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Abstract

This thesis aims to investigate properties of algebras related to the Fourier algebra A(G)
and the Fourier-Stieltjes algebra B(G), where G is a locally compact group.

For a Banach algebra A there are two natural multiplication operations on the double
dual A∗∗ introduced by Arens in 1971, and if these operations agree then the algebra A is
said to be Arens regular. We study Arens regularity of the closures of A(G) in the multiplier
and completely bounded multiplier norms, denoted AM(G) and Acb(G) respectively. We
prove that if a nonzero closed ideal in AM(G) or Acb(G) is Arens regular then G must be
a discrete group.

Amenable Banach algebras were first studied by B.E. Johnson in 1972. For an amenable
Banach algebra A we can consider its amenability constant AM(A) ≥ 1. We are par-
ticularly interested in collections of amenable Banach algebras for which there exists a
constant λ > 1 such that the values in the interval (1, λ) cannot be attained as amenabil-
ity constants. If G is a compact group, then the central Fourier algebra is defined as
ZA(G) = ZL1(G) ∩ A(G) and endowed with the A(G) norm. We study the amenability
constant theory of ZA(G) when G is a finite group.
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Chapter 1

Introduction

Raise thy sword by the light,
and head to the place where the
sword’s light gathers.

Dormin
Shadow of the Colossus

Much of abstract harmonic analysis is concerned with Banach algebras associated with a
locally compact group G, and studying the relationship between Banach algebra properties
and group properties. Two of the most important examples of Banach algebras arising from
locally compact groups are the Fourier algebra A(G) and the Fourier-Stieltjes algebraB(G),
which were introduced by Pierre Eymard in [23, 1964]. For an abelian group we have the

identification A(G) ∼= L1(Ĝ) where Ĝ is the Pontryagin dual of G, using a generalization
of the notion of the Fourier transform. A famed theorem of Leptin states that A(G) has
a bounded approximate identity if and only if G is amenable, demonstrating a deep link
between the properties of A(G) as an algebra and G as a group; indeed, A(G) and A(H)
are isometrically isomorphic if and only if G and H are isomorphic groups [74] - a property
shared by the group algebra L1(G) [75].

This thesis has two major themes. The first is studying amenability constants and gaps
results of a particular subalgebra of A(G), and the second being properties of the second
dual of the closure of A(G) in multiplier and completely bounded norms.

The study and notion of Banach algebra amenability was initiated by B.E. Johnson
in [43, 1972], and from the beginning algebras of functions on groups have been featured as
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key examples in the theory. In Johnson’s seminal work he proved that L1(G) was amenable
if and only if G was amenable, and in [44, 1992] he provided an example that showed that
the same did not hold for A(G): indeed, it’s possible for A(G) to be non-abelian even
if G is compact. Amenable algebras have an associated amenability constant AM(·): in
the case of L1(G) this constant is always 1, while for A(G) Johnson proved that for finite
groups AM(A(G)) = 1 if and only if G was abelian, and if G was non-amenable then
AM(A(G)) ≥ 3

2
. This result was later generalized in [60, 2006] and [14, 2022] to hold

for all groups such that A(G) is amenable. Zhong-Jin Ruan introduced an alternative
characterization of amenability that takes into account the operator space structure of
an algebra in [58, 1995] called operator amenability. The Fourier algebra behaves more
“nicely” with respect to this notion: A(G) is operator amenable if and only ifG is amenable,
in which case A(G) has an operator amenability constant of 1.

In [56, 1973] Daniel Rider proved that if ψ was a central idempotent in L1(G) for a
compact group G such that ∥ψ∥1 > 1, then ∥ψ∥1 > 1 + 1

300
. This bound is certainly not

sharp; a footnote by Yemon Choi in [13, 2016] notes that it is possible to improve the
bounded to 1 + 1

80
. However, the question of what is the correct sharp bound is open.

Numerical calculations in Chapter 6 suggest that 1+
√
2

2
is a sharp bound, at least for the

case of finite groups. This is reminiscent of a bound discovered by Saeki in [65, 1986], where
it was shown for an idempotent measure µ on a compact abelian group with ∥µ∥ > 1, then

∥µ∥ ≥ 1+
√
2

2
- and in this case, the bound is sharp.

In the study of amenability constants of algebras defined on groups, there have been
natural questions about the relationship between amenability constant values and heredi-
tary properties of the underlying groups. A conjecture in the original version of [50] asked
if AM(A(G/N)) ≤ AM(A(G)) for a closed normal subgroup N of G, which was later
noted to be false via a reference to the Atlas of Finite Groups [16]. Curiously, in the coun-
terexample given |G| = 2160 and |G/N | = 1080, although as we consider in an example in
Chapter 4, there is a much simpler counterexample with |G| = 32 and |G/N | = 16. This
demonstrates the utility of being able to search for counterexample using computers, which
is a major theme throughout the amenability constant content featured in this thesis.

In [8, 2008] Azimifard, Samei, and Spronk investigated amenability properties of the
centre of the group algebra, ZL1(G). In particular, they demonstrated that in the case
where G is finite then because ZL1(G) is finite dimensional calculating the amenability
constant amounts to calculating the L1 norm of a specific idempotent in ZL1(G), which
can be done by applying a formula that only requires knowledge of the irreducible character
theory ofG. They apply Rider’s rudimentary 1+ 1

300
gap result to show that the amenability

constant of ZL1(G) is equal to 1 if and only if G is abelian, and in the case that G is non-
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abelian then the amenability constant is greater than 1 + 1
300

.

For a compact group G, ZL1(G) can be viewed as a hypergroup algebra of the conjugacy

classes ofG. The dual of this hypergroup is Ĝ, the irreducible representations (up to unitary

equivalence) of G. The hypergroup algebra of Ĝ is ZA(G), the central Fourier algebra of
G. For a finite group ZA(G) is just the class functions with the Fourier algebra norm.
In this context ZA(G) coincides as a set with ZL1(G), albeit with differing norms and
multiplication. In [5, 2016], Mahmood Alaghmandan and Nico Spronk produced a formula
for AM(ZA(G)) that mirrors the formula for AM(ZL1(G)) from [8], and furthermore
proved that AM(ZA(G)) has a gap constant of 2√

3
(although very importantly, this bound

was not claimed to be sharp), which notably at the time this was an improvement over
the 1 + 1

300
gap known for ZL1(G). Fifteen days after this result was uploaded to arXiv,

Yemon Choi uploaded [13, 2016], which built on [5] to show that 7
4
is the sharp bound for

ZL1(G).

In Chapter 2 we introduce basic notation and background information from abstract
harmonic analysis, representation theory, and operator algebras that will be used through-
out this thesis. Material from first-courses in abstract algebra, topology, and functional
analysis will typically be used without comment, although the interested reader can refer
to [20], [53], and [17] for introductions to those subjects.

In Chapter 3 we compile an overview of what is known about the amenability constant
theory of a variety of well-known Banach algebras associated with groups, semigroups, and
hypergroups.

Chapter 4 features an investigation into amenability constants of ZA(G). The connec-
tion between AM(ZL1(G)) and AM(ZA(G)) allows for much of the theory from ZL1(G)
to be carried over to ZA(G), however there are some key differences. Choi’s proof in [13]
depended on the fact that if N is a normal subgroup of G then AM(ZL1(G/N)) ≤
AM(ZL1(G)). At first glance it would be reasonable to guess that this property should
also hold for AM(ZA(G)), although as shown in this chapter that actually isn’t the case.
While the failure of the quotient hereditery property is at the moment a barrier preventing a
proof of a sharp bound for AM(ZA(G)), much other work be carried over from the ZL1(G)
case. For example, the class of groups for which AM(ZA(G)) respects quotients will have
the 7

4
gap. Furthermore, in [5] a formula was developed that calculates AM(ZL1(G)) for

a group with only two character degrees, while we are able to show that if instead one
takes a group with only two conjugacy class sizes then a dual formula can be developed
for AM(ZA(G)). These two formulas agree if a finite group has both two conjugacy class
sizes and two character degrees.

For a Banach algebra A, Arens demonstrated in [6, 1951] that it is possible to define two

3



natural multiplication operations on the double dual A∗∗, denoted in this thesis by 2 and
⊙. Arens proved that (A∗∗,2) and (A∗∗,⊙) are both Banach algebras, and if 2 and⊙ agree
then the algebra A is said to be Arens regular. It is known that C∗-algebras are always
Arens regular but for many algebras considered in abstract harmonic analysis it turns out
that Arens regularity is a very restrictive condition. The group algebra L1(G) is Arens
regular if and only if G is finite, and as proven by Forrest in [26, 1991] for 1 < p < ∞ if
the Figà-Talamanca-Herz algebra Ap(G) is Arens regular then G must be a discrete group.
When p = 2 then A2(G) = A(G), in which case a closed non-zero ideal in A(G) being
Arens regular is sufficient to force G to be discrete.

Being the predual of a von Neumann algebra, A(G) has a natural operator space struc-
ture. Taking the norm closure of A(G) within the multiplier and completely bounded
multipliers of A(G) results in the algebras AM(G) and Acb(G) respectively. The algebra
Acb(G) was first studied by Brian Forrest in [28, 2004], and AM(G) was later studied
in [29, 2013]. These algebras are more manageable to work with compared to MA(G)
and Mcb(G), and share a number of properties with A(G). Indeed, in Chapter 5 we study
the Arens regularity of ideals of AM(G) and Acb(G). By showing that there is a bijection
between the sets of topologically invariant means of A(G), AM(G), and Acb(G), we prove
that any of these algebras having a unique topologically invariant mean is sufficient for the
group G being discrete. Indeed, this condition is satisfied even when the only assumption
is that an ideal is Arens regular, extending Forrest’s result for A(G) in [26].

Chapter 6 expands on the use of computational tools applied in Chapter 3 to other
problems in abstract harmonic analysis. We provide insight on an approach to improv-
ing Rider’s 1 + 1

300
bound on idempotents in ZL1(G), include Sage code for calculating

norms of arbitrary functions in A(G), and consider the collection of groups with absolutely
idempotent characters.
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Chapter 2

Preliminaries

...

Link
The Legend of Zelda

2.1 Banach Algebras

Definition 2.1.1. Let A be a Banach space over C with norm ∥ · ∥. If A is also an
associative algebra that satisfies ∥ab∥ ≤ ∥a∥∥b∥ for all a, b ∈ A then we say that A is a
Banach algebra.

Example 2.1.2. Let X be a locally compact Haussdorff space and denote the continuous
complex-valued functions on X by C(X). Let

• C0(X) = {f ∈ C(X) : f vanishes at infinity}

• Cb(X) = {f ∈ C(X) : f is bounded}

• CC(X) = {f ∈ C(X) : supp(f) is compact}.

Each of C0(X) and Cb(X) are Banach algebras with respect to pointwise multiplication of
functions when endowed with the norm

∥f∥∞ = sup
x∈X

|f(x)|.
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In the case thatX is itself compact then C0(X) = C(X) and the constant function 1(x) = 1
is an identity for each algebra.

Definition 2.1.3. We call a Banach algebra A a C∗-algebra if it posses a map A → A, a 7→
a∗ satisfying for a, b ∈ A and λ ∈ C:

1. (a∗)∗ = a

2. (λa+ b)∗ = λa∗ + b∗

3. (ab)∗ = b∗a∗

4. ∥aa∗∥ = ∥a∥2.

Definition 2.1.4. For a Hilbert space H, let B(H) be the space of the bounded linear
operators on H. A C∗-algebra M is called a von Neumann algebra if there is a Hilbert
space H such that M is ∗-isomorphic to a unital subalgebra of B(H) that is closed in the
weak operator topology (WOT).

Theorem 2.1.5. If M is a von Neumann algebra then there exists a (up to isomorphism)
unique predual M∗ of M.

Definition 2.1.6. Let A be a commutative Banach algebra. We define the spectrum of A
as

∆(A) = {ϕ : A → C : ϕ a nonzero algebra homomorphism}.

The maps in ∆(A) are called characters.

Remark 2.1.7. If A is in fact a unital Banach algebra there is a correspondence between
∆(A) and the space of maximal closed ideals of A with each maximal ideal being associated
with the kernel of a character.

Definition 2.1.8. Let A be a Banach algebra and let E be a Banach space that is a left
(right) module over A with action

A× E → E, (a, x) 7→ a · x, E ×A → E, (x, e) 7→ x · a.

If this action is bounded then we call E a left (right) Banach A-module. If E is both a left
BanachA-module and a right BanachA-module then we say thatE is a Banach A-bimodule

Example 2.1.9. Naturally, A is itself a Banach A-bimodule where the left and right
actions are just left and right multiplications respectively.

6



Example 2.1.10. Let A be a Banach algebra and E a Banach A-bimodule. Then E∗ is
itself a Banach A-bimodule with actions

• ⟨a · ϕ, x⟩ = ⟨ϕ, x · a⟩ where a ∈ A, x ∈ E, ϕ ∈ E∗.

• ⟨ϕ · a, x⟩ = ⟨ϕ, a · x⟩ where a ∈ A, x ∈ E, ϕ ∈ E∗.

Given a Banach algebra A, there is not necessarily any clear way of defining a Banach
algebra structure on the dual A∗. However, it turns out that there are two natural ways of
considering the double dual A∗∗ as a Banach algebra. Consider the following operations:

1a) ⟨u · T, v⟩ = ⟨T, vu⟩ for every u, v ∈ A and T ∈ A∗.

1b) ⟨T ⊙m,u⟩ = ⟨m,u · T ⟩ for every u ∈ A and T ∈ A∗ and m ∈ A∗∗.

1c) ⟨m⊙ n, T ⟩ = ⟨n, T ⊙m⟩ for every T ∈ A∗ and m,n ∈ A∗∗.

2a) ⟨T2u, v⟩ = ⟨T, uv⟩ for every u, v ∈ A and T ∈ A∗.

2b) ⟨m2T, u⟩ = ⟨m,T2u⟩ for every u ∈ A and T ∈ A∗ and m ∈ A∗∗.

2c) ⟨m2n, T ⟩ = ⟨m,n2T ⟩ for every T ∈ A∗ and m,n ∈ A∗∗.

The operations ⊙ and 2 are both valid Banach algebra multiplication operations on A∗∗,
and if they agree we call A an Arens regular algebra. Unless specified otherwise, we will
assume to use the ⊙ operation.

Definition 2.1.11. Let A be a Banach algebra and let (eα)α be a net in the A. We say
that (eα)α is a bounded approximate identity if sup

α
∥eα∥ <∞ and

lim
α

∥eαa− a∥ = lim
α

∥aeα − a∥ = 0 for all a ∈ A.

Theorem 2.1.12 (Cohen’s Factorization Theorem). Let A be a Banach algebra with a
bounded approximate identity (eα)α and E a Banach A bimodule. If x ∈ E and eα · x→ x
then there exists a ∈ A and y ∈ E such that x = a · y.

Definition 2.1.13. We call the space

UCB(A) = span{v · T : v ∈ A, T ∈ A∗}
−∥·∥A∗

7



the uniformly continuous functionals on A.

We call T ∈ A∗ a (weakly) almost periodic functional on A if

{u · T : u ∈ A, ∥u∥A ≤ 1}

is relatively (weakly) compact inA∗ and we denote the space of all (weakly) almost periodic
functionals on A by AP (A) (WAP (A)).

It is well-known that T ∈ A∗ is weakly almost periodic if and only if given two nets
{uα}α∈Ω1 and {vβ}β∈Ω2 in A we have that

lim
α

lim
β
⟨T, uαvβ⟩ = lim

β
lim
α
⟨T, uαvβ⟩

whenever both limits exist. It follows that A is Arens regular if and only ifWAP (A) = A∗.

Definition 2.1.14. We say that a closed subspace X ⊆ A∗ is invariant if u · T ∈ X for
every u ∈ A and T ∈ X.

Given a closed invariant subspace X of A∗ and an m ∈ X∗ , we define the linear
operator mL : X → A∗ by

⟨mL(T ), u⟩ = ⟨m,u · T ⟩

for every T ∈ X and u ∈ A. We say that X is topologically introverted if mL(T ) ∈ X for
every m ∈ X∗ and T ∈ X.

If X is topologically introverted then X∗ can be made into a Banach algebra with the
⊙ operation as follows:

1) For each T ∈ X and m ∈ X∗, we define T ⊙m = mL(T ).

2) For each T ∈ X and n,m ∈ X∗, we define ⟨m⊙ n, T ⟩ = ⟨n, T ⊙m⟩.

It is well-known that AP (A),WAP (A), and UCB(A) are closed introverted subspaces
of A∗.

Definition 2.1.15. Let A be a commutative Banach algebra with maximal ideal space
∆(A). Let X be a closed submodule of A∗ containing ϕ ∈ ∆(A). Then m ∈ X∗ is called
a topologically invariant mean (TIM) on X at ϕ if

i) ∥m∥X∗ = ⟨m,ϕ⟩ = 1,
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ii) ⟨m, v · T ⟩ = ϕ(v)⟨m,T ⟩ for every v ∈ A and T ∈ X.

We denote the set of topologically invariant means on X at ϕ by TIMA(X,ϕ).

Definition 2.1.16. Let I be a closed ideal in a commutative Banach algebra A. We let

Z(I) = {x ∈ ∆(A) : u(x) = 0 for all u ∈ I}.

Given a closed set E ⊆ ∆(A), we let

I(E) = {u ∈ A : u(x) = 0 for all x ∈ E}

and

I0(E) = {u ∈ A ∩ CC(∆(A)) : supp(u) ∩ E = ∅}.

We say that a closed set E ⊆ ∆(A) is a set of spectral synthesis for A if the only closed
ideal I of A with Z(I) = E is I(E). This condition is well-known to be equivalent to the
statement that I0(E) is dense in I(E).

2.2 Operator Spaces

Let H be a Hilbert space. A closed subspace V ⊆ B(H) is called a (concrete) operator
space. For n ∈ N there is an induced norm ∥ · ∥n on Mn(V ), the space of n × n matrices
on X via the inclusion

Mn(X) ⊆Mn(B(H)) = B(Hn)

that satisfies the following properties for v ∈Mm(V ), w ∈Mn(V ), α ∈Mn,m, β ∈Mm,n:

∥v ⊕ w∥ = max{∥v∥m, ∥w∥n} (2.1)

and

∥αvβ∥n ≤ ∥α∥ · ∥v∥m · ∥β∥. (2.2)

Equivalently, an (abstract) operator space is a normed vector space V along with a sequence
of matricial norms ∥ · ∥n on Mn(V ) that satisfies 2.1 and 2.2.

For two operator spaces V and W and a linear map ϕ : V → W we define the amplifi-
cation map

ϕ :Mn(V ) →Mn(W )
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by

ϕn([vi,j]) = [ϕ(vi,j)]

for [vi,j] ∈Mn(V ). We say that ϕ is completely bounded if

∥ϕ∥cb := sup{∥ϕn∥ : n ∈ N} <∞.

A completely bounded map ϕ is called completely contractive if

∥ϕ∥cb ≤ 1.

We will denote the space of all completely bounded maps from V into W by CB(V,W ). If
V = W then we will just write CB(V ) instead. The space CB(V,W ) is itself an operator
space via the isometric identification

Mn(CB(V,W )) ∼= CB(V,Mn(W )).

For a linear function f on an operator space V , it is known that f is completely bounded
if and only if it is bounded and ∥f∥ = ∥f∥cb. This induces a canonical operator space
structure on V ∗ ∼= CB(V,C).

All C∗-algebras are automatically operator spaces, and furthermore if M is a von Neu-
mann algebra and M∗ is the unique predual of M then the canonical identification of M∗
into its second dual M∗ induces an operator structure on M∗.

2.3 Banach Algebras Amenability

Let X and Y be Banach spaces, and let u ∈ X ⊗ Y . Then define the projective tensor
product norm on X ⊗ Y by

∥u∥γ = inf

{
n∑

i=1

∥xi∥ · ∥yi∥ : u =
n∑

i=1

⊗yi

}
.

We call the completion of X ⊗ Y with respect to this norm the projective tensor product
of X and Y , which is denoted X ⊗γ Y . There are natural module actions of A on A⊗γ A
that are given by

a · (b⊗ c) = (ab)⊗ c, where a, b, c ∈ A
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and

(b⊗ c) · a = b⊗ (ca) where a, b, c ∈ A.

If V and W are taken to be operator spaces, a similar construction can be done that
incorporates the operator space structure. For u ∈ Mn(V ⊗W ), we define the operator
projective tensor product norm by

∥u∥∧ = inf{∥α∥ · ∥v∥ · ∥w∥ · ∥β∥ : u = α(v ⊗ w)β}

where v ∈ Mp(V ), w ∈ Mq(W ), α ∈ Mn,pq, β ∈ Mpq,n. We will refer to the completion of
V ⊗W with respect to ∥ · ∥∧ by the operator projective tensor product of V and W , and
we will denote this space by V ⊗̂W . There is a canonical identification

(V ⊗̂W )∗ ∼= CB(V,W ∗),

which demonstrates that V ⊗̂W is itself an operator space.

We define the multiplication map m : A ⊗ A → A by m(a ⊗ b) = ab. As possible, we
can extend m to maps m : A⊗γ A→ A and m : A⊗̂A→ A respectively.

Let A be an operator space. We say that A is a completely contractive (quantized)
Banach algebra if m : A⊗̂A → A is completely contractive (completely bounded). Let A
be completely contractive Banach algebra and let V be an A-bimodule. Then V is called
an operator A-bimodule if V is an operator space and the A-bimodule operations

A⊗̂V → V, a⊗ v 7→ a · v

and

V ⊗̂A → V, v ⊗ a 7→ v · a

are completely bounded.

The notion of amenability of a Banach algebra was first introduced by B.E. Johnson
in [43], and has been a fruitful area of research ever since. A brief introduction is offered
here, but we recommend [62] for a more detailed survey of amenability.

Definition 2.3.1. Let A be a Banach algebra and let X be a Banach A-bimodule. A
bounded linear map D : A → X is called a derivation if for all a, b ∈ A then

D(ab) = a ·D(b) +D(a) · b.
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A derivation D is called an inner derivation if there exists x ∈ X such that

D(a) = a · x− x · a.

Remark 2.3.2. If X is a Banach A-bimodule then X∗ is also a Banach A-bimodule via the
actions

⟨f · a, x⟩ = ⟨f, a · x⟩

and
⟨a · f, x⟩ = ⟨f, x · a⟩,

where a ∈ A, x ∈ X, and f ∈ X∗.

Definition 2.3.3. A bounded approximate diagonal (b.a.d.) for A is a bounded net (dα)α
in A⊗γ A such that for a ∈ A then

a · dα − dα · a→ 0 (2.3)

and

am(dα) → a. (2.4)

Similarly, a virtual diagonal for A is defined as an element D ∈ (A⊗γ A)∗∗ such that for
a ∈ A the following holds:

a ·D = D · a (2.5)

and

a ·m∗∗D = a. (2.6)

Definition 2.3.4. We call a Banach algebra A amenable if one of the following equivalent
conditions holds.

1. For every Banach A-bimodule X, every derivation D : A → X∗ is inner.

2. A has a bounded approximate diagonal.

3. A has a virtual diagonal.

We define the amenability constant of A by

AM(A) = inf{sup
α

∥ωα∥ : (ωα) is a b.a.d. for A}.

If A is not amenable then we set AM(A) = ∞.
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Proposition 2.3.5. Let A and B be Banach algebras and let ϕ : A → B be a continuous
homomorphism with dense range. Then

AM(A) ≤ ∥ϕ∥2AM(B).

Here are some useful heriditery properties of amenability with respect to closed ideals,
see [18, Proposition 2.4] and [62, Proposition 2.3.3].

Proposition 2.3.6. Let A be an amenable Banach algebra and I a closed ideal in A.

i) If A has an identity eA then AM(A) ≥ ∥eA∥.

ii) If I has an identity eI then I is amenable and AM(I) ≤ ∥eI∥AM(A).

iii) If eα is a bounded approximate identity for I with bound C then I is amenable and

AM(I) ≤ C2AM(A).

iv) AM(A/I) ≤ AM(A).

Remark 2.3.7. A copy of A⊗γ A can be identified as living inside of (A⊗γ A)∗∗. If there is
a virtual diagonal which is an element of A⊗γ A ⊆ (A⊗γ A)∗∗ then we call it a diagonal.
In the case that A is a finite-dimensional commutative amenable Banach algebra, then A
possesses a unique diagonal [34].

Definition 2.3.8. A collection of Banach algebras C is said to have an amenability constant
gap if there exists λ > 1 such that for A ∈ C, AM(A) = 1 if and only if AM(A) < λ.
Any λ with this property is called an amenability constant bound (for C), and if λ is the
supremum of all possible amenability constant bounds then it is called the sharp bound
(for C).

Definition 2.3.9. We call a Banach algebra A weakly amenable if every derivation D :
A → A∗ is inner, where A is being viewed as a Banach A-bimodule over itself.

Ruan introduced in [58, 1995] the notion of operator amenability, which takes a com-
pletely contractive Banach algebra’s operator space structure into account.

Definition 2.3.10. Let A be a completely contractive Banach algebra. An operator
bounded approximate diagonal (o.b.a.d.) for A is a bounded net (dα)α in A⊗̂A such that
for a ∈ A then

a · dα − dα · a→ 0 (2.7)
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and

am(dα) → a. (2.8)

Similarly, an operator virtual diagonal for A is defined as an element D ∈ (A⊗̂A)∗∗ such
that for a ∈ A the following holds:

a ·D = D · a (2.9)

and

a ·m∗∗D = a. (2.10)

Definition 2.3.11. Let A be a completely contractive Banach algebra. We call A operator
amenable if any of the following equivalent conditions is satisfied:

1. For every operator A-bimodule V , every completely bounded derivation D : A → E∗

is inner.

2. A has an operator bounded approximate diagonal.

3. A has an operator virtual diagonal.

We define the operator amenability constant of A by

AMop(A) = inf{sup
α

∥ωα∥ : (ωα) is an o.b.a.d. for A}.

If A is not operator amenable then we set AMop(A) = ∞.

Many properties of amenability also hold for operator amenability after making suitable
adjustments. For example, Proposition 2.3.5 also holds in the operator space context:

Proposition 2.3.12. Let A and B be completely contractive Banach algebras and let ϕ ∈
CB(A,B) be a homomorphism with dense range. Then

AMcb(A) ≤ ∥ϕ∥2AMcb(B).
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2.4 Locally Compact Groups

Throughout this thesis we will investigate properties of Banach algebras associated with
groups, which will typically take the form of algebras of complex-valued functions on a given
group. We will first review some background material from abstract harmonic analysis.
See [25] or [38] for a more complete introduction to the subject.

Definition 2.4.1. Let G be a group equipped with a locally compact and Hausdorff
topology such that the map (a, b) 7→ ab−1 from G×G→ G is continuous. Then we call G
a locally compact group.

The motivation for considering specifically locally compact groups comes from the fol-
lowing essential theorem.

Theorem 2.4.2 (Existence of Haar Measure). If G is a locally compact group, then there
exists a positive Radon measure µ that satisfies the condition that if x ∈ G and E is
measurable, then µ(xE) = µ(E). Furthermore, µ is unique up to scaling. We call µ a
Haar measure on G.

Example 2.4.3. 1. If G is discrete then counting measure is a Haar measure on G.

2. If G = Z is viewed as a group with respect to addition then G is a discrete abelian
group.

3. If G is compact then we will always work with the normalized Haar measure µ such
that µ(G) = 1.

4. If G = Rn with the normal topology, then Lebesgue measure is a Haar measure on
G.

5. For a given integer n the group GL(n,C) of complex-valued invertible n×n matrices
with respect to matrix multiplication is locally compact, and non-abelian if n > 1.

6. Let Fn be the free group on n generators. Then Fn is a discrete, non-abelian group.

7. Let T = {z ∈ C : |z| = 1}. Then T is a compact abelian group with respect to
multiplication and the normal topology on C.

8. Let G be an abelian group. Then

Ĝ = {σ : G→ T : σ a continuous homomorphism}
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is a locally compact group with respect to the topology of uniform convergence on

compact sets called the dual group of G. It’s known that
̂̂
G ∼= G and Ẑ ∼= T.

Let G be a locally compact group and 1 ≤ p ≤ ∞. We can define the Banach spaces
Lp(G, µ) in the usual way, although for convenience we will just write Lp(G) instead.

Example 2.4.4. We can define a convolution product on L1(G) by

f ∗ g(x) =
∫
G

f(xy)g(y−1)dµ(y), where f, g ∈ L1(G)

which allows us to consider L1(G) as a Banach algebra.

For a locally compact group G, let {Uα}α be a neighborhood basis of e consisting of

relatively compact sets. Then
(

1
µ(Uα)

1Uα

)
α
is an approximate identity for L1(G) bounded

by 1.

Example 2.4.5. L∞(G) is a commutative von Neumann algebra with respect to pointwise
(almost everywhere) function multiplication.

It is known that L∞(G) can be identified with L1(G)∗ via the dual pairing

⟨f, ϕ⟩ =
∫
G

ϕfdµ, wheref ∈ L1(G), ϕ ∈ L∞(G).

As per Theorem 2.1.5 this implies that L1(G) is the unique predual of L∞(G). If p = 2
then L2(G) forms a Hilbert space with inner product ⟨f, g⟩ =

∫
G
fgdµ for f, g ∈ L2(G).

Example 2.4.6. By the Riesz representation theorem we know that the space of complex
Radon measures on G, denoted M(G), can be identified with C0(G)

∗ via the pairing

⟨f, ν⟩ =
∫
G

fdν, where f ∈ C0(G), ν ∈M(G).

For ν, ρ ∈M(G) we can define a product ν ∗ ρ by

⟨f, ν ∗ ρ⟩ =
∫
G

∫
G

f(xy)dν(x)dρ(y), where f ∈ C0(G).
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We can actually view L1(G) isometrically isomorphically as a subalgebra of M(G) by
associating g ∈ L1(G) with a measure in the following way

⟨f, g⟩ =
∫
G

fgdµ(x), f ∈ C0(G),

where µ is Haar measure on G. Under this identification f ∗ g is the same for f, g ∈ L1(G)
whether the convolution is undertaken in L1(G) or M(G).

Definition 2.4.7. Let G be a locally compact group. A left-invariant mean on G is a
positive functional M ∈ L∞(G)∗ that satisfies the following conditions:

i) M(1) = ∥M∥ = 1

ii) M(x · f) =M(f), where x · f(y) = f(x−1y) for x, y ∈ G and f ∈ L∞(G).

If a left-invariant mean for G exists, then we say that G is an amenable group.

There are many equivalent characterizations of amenability. One of particular impor-
tance proposed by Reiter is as follows:

Proposition 2.4.8. G is amenable if and only if there exists a net (fα)α in L1(G) with
fα ≥ 0, ∥fα∥1 = 1 and

∥δx ∗ fα − fα∥1 → 0 uniformly on compact sets,

where δx ∈M(G) is the point-mass measure on x.

Proposition 2.4.9. Let G be an amenable locally compact group.

i) If H is a closed subgroup of G then H is amenable.

ii) If N is a normal subgroup of G then G/N is amenable.

iii) If G1, ..., Gn are all amenable then
n∏

i=1

Gi is amenable.

iv) Every compact or abelian group is amenable.
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Example 2.4.10. The free group F2 = ⟨a, b⟩ is not amenable. Supposing otherwise, let
M ∈ L∞(F2)

∗ be a left-invariant mean. For x ∈ {a, b, a−1, b−1} let Ex denote the set of
reduced words in F2 beginning with x. It is clear that

F2 = {e} ∪ Ea ∪ Eb ∪ Ea−1 ∪ Eb−1 .

Observe also two possible other ways of writing F2 as a disjoint union:

F2 = Ea ∪ aEa−1 = Eb ∪ bEb−1 .

Then
1 =M(1Ea) +M(1aEa−1 ) =M(1Eb

) +M(1bEb−1 ).

Applying the left-invariance of M yields a contraction because

1 =M(1{e}) +M(1Ea) +M(1Ea−1 ) +M(1Eb
) +M(1Eb−1 ) =M(1{e}) + 2.

2.5 Amenable Semigroups

The definition of amenability can be extended to apply for semigroups, although we will
limit ourselves to only considering discrete semigroups.

Definition 2.5.1. Let S be a semigroup. Then every f ∈ ℓ1(S) can be written as

f =
∑
s∈S

αsδs

such that
∥f∥1 =

∑
s∈S

|αs| <∞

with convolution defined as

(f ∗ g)(t) =
∑
rs=t

f(r)g(s), where f, g ∈ ℓ1(S), t ∈ S.

We can identify

Remark 2.5.2. The definition of amenability given for groups required taking an inverse,
which is not necessarily possible for semigroups as inverses and identities are not assumed
to exist. We can get around this issue by defining an action of S on ℓ1(S) by identifying each
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s ∈ S with the function 1s(t) =

{
1 s = t

0 otherwise
. Then convolution of 1s with f ∈ ℓ1(S)

induces the left action
1s ∗ f(t) =

∑
lr=t

1s(l)f(r) =
∑
sr=t

f(r).

With this idea in hand we are now free to define amenability for semigroups:

Definition 2.5.3. Let S be a discrete semigroup. We say that a positive functional
M ∈ ℓ∞(S)∗ is a left-invariant mean if M satisfies the following conditions:

i) M(1) = ∥M∥ = 1

ii) M(1s ∗ f) =M(f), where s ∈ S and f ∈ ℓ∞(S).

If a left-invariant mean for S exists, then we say that S is a left-amenable semigroup.
A right-amenable semigroup is defined in a similar fashion. A semigroup that is both
right-amenable and left-amenable is called amenable.

Notably, unlike as the case with groups, left-amenability and right-amenability are not
equivalent. However, this is the case given that S is commutative:

Theorem 2.5.4. [7, Theorem 4] Let S be a commutative semigroup. Then S is amenable.

2.6 Representation Theory

2.6.1 Representation Theory for Finite Groups

We will first specifically discuss representation theory of finite groups, and then extend to
the locally compact case. See Isaac’s book [41] for more on finite group character theory.

Definition 2.6.1. Let G be a finite group. A (complex) representation of G is a homo-
morphism ϕ : G → GL(n,C) for some n. Two representations ϕ : G → GL(n,C) and
ψ : G→ GL(n,C) are called equivalent if there is an isomorphism α : Cn → Cn such that
ψ(g) = α ◦ ϕ ◦ α−1(g).
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Definition 2.6.2. A function χ : G → C is called a character of G if there is a represen-
tation ϕ of G such that χ(g) = Trace ϕ(g). The value χ(e) is called the degree of χ and is
denoted dχ. If dχ = 1 then χ is called a linear character, and we denote the set of linear
characters by L(G).

Definition 2.6.3. A function ϕ : G → C is called a class function if ϕ is constant on the
conjugacy classes of G. Denote the set of conjugacy classes of G by Conj(G). The inner
product of two class functions ϕ and ψ is defined by

⟨ϕ, ψ⟩ = 1

|G|
∑

C∈Conj

|C|ϕ(C)ψ(C).

Due to the fact that Trace(AB) = Trace(BA) it follows that characters are automati-
cally class functions on G.

Definition 2.6.4. A character χ is called irreducible if ⟨χ, χ⟩ = 1. Denote the set of
irreducible characters by Irr(G).

It is known that equivalent representations induce equal characters, which creates a
correspondence between characters and equivalence classes of equivalent representations.
The following useful properties of characters will all come in handy later:

Proposition 2.6.5. i) Characters are algebraic-integer valued.

ii) Finite sums and products of characters are characters.

iii) Irr(G) is a basis for the set of class functions on G.

iv) |Irr(G)| = |Conj(G)|.

v) G is abelian if and only if every character in Irr(G) is linear.

vi)
∑

χ∈Irr(G)

d2χ = |G|.

vii) If χ ∈ Irr(G) with dχ > 1 then χ(g) = 0 for some g ∈ G.

Proposition 2.6.6 (Schur Orthogonality I). Let χi, χj ∈ Irr(G). Then

⟨χi, χj⟩ =
1

|G|
∑

C∈Conj(G)

|C|χi(C)χj(C) = δij.
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Proposition 2.6.7 (Schur Orthogonality II). Let g, h ∈ G, and let gG and hG denote the
conjugacy classes containing g and h respectively. Then

∑
χ∈Irr(G)

χ(g)χ(h) =

0 gG ̸= hG

|G|
|gG|

gG = hG
.

These properties highly constrict the structure of Irr(G), and in particular imply that
Irr(G) can be represented in a table known as the character table of G. Consider the
dihedral group of order 8, D4 = ⟨a, b : a4 = b2 = abab = e⟩, which has a 5 × 5 character
table:

Class e a2 b, a2b a, a3 ab, a3b
χ1 1 1 1 1 1
χ2 1 1 −1 1 −1
χ3 1 1 1 −1 −1
χ4 1 1 −1 −1 1
χ5 2 −2 0 0 0

Figure 2.1: Character table of D4

Definition 2.6.8. For χ ∈ Irr(G) let

Z(χ) = {g ∈ G : |χ(g)| = dχ}

denote the center of χ and let

ker(χ) = {g ∈ G : χ(g) = dχ}

denote the kernel of χ, both of which are subgroups of G.

Proposition 2.6.9.

i) G′ =
⋂

χ∈Irr(G)

{ker(χ) : dχ = 1},where G′ is the derived subgroup of G.

ii) |L(G)| = |G : G′|

iii) Z(G) =
⋂

χ∈Irr(G)

{Z(χ)}
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iv) If χ ∈ Irr(G) and G/Z(χ) is abelian then |G : Z(χ)| = d2χ.

v) If χ ∈ Irr(G) then dχ divides |G : Z(χ)|.

Let N ⊴ G. If χ ∈ Irr(G) and N ⊆ ker(χ) then χ̂(gN) = χ(g) determines an irreducible
character of the group quotient G/N , and every element of Irr(G/N) can be constructed
this way.

Definition 2.6.10. Let H ≤ G, and let χ be a character of H. Denote the induced
character by

χG(g) =
1

|H|
∑
x∈G

χ◦(xgx−1).

where χ◦(g) =

{
χ(g) g ∈ H

0 g /∈ H

Definition 2.6.11. Let H ≤ G, and let χ be a character of G. Then χH denotes the
restriction to H, defined by χH(h) = χ(h) for h ∈ H.

Theorem 2.6.12 (Frobenius Reciprocity). Let H ⊆ G and let ϕ be a character on H and
ψ a character on G. Then

⟨ϕ, ψH⟩ = ⟨ϕG, ψ⟩

It’s important to know that for H ≤ G ≤ K and χ ∈ Irr(G) it is not necessarily true
that either χK or χH are irreducible on K and H respectively. Still, there are partial
results, such as the famed theorem of Clifford:

Theorem 2.6.13 (Clifford’s Theorem). Let N ⊴ G and χ ∈ Irr(G). Let ϕ be an irreducible
constituent of χN . For each g ∈ G let ϕg(h) = ϕ(ghg−1) denote the conjugate character of
ϕ with respect to g, and let ϕ1, ..., ϕn denote the distinct conjugate characters of ϕ. Then

χN = ⟨χN , ϕ⟩
n∑

i=1

ϕi.

2.6.2 Representation Theory for Locally Compact Groups

Let G be a locally compact group. For a Hilbert space H, let

U(H) = {U ∈ B(H) : U∗U = I = UU∗}
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denote the unitary operators on H. A continuous unitary representation on G is a homo-
morphism

π : G→ U(Hπ)

for some Hilbert spaceHπ such that for any ζ, η ∈ Hπ then the function πζ,η(x) = ⟨π(x)ζ, η⟩
is continuous (we often call these functions matrix coefficients). We will denote the collec-
tion of equivalence classes of unitary representations on G by Σ(G), where two represen-
tations are equivalent if they are equal up to a conjugation by a unitary.

Let H and K be Hilbert spaces. Then we can form the tensor product H ⊗ K with
inner product

⟨ζ ⊗ η, ϕ⊗ ψ⟩H⊗K = ⟨ζ, ϕ⟩H⟨η, ψ⟩K, where ζ, ϕ ∈ H and η, ψ ∈ K.

For π, ρ ∈ Σ(G), we can form another (continuous unitary) representation called the
tensor product of π and ρ denoted by π ⊗ ρ : G→ U(Hπ ⊗Hρ) defined as

π ⊗ ρ(x)(ζ ⊗ η) = π(x)ζ ⊗ ρ(x)η, where ζ ∈ Hπ, η ∈ Hρ, x ∈ G.

If we have a continuous unitary representation π on G, then we can determine a represen-
tation on L1(G) via the operator-valued integral

π(f) =

∫
G

f(x)π(x)dx,

where π(f) is defined by

⟨π(f)ζ, η⟩ =
∫
G

f(x)⟨π(x)ζ, η⟩dx, where ζ, η ∈ H(π) and f ∈ L1(G).

A particularly important unitary representation for our purposes is the left regular representation
and is defined by λ : G→ U(L2(G)), where if x, y ∈ G and f ∈ L2(G) then

λ(y)f(x) = f(y−1x).

For f ∈ L1(G) and g ∈ L2(G) it is known that λ(f)g = f ∗ g.
If G is a compact group denote the equivalences classes up to unitary equivalence of

continuous irreducible unitary representations of G by Ĝ. Every representation π ∈ Ĝ is
finite-dimensional, so we can define the character of π by

χπ : Trace ◦ π : G→ C.
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2.7 Fourier and Fourier-Stieltjes Algebres

Let f ∈ L1(G). Then we define the norm

∥f∥∗ = sup{∥π(f)∥ : π ∈ Σ(G)}

In general L1(G) is not complete under this new norm, we denote the completion of L1(G)
with respect to this ∥ · ∥∗ norm by

C∗(G) = L1(G)
∥·∥∗

.

The space C∗(G) is called the group C∗-algebra of G. Now define a space of continuous
functions

B(G) = {πζ,η : π ∈ Σ(G) and ζ, η ∈ Hπ}

∥u∥B(G) = sup

{∣∣∣∣∫
G

f(x)u(x)dx

∣∣∣∣ : f ∈ L1(G), ∥f∥∗ ≤ 1

}
We call B(G) the Fourier-Stieltjes algebra of G. We can also define the Fourier algebra
A(G) by

A(G) = span{λf,g : f, g ∈ L2(G)}
B(G)

which is an ideal in B(G). We define the von Neumann algebra of G by

V N(G) = λ(L1(G))
WOT

.

As the name implies, is a von Neumann algebra. We have the following important facts
about these algebras, which can all be found in [47]:

Theorem 2.7.1.

i) A(G)∗ = V N(G)

ii) If G is abelian then A(G) = L1(Ĝ).

iii) G is compact if and only if A(G) = B(G).

iv) (Leptin’s Theorem) G is amenable if and only if A(G) has a bounded approximate
identity.

v) If H is a closed subgroup of G then A(G)|H = A(H).
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The fact that A(G) is a predual of V N(G) is important, because as noted in Theorem
2.1.5, the predual of a von Neumann algebra is always necessarily unique.

The Fourier algebra enjoys a nice regularity property that will prove to be very useful
for calculations in Chapter 5. See [47, Proposition 2.3.2] for the construction.

Proposition 2.7.2. Let G be a locally compact group, K ⊆ G a compact subset, and
U ⊆ G an open subset such that K ⊆ U . Then there exists u ∈ CC(G) ∩ A(G) such that

|u| ≤ 1, supp(u) ⊆ U, u|K = 1.

2.8 ZL1(G) and ZA(G)

Let G be locally compact. We will consider the center of L1(G), which is described as

Z(L1(G)) = {f ∈ L1(G) : f ∗ g = g ∗ f for all g ∈ L1(G)}.

As noted in [52], it is equivalent to write this algebra as

Z(L1(G)) = {f ∈ L1(G) : f(xyx−1) = f(y) for almost every x, y ∈ G}.

We will typically denote Z(L1(G)) by ZL1(G) for convenience. It is clear that ZL1(G),
being a subalgebra of L1(G), is a commutative Banach algebra.

The central Fourier algebra ZA(G) was first introduced by Alaghmandan and Spronk
in [5]. For a compact group G, set

ZA(G) = ZL1(G) ∩ A(G) = {u ∈ A(G) : u(xyx−1) = u(y) for all x, y ∈ G}

with respect to the A(G) norm and pointwise multiplication.

Remark 2.8.1. Naturally because A(G) is already a commutative algebra, ZA(G) is not
equal to the center of A(G) because the center of a commutative algebra is itself.

Our interest in these algebras will be largely in the case where G is finite, in which case

ZA(G) = ZL1(G) = span{χ : χ ∈ Irr(G)}.

Note that the equality above is just in terms of sets, they in general will have distinct
Banach algebra structures. ZA(G) is a Banach algebra with respect to pointwise multipli-
cation and ∥ · ∥A(G), while ZL

1(G) is a Banach algebra with respect to L1(G) convolution
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∗ and ∥ · ∥L1(G). These algebras are actually even more deeply connected than they might
appear on the surface, but first we need the language of hypergroups.

We call a non-empty set H a discrete hypergroup if there exists an associative convo-
lution product on ℓ1(H) and an involution x 7→ x on H such that the following properties
are satisfied:

1. For x, y ∈ H then δx ∗ δy ≥ 0 and ∥δx ∗ δy∥ = 1.

2. There exists a (necessarily unique) element e ∈ H such that

δe ∗ δx = δx = δx ∗ δe

for all x ∈ H.

3. x = x and δx ∗ δy = δy ∗ δx for all x, y ∈ H.

4. e ∈ supp(δx ∗ δy) if and only if y = x.

Remark 2.8.2. In this thesis we will only consider examples of discrete hypergroups, but
the locally compact case can be found in [42] (note that the author refers to hypergroups
by the term “convos” instead).

Theorem 2.8.3. [11, Theorem 1.3.26] Let H be a discrete hypergroup. Then there exists
a positive Radon measure µ on H such that (when viewed as a linear functional on C0(G)
by the Riesz representation theorem) then

µ(δx ∗ f) = µ(f)

for x ∈ H. We call µ a Haar measure for H. Furthermore, µ is unique up to scaling.

Both of the algebras considered above can be regarded as semigroup algebras. For a com-
pact group G let Conj(G) be the conjugacy classes of G and Ĝ the irreducible representa-
tions of G. Then ZL1(G) ∼= ℓ1(Conj, µConj) and ZA(G) ∼= ℓ1(Ĝ, µĜ) where µConj(C) = |C|
and µĜ(π) = d2π. Indeed, Conj and Ĝ are dual hypergroups as shown in [2].

2.9 Multipliers of A(G)

A function v : G → C is called a multiplier of A(G) if vu ∈ A(G) for all u ∈ A(G). We
denote the space of all such functions by MA(G), which we call the multiplier algebra of
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G. LetMv denote the linear operatorMv(u) = vu from A(G) to itself. By the closed graph
theorem Mv is bounded, so Mv ∈ B(A(G)) and is hence equipped with an operator norm.
This induces the multiplier norm on v via

∥v∥M = ∥Mv∥.

If for v ∈MA(G) the map Mv is completely bounded then we call v a completely bounded
multiplier. The space of completely bounded multipliers on A(G) is denoted by Mcb(G),
with norm

∥v∥cb = ∥Mv∥cb.

There is chain of subalgebras

A(G) ⊆ B(G) ⊆Mcb(G) ⊆MA(G)

with

∥v∥A(G) ≥ ∥v∥cb ≥ ∥v∥M .

Theorem 2.9.1. For a locally compact group G, the following are equivalent:

1. G is amenable.

2. B(G) =MA(G).

3. B(G) =Mcb(G).

There is a characterization of Mcb(G) due to Jolissaint [45]:

Theorem 2.9.2. For locally compact G and v : G→ C the following are equivalent:

1. v ∈Mcb(G)

2. There exists a Hilbert space H and functions f, g : G→ H such that

v(t−1s) = ⟨f(s), g(t)⟩ for all s, t ∈ G.

If these conditions are satisfied then ∥v∥cb = inf ∥f∥∞∥g∥∞, where the infimum is taken
over pairs as (2).

27



While MA(G) and Mcb(G) are interesting algebras in their own right, in the non-
amenable case they can be large enough to be unwieldy. In Chapter 5 we will focus instead
on the closures of A(G) in the respective multiplier and cb-multiplier norms. Let

AM(G) = A(G)
∥·∥M ⊆M(A(G)).

and
Acb(G) = A(G)

∥·∥cb ⊆Mcb(A(G)).

Remark 2.9.3. Let A(G) denote either Acb(G) or AM(G). Consider the following map and
its adjoints:

i : A(G) → A(G)

i∗ : A(G)∗ → V N(G)

i∗∗ : V N(G)∗ → A(G)∗∗,

where i denotes the inclusion map. Since i has dense range, i∗ is injective and as such is
invertible with inverse i∗−1 on Range(i∗). It is easy to see that i∗ is simply the restriction
map. That is

i∗(T ) = T|A(G)
.

It will also be useful to view all of the above maps as embeddings. That is, when G is
non-amenable A(G)∗ can be viewed as a proper subset of V N(G) and V N(G)∗ as a proper
subset of A(G)∗∗.

It is well known due to [23] that ∆(A(G)) ∼= G via the point evaluation map x 7→ ϕx,
where for x ∈ G then ϕx ∈ A(G)∗ is defined by ϕx(u) = u(x) for u ∈ A(G) . It follows
immediately that ∆(AM(G)) ∼= G and ∆(Acb(G)) ∼= G due to the fact that the map i
above is a contractive and injective homomorphism from A(G) with dense range.

Recall the definitions of topologically invariant means and sets of spectral synthesis
involved the spectrum of the algebras. The fact that ∆(A(G)) can be associated with G
for the above algebras makes investigating these properties, as we do in Chapter 5, more
straightforward.
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Chapter 3

Survey of Amenability Constant
Gaps

This was a triumph
I’m making a note here
Huge success
It’s hard to overstate my
satisfaction

GLaDOS
Portal

A major theme in Chapter 4 is an investigation of the amenability constants of the cen-
tral Fourier algebra ZA(G). To that end, in this chapter we provide a survey of amenability
constant gap results in the literature which will help put the work in Chapter 4 into context.

3.1 L1(G)

The term “amenable Banach algebra” has a pleasing relationship with amenable groups,
as demonstrated by the following result due to Johnson [43, 1972]:

Theorem 3.1.1 (Johnson’s Theorem). For a locally compact group G, the group algebra
L1(G) is amenable as a Banach algebra if and only if G is amenable as a group, in which
case AM(L1(G)) = 1.
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The characterization of amenability via bounded approximate diagonals had not yet
been developed when [43] was first published, so the original proof of Johnson’s Theorem
utilized the inner derivation definition. We provide a short sketch of one direction of a
proof of this result which was done by Stokke in [72] that is more illuminating for our
purposes because it uses the bounded approximate diagonal of amenability:

Proof. ⇐= Assume that G is amenable, and let (fα)α be a net as from Proposition 2.4.8.
Because G is amenable we can choose a bounded approximate identity (eβ)β for L1(G)
with eβ ≥ 0, ∥eβ∥1 = 1, and

∥δx ∗ eβ − eβ ∗ δx∥1 → 0 uniformly in x on compact subsets of G.

By letting λ = (α, β) we can define a net (dλ)λ in L1(G×G) ∼= L1(G)⊗γ L1(G) by

dλ(s, t) = fα(s)eβ(st), s, t ∈ G.

Because ∥fα∥1 = ∥eβ∥1 = 1 then it follows that ∥dλ∥1 = 1. All that remains is to show
that (dλ)λ satisfies Equation 2.3 and Equation 2.4. Let x, s, t ∈ G and λ = (α, β). Then
we can see that

• (δx · dλ)(s, t) = (δx ∗ fα)(s)(δx ∗ eβ)(st)

• (dλ · δx)(s, t) = fα(s)(eβ ∗ δx)(st).

It follows that

∥δx · dλ − dλ · δx∥1

=

∫
G

∫
G

|(δx ∗ fα)(s)(δx ∗ eβ)(st)− fα(s)(eβ ∗ δx(st))|dsdt

=

∫
G

∫
G

|(δx ∗ fα)(s)(δx ∗ eβ)(t)− fα(s)(eβ ∗ δx(t))|dsdt

≤
∫
G

∫
G

|(δx ∗ fα)(s)− fα(s)|(δx ∗ eβ)(t)dtds+
∫
G

∫
G

fα(s)|(δx ∗ eβ)(t)− (eβ ∗ δx)(t)|dtds

= ∥δx ∗ fα − fα∥1 + ∥δx ∗ eβ − eβ ∗ δx∥1
→ 0 uniformly in x on compact subsets.

Take µ ∈ M(G). Because µ is a Radon measure by definition, it is inner regular, hence it
follows that

µ · dλ − dλ · µ→ 0.
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In particular, for f ∈ L1(G) ⊆M(G) then

f · dλ − dλ · f → 0.

Let ϕ ∈ L∞(G). Note that because fα ≥ 0 and ∥fα∥1 = 1 then
∫
G
fα(x)dx = 1. Then

⟨m(dγ), ϕ⟩ = ⟨dγ,m∗(ϕ)⟩

=

∫
G

∫
G

fα(x)eβ(xy)ϕ(xy)dydx

=

∫
G

∫
G

fα(x)eβ(y)ϕ(y)dydx

=

∫
G

eβ(y)ϕ(y)

∫
G

fα(x)dxdx

=

∫
G

eβ(y)ϕ(y)dy

= ⟨eβ, ϕ⟩

This shows that m(dγ) = eβ, hence fm(dγ) → f for all f ∈ L1(G).

We have that (dλ) satisfies both Equation 2.3 and 2.4, and that ∥dλ∥1 = 1 for all λ, so
it follows that L1(G) is amenable and that AM(L1(G)) = 1.

A key element in this proof was the fact that L1(G×G) ∼= L1(G)⊗γL1(G). The analog
of this property does not hold for all Banach algebras of G, as we will see next.

3.2 A(G)

The amenability constant theory of A(G) was originally studied in by Johnson in [44],
where it was shown that if G is finite then

AM(A(G)) =
1

|G|
∑

χ∈Irr(G)

d3χ. (3.1)

Example 3.2.1. Applying Johnson’s formula to the character table of D4 (Table 2.1)
yields that

AM(A(D4)) =
1

8
(1 + 1 + 1 + 1 + 8) =

3

2
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Remark 3.2.2. This formula combined with Proposition 2.6.5 shows that AM(A(G)) = 1
if and only if G is abelian. It was proven by Runde in [60] that this holds more generally
for locally compact groups.

Using Equation 3.1, Johnson showed that 3
2
was a sharp amenability bound over finite

groups:

Theorem 3.2.3. [44] Let G be a finite group. Then the following are equivalent:

1. G is abelian.

2. AM(A(G)) < 3
2
.

3. AM(A(G)) = 1.

This gap is sharp, as AM(A(D4)) =
3
2
.

Remark 3.2.4. Given results like Johnson’s Theorem and Leptin’s theorem, it would be
natural to hope that there is a correspondence between amenability of A(G) as an algebra
and G as a group. Tragically, this is not the case: Johnson squashed all such hopes by
showing in [44] that A(SO(3,R)) is a non-amenable algebra, despite the fact that SO(3,R)
is compact, hence amenable.

The search for a characterization of groupsG such that A(G) is amenable was completed
by Forrest and Runde in [31], but first, we need a definition.

Definition 3.2.5. We call a group G almost abelian if G contains an abelian subgroup of
finite index (this is also known as virtually abelian in the literature).

Theorem 3.2.6. [31] For a locally compact group G the following are equivalent:

1. G is almost abelian.

2. A(G) is amenable.

Definition 3.2.7. Let G be a locally compact group. We call the subset

GΓ = {(x, x−1) : x ∈ G}

of G×G the anti-diagonal of G.

Runde noted in [60] the following connection between GΓ and the amenability of A(G):
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Lemma 3.2.8. [60] Let G be a locally compact group and denote G endowed with the
discrete topology by Gd. Then the following are equivalent:

1. A(G) is amenable.

2. 1GΓ
∈ B(Gd ×Gd).

If either (hence both) of the above hold then

∥1GΓ
∥B(Gd×Gd) ≤ AM(A(G)).

Choi observed in [14] that the inequality in Lemma 3.2.8 is actually an equality if G is
finite:

Proposition 3.2.9. [14] Let G be a finite group. Then

∥1GΓ
∥A(Gd×Gd) = AM(A(G)).

This observation of Choi’s led to an improvement to Theorem 3.2.3 that settles the
amenability constant gap of A(G).

Theorem 3.2.10. [14] Let G be a locally compact group. Then the following are equiva-
lent:

1. G is abelian.

2. AM(A(G)) < 3
2
.

3. AM(A(G)) = 1.

This gap is sharp, as AM(A(S3)) =
3
2
.

Choi’s proof of the 3
2
bound relied heavily on the following subgroup hereditary property.

Lemma 3.2.11. If G is an almost abelian group and H is a subgroup of G then

AM(A(H)) ≤ AM(A(G)).

Recall that because A(G) is the predual of the von Neumann algebra V N(G), it has a
natural structure as a completely contractive Banach algebra. This structure works very
well in terms of operator projective tensor products:
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Theorem 3.2.12. [22] Let G be a locally compact group. Then A(G×G) ∼= A(G)⊗̂A(G).

In many ways, operator amenability is the “right” notion for A(G) as opposed to
amenability, as demonstrated by the following result due to Ruan:

Theorem 3.2.13. [58] For a locally compact group G, A(G) is operator amenable if and
only if G is an amenable group, in which case AMop(A(G)) = 1.

3.3 B(G)

The amenability constant theory of the Fourier-Stieltjes algebra B(G) largely just reduces
to the case where G is compact, in which case A(G) = B(G).

Theorem 3.3.1. For a locally compact group G, the following are equivalent.

1. B(G) is amenable.

2. G is compact and almost abelian.

The above theorem is really just saying that there is nothing additional to be gained by
looking at amenability constants of B(G) as opposed to A(G). The story is very different
when considering operator amenability instead:

Theorem 3.3.2 ( [63]). For a locally compact group the following are equivalent.

1. AMcb(B(G)) < 5.

2. AMcb(B(G)) = 1.

3. G is compact.

In this theorem compactness replaces commutativity of the group as compared with our
previous examples so far. What’s interesting is that this bound is actually sharp: Runde
and Spronk gave an example in [64] of a non-compact group G such that AMcb(B(G)) = 5.
It turns out that such groups are necessarily disconnected, as demonstrated by this result
of Spronk:

Theorem 3.3.3 ( [71]). Let G be a connected group. Then the following are equivalent.

1. B(G) is operator amenable.

2. G is compact.
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3.4 Ap(G)

Let G be a locally compact group, and let p, q ∈ (1,∞) such that 1
p
+ 1

q
= 1. Recall for

a function f : G → C we use the notation f̌(x) to denote the function f̌(x) = f(x−1).
We will now define the Figà-Talamanca-Herz algebra Ap(G), which consists of functions
f : G→ C such that

f =
∞∑
i=1

ϕi ∗ ψ̌i

where (ϕi)
∞
i=1 ∈ Lp(G) and (ψi)

∞
i=1 ∈ Lq(G) such that

∞∑
i=1

∥ϕi∥p · ∥ψi∥q <∞.

Define a norm on this set ∥f∥Ap(G) as the infimum of of all sums satisfying (1) and (2).
Equipping Ap(G) with this norm and pointwise multiplication results in a Banach algebra,
as originally shown by Herz in [37]. Because of the key fact that A2(G) = A(G), this class
of algebras can be viewed as a generalization of the Fourier algebra.

Lemma 3.4.1. [37, Theorem C] Let G be amenable and p ∈ (1,∞). Then there is a
contractive inclusion

A(G) ⊆ Ap(G) and Ap(G) = A(G)
∥·∥Ap(G)

.

The amenability constant theory of the Ap(G) algebras was first developed by Runde
in [61, Theorem 2.9]

Theorem 3.4.2. [61] Let G be a locally compact group and fix p ∈ (1,∞). Then the
following are equivalent:

1. Ap(G) is amenable and AM(Ap(G)) = 1.

2. G is abelian.

This result was improved by Roydor in [57, Corollary 4.10]:

Theorem 3.4.3. [57] Let G be a locally compact group and fix p ∈ (1,∞). Then the
following are equivalent:
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1. Ap(G) is amenable.

2. AM(Ap(G)) = 1.

3. There is a constant γp > 1 such that AM(Ap(G)) < γp.

4. G is abelian.

In the case that p = 2 then γp = 3
2
is the sharp bound, but sharp γp bounds are

not currently known for p ̸= 2. A naive guess may be that γp = 2p−2 + 1
2
if 1 ≤ p ≤ 2 or

γp = 21−p+1 because of formulas for gaps of norms of p−completely bounded isomorphisms
found in [57], but as of the writing of this thesis the question of sharp amenability constant
gaps for Ap(G) when p ̸= 2 is open.

When we move to the question of operator amenability of Ap(G), things get trickier, as
it is not clear how to give Ap(G) an operator space structure when p ̸= 2. Multiple authors
have approached this problem. In [59] Runde used interpolation techniques originally due
to Pisier to define operator analogues of the Ap(G) algebras, which Runde denoted as
OAp(G). Each OAp(G) is a completely contractive Banach algebra with a contractive
inclusion Ap(G) ⊆ OAp(G), but when p ̸= 2 it is possible for Ap(G) and OAp(G) to fail
to be isomorphic even as Banach spaces. An approach due to Daws in [19] endows Ap(G)
with a p−operator space structure, but has the limitation of assuming that G is amenable.
Of most interest for this thesis is the column operator space structure utilized by Lambert,
Neufang, and Runde in [48].

Lemma 3.4.4. [48, Corollary 6.6]. Let G be amenable and p ∈ (1,∞). Endow Ap(G)
with the operator space structure as in [48]. The inclusion map from A(G) into Ap(G) has
completely bounded norm at most K2

G, where KG is Grothendiuk’s constant.

With regards to this structure Ap(G) is a quantized Banach algebra, but is not guar-
enteed to be a completely contractive Banach algebra. Our full notion of operator amenabil-
ity as described in 2.3.11 does not necessarily apply in this case, but as noted in [48] it is
still possible to work with a version of operator amenability for quantized Banach algebras
that utilized the inner derivation characterization of operator amenability.

Theorem 3.4.5. [48, Theorem 7.3]

Let G be a locally compact group and let Ap(G) be a quantized Banach algebra as in [48].
Then the following are equivalent:

1. G is amenable.
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2. Ap(G) is operator amenable for each p ∈ (1,∞).

3. There exists p ∈ (1,∞) such that Ap(G) is operator amenable.

Remark 3.4.6. This generalization of Theorem 3.2.13 unfortunately has the limitation of
not actually having an operator amenability constant gap, as operator amenability con-
stants are not defined for quantized Banach algebras that are not necessarily completely
contractive.

3.5 Acb(G) and AM(G)

Due to Theorem 2.9.1, we know that the amenability constant theory of Acb(G) and AM(G)
only has the potential to be distinguishable from A(G) when G is non-amenable.

In [32, Theorem 3.4] it was shown that over locally compact groups Acb(G) has an
amenability constant gap of 2√

3
. This gap was later improved in the Master’s thesis of

Juselius, but is still not known to be sharp:

Corollary 3.5.1. [46, Corollary 4.7] Let G be a locally compact group. Then the following
are equivalent:

1. G is abelian.

2. AM(Acb(G)) <
9
7
.

3. AM(Acb(G)) = 1.

The amenability constant theory of AM(G) has not yet been explicitly studied in the
literature. We note that the following corollary follows immediately from the above theo-
rem.

Corollary 3.5.2. Let G be a locally compact group. Then

AM(AM(G)) ≤ AM(Acb(G)).

Proof. It is known that Acb(G) ⊆ AM(G) and ∥ · ∥cb ≥ ∥ · ∥M , so the inclusion map
Acb(G) ⊆ AM(G) is a contractive algebra homomorphism. It follows from Proposition
2.3.5 that

AM(AM(G)) ≤ AM(Acb(G)).
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Question 3.5.3. Does AM(G) have an amenability constant gap? If G is abelian then
A(G) = AM(G) so AM(AM(G)) = 1, but it is not known if the converse holds (although
this seems extremely likely).

3.6 L1
0(G)

Not all Banach algebras that are naturally defined with respect to a locally compact group
G necessarily follow the amenability constant gap patterns we have seen so far. Take the
augmentation ideal of L1(G), which is defined by

L1
0(G) =

{
f ∈ L1(G) :

∫
G

f(x)dx = 0

}
.

Suppose that G is a finite non-trivial group, then 1e(x) − µ(x) is the identity for L1
0(G).

To see this, take f ∈ L1
0(G), then

(1e − µ) ∗ f(x) =
∑
y∈G

(1e − µ)(y)f(xy−1)

= f(x)− 1

|G|
∑
y∈G

f(xy−1)

= f(x)− 1

|G|
∑

z=xy−1∈G

f(z)

= f(x).

Clearly the same argument shows that f ∗ (1e − µ)(x) = f(x).

Now observe that

∥1e − µ∥1 =
∑
x∈G

∣∣∣∣1e(x)− 1

|G|

∣∣∣∣
= 1− 1

|G|
+
∑
x ̸=e

1

|G|

= 1− 2

|G|
+ 1
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= 2− 2

|G|
.

Applying Proposition 2.3.6 (i) with A = L1
0(G) and eI = 1e − µ yields that AM(L1

0(G)) ≥
2− 2

|G| . An appeal to (ii) of the same proposition with I = L1
0(G) and A(G) = L1(G) gives

that AM(L1
0(G)) ≤ 2− 2

|G| , hence AM(L1
0(G)) = 2− 2

|G| . Note that for every finite group

G with |G| > 2 we have that AM(L1
0(G)) > 1, so there cannot be an amenability constant

gap.

3.7 ZL1(G) and ZA(G)

In [8] Azimifard, Samei, and Spronk investigated amenability properties of ZL1(G). In
case that G is finite they constructed a formula for the amenability constant of ZL1(G):

Theorem 3.7.1. [8, Theorem 1.8] Let G be a finite group. Then∑
χ∈Irr(G)

d2χ(χ⊗ χ)

is the unique diagonal element for ZL1(G). The amenability constant of ZL1(G) can be
calculated by the formula

AM(ZL1(G)) =
1

|G|2
∑

C,C′∈Conj(G)

|C||C ′|

∣∣∣∣∣∣
∑

χ∈Irr(G)

d2χχ(C)χπ(C ′)

∣∣∣∣∣∣ . (3.2)

The authors of [8] applied Rider’s 1
300

gap result for central idempotents of L1(G) (see
Theorem 6.2.1 in Chapter 6) to show that AM(ZL1(G)) has an amenability constant gap
of 1 + 1

300
. This was improved by Choi in [13] to arrive at a sharp bound:

Theorem 3.7.2. [13, Theorem 1.2] Let G be a finite group. Then AM(ZL1(G)) = 1 if
and only if G is abelian, otherwise AM(ZL1(G)) ≥ 7

4
. This bound is sharp.

A key ingredient in this proof was the following hereditary property with respect to
quotients:

Lemma 3.7.3. [8, Corollary 1.3] Let G be a finite group and N a normal subgroup of G.
Then

AM(ZL1(G/N)) ≤ AM(ZL1(G)).
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In [5, 2016], Mahmood Alaghmandan and Nico Spronk produced a formula forAM(ZA(G))
that mirrors the formula for AM(ZL1(G)) from [8]:

Theorem 3.7.4. [5, Proposition 4.2] Let G be a finite group. Then the element

1Conj(G)D =
∑

C∈Conj(G)

1C×C

is a diagonal for ZA(G) via the identification ZA(G) ⊗γ ZA(G) ∼= ZA(G × G). The
amenability constant of ZA(G) can then be calculated by the formula

AM(ZA(G)) =
1

|G|2
∑

χ,χ′∈Irr(G)

dχdχ′

∣∣∣∣∣∣
∑

C∈Conj(G)

|C|2χ(C)χ′(C)

∣∣∣∣∣∣ . (3.3)

Furthermore, they proved that AM(ZA(G)) also has an amenability constant gap:

Theorem 3.7.5. Let G be a finite group. Then AM(ZA(G)) = 1 if and only if G is
abelian, otherwise AM(ZA(G)) ≥ 2√

3
.

Remark 3.7.6. Notably this bound is not proven to be sharp. We will discuss investigations
regarding improving this bound at length in Chapter 4 and Chapter 6.

3.8 Hypergroup Algebras

The similarity between the formulas for AM(ZL1(G)) and AM(ZA(G)) is no coincidence,
but actually follows from a more general formula for amenability constants of hypergroup
algebras.

Theorem 3.8.1. [2, Theorem 3.7] Let H be a finite commutative hypergroup with Haar
measure λ and dual Ĥ. For χ ∈ Ĥ let kχ denote the hyperdimension of χ. Then we have
that

AM(ℓ1(H,λ)) =
1

λ(H)2

∑
x,y∈H

λ(x)λ(y)

∣∣∣∣∣∣
∑
χ∈Ĥ

k2χχ(x)χ(y)

∣∣∣∣∣∣ . (3.4)

It is not possible to state an amenability gap theorem for AM(ℓ1(H)) that holds for all
finite commutative hypergroups H. If 1 < p < ∞ is fixed then a hypergroup containing
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two elements Hp = {0, a} can be defined by setting

δa ∗ δa =
1

p
δ0 + (10

1

p
)δa.

Using the above formula, Alaghmandan and Amini showed in [2, Example 3.8] that

AM(ℓ1(Hp)) =
5p2 − 2p+ 1

(p+ 1)2
.

By varying p every value in (1, 5) can be achieved as an amenability constant of some
ℓ1(Hp).

3.9 C∗-algebras

In [15, Corollary 2] Connes proved that amenable C∗-algebras are necessarily nuclear (see
Chapter 2 of [12] for an introduction to nuclear C∗-algebras), and in [36, Theorem 3.1]
Haagerup proved that nuclear C∗-algebras are amenable with amenability constant equal
to 1. Ruan [58, Theorem 5.1] proved that C∗-algebras are amenable if and only if they
are operator amenable. We know that 1 ≤ AMop(·) ≤ AM(·) hence it follows that the
operator amenability constant of an operator amenable C∗-algebras is 1. We summarize
all of this in the following theorem.

Theorem 3.9.1. Let C be a C∗-algebra. Then the following are equivalent.

1. C is nuclear.

2. C is amenable as a Banach algebra.

3. C is operator amenable as a completely contractive Banach algebra.

4. AM(C) = 1

5. AMop(C) = 1

3.10 Semigroup Algebras

For a discrete semigroup S it is known that if ℓ1(S) is amenable then S is amenable,
although unlike the group case the converse need not hold.
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Theorem 3.10.1. [18, Corollary 10.28] Let S be a semigroup. Then the following are
equivalent.

1. AM(ℓ1(S)) < 5.

2. AM(ℓ1(S)) = 1.

3. S is an amenable group.

In the case that S is a commutative semigroup, the range of allowable amenability
constant values of ℓ1(S) is further reduced:

Theorem 3.10.2. [34] There is no commuative semigroup S such that

5 < AM(ℓ1(S)) < 9.

Proposition 3.10.3. [34] If S is a commutative semigroup such that every element of S
is an idempotent, then AM(S) = 4n+ 1 for some n ∈ N. All such values are achieved.
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Chapter 4

Amenability Constants of ZA(G)

Every puzzle has an answer.

Professor Layton
Professor Layton

4.1 AMZA and AMZ

In this chapter we will be examining the amenability constant theory of the central Fourier
algebra, ZA(G). We will always assume that G is a finite group, in which case ZL1(G)
and ZA(G) are both equal to the class functions on G, albeit with differing norms and
products. Recall the formulas for the amenability constants of these algebras:

AM(ZL1(G)) =
1

|G|2
∑

C,C′∈Conj(G)

|C||C ′|

∣∣∣∣∣∣
∑

χ∈Irr(G)

d2χχ(C)χ(C
′)

∣∣∣∣∣∣
and

AM(ZA(G)) =
1

|G|2
∑

χ,χ′∈Irr(G)

dχdχ′

∣∣∣∣∣∣
∑

C∈Conj(G)

|C|2χ(C)χ′(C)

∣∣∣∣∣∣ .
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For convenience we will set AMZA(G) = AM(ZA(G)) and AMZ(G) = AM(ZL1(G)).
Note that if you choose to only sum up the elements where χ = χ′ in the above formula
then you get the same value as you get from only summing up the elements where C = C ′ in
the formula for AMZ(G). We will call this quantity the auxiliary minorant of AMZA(G)
(or equivalently, of AMZ(G)). Matching the notation from [13], we denote it as follows:

ass(G) =
1

|G|2
∑

χ∈Irr(G)

d2χ
∑

C∈Conj(G)

|C|2|χ(C)|2.

It will often make sense to split up a calculation between ass(G) and AMZA(G)− ass(G),
which we denote as AMZAoff(G), and can be written as

AMZAoff(G) =
1

|G|2
∑

χ ̸=χ′∈Irr(G)

dχdχ′

∣∣∣∣∣∣
∑

C∈Conj(G)

|C|2χ(C)χ′(C)

∣∣∣∣∣∣ .
Theorem 3.7.2 gives that 7

4
is a sharp amenability constant bound for ZL1(G), and while

by Theorem 3.7.5 AMZA(G) also has a gap, a sharp bound has not yet been proven for
ZA(G).

4.2 Structure of Sum

We wish to learn more about the behavior of

AMZA(G) =
1

|G|2
∑

χ,χ′∈Irr(G)

dχdχ′

∣∣∣∣∣∣
∑

C∈Conj(G)

|C|2χ(C)χ′(C)

∣∣∣∣∣∣ .
Of particular interest is the inside sum. For χ, χ′ ∈ Irr(G) let

Φ(χ, χ′) =
∑

C∈Conj(G)

|C|2χ(C)χ′(C).

Note the connection with the inner product formula for characters

⟨χ, χ′⟩ = 1

|G|
∑

C∈Conj(G)

|C|χ(C)χ′(C)
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A more condensed way of writing AMZA(G) is

AMZA(G) =
1

|G|2
∑

χ,χ′∈Irr(G)

dχdχ′|Φ(χ, χ′)|.

Because irreducible characters have values in the algebraic integers, we know that |Φ(χ, χ′)| ∈
Z, although it turns out that this is still true even without taking the complex magnitude.
First we need a lemma that we will use several times.

Lemma 4.2.1. Let ϕ1, ϕ2, ..., ϕ|Z(G)| be the distinct irreducible characters of Z(G) for a
finite group G. Let χ ∈ Irr(G) and let χZ(G) denote the restriction of χ to Z(G). Then
there exists ϕi such that χZ(G) = dχϕi. This allows us to define the pairwise-disjoint sets
Ai = {χ ∈ Irr(G) : χZ(G) = dχϕi}. Furthermore,

∑
χ∈Ai

d2χ = |G : Z(G)|.

Proof. This follows by Clifford’s Theorem, Theorem 2.6.13.

Proposition 4.2.2. Let χ, χ′ ∈ Irr(G). Then Φ(χ, χ′) is an integer divisible by |Z(G)|
and Φ(χ, χ′) = 0 if d′χχZ(G) ̸= dχχ

′
Z(G).

Proof. For convenience let Z = Z(G). Let Irr(Z) = {ϕ1, .., ϕ|Z|} and let {A1, ..., An} be
the decomposition from Lemma 4.2.1. Let χ, χ′ ∈ Irr(G). By the lemma there exist i and
j such that χ ∈ Ai and χ

′ ∈ Aj. Let |gG| denote the size of the conjugacy class of g in G.
We adapt an argument from [67, Proposition 1] to see the following:∑

C∈Conj(G)

|C|2χ(C)χ′(C) =
∑

gZ∈G/Z

1

dχdχ′
|gG|χ(g)χ′(g)

∑
z∈Z

χ(z)χ′(z)

= ⟨χZ , χ
′
Z⟩ · |Z|

∑
gZ∈G/Z

|gG|χ(g)χ′(g)

= δij · |Z|
∑

gZ∈G/Z

|gG|χ(g)χ′(g).

As noted in the proof of [67, Proposition 1],
∑

gZ∈G/Z

|gG|χ(g)χ′(g) must be a rational alge-

braic integer, hence an integer.

Corollary 4.2.3. AMZA(G) · |G|2 is divisible by |Z(G)|

We also get the following rough estimate of AMZA(G/Z(G)) compared to AMZA(G).
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Corollary 4.2.4. AMZA(G) ≥ AMZA(G/Z(G))

|Z(G)|
.

Proof. Let Z = Z(G). By the proof of Proposition 4.2.2 we have that

AMZA(G) =
|Z|
|G|2

|Z|∑
i=1

∑
χ,χ′∈Ai

dχdχ′

∣∣∣∣∣∣
∑

gZ∈G/Z

|gG|χ(g)χ′(g)

∣∣∣∣∣∣ .
We can identify A1 with Irr(G/Z), and then using the fact that |gG| ≥ |gZG/Z | it follows
that AMZA(G) ≥ 1

|Z| · AMZA(G/Z), as desired.

Example 4.2.5. We will use the ideas explored in this section to help simplify an explicit
calculation of AMZA(G) for the group G = SmallGroup(24, 3) = SL(2,F3). The character

table of G is listed in Figure 4.1, where ζ6 = e
πi
3 . We also provide the character table of

Z(G) ∼= C2 = {e, a} in Figure 4.2 We begin by calculating ass(G). If χ ∈ L(G) =

Class K1 K2 K3 K4 K5 K6 K7

Size 1 1 4 4 6 4 4
χ1 1 1 1 1 1 1 1
χ2 1 1 ζ46 ζ26 1 ζ46 ζ26
χ3 1 1 ζ26 ζ46 1 ζ26 ζ46
χ4 2 −2 ζ56 ζ6 0 ζ26 ζ46
χ5 2 −2 ζ6 ζ56 0 ζ46 ζ26
χ6 2 −2 −1 −1 0 1 1
χ7 3 3 0 0 −1 0 0

Figure 4.1: Character table of SL(2,F3)

Class e a
ρ1 1 1
ρ2 1 −1

Figure 4.2: Character table of C2
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{χ1, χ2, χ3} then |χ| = 1, so it follows that

Φ(χ, χ) =
∑

C∈Conj(G)

|C|2 = 102.

For χ ∈ {χ4, χ5, χ6} we see that

Φ(χ, χ) = 4(4 + 4 + 16 + 16 + 16 + 16) = 288.

Finally, we have that
Φ(χ7, χ7) = 9(9 + 9 + 36) = 486.

Then it follows that

ass(G) =
(3 · 102 + 3 · 288 + 486)

242
=

23

8

We will now calculate AMZAoff(G). First, some observations to reduce the number of
calculations needed.

For χ, χ′ ∈ Irr(G) it is clear that Φ(χ, χ′) = Φ(χ′, χ). If χ′ is real-valued then it is easy
to see that Φ(χ, χ′) = Φ(χ, χ′). In the context of this example this is relevant because
χ2 = χ3 and χ4 = χ5. If we list Irr(Z(G)) = {ρ1, ρ2} and let A1 and A2 be as in Lemma
4.2.1 then we can see that A1 = {χ1, χ2, χ3, χ7} and A2 = {χ4, χ5, χ6}. By the proof of
Proposition 4.2.2 we know that if χ ∈ A1 and χ′ ∈ A2 then Φ(χ, χ′) = 0, so it suffices to
just calculate Φ for characters within the same Ai. Finally, recall that ζ6 + ζ56 = 1 and
ζ46 + ζ26 = −1. Then we can see that

• Φ(χ1, χ2) = 1 + 1 + 16ζ26 + 16ζ46 + 16ζ26 + 36 + 16ζ46 + 16ζ26 = 38− 32 = 6

• Φ(χ1, χ7) = 3 + 3− 36 = 30

• Φ(χ2, χ3) = 1 + 1 + 16ζ26 + 16ζ46 + 16ζ26 + 36 + 16ζ46 + 16ζ26 = 38− 32 = 6

• Φ(χ2, χ7) = 3 + 3− 36 = −30

• Φ(χ4, χ5) = 8 + 16ζ46 + 16ζ26 + 16ζ46 + 16ζ26 = 8− 16− 16 = −24

• Φ(χ4, χ6) = 8− 16ζ46 − 16ζ6 + 16ζ56 + 16ζ26 = 8− 16− 16 = −24

By combing our observations above we have that

AMZAoff(G) = 2 · (6 + 3 · 30 + 4 · 24) + (6 + 3 · 30 + 4 · 24) + (6 + 3 · 30 + 4 · 24)
242

= 2
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It then follows that

AMZA(SL(2,F3)) =
23

8
+ 2 =

39

8
= 4.875.

While we omit the calculation, it is worth noting that AMZ(SL(2,F3)) = 5, which demon-
strates that G = SL(2,F3) is an example of a group for which the amenability constants
of ZL1(G) and ZA(G) do not agree.

4.3 Frobenius Groups with Abelian Factor and Ker-

nel

It is of interest to try to determine when the condition AMZA(G) = AMZ(G) is satisfied.
While this is not necessarily the case - see Example 4.2.5 - it often does hold. In this
section we will demonstrate that the amenability constants of ZA(G) and ZL1(G) always
agree for a particular class of semidirect products.

Definition 4.3.1. We say that a finite group G is a Frobenius group if it has a finite,
proper, non-trivial subgroup H that satisfies H ∩ gHg−1 = {e} for all g ∈ G \H. It can

be shown that K =
(
G \

⋃
g∈G gHg

−1
)
∪ {e} is a subgroup of G and that G = K ⋊ H.

We call H the Frobenius complement of G and K the Frobenius kernel.

We will consider the case when K and H are both abelian, which is a class of groups
that includes the dihedral groups D2n, where n is odd, and the affine group of the finite
field of order q, Aff(Fq), where q is an odd prime power.

Theorem 4.3.2. Let G = K⋊H be Frobenius, where K and H are abelian and have orders

k and h respectively. Then AMZA(G) = AMZL(G) = 1 + 2(h2−1)
h

(
1− h−1

k

) (
1− 1

k

)
.

Proof. Throughout this proof we will use a number of facts from [4], in particular from the
appendix and Proposition 3.3 . It is known that Irr(G) is comprised of h linear characters
(the set of which we will designate L(G), or L for convenience) that come from composition
of characters from Irr(H) and the quotient map G→ G/K ∼= H and k−1

h
many characters

of degree h induced from characters in Irr(K). Furthermore, G has trivial centre, k−1
h

conjugacy classes of size h (which are all contained in K) and h − 1 conjugacy classes of
size k. Let
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• B1 = {Z(G)} = {e}

• B2 = {C ∈ Conj(G) : |C| = h}

• B3 = {C ∈ Conj(G) : |C| = k}

The elements in B2 partition K \ {e} and the elements in B3 partition G \K. We know
by calculations in [4, Theorem 2.4] that

ass(G) = h2 − (h2 − 1)(1 + h(k − 1) + (h− 1)k2)

hk2
.

Therefore, it suffices to calculate AMZAoff(G). Let χ ̸= χ′ ∈ Irr(G). Then by Schur
orthogonality we have that∣∣∣∣∣∣

∑
C∈Conj(G)

|C|2χ(C)χ′(C)

∣∣∣∣∣∣
=

∣∣∣∣∣dχdχ′ + h
∑
C∈B2

hχ(C)χ′(C) + k2
∑
C∈B3

χ(C)χ′(C)

∣∣∣∣∣
=

∣∣∣∣∣∣(1− h)dχdχ′ + (k2 − hk)
∑
C∈B3

χ(C)χ′(C) + h
∑

C∈Conj(G)

|C|χ(C)χ′(C)

∣∣∣∣∣∣
=

∣∣∣∣∣(1− h)dχdχ′ + (k2 − hk)
∑
C∈B3

χ(C)χ′(C)

∣∣∣∣∣ .

If χ /∈ L then χ is induced from an irreducible character on K, it follows that χ vanishes
on G \

⋃
x∈G xKx

−1, so χ vanishes on H, hence χ vanishes on each C ∈ B2. This allows
us to see that

∑
χ or χ′ /∈L(G),χ ̸=χ′

dχdχ′

∣∣∣∣∣∣
∑

C∈Conj(G)

|C|2χ(C)χ′(C)

∣∣∣∣∣∣
= (h− 1)

∑
χ,χ′ /∈L,χ ̸=χ′

d2χd
2
χ′ + 2(h− 1)

∑
χ/∈L,χ′∈L

d2χd
2
χ′

= (h− 1)

(
k − 1

h

)(
k − 1

h
− 1

)
h4 + 2(h− 1)h

(
k − 1

h

)
h2.
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On the other hand, if χ, χ′ ∈ L with χ ̸= χ′ then χK = χ′
K = 1, so χ(C) = χ′(C) = 1 for

all C ∈ B2. Then by Schur orthogonality it follows that

0 =
∑

C∈Conj(G)

|C|χ(C)χ′(C)

= 1 +
∑
C∈B2

hχ(C)χ′(C) +
∑
C∈B3

kχ(C)χ′(C)

= 1 +
k − 1

h
h+ k

∑
C∈B3

χ(C)χ′(C)

= k + k
∑
C∈B3

χ(C)χ′(C).

Rearranging the equation yields that∑
C∈B3

χ(C)χ′(C) = −1.

We can then calculate that

∑
χ,χ′∈L,χ ̸=χ′

dχdχ′

∣∣∣∣∣∣
∑

C∈Conj(G)

|C|2χ(C)χ′(C)

∣∣∣∣∣∣
=

∑
χ,χ′∈L,χ ̸=χ′

∣∣∣∣∣1 + ∑
C∈B2

h212 +
∑
C∈B3

k2χ(C)χ′(C)

∣∣∣∣∣
= h(h− 1)

∣∣∣∣1 + k − 1

h
h2 − k2

∣∣∣∣
= h(h− 1)|1 + (k − 1)h− k2|
= h(h− 1)(h+ k2 − hk − 1).

Combining everything together, we have that

AMZAoff(G)

=
1

h2k2

[
(h− 1)

(
k − 1

h

)(
k − 1

h
− 1

)
h4 + 2(h− 1)(k − 1)h2 + h(h− 1)(h+ k2 − hk − 1)

]
.
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We can now see that

AMZAoff(G) + ass(G)

=
2h2

k2
− 2h2

k
− 2h

k2
+

2

hk2
+ 2h− 2

h
− 2

k2
+

2

k
+ 1

= 1 + 2
h2 − 1

h

(
1− h− 1

k

)(
1− 1

k

)
.

By appealing again to [4, Theorem 2.4], we get that AMZA(G) = AMZ(G).

4.4 Groups with Two Conjugacy Class Sizes

Definition 4.4.1. Let cd(G) denote the set of dimensions of irreducible characters of G,
and let cc(G) denote the set of sizes of conjugacy classes of G. We say that G has two
character degrees (or two conjugacy class sizes) if |cd(G)| = 2 (or |cc(G)| = 2).

There is a nice formula for AMZ(G) in the two character degree case:

Theorem 4.4.2. [4, Theorem 2.4]. Let G be a finite group with cd(G) = {1,m}. Then

AMZ(G) = 1 + 2(m2 − 1)

1− 1

|G| · |G′|
∑

C∈Conj(G)

|C|2
 .

We can prove a dual formula for AMZA(G) if instead we assume that there are only
two possible sizes of conjugacy classes. First, we show a lemma.

Lemma 4.4.3. Let G be a finite group. Then

1

|G|2
∑

χ,χ′∈Irr(G)

dχdχ′

∣∣∣∣∣∣
∑

x∈Z(G)

χ(x)χ′(x)

∣∣∣∣∣∣ = 1.

Proof. Using the notation from Lemma 4.2.1, let χ ∈ Ai and χ′ ∈ Aj. Then by Schur
orthogonality for Z(G)∣∣∣∣∣∣

∑
x∈Z(G)

χ(x)χ(x)

∣∣∣∣∣∣ = |Z(G)| · ⟨dχϕi|dχ′ϕj⟩Z(G) = |Z(G)| · dχdχ′δij,
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so it follows that

1

|G|2
∑

χ,χ′∈Irr(G)

dχdχ′

∣∣∣∣∣∣
∑

x∈Z(G)

χ(x)χ′(x)

∣∣∣∣∣∣ = 1

|G|2

|Z(G)|∑
i=1

∑
χ,χ′∈Ai

|Z(G)|d2χd2χ′

=
1

|G|2

|Z(G)|∑
i=1

|Z(G)| · |G : Z(G)|2

= 1.

Theorem 4.4.4. Let G be a finite group with cc(G) = {1, s}. Then

AMZA(G) = 1 + 2(s− 1)

1− |Z(G)|
|G|2

∑
χ∈Irr(G)

d4χ


Proof. If s = 1 then G is abelian, so AMZA(G) = AMZ(G) = 1, hence we can assume
that s > 1. Recall that we have the decomposition AMZA(G) = AMZAoff(G) + ass(G).
We will work with each component separately.

|G|2AMZAoff(G) =
∑

χ ̸=χ′∈Irr(G)

dχdχ′

∣∣∣∣∣∣
∑

C∈Conj(G)

|C|2χ(C)χ′(C)

∣∣∣∣∣∣
=

∑
χ ̸=χ′∈Irr(G)

dχdχ′

∣∣∣∣∣∣
∑

x∈Z(G)

χ(x)χ′(x) + s
∑

C∈Conj(G),|C|>1

sχ(C)χ′(C)

∣∣∣∣∣∣
=

∑
χ ̸=χ′∈Irr(G)

dχdχ′

∣∣∣∣∣∣(1− s)
∑

x∈Z(G)

χ(x)χ′(x) + s
∑

C∈Conj(G)

|C|χ(C)χ′(C)

∣∣∣∣∣∣
=

∑
χ ̸=χ′∈Irr(G)

dχdχ′

∣∣∣∣∣∣(1− s)
∑

x∈Z(G)

χ(x)χ′(x)

∣∣∣∣∣∣
= (s− 1)

∑
χ,χ′∈Irr(G)

dχdχ′

∣∣∣∣∣∣
∑

x∈Z(G)

χ(x)χ′(x)

∣∣∣∣∣∣− (s− 1)
∑

χ∈Irr(G)

d2χ
∑

x∈Z(G)

|χ(x)|2
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= |G|2(s− 1) + (1− s) · |Z(G)| ·

 ∑
χ∈Irr(G)

d4χ

 .

And then for ass(G) we have

|G|2ass(G) =
∑

χ∈Irr(G)

d2χ
∑

C∈Conj(G)

|C|2|χ(C)|2

=
∑

χ∈Irr(G)

d2χ

s|G|+ (1− s)
∑

x∈Z(G)

|χ(x)|2


= s|G|2 + (1− s) · |Z(G)| ·

 ∑
χ∈Irr(G)

d4χ

 .

Adding them together and rearranging terms, we achieve formula

AMZA(G) = 1 + 2(s− 1)

1− |Z(G)|
|G|2

∑
χ∈Irr(G)

d4χ

 .

Example 4.4.5. Let p be a prime. A group G is called p-extraspecial if |G| = p2n+1 for
some integer n, |Z(G)| = p, and G/Z(G) is a non-trivial elementary abelian p-group. As
noted in [4], such groups have two conjugacy class sizes and two character degrees, so both
of the above formulas apply and yield the same result, namely that

AMZ(G) = AMZA(G) = 1 + 2

(
1− 1

p2n

)(
1− 1

p

)
.

This leads to the question: will AMZ(G) = AMZA(G) always hold in the case that
G has two conjugacy class sizes and two character degrees? Based on our earlier formulas,
Y. Choi has observed that the answer is positive.
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Theorem 4.4.6. Let G be a finite group where cd(G) = {1,m} and cc(G) = {1, s}. Then

AMZA(G) = AMZ(G)

The following proof is based on a personal communication from Choi.

Proof. If either s = 1 or m = 1 then they both equal 1, in which case G is abelian and
the result is trivial. Instead, we assume that m, s > 1. For notational convenience, let
k = |Irr(G)| = |Conj(G)|, Z = Z(G), and L = L(G). Because |G| =

∑
C∈Conj(G) |C| =

|Z|+ (k − |Z|)s we can see that∑
C∈Conj(G)

|C|2 = |Z|+ (k − |Z|)s2

= |Z|+ s(|Z|+ (k − |Z|)s)− s|Z|
= |Z|+ s|G| − s|Z|
= |Z|+ (k − |Z|)s+ s|G| − sk

= (s+ 1)|G| − sk

Similarly, from |G| =
∑

χ∈Irr(G) dχ
2 = |L|+ (k − |L|)m2 it follows that∑

χ∈Irr(G)

dχ
4 = |L|+ (k − |L|)m4

= |L|+m2(|L|+ (k − |L|)m2)−m2|L|
= |L|+m2|G| −m2|L|
= |L|+ (k − |L|)m2 +m2|G| − km2

= (m2 + 1)|G| − km2

Define the function

f(x, y) = x− 1− xk − |G|
|G|

(
(y + 1)|G| − yk

)
.

The above calculations combined with Theorem 4.4.2 and Theorem 4.4.4 yields that
AMZ(G)− 1 = 2f(m2, s) and AMZA(G)− 1 = 2f(s,m2). However, we can see that

f(x, y) = x− 1 + y + 1− xk(y + 1)

|G|
+

(xk − |G|)(yk)
|G|2
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= x+ y − xy + x+ y

|G|
+
xyk2

|G|2
.

In particular note that f(x, y) = f(y, x), thus AMZA(G) = AMZ(G), as desired.

Remark 4.4.7. By results in [24], for any integer n there exists groups G and H such that
|cd(G)| = |cc(H)| = 2 and |cc(G)| = |cd(H)| = n. This tells us that the two conjugacy
class size and two character degree conditions are possibly independent of each other, so
there is no reason to expect that the conclusion of Theorem 4.4.6 will hold if only one of
the sets cd(G) and cc(G) has size 2. Indeed, G = SmallGroup(256,10070) is an example
of a group with |cc(G)| = 2, |cd(G)| = 3, and AMZ(G) ̸= AMZA(G).

4.5 AMZA of Quotient Groups

Recall that an essential ingredient in Choi’s [13] proof that 7
4
is the sharp amenability

bound for ZL1(G) is the fact that AMZ(G) ≥ AMZ(G/N) for N ⊴ G. If we look at the
collection of groups such that AMZA(G) respects all possible quotients, then by utilizing
similar techniques as in [13] we can prove that 7

4
is a sharp amenability bound.

Theorem 4.5.1. 7
4
is the sharp amenability bound over the collection of finite groups G

with the property that AMZA(G) ≥ AMZA(G/N) for all N ⊴ G.

Proof. By taking sufficiently large enough quotients of G, we can assume without loss of
generality that G is non-abelian but possesses no non-abelian proper quotients. As noted
in [13, Lemma 4.4 and Theorem 4.5], there are three possibilities:

• G has a non-trivial centre

• G has a trivial centre and a conjugacy class of size 2

• G has a trivial centre and no conjugacy classes of size 2.

The first two options correspond with G either being a two conjugacy class size and two
character degree group, or being isomorphic D2p for some odd prime p. Theorem 4.4.6
and Theorem 4.3.2 apply respectively, which shows that AMZ(G) = AMZA(G) in those
cases. If G has a trivial centre and no conjugacy classes of size 2 then [13, Proposition
4.12] yields that AMZA(G) ≥ ass(G) ≥ 7

4
.
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It can be shown computationally that all groups of order less than 192 satisfy the
conditions of Theorem 4.5.1. The above prompts the question: can this argument apply
to every finite group? As demonstrated by the next example, this is not the case.

Example 4.5.2. Let G = SmallGroup(192,1022) and choose N ∼= C2 in G such that
G/N ∼= SmallGroup(96,204), thenAMZA(G) = 13.4921875 andAMZA(G/N) = 15.53125.
This example also demonstrates that auxiliary minorant of AMZ does not always re-
spect quotients. For these choices of G and N we have that ass(G) = 7.2109375 and
ass(G/N) = 8.265625.
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Chapter 5

Arens Regularity of Ideals in
A(G), Acb(G), and AM (G)

Pardon me, I was absorbed in
thought.

Siegward Of Catarina
Dark Souls 3

5.1 Invariant Subspaces

Definition 5.1.1. Let A(G) be one of the algebras A(G), Acb(G) or AM(G). Let x ∈ G
define the isometry Lx : A(G) → A(G) by

Lx(u)(y) = u(xy),

for each y ∈ G.

The following proposition will prove useful.

Proposition 5.1.2. Let A(G) be one of the algebras A(G), Acb(G) or AM(G). Let X ⊆
A(G)∗ be a closed submodule. Let x ∈ G.
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i) If Y = L∗
x(X), then Y is a closed submodule of A(G)∗ and

u · L∗
x(T ) = L∗

x(Lx(u) · T )

for every u ∈ A(G) and T ∈ X.

ii) Let x ∈ G. Then L∗
x(ϕe) = ϕx where e denotes the identity of G.

iii) Letm ∈ TIMA(G)(X,ϕe). If x ∈ G, then ϕx ∈ L∗
x(X) and L∗∗

x−1(m) ∈ TIMA(G)(L
∗
x(X), ϕx).

Proof. Let A(G) be one of the algebras A(G), Acb(G) or AM(G). Let X ⊂ A(G)∗ be a
closed submodule. Let x ∈ G.

i) Since L∗
x is an isometry, it is clear that Y is a closed subspace.

Let T ∈ X and u, v ∈ A(G) . Observe that

⟨u · L∗
x(T ), v⟩ = ⟨L∗

x(T ), uv⟩
= ⟨T, Lx(uv)⟩
= ⟨T, Lx(u)Lx(v)⟩

= ⟨Lx(u) · T, Lx(v)⟩
= ⟨L∗

x(Lx(u) · T ), v⟩

Hence u · L∗
x(T ) = L∗

x(Lx(u) · T ) ∈ L∗
x(X) = Y .

ii) Let u ∈ A(G). Then

⟨L∗
x(ϕe), u⟩ = ⟨ϕe, Lx(u)⟩ = Lx(u)(e) = u(x) = ⟨ϕx, u⟩.

This shows that L∗
x(ϕe) = ϕx.

iii) Let T = L∗
x(T1) with T1 ∈ X. If u ∈ A(G), we have

⟨L∗∗
x−1(m), u · T ⟩ = ⟨m,L∗

x−1(u · T )⟩
= ⟨m,L∗

x−1(u · L∗
x(T1))⟩

= ⟨m, , L∗
x−1(L∗

x((Lx(u) · T1)⟩
= ⟨m,Lx(u) · T1⟩
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= Lx(u)(e)⟨m,T1⟩
= u(e)⟨m,T1⟩
= u(e)⟨m,L∗

x−1(L∗
x(T1))⟩

= u(e)⟨L∗∗
x−1(m), T ⟩

Since L∗∗
x−1 is an isometry we have that

∥L∗∗
x−1(m)∥A∗ = ∥m∥A∗ = 1.

Finally, we have that

⟨L∗∗
x−1(m), ϕx⟩ = ⟨m,L∗

x−1(ϕx)⟩ = ⟨m,ϕe⟩ = 1.

The next result follows immediately from Proposition 5.1.2 iii).

Corollary 5.1.3. Let A(G) be any of A(G), Acb(G) or AM(G). Let x ∈ G. Then

|TIMA(G)(A(G)∗, ϕx)| = |TIMA(G)(A(G)∗, ϕe)|,

where | · | represents the cardinality of the underlying set.

This next result was proven for the TIMAM
(AM(G)∗, ϕe) case in [29].

Proposition 5.1.4. Let A(G) be either Acb(G) or AM(G) and let i : A(G) → A(G) be the
inclusion map as in Remark 2.9.3. Let

A(G) · V N(G) = {u · T : u ∈ A(G), T ∈ V N(G)}.

Then

i) A(G) · V N(G) ⊆ UCB(A(G))

ii) i∗(v · T ) = v · i∗(T ) for each v ∈ A(G), T ∈ A(G)∗.

iii) i∗(UCB(A(G))) ⊆ UCB(A(G)).

iv) If A(G) has a bounded approximate identity, then A(G) · V N(G) = UCB(A(G)).
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v) u · T ∈ i∗(A(G)∗) for each u ∈ A(G), T ∈ V N(G).

Proof. i) Since UCB(A(G)) is a closed subspace of V N(G) and since A(G) is dense in
A(G) with respect to the norm ∥·∥A(G), to establish i) we need only show that for any
sequence {vn} ⊂ A(G) and v ∈ A(G) with ∥vn − v∥A(G) → 0 and any T ∈ V N(G),
we have ∥vn · T − v · T∥V N(G) → 0. However, this follows immediately since for any
u ∈ A(G)

| ⟨vn · T − v · T, u⟩ | = | ⟨(vn − v) · T, u⟩ |
= | ⟨T, (vn − v)u⟩ |
≤ ∥T∥V N(G)∥vn − v∥A(G)∥u∥A(G).

ii) Let v ∈ A(G), T ∈ A(G)∗ and u ∈ A(G). We have

⟨i∗(v · T ), u⟩ = ⟨v · T, i(u)⟩
= ⟨T, vi(u)⟩
= ⟨T, i(vu)⟩
= ⟨i∗(T ), vu⟩
= ⟨v · i∗(T ), u⟩

Hence i∗(v · T ) = v · i∗(T ).

iii) Because of i) above we need only show that i∗(v·T ) ∈ A(G)·V N(G) for any v ∈ A(G)
and T ∈ A(G)∗. However, this follows immediately from ii).

iv) Let (un · Tn)n ⊆ A(G) · V N(G) ⊆ V N(G) be a sequence converging to some L ∈
V N(G). Because A(G) has a bounded approximate identity we can apply Theorem
2.1 by viewing V N(G) as a Banach A(G)-bimodule. This yields that L = u · T for
u ∈ A(G), T ∈ V N(G), hence L ∈ A(G) ·V N(G). Thus A(G) ·V N(G) is closed, and
in particular is a closed subspace of UCB(G) due to i).We have that A(G)·V N(G) ⊆
A(G) · V N(G), so it follows by the density of A(G) · V N(G) in UCB(A(G)) that
A(G) · V N(G) is dense in UCB(A(G)), hence A · V N(G) = UCB(A(G)).

v) Let u ∈ A(G), T ∈ V N(G). Then we can define a linear functional on A(G) by

φu,T (v) = ⟨T, uv⟩
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for each v ∈ A(G). Note that this functional is well-defined because A(G) con-
sists of multipliers of A(G), so uv ∈ A(G). It is clear that φu,T has norm at most
∥u∥A(G)∥T∥V N(G), and moreover, that this linear functional agrees with u ·T on A(G)
and as such u · T = i∗(φu,T ).

Theorem 5.1.5. Let A(G) denote either Acb(G) or AM(G). For any locally compact
group, i∗∗(TIMA(G)(V N(G), ϕx)) ⊆ TIMA(G)(A(G)∗, ϕx). Moreover,

i∗∗ : TIMA(G)(V N(G), ϕx) → TIMA(G)(A(G)∗, ϕx)

is a bijection.

Proof. We will first show that i∗∗(TIMA(G)(V N(G), ϕx)) ⊆ TIMA(G)(A(G)∗, ϕx).

Let m ∈ TIMA(G)(V N(G), ϕx)). Let v ∈ A(G) and T ∈ A(G)∗. By the density of
A(G) in A(G) there exists {un} ⊂ A(G) such that ∥un − v∥A(G) → 0. Since ∥un − v∥∞ ≤
∥un − v∥A(G) it follows that un(x) → v(x). Next, we note that in a similar manner to the
proof of Proposition 5.1.4 i), we can show that un · T → v · T in the norm ∥ · ∥A(G)∗ for
each T ∈ A(G)∗. Appealing this time to Proposition 5.1.4 ii), it follows that

⟨i∗∗(m), v · T ⟩ = lim
n→∞

⟨i∗∗(m), un · T ⟩

= lim
n→∞

⟨m, i∗(un · T )⟩

= lim
n→∞

⟨m,un · i∗(T )⟩

= lim
n→∞

un(x)⟨m, i∗(T )⟩

= v(x)⟨m, i∗(T )⟩
= v(x)⟨i∗∗(m), T ⟩.

This shows that i∗∗(TIMA(G)(V N(G), ϕx)) ⊆ TIMA(G)(A(G)∗, ϕx).

We next show that i∗∗ : TIMA(G)(V N(G), ϕx) → TIMA(G)(A(G)∗, ϕx) is injective. To
see this, we first note that if m1,m2 ∈ TIMA(G)(V N(G), ϕx) with m1 ̸= m2, then there
exists an T ∈ V N(G) for which

⟨m1, T ⟩ ≠ ⟨m2, T ⟩.
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Next choose u0 ∈ A(G) with u0(x) = 1 (this is possible for example by an application
of Proposition 2.7.2). Then

⟨m1, u0 · T ⟩ = ⟨m1, T ⟩ ≠ ⟨m2, T ⟩ = ⟨m2, u0 · T ⟩.

Since u0 · T ∈ A(G)∗, we have

⟨i∗∗(m1), u0 · T ⟩ = ⟨m1, i
∗(u0 · T )⟩

= ⟨m1, u0 · T ⟩
̸= ⟨m2, u0 · T ⟩
= ⟨m2, i

∗(u0 · T )⟩
= ⟨i∗∗(m2), u0 · T ⟩

so that i∗∗(m1) ̸= i∗∗(m2).

Finally, we show that i∗∗ : TIMA(G)(V N(G), ϕx) → TIMA(G)(A(G)∗, ϕx) is surjective.

Let M ∈ TIMA(G)(A(G)∗, ϕx). First note that if u, v ∈ A(G), with u(x) = 1 = v(x)
and if T ∈ V N(G), then u · T and v · T are in A(G)∗ and

⟨M,u · T ⟩ = ⟨M, v · (u · T )⟩ = ⟨M,u · (v · T )⟩ = ⟨M, v · T ⟩.

Pick a u0 ∈ A(G) with ∥u0∥A(G) = 1 and u0(x) = 1. We can define mM ∈ A(G)∗∗ by

⟨mM , T ⟩ = ⟨M,u0 · T ⟩

for T ∈ V N(G).

Note that ∥mM∥A(G)∗∗ ≤ 1. It is clear from the observation above that if v ∈ A(G) is
such that v(x) = 1, then ⟨mM , v · T ⟩ = ⟨mM , T ⟩. We also have that

⟨mM , ϕx⟩ = ⟨M,u0 · ϕx⟩ = ⟨M,u0(x)ϕx⟩ = ⟨M,ϕx⟩ = 1.

That is, mM ∈ TIMA(G)(V N(G), ϕx).

Finally, if T ∈ A(G)∗, then

⟨i∗∗(mM), T ⟩ = ⟨mM , i
∗(T )⟩ = ⟨M,u0 · i∗(T )⟩ = ⟨M,u0.T ⟩ = ⟨M,T ⟩.

Therefore, i∗∗(mM) =M .
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Definition 5.1.6. Given a locally compact group G we let b(G) denote the smallest car-
dinality of a neighbourhood basis at the identity e for G.

The next corollary follows immediately from the previous theorem and from Hu [39].

Corollary 5.1.7. Let G be a non-discrete locally compact group. Let A(G) be A(G),
Acb(G) or AM(G). Then

| TIMA(G)(A(G)∗, ϕx)) |= 22
b(G)

.

In particular, A(G)∗ admits a unique topologically invariant mean if and only if G is
discrete.

We now turn our attention to ideals in the algebra A(G) where A(G) is any of A(G),
Acb(G) or AM(G).

Remark 5.1.8. In several of the proofs to come we will have a setup where I is a closed
ideal in A(G) and x /∈ Z(I). By local compactness of G we can find a relatively compact
open set V containing x. Because Z(I) is closed then U = V ∩ (G \ Z(I)) is an open
neighborhood of x that is disjoint from Z(I). By applying Proposition 2.7.2 to {x} ⊆ U
we know there exists a function u0 ∈ A(G)∩CC(G) such that supp(u0) ⊆ U and u0(x) = 1.
It follows that u0 ∈ I.

Lemma 5.1.9. Let A(G) be A(G), Acb(G) or AM(G). Let I be a closed ideal in A(G).
Assume that x ̸∈ Z(I). Let M ∈ TIMA(G)(A(G)∗, ϕx). Then M ∈ (I⊥)⊥.

Proof. Let T ∈ I⊥ and take u0 and U as in Remark 5.1.8.

Since T ∈ I⊥, we have that for any u ∈ A(G) that

⟨u0 · T, u⟩ = ⟨T, u0u⟩ = 0

so u0 · T = 0. However, since M ∈ TIMA(G)(A(G)∗, ϕx), and since u0(x) = 1,

⟨M,T ⟩ = ⟨M,u0 · T ⟩ = 0.
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Remark 5.1.10. The previous lemma shows that if I is a closed ideal inA(G) with x ̸∈ Z(I),
and ifM ∈ TIMA(G)(A(G)∗, ϕx), then we can viewM as an element M̂ of I∗∗ in a canonical
way. Specifically, if T ∈ I∗∗ and T1 is any extension of T we can define

M̂(T ) =M(T1).

Note that M̂ is well-defined since M ∈ (I⊥)⊥. We claim that M̂ ∈ TIMI(I
∗, ϕx|I

). To see
that this is the case we note that

∥M̂∥I∗ = ∥M∥A(G)∗∗ =M(ϕx) = M̂(ϕx|I
).

If u ∈ I, then if T1|I = T , then u · T1|I = u · T and as such

M̂(u · T ) =M(u · T1) = u(x)M(T1) = ϕx|I
(u)M̂(T ).

This gives us a map Γ : TIMA(G)(A(G)∗, ϕx) → TIMI(I
∗, ϕx|I

), given by

Γ(M) = M̂.

Theorem 5.1.11. Let A(G) be A(G), Acb(G) or AM(G). Let I be a closed ideal in A(G).
Assume that x ̸∈ Z(I) and let Γ be as above. Then Γ is a bijection.

Proof. Assume that M1,M2 ∈ TIMA(G)(A(G)∗, ϕx) and that T0 ∈ A(G)∗ is such that
M1(T0) ̸=M2(T0). Let T ∈ I∗ = T0|I . Then

M̂1(T ) =M1(T0) ̸=M2(T0) = M̂2(T )

so
Γ(M1) = M̂1 ̸= M̂2 = Γ(M2)

and hence Γ is injective.

Next we let m ∈ TIMI(I
∗, ϕx|I

). We let u0 ∈ I be such that u0(x) = 1 with ∥u0∥A(G) =

1. First, observe that (u0 ·T )|I = u0 ·(T|I ) for each T ∈ A(G)∗. Then we defineM ∈ A(G)∗∗

by
⟨M,T ⟩ = ⟨m,u0 · (T|I )⟩ = ⟨m,T|I ⟩

for each T ∈ A(G)∗. We have that

∥M∥A(G)∗∗ ≤ ∥m∥I∗∗∥u0∥A(G) = 1.
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Moreover
⟨M,ϕx⟩ = ⟨m,u0 · ϕx|I

⟩ = u0(x)⟨m,ϕx|I
⟩ = 1.

Next let T ∈ A(G)∗ and let u ∈ A(G). Then

⟨M,u · T ⟩ = ⟨m,u0 · (u · T )|I ⟩
= ⟨m, (u0u) · T|I ⟩
= (u0u)(x)⟨m,T|I ⟩
= u(x)(u0(x)⟨m,T|I ⟩)
= u(x)⟨m,u0 · (T|I )⟩
= u(x)⟨M,T ⟩

It follows that M ∈ TIMA(G)(A(G)∗, ϕx). Finally, if T ∈ I∗ and if T1 ∈ A(G) with
T1|I = T , then

⟨M̂, T ⟩ = ⟨M,T1⟩
= ⟨m,T1|I ⟩
= ⟨m,T ⟩

Hence Γ(M) = M̂ = m and Γ is surjective.

The following result follows immediately from Corollary 5.1.7.

Corollary 5.1.12. Let A(G) be A(G), Acb(G) or AM(G). Let I be a closed ideal in A(G).
Assume that x ̸∈ Z(I). If G is a non-discrete group, then

|TIMI(I
∗, ϕx|I

)| = 22
b(G)

.

In particular, I∗ admits a unique topological invariant mean if and only if G is discrete.

Lemma 5.1.13. Let A be a commutative Banach algebra with maximal ideal space ∆(A).
Let X be a closed submodule of A∗ containing ϕ ∈ ∆(A). Let M ∈ TIMA(A, ϕ). Let
m =M|X be the restriction of M to X. Then m ∈ TIMA(X,ϕ).
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In particular, if we let A(G) be one of the algebras A(G), Acb(G) or AM(G), I be a
closed ideal in A(G) with x ̸∈ Z(I) and X is any of UCB(I), WAP (I) or AP (I), we
have that ϕx|I

∈ X and hence that for any M ∈ TIMI(I
∗, ϕx|I

), if m = M|X we get that

m ∈ TIMI(X,ϕx|I
).

Proof. Let M ∈ TIMA(A, ϕ). Let m =M|X be the restriction of M to X. We have that

1 = ⟨M,ϕ⟩ = ⟨m,ϕ⟩ = ∥m∥X∗

and that if u ∈ A and T ∈ X, then

⟨m,u · T ⟩ = ⟨M,u · T ⟩ = ⟨ϕ, u⟩⟨M,T ⟩ = ⟨ϕ, u⟩⟨m,T ⟩.

Hence m ∈ TIMA(X,ϕ).

Let A(G) be one of the algebras A(G), Acb(G) or AM(G) and I a closed ideal in A(G)
with x ̸∈ Z(I) . Let X = UCB(I). Let u0 and U be as in Remark 5.1.8. Then u0 ∈ I.
Moreover, if v ∈ I,

⟨u0 · ϕx|I
, v⟩ = ⟨ϕx|I

, u0v⟩ = u0(x)v(x) = ⟨ϕx|I
, u0v⟩.

Hence ϕx|I
= u0 · ϕx|I

∈ UCB(I).

To see that ϕx|I
∈ AP (I) note that {u(x)|∥u∥I ≤ 1} = {λ ∈ C| | λ |≤ 1} is compact

and hence
{u · ϕx|I

|∥u∥I ≤ 1} = {λϕx|I
∈ C| | λ |≤ 1}

is compact in I∗ so ϕx|I
∈ AP (I). As AP (I) ⊆ WAP (I) we also have that ϕx|I

∈ WAP (I).

Theorem 5.1.14. Let A(G) be one of the algebras A(G), Acb(G) or AM(G). Let I be a
closed ideal in A(G). Assume that x ̸∈ Z(I). The restriction map R : TIMI(I

∗, ϕx|I
) →

TIMI(UCB(I), ϕx|I
) is a bijection. In particular, if G is non-discrete, then

| TIMA(G)(A(G)∗, ϕx) |=| TIMA(G)(UCB(A(G), ϕx) |= 22
b(G)

.

Proof. Let u0 and U be as in Remark 5.1.8. Then u0 ∈ I and

ϕx|I
= u0 · ϕx|I

∈ UCB(I).
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Next we let M ∈ TIMI(I
∗, ϕx|i

). Let m = R(M). It follows from Lemma 5.1.13 that
m ∈ TIMI(UCB(I), ϕx|I

).

If M1,M2 ∈ TIMI(I
∗, ϕx|I

) with M1 ̸=M2, then there exists a T ∈ I∗ for which

⟨M1, T ⟩ ≠ ⟨M2, T ⟩.

Let u0 and U be as in Remark 5.1.8, then u0 · T ∈ UCB(I) with

⟨M1, u0 · T ⟩ = ⟨M1, T ⟩ ≠ ⟨M2, T ⟩ = ⟨M2, u0 · T ⟩.

This shows that R(M1) ̸= R(M2) and hence R is injective.

Next, let m ∈ TIMI(UCB(I), ϕx|I
). Pick a u0 ∈ I with ∥u0∥A(G) = 1 = u0(x). Define

M ∈ I∗∗ by
⟨M,T ⟩ = ⟨m,u0 · T ⟩, T ∈ I∗.

Since u0(x) = 1, it follows that

⟨M,ϕx|I
⟩ = ⟨m,u0 · ϕx|I

⟩ = ⟨m,ϕx|I
⟩ = 1.

From this and the fact that ∥u0∥A(G) = 1, we get that ∥M∥ = 1.

Next, if v ∈ I, T ∈ I∗ , then

⟨M, v · T ⟩ = ⟨m,u0 · (v · T )⟩ = ⟨m, v · (u0 · T )⟩ = v(x)⟨m,u0 · T ⟩ = v(x)⟨M,T ⟩.

This shows that M ∈ TIMI(I
∗, ϕx|I

).

Finally, if T ∈ UCB(I)), then

⟨M,T ⟩ = ⟨m,u0 · T ⟩ = ⟨m,T ⟩

since m ∈ TIMI(UCB(I), ϕx|I
). Therefore, R(M) = m and R is surjective.

Remark 5.1.15. In the proof of the previous theorem we were able to explicitly show how
each m ∈ TIMI(UCB(I), ϕx|I

) extends to an element M ∈ TIMI(I
∗, ϕx|I

). The next
proposition shows that such extensions hold in greater generality.

We need the following lemma.
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Lemma 5.1.16. Let A(G) be one of the algebras A(G), Acb(G) or AM(G). Let I be a
closed ideal in A(G) with Z(I) being a set of spectral synthesis for A(G). Assume that
x ̸∈ Z(I). Then {x} is a set of spectral synthesis for I.

Proof. Let u ∈ I be such that u(x) = 0. Let E = Z(I). Let ϵ > 0. Since E is a set of
spectral synthesis for A(G), we can find w ∈ A(G) ∩ CC(G) such that supp(w) ∩ E = ∅
and

∥u− w∥A(G) <
ϵ

2
.

Since u(x) = 0, this means that |w(x)| < ϵ
2
.

We will go through a slightly adjusted procedure as done in Remark 5.1.8. By Propo-
sition 2.7.2 we can find v ∈ I ∩ CC(G) and an open neighborhood U of x such that
supp(v) ∩ E = ∅, v(x) = w(x) on U and ∥v∥A(G) ≤ |w(x)|. Then w − v ∈ I ∩ CC(G) with
supp(w − v) ∩ (E ∪ {x}) = ∅ and

∥u− (w − v)∥A(G) ≤ ∥u− w∥A(G) + ∥v∥A(G) <
ϵ

2
+
ϵ

2
= ϵ.

Proposition 5.1.17. Let A(G) be one of the algebras A(G), Acb(G) or AM(G). Let I be
a closed ideal in A(G) with Z(I) being a set of spectral synthesis for A(G). Assume that
x ̸∈ Z(I). Assume also that Y ⊂ X are two closed submodules of I∗ each containing ϕx|I

.

Let m ∈ TIMI(Y, ϕx|I
). Then there exists some M ∈ TIMI(X,ϕx|I

) such that M|Y = m.

Proof. Let m ∈ TIMI(Y, ϕx|I
). By the Hahn-Banach Theorem we can find a Ψ ∈ X∗ so

that
∥Ψ∥X∗ = ∥m∥Y ∗ = 1.

Next we let
S = {u ∈ I | ∥u∥A(G) = u(x) = 1}.

Then S is a commutative semigroup under pointwise multiplication and is hence amenable
due to Theorem 2.5. Let Φ ∈ ℓ∞(S)∗ be an invariant mean. Then for each T ∈ X we
define fT : S → C by

fT (u) = ⟨Ψ, u · T ⟩.

It follows that fT ∈ ℓ∞(S) as |fT (u)| ≤ ∥T∥X for each u ∈ S. Moreover, if v ∈ S, then

fv·T (u) = ⟨Ψ, u · (v · T )⟩ = ⟨Ψ, vu · T ⟩ = Lv(fT )(u)
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where Lv is the left translation operator on ℓ∞(S).

Next, we let
⟨M,T ⟩ = ⟨Φ, fT ⟩

for each T ∈ X. Note that fαT1+βT2 = αfT1 + βfT2 and | ⟨M,T ⟩ |≤ ∥T∥X so that in fact
M ∈ X∗ with ∥M∥X∗ ≤ 1.

Now if T = ϕx|I
, then

fT (u) = ⟨Ψ, u · ϕx|I
⟩ = 1

for every u ∈ S and hence ⟨M,ϕx|I
⟩ = 1 and ∥M∥X∗ = 1.

Finally, since Φ is a left invariant mean on ℓ∞(S)∗ we have that if u ∈ S, then

⟨M,u · T ⟩ = ⟨Φ, fu·T ⟩ = ⟨Φ, Lu(fT )⟩ = ⟨M,T ⟩.

Finally, we must show that ⟨M,u · T ⟩ = u(x)⟨M,T ⟩ for all u ∈ I, and T ∈ X.

First we will show that if v ∈ I and if there exists a neighborhood U of x such that
v(y) = 1 on U , then ⟨M, v · T ⟩ = ⟨M,T ⟩ for all T ∈ X. To see why this is the case, we
choose u ∈ I such that u(x) = 1 = ∥u∥A(G) with u(y) = 0 if y ̸∈ U . Then uv = u, hence

⟨M, v · T ⟩ = ⟨M,u · (v · T )⟩ = ⟨M,uv · T ⟩ = ⟨M,u · T ⟩ = ⟨M,T ⟩.

Next assume that v ∈ I satisfies v(y) = 0 on some neighborhood U of x. Since
1 ∈ B(G), the function 1− u is a multiplier of I, that is (1− v)w ∈ I for every w ∈ I and
hence (1 − v) · T ∈ X. We note that 1 − v(y) = 1 on U. Again choosing u ∈ I such that
u(x) = 1 = ∥u∥A(G) with u(y) = 0 if y ̸∈ U . Once more we get that

(⟨M,T ⟩ − ⟨M, v · T ⟩) = ⟨M, (1− v) · T ⟩ = ⟨M,u · ((1− v) · T )⟩ = ⟨M,u · T ⟩ = ⟨M,T ⟩.

Hence ⟨M, v · T ⟩ = 0.

Now let u ∈ I be such that u(x) = 0. By Lemma 5.1.16, {x} is a set of spectral synthesis
for I. It follows that we can find a sequence of functions {wn} ⊂ I and a sequence {Un} of
open neighbourhoods of x such that each wn has compact support, wn(y) = 0 for all y ∈ Un

and lim
n→∞

∥u− wn∥A(G) = 0. In particular, from what we have seen above, ⟨M,wn · T ⟩ = 0

and hence
⟨M,u · T ⟩ = ⟨M, (u− wn) · T ⟩

Moreover,
lim
n→∞

∥u · T − wn · T∥I∗ = 0,
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as hence we have that ⟨M,u⟩ = 0. Finally, choose u ∈ I be such that u(x) = 1. Once more
choose v ∈ I so that v = 1 on a neighbourhood U of x. Then u− v(x) = 0 and

⟨M, (u− v) · T ⟩ = 0

which means that

⟨M,u · T ⟩ = ⟨M, v · T ⟩ = v(x)⟨M,T ⟩ = u(x)⟨M,T ⟩.

For here, if u(x) ̸= 0, let w =
1

u(x)
u. Then

⟨M,u · T ⟩ =
〈
M,u(x)

(
1

u(x)
u · T

)〉
= u(x)

〈
M,

(
1

u(x)
u · T

)〉
= u(x)⟨M,T ⟩.

This shows that M ∈ TIMI(X,ϕx|I
).

Finally, if T ∈ Y , then

fT (u) = ⟨Ψ, u · T ⟩ = ⟨m,u · T ⟩ = ⟨m,T ⟩

for all u ∈ S. In particular, ⟨M,T ⟩ = ⟨Φ, fT ⟩ = ⟨m,T ⟩ so M|Y = m as desired.

Theorem 5.1.18. Let A(G) be one of the algebras A(G), Acb(G) or AM(G). Let I be a
closed ideal in A(G). Assume that x ̸∈ Z(I). Then WAP (I) has a unique topologically
invariant mean at ϕx|I

.

Proof. The fact that TIMI(WAP (I), ϕx|i
) ̸= ∅ follows immediately from the observation

that every TIM on I∗ restricts to a TIM onWAP (I) and we know that TIMI(I
∗, ϕx|i

) ̸= ∅.

Next, we let n,m ∈ TIMI(WAP (I), ϕx|i
). Then there exits a net {uα}α∈Ω ⊆ I so that

m = lim
α∈Ω

{uα}

in the weak∗ topology on I∗∗. Hence, for each T ∈ I∗,

⟨n⊙m,T ⟩ = lim
α
⟨n⊙ uα, T ⟩ = lim

α
⟨n, uα · T ⟩ = lim

α
uα(x)⟨n, T ⟩.
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But we also know that

1 = ⟨n, ϕx|I
⟩ = lim

α
⟨uα, ϕx|I

⟩ = lim
α
uα(x).

Hence n ⊙m = n. But we also know that n ⊙m = m ⊙ n = m. Hence, n = m and the
TIM is unique.

Corollary 5.1.19. Let A(G) be one of the algebras A(G), Acb(G) or AM(G). Let I be a
closed ideal in A(G). If UCB(I) ⊆ WAP (I), then G is discrete.

Proof. Assume that G is non discrete and that x ̸∈ Z(I). Let M1,M2 ∈ TIMI(I
∗, ϕx|i

)
with M1 ̸= M2 , then m1 = M1|WAP (I)

,m2 = M2|WAP (I)
∈ TIMI(WAP (I), ϕx|i

). Let

T ∈ I∗ be such that ⟨M1, T ⟩ ≠ ⟨M2, T ⟩ and choose u ∈ I so that u(x) = 1. Then
u · T ∈ UCB(I) ⊆ WAP (I), and

⟨m1, u · T ⟩ = ⟨M1, u · T ⟩ = ⟨M1, T ⟩ ≠ ⟨M2, T ⟩ = ⟨M2, u · T ⟩ = ⟨m2, u · T ⟩

which contradicts the uniqueness of the TIM on WAP (I).

5.2 Arens Regularity of Ideals in A(G), Acb(G) and

AM(G)

In this section, we will apply what we know about topologically invariant means to ques-
tions concerning the possible Arens regularity of ideals in A(G), Acb(G), and AM(G). The
key observation is the following which improves on [26, Corollary 3.13]:

Theorem 5.2.1. Let A(G) be any of the algebras A(G), Acb(G) or AM(G). Let I be a
non-zero closed ideal in A(G). If I is Arens regular, then G is discrete.

Proof. If I is Arens regular, then I∗ = WAP (I). Hence I∗ has a unique topologically
invariant mean. However, by Corollary 5.1.12, this implies that G must be discrete.

The following corollary is immediate. See also [26, Theorem 3.2] and [29, Corollary
3.9].
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Corollary 5.2.2. Let A(G) be any of the algebras A(G), Acb(G) or AM(G). If A(G) is
Arens regular, then G is discrete.

Corollary 5.2.3. Let G be non-discrete. If A(G) is one of A(G), Acb(G) or AM(G), then
A(G) has no non-zero reflexive closed ideal.

Lemma 5.2.4. Let A(G) be any of the algebras A(G), Acb(G) or AM(G). Let H be a
subgroup of G. If A(G) is Arens regular, then so is A(H). In particular, if H is amenable,
then H is finite.

Proof. As G is discrete, H is open in G. In this case, the restriction map R : A(G) → A(H)
is a contractive homomorphism that is also surjective. As such A(H) is Arens regular.

The last statement is simply [51, Proposition 3.3].

Theorem 5.2.5. Let I be a closed ideal of A(G) with a bounded approximate identity that
is Arens regular. Then I is finite-dimensional.

Proof. Assume that I ⊆ A(G) is Arens regular. By Theorem 5.2.1 G must be discrete. It
is well-known that the predual of a von Neumann algebra is weakly sequentially complete,
hence A(G) is weakly sequentially complete. It follows that I is weakly sequentially com-
plete due to the fact that I is a closed subalgebra of A(G), so because I is Arens regular
and also has a bounded approximate identity then [73, Theorem 3.3] provides that I is in
fact unital. It follows that 1G\Z(I) ∈ I. In particular, G \Z(I) must be compact and hence
finite. This shows that I is finite-dimensional.

Remark 5.2.6. The fact that A(G) is weakly sequentially complete was crucial in establish-
ing the previous theorem. Unfortunately, we do not know whether or not either or both of
Acb(G) or AM(G) would be weakly sequentially complete.

For the remainder of this section, we will assume that G is a discrete group.

Lemma 5.2.7. Let A(G) be any of the algebras A(G), Acb(G) or AM(G). Let H be a
proper amenable subgroup of G. If IA(G)(H) is Arens regular, then H is finite and A(G)
is also Arens regular.
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Proof. Since H is proper, there exists an x ∈ G \H. The ideal IA(G)(xH) is isometrically
isomorphic to IA(G)(H) and hence is also Arens regular.

If u ∈ A(H), then the function u◦ defined by u◦(y) = u(y) if y ∈ H and u◦(y) = 0
if y ∈ G \ H is in A(G). Now if R : A(G) → A(H) is the restriction map, then R is
contractive homomorphism that maps IA(G)(xH) onto A(H). In particular, A(H) = A(G)
is also Arens regular. It follows that H is finite.

Let B be the algebra 1HA(G)⊕1 1G\HA(G). Then B is a commutative Banach algebra
and the mapping Γ : A(G) → B given by Γ(u) = (1Hu, 1G\Hu) is a continuous isomorphism
that maps IA(G)(H) isometrically onto the ideal (IA(G)(H), 0) in B. Since 1G\HA(G) is
finite-dimensional, it is Arens regular. We get that

(1HA(G)⊕1 1G\HA(G))∗∗ = (1HA(G))∗∗ ⊕1 (1G\HA(G))∗∗

which is commutative since each of its components is commutative. Hence 1HA(G) ⊕1

1G\HA(G) is Arens regular, and so is A(G).

Definition 5.2.8. Let R(G), the coset ring of G, denote the Boolean ring of sets generated
by cosets of subgroups of G. A subset E of G is in R(G) if and only if

E =
n⋃

i=1

(
xiHi \

mi⋃
j=1

bi,jKi,j

)
,

where Hi is a subgroup of G, xi ∈ G, Ki,j is a subgroup of Hi, and bi,j ∈ Ki,j.

By Ra(G), the amenable coset ring of G, we will mean all sets of the form

E =
n⋃

i=1

(
xiHi \

mi⋃
j=1

bi,jKi,j

)
,

where Hi is an amenable subgroup of G, xi ∈ G, Ki,j is a subgroup of Hi, and bi,j ∈ Ki,j.

Theorem 5.2.9. Let A(G) be any of the algebras A(G), Acb(G) or AM(G). Let E ∈ Ra(G)
and IA(G)(E) be non-zero and Arens regular. Then either E is finite and A(G) is also Arens
regular, or G is amenable and IA(G)(E) is finite-dimensional.

Proof. We begin by first assuming that E =
n⋃

i=1

xiHi. In this case, we will prove the

conclusion by induction on n. That is we let P (n) be the statement that if E =
n⋃

i=1

xiHi is
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a proper subset of G and if IA(G)(E) is Arens regular, then E is finite and A(G) is Arens
regular.

If n = 1, E = xH where H is a proper amenable subgroup. Since IA(G)(H) is isomet-
rically isomorphic to IA(G)(xH), Lemma 5.2.7 shows that E is finite and A(G) is Arens
regular.

Assume that P (n) is true for all n ≤ k. Let E =
k+1⋃
i=1

xiHi where each Hi is an

amenable subgroup of G. By translating if necessary we can assume that xk+1 = e. If

Hk+1 ⊆
k⋃

i=1

xiHi, then we have E =
k⋃

i=1

xiHi and we are done. So we may assume that

F = Hk+1 \

(
k⋃

i=1

xiHi

)
̸= ∅.

Note that Hk+1 \ F ∈ R(Hk+1) and

IA(H)(Hk+1 \ F ) = IA(G)(E)|Hk+1
.

In particular, since the restriction map is a homomorphism, IA(H)(Hk+1 \ F ) is Arens
regular. But as Hk+1 \ F ∈ R(Hk+1) and Hk+1 is amenable, we have that A(H) = A(H)
and IA(H)(Hk+1 \ F ) has a bounded approximate identity. It then follows from Theorem
5.2.5 that F is finite.

Next we observe that E is the disjoint union of
k⋃

i=1

xiHi and the finite set F . But as F is

finite we can proceed in a manner similar to that of the proof of Lemma 5.2.7 to conclude

that IA(G)(
k⋃

i=1

xiHi) is also Arens regular. From here the induction hypothesis tells us that

k⋃
i=1

xiHi is finite. And as F = Hk+1 \ (
k⋃

i=1

xiHi) is also finite, Hk+1 is finite. Hence E is

finite as well.

If we assume that

E =
n⋃

i=1

(
xiHi \

mi⋃
j=1

bi,jKi,j

)
,

where Hi is an amenable subgroup of G, xi ∈ G, Ki,j is a subgroup of Hi. We have

two cases. The first is that
n⋃

i=1

xiHi ̸= G. If this is the case, then if E1 =
n⋃

i=1

xiHi then
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E ⊆ E1 and hence the non-zero closed ideal IA(G)(E1) is contained in the Arens regular
ideal IA(G)(E) and is therefore also Arens regular. But we have seen above that this means
that E1 is finite. It follows that E is also finite. As before, this would imply that A(G)
would also be Arens regular.

Finally, if we assume that
n⋃

i=1

xiHi = G. Then by [27, Corollary 3.3] one of the Hi’s has

finite index in G. Since each Hi is amenable, so is G. This means that we can express G\E
as a disjoint union

m⋃
l=1

Fl where each Fl is a translate of an element of the coset ring of one

of the open amenable subgroups Ki,j. Moreover, this means that IA(G)(E) = IA(G)(E) has
a bounded approximate identity [27, Theorem 3.20]. It now follows from Theorem 5.2.5
that this ideal is finite-dimensional.
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Chapter 6

A Computational Approach to
Banach Algebras on Finite Groups

The ending isn’t any more
important than any of the
moments leading to it

Dr. Rosalene
To the Moon

6.1 A Word on Numerical Computations

This chapter features investigations and analysis of Banach algebras on finite groups using
computational methods, namely the computer algebra systems SageMath (shortened to
Sage) and GAP [33]. The nature of these inquiries is simply of an attempt to get a sense
of behavior of these objects on a larger scale than is possible by hand. The algorithms
and implementations are by no means optimized or intended to be used in computer-aided
proofs, and is not meant for a high-performance computing or algorithmic analysis context.
Instead, our motivation is one of “experimental mathematics”: the computational tools
discussed in this chapter are primarily used to search for counter-examples and to help
inspire conjectures that can then be proven explicitly.

The decision to write a function in GAP or Sage depends on what is required. Sage
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excels at general numerical calculations and has a variety of useful linear algebra methods
implemented (in particular, being able to call a Sage method for finding the singular
values of a matrix is quite useful for calculating ∥ · ∥A(G)), while GAP is better-suited for
computations involving group theory. Of special importance is GAP’s SmallGroup library
which allows for cycling through all groups of a given order less than 2000 (except for
those of order 1024). Character tables for sufficiently small groups can be easily accessed
through the GAP Character Table Library, which among other sources draws from the
famed Atlas of Finite Groups [16]. It is possible to run GAP inside of a Sage environment,
which allows us to enjoy the best of both worlds of GAP’s group theory tools and Sage’s
superior handling of decimal calculations, however this process is somewhat cumbersome
so we will only do so when necessary.

The standard interface from Sage into GAP is currently quite slow. As such, we have
chosen to use the libGAP package, which allows for much more efficient computations. The
libgap.function_factory() function will be our go-to method for creating GAP objects
that are interactable within a Sage enviroment.

It should be noted that many of our numerical calculations involve floating point arith-
metic, which when done with default settings often has small amounts of error based on the
way that Sage stores numbers. The values calculated in this thesis have all been rounded
to five digits to avoid such issues, but it is important to be aware that using a computer
algebra system in this way can fail to be completely exact.

6.2 Rider’s Theorem

We state the famed gap theorem of Rider:

Theorem 6.2.1. [56, Lemma 5.2] Let G be a compact group, and ψ an idempotent in
ZL1(G) such that ∥ψ∥1 > 1. Then ∥ψ∥1 > 301

300
.

While Rider’s result is powerful, it is known to not be sharp. However, an analogue by
Saeki for abelian groups actually does have a sharp bound:

Theorem 6.2.2. [65] Let G be a locally compact abelian group, and ψ an idempotent in

ZL1(G) such that ∥ψ∥1 > 1. Then ∥ψ∥1 ≥ 1+
√
2

2
. This bound is sharp.

Recall that if G is finite then ZL1(G) is equal to the span of span Irr(G). By [25,
Equation (5.20)] we can see that all idempotents in ZL1(G) are sums of dχχ for χ ∈ Irr(G),
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so for the purposes of investigating Rider’s theorem it suffices to calculate the norms of
each dχχ. Figure 6.1 has an implementation of this. While the algorithm is simple and
straightforward, we note the choice to use Sage instead of GAP. GAP is not currently
capable of calculating complex norms involving decimal approximations of non-rationals.
The non-official FUtil package is supposedly equipped to do so, but we have observed
that the SqrtDecimalApproximation() method often led to non-completing programs
and would therefore not recommend its use for these purposes.

Figure 6.1 has been run for groups of order less than 256 and so far the minimum

value achieved has been
1 +

√
2

2
, which matches the bound from Saeki’s bound on abelian

groups. Based on these calculations we form the following conjecture:

Conjecture 6.2.3. Let G be a finite group, and ψ an idempotent in ZL1(G) such that

∥ψ∥1 > 1. Then ∥ψ∥1 ≥ 1+
√
2

2
.

Remark 6.2.4. If the above conjecture does indeed hold, it may be possible to extend the
result to the compact case.

6.3 Fourier Algebra Norm

Recall that the left-regular representation λ as viewed as a representation on L1(G) is
defined as

λ : L1(G) → U(L2(G)), λ(f)(g) = f ∗ g.

We implement an algorithm for calculating ∥ · ∥A(G) using the approach from [68]:

Theorem 6.3.1. [68, Lemma 2] Let G be a finite group, f ∈ A(G), and s1, ..., sn the
singular values of λ(f). Then

∥f∥A(G) =
n∑

i=1

si.

Let G = {x1, ..., xn} and f ∈ A(G). Then λ(f) can be written as the matrix

λ(f) =
1

n


f(x1x1

−1) f(x1x2
−1) f(x1xn

−1)

f(xnx1
−1) f(xnxn

−1)

.
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The matrix λ(f) can be calculated by using convMatrix (Figure 6.2). Sage has a built-in
method for calculating the singular value decomposition of a given matrix, so actually
calculating the Fourier algebra norm is quite straightforward. This is done by ANorm()

(Figure 6.3).

In the implementation of both convMatrix() and ANorm f is actually a list of length |G|
with the ith entry corresponding to the value of f on the ith element of the Elements(G)
listing of G. Figure 6.4 and Figure 6.5 construct 1Γ and 1C×C as functions on G×G that
are compatible with ANorm().

Recall from Equation 3.2.9 and Theorem 3.7.4 that AM(A(G)) = ∥1GΓ
∥A(G×G) and

AMZA(G) = ∥1Conj(G)D
∥A(G×G), so it is possible to calculate AM(A(G)) and AMZA(G)

using Figure 6.3. However, we note that Equation 3.1 and Equation 3.3 are much easier
to use instead.

6.4 AIC Groups

Rider’s gap theorem requires looking at χ ∈ Irr(G) such that ∥dχχ∥1 > 1. In this section
we consider the other case.

Definition 6.4.1. Let χ ∈ Irr(G). We call χ an absolutely idempotent character if
∥dχχ∥1 = 1. If every character of Irr(G) is absolutely idempotent, then we call G an
AIC group.

The following is well-known, and allows for a simple condition of checking whether or
not a group is AIC:

Proposition 6.4.2. Let G be a finite group. Then χ is an absolutely idempotent character
of G if and only if |χ(x)| ∈ {0, dχ} for all x ∈ G.

Proof. Because |χ(x)| ≤ dχ for all x ∈ G then it follows that

1 =
1

|G|
∑
x∈G

|χ(x)|2 ≤ dχ
|G|

∑
x∈G

|χ(x)| = ∥dχχ∥1.

In particular, if χ is absolutely idempotent then the inequality above must be an equality,
which certainly forces the condition that |χ(x)| ∈ {0, dχ}. The converse is clear as well:
if |χ(x)| ∈ {0, dχ} then |χ(x)|2 = dχ|χ(x)|, which forces ∥dχχ∥1 = 1 by the calculation
above.
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An implementation of function in GAP that checks if a group is AIC or not using this
condition can be found in Figure 6.6.

There is a relationship between AIC groups and amenability of the group algebra, such
as in following result:

Theorem 6.4.3 ( [3]). Let G = ⊕i∈IGi, where each Gi is a finite group. Then every
maximal ideal of ZL1(G) has a bounded approximate identity if and only if all but finitely
many of the Gi are AIC.

For finite groups the AIC condition implies nilpotency.

Proposition 6.4.4 ( [10]). Let G be a finite group. If G is AIC then G is nilpotent, and
if G is nilpotent class 2 then G is AIC.

6.5 AMZA vs AMZ

The connection between AMZA and AMZ motivates a question whose answer could
suggest a solution to the sharp gap of AMZA:

Question 6.5.1. When are AMZA and AMZ equal?

In Chapter 4 we addressed the question of when AMZA and AMZ are equal in several
specific cases. Here we look at a computational approach. These constants are straight-
forward to calculate using GAP as done in Figures 6.7 and 6.8. Using these programs we
can calculate a table of groups of order less than 100 that satisfy AMZA(G) ̸= AMZ

At least for small-order groups, the property AMZA(G) ̸= AMZ(G) seems relatively
uncommon; Table 6.1 consists of 173 groups out of the 851 non-abelian groups of order
less than 100.

One of the first things we can note just by looking at the first two entries of Table 6.1
is that neither of the two quantities will be strictly greater or lesser than the other: After
all, AMZA(S4) ≥ AMZ(S4) and AMZA(SL(2, 3)) ≤ AMZ(SL(2, 3)). Also, there seems
to be a significant amount of restriction on what kind of orders of groups are possible. The
only orders that show up in the above table are

24, 48, 60, 64, 72, 80, 96.

In particular, all of the examples have even order. While this may lead to asking whether
or not AMZA(G) ̸= AMZ(G) for odd order G, it turns out this is not the case: we have
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inequality for the group SmallGroup(567, 16), and indeed this is the smallest odd-order
group for which AMZA(G) ̸= AMZ(G) holds. It appears that AMZA(G) ̸= AMZL(G)
often holds when G is a non-monomial group (that is, G contains an irreducible character
that is not induced from a linear character on a subgroup). There are 24 non-monomial
groups of order less than 100 listed. The 21 that have the property that AMZA(G) ̸=
AMZL(G) are listed in Table 6.2, and the three that satisfy AMZA(G) = AMZL(G)
are listed in Table 6.3. This suggests that being non-monomial and having AMZA(G) =
AMZL(G) is rare, more study could result in a condition that characterizes this condition.

It is also worthwhile to note that AMZA(G) = AMZ(G) often seems to hold when G
is AIC. G = SmallGroup(128,36) is the first example of an AIC group for which equality
does not hold. Still, even when AMZ(G) ̸= AMZA(G) it appears that the quantities are
still close in value, which suggests that it may be possible to bound |AMZA(G)−AMZ(G)|.
Further study of this approach using computational methods could be quite helpful in the
pursuit of finding a sharp amenability constant bound for AMZA(G), not only for AIC
groups but all finite groups.
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6.6 Code and Outputs

The group IdGroup Id column in the following tables refers to the ordering from GAP’s
IdGroup() function. The group description is from the StructureDescription() func-
tion, although it is important to note that StructureDescription() is not invariant under
group isomorphism and should not be relied upon for comparisons between groups. As for
the figures representing functions in GAP and Sage, the code as presented here is not
necessarily capable of running as-is. In particular, in Sage whitespace (which is usually in
the form of tabs but here is represented by spaces for purposes of code presentation) de-
termines the logic of the program, copy and pasting the code may result in a program that
is not able to run without making the whitespace match up with the intended structure.

def L1Norm():

min = 2

for k in [6..255]:

K = libgap.function_factory('AllSmallGroups')(k)

for grp in K:

T = libgap.function_factory('CharacterTable')(grp)

Irreps = libgap.function_factory('Irr')(T).sage()

Cc = libgap.function_factory('SizesConjugacyClasses')(T).sage()

g = libgap.function_factory('Order')(grp).sage()

for i in [0..len(Irreps)-1]:

phi = Irreps[i]

d = phi[0]

if d > 1:

m = sum([abs((phi[j] * d * Cc[j])) for j in [0..len(phi)-1]])/g

if ((m > 1.0001) and (m < min)):

min = m

print(libgap.function_factory('StructureDescription')(G))

print(sum([abs((phi[j] * d * Cc[j])) for j in [0..len(phi)-1]])/g)

return

Figure 6.1: Sage method for calculating minimum L1(G) norms of central idempotents
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def convMatrix(grp, f):

L = libgap.function_factory('Elements')(grp)

#Provides an ordered list of elements of the group

n = libgap.function_factory('Size')(grp).sage()

M = Matrix(CDF, n)

#Constructs a n x n matrix of zeros

for i in [0..n-1]:

for j in [0..n-1]:

y = L[i]*libgap.function_factory('Inverse')(L[j])

p = (libgap.function_factory('Position')(L,y)).sage() - 1

#Need to account for Position() returning an index beginning at 1

M[i,j]=f[p]*(1/n)

return(M)

Figure 6.2: Sage code for calculating λ(f)

def ANorm(grp,f):

A = convMatrix(grp,f)

t = sum(A.singular_values())

return(t)

Figure 6.3: Sage code for calculating ∥f∥A(G)

Group Id Group Description AMZA(G) AMZ(G)
( 24, 3 ) SL(2,3) 4.875 5.
( 24, 12 ) S4 7.0972 7.0833
( 48, 15 ) (C3 x D8) : C2 5.0139 5.1875
( 48, 16 ) (C3 : Q8) : C2 5.0139 5.1875
( 48, 17 ) (C3 x Q8) : C2 5.0139 5.1875
( 48, 18 ) C3 : Q16 5.0139 5.1875
( 48, 28 ) C2 . S4 = SL(2,3) . C2 9.4583 10.438
( 48, 29 ) GL(2,3) 9.4583 10.438
( 48, 30 ) A4 : C4 7.0972 7.0833
( 48, 32 ) C2 x SL(2,3) 4.875 5.
( 48, 33 ) ((C4 x C2) : C2) : C3 4.875 5.
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( 48, 48 ) C2 x S4 7.0972 7.0833
( 60, 5 ) A5 21.969 22.653
( 60, 7 ) C15 : C4 6.44 6.0133
( 64, 8 ) (C2 x D8) : C4 4.2188 4.2812
( 64, 9 ) (C2 x Q8) : C4 4.2188 4.2812
( 64, 10 ) (C8 : C4) : C2 4.2188 4.2812
( 64, 11 ) (C2 x C2) . ((C4 x C2) : C2) = (C4 x C2) . (C4 x C2) 4.2188 4.2812
( 64, 12 ) (C4 : C8) : C2 4.2188 4.2812
( 64, 13 ) (C2 x C2) . ((C4 x C2) : C2) = (C4 x C2) . (C4 x C2) 4.2188 4.2812
( 64, 14 ) (C2 x C2) . ((C4 x C2) : C2) = (C4 x C2) . (C4 x C2) 4.2188 4.2812
( 64, 32 ) (C2 x C2 x C2 x C2) : C4 4.8516 4.6797
( 64, 33 ) (C4 x C2 x C2) : C4 4.8516 4.6797
( 64, 34 ) (C4 x C4) : C4 4.8516 4.6797
( 64, 35 ) (C4 x C4) : C4 4.8516 4.6797
( 64, 36 ) (C2 . ((C4 x C2) : C2) = (C2 x C2) . (C4 x C2)) : C2 4.8516 4.6797
( 64, 37 ) C2 . ((C2 x C2 x C2) : C4) = (C4 x C2) . (C4 x C2) 4.8516 4.6797
( 64, 41 ) D16 : C4 4.1172 3.9297
( 64, 42 ) (C4 . D8 = C4 . (C4 x C2)) : C2 4.1172 3.9297
( 64, 43 ) C2 . ((C8 x C2) : C2) = C8 . (C4 x C2) 4.1172 3.9297
( 64, 46 ) C16 : C4 4.1172 3.9297
( 64, 128 ) (C8 x C2) : (C2 x C2) 4.2188 4.2812
( 64, 129 ) (C2 x C2 x Q8) : C2 4.2188 4.2812
( 64, 130 ) (C2 x D16) : C2 4.2188 4.2812
( 64, 131 ) (C8 x C2) : (C2 x C2) 4.2188 4.2812
( 64, 132 ) (C2 x Q16) : C2 4.2188 4.2812
( 64, 133 ) (C2 x QD16) : C2 4.2188 4.2812
( 64, 134 ) (C4 x C4) : (C2 x C2) 5.125 4.9609
( 64, 135 ) (C8 : (C2 x C2)) : C2 5.125 4.9609
( 64, 136 ) (C4 x C4) : (C2 x C2) 5.125 4.9609
( 64, 137 ) ((C2 x Q8) : C2) : C2 5.125 4.9609
( 64, 138 ) (C2 x C2 x C2 x C2) : (C2 x C2) 5.125 4.9609
( 64, 139 ) (C4 x C2 x C2) : (C2 x C2) 5.125 4.9609
( 64, 140 ) (C2 x D16) : C2 4.2188 4.2812
( 64, 141 ) (C2 x QD16) : C2 4.2188 4.2812
( 64, 142 ) (C4 : Q8) : C2 4.2188 4.2812
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( 64, 143 ) C4 : Q16 4.2188 4.2812
( 64, 144 ) (C4 x D8) : C2 4.2188 4.2812
( 64, 145 ) (C4 x Q8) : C2 4.2188 4.2812
( 64, 152 ) (C2 x QD16) : C2 4.1172 3.9297
( 64, 153 ) (C2 x D16) : C2 4.1172 3.9297
( 64, 154 ) (C2 x Q16) : C2 4.1172 3.9297
( 64, 155 ) (C4 : Q8) : C2 4.2188 4.2812
( 64, 156 ) Q8 : Q8 4.2188 4.2812
( 64, 157 ) (C4 : Q8) : C2 4.2188 4.2812
( 64, 158 ) Q8 : Q8 4.2188 4.2812
( 64, 159 ) ((C2 x C2) . (C2 x C2 x C2)) : C2 4.2188 4.2812
( 64, 160 ) (C2 x C2) . (C2 x D8) = (C4 x C2) . (C2 x C2 x C2) 4.2188 4.2812
( 64, 161 ) (C2 x (C4 : C4)) : C2 4.2188 4.2812
( 64, 162 ) (C2 x (C4 : C4)) : C2 4.2188 4.2812
( 64, 163 ) ((C8 x C2) : C2) : C2 4.2188 4.2812
( 64, 164 ) (Q8 : C4) : C2 4.2188 4.2812
( 64, 165 ) (Q8 : C4) : C2 4.2188 4.2812
( 64, 166 ) (Q8 : C4) : C2 4.2188 4.2812
( 64, 190 ) C16 : (C2 x C2) 4.1172 3.9297
( 64, 191 ) (C2 x Q16) : C2 4.1172 3.9297
( 64, 257 ) (C8 x C2) : (C2 x C2) 3.3906 3.1094
( 64, 258 ) (C8 x C2) : (C2 x C2) 3.3906 3.1094
( 64, 259 ) (C2 x Q16) : C2 3.3906 3.1094
( 72, 3 ) Q8 : C9 4.875 5.
( 72, 15 ) ((C2 x C2) : C9) : C2 10.231 11.009
( 72, 22 ) (C6 x S3) : C2 6.0926 6.4907
( 72, 23 ) (C6 x S3) : C2 6.0926 6.4907
( 72, 24 ) (C3 x C3) : Q8 6.0926 6.4907
( 72, 25 ) C3 x SL(2,3) 4.875 5.
( 72, 40 ) (S3 x S3) : C2 12.019 10.417
( 72, 42 ) C3 x S4 7.0972 7.0833
( 72, 43 ) (C3 x A4) : C2 10.231 11.009
( 80, 15 ) (C5 x D8) : C2 5.745 6.0475
( 80, 16 ) (C5 : Q8) : C2 5.745 6.0475
( 80, 17 ) (C5 x Q8) : C2 5.745 6.0475
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( 80, 18 ) C5 : Q16 5.745 6.0475
( 80, 29 ) (C5 : C8) : C2 5.47 5.23
( 80, 31 ) C20 : C4 5.47 5.23
( 80, 33 ) (C5 : C8) : C2 5.47 5.23
( 80, 34 ) (C10 x C2) : C4 5.47 5.23
( 96, 3 ) ((C4 x C2) : C4) : C3 8.0625 9.
( 96, 13 ) (C2 x C2 x S3) : C4 4.7604 4.4271
( 96, 14 ) (C3 : C8) : C4 5.0139 5.1875
( 96, 15 ) (C3 : C8) : C4 5.0139 5.1875
( 96, 16 ) (C3 x (C4 : C4)) : C2 5.0139 5.1875
( 96, 17 ) (C3 : Q8) : C4 5.0139 5.1875
( 96, 29 ) C3 : (C4 . D8 = C4 . (C4 x C2)) 5.0139 5.1875
( 96, 30 ) (C3 x (C8 : C2)) : C2 4.7604 4.4271
( 96, 31 ) C3 : (C2 . ((C4 x C2) : C2) = (C2 x C2) . (C4 x C2)) 4.7604 4.4271
( 96, 32 ) (C3 x (C8 : C2)) : C2 5.0139 5.1875
( 96, 33 ) (C3 x D16) : C2 6.7118 7.2552
( 96, 34 ) (C3 : Q16) : C2 6.7118 7.2552
( 96, 35 ) (C3 x Q16) : C2 6.7118 7.2552
( 96, 36 ) C3 : Q32 6.7118 7.2552
( 96, 39 ) (C2 x (C3 : C8)) : C2 5.0139 5.1875
( 96, 40 ) ((C3 : C8) : C2) : C2 4.7604 4.4271
( 96, 41 ) (C6 x C2 x C2) : C4 4.7604 4.4271
( 96, 42 ) (C3 x Q8) : C4 5.0139 5.1875
( 96, 43 ) C3 : (C2 . ((C4 x C2) : C2) = (C2 x C2) . (C4 x C2)) 4.7604 4.4271
( 96, 44 ) (C3 x D8) : C4 5.0139 5.1875
( 96, 64 ) ((C4 x C4) : C3) : C2 12.118 13.115
( 96, 65 ) A4 : C8 7.0972 7.0833
( 96, 66 ) SL(2,3) : C4 9.4583 10.438
( 96, 67 ) SL(2,3) : C4 9.4583 10.438
( 96, 69 ) C4 x SL(2,3) 4.875 5.
( 96, 70 ) (C2 x C2 x C2 x C2) : C6 8.4531 8.0312
( 96, 71 ) (C4 x C4) : C6 8.4531 8.0312
( 96, 72 ) (C4 x C4) : C6 8.4531 8.0312
( 96, 74 ) ((C8 x C2) : C2) : C3 4.875 5.
( 96, 85 ) (C2 x (C3 : Q8)) : C2 5.0139 5.1875
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( 96, 86 ) (C4 x (C3 : C4)) : C2 5.0139 5.1875
( 96, 89 ) (C12 x C2) : (C2 x C2) 5.0139 5.1875
( 96, 90 ) (C2 x C4 x S3) : C2 5.0139 5.1875
( 96, 91 ) (C2 x C4 x S3) : C2 5.0139 5.1875
( 96, 92 ) (C4 x (C3 : C4)) : C2 5.0139 5.1875
( 96, 93 ) (C2 x C2 x (C3 : C4)) : C2 5.0139 5.1875
( 96, 95 ) C12 : Q8 5.0139 5.1875
( 96, 96 ) C3 : ((C2 x C2) . (C2 x C2 x C2)) 5.0139 5.1875
( 96, 97 ) C3 : ((C2 x C2) . (C2 x C2 x C2)) 5.0139 5.1875
( 96, 101 ) (C2 x C4 x S3) : C2 5.0139 5.1875
( 96, 102 ) (C2 x C4 x S3) : C2 5.0139 5.1875
( 96, 103 ) (C3 x (C4 : C4)) : C2 5.0139 5.1875
( 96, 104 ) (C2 x (C3 : Q8)) : C2 5.0139 5.1875
( 96, 105 ) (C4 x (C3 : C4)) : C2 5.0139 5.1875
( 96, 115 ) C24 : (C2 x C2) 4.7604 4.4271
( 96, 116 ) (C2 x (C3 : Q8)) : C2 4.7604 4.4271
( 96, 118 ) C24 : (C2 x C2) 6.1562 5.8854
( 96, 121 ) C24 : (C2 x C2) 6.1562 5.8854
( 96, 122 ) (Q8 x S3) : C2 6.1562 5.8854
( 96, 125 ) (Q8 x S3) : C2 6.1562 5.8854
( 96, 138 ) C2 x ((C3 x D8) : C2) 5.0139 5.1875
( 96, 139 ) (C6 x D8) : C2 4.7604 4.4271
( 96, 140 ) C2 x ((C3 : Q8) : C2) 5.0139 5.1875
( 96, 142 ) (C2 x C2 x (C3 : C4)) : C2 5.0139 5.1875
( 96, 143 ) (C4 x (C3 : C4)) : C2 5.0139 5.1875
( 96, 144 ) (C6 x C2 x C2) : (C2 x C2) 5.0139 5.1875
( 96, 145 ) (C2 x C4 x S3) : C2 5.0139 5.1875
( 96, 146 ) (C2 x C2 x (C3 : C4)) : C2 5.0139 5.1875
( 96, 147 ) (C6 x D8) : C2 5.0139 5.1875
( 96, 148 ) C2 x ((C3 x Q8) : C2) 5.0139 5.1875
( 96, 149 ) (C6 x Q8) : C2 4.7604 4.4271
( 96, 150 ) C2 x (C3 : Q16) 5.0139 5.1875
( 96, 151 ) C3 : (C4 : Q8) 5.0139 5.1875
( 96, 153 ) (C6 x Q8) : C2 5.0139 5.1875
( 96, 154 ) (C6 x Q8) : C2 5.0139 5.1875
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( 96, 156 ) (C2 x D24) : C2 4.7604 4.4271
( 96, 157 ) (C2 x (C3 : C8)) : C2 5.0139 5.1875
( 96, 158 ) (C2 x (C3 : Q8)) : C2 4.7604 4.4271
( 96, 185 ) (C2 x C2) : (C3 : Q8) 9.0208 9.4583
( 96, 186 ) C4 x S4 7.0972 7.0833
( 96, 187 ) (C2 x S4) : C2 9.0208 9.4583
( 96, 188 ) C2 x (C2 . S4 = SL(2,3) . C2) 9.4583 10.438
( 96, 189 ) C2 x GL(2,3) 9.4583 10.438
( 96, 192 ) GL(2,3) : C2 9.4583 10.438
( 96, 194 ) C2 x (A4 : C4) 7.0972 7.0833
( 96, 195 ) (C2 x C2 x A4) : C2 9.0208 9.4583
( 96, 198 ) C2 x C2 x SL(2,3) 4.875 5.
( 96, 200 ) C2 x (((C4 x C2) : C2) : C3) 4.875 5.
( 96, 201 ) ((C2 x C2 x C2) : (C2 x C2)) : C3 6.1562 5.6875
( 96, 202 ) (C2 x Q8) : C6 6.1562 5.6875
( 96, 203 ) (C2 x C2 x Q8) : C3 8.0625 9.
( 96, 211 ) (C6 x C2 x C2) : (C2 x C2) 4.2708 3.7708
( 96, 214 ) (C6 x Q8) : C2 4.2708 3.7708
( 96, 216 ) (C12 x C2) : (C2 x C2) 4.2708 3.7708
( 96, 217 ) (Q8 x S3) : C2 4.2708 3.7708
( 96, 226 ) C2 x C2 x S4 7.0972 7.0833
( 96, 227 ) ((C2 x C2 x C2 x C2) : C3) : C2 12.118 13.115

Table 6.1: |G| < 100 and AMZA(G) ̸= AMZ(G)

Group Id Group Description AMZA(G) AMZ(G)
( 24, 3 ) SL(2,3) 4.875 5.
( 48, 28 ) C2 . S4 = SL(2,3) . C2 9.4583 10.438
( 48, 29 ) GL(2,3) 9.4583 10.438
( 48, 32 ) C2 x SL(2,3) 4.875 5.
( 48, 33 ) ((C4 x C2) : C2) : C3 4.875 5.
( 60, 5 ) A5 21.969 22.653
( 72, 3 ) Q8 : C9 4.875 5.
( 72, 25 ) C3 x SL(2,3) 4.875 5.
( 96, 3 ) ((C4 x C2) : C4) : C3 8.0625 9.
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( 96, 66 ) SL(2,3) : C4 9.4583 10.438
( 96, 67 ) SL(2,3) : C4 9.4583 10.438
( 96, 69 ) C4 x SL(2,3) 4.875 5.
( 96, 74 ) ((C8 x C2) : C2) : C3 4.875 5.
( 96, 188 ) C2 x (SL(2,3) . C2) 9.4583 10.438
( 96, 189 ) C2 x GL(2,3) 9.4583 10.438
( 96, 192 ) GL(2,3) : C2 9.4583 10.438
( 96, 198 ) C2 x C2 x SL(2,3) 4.875 5.
( 96, 200 ) C2 x (((C4 x C2) : C2) : C3) 4.875 5.
( 96, 201 ) ((C2 x C2 x C2) : (C2 x C2)) : C3 6.1562 5.6875
( 96, 202 ) (C2 x Q8) : C6 6.1562 5.6875
( 96, 203 ) (C2 x C2 x Q8) : C3 8.0625 9.

Table 6.2: G non-monomial and AMZA(G) ̸= AMZ(G)

Group Id Group Description AMZA(G) AMZ(G)
( 96, 190 ) (C2 x SL(2,3)) : C2 11.927 11.927
( 96, 191) (SL(2,3) . C2) : C2 11.927 11.927
( 96, 193 ) SL(2,3) : (C2 x C2) 11.927 11.927
Table 6.3: G non-monomial and AMZA(G) = AMZ(G)
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DiagConjIndicator := function(grp)

local e1, e2, L, i, x, lst, DP;

DP:= DirectProduct(grp, grp)

lst:= Elements(DP);

e1:=Projection(DP,1);

e2:=Projection(DP,2);

L := [];

for i in [1 .. Size(DP)] do

x:= lst[i];

if IsConjugate(grp,Image(e1,x), (Image(e2,x))) then

Add(L, 1);

else

Add(L,0);

fi;

od;

return L;

end;

Figure 6.4: GAP method for calculating 1GΓ
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antiDiagIndicator := function(grp)

local e1, e2, L, i, x, lst, DP;

DP:= DirectProduct(grp, grp)

lst := Elements(DP);

e1:=Projection(DP,1);

e2:=Projection(DP,2);

L := [];

for i in [1 .. Size(DP)] do

x:= lst[i];

if Image(e1,x) = Inverse(Image(e2,x)) then

Add(L, 1);

else

Add(L,0);

fi;

od;

return L;

end;

Figure 6.5: GAP method for calculating 1Conj(G)D

isAIC:= function(grp)

local tbl, phi, x;

tbl := CharacterTable(grp);

for phi in Irr(tbl) do

for x in [1..NrConjugacyClasses(tbl)] do

if (phi[x]*ComplexConjugate(phi[x]) <> phi[1]^2) and (phi[x] <> 0) then

return false;

fi;

od;

od;

return true;

end;

Figure 6.6: GAP code for calculating if a group is AIC
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AMZ:= function(grp)

local clssizes, n, kg, phi, i, j, tbl;

tbl := CharacterTable(grp);

clssizes:= SizesConjugacyClasses( tbl );

n:= Size( tbl ); # group order

kg:= NrConjugacyClasses( tbl );

return Sum([1..kg], i-> Sum([1..kg], j-> clssizes[i] * clssizes[j] *

AbsoluteValue(Sum(Irr(tbl), phi -> phi[1]^2 * phi[i] *

ComplexConjugate(phi[j])))))/n^2;

end;

Figure 6.7: GAP code for calculating AMZ

AMZA:= function(grp)

local clssizes, n, kg, phi, psi, i, tbl, irreps,;

tbl := CharacterTable(grp);

irreps := Irr(tbl);

clssizes:= SizesConjugacyClasses( tbl );

n:= Size( tbl ); # group order

kg:= NrConjugacyClasses( tbl );

return Sum(irreps, phi -> Sum(irreps, psi -> phi[1] * psi[1]

* AbsoluteValue(Sum([1..kg], i -> clssizes[i]^2 * phi[i] *

ComplexConjugate(psi[i])))))/n^2;

end;

Figure 6.8: GAP code for calculating AMZA
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