. For
example, if a major accident has been identified in a road, traffic cannot be redirected to
other roads, or if it is identified that the demand for spatial-temporal services is high in
a region, no spatial-temporal objects can be directed to that region in a timely manner.
Real-time analytics [129] is defined as the process of using analytics tools on data to
provide better results for decision-making quickly. Analysis in real-time happens in several
domains, including the spatial-temporal and the graph domain. For example, the study
in [63] discusses the software support and the analysis methods for real-time analysis of
congestion in a city. The studies on [72, 71] describe Graphone, which performs real-time
analysis on evolving graphs. Real-time analysis of graph-based cluster evolution delivers
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quick results for immediate decision-making, assisting in the handling of changes to the
traffic flow or in offer and demand values, which result in better spatial-temporal services.

The current analysis methods discussed when proposing this approach relate to iden-
tifying changes to the structure of spatial-temporal clusters, the occurrences of spatial-
temporal cluster relationships, ranking clusters based on their spatial or temporal features,
and calculating a similarity for classification or clustering tasks. However, these analysis
methods have results that are within the spatial and temporal domain in which the data
was measured, although the impacts of such results can go beyond this domain. For ex-
ample, classifying spatial-temporal cluster paths based on the number of relationships it
contains produces valuable results that are within the measurements taken. A prediction
is a statement, made in advance, about an event or situation. Several AI and ML methods
are dedicated to predicting events [8, 42], and some of them are focused on the spatial-
temporal domain [108]. For example, the study in [143] uses neural networks to predict
traffic conditions. Analysis methods for predictions produce results that are beyond the
spatial and temporal domains of the data because they refer to situations in a different
location or in the future. In graph-based cluster evolution, ML methods for prediction can
have results in the prediction of the location of spatial-temporal clusters, the relationships
they might have, the flow of spatial-temporal objects in a city, and the traffic conditions
based on the number of spatial-temporal objects, the start or end of events, or the weather.

The connected representation of cluster evolution is based on a graph. Spatial-temporal
clusters are represented as several vertices, or nodes, of the graph and their relationships are
represented by the edges. Relationships that involve more than one spatial-temporal cluster
bind these clusters in the graph representation, creating a connected, graph-based cluster
evolution. Because of this connected representation, many graph analysis methods can be
executed, which produce novel results and uncover value in the spatial-temporal domain.
For example, a long cluster evolution path may indicate opportunities for car-sharing.
However, several other analysis methods are still not used because of the adaptations
required to perform in a graph-based cluster evolution environment. Graph analysis is an
area of research focused on the use of analysis tools for graphs [87]. Usually, graph analysis
methods are used for social network analysis, fraud detection, or recommendation engines.
Some graph analysis methods are partitioning, which divides a graph in many parts to
find weak points, shortest path, which find the shortest path between two vertices, or
nodes, and can be used in optimizations in transportation logistics, and page rank, which
measures the popularity of websites and ranks them for efficient results in online searches
[62]. Graph analysis methods can be used in graph-based cluster evolution to identify, for
example, points of interest based on the relationship between the movement of clusters
and locations. One interesting approach is graph comparison, in which the traffic flow of
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different cities can be compared to produce novel results and conclusions.

136



References

[1] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A framework
for clustering evolving data streams. In Proceedings - 29th International Conference
on Very Large Data Bases, VLDB 2003, pages 81–92. Morgan Kaufmann, 2003.

[2] Nir Ailon, Noa Avigdor-Elgrabli, Edo Liberty, and Anke Van Zuylen. Improved
approximation algorithms for bipartite correlation clustering. SIAM Journal on
Computing, 41(5):1110–1121, 2012. doi: 10.1137/110848712.

[3] Mohammed Eunus Ali, Shadman Saqib Eusuf, Kaysar Abdullah, Farhana M. Choud-
hury, J. Shane Culpepper, and Timos Sellis. The maximum trajectory coverage
query in spatial databases. In volume 12 of number 3, pages 197–209. Association
for Computing Machinery, 2018. doi: 10.14778/3291264.3291266.

[4] Federico Amato, Luigi Lombardo, Marj Tonini, Antonino Marvuglia, Daniela Cas-
tro-Camilo, and Fabian Guignard. Spatiotemporal data science: theoretical ad-
vances and applications. Stochastic Environmental Research and Risk Assessment,
36(8):2027–2029, 2022. doi: 10.1007/s00477-022-02281-4.

[5] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. Optics:
ordering points to identify the clustering structure. In Proceedings of the ACM SIG-
MOD International Conference on Management of Data, pages 49–60. Association
for Computing Machinery, 1999. doi: 10.1145/304182.304187.

[6] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander. Optics:
ordering points to identify the clustering structure. SIGMOD Record (ACM Special
Interest Group on Management of Data), 28(2):49–60, 1999. doi: 10.1145/304181
.304187.

[7] Mohd Yousuf Ansari, Amir Ahmad, Shehroz S. Khan, Gopal Bhushan, and Mainud-
din. Spatiotemporal clustering: a review. Artificial Intelligence Review, 53(4):2381–
2423, 2020. doi: 10.1007/s10462-019-09736-1.

137

https://doi.org/10.1137/110848712
https://doi.org/10.14778/3291264.3291266
https://doi.org/10.1007/s00477-022-02281-4
https://doi.org/10.1145/304182.304187
https://doi.org/10.1145/304181.304187
https://doi.org/10.1145/304181.304187
https://doi.org/10.1007/s10462-019-09736-1


[8] Vineeth Balasubramanian, Shen-Shyang Ho, and Vladimir Vovk. Conformal Predic-
tion for Reliable Machine Learning: Theory, Adaptations and Applications. Elsevier
Inc., 2014. doi: 10.1016/C2012-0-00234-7.

[9] Richard Bellmain and Robert Kalaba. On adaptive control processes. IRE Trans-
actions on Automatic Control, 4(2):1–9, 1958. doi: 10.1109/TAC.1959.1104847.

[10] Marc Benkert, Joachim Gudmundsson, Florian Hübner, and Thomas Wolle. Report-
ing flock patterns. Computational Geometry: Theory and Applications, 41(3):111–
125, 2008. doi: 10.1016/j.comgeo.2007.10.003.

[11] James C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.
Springer, 1981, pages 1–272.

[12] Panthadeep Bhattacharjee and Pinaki Mitra. A survey of density based clustering
algorithms. Frontiers of Computer Science, 15(1), 2021. doi: 10.1007/s11704-01
9-9059-3.

[13] Sonja Biedermann. Evolutionary Graph Clustering. Bachelor’s thesis, Universität
Wien, 2017.

[14] Derya Birant and Alp Kut. St-dbscan: an algorithm for clustering spatial-temporal
data. Data and Knowledge Engineering, 60(1):208–221, 2007. doi: 10.1016/j.dat
ak.2006.01.013.

[15] Veselka Boeva, Milena Angelova, and Elena Tsiporkova. A split-merge evolutionary
clustering algorithm. In volume 2, pages 337–346. SciTePress, 2019. doi: 10.5220
/0007573103370346.

[16] Lorenzo Bracciale, Marco Bonola, Pierpaolo Loreti, Giuseppe Bianchi, Raul Amici,
and Antonello Rabuffi. The rome taxis dataset, 2014. doi: 10.15783/C7QC7M.

[17] Ludwig M. Busse, Peter Orbanz, and Joachim M. Buhmann. Cluster analysis of
heterogeneous rank data. In volume 227, pages 113–120, 2007. doi: 10.1145/1273
496.1273511.

[18] Xu Chen, Weijun Li, and Li Yan. A uml-based representation of fuzzy spatiotem-
poral relations. In ICNC-FSKD 2017 - 13th International Conference on Natural
Computation, Fuzzy Systems and Knowledge Discovery, pages 1090–1098. Institute
of Electrical and Electronics Engineers Inc., 2018. doi: 10.1109/FSKD.2017.8392
915.

138

https://doi.org/10.1016/C2012-0-00234-7
https://doi.org/10.1109/TAC.1959.1104847
https://doi.org/10.1016/j.comgeo.2007.10.003
https://doi.org/10.1007/s11704-019-9059-3
https://doi.org/10.1007/s11704-019-9059-3
https://doi.org/10.1016/j.datak.2006.01.013
https://doi.org/10.1016/j.datak.2006.01.013
https://doi.org/10.5220/0007573103370346
https://doi.org/10.5220/0007573103370346
https://doi.org/10.15783/C7QC7M
https://doi.org/10.1145/1273496.1273511
https://doi.org/10.1145/1273496.1273511
https://doi.org/10.1109/FSKD.2017.8392915
https://doi.org/10.1109/FSKD.2017.8392915


[19] Miyoung Cho, Chang Choi, Junho Choi, Hongryoul Yi, and Pankoo Kim. Trajectory
annotation and retrieval based on semantics. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 4918 LNCS:251–264, 2008. doi: 10.1007/978-3-540-79860-6_2
0.

[20] Miyoung Cho, Dan Song, Chang Choi, Junho Choi, Jongan Park, and Pankoo Kim.
Comparison between motion verbs using similarity measure for the semantic repre-
sentation of moving object. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 4071
LNCS:281–290, 2006. doi: 10.1007/11788034_29.

[21] Miyoung Cho, Dan Song, Chang Choi, and Pankoo Kim. Measuring similarity in
the semantic representation of moving objects in video. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 4092 LNAI:78–87, 2006. doi: 10.1007/11811220_8.

[22] Chang Choi, Miyoung Cho, and Pankoo Kim. The new modeling for semantic rep-
resentation of moving objects in video. In International Conference on Advanced
Communication Technology, ICACT, volume 1, pages 363–367, 2007. doi: 10.110
9/ICACT.2007.358373.

[23] William G. Cochran. The χ2 Test of Goodness of Fit. The Annals of Mathematical
Statistics, 23(3):315–345, 1952. doi: 10.1214/aoms/1177729380.

[24] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning,
20(3):273–297, 1995. doi: 10.1023/A:1022627411411.

[25] Thomas M. Cover and Peter E. Hart. Nearest neighbor pattern classification. IEEE
Transactions on Information Theory, 13(1):21–27, 1967. doi: 10.1109/TIT.1967
.1053964.

[26] Jesus Cuenca-Jara, Fernando Terroso-Saenz, Ramon Sanchez-Iborra, and Antonio
F. Skarmeta-Gomez. Classification of spatio-temporal trajectories based on sup-
port vector machines. Lecture Notes in Computer Science (including subseries Lec-
ture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 10978
LNAI:140–151, 2018. doi: 10.1007/978-3-319-94580-4_11.

[27] Ticiana L. Coelho Da Silva, José A. F. De Macêdo, and Marco A. Casanova. Dis-
covering frequent mobility patterns on moving object data. In Proceedings of the
3rd ACM SIGSPATIAL International Workshop on Mobile Geographic Informa-
tion Systems, MobiGIS 2014 - In Conjunction with the 22nd ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, ACM

139

https://doi.org/10.1007/978-3-540-79860-6_20
https://doi.org/10.1007/978-3-540-79860-6_20
https://doi.org/10.1007/11788034_29
https://doi.org/10.1007/11811220_8
https://doi.org/10.1109/ICACT.2007.358373
https://doi.org/10.1109/ICACT.2007.358373
https://doi.org/10.1214/aoms/1177729380
https://doi.org/10.1023/A:1022627411411
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1109/TIT.1967.1053964
https://doi.org/10.1007/978-3-319-94580-4_11


SIGSPATIAL 2014, pages 60–67. Association for Computing Machinery, 2014. doi:
10.1145/2675316.2675325.

[28] Abraham De Moivre. Approximatio ad summam terminorum binomii a+ b\n in
seriem expansi. 1733.

[29] Abraham De Moivre. The Doctrine of Chances: A Method of Calculating the Prob-
abilities of Events in Play. H. Woodfall, 2nd edition, 1738.

[30] Don Joseph de Mendoza y Rios. Memoria sobre algunos métodos nuevos de calcular
la longitud por las distancias lunares: Y applicacion de su teórica á la solucion de
otros problemas de navegacion. Imprenta Real, 1795.

[31] Reinhard Diestel. Graph Theory. Springer Berlin Heidelberg, 2017. doi: 10.1007/9
78-3-662-53622-3.

[32] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh.
Querying and mining of time series data: experimental comparison of representa-
tions and distance measures. Proceedings of the VLDB Endowment, 1(2):1542–1552,
2008. doi: 10.14778/1454159.1454226.

[33] Christos Doulkeridis, Akrivi Vlachou, Nikos Pelekis, and Yannis Theodoridis. A
survey on big data processing frameworks for mobility analytics. SIGMOD Record,
50(2):18–29, 2021. doi: 10.1145/3484622.3484626.

[34] Moez Draief and Ayalvadi Ganesh. A random walk model for infection on graphs:
spread of epidemics & rumours with mobile agents. Discrete Event Dynamic Sys-
tems: Theory and Applications, 21(1):41–61, 2011. doi: 10.1007/s10626-010-009
2-5.

[35] Gérard Dreyfus. Neural Networks: Methodology and Applications. Springer Berlin
Heidelberg, 2005. doi: 10.1007/3-540-28847-3.

[36] Joseph C. Dunn. A fuzzy relative of the isodata process and its use in detecting
compact well-separated clusters. Journal of Cybernetics, 3(3):32–57, 1973. doi: 10
.1080/01969727308546046.

[37] Ramakrishan Reddy Eamani, N. Vinodh Kumar, and Ganga Ramesh Jakkamsetti.
K-means clustering algorithm and architecture: a brief survey. International Journal
of Advanced Science and Technology, 29(6):2955–2967, 2020.

[38] Bradley Efron. Large-Scale Inference Empirical Bayes Methods for Estimation, Test-
ing, and Prediction. Cambridge University Press, 2012. doi: 10.1017/CBO9780511
761362.

[39] Gidon Eshel. Spatiotemporal Data Analysis. Princeton University Press, 2011.

140

https://doi.org/10.1145/2675316.2675325
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.14778/1454159.1454226
https://doi.org/10.1145/3484622.3484626
https://doi.org/10.1007/s10626-010-0092-5
https://doi.org/10.1007/s10626-010-0092-5
https://doi.org/10.1007/3-540-28847-3
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1080/01969727308546046
https://doi.org/10.1017/CBO9780511761362
https://doi.org/10.1017/CBO9780511761362


[40] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based al-
gorithm for discovering clusters in large spatial databases with noise. In Proceedings
of the Second International Conference on Knowledge Discovery and Data Mining
(KDD-96), Portland, Oregon, USA, pages 226–231. AAAI Press, 1996.

[41] Shimon Even and Guy Even. Graph Algorithms, 2nd Edition. Cambridge University
Press, 2011, pages 1–189. doi: 10.1017/CBO9781139015165.

[42] Matteo Fontana, Gianluca Zeni, and Simone Vantini. Conformal prediction: a uni-
fied review of theory and new challenges. Bernoulli, 29(1):1–23, 2023. doi: 10.315
0/21-BEJ1447.

[43] Edward Forgy. Cluster analysis of multivariate data: efficiency versus interpretabil-
ity of classifications. Biometrics, 21(3):768–769, 1965.

[44] Ove Frank. A survey of statistical methods for graph analysis. Sociological Method-
ology, 12:110–155, 1981.

[45] David A. Freedman. Statistical Models: Theory and Practice. Cambridge University
Press, 2009. doi: 10.1017/CBO9780511815867.

[46] Carl Friedrich Gauss. Theoria Motus Corporum Coelestium in Sectionibus Conicis
Solem Ambientium. F. Perthes & I. H. Besser, 1809.

[47] Sarah Gerster, Ermir Qeli, Christian H. Ahrens, and Peter Bühlmann. Protein and
gene model inference based on statistical modeling in k-partite graphs. Proceedings
of the National Academy of Sciences of the United States of America, 107(27):12101–
12106, 2010. doi: 10.1073/pnas.0907654107.

[48] Mohammed Ghesmoune, Mustapha Lebbah, and Hanene Azzag. State-of-the-art on
clustering data streams. Big Data Analytics, 1(13):1–27, 2016. doi: 10.1186/s410
44-016-0011-3.

[49] Fosca Giannotti, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi. Trajectory pattern
mining. In Proceedings of the ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 330–339, 2007. doi: 10.1145/1281192.12
81230.

[50] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT Press,
2016.

[51] Derek Greene and Pádraig Cunningham. Producing a unified graph representation
from multiple social network views. In Proceedings of the 5th Annual ACM Web
Science Conference, WebSci’13, pages 118–121. Association for Computing Machin-
ery, 2013. doi: 10.1145/2464464.2464471.

141

https://doi.org/10.1017/CBO9781139015165
https://doi.org/10.3150/21-BEJ1447
https://doi.org/10.3150/21-BEJ1447
https://doi.org/10.1017/CBO9780511815867
https://doi.org/10.1073/pnas.0907654107
https://doi.org/10.1186/s41044-016-0011-3
https://doi.org/10.1186/s41044-016-0011-3
https://doi.org/10.1145/1281192.1281230
https://doi.org/10.1145/1281192.1281230
https://doi.org/10.1145/2464464.2464471


[52] Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan.
Clustering data streams: theory and practice. IEEE Transactions on Knowledge and
Data Engineering, 15(3):515–528, 2003. doi: 10.1109/TKDE.2003.1198387.

[53] Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan O’Callaghan. Cluster-
ing data streams. In Annual Symposium on Foundations of Computer Science -
Proceedings, pages 359–366. IEEE, 2000.

[54] Jiawei Ha, Micheline Kambe, and Jian Pe. Data Mining: Concepts and Techniques.
Elsevier, 2011. doi: 10.1016/C2009-0-61819-5.

[55] Christian Hennig, Marina Meila, Fionn Murtagh, and Roberto Rocci. Handbook of
cluster analysis. CRC Press, 2015, pages 1–731. doi: 10.1201/b19706.

[56] Clemens Holzmann. Rule-based reasoning about qualitative spatiotemporal rela-
tions. In Proceedings of the 5th International Workshop on Middleware for Pervasive
and Ad-hoc Computing, MPAC 2007 held at the ACM/IFIP/USENIX 8th Interna-
tional Middleware Conference, pages 49–54, 2007. doi: 10.1145/1376866.1376875.

[57] Chowdhury Md. Intisar and Yutaka Watanobe. Cluster analysis to estimate the
difficulty of programming problems. In pages 23–28. Association for Computing
Machinery, 2018. doi: 10.1145/3274856.3274862.

[58] Paul Jaccard. Distribution de la flore alpine dans le bassin des dranes et dans
quelques regions voisines. Bull. Soc. Vaud. Sci. Nat., 37(140):241–272, 1901.

[59] Anil Kumar Jain, Musti Narasimha Murty, and Patrick J. Flynn. Data clustering:
a review. ACM Computing Surveys, 31(3):264–323, 1999. doi: 10.1145/331499.3
31504.

[60] Hoyoung Jeung, Man Lung Yiu, Xiaofang Zhou, Christian S. Jensen, and Heng
Tao Shen. Discovery of convoys in trajectory databases. Proceedings of the VLDB
Endowment, 1(1):1068–1080, 2008. doi: 10.14778/1453856.1453971.

[61] Ioannis Kakoudakis and Babis Theodoulidis. The TAU Time Model. Technical re-
port, Timelab, UMIST, 1996.

[62] Ananth Kalyanaraman and Partha Pratim Pande. A brief survey of algorithms,
architectures, and challenges toward extreme-scale graph analytics. In Proceedings
of the 2019 Design, Automation and Test in Europe Conference and Exhibition,
DATE 2019, pages 1307–1312. Institute of Electrical and Electronics Engineers
Inc., 2019. doi: 10.23919/DATE.2019.8715024.

142

https://doi.org/10.1109/TKDE.2003.1198387
https://doi.org/10.1016/C2009-0-61819-5
https://doi.org/10.1201/b19706
https://doi.org/10.1145/1376866.1376875
https://doi.org/10.1145/3274856.3274862
https://doi.org/10.1145/331499.331504
https://doi.org/10.1145/331499.331504
https://doi.org/10.14778/1453856.1453971
https://doi.org/10.23919/DATE.2019.8715024


[63] Lamia Karim, Azedine Boulmakoul, and Ahmed Lbath. Real time analytics of urban
congestion trajectories on hadoop-mongodb cloud ecosystem. In ACM International
Conference Proceeding Series. Association for Computing Machinery, 2017. doi: 1
0.1145/3018896.3018923.

[64] Leonard Kaufman and Peter J. Rousseeuw. Partitioning around medoids (program
pam). In Finding Groups in Data. John Wiley & Sons, Ltd, 1990. Chapter 2,
pages 68–125. doi: 10.1002/9780470316801.ch2.

[65] Ross Kindermann and James Laurie Snell. Markov Random Fields and Their Ap-
plications. American Mathematical Society, 1980. doi: https://doi.org/10.109
0/conm/001.

[66] Slava Kisilevich, Florian Mansmann, Mirco Nanni, and Rinzivillo Salvatore. Spatio-
Temporal Clustering: a Survey. Technical report, Italian National Research Council,
2015.

[67] Martin Kleppmann. Designing Data-Intensive Applications: The Big Ideas Behind
Reliable, Scalable, and Maintainable Systems. O’Reilly, 2017.

[68] Sotiris B. Kotsiantis. Decision trees: a recent overview. Artificial Intelligence Review,
39(4):261–283, 2013. doi: 10.1007/s10462-011-9272-4.

[69] Christian Kray and Anselm Blocher. Modeling the basic meanings of path rela-
tions. In IJCAI International Joint Conference on Artificial Intelligence, volume 1,
pages 384–389, 1999.

[70] Dirk P. Kroese, Thomas Taimre, and Zdravko I. Botev. Handbook of Monte Carlo
Methods. Wiley Blackwell, 2011. doi: 10.1002/9781118014967.

[71] Pradeep Kumar and H. Howie Huang. Graphone: a data store for real-time analytics
on evolving graphs. In Proceedings of the 17th USENIX Conference on File and
Storage Technologies, FAST 2019, pages 249–263. USENIX Association, 2019.

[72] Pradeep Kumar and H. Howie Huang. Graphone: a data store for real-time analytics
on evolving graphs. ACM Transactions on Storage, 15(4), 2020. doi: 10.1145/336
4180.

[73] Seoyun J. Kwon. Artificial Neural Networks. Nova Science Publishers, Inc., 2011.
[74] Max Landauer, Markus Wurzenberger, Florian Skopik, Giuseppe Settanni, and Pe-

ter Filzmoser. Dynamic log file analysis: an unsupervised cluster evolution approach
for anomaly detection. Computers and Security, 79:94–116, 2018. doi: 10.1016/j
.cose.2018.08.009.

143

https://doi.org/10.1145/3018896.3018923
https://doi.org/10.1145/3018896.3018923
https://doi.org/10.1002/9780470316801.ch2
https://doi.org/https://doi.org/10.1090/conm/001
https://doi.org/https://doi.org/10.1090/conm/001
https://doi.org/10.1007/s10462-011-9272-4
https://doi.org/10.1002/9781118014967
https://doi.org/10.1145/3364180
https://doi.org/10.1145/3364180
https://doi.org/10.1016/j.cose.2018.08.009
https://doi.org/10.1016/j.cose.2018.08.009


[75] Hang T. Lau. A java library of graph algorithms and optimization. CRC Press, 2006,
pages 1–386. doi: 10.1201/9781584887195.

[76] Patrick Laube, Stephan Imfeld, and Robert Weibel. Discovering relative motion
patterns in groups of moving point objects. International Journal of Geographical
Information Science, 19(6):639–668, 2005. doi: 10.1080/13658810500105572.

[77] Patrick Laube, Marc van Kreveld, and Stephan Imfeld. Finding remo — detecting
relative motion patterns in geospatial lifelines. In Developments in Spatial Data
Handling, pages 201–215. Springer Berlin Heidelberg, 2005. doi: 10.1007/3-540-
26772-7_16.

[78] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory clustering: a partition-
and-group framework. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, pages 593–604, 2007. doi: 10.1145/1247480.12475
46.

[79] Bonan Li and Frederico Fonseca. Tdd: a comprehensive model for qualitative spatial
similarity assessment. Spatial Cognition and Computation, 6(1):31–62, 2006. doi:
10.1207/s15427633scc0601_2.

[80] Xiaohui Li, Vaida Čeikute, Christian S. Jensen, and Kian-Lee Tan. Effective online
group discovery in trajectory databases. IEEE Transactions on Knowledge and Data
Engineering, 25(12):2752–2766, 2013. doi: 10.1109/TKDE.2012.193.

[81] Zhenhui Li, Bolin Ding, Jiawei Han, and Roland Kays. Swarm: mining relaxed
temporal moving object clusters. Proceedings of the VLDB Endowment, 3(1):723–
734, 2010. doi: 10.14778/1920841.1920934.

[82] Stuart P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Infor-
mation Theory, 28(2):129–137, 1982. doi: 10.1109/TIT.1982.1056489.

[83] Woong-Kee Loh and Young-Ho Park. A survey on density-based clustering algo-
rithms. Lecture Notes in Electrical Engineering, 280 LNEE:775–780, 2014. doi: 10
.1007/978-3-642-41671-2_98.

[84] Zongmin Ma, Luyi Bai, and Li Yan. Spatiotemporal data and spatiotemporal data
models. Studies in Computational Intelligence, 894:1–18, 2020. doi: 10.1007/978-
3-030-41999-8_1.

[85] Nehal Magdy, Mahmoud A. Sakr, Tamer Mostafa, and Khaled El-Bahnasy. Review
on trajectory similarity measures. In 2015 IEEE 7th International Conference on
Intelligent Computing and Information Systems, ICICIS 2015, pages 613–619. Insti-
tute of Electrical and Electronics Engineers Inc., 2016. doi: 10.1109/IntelCIS.2
015.7397286.

144

https://doi.org/10.1201/9781584887195
https://doi.org/10.1080/13658810500105572
https://doi.org/10.1007/3-540-26772-7_16
https://doi.org/10.1007/3-540-26772-7_16
https://doi.org/10.1145/1247480.1247546
https://doi.org/10.1145/1247480.1247546
https://doi.org/10.1207/s15427633scc0601_2
https://doi.org/10.1109/TKDE.2012.193
https://doi.org/10.14778/1920841.1920934
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1007/978-3-642-41671-2_98
https://doi.org/10.1007/978-3-642-41671-2_98
https://doi.org/10.1007/978-3-030-41999-8_1
https://doi.org/10.1007/978-3-030-41999-8_1
https://doi.org/10.1109/IntelCIS.2015.7397286
https://doi.org/10.1109/IntelCIS.2015.7397286


[86] Johannes S. Maritz and Thaung Lwin. Empirical Bayes Methods, Second Edition.
CRC Press, 2018. doi: 10.1201/9781351071666.

[87] Claudio Martella, Roman Shaposhnik, and Dionysios Logothetis. Practical Graph
Analytics with Apache Giraph. Apress Media LLC, 2015. doi: 10.1007/978-1-484
2-1251-6.

[88] Jean Damascène Mazimpaka and Sabine Timpf. Trajectory data mining: a review of
methods and applications. Journal of Spatial Information Science, 13(2016):61–99,
2016. doi: 10.5311/josis.2016.13.263.

[89] Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM Algorithm and Ex-
tensions: Second Edition. Wiley Blackwell, 2007, pages 1–369. doi: 10.1002/9780
470191613.

[90] O. Mekenyan, D. Bonchev, and N. Trinajstić. Chemical graph theory: modeling the
thermodynamic properties of molecules. International Journal of Quantum Chem-
istry, 18(2):369–380, 1980. doi: 10.1002/qua.560180206.

[91] Xiao-Li Meng and David Van Dyk. The EM Algorithm—an Old Folk-song Sung to a
Fast New Tune. Journal of the Royal Statistical Society: Series B (Methodological),
59(3):511–567, 1997. doi: 10.1111/1467-9868.00082.

[92] Michael Mills, Adamantia Psarologou, and Nikolaos Bourbakis. Modeling natural
language sentences into spn graphs. In Proceedings - International Conference on
Tools with Artificial Intelligence, ICTAI, pages 889–896, 2013. doi: 10.1109/ICTA
I.2013.135.

[93] Cho Miyoung, Choi Chang, and Kim Pankoo. Measuring similarity between tra-
jectories using motion verbs in semantic level. In International Conference on Ad-
vanced Communication Technology, ICACT, volume 1, pages 511–515, 2007. doi:
10.1109/ICACT.2007.358406.

[94] Fionn Murtagh. A survey of recent advances in hierarchical clustering algorithms.
Computer Journal, 26(4):354–359, 1983. doi: 10.1093/comjnl/26.4.354.

[95] Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an
overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
2(1):86–97, 2012. doi: 10.1002/widm.53.

[96] Mirco Nanni and Dino Pedreschi. Time-focused clustering of trajectories of moving
objects. Journal of Intelligent Information Systems, 27(3):267–289, 2006. doi: 10
.1007/s10844-006-9953-7.

145

https://doi.org/10.1201/9781351071666
https://doi.org/10.1007/978-1-4842-1251-6
https://doi.org/10.1007/978-1-4842-1251-6
https://doi.org/10.5311/josis.2016.13.263
https://doi.org/10.1002/9780470191613
https://doi.org/10.1002/9780470191613
https://doi.org/10.1002/qua.560180206
https://doi.org/10.1111/1467-9868.00082
https://doi.org/10.1109/ICTAI.2013.135
https://doi.org/10.1109/ICTAI.2013.135
https://doi.org/10.1109/ICACT.2007.358406
https://doi.org/10.1093/comjnl/26.4.354
https://doi.org/10.1002/widm.53
https://doi.org/10.1007/s10844-006-9953-7
https://doi.org/10.1007/s10844-006-9953-7


[97] Gonzalo Navarro. A guided tour to approximate string matching. ACM Computing
Surveys, 33(1):31–88, 2001. doi: 10.1145/375360.375365.

[98] Mark E.J. Newman, Duncan J. Watts, and Steven H. Strogatz. Random graph
models of social networks. Proceedings of the National Academy of Sciences of the
United States of America, 99(SUPPL. 1):2566–2572, 2002. doi: 10.1073/pnas.01
2582999.

[99] Johannes Niedermayer, Andreas Züfle, Tobias Emrich, Matthias Renz, Nikos Ma-
mouliso, Lei Chen, and HansPeter Kriegel. Probabilistic nearest neighbor queries
on uncertain moving object trajectories. Proceedings of the VLDB Endowment,
7(3):205–216, 2013. doi: 10.14778/2732232.2732239.

[100] Christian Nordahl, Veselka Boeva, Håkan Grahn, and Marie Persson Netz. Evolveclus-
ter: an evolutionary clustering algorithm for streaming data. Evolving Systems,
13(4):603–623, 2022. doi: 10.1007/s12530-021-09408-y.

[101] Ratchata Peachavanish. Stock selection and trading based on cluster analysis of
trend and momentum indicators. In volume 1, pages 317–326. Newswood Limited,
2016.

[102] Karl Pearson. On the criterion that a given system of deviations from the probable
in the case of a correlated system of variables is such that it can be reasonably
supposed to have arisen from random sampling. Philosophical Magazine, 50(5):157–
175, 1900.

[103] Nikos Pelekis, Babis Theodoulidis, Ioannis Kopanakis, and Yannis Theodoridis. Lit-
erature review of spatio-temporal database models. Knowledge Engineering Review,
19(3):235–274, 2004. doi: 10.1017/S026988890400013X.

[104] Rémi Perrichon, Xavier Gendre, and Thierry Klein. A geometric approach to study
aircraft trajectories: the benefits of opensky network ads-b data. Engineering Pro-
ceedings, 28(1), 2022. doi: 10.3390/engproc2022028006.

[105] Alain Polguère. Lexical systems: graph models of natural language lexicons. Lan-
guage Resources and Evaluation, 43(1):41–55, 2009. doi: 10.1007/s10579-008-90
78-4.

[106] Ivens Portugal, Paulo Alencar, and Donald Cowan. Spatial-temporal cluster rela-
tions: a foundation for trajectory cluster lifetime analysis, 2019. doi: 10.48550/ar
Xiv.1911.02105.

146

https://doi.org/10.1145/375360.375365
https://doi.org/10.1073/pnas.012582999
https://doi.org/10.1073/pnas.012582999
https://doi.org/10.14778/2732232.2732239
https://doi.org/10.1007/s12530-021-09408-y
https://doi.org/10.1017/S026988890400013X
https://doi.org/10.3390/engproc2022028006
https://doi.org/10.1007/s10579-008-9078-4
https://doi.org/10.1007/s10579-008-9078-4
https://doi.org/10.48550/arXiv.1911.02105
https://doi.org/10.48550/arXiv.1911.02105


[107] Satrio Adi Priyambada, Mahendrawathi Er, Bernardo Nugroho Yahya, and Tsuyoshi
Usagawa. Profile-based cluster evolution analysis: identification of migration pat-
terns for understanding student learning behavior. IEEE Access, 9:101718–101728,
2021. doi: 10.1109/ACCESS.2021.3095958.

[108] Milan P. Ptotić, Miloš B. Stojanović, and Predrag M. Popović. A review of machine
learning methods for long-term time series prediction. In 2022 57th International
Scientific Conference on Information, Communication and Energy Systems and
Technologies, ICEST 2022. Institute of Electrical and Electronics Engineers Inc.,
2022. doi: 10.1109/ICEST55168.2022.9828618.

[109] Roni Ramon-Gonen and Roy Gelbard. Cluster evolution analysis: identification and
detection of similar clusters and migration patterns. Expert Systems with Applica-
tions, 83:363–378, 2017. doi: 10.1016/j.eswa.2017.04.007.

[110] Xingcheng Ran, Yue Xi, Yonggang Lu, Xiangwen Wang, and Zhenyu Lu. Compre-
hensive survey on hierarchical clustering algorithms and the recent developments.
Artificial Intelligence Review, 2022. doi: 10.1007/s10462-022-10366-3.

[111] Stan Salvador and Philip Chan. Fastdtw: toward accurate dynamic time warping
in linear time and space. In KDD Workshop on Mining Temporal and Sequential
Data, pages 70–80. Association for Computing Machinery, 2004.

[112] Stan Salvador and Philip Chan. Toward accurate dynamic time warping in linear
time and space. Intelligent Data Analysis, 11(5):561–580, 2007. doi: 10.3233/ida
-2007-11508.

[113] Joerg Sander. Density-based clustering. In Encyclopedia of Machine Learning. Springer,
2010, pages 270–273. doi: 10.1007/978-0-387-30164-8_211.

[114] Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64, 2007.
doi: 10.1016/j.cosrev.2007.05.001.

[115] Jens Schrodt, Aleksei Dudchenko, Petra Knaup-Gregori, and Matthias Ganzinger.
Graph-representation of patient data: a systematic literature review. Journal of
Medical Systems, 44(4), 2020. doi: 10.1007/s10916-020-1538-4.

[116] Erich Schubert, Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu.
Dbscan revisited, revisited: why and how you should (still) use dbscan. ACM Trans-
actions on Database Systems, 42(3), 2017. doi: 10.1145/3068335.

[117] Pavel Senin. Dynamic Time Warping Algorithm Review. Technical report, Univer-
sity of Hawai’i at Mānoa, 2008.

147

https://doi.org/10.1109/ACCESS.2021.3095958
https://doi.org/10.1109/ICEST55168.2022.9828618
https://doi.org/10.1016/j.eswa.2017.04.007
https://doi.org/10.1007/s10462-022-10366-3
https://doi.org/10.3233/ida-2007-11508
https://doi.org/10.3233/ida-2007-11508
https://doi.org/10.1007/978-0-387-30164-8_211
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1007/s10916-020-1538-4
https://doi.org/10.1145/3068335


[118] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From
Theory to Algorithms. Cambridge University Press, 2013. doi: 10.1017/CBO97811
07298019.

[119] Mohammad Sharif and Ali Asghar Alesheikh. Multi-dimensional pattern discov-
ery of trajectories using contextual information. International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives,
42(4W7):31–36, 2017. doi: 10.5194/isprs-archives-XLII-4-W7-31-2017.

[120] Zhicheng Shi and Lilian S.C. Pun-Cheng. Spatiotemporal data clustering: a survey
of methods. ISPRS International Journal of Geo-Information, 8(3), 2019. doi: 10
.3390/ijgi8030112.

[121] Katarzyna Siła-Nowicka, Jan Vandrol, Taylor Oshan, Jed A. Long, Urška Demšar,
and A. Stewart Fotheringham. Analysis of human mobility patterns from gps tra-
jectories and contextual information. International Journal of Geographical Infor-
mation Science, 30(5):881–906, 2016. doi: 10.1080/13658816.2015.1100731.

[122] Jonathan A. Silva, Elaine R. Faria, Rodrigo C. Barros, Eduardo R. Hruschka, An-
dré C.P.L.F. De Carvalho, and Joã Gama. Data stream clustering: a survey. ACM
Computing Surveys, 46(1), 2013. doi: 10.1145/2522968.2522981.

[123] Ramakrishnan Srikant and Rakesh Agrawal. Mining sequential patterns: generaliza-
tions and performance improvements. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformat-
ics), 1057 LNCS:3–17, 1996. doi: 10.1007/bfb0014140.

[124] Alexandra Stefan, Vassilis Athitsos, and Gautam Das. The move-split-merge metric
for time series. IEEE Transactions on Knowledge and Data Engineering, 25(6):1425–
1438, 2013. doi: 10.1109/TKDE.2012.88.

[125] Student. The probable error of a mean. Biometrika, 6(1):1–25, 1908. doi: 10.1093
/biomet/6.1.1.

[126] Richard Swinburne. Bayes’s Theorem. Oxford University Press, 2012. doi: 10.587
1/bacad/9780197263419.001.0001.

[127] Chandimal D. Tilakaratne and Liwan Liyanage-Hansen. A review of strengths and
weaknesses of spatiotemporal data analysis techniques. In Proceedings - Interna-
tional Conference on Machine Learning and Data Engineering, iCMLDE 2018,
pages 61–66. Institute of Electrical and Electronics Engineers Inc., 2019. doi: 10.1
109/iCMLDE.2018.00020.

[128] Glen Van Brummelen. Heavenly mathematics: The forgotten art of spherical trigonom-
etry. Princeton University Press, 2012.

148

https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.5194/isprs-archives-XLII-4-W7-31-2017
https://doi.org/10.3390/ijgi8030112
https://doi.org/10.3390/ijgi8030112
https://doi.org/10.1080/13658816.2015.1100731
https://doi.org/10.1145/2522968.2522981
https://doi.org/10.1007/bfb0014140
https://doi.org/10.1109/TKDE.2012.88
https://doi.org/10.1093/biomet/6.1.1
https://doi.org/10.1093/biomet/6.1.1
https://doi.org/10.5871/bacad/9780197263419.001.0001
https://doi.org/10.5871/bacad/9780197263419.001.0001
https://doi.org/10.1109/iCMLDE.2018.00020
https://doi.org/10.1109/iCMLDE.2018.00020


[129] Shikhar Verma, Yuichi Kawamoto, Zubair Md. Fadlullah, Hiroki Nishiyama, and
Nei Kato. A survey on network methodologies for real-time analytics of massive
iot data and open research issues. IEEE Communications Surveys and Tutorials,
19(3):1457–1477, 2017. doi: 10.1109/COMST.2017.2694469.

[130] Shuang Wang and Hakan Ferhatosmanoglu. Ppq-trajectory: spatio-temporal quan-
tization for querying in large trajectory repositories. Proceedings of the VLDB En-
dowment, 14(2):215–227, 2020. doi: 10.14778/3425879.3425891.

[131] Xiaoyu Wang, Xiaofang Zhou, and Sanglu Lu. Spatiotemporal data modelling and
management: a survey. In Proceedings of the Conference on Technology of Object-
Oriented Languages and Systems, TOOLS, pages 202–211. IEEE Comp Soc, 2000.

[132] Thunshun Warren Liao. Clustering of time series data - a survey. Pattern Recogni-
tion, 38(11):1857–1874, 2005. doi: 10.1016/j.patcog.2005.01.025.

[133] Christopher J.C.H. Watkins and Peter Dayan. Technical note: q-learning. Machine
Learning, 8(3):279–292, 1992. doi: 10.1023/A:1022676722315.

[134] Darrell Whitley. An overview of evolutionary algorithms: practical issues and com-
mon pitfalls. Information and Software Technology, 43(14):817–831, 2001. doi: 10
.1016/S0950-5849(01)00188-4.

[135] Darrell Whitley and Andrew M. Sutton. Genetic algorithms - a survey of models
and methods, volume 2-4. Springer Berlin Heidelberg, 2012, pages 637–671. doi:
10.1007/978-3-540-92910-9_21.

[136] Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. Data Mining:
Practical Machine Learning Tools and Techniques. Elsevier Inc., 2016.

[137] Jing Wu, Christophe Claramunt, Lamia Belouaer, and Min Deng. A qualitative
modelling approach for the representation of trajectories: application to the analysis
of flight patterns. Annals of GIS, 21(4):275–285, 2015. doi: 10.1080/19475683.20
15.1085439.

[138] Jing Wu, Christophe Claramunt, and Min Deng. Towards a qualitative representa-
tion of movement. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 8823:191–200,
2014. doi: 10.1007/978-3-319-12256-4_20.

[139] Rui Xu and Donald C. Wunsch. Clustering. John Wiley and Sons, 2008. doi: 10.1
002/9780470382776.

[140] Rui Xu and Donald Wunsch II. Survey of clustering algorithms. IEEE Transactions
on Neural Networks, 16(3):645–678, 2005. doi: 10.1109/TNN.2005.845141.

149

https://doi.org/10.1109/COMST.2017.2694469
https://doi.org/10.14778/3425879.3425891
https://doi.org/10.1016/j.patcog.2005.01.025
https://doi.org/10.1023/A:1022676722315
https://doi.org/10.1016/S0950-5849(01)00188-4
https://doi.org/10.1016/S0950-5849(01)00188-4
https://doi.org/10.1007/978-3-540-92910-9_21
https://doi.org/10.1080/19475683.2015.1085439
https://doi.org/10.1080/19475683.2015.1085439
https://doi.org/10.1007/978-3-319-12256-4_20
https://doi.org/10.1002/9780470382776
https://doi.org/10.1002/9780470382776
https://doi.org/10.1109/TNN.2005.845141


[141] Xiaowei Xu, Martin Ester, Hans-Peter Kriegel, and Joerg Sander. Distribution-
based clustering algorithm for mining in large spatial databases. In Proceedings -
International Conference on Data Engineering, pages 324–331. IEEE Comp Soc,
1998.

[142] Xin Xu, Guilin Zhang, and Wei Wu. A fast distribution-based clustering algorithm
for massive data. Lecture Notes in Electrical Engineering, 355:323–330, 2015. doi:
10.1007/978-3-319-11104-9_38.

[143] Huaxiu Yao, Xianfeng Tang, Hua Wei, Guanjie Zheng, and Zhenhui Li. Revisiting
spatial-temporal similarity: a deep learning framework for traffic prediction. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence, pages 5668–5675. AAAI
Press, 2019. doi: 10.1609/aaai.v33i01.33015668.

[144] Guan Yuan, Penghui Sun, Jie Zhao, Daxing Li, and Canwei Wang. A review of mov-
ing object trajectory clustering algorithms. Artificial Intelligence Review, 47(1):123–
144, 2017. doi: 10.1007/s10462-016-9477-7.

[145] Haitao Yuan and Guoliang Li. A survey of traffic prediction: from spatio-temporal
data to intelligent transportation. Data Science and Engineering, 6(1):63–85, 2021.
doi: 10.1007/s41019-020-00151-z.

[146] Jing Yuan, Yu Zheng, Xing Xie, and Guangzhong Sun. Driving with knowledge from
the physical world. In Proceedings of the ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 316–324. Association for Computing
Machinery, 2011. doi: 10.1145/2020408.2020462.

[147] Jing Yuan, Yu Zheng, Chengyang Zhang, Wenlei Xie, Xing Xie, Guangzhong Sun,
and Yan Huang. T-drive: driving directions based on taxi trajectories. In GIS: Pro-
ceedings of the ACM International Symposium on Advances in Geographic Infor-
mation Systems, pages 99–108, 2010. doi: 10.1145/1869790.1869807.

[148] Dongxiang Zhang, Mengting Ding, Dingy Yang, Yi Liu, Ju Fan, and Heng Tao Shen.
Trajectory simplification: an experimental study and quality analysis. Proceedings
of the VLDB Endowment, 11(9):934–946, 2018. doi: 10.14778/3213880.3213885.

[149] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data clus-
tering method for very large databases. SIGMOD Record (ACM Special Interest
Group on Management of Data), 25(2):103–114, 1996. doi: 10.1145/235968.2333
24.

[150] Yu Zheng. Trajectory data mining: an overview. ACM Transactions on Intelligent
Systems and Technology, 6(3), 2015. doi: 10.1145/2743025.

150

https://doi.org/10.1007/978-3-319-11104-9_38
https://doi.org/10.1609/aaai.v33i01.33015668
https://doi.org/10.1007/s10462-016-9477-7
https://doi.org/10.1007/s41019-020-00151-z
https://doi.org/10.1145/2020408.2020462
https://doi.org/10.1145/1869790.1869807
https://doi.org/10.14778/3213880.3213885
https://doi.org/10.1145/235968.233324
https://doi.org/10.1145/235968.233324
https://doi.org/10.1145/2743025


[151] Yu Zheng, Quannan Li, Yukun Chen, Xing Xie, and Wei-Ying Ma. Understanding
mobility based on gps data. In UbiComp 2008 - Proceedings of the 10th International
Conference on Ubiquitous Computing, pages 312–321. Association for Computing
Machinery, 2008. doi: 10.1145/1409635.1409677.

[152] Yu Zheng, Xing Xie, and Wei-Ying Ma. Geolife: a collaborative social network-
ing service among user, location and trajectory. IEEE Data Engineering Bulletin,
33(2):32–39, 2010.

[153] Yu Zheng, Lizhu Zhang, Xing Xie, and Wei-Ying Ma. Mining interesting locations
and travel sequences from gps trajectories. In WWW’09 - Proceedings of the 18th
International World Wide Web Conference, pages 791–800, 2009. doi: 10.1145/15
26709.1526816.

151

https://doi.org/10.1145/1409635.1409677
https://doi.org/10.1145/1526709.1526816
https://doi.org/10.1145/1526709.1526816


APPENDICES

152



Appendix A

Spatial-Temporal Cluster
Relationships

Spatial-temporal objects, such as vehicles or people, move and form groups called spatial-
temporal clusters. These clusters follow the movement of the objects and may enter or leave
other clusters, and are said to have spatial-temporal cluster relationships. This study in
this thesis identifies 14 spatial-temporal cluster relationships, which are explained in Sec-
tion 3.2.2. However, the section gives only a high-level explanation of the relationships for
simplification purposes and defer in-depth discussion to the appendix. Therefore, the pur-
pose of this appendix is to describe spatial-temporal cluster relationships in a much deeper
perspective, discussing how they are defined and how they can be found. This appendix
starts with an informal description of the relationships, then presents the language that
will be used in a more formal description, and proceeds to describe each spatial-temporal
cluster relationship in a more formal way in a subsection.

Spatial-temporal clusters are groups of spatial-temporal objects. Since spatial-temporal
objects move with time, it is said that spatial-temporal clusters also move with time. Note
that it is possible to identify the location of a spatial-temporal cluster by defining its
coordinates to be the average of the coordinates of every object that is in the cluster.
This location is not useful in density-based clustering, but simplifies the discussion on the
location of a spatial-temporal cluster. Spatial-temporal objects in several different clusters
can approach each other and form an even larger cluster. In other words, spatial-temporal
clusters can approach each other and merge. Similarly, several spatial-temporal objects
inside a large cluster may follow different paths, creating two different groups, or clusters,
and dividing the large cluster. In other words, a large spatial-temporal cluster can split,
forming other clusters. In other situations, a spatial-temporal cluster may receive a new
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spatial-temporal object, or lose one of the objects it already contains. Interactions between
clusters, such as merge, split, or receive or lose a spatial-temporal object, are spatial-
temporal cluster relationships. The proposed approach identifies 14 of these relationships,
which are presented in Table 3.1. The following paragraphs present the foundation for the
description each of the 14 relationships and each section describe a spatial-temporal cluster
relationship in a more formal way.

Let O = {o1, . . . , om} be a set of m spatial-temporal objects. Let ok be a spatial-
temporal object k. Note that spatial-temporal objects exist throughout time. In that case,
ok = [ok,tj ] is a vector of occurrences of a spatial-temporal object, where ok,tj represents a
spatial-temporal object k during timestamp tj.

Let C = {c1, . . . , cn} be a set of n clusters. Let ci be cluster i. Note that a cluster also
exists throughout time. For that reason, ci is a vector of the occurrences of the clusters
ci,tj , i.e. ci = [ci,tj ], where tj denotes discrete timestamps. Let ci,tj be cluster i during
timestamp tj. Once a timestamp is set, a cluster is defined by the spatial-temporal objects
it contains. For example, in DBSCAN, a cluster is the set of all of its core and border
points (where points represent spatial-temporal objects). Therefore, ci,tj = {ok,tj} during
timestamp tj, for all ok,tj that satisfies the particular clustering technique being used. Note
that it is assumed that a valid cluster has at least min_cluster spatial-temporal objects.

START

The START relationship characterizes the beginning of a cluster. See Figure A.1a for a
visual representation.

In DBSCAN, a cluster ci undergoes a START relationship if

• ci,tj−1
= ∅

• there exists one spatial-temporal object (or data point), say ok,tj , such that there
exists at least min_cluster spatial-temporal objects, each of them individually rep-
resented by oℓ,tj , such that distance(ok,tj , oℓ,tj) < ε,

where ε is a parameter that denotes the radius of a core point and is used to calculate
density.

The first condition simply states that the cluster does not exist in the previous times-
tamp. The second condition is a requirement for a density-based cluster to exist, which is
that there exist enough spatial-temporal objects (or data points) mutually close, increasing
the density.
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END

The END relationship characterizes the end of a cluster. See Figure A.1b for a visual
representation.

In DBSCAN, a cluster ci undergoes an END relationship if

• ci,tj−1
̸= ∅

• there does not exist a spatial-temporal object (or data point) in ci, say ok,tj , such that
there exists min_cluster spatial-temporal objects in ci, each of them individually
represented by oℓ,tj , such that distance(ok,tj , oℓ,tj) < ε,

where ε is a parameter that denotes the radius of a core point and is used to calculate
density.

The first condition simply states that the cluster does exist in the previous timestamp.
The second condition falsifies the requirement for a density-based cluster to exist, by
asserting that spatial-temporal objects that would form a cluster are not mutually close.

GROUP

Intuitively, a cluster ci undergoes a GROUP relationship when a group of enough spatial-
temporal objects decides to move together. See Figure A.1c for a visual representation.
Formally, a cluster ci undergoes a GROUP relationship if the following three conditions
are satisfied:

• ci,tj−1
= ∅

• ci,tj ̸= ∅

• there does not exist cluster ck,tj−1
such that |ci,tj ∩ ck,tj−1

| ≥ min_cluster.

The first and the second conditions simply assert the creation of the cluster. The third
condition states that the number of spatial-temporal objects forming the new cluster and
also coming from a preexisting cluster is not enough to form a cluster. If that was the case,
the relationship would be a DETACH.
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DISPERSE

Intuitively, a cluster ci undergoes a DISPERSE relationship when its spatial-temporal ob-
jects decide to go to different ways. See Figure A.1d for a visual representation. Formally, a
cluster ci undergoes a DISPERSE relationship if the following three conditions are satisfied:

• ci,tj−1
̸= ∅

• ci,tj = ∅

• there does not exist cluster ck,tj such that |ci,tj−1
∩ ck,tj | ≥ min_cluster.

The first and the second conditions simply assert the ending of a cluster. The third
condition states that the number of spatial-temporal objects spreading from the ending
cluster and also going to an existing cluster should not be enough to form a cluster. If that
was the case, the relationship would be a JOIN.

JOIN

Intuitively, a cluster ci undergoes a JOIN relationship when it joins an existing cluster.
See Figure A.1e for a visual representation. Formally, a cluster ci undergoes a JOIN
relationship if

• ci,tj−1
̸= ∅

• ci,tj = ∅

• there exists only one cluster ck,tj such that |ci,tj−1
∩ ck,tj | ≥ min_cluster.

The first and the second conditions simply assert the ending of a cluster. The third
condition states that there exists one, and only one, cluster where enough spatial-temporal
objects go to. If that was not the case, then the relationship would be a DISPERSE.
If there existed more than one cluster where spatial-temporal objects went to, then the
relationship would be a SPLIT.
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DETACH

Intuitively, a cluster ci undergoes a DETACH relationship when it leaves an existing cluster.
See Figure A.1f for a visual representation. Formally, a cluster ci undergoes a DETACH
relationship if

• ci,tj−1
= ∅

• ci,tj ̸= ∅

• there exists only one cluster ck,tj−1
such that |ci,tj ∩ ck,tj−1

| ≥ min_cluster.

The first and the second conditions simply assert the creation of a cluster. The third
condition states that there exists one, and only one, cluster where enough are coming from.
If that was not the case, then the relationship would be a GROUP. If there existed more
than one cluster where spatial-temporal objects came from, then the relationship would be
a MERGE.

MERGE

Intuitively, a cluster ci undergoes a MERGE relationship when it is created by the com-
bination (or union) of two or more clusters. See Figure A.1g for a visual representation.
Formally, a cluster ci undergoes a MERGE relationship if

• ci,tj−1
= ∅

• ci,tj ̸= ∅

• there exists at least two clusters ck,tj−1
and cℓ,tj−1

, k ̸= i, ℓ ̸= i, such that |ci,tj ∩
ck,tj−1

| ≥ min_cluster and |ci,tj ∩ cℓ,tj−1
| ≥ min_cluster.

The first and the second conditions simply assert the creation of a cluster. The third
condition states that at least two clusters sent enough spatial-temporal objects to take part
in the new cluster formation. If that was not the case, the relationship would be either a
GROUP or a C_ENTER.
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SPLIT

Intuitively, a cluster ci undergoes a SPLIT relationship when it disappears by begin divided
into two or more clusters. See Figure A.1h for a visual representation. Formally, a cluster
ci undergoes a SPLIT relationship if

• ci,tj−1
̸= ∅

• ci,tj = ∅

• there exists at least two clusters ck,tj and cℓ,tj , k ̸= i, ℓ ̸= i, such that |ci,tj−1
∩ ck,tj | ≥

min_cluster and |ci,tj−1
∩ cℓ,tj | ≥ min_cluster.

The first and the second conditions simply assert the ending of a cluster. The third
condition states that the ending cluster sent enough spatial-temporal objects to at least
two clusters. If that was not the case, the relationship would be either a DISPERSE or a
C_LEAVE.

C_ENTER

Intuitively, a cluster ci undergoes a C_ENTER relationship when it receives a group of
spatial-temporal objects from a cluster (enough to be a cluster by themselves), ending the
sender cluster. Note that this relationship is similar to the JOIN relationship, but it is
described from the perspective of the cluster who received another cluster. See Figure A.1i
for a visual representation. Formally, a cluster ci undergoes a C_ENTER relationship if

• ci,tj−1
̸= ∅

• ci,tj ̸= ∅

• there exists a cluster ck,tj−1
such that |ci,tj ∩ ck,tj−1

| ≥ min_cluster

• ck,tj = ∅.

The first and the second conditions simply assert that the cluster existed on both
timestamps. The third condition states that enough spatial-temporal objects entered the
cluster coming from a previously existing cluster. The fourth condition asserts that the
previously existing cluster ended. If that was not the case, the relationship would be a
C_IN.
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C_LEAVE

Intuitively, a cluster ci undergoes a C_LEAVE relationship when a group of spatial-
temporal objects (enough to form a new cluster) leaves the cluster, creating a new cluster.
Note that this relationship is similar to the DETACH relationship, but it is described from
the perspective of the cluster who released another cluster. See Figure A.1j for a visual
representation. Formally, a cluster ci undergoes a C_LEAVE relationship if

• ci,tj−1
̸= ∅

• ci,tj ̸= ∅

• there exists a cluster ck,tj such that |ci,tj−1
∩ ck,tj | ≥ min_cluster

• and ck,tj−1
= ∅.

The first and the second conditions simply assert that the cluster existed on both times-
tamps. The third condition states that enough spatial-temporal objects left the cluster to a
form a new cluster. The fourth condition asserts that the new cluster did not exist before.
If that was not the case, the relationship would be a C_OUT.

T_ENTER

Intuitively, a cluster ci undergoes a T_ENTER relationship when a spatial-temporal object
enters it, either from another cluster or not. See Figure A.1k for a visual representation.
Formally, a cluster ci undergoes a T_ENTER relationship if

• ok,tj−1
/∈ ci,tj−1

• ok,tj ∈ ci,tj

These two conditions are required, but not sufficient. More conditions are required de-
pending on whether the spatial-temporal object entered the cluster from another cluster
or not. In case ok did not enter the cluster from another cluster, i.e. ok,tj−1

/∈ cℓ,tj−1
for all

ℓ = 1, . . . , n, then one the following two condition is necessary:

• ci,tj−1
̸= ∅

• there exists cluster cℓ,tj−1
such that |ci,tj ∩ cℓ,tj−1

| ≥ min_cluster.
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If spatial-temporal object ok did enter the cluster from another cluster, the following
two conditions are necessary: let cℓ,tj−1

be the cluster ok came from, i.e. ok,tj−1
∈ cℓ,tj−1

.

• |ci,tj ∩ cℓ,tj−1
| < min_cluster

• there exists at most one cluster cm,tj−1
such that |ci,tj ∩ cm,tj−1

| ≥ min_cluster.

The first two conditions simply assert that a spatial-temporal object entered a cluster. If
this spatial-temporal object did not come from a cluster, then the two additional conditions
assert that the spatial-temporal object is not part of a GROUP relationship. If this spatial-
temporal object did come from a cluster, then the two additional conditions assert that the
spatial-temporal object is not part of a C_ENTER (first additional condition) relationship
or a MERGE (second additional condition) relationship.

T_LEAVE

Intuitively, a cluster ci undergoes a T_LEAVE relationship when one of its spatial-temporal
objects leaves it, either to another cluster or not. See Figure A.1l for a visual representation.
Formally, a cluster ci undergoes a T_LEAVE relationship if

• ok,tj−1
∈ ci,tj−1

• ok,tj /∈ ci,tj

These two conditions are required, but are not sufficient. More conditions are required
depending on whether the spatial-temporal object left to another cluster or not. In case ok
did not leave to another cluster, i.e. ok,tj /∈ cℓ,tj for all ℓ = 1, . . . , n, then one the following
two conditions is necessary:

• ci,tj ̸= ∅

• there exists cluster cℓ,tj such that |ci,tj−1
∩ cℓ,tj | ≥ min_cluster.

If spatial-temporal object ok did leave to another cluster, the following two conditions
are necessary: let cℓ,tj be the cluster ok went to, i.e. ok,tj ∈ cℓ,tj .

• |ci,tj−1
∩ cℓ,tj | < min_cluster
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• there exists at most one cluster cm,tj such that |ci,tj−1
∩ cm,tj | ≥ min_cluster.

The first two conditions simply assert that a spatial-temporal object left a cluster. If
this spatial-temporal object did not leave to a cluster, then the two additional conditions
assert that the spatial-temporal object is not part of a DISPERSE relationship. If this
spatial-temporal object did leave to a cluster, then the two additional conditions assert
that the spatial-temporal object is not part of a C_LEAVE (first additional condition)
relationship or a SPLIT (second additional condition) relationship.

C_IN

Intuitively, a cluster ci undergoes a C_IN relationship when a group of spatial-temporal
objects (enough to form a new cluster) leaves a cluster and enters ci, immediately after.
See Figure A.1m for a visual representation. Formally, a cluster ci undergoes a C_IN
relationship if

• ci,tj ̸= ∅

• there exists a cluster ck,tj−1
such that |ci,tj ∩ ck,tj−1

| ≥ min_cluster

• ck,tj−1
̸= ∅

The first condition simply asserts that the receiving cluster exists after the transition.
The second condition states that the number of spatial-temporal objects exchanged is
large enough to be deemed a cluster. The third condition states that the cluster who sent
spatial-temporal objects existed before the transition.

C_OUT

Intuitively, a cluster ci undergoes a C_OUT relationship when a group of spatial-temporal
objects (enough to form a new cluster) leaves ci and enters another cluster, immediately
after. See Figure A.1n for a visual representation. Formally, a cluster ci undergoes a
C_OUT relationship if

• ci,tj−1
̸= ∅

• there exists a cluster ck,tj such that |ci,tj−1
∩ ck,tj | ≥ min_cluster
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• ck,tj ̸= ∅

The first condition simply asserts that the cluster sending spatial-temporal objects ex-
ists before the transition. The second condition states that the number of spatial-temporal
objects exchanged is large enough to be deemed a cluster. The third condition states that
the receiving cluster exists after the transition.
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Figure A.1: The spatial-temporal cluster relationships.

163



ci,tj−1

ck,tj−1

ci,tj

(i) The C_ENTER relationship.

ci,tj

ck,tj

ci,tj−1

(j) The C_LEAVE relationship.

ci,tj−1

ok,tj−1

ci,tj

(k) The T_ENTER relationship.

ci,tj

ok,tj
ci,tj−1

(l) The T_LEAVE relationship.

ck,tj−1

ci,tj−1

ck,tj

ci,tj

(m) The C_IN relationship.

ci,tj−1

ck,tj−1

ci,tj

ck,tj

(n) The C_OUT relationship.

Figure A.1: The spatial-temporal cluster relationships. Continued from previous page.
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Appendix B

Case Study Queries

This appendix contains the Cypher code for the queries in the four case studies presented
in this thesis.

B.1 Case Study 1

Code related to case study 1 is presented here. The codes refer to the queries performed in
Section 4.2. The code is presented in the same order as they are described in the section,
and in the same order of the questions in Table 4.1.

B.1.1 Structure

This subsection presents the code of queries related to the structure of spatial-temporal
clusters.

Show a specific cluster.

Showing a specific spatial-temporal cluster makes its structure visible. This is important
for exploratory analyses. The code in Listing B.1 returns cluster c100. The parameter
clusterId identifies a spatial-temporal cluster through several timestamps. The parameter
is set to 100.
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MATCH (c:Cluster{clusterId:100}) RETURN c

Listing B.1: The code to return a specific spatial-temporal cluster.

How many clusters are there in the dataset?

The total number of spatial-temporal clusters in the dataset is an important value de-
pending on the calculations being performed. The code in Listing B.2 returns a count of
all spatial-temporal clusters. Note that Neo4j returns nodes, not clusters. Counting the
number of nodes would mean counting the number of occurrences of all spatial-temporal
clusters in all timestamps. The parameter DISTINCT solves this problem.

MATCH (c:Cluster) RETURN count(DISTINCT c.clusterId)

Listing B.2: The code to return the number of spatial-temporal clusters in the dataset.

How many clusters are there around a specific location?

It is important to know the number of clusters near a location for exploratory studies. The
code in Listing B.3 uses latitude and longitude coordinates to specify the location and a
range, in meters, to return the number of clusters near the location. The code searches
for all clusters and the clause WHERE filters the result. The code in Listing B.4 is a new
visualization of the results, distributing clusters by the hour of the day.

WITH
41.890278 AS latitude,
12.492222 AS longitude,
500 AS maxDistance

MATCH (c:Cluster)
WHERE

point.distance(c.location, POINT({latitude: latitude, longitude:
longitude})) <= maxDistance
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RETURN count(DISTINCT c.clusterId) AS Count, collect(DISTINCT c.clusterId)
AS ClusterID

Listing B.3: The code to return the number of spatial-temporal clusters around a specific
location.

WITH
41.890278 AS latitude,
12.492222 AS longitude,
500 AS maxDistance

MATCH (c:Cluster)
WHERE

point.distance(c.location, POINT({latitude: latitude, longitude:
longitude})) <= maxDistance

RETURN c.timestamp.hour AS Hour, count(DISTINCT c.clusterId) AS Number,
collect(DISTINCT c.clusterId) AS ClusterID ORDER BY Hour

Listing B.4: The code to return the number of spatial-temporal clusters around a specific
location, but with a different visualization with clusters distributed by the hour of the day.

What clusters start (end) around a specific location?

Analysis on the spatial-temporal clusters that start or end at a specific location is a starting
point for further inspections on data. The code in Listing B.5 returns all spatial-temporal
clusters that exist around a specific location, defined by latitude and longitude coordinates,
and within a range, defined by maxDistance. Note the restriction cStart:True to indicate
that only the first node in the evolution of a spatial-temporal is returned.

WITH
41.896 AS latitude,
12.4825 AS longitude,
100 AS maxDistance

MATCH (c:Cluster{cStart:True})
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WHERE point.distance(c.location, POINT({latitude: latitude, longitude:
longitude})) <= maxDistance

RETURN c.clusterId AS ClusterID ORDER BY ClusterID

Listing B.5: The code to return the spatial-temporal clusters that start around a specific
location.

What clusters exist for more than a number of minutes?

Spatial-temporal clusters that exist for a longer time may have interesting relationships.
For this reason, it is important to identify these clusters so that further analysis can be
performed. The code in Listing B.6 returns the clusters as well the time they exist provided
that they exist for at least 60 minutes. The calculation of the time a cluster exist is done
in duration.between(c1.timestamp,c2.timestamp).

MATCH (c1:Cluster{cStart:True})−[:RELATION*0..]->(c2:Cluster{cEnd:True})
WHERE c1.clusterId = c2.clusterId AND
duration.between(c1.timestamp,c2.timestamp).minutes >= 60
RETURN DISTINCT c1.clusterId AS ClusterID

Listing B.6: The code to return the spatial-temporal clusters that exist for more than a
given number of minutes.

What is the shortest (or longest) cluster with respect to the time it exists?

For some statistical analysis, extreme values such as shortest or longest, are important.
These values can be used for normalization purposes and other advanced calculations. The
code in Listing B.7 returns the clusters as well as the time they exist, but present the
results in descending order such that the longest spatial-temporal clusters is at the top.
A variation of this code has LIMIT 1 at the end to return only the first entry, that is the
longest cluster if there are no draws.
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MATCH (c1:Cluster{cStart:True})−[:RELATION*0..]->(c2:Cluster{cEnd:True})
WHERE c1.clusterId = c2.clusterId
RETURN DISTINCT c1.clusterId AS ClusterID, duration.between(c1.timestamp,

c2.timestamp).minutes AS Duration ORDER BY Duration DESC

Listing B.7: The code to return the longest cluster with respect to the time it exists in the
dataset.

What is the largest cluster with respect to the number of spatial-temporal
objects?

A spatial-temporal cluster containing many spatial-temporal objects is a sign of important
phenomena and should be further investigated. The code in Listing B.8 returns all nodes,
or occurrences of spatial-temporal clusters in timestamps and max(c.size) aggregates the
result, showing only the cluster and the largest number of spatial-temporal objects that it
has at some point during its existence.

MATCH (c:Cluster)
RETURN c.clusterId AS ClusterID, max(c.size) AS Size ORDER BY Size DESC

Listing B.8: The code to return spatial-temporal clusters and the maximum number of
spatial-temporal objects that they contain at any point during their existence.

What clusters have more than a given number of spatial-temporal objects?

Depending on the investigation, it may be interesting to list all spatial-temporal clusters
that contain, at any point during its existence, a number of spatial-temporal objects greater
than a given value. The code in Listing B.9 returns all spatial-temporal clusters filtered
by the restriction on the size. This restriction is imposed by the code in WHERE c.size >
10.

MATCH (c:Cluster)
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WHERE c.size > 10
RETURN DISTINCT c.clusterId AS ClusterID ORDER BY ClusterID

Listing B.9: The code to return spatial-temporal clusters that have more than a given
number of spatial-temporal objects at any point during their existence.

B.1.2 Relationships

This subsection presents the code of queries related to the relationships of spatial-temporal
clusters.

What clusters start with a MERGE relationship? (Or What clusters end with
a SPLIT relationship?)

The way spatial-temporal clusters start or end their existence is described by the relation-
ship the cluster has at the suitable moment. This relationship can be queried for additional
data about the investigation of important phenomena. The code in Listing B.10 returns a
list of all spatial-temporal clusters that start with a MERGE relationship. Note that the
notation ()-[r:Relationship]->(c:ClustercStart:True) seeks for nodes c having an
incoming relationship r. The code in Listing B.11 performs a similar query, but returns
spatial-temporal clusters that end in a SPLIT relationship.

MATCH ()−[r:Relationship]->(c:Cluster{cStart:True})
WHERE r.clusterRelationship = 'MERGE'
RETURN DISTINCT c.clusterId AS ClusterID ORDER BY ClusterID

Listing B.10: The code to return spatial-temporal clusters that start in a MERGE
relationship.

MATCH (c:Cluster{cEnd:True})−[r:Relationship]->()
WHERE r.clusterRelationship = 'SPLIT'
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RETURN DISTINCT c.clusterId AS ClusterID ORDER BY ClusterID

Listing B.11: The code to return spatial-temporal clusters that end in a SPLIT relationship.

Show the locations where T_ENTER (or T_LEAVE, MERGE, SPLIT, etc.)
relationships happen.

Information about the location of spatial-temporal cluster relationships can help in ex-
ploratory investigations about important phenomena. The code in Listing B.12 returns
the location of every T_ENTER relationship on the dataset. Since relationships hap-
pen between timestamps, the location is the average between the latitude coordinate or
longitude coordinate of the cluster before and after the relationship. Note that the re-
striction {clusterRelationship:'T_ENTER'} can be updated to perform queries on other
spatial-temporal cluster relationships.

MATCH (c1:Cluster)−[r:Relationship{clusterRelationship:'T_ENTER'}]->(c2:
Cluster)

RETURN DISTINCT
(c1.location.latitude + c2.location.latitude)/2 AS Latitude,
(c1.location.longitude + c2.location.longitude)/2 AS Longitude

Listing B.12: The code to return the location of a given spatial-temporal relationship in
the dataset.

What clusters have more than a given number of T_ENTER (or T_LEAVE)
relationships?

In general, spatial-temporal clusters have a number of relationships. However, some clus-
ters present an uncommon number of these relationships, which may indicate important
phenomena that is worth investigating. The code in Listing B.13 returns all clusters
with the additional restriction that, in the sequence of nodes that represent this spatial-
temporal cluster, there should be more than a given number of spatial-temporal cluster
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relationships of a given type. In this specific case, the code presents clusters with more
than 15 T_ENTER relationships, given by the second restriction in the WHERE clause.
The code first uses a list comprehension operation to create a list of all occurrences of a
given relationship, as in [r in relationships(path) WHERE r.clusterRelationship =
'T_ENTER'|r], and then uses the function size() to count the number of elements in the
list.

MATCH path = (c1:Cluster{cStart:True})−[:Relationship*0..]->(c2:Cluster{
cEnd:True})

WHERE
c1.clusterId = c2.clusterId AND
size([r in relationships(path) WHERE r.clusterRelationship = 'T_ENTER'
|r]) > 15

RETURN DISTINCT c1.clusterId AS ClusterID

Listing B.13: The code to return spatial-temporal clusters that have more than 15
T_ENTER relationships during their existence.

What clusters have a MERGE relationship before a given time?

Filtering the occurrence of spatial-temporal cluster relationships based on the time can
help identify phenomena at specific moments of the day. The code in Listing B.14 returns
clusters who have a MERGE relationship before 8 AM. The filter per hour is in WHERE
c.timestamp.hour < 8. Because Neo4j uses a 24-hour clock, there is no ambiguity with
8 PM. Notice that the restriction }clusterRelationship:'MERGE'} can be updated for
other spatial-temporal cluster relationships.

MATCH ()−[r:Relationship{clusterRelationship:'MERGE'}]->(c:Cluster{cStart:
True})

WHERE c.timestamp.hour < 8
RETURN DISTINCT c.clusterId AS ClusterID ORDER BY ClusterID

Listing B.14: The code to return spatial-temporal clusters that have a MERGE relationship
before 8 AM.
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B.1.3 Structure

This subsection presents the code of queries related to the graph representation of spatial-
temporal cluster evolution.

Show the evolution of a given cluster, that is all the cluster evolution paths
starting at the given cluster.

Cluster evolution paths are a sequence of nodes representing spatial-temporal clusters that
are connected and not restricted by only one cluster. From a start node, there could be
many cluster evolution paths. Investigating cluster evolution paths give several insights
about the movement of objects and help find important phenomena. The code in Listing
B.15 returns all cluster evolution paths from a given spatial-temporal cluster. The chosen
cluster is c505. The restrictions {pStart:True, clusterId:5805} substitute the WHERE
clause for restrictions and direct the query to look for nodes that start a cluster evolution
path and belong to the evolution of cluster c5805.

MATCH path = (c1:Cluster{pStart:True, clusterId:5805})−[:Relationship*0..{
pMain:True}]->(c2:Cluster{pEnd:True})

RETURN path AS ClusterEvolutionPath

Listing B.15: The code to return all the cluster evolution paths starting at the beginning
of the spatial-temporal cluster c5805.

How many cluster evolution paths there exists in the database?

In exploratory analysis, it is important to know the total number of properties or charac-
teristics, such as the total number of cluster evolution paths in the database. This number
can be used for performance improvements or in other types of analyses. The code in
Listing B.16 returns the number of all cluster evolution paths that can be found in the
database. Note that, as cluster evolution paths are sequence of nodes, and not edges, only
one of possibly many edges between two nodes is enough to represent a connection between
these nodes. For this reason, and for performance reasons, the restriction {pMain:True}
serves as an optimization.
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MATCH path = (c1:Cluster{pStart:True})−[:Relationship*0..{pMain:True}]->(
c2:Cluster{pEnd:True})

RETURN count(path) AS NumberOfClusterEvolutionPaths

Listing B.16: The code to return the number of all cluster evolution paths in the database.

Show all cluster evolution paths and the location they start and end.

Additional information about cluster evolution paths, such as the location they start or
end, can be used to explain the movement they represent or to begin a deeper investi-
gation. The code in Listing B.17 returns every cluster evolution path in the database
alongside the location they started and ended. These locations are described in terms of
their latitude and longitude coordinates, which are stored in c1.location.latitude or
c1.location.longitude for the start position and similarly for the end position.

MATCH path = (c1:Cluster{pStart:True})−[:Relationship*0..{pMain:True}]->(
c2:Cluster{pEnd:True})

RETURN
apoc.coll.toSet([c IN nodes(path) | c.clusterId]) AS
ClusterEvolutionPaths,
c1.location.latitude AS StartLatitude,
c1.location.longitude AS StartLongitude,
c2.location.latitude AS EndLatitude,
c2.location.longitude AS EndLongitude

Listing B.17: The code to return all cluster evolution paths and the location they start
and end.

What cluster evolution paths start (end) around a specific location?

When specifying a location of interest, spatial-temporal clusters that start, or end, at
this location can be retrieved, examined, to identify interesting phenomena. The code in
Listing B.18 returns the cluster evolution paths that start around the location defined by
the coordinates in latitude and longitude, within a radius of 500 meters.
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WITH
41.794700 AS latitude,
12.250700 AS longitude,
500 AS maxDistance

MATCH path = (c1:Cluster{pStart:True})−[:Relationship*0..{pMain:True}]->(
c2:Cluster{pEnd:True})

WHERE point.distance(c1.location, POINT({latitude: latitude, longitude:
longitude})) <= maxDistance

RETURN apoc.coll.toSet([n IN nodes(path) | n.clusterId]) AS
ClusterEvolutionPaths

Listing B.18: The code to return all cluster evolution paths that start around a specific
location.

Show the location of every cluster change in all cluster evolution paths.

Cluster evolution paths are a sequence of cluster occurrences in timestamps. Depending on
the evolution of a particular cluster, there could be a cluster change in this sequence. For
example, if a spatial-temporal cluster c1 splits into clusters c2 and c3, the cluster evolution
path from the beginning of c1 to the end of c2 contains a cluster change. Investigating the
location of these cluster changes identify the location where decisions are made, especially
the ones that result in a change of cluster. The code in Listing B.19 returns all cluster
evolution paths and the location where cluster changes happen. Note that the restriction
WHERE c1.clusterId <> c2.clusterId limits the results to paths that necessarily have
a cluster change. Since a cluster path can have more than one cluster change, the result is
shown as a list of locations.

MATCH path = (c1:Cluster{pStart:True})−[:Relationship*0..{pMain:True}]->(
c2:Cluster{pEnd:True})

WHERE c1.clusterId <> c2.clusterId
WITH path, apoc.coll.pairs(nodes(path)) AS pairs
UNWIND([pair IN pairs WHERE pair[0].clusterId <> pair[1].clusterId | [(

pair[0].location.latitude + pair[1].location.latitude)/2, (pair[0].
location.longitude + pair[1].location.longitude)/2]]) AS location
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RETURN apoc.coll.toSet([n IN nodes(path) | n.clusterId]) AS
ClusterEvolutionPath, collect(DISTINCT location) AS Location

Listing B.19: The code to return the location of every cluster change in all cluster evolution
paths.

What are the cluster evolution paths that start in the morning and end in the
afternoon?

Limiting the investigation of spatial-temporal clusters to moments of the day results in a
deeper investigation of some phenomena of interest. The code in Listing B.20 returns all
cluster evolution paths that start in the morning and end in the afternoon alongside their
start and end times. Morning is defined as the time between 6 AM and 12 PM and is repre-
sented in the code by the restrictions c1.timestamp.hour >= 6 and c1.timestamp.hour
< 12. Afternoon is defined as the time between 12 PM and 6 PM and is represented, in a
24-hour clock, by the restrictions c2.timestamp.hour >= 12 and c2.timestamp.hour <
18.

MATCH path = (c1:Cluster{pStart:True})−[:Relationship*0..{pMain:True}]->(
c2:Cluster{pEnd:True})

WHERE
c1.timestamp.hour >= 6 AND
c1.timestamp.hour < 12 AND
c2.timestamp.hour >= 12 AND
c2.timestamp.hour < 18

RETURN
apoc.coll.toSet([n IN nodes(path)|n.clusterId]) AS
ClusterEvolutionPaths,
c1.timestamp AS PathStartTime,
c2.timestamp AS PathEndTime

Listing B.20: The code to return all cluster evolution paths that start in the morning and
end in the afternoon.
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Show all cluster evolution paths and the time they start and end.

As a more generic investigation than the one in the previous query, an exploratory inves-
tigation may list all cluster evolution paths and the time they start and end to identify
interesting phenomena, such as a common time for cluster creation. The code in Listing
B.21 returns all cluster evolution paths in the database alongside their start and end time,
which are stored in c1.timestamp and c2.timestamp.

MATCH path = (c1:Cluster{pStart:True})−[:Relationship*0..{pMain:True}]->(
c2:Cluster{pEnd:True})

RETURN
apoc.coll.toSet([c IN nodes(path) | c.clusterId]) AS
ClusterEvolutionPaths,
c1.timestamp AS StartTimestamp,
c2.timestamp AS EndTimeStamp

Listing B.21: The code to return all cluster evolution paths in the database alongside the
time they start and end.

What is the cluster evolution path with the greatest number of relationships?

Investigating data that presents extreme values, such as the cluster evolution paths that
have the greatest number of relationships, help uncover interesting phenomena that is
not visible at first. The code in Listing B.22 returns the cluster evolution path with the
greatest number of relationships. The restriction LIMIT 1 instructs the code to return only
the result at the top of the result table, which is the expected result, since the results are
ordered. However, in the case of a draw, important results can be missing.

MATCH path = (c1:Cluster{pStart:True})−[:RELATION*0..{pMain:True}]->(c2:
Cluster{pEnd:True})

RETURN
apoc.coll.toSet([n IN nodes(path)|n.clusterId]) AS
ClusterEvolutionPaths,
size(relationships(path)) AS NumOfRelationships

ORDER BY NumOfRelationships DESC
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LIMIT 1

Listing B.22: The code to return the cluster evolution path with the greatest number of
spatial-temporal relationships.

What cluster evolution paths have more (or less) than a given number of rela-
tionships?

The analysis of the cluster evolution path with the greatest number of relationship help
identify interesting phenomena, however, the analysis on all cluster evolution paths that
have more, or less, than a given number of spatial-temporal cluster relationship help iden-
tify common results that can be further investigated to identify other types of interesting
phenomena. The code in Listing B.23 returns all cluster evolution paths that have more
than 100 relationships, alongside their actual number of relationships. The restriction on
the number of relationships is at the WHERE clause size(relationships(path)) > 100,
which can be updated as needed.

MATCH path = (c1:Cluster{pStart:True})−[:Relationship*0..{pMain:True}]->(
c2:Cluster{pEnd:True})

WHERE size(relationships(path)) > 100
RETURN

apoc.coll.toSet([n IN nodes(path)|n.clusterId]) AS
ClusterEvolutionPaths,
size(relationships(path)) AS NumOfRelationships

ORDER BY NumOfRelationships

Listing B.23: The code to return the cluster evolution paths that have more than 100
spatial-temporal relationships.
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What is the cluster evolution path with the greatest number of spatial-temporal
objects during its existence?

Spatial-temporal clusters are formed by spatial-temporal objects that group during their
movement. Some of these clusters contain many of these objects, which indicates that
further investigation can identify interesting phenomena or an outlier case. The code
in Listing B.24 returns the cluster evolution path that contains the greatest number of
spatial-temporal objects at some point in its existence among all paths in the database.
The aggregating function max() and the list comprehension notation together in max([n
IN nodes(path)|n.size]) calculate the maximum number of spatial-temporal objects
at any point during the existence of a given cluster evolution path, and since results are
ordered by this number, the code is instructed to return only the first entry of the result
table.

MATCH path = (c1:Cluster{pStart:True})−[:Relationship*0..{pMain:True}]->(
c2:Cluster{pEnd:True})

RETURN
apoc.coll.toSet([n IN nodes(path)|n.clusterId]) AS
ClusterEvolutionPaths,
apoc.coll.max([n IN nodes(path)|n.size]) AS MaxNumOfObjects

ORDER BY MaxNumOfObjects DESC
LIMIT 1

Listing B.24: The code to return the cluster evolution path with the greatest number of
spatial-temporal objects during its existence.

What is the cluster evolution path with the greatest average number of spatial-
temporal objects during its existence?

A more advanced investigation avenue is to examine cluster evolution paths that have the
greatest average of spatial-temporal objects during existence, instead of paths that have the
greatest number of objects at any point during existence. Both approaches are valuable,
but return different types of results. The code in Listing B.25 returns the cluster evolution
paths with the greatest average number of spatial-temporal objects during its existence.
The average is calculated in (maxNumOfObjects - minNumOfObjects)/numOfClusters
and is based on the number of cluster occurrences that are transformed into nodes in the
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database. Other approaches may average the result by the time the cluster exists or by
maximum number of objects the cluster has at any point during existence.

MATCH path = (c1:Cluster{pStart:True})−[:Relationship*0..{pMain:True}]->(
c2:Cluster{pEnd:True})

WITH
path,
apoc.coll.max([n IN nodes(path)|n.size]) AS maxNumOfObjects,
apoc.coll.min([n IN nodes(path)|n.size]) AS minNumOfObjects,
size(apoc.coll.toSet([n IN nodes(path)|n.clusterId])) AS numOfClusters

RETURN
apoc.coll.toSet([n IN nodes(path)|n.clusterId]) AS
ClusterEvolutionPaths,
(maxNumOfObjects − minNumOfObjects)/numOfClusters AS AvgNumOfObjects

ORDER BY AvgNumOfObjects DESC
LIMIT 1

Listing B.25: The code to return the cluster evolution path with the greatest average
number of spatial-temporal objects during its existence.

B.2 Case Study 2

Code related to case study 2 is presented here. The code refers to the analysis presented
in Section 4.3 to generate the results Table 4.23.

Case study 2 investigates the ever-increasing or ever-decreasing regions and the calcu-
lation of an AROC. The code in Listing B.26 returns cluster evolution paths that contain
lengthy ever-increasing regions alongside other information about them. This information
includes the spatial-temporal cluster at the start and end of the path, the start and end
times, and the number of spatial-temporal objects at the start and end of the path. The
code starts with a usual MATCH clause and uses the pairsMin() function from the apoc
library to traverse the path searching for pairs of nodes that contain an increase or stabi-
lization of the number of participants. Each pair that matches this restriction is marked
with True, or False otherwise. Then the procedure split(), also from the apoc library,
regions of increase by splitting the list of pairs whenever a pair marked as False is found.
The max() filters the results, identifying the ever-increasing regions. The rest of the code
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aggregates results for cases where more than one ever-increasing region is found. Informa-
tion about the cluster evolution paths returned by the code is discussed in the respective
section.

MATCH path = (c1:Cluster{pStart:True})−[:Relationship*0..{pMain:True}]->(
c2:Cluster{pEnd:True})

CALL apoc.coll.split([pair IN apoc.coll.pairsMin(nodes(path)) | CASE pair[
0].size <= pair[1].size WHEN True THEN pair ELSE False END],False)
YIELD value AS pairs

WITH path, collect(apoc.coll.toSet(apoc.coll.flatten(pairs))) AS
tempSequence, max(size(pairs))+1 AS maxLength

UNWIND tempSequence AS sequence
WITH path, sequence, maxLength
WHERE size(sequence) = maxLength
RETURN

apoc.coll.toSet([n in nodes(path)|n.clusterId]) AS
ClusterEvolutionPath,
sequence[ 0].clusterId AS StartCluster,
sequence[−1].clusterId AS EndCluster,
sequence[ 0].timestamp AS StartTime,
sequence[−1].timestamp AS EndTime,
sequence[ 0].size AS StartSize,
sequence[−1].size AS EndSize

Listing B.26: The code to return cluster evolution paths with lengthy ever-increasing
regions alongside information about their start and end cluster, time, and size.

B.3 Case Study 3

Code related to case study 3 is presented here. The code refers to the analysis presented
in Section 4.4 to identify the start of cluster evolution paths, shown in Table 4.24, and to
generate part of the results Table 4.25.

Case study 3 investigates the calculation of a similarity value between cluster evolution
paths. The process towards the results has two steps. The first step is to generate a list of
spatial-temporal clusters that start cluster evolution paths. These clusters are then plotted
on a map in QGIS and the ones near the place of interest are selected, creating a filtered
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list. The second step is to use the filtered list of spatial-temporal clusters to retrieve and
calculate important information about the cluster evolution paths they start. The code
in Listing B.27 returns the list of spatial-temporal clusters that start cluster evolution
paths. Note that the code is optimized and contains four restrictions. The first restriction,
c1.pEnd IS NULL does not allow the path to end on its first node. The second restriction,
c2.pEnd IS NULL does not allow the path to end on its second node, removing trivial cases.
The third restriction, id(c1) <> id(c2) does not allow the cluster to include a loop at the
first node. The fourth restriction, (c:ClusterpStart:True)-->(c2:Cluster) forces the
path to include at least two nodes. The resulting list is then plotted and the filtered list
is created. The code in Listing B.28 returns information about the cluster evolution paths
started by spatial-temporal clusters in the filtered list. The filtered list is supposed to be
provided in WITH [] AS ListOfClusters, then a series of calculations and aggregations
are performed to the final result. Code for the calculation of the similarity is not performed
in Neo4j and is not presented in this appendix.

MATCH (c1:Cluster{pStart:True})-->(c2:Cluster)
WHERE

c1.pEnd IS NULL AND
c2.pEnd IS NULL AND
id(c1) <> id(c2)

RETURN DISTINCT c1.clusterId, c1.location.latitude AS latitude, c1.
location.longitude AS longitude

Listing B.27: This code returns a list of spatial-temporal clusters that start cluster
evolution paths. The results are restricted to filter out possible uninteresting paths.

WITH [] AS ListOfClusters

MATCH path = (c1:Cluster{pStart:True})−[:Relationship*0..{pMain:True}]-> (
c2:Cluster{pEnd:True})

WHERE c1.clusterId IN ListOfClusters
RETURN

c1.timestamp.hour AS Hour,
count(c1.clusterId) AS NumberClustersThatStartClusterEvolutionPaths,
apoc.coll.toSet(collect(c1.clusterId)) AS
ClustersThatStartClusterEvolutionPaths,
size(apoc.coll.toSet(apoc.coll.flatten(collect([n in nodes(path)|n.
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clusterId])))) AS NumberOfClustersInAllClusterEvolutionPaths,
count(path) AS NumberOfClusterEvolutionPaths

ORDER BY Hour

Listing B.28: This code returns information about cluster evolution paths that start with
spatial-temporal clusters from a provided list.

B.4 Case Study 4

Code related to case study 4 is presented here. The code refers to the analysis presented in
Section 4.5 on the movement represented by cluster evolution paths. The section divides
the analysis in four questions and discusses their results. The presentation of the code
is divided in four smaller subsections, each for a different question, following the same
structure of the section in the thesis.

Case study 4 investigates the movement that cluster evolution paths represent. In
general, movement can be described in many ways, such as by its start location, start time,
direction, or distance. The analysis explores the connected, graph-based representation of
cluster evolution paths to produce results that are aggregated and distributed by different
units, such as time of the day, or region. The analysis is divided in four questions, related
to direction of movements, their distribution by region and by day, their start time, and
their distance. Each of the aspects described are analyzed for cluster evolution paths that
start near two train stations. The code in each section is agnostic to the train station being
analyzed because it depends solely on the list of clusters provided for the analysis.

Where are clusters evolution paths moving towards?

Analysis on the direction of movement of spatial-temporal clusters indicate the common
ways spatial-temporal objects navigate in space. Aggregated results help identify the most
important directions towards which improvements can be made. In this question, direction
is based on the primary and secondary cardinal points, forming eight directions. The code
in Listing B.29 returns each of the eight cardinal points as well as the percentage of cluster
evolution paths that moved towards this direction. The results are presented in Table 4.26.
To calculate the direction, the cosine of the angle that the line that passes through the
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cluster evolution path start and end locations has with an approximated horizontal line is
found using trigonometric relations based on the latitude and longitude coordinates of the
locations. The function point.distance() is used for this end. Then, the arc whose cosine
has just been found is calculated using the function acos(). Lastly, the value of the arc in
degrees is returned by the function degrees(). The angle in degrees is then compared to
a predefined list of angles using the CASE clause which defines the direction. Note that the
table contain both positive and negative values for angles for cases in which the function
degrees() is updated to return negative angles. The results are then aggregated and the
percentages are calculated.

WITH [] AS ListOfClusters

MATCH path = (c1:Cluster{pStart:True})−[:Relationship*{pMain:True}]->(c2:
Cluster{pEnd:True})

WHERE
point.distance(c1.location, c2.location) > 500 AND
c1.clusterId IN ListOfClusters

WITH count(path) AS numOfClusterEvolutionPaths, ListOfClusters

MATCH path = (c1:Cluster{pStart:True})−[:Relationship*{pMain:True}]->(c2:
Cluster{pEnd:True})

WHERE
point.distance(c1.location, c2.location) > 500 AND
c1.clusterId IN ListOfClusters

WITH numOfClusterEvolutionPaths, path, c1, c2,
degrees(acos(

point.distance(
point({longitude: c1.location.longitude, latitude: c1.location

.latitude}),
point({longitude: c2.location.longitude, latitude: c1.location

.latitude})
) /
point.distance(c1.location, c2.location)

)) AS degree
WITH numOfClusterEvolutionPaths, path,

CASE
WHEN degree >= 0 AND degree < 22.5 THEN 'E'
WHEN degree >= 22.5 AND degree < 67.5 THEN 'NE'
WHEN degree >= 67.5 AND degree < 112.5 THEN 'N'
WHEN degree >= 112.5 AND degree < 157.5 THEN 'NW'
WHEN degree >= 157.5 AND degree < 202.5 THEN 'W'
WHEN degree >= 202.5 AND degree < 247.5 THEN 'SW'
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WHEN degree >= 247.5 AND degree < 292.5 THEN 'S'
WHEN degree >= 292.5 AND degree < 337.5 THEN 'SE'
WHEN degree >= 337.5 AND degree < 360 THEN 'E'
WHEN degree < 0 AND degree >= −22.5 THEN 'E'
WHEN degree < −22.5 AND degree >= −67.5 THEN 'SE'
WHEN degree < −67.5 AND degree >= −112.5 THEN 'S'
WHEN degree < −112.5 AND degree >= −157.5 THEN 'SW'
WHEN degree < −157.5 AND degree >= −202.5 THEN 'W'
WHEN degree < −202.5 AND degree >= −247.5 THEN 'NW'
WHEN degree < −247.5 AND degree >= −292.5 THEN 'N'
WHEN degree < −292.5 AND degree >= −337.5 THEN 'NE'
WHEN degree < −337.5 AND degree >= −360 THEN 'E'

END AS direction
WITH

direction,
size(collect(path)) AS numOfClusterEvolutionPathsPerDirection,
numOfClusterEvolutionPaths

RETURN
direction AS CardinalDirection,
toFloat(numOfClusterEvolutionPathsPerDirection)/toFloat(
numOfClusterEvolutionPaths) * 100 AS Percentage

Listing B.29: The code to return a distribution of the movement represented by cluster
evolution paths based on the direction.

What is the distribution of cluster evolution paths by region and by day?

Further analysis on the movement of spatial-temporal clusters include a distribution of
the movement by region and by day. Specific results provide an in-depth analysis of the
phenomena under investigation that can possibly improve the quality of the results. In this
question, a region is simply one of the eight cardinal points discussed previously and a day
refers to the day of the start of the movement represented by the cluster evolution path.
The code in Listing B.30 returns the day and the percentage of spatial-temporal clusters
that exist on this day and are near the respective train station, the region where the major-
ity of movements represented by cluster evolution paths pointed towards on the respective
day and train station, and the percentage of movements that followed this direction on
that day and train station. This results are presented in Table 4.27. Note that the code
starts with WITH [] AS ListOfClusters so that only spatial-temporal clusters starting on
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each train station are analyzed at a time. Unfortunately, calculating percentages in Neo4j
and Cypher can produce very long code because two queries are needed. The first query
finds the total value of some measurement, to be used as the denominator, and a second
query finds the number of interest to be used as the numerator. The code performs several
queries on the database to retrieve data to calculate values such as numOfClusterEvolu-
tionPaths, firacodenumOfClusterEvolutionPathsPerDate, and maxNumOfClusterEvolu-
tionPathsPerDirectionPerDate, whose names are self-explanatory. The calculation of
the direction of movement is the same performed in the previous question.

WITH [] AS ListOfClusters

// Percentage

// numOfClusterEvolutionPaths

MATCH path = (c1:Cluster{pStart:True})−[:Relationship*{pMain:True}]->(c2:
Cluster{pEnd:True})

WHERE
point.distance(c1.location, c2.location) > 500 AND
c1.clusterId IN ListOfClusters

WITH
count(path) AS numOfClusterEvolutionPaths,
ListOfClusters

// numOfClusterEvolutionPathsPerDate

MATCH path = (c1:Cluster{pStart:True})−[:Relationship*{pMain:True}]->(c2:
Cluster{pEnd:True})

WHERE
point.distance(c1.location, c2.location) > 500 AND
c1.clusterId IN ListOfClusters

WITH
Date(c1.timestamp) AS Date,
count(path) AS numOfClusterEvolutionPathsPerDate,
numOfClusterEvolutionPaths,
ListOfClusters

// Region

// maxNumOfClusterEvolutionPathsPerDirectionPerDate
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MATCH path = (c1:Cluster{pStart:True})−[:Relationship*{pMain:True}]->(c2:
Cluster{pEnd:True})

WHERE
point.distance(c1.location, c2.location) > 500 AND
c1.clusterId IN ListOfClusters

WITH
Date,
numOfClusterEvolutionPaths,
numOfClusterEvolutionPathsPerDate,
ListOfClusters,
path,
degrees(acos(

point.distance(
point({longitude: c1.location.longitude, latitude: c1.location

.latitude}),
point({longitude: c2.location.longitude, latitude: c1.location

.latitude})
) /
point.distance(c1.location, c2.location)

)) AS degree
WHERE date(c1.timestamp) = Date
WITH

Date,
numOfClusterEvolutionPaths,
numOfClusterEvolutionPathsPerDate,
ListOfClusters,
path,
CASE

WHEN degree >= 0 AND degree < 22.5 THEN 'E'
WHEN degree >= 22.5 AND degree < 67.5 THEN 'NE'
WHEN degree >= 67.5 AND degree < 112.5 THEN 'N'
WHEN degree >= 112.5 AND degree < 157.5 THEN 'NW'
WHEN degree >= 157.5 AND degree < 202.5 THEN 'W'
WHEN degree >= 202.5 AND degree < 247.5 THEN 'SW'
WHEN degree >= 247.5 AND degree < 292.5 THEN 'S'
WHEN degree >= 292.5 AND degree < 337.5 THEN 'SE'
WHEN degree >= 337.5 AND degree < 360 THEN 'E'
WHEN degree < 0 AND degree >= −22.5 THEN 'E'
WHEN degree < −22.5 AND degree >= −67.5 THEN 'SE'
WHEN degree < −67.5 AND degree >= −112.5 THEN 'S'
WHEN degree < −112.5 AND degree >= −157.5 THEN 'SW'
WHEN degree < −157.5 AND degree >= −202.5 THEN 'W'
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WHEN degree < −202.5 AND degree >= −247.5 THEN 'NW'
WHEN degree < −247.5 AND degree >= −292.5 THEN 'N'
WHEN degree < −292.5 AND degree >= −337.5 THEN 'NE'
WHEN degree < −337.5 AND degree >= −360 THEN 'E'

END AS direction
WITH

direction,
size(collect(path)) AS numOfClusterEvolutionPathsPerDirectionPerDate,
Date,
ListOfClusters,
numOfClusterEvolutionPaths,
numOfClusterEvolutionPathsPerDate

WITH
Date,
max(numOfClusterEvolutionPathsPerDirectionPerDate) AS
maxNumOfClusterEvolutionPathsPerDirectionPerDate,
numOfClusterEvolutionPaths,
numOfClusterEvolutionPathsPerDate,
ListOfClusters

// numOfClusterEvolutionPathsPerDirectionPerDate

MATCH path = (c1:Cluster{pStart:True})−[:Relationship*{pMain:True}]->(c2:
Cluster{pEnd:True})

WHERE
point.distance(c1.location, c2.location) > 500 AND
c1.clusterId IN ListOfClusters

WITH
Date,
numOfClusterEvolutionPaths,
numOfClusterEvolutionPathsPerDate,
maxNumOfClusterEvolutionPathsPerDirectionPerDate,
path,
degrees(acos(

point.distance(
point({longitude: c1.location.longitude, latitude: c1.location

.latitude}),
point({longitude: c2.location.longitude, latitude: c1.location

.latitude})
) /
point.distance(c1.location, c2.location)

)) AS degree
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WHERE date(c1.timestamp) = Date
WITH

Date,
numOfClusterEvolutionPaths,
numOfClusterEvolutionPathsPerDate,
maxNumOfClusterEvolutionPathsPerDirectionPerDate,
path,
CASE

WHEN degree >= 0 AND degree < 22.5 THEN 'E'
WHEN degree >= 22.5 AND degree < 67.5 THEN 'NE'
WHEN degree >= 67.5 AND degree < 112.5 THEN 'N'
WHEN degree >= 112.5 AND degree < 157.5 THEN 'NW'
WHEN degree >= 157.5 AND degree < 202.5 THEN 'W'
WHEN degree >= 202.5 AND degree < 247.5 THEN 'SW'
WHEN degree >= 247.5 AND degree < 292.5 THEN 'S'
WHEN degree >= 292.5 AND degree < 337.5 THEN 'SE'
WHEN degree >= 337.5 AND degree < 360 THEN 'E'
WHEN degree < 0 AND degree >= −22.5 THEN 'E'
WHEN degree < −22.5 AND degree >= −67.5 THEN 'SE'
WHEN degree < −67.5 AND degree >= −112.5 THEN 'S'
WHEN degree < −112.5 AND degree >= −157.5 THEN 'SW'
WHEN degree < −157.5 AND degree >= −202.5 THEN 'W'
WHEN degree < −202.5 AND degree >= −247.5 THEN 'NW'
WHEN degree < −247.5 AND degree >= −292.5 THEN 'N'
WHEN degree < −292.5 AND degree >= −337.5 THEN 'NE'
WHEN degree < −337.5 AND degree >= −360 THEN 'E'

END AS direction
WITH

direction,
size(collect(path)) AS numOfClusterEvolutionPathsPerDirectionPerDate,
Date,
numOfClusterEvolutionPaths,
numOfClusterEvolutionPathsPerDate,
maxNumOfClusterEvolutionPathsPerDirectionPerDate

WHERE numOfClusterEvolutionPathsPerDirectionPerDate =
maxNumOfClusterEvolutionPathsPerDirectionPerDate

RETURN
Date,
toFloat(numOfClusterEvolutionPathsPerDate)/toFloat(
numOfClusterEvolutionPaths) * 100 AS Percentage,
direction AS Region,
toFloat(maxNumOfClusterEvolutionPathsPerDirectionPerDate)/toFloat(
numOfClusterEvolutionPathsPerDate) * 100 AS PercentageFollowingRegion
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ORDER BY Date

Listing B.30: The code to return a distribution of the movement represented by cluster
evolution paths per region and per day.

What time of the day are clusters evolution paths forming?

Analysis on the time the movement represented by cluster evolution paths start can help
identify edge cases or common times that can hold important information about spatial-
temporal phenomena in a city. An aggregated analysis distributes the start time in times of
the day in an attempt to identify phenomena related to a particular time of the day for city
improvements. In this question, the day is divided in early morning, morning, afternoon,
and evening, and spatial-temporal clusters are analyzed based on the time of the day the
movement they represent start. Each time of the day is comprised of roughly six hours,
starting from midnight (inclusive) to 6 AM (exclusive), then from 6 AM (inclusive) to noon
(exclusive) and so on. The results are presented in Table 4.28. The code in Listing B.31
returns the time of the day and the percentage of cluster evolution paths that start in that
time of the day. The code has to calculate a percentage. Therefore, it starts by retrieving
the value of numOfClusterEvolutionPaths, which will be used as the denominator, and
proceeds to distribute cluster evolution paths in one of the four times of the day using
the CASE clause. Note the definition of each time of the day in the code inside the CASE
clause. In the end, the results for each individual cluster evolution path are aggregated
and percentages calculated.

WITH [] AS ListOfClusters

MATCH path = (c1:Cluster{pStart:True})−[:Relationship*{pMain:True}]->(c2:
Cluster{pEnd:True})

WHERE
point.distance(c1.location, c2.location) > 500 AND
c1.clusterId IN ListOfClusters

WITH
count(path) AS numOfClusterEvolutionPaths,
ListOfClusters

190



MATCH path = (c1:Cluster{pStart:True})−[:Relationship*{pMain:True}]->(c2:
Cluster{pEnd:True})

WHERE
point.distance(c1.location, c2.location) > 500 AND
c1.clusterId IN ListOfClusters

WITH
path,
numOfClusterEvolutionPaths,
CASE

WHEN c1.timestamp.hour >= 0 AND c1.timestamp.hour < 6 THEN '
Early Morning'

WHEN c1.timestamp.hour >= 6 AND c1.timestamp.hour < 12 THEN '
Morning'

WHEN c1.timestamp.hour >= 12 AND c1.timestamp.hour < 18 THEN '
Afternoon'

WHEN c1.timestamp.hour >= 18 AND c1.timestamp.hour < 24 THEN '
Evening'
END AS timeOfTheDay

WITH
timeOfTheDay,
size(collect(path)) AS numOfClusterEvolutionPathsPerTimeOfTheDay,
numOfClusterEvolutionPaths

RETURN
timeOfTheDay AS TimeOfTheDay,
toFloat(numOfClusterEvolutionPathsPerTimeOfTheDay)/toFloat(
numOfClusterEvolutionPaths) * 100 AS Percentage

Listing B.31: The code to return the time of the day and the percentage of cluster evolution
paths that start in that time of the day.

What is the largest distance traveled in the movements represented by cluster
evolution path formed near each train station?

The distance of the movement represented by a cluster evolution path indicate how far
spatial-temporal objects moved together. Analysis on this distance reveals possible impor-
tant connections between spatial-temporal objects or, in the case of taxis, opportunities
for improvements in the public transit system or car-sharing. In this question, cluster
evolution paths starting at each train station have their distances calculated, ranked, and
the one that traveled the farthest is returned. The results are presented in Table 4.29.
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The code in Listing B.32 returns the spatial-temporal cluster whose distance from its start
location to its end location is the largest. The WITH clause at the start of the code receives
the spatial-temporal clusters for each train station. The code proceeds to filter cluster
evolution paths that represent movements of more than 500 meters, as described in the
section in the thesis, using the restriction point.distance(c1.location, c2.location)
> 500. Then, the code returns the cluster evolution paths and their distances, but uses
the ORDER BY clause to sort the results based on the distance and limit the presentation of
the rows to the first one using LIMIT 1.

WITH [] AS ListOfClusters

MATCH path = (c1:Cluster{pStart:True})−[:Relationship*{pMain:True}]->(c2:
Cluster{pEnd:True})

WHERE
point.distance(c1.location, c2.location) > 500 AND
c1.clusterId IN ListOfClusters

RETURN
apoc.coll.toSet([n in nodes(path) | n.clusterId]) AS
ClusterEvolutionPath,
point.distance(c1.location, c2.location) AS Distance

ORDER BY Distance DESC
LIMIT 1

Listing B.32: The code to return the spatial-temporal cluster whose distance from its start
location to its end location is the largest.
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Glossary

clustering The task of dividing data into groups such that data in the same group are
more similar than data in different groups. 25

data analysis Refers to the task of using techniques on data to uncover patterns and
discover value. 24

spatial relationship Refers to the relationships that objects have with respect to their
location in space. 29

spatial-temporal cluster A cluster of spatial-temporal objects that exists for some pe-
riod of time and moves during existence. 29

spatial-temporal cluster evolution path A path from the occurrence of a cluster in a
timestamp to the occurrence of a cluster in a future timestamp. 57

spatial-temporal cluster relationship Patterns in the movement of spatial-temporal
clusters that can be identified, analyzed, and processed to reach valuable conclusions.
29

spatial-temporal clustering The task of grouping spatial-temporal objects based on the
similarity of their path, that is, the spatial-temporal data produced. 28

spatial-temporal data Data produced by spatial-temporal objects that is described based
on location and time. 23

spatial-temporal data analysis Refers to the task of using techniques on spatial-temporal
data to uncover patterns and discover value. 24

spatial-temporal object Real-world objects that is associated with a location and a
timestamp. Usually spatial-temporal objects move with time. 23
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spatial-temporal relationship Refers to relationships that objects have with respect
both their location in space and the moment they exist in time. 33

temporal relationship Refers to relationships that objects have with respect to the mo-
ment they exist in time. 32
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