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Abstract

This thesis covers multiple areas within computable structure theory, analyzing the
complexities of certain aspects of computable structures with respect to different notions
of definability.

In chapter 2 we use a new metatheorem of Antonio Montalban’s to simplify an otherwise
difficult priority construction. We restrict our attention to linear orders, and ask if, given
a computable linear order A with degree of categoricity d, it is possible to construct
a computable isomorphic copy of A such that the isomorphism achieves the degree of
categoricity and furthermore, that we did not do this coding using a computable set of
points chosen in advance. To ensure that there was no computable set of points that
could be used to compute the isomorphism we are forced to diagonalize against all possible
computable unary relations while we construct our isomorphic copy. This tension between
trying to code information into the isomorphism and trying to avoid using computable
coding locations, necessitates the use of a metatheorem. This work builds off of results
obtained by Csima, Deveau, and Stevenson [13] for the ordinals w and w?, and extends it

to w® for any computable successor ordinal «.

In chapter 3, which is joint work with Alvir and Csima, we study the Scott complexity
of countable reduced Abelian p-groups. We provide Scott sentences for all such groups,
and show some cases where this is an optimal upper bound on the Scott complexity. To
show this optimality we obtain partial results towards characterizing the back-and-forth

relations on these groups.

In chapter 4, which is joint work with Csima and Rossegger, we study structures under
enumeration reducibility when restricting oneself to only the positive information about a
structure. We find that relations that can be relatively intrinsically enumerated from such
information have a definability characterization using a new class of formulas. We then use
these formulas to produce a structural jump within the enumeration degrees that admits
jump inversion, and compare it to other notions of the structural jump. We finally show
that interpretability of one structure in another using these formulas is equivalent to the
existence of a positive enumerable functor between the classes of isomorphic copies of the

structures.
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Chapter 1

Introduction

Notational conventions for basic definitions on computability will be following Turing Com-
putability by Robert Soare [30]. Results on enumeration degrees mentioned in this thesis
can be found in Computability Theory by S. Barry Cooper [!1]. For computable structure
theoretic results the reader can consult Computable Structures and the Hyperarithmetical
Hierarchy by C.J. Ash and Julia F. Knight [5] or Computable Structure Theory: Within
the Arithmetic and Computable Structure Theory: Beyond the Arithmetic by Antonio
Montalban|[26] [27].

1.1 Computability Theory

Mathematicians in the early 1900s were concerned with formally defining what it meant
for a procedure to be algorithmic. Intuitively, it should mean that there is some finite
number of simple steps which one can follow without much thought, and arrive at the
desired result. Many different notions were proposed, but the one that has prevailed is
Alan Turing’s definition of a Turing Machine, which accepts binary strings as input and
can read and alter these strings, either halting and outputting a binary string, or running
forever. Using clever coding techniques of Godel and others, we can talk about much more

than binary strings using Turing Machines, and in fact we often refer to these machines



as computing functions from the natural numbers to the natural numbers with the coding
specifics left in the background. One such coding technique that will come up frequently
throughout this paper is the Cantor pairing function { ) : Nx N — N. This function assigns
a unique natural number to each pair of numbers in such a way that the original elements

of the pair can be computably recovered. This recoverability allows us to unambiguously
write (ay,...,an) = (- --{ay,az),as)--- ), a,).

1.1.1 Turing Degrees

Thankfully, we do not need to understand the complexities of Turing Machines because
we choose to adopt the Church-Turing thesis, which states that a function is computable
by a Turing Machine exactly when it is intuitively computable. What we do need to know
about Turing programs is that they are all finite sets of symbols from countable alphabets,
and so we can effectively list them under some chosen ordering P, P, ... and associate to
each P, the partial computable function ®, determined by P.. We will write ®.(x) |= y to
say that ®. on input x converged to y. We can then say that a function f is computable
if there is some Turing functional ®. which converges and mirrors f on all inputs. We
likewise say that a set of natural numbers A is computable when its characteristic function

x4 is. We will often make no distinction between a set and its characteristic function.

To compare the computability theoretic properties of sets of natural numbers Church
and Turing developed the notion of an oracle machine. These are Turing machines that
have all the information of a certain set B and at any stage in the computation can access
a finite portion of the set. We think of these extra steps as “queries to the oracle” B, and
we say that B computes another set A and write A <r B if there is some Turing functional
®, such that ®Z = y,4. An example of this is the join of two sets A and B. We define
their join to be the set A@B = {2n:ne€ A} u{2n+1:n e B}. It is easy to see that with
access to the information of the set A @ B we can compute the members of A and B and
SO A<r A® B and B <y A® B.

The work done in the previous paragraph would be meaningless if every set was com-
putable. To this end Kleene provided the fundamental example of a non-computable set
with the halting set K = {z € N: ®,(x) |}. This is the set of all programs in our listing
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that halt on their own input. It is easily shown to be non-computable by a diagonalization
argument. The issue being that we could end up waiting forever for a program to halt.
Those programs that do halt will do so in finite time, and so we can enumerate the set K.
Letting W, = dom(®.) we obtain an effective listing of all the computably enumerable sets.
As before we can let W5 = dom(®P) and say that a set A is computably enumerable in a
set B if there is an e such that A = W2, We can talk about computable approximations to
c.e. sets, by saying that W, ; is all of the elements x such that ®.(x) | in fewer than s steps

of the computation. We say that an element n enters W, at stage s if n e W, \W, s_1.

By looking at the halting set relative to some oracle A we produce a set K4 = A’ :=
{r e N: ®4(x) |} called the jump of A which is not computable from A. By iterating this
jump operator we produce a hierarchy of non-computable sets. We write A =y Bif A <r B
and B <r A and define the Turing degree of a set A to be a = deg(A) := {B : B = A}.
We let 0 = deg() and @’ = deg(A’). Thus deg(K) = deg(d') = 0'. For two degrees
a = deg(A),b = deg(B) we say that a < b if A <r B.

A stronger notion of reducibility between sets is that of 1-reducibility. We say that A is
one-one reducible to a set B and write A <; B if there is a one-to-one computable function
f such that t € A <= f(x) € B. A nice fact about the Turing jump operator is that
A < Bif and only if A’ <; B’. An additional important property shown by Schoenfeld is
that we can invert the jump operator. That is, given a set B such that ¢ <y B, we can
find a set A such that A’ =1 B.

1.1.2 Enumeration Degrees

While oracle Turing reducibility allows the Turing machine to ask questions about what
is and is not in the oracle set, in practice we often do not know the negative information
about a set, and receive our information in a setting more akin to enumerations. This led

Friedberg and Rogers to introduce the notion of enumeration reducibility in 1959.

We say that a set A is enumeration reducible to another set B and write A <. B if there
is an enumeration operator W, which is just a c.e. set such that A = ¥Z = {x : (x,D) €

U, for D <4, B}. Note that using this convention we obtain from an enumeration of the



members of B an enumeration of the members of A. Furthermore, the order in which B
is enumerated does not matter. We then define deg.(A) = {B < N: A =, B} as we did
for the Turing degrees. Unlike the Turing degrees however, we cannot use the halting set
as our token non-computable set because it is computably enumerable. In our proposed

hierarchy the bottom degree 0. will consist of all c.e. sets.

It is easy to show that a set A is computable if and only if A and its complement A
are computably enumerable. Using this result we can see that it must be the case that K
is not c.e., and so it acts as a good candidate for providing the extra information that we
would want an enumeration jump operator to have. Thus, we define 0, = deg.(K) and the
enumeration jump of a set A to be the set J.(A) := A® K, where K, = {z |z € U4}. We

thus obtain a hierarchy of enumeration degrees just as before.

The enumeration degrees D, differ from the Turing degrees D, but they are related as

we shall now see.

Definition 1.1.1. The totalization of a set A is the set A* = A@ A =, x4.

Any set such that A =, A" is said to be total and an enumeration degree is total if
it contains a total set. If a set is total and c.e. then it is computable. Similarly, we have
that A <7 B if and only if A" <, B™ and A is c.e. in B if and only if A <. B*. Thus we
get that the Turing degrees embed in the enumeration degrees as exactly the total degrees,
and we define the embedding ¢(degr(A)) = dege.(AT). On total degrees, the enumeration
jump agrees with the Turing jump, i.e. deg.((A’)") = dege(J.(A1)). We also know that
the range of the enumeration jump operator is exactly the total degrees a > 0, since
Ky <. Aand A <, K, implies that J.(A) =, J.(A)*.

Enumeration degrees also admit jump inversion. Soskov [31] showed that given a total
set B we can always find a total set F’ such that J.(F) =, B.
1.1.3 Hyperarithmetic Hierarchy

One method to study the complexity of sets is to place them on the hierarchy of degrees as

we’ve seen above. Another method is to study their definability in the set theoretic sense.
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We say that a set is 39 if it is the projection of a X0 relation, that is, a set of the form
{z|321,V29,25... Qu, R(2, 21, ..., x,)} for n alternating quantifiers, @ € {V,3} depending
on the parity of n, and R a computable relation. Similarly we say that a set A is I1° if A
is X0 and say A is A2 if A is X2 and I1Y. A formula is 39 if it is XY when viewed as a

relation of its free variables.

An important theorem of Emil Post relates the two notions by saying that a set A is
computable in @™ if and only if A is A?

n+1-

Thus A is 30 if and only if it is computably
enumerable and our prime example of a ¥{ set remains the halting set K. It is stronger
than just being XY because given any other X{ set W, there is a 1-reduction from W, to
K. We call any set with this property ¥{-complete and generalize it naturally to say that
™ is ¥.0-complete.

An issue arises when we move to transfinite ordinals because there is no single-valued
system of notations for all computable ordinals. To surmount this issue, Kleene developed
a system of notations for ordinals called Kleene’s O where each computable ordinal a gets

a notation a € O such that |a] = a. We build up O and a partial order <¢ as follows:

e 1O and |l =0,
o Ifie O and |i] = athen 28 € O and |2/ = a + 1 and i <@ 2,

e If &, halts on all inputs and ran(®.) = O and for all n, ®.(n) <o Pc(n + 1), then
3-5°€ O and for all n, ®.(n) <p 3-5° and |3 - 5| = lim,, |.(n)|.

This is why, once a notation is fixed for an infinite ordinal « there is a unique path

through O with limit a. Now to each a € O we define the set H(a) by transfinite recursion.
o H(1) =,
e H(2*) = H(a),

o H(3-5% = {{u,v) :u<3-5°&ve H(u)}.



This labeling system produces sets that still agree with our arithmetic hierarchy for
finite n, for if |a| = n then H(a) = @™. For infinite a, there are infinitely many total
computable functions with limit «, but all of their notations produce Turing equivalent
sets H(a) [2]. Now we can continue defining our hyperarithmetic sets by saying that a
relation R is X0 if it is c.e. with respect to H(a), where |a| = a. Similarly to before, a

relation is 10 if its complement is X2, and A? if and only if it is X0 and I1°.

Each limit ordinal « has a unique strictly increasing sequence of ordinals {a(p)}pew
with limit o which is determined by our notation for «, and so to take the jump at limit
ordinals, we let A be the set {(z,p) : 2 € AP} When we iterate the Turing jump
transfinitely many times a discrepancy appears between the two hierarchies, and the set

7@ is ¥0_complete.

If we are instead working with the logic L., as there is more occasion to do in
computable structure theory, then we still allow finitely many nested quantifiers, but allow
conjunctions over any countable set. This adds expressive power to the language £. For
this logic, ¥J and IIj formulas are the same as in first-order logic, but a X2 formula is
one of the form \Y/,_,, 37¢;(T,7) where each ¢; is a I} formula for § < a. Similarly, IIY,
formulas are of the form /X\,., VZv:(Z,7) where each ¢; is a Z% formula for f < a. We
say that a formula is d — X0 if it is the conjunction of a X0 formula and a T2 formula. A

sentence is a formula with no free variables.

The superscript 0 in all classes of formulas denotes the fact that we are restricting our
quantification to natural numbers. Since no other types of quantification will be used in

this thesis, the superscript may be omitted.

1.2 Computable Structure Theory

To study the complexity of mathematical structures, we need to agree upon a notion of
when such a structure is computable. The universe of the structure certainly must be com-
putable, but we also ask that the atomic diagram of the structure be computable. We will
see later how to effectively associate a set of natural numbers to the atomic diagram D(.A)

of a structure A. A structure A is said to be decidable if its elementary diagram D°(.A)
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is computable. The elementary diagram contains all first-order sentences with parameters
from the structure that are true in the structure. Since we will only be discussing struc-
tures with countable domain, we may assume that the domain is a subset of the natural

numbers. We call such structures w-models or w-presentations.

A natural question to then ask is “given a structure A, how difficult is can it be
to compute isomorphic copies of A”. The answer to that question turns out to be “as
difficult as we want”, since we can encode almost any set into the domain and relations of
a structure. Letting DgSp(.A) be the set of Turing degrees of all copies of A, Knight showed
that it is closed upwards in the Turing degrees. That is, for any set X such that D(A) <r X
there is a copy B of A such that D(B) =7 X. The question of finding a maximal complexity
for isomorphic copies of a structure remains interesting if we restrict our attention to
computable copies of A and ask how difficult it is to compute the isomorphism between
copies. A structure A that is isomorphic to a computable structure is said to be computably
presentable and the computable dimension of a computably presentable structure is the
number of computable presentations up to computable isomorphism. Special interest is

given to those structures with computable dimension 1 or w.

We say that a computable structure A is d-computably categorical if, for all computable
B ~ A, there exists a d-computable isomorphism between B and A. Under this notation,
structures of computable dimension 1 are computably categorical. We call d the degree of
categoricity of A if A is d-computably categorical and, for all ¢ such that A is e-computably
categorical, we have d < c¢. It is not guaranteed that a structure will have a degree of
categoricity. We say that A is A categorical on a cone if there is a ¢ € D such that for all
d > c, whenever B and C are d-computable copies of A, there exists a A2 (c)-computable
isomorphism between B and C. In chapter 2, we study isomorphic copies of linear orders
where the isomorphism achieves the degree of categoricity of the structure, and see if there

must always be a computable unary relation whose image can compute the isomorphism.

1.2.1 Scott rank and back-and-forth relations

A related notion for studying the complexity of structures is the Scott complexity of a

structure. Scott proved that for every countable structure A there is a sentence 4 in
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the infinitary logic L, called a Scott sentence of A such that A = ¢4 and for all other
countable structures B, B |= ¢4 if and only if A =~ B [5]. The complexity of this sentence
in the hyperarithmetical hierarchy can tell us about how complicated it is to describe the
structure, however if a structure has a 112 Scott sentence, then it trivially has a Hg Scott
sentence for all n = a. The Scott rank of a structure A has gone through many different
proposed definitions, but a recent and robust notion by Montalban [21] is to define it to be
the least « such that A has a IIY | Scott sentence. As previously mentioned, this notion
of complexity is related to categoricity and it was shown by Montalban that a structure
has Scott rank « if and only if A is A-categorical on a cone. This notion of Scott rank
has many other applications as well such as providing an upper bound on the complexity

of defining the automorphism orbits of tuples from the structure.

A slightly finer notion concerning the Scott rank introduced by Alvir, Greenberg,
Harrison-Trainor, and Turetsky in [2] is to look more closely at the possible complexi-
ties for the formula. A formula that is the conjunction of a X2 and a I1? formula is called
a d— Y0 formula and is more complex than both a X2 and a I1° formula. However it is less
complicated than both a X2, formula and a II2 ; formula. Thus the complexities form a
lattice hierarchy with X2 and IT% being incomparable for all a. The Scott complexity of
a structure is the least complexity on this hierarchy such that A has a Scott sentence of
that complexity. In chapter 3 we produce Scott sentences for arbitrary countable reduced
Abelian p-groups and seek to show that they are best possible to determine the Scott

complexity of such structures.

Broadening our scope a bit, we can ask how difficult it is to tell apart different structures
over a fixed language. Even broader still, is asking how difficult it is to distinguish two
tuples within their respective structures. This question stems from a model-theoretic
notion, and so we try to distinguish the tuples using definability, but we have seen above

the relation between definability and computability.

Definition 1.2.1. Given two structures A, B, tuples @,b of the same length from their
respective structures, and a computable ordinal «, we say that (A, a) is a back-and-forth
below (B,b), written (A, @) <, (B,b) if all of the I1% formulas true of @ in A are true of b
in B.



At the zero level, we say that (A,a) <o (B,b) if all of the quantifier-free formulas ¢
of Godel number ¢ < |al true of @ in A are true of b in B. If we are not interested in a
specific tuple, we may write A <, B to mean (A, &) <, (B, ). Similarly, we shorten
(A, @) <o (A,b) to @ <, b.

The reason that they are called back-and-forth relations, is because there is an equiv-
alent definition for ordinals a > 0 where we say that (A, @) <, (B,b) if and only if for
all B < a and d € B=¥ there is ¢ € A=¥ such that (B,bd) <s (A,ac) (See Ash-Knight
[0]). Determining whether tuples satisfy the relations then can be viewed as going back
and forth with an opponent who is trying to extend the b tuple in such a way that there
is a H% formula true of their new tuple that you cannot satisfy with an extension of your
a tuple. Gamification of proof methods is a common theme in computability theory that

we will explore more later in chapter 2.

1.2.2 R.i.c.e. relations and the structural Turing jump

Using either of the notions of a jump operator discussed in previous sections, we can take
the jump of the atomic diagram of a structure A and get a set that is not computable from
D(.A). But, there is no guarantee that this set could be viewed as the atomic diagram of a
structure. When dealing with structures, we would like to give a jump that produces a new
structure that has the same complexity as if we had applied the regular jump operator. In

the Turing degree setting this problem has been solved by Montalban [20].

The structural jump of a structure A is formed by adding a relation that encodes all

of the relations that a relatively intrinsically computably enumerable in A.

Definition 1.2.2 (Montalban [26]). A relation R on A is said to be relatively intrinsically
computably enumerable (r.i.c.e.) if, in any isomorphic copy B = f(A), f(R) <r D(B).

These r.i.c.e. relations turn out to be exactly the ones that are definable by ¥; formulas
using countable disjunctions over c.e. index sets with parameters from the structure, and
so, by creating a r.i.c.e. complete relation and adding it to the language, we mimic the

addition of K in the enumeration jump. Other versions of the structural jump have been



proposed, but the strongest evidence that this version is the best is that it admits jump
inversion. Letting J(A) be the structural jump of A, we have that DgSp(J(A)) = {a’ : a €
DgSp(A)}. There has not yet been an analogue of the structural jump in the enumeration
degree setting. In chapter 4 we develop a fitting definition for the enumeration jump of a

structure and consider its properties.
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Chapter 2

Degrees of Categoricity

2.1 Background

Let A be the standard copy of the structure (w, <). We shall construct a copy A such
that the isomorphism f : A — A can compute the halting set K. We construct this by
stages, adding a new element at each stage, ensuring that the limit structure is computable,
isomorphic to A/, and that the resulting isomorphism can compute K. For every even stage
2s we add a new even number to the end of our current finite linear order by declaring
that 2s is greater than everything else on which we have defined the order. For odd stages
2s + 1 we will wait until a new number is enumerated into the halting set. If n enters the
halting set at stage s, then we declare that 2n < 2s +1 <4 2n 4+ 2. We may assume
that our enumeration is such that only one element is enumerated at each stage. It is not
difficult to see that this construction will result in a structure A which is isomorphic to N.
Furthermore, if we know the isomorphism f : A — A/, then to decide whether n is in the
halting set, we look at the images of 2n and 2n + 2 in A/. They are mapped to immediate
successors if and only if n never entered the halting set. This is an f computable question,

and the successor relation on A is computable. Thus, K < f.

This proof is an example of a typical computable structure theoretic proof. If we want

to show that an isomorphism or other object can attain a certain degree of difficulty, we
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simply construct a copy to ensure that it does. Throughout the construction we keep track
of certain special points, whose eventual locations under the isomorphism will compute the
set of known complexity. Herein lies the issue. In the above example we did not need the
full isomorphism to compute K. As long as we know where the even numbers are sent,
we will still be able to compute the halting set. As is the case with many constructions
that use a predetermined computable set of points. We then ask whether it is possible to
construct a computable copy of w on which there is no computable unary relation whose

image will compute the isomorphism.

This question was answered by Csima, Deveau, and Stephenson [13] who were able to

show the following:

Proposition 2.1.1. Let A be any computable copy of (w,<) and let f : A — N be the
isomorphism from A into the standard copy. Let U := {m|(@An)[n <N m r m <* n]}.
Then f(U) =r f.

However they also showed

Proposition 2.1.2. There exists a computable copy B of (w, <) such that the isomorphism
f: N — B can compute the Halting set K and furthermore, there is no computable unary

relation U on N with f(U) =r f.

This provides an interesting asymmetry between maps into and out of N that shall
be explored in greater detail below. Before we continue though, important clarifications
should be made. We are only considering maps for which there is no computable unary
relation whose image computes the isomorphism. We make this choice over n-ary relations
because for any two computable copies A, B of a structure with isomorphism f : A — B
it is the case that f(R) =r f, where R = {(n,n + 1)|n € w}. Additionally, we must
explain why, in the above example, we ask that the map computes K instead of a different

non-computable set. This is because K is the degree of categoricity of (w, <).

There remain two major questions at this point.
e Why does the asymmetry exist?

12



e Does it exist for more complicated linear orders?

The first point turns out to be rather easy to answer. If the image of the relation lies
in the decidable copy, then we get extra information for free. We can perform bounded
searches as in Proposition 2.1.1 because we know the entire elementary diagram of the
structure.

Towards the second question, more work has been done by Csima, Deveau, and Stephen-
son [13]. They were able to show that

Proposition 2.1.3. Let N? be the decidable copy of (w?, <). There is a computable copy
A of (w?, <) such that if f: A — N?, then for no computable unary relation U do we have

fU) =rf.
as well as strengthening it to show that

Proposition 2.1.4. Let N2 be the decidable copy of (w?, <). There is a computable copy
A of (w?, <) such that if f: A — N?Z, then for no computable unary relation U do we have
fU) =r f, and furthermore f =7 &".

However, the proofs become increasingly difficult as more information needs to be coded
into the isomorphism, and so the question with regards to the degree of categoricity for
(w?, <), 0" was left open. The degrees of categoricity for all computable well-orderings

are given below.

Theorem 2.1.5 (Bazhenov [7]). Assume that « is a computable ordinal.

(a) If 0 < k <w and W < o < W' then o has strong degree of categoricity 0%¢~Y.

(b) If v is a computable infinite ordinal and w¥ < o < W™ then a has strong degree of

categoricity 07,

To push the result up to higher linear orders, we will need a general proof framework to
manage the increasing amounts of non-computable information with which we have to work.
To do so purely through priority constructions would be a Herculean task. Thankfully, we

have metatheorems, which do exactly what we need for this situation.
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2.2 Metatheorems

When tasked with doing a priority construction, the complexity of the information that
we need to code in will affect the construction process. For computable information, we
can simply compute the answers that we want at each stage, and code that information
in without ever needing to change what we previously did. For a 0’-priority construction,
we will be using computable approximations to ¢’ to answer our questions, and so as our
approximation gets better, we may have to change things that we have already done. The
challenge increases as we move up to a 0” construction, as our approximation to the %9
set might be incorrect infinitely often and we have to ensure that we devise a strategy for

meeting the requirements that accounts for this, and still produces a computable structure.

Beyond 0”, the conditions become too difficult to keep track of in a purely combinatorial

setting, and so many general proof frameworks for 0(®)

-priority constructions have been
proposed, the most intuitive of which is the game metatheorem of Antonio Montalban [25].
Most metatheorems seek to construct a tree, with paths through the tree representing
possible forms the constructions can take. The goal then, is to ensure that the tree is
built in such a way that there is always a suitable branch above what we have already
constructed, thereby ensuring that there is an infinite path that meets our requirements.
The game metatheorem envisions the construction as a game between two players, with
a third omniscient Oracle that can answer queries. Together, the two players take turns
playing longer and longer initial segments of a structure £. The Engineer is in charge
of making sure that the structure satisfies a certain property 8 that we would like the
structure to have. She can ask questions to the Oracle, which is a A2 ;-complete set. The
other player is the Extender, who is in charge of making sure that the limit structure is
computable. He will not coordinate with the Engineer, and does not care if £ satisfies
property 8. Were the Extender left to his own devices, there would be no way that the
resulting structure would satisfy any properties. Thankfully, the Engineer can restrict
how the Extender can play by choosing the structure in which they play. Likewise, if the
Engineer did not have to respect the Extender’s moves in some fashion, £ would never
be computable as she uses information from the Oracle in her moves. We will now give a

formal definition of the metatheorem.
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Formally, an n — A-game is played on a list of structures A = {A,},c., such that the
back-and-forth relations between tuples are uniformly computable up to . At each stage
j of the game, the Engineer will play a triple (i;,a;, e;) with i;,e; € N and a; € A7, The
Engineer will respond by playing a tuple b; € Afjw and the Oracle will play the pair (n;, ;)
th A0

where the number n; represents the answer to the ej* Ay, (D(L)) question and f; is an

ordinal below 7.

Engineer 2.07 a07 €o il ) a17 €1 i?a 627 €2
Extender bo by b
Oracle 105 Bo ., P 12, B2

For stages j > 0 the tuple @; must satisfy (A;_1,b;-1) <g,_, (A;,@;). The Extender’s
tuple must be such that Bij S a;;. Thus, after w many moves a structure £ is constructed
such that D(L) = |, Da,(@,). Given X € 2¢, we fix a A), (X) Turing-complete set S%
as our Oracle in advance, and say that n is the answer to the e A?]H(X) question if
n = @f;]( (0). If ) is a successor ordinal, then for each stage we may assume that §; = n—1.
If 7 is a limit ordinal, then we may assume that the sequence {f;}; is strongly increasing

with limit 7.
A strategy for the Engineer is a function that tells her what to play next, based on
what the Extender has already played. It is called a valid strategy if on all possible plays

by the Extender, all queries to the Oracle converge. The metatheorem can now be stated.

Theorem 2.2.1 (Montalban [25]). Let n be a computable w presentation of an ordinal
and suppose A = {Ag, A1,...} is a list of structures where the back-and-forth relations
are computable up to n. For every computable valid strategy in the n -A-game there is a
sequence of moves by the Fxtender, such that, if the Engineer follows her strategy and the

Oracle answers truthfully, the limit w-presentation L is computable.

2.3 Isomorphisms of w?

Our goal is to create a computable isomorphic copy A of w? with isomorphism f : A — N?

where A/? is the decidable copy such that f =r @&" and there is no computable unary
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relation U on A such that f(U) =r f. To use the game metatheorem with linear orders,

we must first understand the back-and-forth relations on these structures.

Lemma 2.3.1 (Montalban [260]). Ifa,b are tuples of different lengths from the same struc-
ture, then @ <, b iff |a| < |b| and @ <, b!|al.

Lemma 2.3.2 (Knight [5] lem 15.8). Suppose A and B are linear orders. Let a =
(ag,...,an_1) and b = (b, ... ,by_1) be increasing tuples from A and B respectively, and
let A;, B; be intervals such that

A=A+ {ap} + A1+ +{a,_1} + A,
B= By +{bo}+Bi+--+{by_1} + B,
Then (B,b) <, (A,a) if and only if for all 0 < i < n, B; <q A;.

Lemma 2.3.3 (Knight [5] lem 15.10). Let ¢ be either a limit ordinal or 0, and let o and
B be computable ordinals. For each ordinal ¢ let

azwc-ag+pg,
B =w B+ o,

where pe,oc < WS, and let s¢, t; be the coefficients of wS in the Cantor normal form expres-
sions for ., 3, respectively. Then

(a) a <sion+1 B if and only if one of the following holds:

(i) =5
(”) Ps+n = O5tns Qspnt1 = 1, and 515+n+1 =1,

(Z”) Pé+n = O5+n, As4nt1 = ﬁé-&-n-&-l = 07 and So+n = t6+n~

(b) a <sionie B if and only if one of the following holds:

(i) a=p

() Psin = Osin, Qsyni1 = 1, Bsgns1r = 1, and S5in = tsin.
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(¢) for § a limit ordinal, o <5 B if and only if one of the following holds:

(i) o=

(ii) ps = 05, as =1, and Bs = 1.

We will use this lemma to ensure that our moves at each stage of the game respect the
conditions imposed by the Extender. The specific way in which we will use the lemma is

given below.

Corollary 2.3.4. Let k,l,m € w such that 0 < l,m. Then

WPl <o WF - m.

Proof. Take Lemma 2.3.3 (b)(ii) with 6 =0, n = k—1. Then ps;,, = 0s4n = 0, Q5441 =,

Bsn+1 = m, and Ssyp = t54n =0 []

We are now ready to set up our game and describe the strategy for the Engineer.

Theorem 2.3.5. There exists a computable isomorphic copy A of w? with isomorphism
f:A— N2, where N? is the decidable copy, such that f = &" and there is no computable
unary relation U on A such that f(U) =r f.

Proof. To answer our question we will use Theorem 2.2.1 with n = 2. For our pool of
structures A, we will use the single structure w?. The back-and-forth relations are thus
computable up to 2 using Lemma 2.3.3. Each move made by the Engineer and Extender
will be a pair (w?,a@,) where @, is a tuple from w?, and so we omit the structure as it never
changes. The role of the Extender ensures that the limit structure is an w-presentation,
and so the Engineer must ensure that each point is only moved finitely often, and that
every grid point is filled, so that the limit tuple @ = lim,a, forms an isomorphism by
sending ¢ — a;. We will denote the associated partial map of a tuple @ with p;. The copy

of w? we seek will be the pullback of A2 through the isomorphism we construct.

Instead of playing the tuple @,, we can think of putting labeled balls on a grid presen-

tation of w?. Each column of the grid represents a copy of w within w?, and the point (e, 7)
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Figure 2.1: A representation of the tuple ((1,4),(5,6),{4,2))

b4

P T I -

Figure 2.2: A representation of the tuple ((1,4),(7,6),(6,2),(5,6),{4,2))

on the grid represents the element w - e + 4 of w?. If there is the ball labeled s on position
(e,4) in the grid, then we know that {e,7) will be in position s of the tuple. By the end
of the construction we will have covered the grid in balls inducing a natural isomorphism
with the standard presentation. The only types of changes that we will make to our grid
are shifting balls to columns further to the right, and replacing balls that were shifted with
new balls, so that the oracle of the computation against which we are trying to diagonalize
is preserved. Both of these are demonstrated by the shift from Fig. 2.1 to Fig. 2.2, and
both will be elaborated upon later. Using Lemma 2.3.1, we see that the new tuple pro-
duced by making these changes is in the same order as our old tuple when we restrict to
the same length. The only difference is that the distance between the two balls closest to
the insertion point is some number of copies of w greater than in the old tuple. Corollary

2.3.4 tells us that this is a valid move.

We are allowed to ask questions to our " Oracle in this 2-{w?}-game, and &J" is c.e.
in @”. Thus, at each stage we will ask the Oracle to enumerate a bit more of ", and

when we see numbers enter the set we will code that into our isomorphism. We will denote
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the stage s approximation to " by K S@”. The strategy is to sequentially pick special grid
locations called coding locations. Their eventual locations in the limit structure will tell

us whether or not the corresponding numbers are in "

The way that we will code when a number n enters the halting set is by shifting a spe-
cial limit point 7, to the right by inserting copies of w into our copy of w?. This is the same
as moving every ball in a certain column of our grid or higher to the right, and Corollary
2.3.4 tells us that it preserves the back-and-forth relations. The eventual grid placement
of a coding location will also indicate to us where to find the next coding location. For

each ¢ we have the following requirement;

I';: The coding location ~; is mapped to an even multiple of w if and only if i € &".
Additionally, the distance between v;_; and 7; is of the form 2(|b,|, m) or 2{|b,|,m) + 1 for
some s, m where |bs| + 1 is the label of the ball marked ~; ;.

We will say that the requirement I'; requires attention at stage s if 1 € K S@”.

Marking and unmarking balls is imprecise terminology. In reality we can imagine that
we are building an infinite well-ordered set G alongside our actual construction. To mark
a ball as v;, we simply ensure that the label on that ball is the ith element of G. If an
injury forces us to unmark balls, we simply remove the corresponding label from G. While
this is not explicitly permitted in the game construction, at each stage of the construction
we can just code the finite set as a single number and ask the Oracle to remind us of
the number at the next stage. In this way, at the end of the construction we will have
the code for an infinite well-order whose elements tell us precisely the columns of the grid
containing coding locations. It also avoids the issue of using a predetermined computable
set of coding locations to code . Each new location depends on the previous move of
the Extender. If they could be computed, then we would have a way of computing &",

which is impossible.

To further aid in the visualization of our construction, we can imagine that the com-
putable unary relations on A colour the balls, either green if the relation holds of that ball,
or red otherwise. Since our map sends the label to its grid location, the colour of the ball

that rests upon a grid location will determine whether that grid location is in the image
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of the relation under our eventual isomorphism. This is important, because we will shift
balls to other grid locations, but as long as we replace it with one of the same colour, the
image of the relation will remain unchanged. Note, however, that the colour of a ball may

change if we are diagonalizing against a different unary relation.

We also know that, if there is some computable unary relation U on A whose image
will compute f, its characteristic function will be ¢, for some e and there will be some ®;
such that CD{ @ = f. To avoid this, we are required to diagonalize against all . that could
pose a threat. If ¢, is not total, or does not code a set U, which is infinite and coinfinite,
then there is no hope of f(U.) =r &"”. If U, is finite or cofinite then f(U,) will also be,

and if either f(U,) or f(U.) is finite, then f(U.) is computable and cannot compute the
set "

The plan for diagonalizing against a single pair (e, i) is to pick a witness x and wait
for the partial isomorphism that we’re building to have enough information to say that
@{(Ue)(x) |= f(x). We then seek to change f(z) without changing @{(Ue)(:v). This means
that we cannot change the oracle used for the computation ( i.e. f(U.)). And so, when we
insert copies of w to shift the ball that was witnessing this agreeance, we must replace any
shifted green balls with green balls, and likewise red with red. This can always be done,
since the only case in which we diagonalize is if U, is infinite and coinfinite. Truthfully, we
have no choice in the label of the next ball that we play. Each move must be the least label
not yet used in the computation. If the colour of this ball matches the color that we are
trying to replace, which is to say, they are both in the computable unary relation, then we
have no problem. Otherwise, we play the ball out beyond anything that we have currently
played, so that its placement does not injure any requirement, and check the colour of the

next smallest ball. This gives us the following requirement, which we seek to meet for all

pairs {e, i);

Reeiv: If @ is total and codes an infinite and coinfinite set U, then there exists some
x such that @f(Uﬁ)(x) # f(z).

We will say that the requirement R ; requires attention as stage s if U, is a threat,

(@) = pa ().
Recall that each grid location is a pair {(n,m). To figure out the column of a ball, all we

and there is an x in the column directly to the right of 7. ; such that @}
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must do is figure out where it is sent using our finite partial isomorphism, and compute

the first element of the pair.

The main issue with this construction is that our two different objectives will interfere
with each other. If we have diagonalized against a certain computation somewhere in the
construction, and then we are forced to move things because we saw a lower number enter
the halting set, it will injure the oracle that we were trying to preserve. To fix this, we will
give the requirements a priority order I'y > Ry > I'y > R; > ---, so that a requirement of
a lower priority cannot injure one of a higher priority. Thus, each requirement can only be
injured finitely many times, and at a certain point will be permanently met. When an R;
requirement is injured, it will choose a new witness, and can only choose a witness once
the corresponding 7; has been marked. This will not be an issue, as we will mark a new ~;

at each step.

Construction: At stage 0 the Engineer will play the ball 0 on the grid location (1,0) and
mark it as ~o. She will also ask the Oracle whether 0 € K& ", whether ¢y is a total function
which determines an infinite and coinfinite set Uy, and finally, if @?O(UO)(x) |= pa,(z) for

some z in the column immediately to the right of ~.

At stage s + 1 the Extender will have played a tuple b,, and the Oracle will have
answered for all j < s and all {e,i) < s whether j € KZ", and whether ¢, is total and
determines an infinite coinfinite set U.. Furthermore, we will know whether or not there

exists an  in the column immediately to the right of . ; such that &} (UE)(x) |= pa.(z).

At each stage the Engineer will mark the smallest coding location «y; that hasn’t been

marked, and attempt to meet the highest priority requirement that requires attention.

For marking the coding location, she will take the smallest ball that hasn’t been used
yet and place it at the bottom of the smallest odd column to the right of everything that
has been played so far. She will mark the ball as ;, and insert enough copies of w directly
to the left of 7,_; that the number of columns between it and ;_ is 2(v;, ¢;) if requirement
I';_; has not been met, or 2(v;,¢;) + 1 if I';_; has been met, where ¢;_; is the number of
columns between ~,_, and ~y,_; before any are inserted (chosen so that we will never end

up in a situation where there are already too many columns between them). If j — 1 is
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zero, then there is no v,_s, and so the Engineer inserts columns until there are 2(v;, ;) (or
2(v;,£;) + 1 as before) to the left of v;_;. If R;_; has been met, then we must replace the

balls shifted with ones of the same colour as described above.

The Engineer will then act to meet the highest priority requirement that requires at-
tention. Recall that inserting columns is the same as shifting all balls in a certain column
or higher to the right which is the same as increasing the first coordinate of the element

{n,m) of the tuple @ which represents the current location of all of the balls.

If the highest priority requirement is of the form R ;, then we let £ be the largest
column with a ball in it thus far, and we tell the Engineer to shift all balls in the column
of our witness or greater to the right by 2¢ and replace all balls that were shifted with new
ones of the same colour as described above. Meeting R ;, will injure all requirements of

lower priority, and un-mark all 7 for k& > {e,i) + 1.

If the highest priority requirement is of the form I';, then the Engineer must shift every
ball in 7;’s column or higher to the right by one to change the parity of v; from odd to even,
thus meeting I';. She must also shift everything in a strictly higher column by one more,
to preserve the parity of ;1. Meeting I'; injures all of the lower priority requirements

and unmarks v for k > j + 1.

Finally, the Engineer must place a ball at the top of every column that currently has a

ball to the right of it. This completes our construction.

Claim 1: At each stage s of the game, we have that b,_; <, @s.

Proof. Since our only move in meeting a requirement is to insert extra copies of w between
columns of the grid, this will not change the order of elements, neither in the tuple, nor in
the linear order. Thus, while b, |@,.1| and @,,; are not necessarily in increasing order, if
we were to write each in increasing order, the corresponding elements of the tuples would
match, and every subinterval would be identical, save for the one that we made larger.
Then applying Lemma 2.3.2 and Corollary 2.3.4 we see that each subinterval for @, is

2-above the corresponding b, subinterval. O]

Claim 2: The strategy for the Engineer is computably valid.
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Proof. We must ensure all of the questions to the Oracle are A} and will converge. The
set Tot is T13, and once we know that a ¢, is total, the question of whether it is infinite or
coinfinite can be phrased as Vz3y[p () # ¢c(y) A © < y|. We are also only using &” to

enumerate &"”.

The strategy for the Engineer based on the responses to the question uses only com-
putable information about the tuple @, and b, to construct as,1. During the construction
we can view any finite portion of the grid, and so looking at the number of columns between
the coding locations is computable at any stage. While we are asking different questions
at each stage of the construction, in the same way that we can code multiple questions
into one single question, we can ask any finite number of questions to the Oracle. So at
each step we have access to the answers of all previous questions to the Oracle, because if

we wanted to, we could have asked all previous questions and more at each new stage. []

Thus, the metatheorem (Theorem 2.2.1) tells us that there is a A} sequence of moves
by the Extender such that, if the Engineer follows her computably-valid strategy, the limit
presentation A is computable. The limit presentation is such that D(A) = ;e Da; (@;)-
We must check that each requirement is met during the construction, and that in doing

so, our isomorphism has the desired properties.

Claim 3: For each requirement, there is a stage of the construction after which it is

never injured.

Proof. We will prove this by induction on the priority ordering. Assume that the first s-
many requirements are only injured finitely and that we are at a stage in the construction

past which any of them will be injured.

If the next highest priority requirement is I'; for some i, then R; ; is the only re-
quirement that could injure it, because anything else would also injure higher priority
requirements contradicting our hypothesis. If ¢ = 0 then there is no R;_; and nothing can
injure I'; so the result holds. For ¢ > 0, if R;_; never acts then I'; is never injured again and
we are done. If we must diagonalize against a computation to meet R;_; then we will shift

the ball v; outside of the use of the computation that gives us the diagonalization. Notice
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that 7,.1 is not unmarked in this case. This is important because part of the requirement
I'; is that ~; can tell us where to find 7;,1. The number of columns between ;1 and ~; will
be of the form 2{v;,1, ls)(+1). If we were to unmark ~;,; in meeting R;, we would have to
insert more copies of w into our grid before ~; to indicate the new location of ~;,;, which
could injure R; ad infinitum. Thus 7;,; is moved to a place on the grid where it will not
disturb, R;, but the label remains the same. Every lower priority requirement from then
on will be met to the right of ~; in the grid, and so nothing else will injure I';. Thus I'; is

only ever injured a finite number of times.

If the next requirement is of the form R; for some ¢, then inductively it can only be
injured by I';. If we never see i enter our enumeration of J” then R; will never be injured.
If we do need to act to meet I'; then we will shift 7; an by one and only search for witnesses
in the column immediately to the right of it. Since 7,1 is at least two columns to the right

nothing else will injure R;. [
Claim 4: The v;’s are only unmarked finitely often.

Proof. A coding location 7; is only unmarked when a requirement of higher priority is
injured. Since we have established that they are only injured finitely often, each ~; will

only be unmarked finitely often as well. m
Claim 5: f = lim, pg, is a well-defined isomorphism.

Proof. The Engineer is the only one who can change the location of the balls on the grid.
In Claims 3 &4 we have showed that each requirement is only injured finitely often and
that each ~; is only unmarked finitely often as well. Since we mark a new ~; at each step
and since each subsequent requirement is met further to the right of the grid, this means

that the grid will eventually settle.

Since at every turn the Engineer places a ball in a new column and new balls at the

tops of each current column, the grid will eventually fill in completely. m

Claim 6: f =r "
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Proof. To figure out whether or not n € 0” one must first answer the same question for
0,...,n—1. Based on the strategy above we know that the ball 0 will be on the grid point
(2{m1,¥s),0) or (2{y1,¥s) + 1,0) for some s. The parity of odd/even will tell us whether
0 € @"” and the value ~; will tell us which ball to check to see if 1 € &"”. We then check
where the ball v, is sent under our isomorphism. Knowing already where v, was sent, we
can count the number of columns in between the two and it will be a number of the form
2(72, by or 2{ya, 4y + 1 for t > s. The parity will again tell us whether or not 1 € " and
we get the value of v, exactly as above and repeat until n. The value /¢; is large enough
that if Ry moves the ball v, the Extender can still add more columns before v, to indicate
where to find vs. m

Claim 7: There is no computable unary relation U on A such that f(U) =1 f.

Proof. Assume, towards a contradiction, that there was such a relation. Furthermore,
WLOG assume that ¢, = xy (ak.a. U,) and that @{(Ue) = f. By the use principle,
there is a finite part of the oracle f(U.) that witnesses this computation. After a certain
stage s in the construction, every requirement of a higher priority that was going to act
would have acted, and so R ;, will not be injured any further. At every stage t > s we
then would have asked the Oracle if there was any ball  in a certain column on which
i t(Ue)(:c) = py(x). Since p; < f, there must be a stage where we witness an agreement, or
in the limit we would not have ®/ (Ue)(x) = f(z) for all z in the aforementioned column.
We then would have diagonalized against it and preserved the use of the computation.

This is a contradiction, and so our claim is satisfied. O]

Thus, we have a computable valid strategy for our Engineer and the resulting structure

provided by the metatheorem has the properties we set out to construct.

]

2.4 Isomorphisms of w“

We now seek to extend this proof to show that for any finite 1 < £ < w we can construct

two copies of w® such that the isomorphism achieves the degree of categoricity for the
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structure without using a predetermined computable set of coding locations.

Theorem 2.4.1. For k € w, k > 2 there exists a computable isomorphic copy A of w* with
isomorphism f : A — N* where N* is the decidable copy such that f =r PV and there
is no computable unary relation U on A such that f(U) =r f.

Proof. To prove this, we play a (2k—2)—{w"} —game, and use a &**=2 Oracle to enumerate
K222 T view wk as a grid, we must take an ordinal in its Cantor normal form
W np + 0Pt g + - +w - ny + ng and write it as (ng, (ng_1,...,meyy. This is the
same as making each column in the grid of the form w*~!. Since Corollary 2.3.4 tells us
that adding copies of w*~! results in a tuple that is 2(k — 1) above the previous, we can
proceed with the construction exactly as above. The questions we ask to the Oracle do
not change, except, that we ask it to enumerate K Zh instead, which is a valid question
in our (2k — 2)-game. O

When we move to transfinite ordinals «, the degree of categoricity increases from 0~
to 0, but so does the computational strength of our Oracle. Instead of using 0*) as our

a+1)

AY, set, we may use 0" as a A2, set. This, together with Corollary 2.4.2 allows us

to continue to extend the theorem to any computable infinite successor ordinal

Corollary 2.4.2. Let o« = 6 + n+ 1 where ¢ is a computable limit ordinal. Let [, m € w be
such that 0 < I,m. Then

wafl 1 <6+2n wafl -m.
Proof. Following Lemma 2.3.3 (b)(ii) for 0 +2(n— 1) + 2, we see that psyn_1 = 051n_1 = 0,

Os4n =1, B50n = m, and Ssyp_1 = ts1n_1 = 0. []

Theorem 2.4.3. For all computable ordinals o« = § + n + 1 where ¢ is an infinite limit
ordinal and n € w, there exists a computable isomorphic copy A of w* with isomorphism
f: A — N© where N is the decidable copy, such that f =p &P and there is no
computable unary relation U on A such that f(U) = f.

Proof. We will be playing a (§ + 2n) — {w®}-game. Since « is a successor ordinal, we may

use the same grid technique as in Theorem 2.4.1. Our Oracle in this game is gj(@+2n+1)
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which is strong enough to enumerate K 2 which is the degree of categoricity for the
structure w®. Corollary 2.4.2 tells us that our insertion strategy will still provide tuples

that respect the back-and-forth restraints imposed by the metatheorem. O

If we are not requiring the isomorphism to compute the degree of categoricity of the
structure, then our game becomes simpler. We can use an Oracle strong enough to directly
compute the set we would like to code into our isomorphism, and yet the back-and-forth
relations that our Oracle necessitates us to obey still allow us wiggle-room to change our
play between stages. For limit ordinals, we use one final application of Lemma 2.3.3 in the

following Corollary.

Corollary 2.4.4. Let (,n,\ be computable ordinals such that \ is a limit ordinal and
A<n<(. Then

Wl <, Wb,

Proof. We apply Lemma 2.3.3 (c)(ii) with § = X\, ps = 05 = 0, and a5 = w"?, 35 =
ws A, ]

Proposition 2.4.5. Let o, B be computable ordinals such that 0%%) is less than the degree of
categoricity of w®. There exists a computable isomorphic copy A of w® with isomorphism
f: A — N® where N is the decidable copy, such that &P <; f and there is no
computable unary relation U on A such that f(U) =r f.

Proof. If « is finite or an infinite successor ordinal, then this is an immediate corollary of
Theorems 2.4.1 and 2.4.3.

If « is a limit ordinal, then we must make bigger changes to our strategy. We can
no longer immediately meet the strongest possible level of respect to account for any f.
However, since f < a we may ensure that at each stage we are playing a tuple g above the
previous, so that we do not have to deal with the increasing levels of respect that would
come from an o game. The big change comes from the way that we must view our grid.
We can write w® = )’

w*® . Having to obey the 3 restraint relations effectively fixes any column where a(p) < f3,

ew w*®) and view it as a grid where the i — th column is of the form

and so our first play, instead of being on the grid spot (1,0), will be on the location (n,0)
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for the least odd n such that § < a(n). The rest of the strategy is as before, except that
instead of inserting copies of w* we are inserting the appropriate columns. This changes the
way that balls are moved in the copy of w® that we are building, but does not change the

strategy, nor the grid visualization. The validity of each move follows still from Corollary
2.44.

]

2.5 Further Work

While the game strategy above works for successor ordinals, the case of building a com-
putable copy of w® for «r a limit ordinal remains open. Recall that when using the metathe-
orem for a limit ordinal, at each step of the construction the Oracle gives us a larger ordinal
which signifies the level of back-and forth relations which we have to respect. The game
that we played in Theorem 2.3.5 becomes nullified when we do not know the back-and-forth
level of respect that we will have to obey before we ask the question. If & = w then at each
stage we would have to obey some finite level n of back-and-forth restraint. This restraint
effectively fixes the first n columns of our w* grid. Not knowing what the next level of
restraint will be means that any predetermined coding location could become fixed before
we are able to insert columns to the left of it. It also fixes what the Extender has done in
those columns, and so we lose some of our power to diagonalize. If we try limiting what
can be fixed and where the Extender can play by increasing our pool of structures, then
we run into the issue of the increasing levels of restraint. If we move to a bigger structure,
then trying to mirror the tuple played by the Extender will always result in one subinterval
that is larger (and therefore not back-and-forth below). This means that any proof of the

result using the game metatheorem would have to use a drastically different approach.

We encounter issues with the metatheorem as well, if we try building a computable
copy B of w® where o > 1 such that there is no computable unary relation on N'® whose
image f(U) can compute the isomorphism f : N'* — B*. Let us consider the case a = 2,
so that it may be compared to Theorem 2.3.5. Since the computable relations are now

on the standard copy, as we build the computable copy B we are building the image of
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the relations. Before, if we needed to change the image of the relation, we could do so
by moving a ball and replacing it with one of the same colour. In this way the image of
the ball remains in the relation and yet the isomorphism has changed. This was always
possible because the relations we were diagonalizing against were infinite and coinfinite, so

there were always balls with which to replace.

In the case of mapping out of the standard copy, instead of colouring the balls we
are colouring the grid spots. Therefore, to change the isomorphism while preserving the
image of the relation, we must move a ball from a grid spot to one of the same colour.
This becomes an issue as the grid fills in, because we can only insert copies of w while
respecting the 2 back-and-forth relations. So if we shift a column that has finitely many
balls placed in it, we must find another column with the same coloured grid points in each

location. This is not guaranteed to exist.

The main tools enabling us to employ the game metatheorem are an understanding
of the back-and-forth relations on a structure, and an understanding of the degrees of
categoricity. Understanding these aspects is easy to achieve when the structures are simple,
of computable dimension 1 for example. A different class of structures where the back-and-
forth relations are well understood and, which additionally provide interesting examples
to work with, are superatomic Boolean algebras. It would be interesting to see which of
the results proved in this section for linear orders carry over. Every superatomic Boolean
algebra can be thought of as an interval algebra over a linear order, and so many results on
the degree spectra of relations included in Hirschfeldt [18] are mentioned for linear orders

and superatomic Boolean algebras together.
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Chapter 3
Scott Complexity of Groups

The work done in the previous chapter cannot presently be extended to mathematical
groups. This is because neither the degrees of categoricity nor the back-and-forth relations
are well understood for this class of structures. Barker [6] managed to give a character-
ization for the back-and-forth relations between tuples from the same reduced countable
Abelian primary group, but even to try and look at two different reduced Abelian p-groups
becomes much more difficult. A result that will help us greatly in this class of groups is

Ulm’s theorem, which uniquely characterizes countable torsion groups up to isomorphism.

Ulm’s theorem proves to also be a helpful tool for trying to determine the Scott com-
plexity of such groups. Alvir and Rossegger [3] were able to construct Scott Sentences of
optimal complexity for scattered linear orders. Our goal in this chapter is to characterize
the back-and-forth relations for countable reduced Abelian p-groups, and use that to try
and find the Scott complexity of such groups.

3.1 Background

In this section, given a group G, when we write nz for n € w,z € G, we mean z + - - - + .
We will only be working in Abelian groups for which the group operation is commutative.

For a fixed prime p, a group G is said to be primary (or p-primary) if for each group
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element x € G p"x = 0 for some n > 1. We say that G is divisible if for every x € G there
exists a y € G and n € w such that x = ny. A reduced group is one with no non-trivial
divisible subgroups. Going forward, when we refer to a group we will mean a countable

reduced Abelian primary group unless stated otherwise.

Let Gy = G, and for any ordinal a we define G,.1 = pG,. That is to say, Goy1 =
{r e G:3yeGypy = x}. We call this the set of elements of height at least a. If «v is
a limit ordinal, then we define G, = (5_, G. Notice that if « < 3 then G, =2 G5. We
define the largest « such that = € G,, to be the height of x and denote it h(x). The height
function does not always play nicely with respect to sums. For z,y € G if h(x) < h(y)
then h(x + y) = h(z), but if h(z) = h(y) then h(z + y) = h(z). Given a subgroup S of
G, we say that z is proper with respect to S if h(z) = h(xz + s) for all s € S. This is
the same as the height of x being maximal in its coset mod .S. For such proper elements,
h(z + s) = min{h(z), h(s)}. We also know that for all z # 0 we have h(px) > h(z). We

define h(0) = o to be greater than any ordinal to ensure this property.

We similarly define, for all o, P, = P n G,, where P = {g € G : pg = 0}. Viewing
P, /P, 1 as a vector space over Z,, we define the a-th Ulm invariant to be its dimension,
and denote it fg(a). In addition, since G is countable, there must be an ordinal A called
the length of G such that Gy = G¢ for all £ > A. Since G is reduced, we can conclude that
G, = {0}.

If G is a direct sum of cyclic groups then its length is bounded by w, and we know that

n) is exactly the number of cyclic summands of order p**! for each n.
y Yy p

Theorem 3.1.1 (Ulm [20]). Two reduced countable primary abelian groups are isomorphic

if and only if they have the same Ulm invariants.

For groups of length greater than w, it is harder to find explicit examples of groups
with certain Ulm invariants. Additionally, determining the Ulm invariants from a group’s
presentation is not easy. We know, from a paper of Droste and Gobel [11], that any
sequence can be realized as a group with those Ulm invariants, and so ideally we can work

exclusively with Ulm sequences.

Thus, to describe a given a group G of length A up to isomorphism, we wish to say for
each o up to A that there is a basis of P,/P,; of size k. Barker [0] has shown that
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Proposition 3.1.2. Let « be an ordinal. The group G.,.. is definable by a 119, formula.
The group Go.a4n for n >0 is definable by a 33, formula.

Given an = € G, we have seen that h(pz) > h(x). Most of the time, it is the case
that h(pxr) = h(z) + 1, but there are some x for which it increases more. Let p~'Go 0 =
{z € G:pze G,yo}. Then given a subgroup S, we define S, = S n G, and look at the
subgroup S* = S, N p 'Gyye. For any z € S* we can find a y € G4, such that pr = py.
Given such a y we may add any element of P,,; and we will get a new element with the
same desired property. Observe that the element z — y is in P, since p(x — y) = 0 and
h(z —y) = h(x). The mapping of x to x — y for such a y as above, followed by the natural
homomorphism from P, to P,/P,; thus forms a homomorphism of S* into P,/P,.1. The
kernel of this map is exactly S,.1. Hence, we get an isomorphism which we shall call
w: S¥/Sa+1 = Po/Payi. This map does not seem to be very natural, but the usefulness

comes from the following Lemma.

Lemma 3.1.3 (Kaplansky [20]). Let S be a subgroup of the group G and w as defined

above. Then the following are equivalent:

1. The range of u is not all of P,/Puy1.

2. There exists an x € P, proper with respect to S.

This Lemma will prove useful to us in Section 3.3.

3.2 Scott Complexity

We begin this section by building off of the work done in Proposition 3.1.2. Notice that,
for an element x € G, r € P <= p-x = 0. Thus, to say that x € P, requires the
same number of quantifiers as to say that x € GG,. So the task becomes expressing the
dimension of P, /P, as a vector space over Z,. Letting ¢,, ¥, define G, P, respectively,

the following says P,/P,1 has dimension at least m for m € w:
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anzﬂglp--ﬂm A¢a(gz) N \/ <¢a+l(nlgl+"'+nmgm)_’/\ni:0)]

i<m Nn1,...,nm€ZLp i<m

If o = w-fF+n forn = 0, then 1441 has complexity X5, and 67 has complexity %95 ,.
To then say that f(a) = m we must use the formula 6™ A —67*1 which has complexity
d— 2(2](1-‘4-2

If P,/P,+1 has dimension oo over Z, then we must say

0 = N\ o

mew
and the above formula has complexity T19;, ;.

We also need to know the length A of the group G, so that we can distinguish it from a
group G’ of longer length, but with all the same Ulm invariants up to A as G. The length
of the group is the first ordinal A such that G\ = 0, so a formula saying this fact is

Ly=Vz(pr(z) >z =0) A /X\Hx(wa(:c) Az #0).

a<A

If \ = w-ais a limit ordinal, then this formula is 11, ;. f A =w-a+nforn >0
then this formula has complexity d — 39,,,. Thus, the group G with length A and Ulm

invariants given by f has Scott sentence

Ly A /\Gi(a) A

a<A

Where  is a II9 sentence saying that G is an Abelian p-group. Any structure that
is isomorphic to G will trivially satisfy this formula, and if a group satisfies this formula,

then Ulm’s Theorem tells us that it is isomorphic to G.

Notice that for a fixed «, the complexity of L, will be less than that of v,. This means
that we will end up with cases for the complexity of the Scott sentence for G based on the

length and the Ulm invariants.
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Theorem 3.2.1. Let G be a group with length A > 0 and Ulm invariants given by f. Then

for0<n <w,

(i) If A\ =w-a+nand flw-a+k) < for 0 < k <n then G has a Scott Sentence of

complezity d — X9, .

(i) f N\ =w-a+nand flw-a+ k) =0 for 0 <k <n then G has a Scott Sentence of

complezity 119, .

(1)) If A\ =w-a+n and flw-a+1i) < 0 and f(w-a+ j) = o for some i £ j with
0<i,j <n, then G has a Scott Sentence of complexity 113, , 5.

(iv) If \ = w -« then G has a Scott Sentence of complexity 115, , ;.

Proof. (i) From our work above we note that the complexity of L, will be d — X9 ., and
(watk
ca+k

will be easier to describe and so the complexity of the Scott sentence becomes d — X9 .

the complexity of 8(’: ) will be d — ¥9,.0 for all 0 < k < n. All lower Ulm invariants

(ii) Similarly to the previous case, the complexity of 62 ., will be IIJ ., for all 0 <
k <n.

(iii) If G has a finite and an infinite Ulm invariant withing finite distance from the
length of the group then there will be a d — X9 ., and a II3, 5 appearing in the infinite
conjunction of Ulm invariant formulae. The length of the group will still be d — X9, to

describe, and so the Scott sentence has complexity II9, . .

(iv) If the length of G is a limit ordinal A = w - « then the formula L, has complexity
HO

20+1"
limit ordinal A. Thus their complexities are dominated by that of L and the Scott sentence

The infinite conjunction of Ulm invariant formulae is only for those less than the

has complexity I19, . ;. O

Note that this is not claiming to demonstrate the Scott complexities of any groups. In
fact there are many cases where there exist Scott sentences of lower complexity for groups.
Any finite group is expressible by a IT formula for example. What we have done provides

an upper bound on the Scott complexities of countable reduced Abelian primary groups.
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Our next goal is to show when it is a tight upper bound, and to this end we need to

understand better the back-and-forth relations between such groups.

Recall from Definition 1.2.1 that for two groups G, H, G <, H if and only if all X°
formulas true of H are true of G if and only if all II2 formulas true of G are true of H.
This would include Scott sentences, and so if we can find two non-isomorphic groups that
are a back-and-forth equivalent, then neither can have Scott complexity ¥2 nor IT2. To do
this we need conditions that guarantee that two groups are a equivalent and so we seek to
characterize the back-and-forth relations for groups. If we are looking at tuples from the

same group then the characterization is known.

Proposition 3.2.2 (Barker [6]). Let a,b € G=% and let g : b — @ map corresponding

members of the tuples to one another.

1. @ <o b if and only if

(a) g extends to an isomorphism g : (b) — (@) and
(b) for every be {(by and a = g(b) we have

h(b) = h(a) <w-d or h(b),h(a) =w-9J.
2. @ <o541 b if and only if

(a) g extends to an isomorphism g : {b) — (@) and
(b)(i) If P,.sy is infinite for every k < w then for every b e (b)Y and a = g(b) we have

h(b) =h(a) <w-6 or h(b)=w-3d and h(a) = min{h(b),w - 0 + w}.

(b)(ii) If Posix is infinite and P51 is finite, then for every b e {by and a = g(b)
we have

h(b) =h(a) <w-0 orw-d < h(b) <h(a) <w-0+k orh(a) =h(b) >w-J+k

(b)(iii) If P,.s is finite, then for every b e (b)Y and a = g(b) we have



With the allowance of different groups comes many more moving pieces leading to many
more cases to be considered, and before that we can turn to a different model-theoretic
condition concerning the satisfaction of formulas to try and show optimality of our Scott

Sentences.

Definition 3.2.3. We say that A is a Y.2-elementary substructure of B and write
A <59 Bif Ais asubstructure of B, and A, B satisfy the same 30 formulas with parameters
from A.

This has the following connection to back-and-forth relations.

Proposition 3.2.4. If A <50 B then B <441 A.

However, it is no easier to characterize when a group G is a ¥.2-elementary substructure
of another group H than it is to characterize the back-and-forth relations. For the smallest
back-and-forth relations, work of Eklof’s [15] can be applied. He showed that G <y H if
and only if G is a pure subgroup of H and every II{ sentence true of G is true of H. If
we combine these definitions with the following theorem we get our first usable results on

pinning down Scott complexity.

Theorem 3.2.5 (Alvir [1]). Suppose that (A;)ic is a chain such that A; <sp A1, and
A =, Ai where A is not isomorphic to any A;. Then A has no d-X2 ., Scott sentence.

The definition of a pure subgroup is unnecessary, and for this context it is sufficient to

know that direct summands of primary groups are pure subgroups.

Theorem 3.2.6. If GG is a direct sum of cyclic groups and has two infinite Ulm invariants
then G does not have a d — X9 Scott Sentence.

Proof. Assuming that G has two infinite Ulm invariants f(n) = oo and f(m) = o for
n < m we can write G as H @ (Z,»)* or more importantly. as a chain | J; H @ (Zy»)". We
seek to show that at each stage H @ (Zyn)" <y9 H @ (Zy»)"*'. By the remark above we
trivially have that H @ (Z,»)" is a pure subgroup of H @® (Z,»)""!, so to apply Eklof’s result

we just need to show that every IT{ sentence true of H @ (Zyn )" is true of H® (Zyn)"™, i.e.
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H® (Zy)' <1 H® (Zyn)™. This is true because we can embed Zyn @ (Zym ) into (Zym)“
since Z,m contains a subgroup isomorphic to Z,.. Therefore we can embed H @ (Zn )"+
into H @ (Z,»)" using the same trick. O

Corollary 3.2.7. If G is a direct sum of cyclic groups with length A\ = 2 and all Ulm

invariants infinite then 113 is the best possible Scott Sentence.

3.3 Back-and-Forth Relations

Barker’s back-and-forth relations between tuples of the same group allowed for many sim-
plifying assumptions, including the fact that there is only one length, one set of Ulm
invariants, and one set of elements of each height. When those things can be different
many possibilities open up for ways to map elements between tuples. In this section we
obtain a partial result in extending the back-and-forth relations to arbitrary countable
reduced Abelian p-groups. To give a full characterization of such back-and-forth relations

has been a long-standing open problem [5].

Theorem 3.3.1. Let A, B be countable reduced Abelian p-groups of lengths A4, Ag respec-
tively. Further assume that \P6A| = o for all f < min{A4, w-a+w} for a countable ordinal
a. Letae A<¥ be B<¥ and let g : b — @ map corresponding members of the tuples to one
another.

1. (Ava> S20+1 (875) Zf and OTLly Zf

(a) for all f < w- a we have fA(8) = fi(B),
(b)) AMa=X g <w-aordg=w-aand A\g = min{z,w - a+ w},
() for all k€ w, |PA ] > [PEooil ond [GAo ] > 1GE i,
(d) g extends to an isomorphism g : (b) — (@), and

(e) for every be {(by and a = g(b) we have

h(a) =h(b) <w-a or (h(b)=Zw-a and h(a)=min{h(b),w a+w}).
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2. (-’47 a) <20+2 (875) Zf and Only Zf

(a) for all B < w- o we have fa(B) = fs(B),
(b)) AMa=Xdp<w-a+worw-a+w< Ay, s,

(c) for all k € w, | Pyl = [Pyl and |GL k] = 1G3

w-a+k|7
(d) g extends to an isomorphism g : (b) — (@), and
(e) for every be {(by and a = g(b) we have

h(b) = h(a) <w-a+w or h(b),h(a)>w- - a+w.
3. (A,a) <4 (B,b) for a a limit ordinal or zero if and only if

(a) for all § < w-a we have f4(8) = ful(5)
(b)) Aa=dg<w-aorw-a< gz,

(c) g extends to an isomorphism g : (b) — (@), and
(d) for every be (b) and a = g(b) we have

h(b) = h(a) <w-a or h(b),h(a)=>w-a.

Proof. (=) Recall from our work at the beginning of the previous section, that the formula
describing the Ulm invariant at the level w-a is either 5,3 or I, 3 depending on whether
the Ulm invariant is finite or infinite. This means that for any § = w - v < w - @ we have
v < (av—1), and so the complexity of the Ulm invariant formulas are at most 3o(4_1)4+3 oOr
y(a-1)+3- Recall from Definition 1.2.1 that if (A, @) <sat1 (B,b) then any Iy, formula
true of A must hold of B, and any Y,,,; true of B must hold of A. Hence, any Ulm
invariant of A that is infinite below w - «v forces the corresponding Ulm invariant of B to be
infinite. Likewise any Ulm invariant of B that is finite and below w - a can be completely
described, and so the corresponding Ulm invariant of A must be equal. Together, this
forces all Ulm invariants below w - @ to be equal and shows why part (a) is necessary in all

conditions.

We showed earlier that, to say that the length of a group is exactly w-«, has complexity
[Ty, 41. To say that it has length at least w-a+n we just have to say that G+, # {0}, and
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so this is Yo,41 as above. To say that the length of a group is at most w - a + n it suffices
to say that Gu.arn = {0}. This would correspondingly have complexity Ils,,1. Thus as
before, Ay < w-a +n implies \g S w-a+nand \g > w-a+n implies A\g > w-a + n.
Below the w -« level they must be equivalent and above the w - o 4+ w level we do not need
to preserve formulas of that complexity. This shows that condition 1(b) is necessary. If
(A, @) <oas2 (B,D), then (A, @) =s041 (B,b). We shall use this fact again to show that an
asymmetric condition in 1, must become symmetric with one more quantifier. For now,
we have shown that 2(b) is necessary. If « is a limit ordinal, then a = 2«, and so the
conditions look a lot like 2(cv — 1) + 2 for non-limit ordinals, but there is no a — 1 level,
and so condition 2(b) would not make sense. For 3(b), (c¢), and (d) though, it is sufficient
to show that 2(b), (d), and (e) are necessary.

Similarly as above, we recall from Proposition 3.2.2 that the subgroups G,., and G .o 4%
are describable using Ily, and s, formulas respectively. Adding an existential quantifier

in front of a 5,1 formula will not change its complexity, and so to say that there are at

B
w-a+k

of G2, .. The subgroups P,.,+ have the same complexity and so this demonstrates why

least x things in G for k a finite cardinal is ¥5,,1 and this formula must then be true
condition 1(c) is necessary. As before our asymmetric condition becomes symmetric when

we add one more quantifier.

If g does not extend to an isomorphism between (b) and (@) then we can find a quantifier
free formula true of b that does not hold of @, so conditions 1(d), 2(d), and 3(c) are

necessary.

For any be b, h(b) > w-a+n <= be Gyqarpn. From Proposition 3.2.2, we know that
this is a Yoq41 statement, and so if (A, @) <sq+1 (B,b) then this forces h(a) > w-a + n as
well. Likewise, h(a) < w-a+n <= a ¢ G,.qrn which is a Iy, statement. Combining

these two facts we have that whenever w-a < h(b) < w- o+ w we have h(a) = h(b).

Note that when (1) holds and h(a), h(b) < w-«, to express that the height of an element
ris f < w-a we need only say that x € Gg A x ¢ Gp41, so we must have h(a) = h(b)
given that these groups are definable by low-complexity formulas. As before, anything

asymmetric for 2a + 1 becomes symmetric for 2a + 2, and so this proves why conditions
1(e), 2(e) and 3(d) must hold.
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(<) We will proceed by induction on a. When a = 0 and (A,a),(B,b) meet the
conditions of 3 (really just (c), (d)), then we see that any quantifier free formula true of @
in A will hold of b in B. We proceed differently depending on whether « is odd, even, or

a limit ordinal, and so separate into those cases below.

Case 1: Assume that (A, @), (B, b) satisfy the above conditions for part 1. We wish to
show that for any d € B<“ we can find a ¢ € A=* such that by induction (B, bd) <, (A, @c).
Using a result of Kaplansky’s ([20] Problem 36) if Az > w-a then |P§| = oo for all § < w-a.
This allows us to apply the inductive hypothesis despite its asymmetric assumptions on A
and B. Notice that the conditions of 2 are more restrictive than the conditions of 3, so if
2av is a limit ordinal then if we show it meets the conditions of 2 it will suffice. Conditions
2(a) and (b) for 2(aw — 1) 4+ 2 follow from our assumptions of 1(a) and (b) respectively.
If A4 = A\g < w -« then by Ulm’s theorem they are isomorphic and so 2(c) is satisfied.

If « is a successor ordinal and Ay, A\ = w - a, then by (Kaplansky [20] Problem 36)
\Pj(a71)+k| = |Pf(a 14k = 00 and so 2(c) is satisfied. If o is a limit ordinal then we are
instead trying to meet the conditions of 3 which does not mention ]P Dkl |P5 (1) 4kl

Let A = (@), B = (b) be subgroups of A, B respectively. Given a d € B<“ we seek to
extend the isomorphism g : B — A to an isomorphism g : B’ = (b,d) — C' = (@, ¢) for a
suitable ¢ € A=“ such that it meets the conditions of part 2. We will do this by making a
sequence of extensions B = By € By € --- € B’, and choosing at each stage i an x € B'\B;

with px € B; if possible, and extending g to B,y = (x, B;).

Case 1(a): If Ay = A\g < w-« then our assumption of condition 1(a) forces the groups

to be isomorphic by Ulm’s theorem. So we can certainly extend g as needed.

Case 1(b): f w-a < \g < A4 < w- o+ w. We shall ensure that each extension of g

to B; satisfies the following condition.

h(a) = h(b) <w-a or < h(b) < h(a) < A,
which we will call condition . If this is met for all i < |B\B|, then g : B’ — A’ will satisfy
h(a) =h(b) <w-a or w-a<h(a),h(b).

Note that by our assumption of condition 1(d) g meets condition * for By.
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As stated above we now choose an x € B’\B; such that pz € B; and z is proper with
respect to B;, and h(px) is maximal among all z with this property. B is a p-group, and
so B’ being finitely generated means that it is finite. This allows us to use Lemma 3.1.3

to choose such an z.

Since g meets condition *;, we know that either h(px) = h(y) <w -« or h(pzr) > w -«
and h(y) = h(pz).

Case 1(b)(i): If h(y) = h(pz) = h(z) +1 < w-« then we choose a w such that pw =y
and h(w) = h(x). This is possible from our assumption that fa(h(z)) = fg(h(x)). We
know that w ¢ A; because if w = g(z) for some z € A; then pz = pz since g is a group
isomorphism. This would mean that h(pxr — pz) = h(0) = o0 > h(pz) which contradicts

our choice of .

We also get that w is proper with respect to A;, for if there were some a € A; such that
h(w+a) = h(w)+ 1 = h(z) + 1 and a = g(b) for b € B;, then since w + a # 0 we must
have h(p(w + a)) = h(x) + 2 which forces h(p(xz + b)) = h(z) + 2. This also contradicts the

maximal height of px € B;.

We can now extend ¢ to B;y1 = (z, B;) by mapping g(rz +b) = rw +a for 0 < r <
p,be B; and a = g(b). Since w was proper with respect to A; we see that g still preserves

heights for everything < w - o, and so g meets *;.

Case 1(b)(ii): If h(x) = =, h(y) > v+ 1, then since h(pz) > 7 + 1, there is a
v € By such that pv = pr. The element x — v is then in Pf and it also has height ~
and is proper with respect to B;. We can apply Lemma 3.1.3 to see that the range of u is
not all of Pf /PVBH. By induction on i, g preserves heights for elements of height < w - a.
Furthermore, g maps B; "B, onto A;n A, 1, BinB, onto A;n A, and B;nB,np~'B, 2
onto A; n A, N p1B, .

Since (B; n B, np~'B,12)/(B; n B,41) is finite, its dimension as a vector space over Z,
is strictly less than fgz(y) = fa(v). Combining these facts, we see that the dimension of
(Ain A, np P AL 19) /(A n Aypq) is also less than f4(), so we can apply Lemma 3.1.3 in
reverse, giving us an element w; € A such that pw; = 0, h(w;) = 7, and which is proper

with respect to A;.
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Since h(y) > v + 1 we know that y = pws for wy € A,1. Let w = wy + we. Then
pw = 0+ y, h(w) = h(w;) = 7, and w is proper with respect to A;. If we extend g by

g(x) = w as before, we see that g preserves heights < w - a and so satisfies x;,.

Case 1(b)(iii): If A(x) > w - « then h(z) < h(pz) < h(y). So we can choose a w; € A
such that pwy = y and h(w;) = h(y) — 1 = h(x). The fact that there is an element of
height > w - « implies that A4 > w - «, which justifies our use of the ordinal A4 — 1. By
our assumptions on A, P/\“‘; _, is infinite, hence we can get an element wy € P/\“‘; \A;. Let

w = wy + wy and extend g to B;,q by defining g(z) = w.

To see that g still meets condition x take an arbitrary element rx + b of B;,; where
0 <r < psince pr € B; and b € B;. We have that g(rz +b) = rw + a. If h(b) < w- «
then h(rz + b) = h(b) and h(b) = h(a) by our induction on i, thus h(rw + a) = h(a)
and g preserves heights below w - a. If h(b) > w - o then by induction we still know that
h(a) = h(b). We also have that

h(rw + a) = min{h(w), h(a)} = min{h(w;), h(ws), h(a)} = min{h(xz), Ag — 1, h(b)}.

Since A\g < Ay we must have h(x) < A4 — 1 and since x is proper with respect to
B; we have that h(rz + b) = min{h(z), h(b)}. Thus g meets condition * for B;,; and by
induction on 7 and our inductive hypothesis on a we have shown that (B,bd) <y, (A, ac)
for ¢ = g(d).

Case 1(c): Assume that Ay > w -« +w. We know in this case that PZ, , is infinite

for all k € w (Kaplansky [20] Problem 36). Let Ny = |B"\B| and N;;; = N; — 1.

We shall ensure that we extend g to B’ such that for all b € B; we have
h(a) = h(b) <w-a or h(b) >w-«aand h(a) = min{h(b),w - o + N;}.

If this is accomplished for all i < Ny then we would meet condition 2(d) (or 3(d)), which
would mean (B,bd) <sq (A,ac) from our inductive hypothesis. We shall call the above

condition *;, and, by our assumption of condition 1(d), g meets x.

Now by induction on i we again take an x € B'\B; such that pz € B;, x is proper with

respect to B;, and h(pz) is maximal amongst all such elements of x + B;, and let g(pz) = y.
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Case 1(c)(i): We can prove this case exactly as in 1(b)(i).
Case 1(c)(ii): We similarly follow the proof of 1(b)(ii).
Case 1(c)(iii): h(z) > w-a and h(y) = min{h(px),w-a+ N;}. Since h(pz) = h(z)+1

we know h(y) > w -« and so there exists a w; € A such that pw; = y and h(w;) >
v \Ai Set w =
wy + wy we extend g by sending x to w. Note that w ¢ A; and h(w) = min{h(w;), h(ws)}.

min{h(z),w- o+ N; — 1}. Since Pz, 5 is infinite we can find a wy € P2,

For all b € B; such that h(b) < w - «, g preserves height as before. Let b € B; have

height = w - a. Then for a = g(b) and 0 < r < p using condition *; we have

h(rw + a) = min{h(w), h(a)} = min{h(z),w - o+ N; — 1, h(b),w - a + N;}
> min{h(x),h(b),w o+ N1}
= min{h(rz +b),w - o + Nij1}

where the last equality follows from the fact that = is proper with respect to B;. Thus g

satisfies condition *;, .

In all cases above g satisfies *; for all ¢ < Ny and so we can extend g to a map which
meets the conditions to show that (B,bd) <sn (A, @c) for ¢ = g(d).

Case 2: Now if (A, a), (B,b) meet the conditions for Part 2 of the Theorem, we must
do something very similar to before to show that given any d we can find a  such that
(B, bd), (A, ac) meet the conditions for Part 1. This time, conditions 1(a), (b), and (c) follow
immediately from 2(a), (b) and (c), and so our primary concern is again extending the
isomorphism ¢ to a map (b,d) — (@, ). Let d € B<* and we once again let By = B = (b),
B’ = {bd), and Ay = A = (a).

Case 2(a): If Ay = Az < w- «a then, as in case 1(a), we conclude that A and B are

isomorphic.

Case 2(b): If A\g > w-a and A4 = min{\g,w - @ + w}, then as before we know that
|PA ] =00 forall k < A4 Let

M =max{m:V' € B',h(b\) =w-a+mfor mew}+1,
N[) = ‘B//B’ +M, and Ni+1 = Nl— 1.

43



For each 0 <7 < Ny we would like to extend g to B; in such a way that it satisfies

h(b) =h(a) <w-a+M or (h(b)>w-a+w and h(a)>w-a+ N;)

for all b € B;, a = g(b). We will call this condition *;. If this is met for all ¢ then g will
satisfy

h(b') =h(d) <w-a or h(d)>w-aand h(V') = min{h(d),w  a+ w}

for all ¥ € B, which would complete our proof that (B,bd) <sar1 (A, ac). By our assump-

tion of condition 2(d), g meets condition *.

Now by induction on i, we take an = € B'\ B; such that px € B;, x is proper with respect
to B;, and h(px) is maximal amongst all such elements of z + B;. Let g(pz) = y. Since g
meets condition *; we know that either h(pz) = h(y) <w-a+ M or h(z) > w-a+ w and
h(y) > w-a+ N,

Case 2(b)(i): If h(y) = h(pz) = h(z) + 1 < w - a + M then we proceed exactly as in
case 1(b)(i).

Case 2(b)(ii): If h(z) =y <w-a+w,y+1 < h(y) < w - «a then we similarly follow
case 1(b)(ii).

Case 2(b)(iii): h(z) > w-a+w and h(y) > w-a+ N;. Asin case 1(b)(iii), we can
find a w; € A such that pw; = y and h(w;) = h(y) = 1 > w - a + N; — 1. Furthermore, if
we are in this case, then Ag > w - o + w which forces Ay = w - o +w. Thus, since P,
is infinite, we can find a wy € P,y \A;. Set w = wy + wy and extend g by sending z to
w. Note that w ¢ A; and h(w) > w-a+ N;pp > w-a+ M.

Let b e B;. If h(b) < w-a+ M then by assumption h(a) = h(b) and so for 0 < r < p,
h(rz +b) = h(b) and h(rw + a) = h(a). If h(b) > w - a + w then by induction on i,
ha) 2 w-a+ N; > w-a+ Ngyi. Thus, hire +b) > w-a+ w and h(rw + a) =
min{h(w), h(a)} = w-a + N;y1. This shows that g meets condition *;,1.

In all cases g meets »; for all ¢ and so we can extend it to B’. This shows that
(Buw) <2a+1 (A,CL_C> for ¢ = g(d)
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Case 3: The limit case is where we first invoke our inductive hypothesis. Assume that
(A, @), (B,b) meet the conditions of 3 and let d € B<“ and 8 < a.

Case 3 (a): If Ay = A\g < w - « then as before the groups are isomorphic.

Case 3 (b): If Ay, Az > w - « then we know that Pl | = |Pin,B+k| = o (Kaplansky
[20] Problem 36) and so we meet the conditions for (A, @) <41 (B, b) regardless of whether

B is odd, even, or a limit ordinal. Hence, by induction there exists a ¢ € A<“ such that
(B,5d) <5 (A, ).

This finishes our induction on « and so the conditions of the theorem are sufficient to

imply the back-and-forth relations on countable reduced Abelian p-groups. O

3.4 Further Work

To be able to extend the back-and-forth characterization to arbitrary groups we would
need to include many more cases in the proof of Theorem 3.3.1. without the assumption
on the cardinality of PﬂA we cannot guarantee that, given an z € B’\B;, we can always
choose a corresponding w € A\A; of the appropriate height. We have seen that in all cases
is w-a < h(b) < w-a+ w then we must have h(g(b)) = h(b), so if we have the same
finite number of elements of each height in both groups, then having h(b) < h(g(b)) would
be a problem. Purely by a counting argument, this would force ¢g to send something of
high height to something of lower height, which violates our preservation of formulas. So
Theorem 3.3.1 can be partially extended under a great number of simplifying assumptions
that essentially force the groups to be isomorphic, putting us in the realm of Barker’s proof
of 3.2.2.

The eventual goal is to extend our partial characterization of the back-and-forth rela-
tions to cover all countable reduced Abelian p-groups and then to use that characterization
to show the optimality of our Scott sentences given in Theorem 3.2.1. This would charac-
terize the Scott complexities of such groups. Our current characterization already shows
promise in being able to help this goal by showing that d — X5, 5 is the best possible Scott
sentence for case (i) of Theorem 3.2.1. To show that d — ¥a,,2 is the best possible Scott
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sentence for a group of length w - a + n, we need to find groups B and C, both not isomor-
phic to A, such that B <s442 A and A <5,,2 C. Without any tuples to mention, we can
only use conditions (a), (b), (c¢) from Theorem 3.3.1. This forces the size of the subgroups
| P2+ K|, | PB + k| to be the same, but only requires the Ulm invariants to be equal < w - a.
This affords us a little room in which to look for non-isomorphic groups, but we return to

the problem of not having concrete examples of groups of fixed Ulm sequences.
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Chapter 4
Positive Enumerability

While in computable structure theory countable structures are classically studied up to
Turing reducibility, researchers have successfully used enumeration reducibility to both
contribute to the classical study and develop a beautiful theory on its own. One example
of a contribution to classical theory is Soskov’s work on degree spectra and co-spectra [32]
which allowed him to show that there is a degree spectrum of a structure such that the set
of degrees whose w-jump is in this spectrum is not the spectrum of a structure [33]. Another
example is Kalimullin’s study of reducibilities between classes of structures [19] where he
studied enumeration reducibility versions of Muchnik and Medvedev reducibility between
classes of structures. This topic has also been studied by Knight, Miller, and Vanden Boom
[21] and Calvert, Cummins, Knight, and Miller [9]. There is a rich theory on these notions
with interesting questions on the relationship between enumeration reducibility and the
classical versions. In this chapter we develop a novel approach to study relations that are

enumeration reducible to every copy of a given structure.

4.1 Background

Since enumeration reducibility is based only on positive information, it is natural to con-
sider structures given by their positive atomic diagram in this setting. This is quite rea-

sonable. When doing computability theory and looking at an infinite object, we often view
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it as being revealed stage by stage. It is natural to find out only about positive informa-
tion, and our approach is general enough to handle negative information by considering
the associated structure in the language including relation symbols for the cosets of the

relations in the original language.

More formally, say that given a countable relational structure A, a relation R is rela-
tiely intrinsically positively enumerable (r.i.p.e.) in A if for every copy B of A and every
enumeration of the basic relations on B, we can compute an enumeration of R5. We obtain
a syntactic classification of the r.i.p.e. relations using the infinitary logic L,,,. Theorem
4.2.10 shows that the r.i.p.e. relations on a structure are precisely those that are definable

by computable infinitary $¢ formulas in which neither negations nor implications occur.

This definition is similar to Definition 1.2.2, and we hope to show an equivalent de-
finability concept in the same way that r.i.c.e. relations were shown to be exactly those
definable by an infinitary 3¢ formula. Since this result, there has been much work on r.i.c.e.
relations and related concepts. For a summary, see Fokina, Harizanov, and Melnikov [16].
One particularly interesting generalization of r.i.c.e. relations is due to Montalban [23]. He

extended the definition of r.i.c.e. relations from relations on w" to w=<¥

and to sequences
of relations, obtaining a classification similar to the one given by Ash or Chisholm [1, 10].
This extension allows the development of a rich theory such as an intuitive definition of the
jump of a structure, and an effective version of interpretability with a category theoretic
analogue: A structure A is effectively interpretable in a structure B if and only if there
is a computable functor from B to A as given in Harrison-Trainor, Melnikov, Miller, and
Montalban [17]. For a complete development of this theory see Montalban [26]. The main

goal of this chapter to develop a similar theory for r.i.p.e. relations.

Definition 4.1.1. Let A be a countable structure in relational language L with universe
w. We let P(A) be the set =4 @ #4 D Dper R#, which we call the positive diagram of
A.

The mindful reader might notice that we include inequality in the positive atomic
diagram. The reason for this is that for enumerations of A that are not injective =+
will become an equivalence relation instead of equality and we want to take the quotient

under this equivalence relation to be able to enumerate an isomorphic copy of A from this
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enumeration. Having # in the diagram allows us to do this effectively. The positive diagram
is Turing equivalent to the standard definition of the atomic diagram of a structure, which
can be viewed as the set =4 @ #* D Dpr.crL R;“@EA. Now, a relation R € w=“isr.i.c.e. if
for every copy B = A, RP is c.e. in D(B). The relatively intrinsically positively enumerable
relations are the natural analogue to the r.i.c.e. relations for enumeration reducibility.
Recall that a set of natural numbers A is enumeration reducible to B, A <. B if there
exists a c.e. set ¥ consisting of pairs (x, D) where D is a finite set under some fixed coding
such that
A=V8={r:Dc BA{x,D)e ¥}

Enumeration reducibility allows us to formally define the notion of a r.i.p.e. relation.
Definition 4.1.2. Let A be a structure. A relation R < A=Y is relatively intrinsically
positively enumerable in A, short r.i.p.e., if, for every copy (B, R®), of (A, R), R® <. P(B).
The relation is uniformly relatively intrinsically positively enumerable in A, if the above

enumeration reducibility is uniform in the copies of A, that is, if there is a fixed enumeration
operator ¥ such that R = WF®) for every copy B of A.

The study of the computability theoretic properties of structures with respect to enu-
meration reducibility is an active research topic; see A. Soskova and M. Soskova [37] for a

summary of results in this area.

4.2 First results on r.i.p.e. relations

In our proofs we will often build structures in stages by copying increasing pieces of finite

substructures of a given structure A. The following definitions will be useful for this.

Definition 4.2.1. Given an L-structure A and a € A<¥, let P(A)|a denote the positive
diagram of the substructure of A with universe @ in the restriction of £ to the first |a|

relation symbols.

Definition 4.2.2. Let A be an L-structure and @ = {aq, ...,as_1) € A®. The set P4(a) is
the pullback of P(A)|a@ along the index function of @, i.e.,

(iyno, -y € Pa(@) < (s ang, - - - an,, ) € P(A) 1@
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The main feature of 4.2.2 is that if we approximate the positive diagram of a structure
A in stages by considering larger and larger tuples, i.e., limg, P(A)las = P(A), then the

limit of P4(@s) gives a structure isomorphic to A. This fact is useful in constructions.

We denote by ¥, the e/* enumeration operator in a fixed computable enumeration of all
enumeration operators and by W, , its stage s approximation. Without loss of generality
we make the common assumption that U, , is finite and does not contain pairs (n, D) > s.
Notice that W, , itself is an enumeration operator. In our proofs we also frequently argue
that a set A is enumeration reducible to a set B by using a characterization of enumeration

reducibility due to Selman [29].

Theorem 4.2.3 (Selman [29]). For any A, B € w

A<, B iff VX[Bisce inX=Aisce inX]

We refer the reader to Cooper [11] for a proof of this result and further background on

enumeration reducibility and enumeration degrees.

Notice that by 4.1.2 (A, R) is technically not a first order structure as R <€ w=“. We
may however still think of it as a first order structure in the language expanded by relation
symbols (Q;)iew, each Q; of arity i, where Q' = {a € A" : @e RA}. The positive diagrams
P(A, R*) and P(A, (QY)ic.) are enumeration equivalent.

4.2.1 Examples of r.i.p.e. relations

Example 4.2.4. Let R be a countable ring. Then the relation P = {@ : 3z [ag + a1z +
-+ apa® = 0]} holding of the polynomials with a root in R is uniformly r.i.p.e.

Proof. Enumerate the graphs of +,-, = and 0 of a copy R of R and whenever you see ab
such that ag + a1b + - - - + aib® = 0 enumerate @. Clearly this gives an enumeration of P®

from an enumeration of any copy of R. O

Example 4.2.5. The reachability relation reach(zx,y) on graphs is uniformly r.i.p.e.
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Proposition 4.2.6. There is a graph G in the language (=, #, E) such that —F is not

r.i.p.e. in G.

Proof. Let K be the halting set and let G be the following graph:

1. For every n € w, G contains a vertex v, and an (n + 1)-cycle with least vertex ¢, and
an edge v, F c,,
2. if <.I', y> € K, then Vox+1 E V2y+2-

Then it is not hard to see that from any enumeration of K" we can enumerate P(G). Notice
that the set C' = {(vog+1, Voy12) 1 (,y) € w X w} isr.ip.e. If =F was r.i.p.e., then so would
be Cn—E,ie,Cn—FE <, P(G). But clearly C n—FE >, K and since we have K >, P(G)
this would imply K >, K, a contradiction. O

4.2.2 A syntactic characterization

The main purpose of this section is to show that being r.i.p.e. in a structure A is equivalent

to being definable by infinitary formulas in A of the following type.

Definition 4.2.7. A positive computable infinitary X} formula is a formula of the infinitary
logic Ly, of the form
p(T) = \X/ Iyipi(T, Y;)
iel
where each ¢; is a finite conjunction of atomic formulas that can contain #, and the index

set [ is a computably enumerable subset of w.

Notice that the above definition includes all c.e. disjunctions of finitary %9 formulas
without negation and implication symbols, as every such formula is equivalent to a fi-
nite disjunction of conjunctions with each existential quantifier occurring in front of the

conjunctions.

Definition 4.2.8. A relation R € w= is X7 -definable with parameters ¢ in a structure A if
there exists a uniformly computable sequence of ¥4 formulas (¢;(z1,...,Z: Y1, - -, Yel) iew
such that for all @ € w=¥

e R Al pgla,c).
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Our goal is to show that a relation R is r.i.p.e. in a structure A if and only if it is
Y-definable over some parameter. We will do this by using forcing to build a generic copy
of A and then read the syntactic definition of this copy. The right notion of genericity for

this purpose is the following.

Definition 4.2.9. Let A* = {oc € A~ : (Vi # j < |o|)[o(i) # o(j)]}. We say that v e A*
decides an upwards closed subset R <€ A*if ye Ror o ¢ R for all 0 © . A 1—1 function
g:w— Ais a r.i.p.e.-generic enumeration, if for every r.i.p.e. subset R € A* there is an
initial segment of g that decides R. We say that B is a r.i.p.e.-generic presentation of A

if it is the pull-back along a r.i.p.e.-generic enumeration of P(.A).

The existence of r.i.p.e. generics follows from the Baire category theorem. Let us give
a quick hands-on construction. Given a structure A and an enumeration (R.)e, of all
r.i.p.e. subsets of A* we build an sequence p, = & < p; ... with limp, = g. At even stages
2s we guarantee that g is onto by defining p,, = P,,_;"x where z € A is least such that
x is not in the range of pos—1. At odd stages 2s + 1 we check whether there is § 2 Dy,
with g € R,. If so, let p,,,; = ¢, otherwise Dy, | = Po,. It is easy to see that g = lim p;
decides every upwards closed r.i.p.e. subset of A* and is thus a r.i.p.e. generic enumeration.
Furthermore, note that if R, is dense in A*, then there is some p < ¢ forcing that g meets
R, and thus (0, ..., |p|) € RS, We will study properties of r.i.p.e. generics in 4.3.1. For

now, let us obtain a syntactic characterization of r.i.p.e. relations.

Theorem 4.2.10. Let A be a structure and R < A=Y a relation on it. Then the following

are equivalent:

(1) R is relatively intrinsically positively enumerable in A,
(i) R is ¥4 -definable in A with parameters.

Proof. Assuming (ii), there is a uniformly computable sequence (;(T,%));e, of X4 formulas
where each ¢; is of the form \W/ ., 37; i ;(%,7;;,%) with the proper'ty that for every
B =~ A there is a tuple ¢ € wl such that for all i € w and @ € W', B = ;(a@,¢) if
and only if @ € RP. Recall that each 1);; is a finite conjunction of atomic formulas, i.e.,

Vij = 0(Z,Y;,2) A A On(T,7;;,Z) for some n € w. For () an atomic formula, let
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‘d(a)’ be the function mapping 6(a) to its code in the positive diagram of a structure. For
example, if 0(F) = Ri(z3,x5), then "0(a)’ = (i + 2,{as, as)) for a € w=*. Consider the set
X{¢ = {"04(@,b,2)" : k < n}. Clearly, X{° = P(A) if and only if A |= ;;(a, b, ) for any
L-structure A. We define an enumeration operator ¥ by enumerating all pairs {(a, X} f’c>
into W. It follows that
_ — va,b,C a,be
ae VPP < 3@ X' e U A X0 < P(B)
= BE Hym\,ﬂ%\,j(a, @|a|,j75)
=B ): Pal (67 E)

and thus R is r.i.p.e.

Let g be a r.i.p.e. generic enumeration of A produced as in the paragraph above the
theorem and let B = g~*(A). Our goal is to produce a X definition of R®. As B =~ A, we
get that this is then also a definition for R. Towards this, consider the set

Qe = {q e A*: Ell>jla <. -jl < |q| [<j1a cee 7jl> € \IJEA(E) and <Qj17 s 7QJZ> ¢ R]}
We have that g meets Q. if and only if R® # U5, By our assumption that R is r.i.p.e.,
there is ey such that \IIQ(B) = R5, and thus g does not meet Q..

We will use this to give a ¥} definition of R with parameters p,, where p, is the stage

in the construction of g at which we decide Q..

Notice that if there is some § 2 p, and sub-tuple {g;,,...,q;) such that (ji,...,J5) €
U4 then we must have {qjy,---,qj,) € R or else we will have that § € Q.,. We now show
that R is equal to the set

S ={{g,...,q;)€ A" : for some ge A~ and [, ji, ..., i < [q| satistying § 2 p,
and (ji, ..., jiy € W@}

By the previous paragraph, S € R. If @ € R then there are indices ji, ..., jjg such that
a = {9(j1),---9(jm)) and so if we take a long enough initial segment of g it will witness

the fact that @ € S. Fix an enumeration (p);c, of all atomic formulas where without loss
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of generality the free variables of p¢* are a subset of {zo,...,z;}. The following is a X
definition of S

_ — aty 90 Yl
\X/ \/ 372D, [g5, - @) =T A /\[%t]x—"'x—i]
CChin® (1,eensfjapEWE ieC 0 ]
where the latter half of the formula is simply saying that C' S P4(q). H
Corollary 4.2.11. Let A be a structure and R < A< be a relation on it. Then the

following are equivalent:

(1) R is uniformly relatively intrinsically positively enumerable in A,
(ii) R is ¥)-definable in A without parameters.

Proof. For (i) = (ii) we mimic the proof of Theorem 4.2.10. Let ¥, be the fixed enumer-
ation operator such that R® = \I/f(g) and (). as above. Note that no g can be in ). and

so we mimic the construction of our set S with p, being the empty tuple.

For (ii) = (i) we again mimic the same direction in 4.2.10 excluding the parametrizing

tuple ¢ to make the process uniform. O

4.2.3 R.i.p.e. completeness

Similar to the study of computably enumerable sets we want to investigate notions of
completeness for r.i.p.e. relations on a given structure. Before we obtain a natural example

of a r.i.p.e. complete relation we have to define a suitable notion of reduction.

Definition 4.2.12. Given a structure A and two relations P, R € A< we say that P is
positively intrinsically one reducible to R, and write P <,; R, if for all B ~ A P(B)®P? <,
P(B) @ RS.

Proposition 4.2.13. Positive intrinsic one reducibility (<p1) is a reducibility.
Proof. Let A be a structure with relations P,Q, R < A~¥. It is easy to see that <,; is
reflexive, since for any structure B =~ A we have that P(B) ® P®? <; P(B) @ PP, which

means P <, P. To see that it is transitive assume that P <,; R and R<,; @) and let
B ~ A. By assumption P(B)® P? <; P(B)® RP <; P(B) ® QF and so P <, Q. O
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Definition 4.2.14. Fix a structure A. A relation R < A<“ is r.i.p.e. complete if R is

r.i.p.e. and for every r.i.p.e. relation P on A, P <, R.

The most natural way to obtain a complete set is to follow the construction of the Kleene
set in taking the computable join of all r.i.p.e. sets. The result is a relation R € w x A=Y
which can be seen as a uniform sequence of r.i.p.e. relations in the sense that there is a
enumeration operator ¥ such that (U4)ll = R;. For any isomorphic copy of A, the nth
slice of its Kleene set should correspond to the nth r.i.p.e. relation. In order to accomplish
this we use the following coding. Given a relation R € w x A=“, we can identify it with a
subset R’ < A<“ as follows. For any two elements b,c € A let

ix

—
b...bcae R < {(i,ay€ R.

One can now easily see that R is a uniform sequence of r.i.p.e. relations if and only if the

so obtained relation R’ is uniformly r.i.p.e.

We can now give a natural candidate for a r.i.p.e. complete relation.

Definition 4.2.15. Let %Ej’f be the ith formula with free variables zy,...,z; in a com-
putable enumeration of all ¥} formulas. The positive Kleene predicate relative to A is
[?;)4 = (K7),_, where

iEw’

K= Jlae 47 AF ¢i(@).
jew

Notice that we defined the positive Kleene predicate as a sequence of relations instead
of a single relation. It is slightly more convenient as we do not have to deal with coding, but
we could write it as a single relation on w x A<“ and code it as above. Another alternative
definition would be to break down the sequence even further and let the Kleene predicate
be the sequence

({@: A b gt @ e

so that (A, [?};4) is a first order structure. However, as all of these definitions are compu-

tationally equivalent these distinctions are irrelevant for our purpose.

Proposition 4.2.16. The positive Kleene predicate f(};“ s uniformly r.i.p.e., and r.i.p.e.

complete.
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Proof. Since K’Ij“ is defined in a ¥} way without parameters we can use Corollary 4.2.11 to
see that it is uniformly relatively intrinsically positively enumerable. Let R be any relation
on A of arity ap. Notice that RP is trivially ¥} definable, and so there is a formula goffR
such that ae RP = B = ¢f§R(E). This shows that P(B) ® RP <; P(B) ® l?f. O

4.2.4 R.i.p.e. sets of natural numbers

Our above discussion of sequences of r.i.p.e. relations allows us to code sets of natural

numbers as r.i.p.e. relations.

Definition 4.2.17. A set X € w is r.i.p.e. in a structure A if the following relation is

r.i.p.e.:
X

—
Rx:={b...bc:ie X,bce A}

A natural question is which sets of natural numbers are r.i.p.e. in a given structure.
One characterization can be derived directly from the definitions: The sets X such that
X <. P(B) for all B = A. Another one can be given using co-spectra, a notion defined
by Soskov [32]. Intuitively, the co-spectrum of a structure A is the maximal ideal in the

enumeration degrees such that every member of it is below every copy of A. More formally.

Definition 4.2.18. The co-spectrum of a structure A is

Co(A) = [){d : d < deg.(P(B))}.

Bx~A
Let us point out that Soskov’s definition of co-spectra appears to be different from ours.
We will prove in 4.3 that the two definitions are equivalent. This definition also agrees

with the definition of co-spectra on Turing degrees when we restrict our attention to total

degrees.

Definition 4.2.19. A set A is said to be total if A=, A@® A. An enumeration degree is
said to be total if it contains a total set, and a structure A is total if P(f~1(.A)) is a total

set for every enumeration f.
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Given a tuple @ in some structure A let 37-tp4(@) be the set of positive finitary ¢
formulas true of A. The equivalence of 1 and 3 in 4.2.20 is the analogue to a well-known

theorem of Knight [22] for total structures.

Theorem 4.2.20. The following are equivalent for every structure A and X € w.

1. X israp.e in A
2. deg.(X) € Co(A)
3. X is enumeration reducible to XV -tp(a) for some tuple @ e A~%.

Proof. 1f deg.(X) € Co(A), then for all B~ A, X <. P(B). Given an enumeration of X,
enumerate b"c into Rx for all elements b, c € B whenever you see n enter X. The relation
Ry clearly witnesses that X is r.i.p.e. in A. This shows that 2 implies 1. On the other
hand if X is r.i.p.e. in A, then given any B =~ A and an enumeration of R% build a set S
by enumerating n into S whenever you see b"c enumerated into R% for any two elements

b,c e B. Clearly n € S if and only if n € X and thus 1 implies 2.

To see that 3 implies 2 assume that X is enumeration reducible to the positive ¥; type
of a tuple b in any copy B of A. As the X}-tpg(b) is enumeration reducible to P(B), by
transitivity X <. P(B) for every B =~ A and thus deg.(X) € Co(A). At last, we show
that 1 implies 3. Assume that X is r.i.p.e. in A. Then there is a computable enumeration
of ¥} formulas 1, with parameters p such that for some @ € A< ne X « A = ¢,(a).
Simultaneously enumerate Y/-tp4(@) and the disjuncts in the formulas v,,. Whenever you
see a disjunct of 1), that is also in X4-tp4(a@) enumerate n. This gives an enumeration of

X given an enumeration of 37-tp4(@) and thus X <, XJ-tp(a) as required. O

4.3 The positive jump and degree spectra

In this section we compare various definitions of the jump of a structure with respect to

their enumeration degree spectra, a notion first studied by Soskov [32].

Definition 4.3.1. The positive jump of a structure A is the structure
Tp(A) = (A, K1) = (A, (K7 iew)-
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We are interested in the degrees of enumerations of A and J,(A). To be precise, let f

be an enumeration of w, that is, a surjective mapping w — w, and for X < w=* let

f_l(X)={<:L’1,,..>Z(f(xl),...,)EX}.

Then, given a structure A let f~1(A) = (w, f~1(=), f71(#), FHRN), fH(RSY),...). This
definition differs from the definition given in Soskov [32] where f~!(A) means what we will
denote as P(f~1(A)), i.e.,

—o+af (=)0 FH @ FURY.

€W
Definition 4.3.2 (Soskov [32]). Given a structure A, define the set of enumerations of a
structure Enum(A) = {P(B) : B = f~'(A) for f an enumeration of w}. Further, let the

enumeration degree spectrum of A be the set
eSp(A) = {d.(P(B)) : P(B) € Enum(A)}

If a is the least element of eSp(A), then a is called the enumeration degree of A.

In classical computable structure theory many results often do not hold for structures
that are structurally too simple, called the automorphically non-trivial structures. One
example of this phenomenon is a basic result about Turing degree spectra due to Knight
[22]: The degree spectra of automorphically non-trivial spectra are closed upwards in the
Turing degrees. However, if a structure is automorphically trivial, then its degree spectrum
contains a single Turing degree. Consider for example the structure (N, =, ). All its
isomorphic copies are computable and in fact, there exists only one copy with universe N
of this structure. Considering enumerations of a structure that are not bijective allows us
to avoid these dichotomies when studying enumeration degree spectra. It is not hard to
see that the enumeration degree spectrum of any structure is closed upwards in the Turing

degrees [32, Proposition 2.6].

As mentioned after 4.2.18, Soskov’s definition of the co-spectrum of a structure was

slightly different [32]. He defined the co-spectrum of a structure A as the set
{d:VY(aeeSp(A))d < a}.

We now show that the two definitions are equivalent.
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Proposition 4.3.3. For every structure A, Co(A) = {d : V(ae eSp(A))d < a}.

Proof. First note that {d : ¥(C = A)d < deg.(P(C))} 2 {d : V(a € eSp(A))d < a} as
every P(C) is the pullback of A along an injective enumeration.

On the other hand for any enumeration f: w — w, f~*(A)/f*(=) = A. Consider the
substructure B of f~(A) consisting of the least element in every f~!(=) equivalence class.
Since f~'(A)/f7' (=) = A, we get that B =~ A. As P(f~'(A)) contains both f~!(=) and
f~1(#) we can compute an enumeration of B @ B from any enumeration of P(f~!(A))

and thus also the graph of its principal function pp. Let C = pg'(B). Then C =~ A, and
P(C) <. P(f7'(A)). Thus,

(d:V¥(aceSplA)d <a) = {d: ¥(C = A)d < deg.(P(C))} = Co(A).
]

Using this notation we can see that for any structure A, and any enumeration f of w
we have that J,(f~'(A)) is the structure (f~1(A), I_(‘,J,c*l(A)). Thus

PO A = = e (e Weo@r ™.
JEW €W
If we instead apply the enumeration to J,(A) we will get the structure f~!(J,(A)). Now,
for every relation R on A, R/ — f~1(RA) and thus Kfﬁl(A) = f! <K_JA> So
P(f=H(Jp(A))) = P(Jp(f71(A)))-

4.3.1 Properties of R.i.p.e. generics

Recall 4.2.9 of r.i.p.e.-generic enumerations and presentations. We are now ready to study
their properties. The following lemma is an analogue of the well-known result that there
is a AY 1-generic.

Lemma 4.3.4. Fvery structure A has a r.i.p.e.-generic enumeration g such that

Graph(g) <. P(J,(A)). In particular, P(g~*(J,(A))) <. P(J,(A)).
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Proof. Recall our hands-on definition of a r.i.p.e. generic enumeration g of A after 4.2.9
using an enumeration (R,)ee, of all r.i.p.e. subsets of A*. The set {p: 3¢ o P,q € R.} is
¥-definable in A and so enumerable from P(.J,(A)), which contains P(A). The coset {p :
Vg o P,q¢ R.}is co-r.i.p.e. and so enumerable from ff{j‘. Hence, P(J,(.A)) will be able to
decide when a tuple p, belongs to the upward closure of R.. Thus Graph(g) <. P(J,(A)).

If we can enumerate the graph of g and also J,(A), then to enumerate g~*(J,(A)),
we wait for something of the form (z, g(x)) € Graph(g) to appear with g(z) € J,(A) and

enumerate r into the corresponding slice of g='(.J,(A)). O

R.i.p.e. generic presentations have many useful properties. One of them is that they are
minimal in the sense that the only sets enumeration below a r.i.p.e. generic presentation

are the r.i.p.e. sets.

Lemma 4.3.5. If B is a r.i.p.e.-generic presentation of A, then X € w is r.i.p.e. in B if
and only if X <. P(B).

Proof. If X r.i.p.e. then it is enumerable from P(B) by definition. Assume X is enumerable
from P(B). Then X = U™ for some e. Recall the set Q. from 4.2.10 which we know to

be r.i.p.e. because we gave a 3} description of it.

Qc={ge A~ 30 j1, .. jo < [a [Guy - € WD and g5, 450 ¢ X]}

Now because B is r.i.p.e.-generic, there is some tuple {0,...,k — 1) that decides Q.. It
must be that (0,...,k — 1) ¢ Q., or we would contradict the fact that X = \IJS(B), and so

0,...,k —1) forms the parameterizing tuple p, from the set S in 4.2.10. O

Another useful property is that the degree of the positive jump of a r.i.p.e. generic

agrees with the enumeration jump of the degree of their positive diagram.

Proposition 4.3.6. Let A be a structure. For an arbitrary enumeration f of A, let B =
fYA). Then P(J,(B)) <. J.(P(B)). Furthermore, if B is a r.i.p.e.-generic presentation
then P(J,(B)) = J.(P(B)).
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Proof. Recall that J,(B) = (B,[?_f) and J.(P(B)) = P(B) ® Kp@), so to show that
P(J,(B)) <. J.(P(B)) it is su@ent to show that I_(f <. Kpp). As [?f is r.i.p.e.,
[?f — U™ for some e. Thus [?E appears as a slice of {(z,i) : © ¢ ¥'¥®} and hence

[?_f < {(zyiy:x ¢ ‘Ilf(B)}. The latter set is m-equivalent to K p(s) and thus [?E <. Kpp).

It remains to show that J.(P(B)) <. P(J,(B)) if B is r.i.p.e.-generic. For every e

consider the set
R.={ge B*:ec U@}

Note that the R, are all trivially r.i.p.e. and are closed upwards as subsets of B*. So since
B is r.i.p.e.-generic, for every e there is an initial segment of B* that either is in R, or such
that no extension of it is in R.. The set Q. = {p € B* : ¥(¢ 2 D)(q ¢ R.)} of elements in
B* that are non-extendible in R, is co-r.i.p.e. Also note that these sets are uniform in e,
that is, given e we can compute the indices of R, and Q). as r.i.p.e., respectively, co-r.i.p.e.
subsets of B. Thus, given an enumeration of P(J,(B)) we can enumerate P(B) and the
sets Q. and R,. By genericity for all e € w there is an initial segment of b of B such that
either b e Q. or b e R,. So whenever we see such a b in ), we enumerate e and thus obtain

an enumeration K P(B)- ]

The above properties of r.i.p.e. generics are very useful to study how the enumeration

degree spectra of structures and their positive jumps relate.

Proposition 4.3.7. For every structure A, J,(A) is a total structure.

Proof. First, note that we have the following equality for arbitrary relations R and enu-

merations f.
ref'R)e fe)e R f(2) ¢ Read f(R) < we f[TI(R)

Recall that for every R; in the language of A, R; is r.i.p.e. in A and that
P A = fH (=)@ f = e (Bhe (B e

and we observe that all R# are trivially r.i.p.e., uniformly in i, so in particular f~1(R?) <,
FHI) = fHEGY). Also, fH(EGY) <e P(f7HA)) <c P(F(J(A)))- O
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We will now see that the positive jump of a structure jumps, in the sense that the
enumeration degree spectrum of the positive jump is indeed the set of jumps of the degrees
in the enumeration degree spectrum of the structure. The following version of a Theorem

by Soskova and Soskov [30] is essential to our proof.

Theorem 4.3.8 (Soskova, Soskova[30, Theorem 1.2]). Let B be an arbitrary set of natural

numbers. There exists a total set F' such that

B<.F and J.B)=.J.(F).
Theorem 4.3.9. For any structure A,

eSp(Jp(A)) = {a' rae eSp(A)}

Proof. To show that {a’: a € eSp(A)} < eSp(J,(A)), consider an arbitrary enumeration f
of wandlet B = f~'(A). Then from Proposition 4.3.6 we know that P(.J,(B)) <. J.(P(B)).
Note that P(J,(B)) = P(J,(f (A))) = P(f~(J,(A))), and

de(P(f~*(J,(A))) € eSp(J,(A)). Since the enumeration jump is always total and enu-
meration degree spectra are closed upwards with respect to total degrees, d.(J.(P(B))) €

eSp(Jp(B)).

To show eSp(J,(A)) < {a@' : a € eSp(A)}, let us look at P(f *(J,(A))) for some
enumeration f of w, and again write B = f~*(A) so that P(f~'(J,(A))) = P(J,(B)).
Since J,(A) is a total structure, we know that P(J,(B)) is total. By 4.3.4 we can use
P(J,(B)) to enumerate a r.i.p.e.-generic enumeration g of B such that P(g~'(J,(B))) <.
P(J,(B)). Then, letting C = g '(B) and using the latter part of 4.3.6 we know that
J.(P(C)) =. P(J,(C)) which makes J.(P(C)) <. P(J,(B)). Using 4.3.8 there is a total
set F' such that P(C) <. F and J.(F) =, J.(P(C)) <. P(J,(B)). As F and P(J,(B)) are
total, we have that F' <r P(J,(B)).

We can now apply the relativized jump inversion theorem for the Turing degrees to
get a set Z =p F such that Z' = P(J,(B)). For this Z, we have that «(deg(Z')) =
de(Je(xz)) = de(P(Jp((B))) € eSp(Jp(A)) and de(P(B)) < de(F) < de(xz). Since xz is
total and enumeration degree spectra are upwards closed in the total degrees, this means
de(xz) € eSp(B) < eSp(A). So in particular, d.(Je(xz)) = de(P(Jp(B))) € {a’ : a €
eSp(A)}. O
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We now compare the enumeration degree spectrum of the positive jump of a structure
A with the spectrum of the original structure and the spectrum of its traditional jump as

was defined in Section 1.2.2.
We will also consider the structure A™ as defined in 1.1.1.

We will not compare the enumeration degree spectra directly but instead the sets of
enumerations. This gives more insight than comparing the degree spectra as we can make
use of the following analogues to Muchnik and Medvedev reducibility for enumeration
degrees. Given 2,8 < P(w) we say that 2 <,. B, 2 is weakly enumeration reducible to
B, if for every B € B there is A € 2 such that A <, B. We say that A <,. B, 2 is
strongly enumeration reducible to B, if there is an enumeration operator ¥ such that for
every B e B, UB e 2.

It is not hard to see that given an enumeration of A" one can enumerate an enumeration
of J(A) and the converse holds trivially. We thus have the following.

Proposition 4.3.10. For every structure A, deg.(J(A)) = dege.(A"). In particular
Enum(J(A)) =5 Enum(A").

Proof. By replacing every subformula of the form —R;(x1, ..., x,,) by the formula

Ri(zy1,...,2m) we get a ¥F formula in the language of A*. Similarly, given a X% for-
mula in the language of A* we can obtain a X{ formula in the language of A by sub-
stituting subformulas of the form R;(x1,...,x,,) with —=R;j(z1,...,2,,). Indeed we get
a computable bijection between the 7 formulas in the language of A" and the X for-
mulas of A. Thus J(A) =, (Aﬂ[?;ﬁ), but A" =, (Aﬂ[?;ﬁ) given the first equiva-
lence. All of these equivalence are witnessed by fixed enumeration operators and thus
Enum(J(A)) =5 Enum(A"). O

4.3.10 is not very surprising, as adding a r.i.c.e. set such as K4 to the totalization of

A won’t change its enumeration degree. We will thus consider a slightly different notion

of jump by adding the coset of K4
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Clearly T(A) =7 J(A); however, the two sets are not necessarily enumeration equivalent

as the following two propositions show.

Proposition 4.3.11. Let A be a structure. For every presentation A of A, P(/l) <e

~

D(A) = P(A") <. J,(A) <. T(A). In particular

Enum(A) <se Enum(A™) <, Enum(J,(A)) <se Enum(T(A)).

Proof. Straightforward from the definitions. O]

Proposition 4.3.12. There is a structure A such that

Enum(A) ye Enum(A") 4. Enum(J,(A)) 2ue Enum(T(A)).

Proof. Sacks [30] showed that there is an incomplete c.e. set X of high Turing degree.
Thus, X has enumeration degree deg.(X) = 0, and degr(X’) = 0”. Let A be the graph
coding X as follows. A contains a single element a with a loop, i.e. aE“a and one circle
of length n + 1 for every n € w. Let y be the least element in A that is part of the cycle of
length n + 1. If n € X, then connect a to vy, i.e., aE*y. This finishes the construction.

As X is c.e., A has enumeration degree 0.. However, 0, ¢ eSp(A*), as A" has enu-
meration degree deg.(X ®X) > 0,. So, in particular Enum(A) *.,. Enum(A*). By 4.3.9
the enumeration degree of J,(A) is 0, and 0, 3 &' @ &' >. X ® X, so Enum(A*) %,
Enum(J,(A)). For the last inequality notice that both T'(A) and J,(A) are total struc-
tures and that by the analogue of 4.3.9 for the traditional jumps of structures we have
that the enumeration degree of T'(A) is deg.(" ® &"). As mentioned above the enumer-
ation degree of J,(A) is 0, &’ ® & € 0., and &' ® &' <. &" ® &". So, in particular,
Enum(J,(A)) *ue Enum(T(A)). O

For total structures the traditional notion of the jump and the positive jump coincide.

Proposition 4.3.13. Let A be a structure, then Enum(J,(A")) =, Enum(T(A)) and
eSp(Jp(AT)) = eSp(T(A)).

Proof. This proof is similar to the proof of 4.3.10. Mutatis mutandis. n
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4.4 Functors

When comparing structures with respect to their enumerations it is natural to want to use
only positive information. Csima, Rossegger, and Yu [!2] introduced the notion of a positive
enumerable functor which uses only the positive diagrams of structures. Reductions based

on this notion preserve desired properties such as enumeration degree spectra of structures.

Recall that a functor F' from a class of structures € to a class ® maps structures in €
to structures in ® and morphisms f : A — B to morphisms F(f) : F(A) — F(B) with
the property that F(id) = idpa) and F(f o g) = F(f) o F(g) for all morphisms f and g
and structures A € €.

To account for non-total enumerations we consider the category Iso*(B), where the
objects are {B : B =~ B and dom(B) < w is infinite and c.e.} and the arrows are the iso-

morphisms among the quotient structures of the objects.

Definition 4.4.1. A functor F : Iso*(B) — Iso*(A) is positive enumerable if there is a

pair (¥, ¥,) where ¥ and W, are enumeration operators such that for all B, B € Iso*(B),

1. VB = P(F(B)). )
2. For all f € Iso*(B) with f: B — B, WEBSCrashNSFE) _ Conn(F(f)).

For ease of notation, when a graph of a function occurs in an oracle, we will simply

write the name of the function to represent it.

An alternative and purely syntactical method of comparing classes of structures is
through the model-theoretic notion of interpretability. Since we are restricting ourselves to

positive information, we introduce a new notion of interpretability that uses ¥4 formulas.

Definition 4.4.2. A structure A = (A, P{',...) is positively interpretable in a structure
B if there exists a 3 definable sequence of relations (Dom%, ~, %, Ry, ...) called the in-

terpretation of A in B in the language of B such that

1. Dom% < B=~,
2. ~ is an equivalence relation on Dom& and +# its corelation,
3. R; < (B=*)*r! is closed under ~ on Dom5,

1

ap, is the arity of P;
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and there exists a function fz' : A — Dom¥%, which induces an isomorphism:

(DomB/ ~,Ry/ ~,...) = (A =P/ =,...)

We seek to provide analogues to the results proven in a paper by Harrison-Trainor,

Melnikov, Miller, and Montalban [17], starting with the following.

Theorem 4.4.3. There is a positive enumerable functor F : Iso*(B) — Iso*(A) if and
only if A is positively interpretable in B.

Proof. Suppose that A is positively interpretable in B using (Domﬁ, ~, %, RE ...). We
want to construct a functor F' : Iso*(B) — Iso*(A), so let B € Iso*(B). We define F(B)
to be the structure (Dom5&, ~, », ROB ,...). Since the domain and all of the relations are 3
definable with no parameters we can apply Theorem 4.2.11 to see that they are u.r.i.p.e.
and thus the positive diagram of F'(B) is as well. We can use the enumeration operator ¥

given by the corollary as our witness that F' is positively enumerable.

Now to define our functor on isomorphisms we assume we have a map f : B — B.
Notice that Dom% € B<¢ and so f induces a map which we will call F(f) : F(B) — F(B).

~ A ~ A

Since F(B) and F(B) are uniformly enumerable from P(B) and P(B) respectively, we can
uniformly enumerate the graph of an isomorphism F(f) from P(B) @ Graph(f) ® P(B).
We let U, be the enumeration operator that witnesses the uniform enumeration. The fact

that F' is a functor follows easily.

Now suppose that there is a positive enumerable functor F' = (¥, U,) from Iso*(B)
to Iso*(A). We want to produce the Y} sequence of relations providing the positive

interpretation of B in A.

In what follows, we will often write P(b) instead of Pg(b) when it is clear from context

which structure B is meant.

We can view any finite disjoint tuple b as a map i — b; for i < |b|. Note that viewing

b as such a map, if f is any permutation of w extending b, then Ps(b) < P(B;) where
By = f~1(B).
Let Dom% be the set of pairs (b,) € B<% x w such that

(i,7) € WEO@ABIOP®)
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where A is the identity function. Since the domain of B is u.r.i.p.e., and due to the finite

oracle Domﬁ is w.r.i.p.e., and thus X7-definable.

For (b,4), (¢, j) € DomB we let (b,i) ~ (G, j) exactly if there exists a finite tuple d which
does not mention elements from b or ¢, such that if b lists the elements that occur in b but

not ¢ and @ lists the elements in ¢ but not in b, and if o = (EI_DIE)_l o bc'd then

(i,7) € \I]f(BE’E)@a@P(EB’E) and  (j,7) € \ij(zﬁ’a)@afl@zv(zaﬂ)‘
It is easy to see that ~ is uniformly relatively intrinsically positively enumerable. Rather
than showing immediately that the complement of ~ is uniformly r.i.p.e., we define a

clearly uniformly r.i.p.e. relation #, and then show that it is indeed the complement of ~.

For (b,i),(c,7) € DomB we say (b,i) # (c,j) if there exist k # j,I # i, and a finite
tuple d which does not mention elements from b or ¢, such that if b lists the elements that
occur in b but not ¢ and @ lists the elements in ¢ but not in b, and if o = (55’3)*1 obdd

then
(z’, k) € \1,5(55’8)@0@19(55’3) or ( 7, l) e @5(65’8)@0—1@13@5/8)_

Claim 4.4.3.1. % is the complement of ~.

Proof. We want to show that, for any tuples (b,4), (¢,5) € Dom%, exactly one of (b,i) ~
(¢,7), (b,i) + (Z,7) hold. Let b’ list the elements in b but not ¢, and let @ list the elements
in ¢ but not b. Let o = (Egl)_l obd. Let f,g : w — A be bijections extending BE’,EB/
respectively which agree on all inputs k > |b¢/| = |El_)/|. We can then pull back f and g to
get structures By, B,. Then h = g~' o f is an isomorphism extending o which is constant

on all k > |o|. Hence
(i, h(l)) = \I,f(Bf)@h@P(Bg) and (]7 h(])) c \I,f(Bf)@h@P(Bg)

If h(i) = j and h(j) = 4, then taking a long enough initial segment of h witnesses (b, i) ~
(¢, 7). If however h(i) # j or h(j) # i, then a long enough initial segment of h witnesses
(b,7) # (€, ).

We now assume towards a contradiction that both (b,i) ~ (€, 5), and (b,7) * (¢, ) and

that their equivalence is witnessed by d;, o and their inequivalence is witnessed by k, [,d»
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and 7. Without loss of generality assume that (i,k) € \115(55/32)®T®P(6532)

(i, j) € WY OFMSOP@D) o

. We also have

fio v d, g1 D EI;,c_ll fa> b dy g2 D 65/32
Then we have isomorphisms as shown below.

[ g
—1 — —

1 1
fl OfQ\ 91 of1 . 9o Ogl\

Since F'is a functor,

F(gy'o fa) = F(gs' og1) o Flgi o f1) o F(fi ' o fa).

Since (b,i) € DomB we know that (i,4) € PLOSMOP®) - Notice that fito fo o AlbE]
and P(By,) o P(b), P(B;,) © P(b). Thus we get

(5,0) & Wy I Graph(F(f7 o o)) = F(IT 0 f2)(0) = i
Similarly, since (¢, j) € Dom5,

(j,j) € \ij(ﬁ)@AHa@P(E) = (j,j) e VL P(Bg, )®(g5 ' 091)®P (Bgy) = Graph(F(g3t o g1)).
Following from our choices for fi, g1, f2, g» we have that g;' o fy Do and g5 ' o fo © 7, s0
(5, ) & WEEBOOPE)  (j j) e WO _ Gropn (g o 1))
(i,k) e q;f@zﬂz)@r@P(EB da) = (i,k) € Bf2)®(92 0f2)®P(B — Graph(F(g;' o fo)).

The first three equations tell us that
Fgy'ogi)o Fgrto fi)o F(fit o fa)(i) = Flgy ' ogr) o Flgy o fi)(i) = Flg5" 0 91)(5) = j

whereas the fourth equation tells us that F(gy' o f2)(i) = k. This contradicts our earlier

statement of I’ being a functor, and so only one of ~, % can hold at once. n
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Claim 4.4.3.2. The relation ~ is an equivalence relation on Dom5,.

Proof. Let (a@,i), (b, j), (¢, k) € DomB. Tt is reflexive, since (a@,i) € Dom% means that
(1,1) € \I/f(a)@’\”a‘@P(a), and so the equivalence is witnessed by the empty tuple and Al|al.
If (@,i) ~ (b,j) via d,o, then (b,j) ~ (@,4) via d,c~'. Now assume that (@,i) ~ (b, )
and it is witnessed by 6/,1_)/67/, o and (b, ) ~ (¢ k) via 13”,5”,3”, 7. Let @” and @ list the
elements of @\¢ and ¢\a respectively. Choose bijections as follows
fi > abd g1 D bd'd  hy oad”
==l

foobadd g ocbd hyoed

such that hy and hs agree outside an initial segment of length |a| + [”|.

hl h2
f1 g2
f2 B 9
fi toha fytof g1 'of2 95 'og hy toga
B, » By, > By, » By, > B, > By,
hy tohy
_ == - = — = () =N _
ac” abd +——— ba'd bd'd ———=¢b d ca”

Since F'is a functor, we have
F(hy* ohy) = F(hy' o g2) o F(gy' 0 g1) o Flgy* o fa) o F(fy " 0 fr) o F(fi 0 ).

Since (@,i) € DomB, and f;' o hy > A|[a] we can show as we did in Claim 4.4.3.1 that
F(fitohy)(i) = i. Similarly, F(g;* o f2)(§) = 4, F(hy' o g2)(k) = k. By assumption
F(fy" o fi)(i) = j and F(gy" © ¢1)(j) = k. Thus

(i, k) € Graph(F(hy" o hy)) = Wt )@ )P (En,)
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_10
Similarly, one can show that (k,i) € \I/f(Bh2)®(h1 PP BN Since hi and hy agree outside
of the initial segment of length |a| + [¢”], if we take a long enough d" and let p < hy'ohy

be the permutation sending ac”d  to ¢a”d , we witness that (a,i) ~ (¢, k). O

Claim 4.4.3.3. For all i € F(B), there is some n € w such that for ¢ = Bln, we have
(¢,i) € Dom5,.

Proof. Since i € F(B) = U®) we have that (i,7) € PLBRADPE) where A is the identity
function. Then, by the use principle, there is a sufficiently long initial segment ¢ of B such
that (¢,1) € DomA. O

Claim 4.4.3.4. For (b,i) € Dom¥%, there is an initial segment ¢ = Bln of B and j € w
such that (b,i) ~ (€, j).

Proof. Let m be greater than the maximum number in the tuple b, and let @ list the
numbers less than or equal to m not occurring in b. Let @ = Blm, and let f > ¢ o b¢&
be defined by f(n) = n for all n > m. Then since (b,i) € Dom5 we have that (i, ;) €
Graph(F(f)) = \Iff(lif JBIOP(B) £ some j. So by the use principle, there exists d such that
(1,5) € gPEEDSIOPEd) () e 5 = (ed)~' o bé'd, witnessing that (b,7) ~ (¢, 7). ]

*,|d|
Claim 4.4.3.5. If (b,i), (¢,j) € Dom5 and b < € then (b,3) ~ (¢,7) iff i = j.

Proof. To see this we note that since (b,i) € Dom%, we have (i,7) € gLORMRIOP®) g,

since b € €, by properties of enumeration operators (i,4) € \I,f(a@wa@zv(a’ so (b,4) ~ (¢,1).
Now let d, o witness that (b,7) ~ (¢,7). Then o 2 A}|b| and the oracle P(bd'd) ® o ® P(cd)
extends P(b) ® A||b| ® P(b). So again (i,i) € PPEEA@IOPEd) o g POEISIOPED) ), o
extend to the graph of a function g, we cannot have g(i) = ¢ and ¢(i) = j. This shows
that j = 1. O]

We now define relations R; on Dom5. For each relation P; of arity p(i) we let
(by, k1), (Z_ap(i), kpiy) be in R; if there is an initial segment ¢ = Bln of B and ji,. .., jyu) €
w such that (b, k) ~ (¢, ;) for all [ and P;(j1, ..., jyu) € ¥F©. Note that by 4.4.3.5, it

does not matter which initial segment is chosen.
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Claim 4.4.3.6. [f (51, kl), ceey (l_)p(i), kp(i)> € Domﬁ and (El,jl), ceey (Ep(i)ajp(i)) € Domﬁ
with (by, k) ~ (e, 1) for each 1, then (by, k1), ..., (bpa), kp(i)) is in R if and only if
(€1 51)s - -+ (@@ Jpiay) 48 in Ry

Proof. This follows immediately from the transitivity of the equivalence relation ~. O]

Using Claim 4.4.3.3 we can define an isomorphism § : F(B) — Dom5 by sending i to
(¢,7) for the initial segment Bln that is guaranteed to exist. Claim 4.4.3.4 proves that it

is surjective and Claim 4.4.3.5 tells us that § is injective.

]

In the above theorem we not only show the existence of an interpretation given a positive
enumerable functor, but provide a method for building the relations of the interpretation
given the functor F. Using the other direction of the proof we can use these relations to
enumerate a new functor. We call this new induced functor I". We would like I” to agree

with our original functor F' in some fashion, and so we introduce the following definitions.

Definition 4.4.4. Two positive enumerable functors F' : Iso*(B) — Iso*(A) and G :
Iso*(B) — Iso*(A) are said to be enumeration isomorphic if there is an enumeration
operator A such that for any A € I'so*(B), AP is the graph of an isomorphism F(A) —
G(A). Moreover, for any morphism h € Hom(A, B) in Iso*(B) when viewing AP AP®B)
as isomorphisms, A" o F(h) = G(h) o A”W. That is, the diagram below commutes.

Proposition 4.4.5. Let F : Is0*(B) — Is0*(.A) be positive enumerable and I' : Iso*(B) —
Is50%(A) be the functor obtained from Theorem 4.4.5. Then F and I* are enumeration iso-

morphic.
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Proof. Given a presentation B € [so*(B), we can uniformly enumerate the map § from
P(B) as in the proof of Theorem 4.4.3. To then turn the interpretation given by this functor
into the induced functor we simply use the identity function on tuples (o, . .., z,) € Dom5.
Both of these processes are enumberable and so we let A be the enumeration operator
which witnesses this fact. To show A is an enumeration isomorphism we want to show the
following diagram commutes for all B, B € I'so*(B) and all morphisms h : B — B. We

extend h to a map B<¥ — B=¢ and then restrict to Domﬁ — Domﬁ.

APB)

F(B) — DomB —— TF(B)

F(h)l ~ hl A lﬁ(h)
F(B) —25 Dom8 —— IF(B)

\_/

APB)

The right-hand square commutes from the first part of the proof of Theorem 4.4.3 since
I7(R) is defined to be h. To see that the left-hand square commutes, take i € F(B). Then
F(h)(i) = j for some j € F(B) and §5(i) = (a,4), F5(j) = (b, ) where @ and b are initial
segments of w. We want to show that h(a,i) = (h(a),i) ~ (b, ).

) e qu(é)@h@P(@ 5(@ @R [al®Pg (b

Since (i, j we can get (i,7) € \I/f ) by extending @ and b.
Note that Ps(@) = Pz(h(a)) and assume without loss of generality that b contains both
@ and h(a). Since b is an initial segment, the map associated to it is the identity. So the

mapo =05 o h(@)b is an initial segment of h|a|. Hence

s(h(a o (b .o (b o)1 s(h(a
(i,7) € \ijg(h( ))@o®Pg(b) and (j,i) e \ijg(b)@)( )" @Pg(h(a))

]

Clearly if we have a functor F' : Iso*(B) — Iso*(.A), then every enumeration of B can
enumerate an enumeration of 4. In order to preserve enumeration degree spectra of struc-

tures we need the relationship between the two isomorphism classes to be even stronger.
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In the paper by Csima, Rossegger, and Yu [I2] positive enumerable bi-transformability
was introduced and it was shown that two positive enumerable bi-transformable structures
have the same enumeration degree spectra. The next definition is the same as positive enu-
merable bi-transformability. We chose to rename it, as we learned that the notion is not
new, but rather an effectivization of the highly influential notion of an adjoint equivalence

of categories in category theory.

Definition 4.4.6. An enumeration adjoint equivalence of categories Iso*(B) and Iso*(.A)
consists of a tuple (F, G, Arsox(8), Arsor(a)) Where F : [so*(B) — Is0*(A) and G : Iso*(A) —
Iso*(B) are positive enumerable functors, A+ and Argx(4) witness enumeration iso-
morphisms between the compositions of GoF' and Ids+ (), respectively FoG and Idjsx (4,
and the two isomorphisms are mapped to each other. l.e.,

P(B P(F(B P(A P(G(A
F(Afs(o*)(8)> - AIS(O*((B))) and G<AIS(O*)(A)) = Als(o*((.A)))

for all B € Iso*(B) and A € Iso*(A). If there is an enumeration adjoint equivalence

between Iso*(A) and Iso*(B) then we say that A and B are enumeration adjoint.

We will show that the following notion based on positive interpretability is equivalent

to enumeration adjointness.

Definition 4.4.7. Two structures A and B are positively bi-interpretable if there are

effective interpretations of one in the other such that the graphs of the compositions

D

~ B A A
fito f5: Domg"™™* — B and f5o fg: DomiomB —- A

are Y} definable without parameters in B and A respectively. (Here the function f:ﬁ :

OmB
(DomB)=* — A=“ is the canonical extension of f5 : Dom% — A mapping Domg 4 to
Domg)

Theorem 4.4.8. A and B are positively bi-interpretable if and only if they are enumeration
adjoint.

Before proving this theorem, we give an alternate characterization of positive
bi-interpretability that will prove useful.

73



Proposition 4.4.9. Let A and B be structures. If A is positively interpretable in B and

B is positively interpretable in A, then the following are equivalent.

(1) A and B are positively bi-interpretable.

B A
(2) There are uniformly r.i.p.e. isomorphisms g : Domﬁom““ — A andh : Domgo 5 > B

in A and B respectively, along with isomorphisms « : Domﬁ — B and B : Domé -
A, such that co ho a1 =g andﬁogoﬁﬂ _h

B A
(3) There are uniformly r.i.p.e. isomorphisms g : Domiom“‘ — A and h : Domgom’s —

B in A and B respectively such that, for all isomorphisms o : Dom5 — B and
B: Domg — A, we have avo ho &1 —g andﬁogoﬁ’—l _h

Proof. (3) = (1) Let f# be any isomorphism Dom# — B and define f§ = go (f{;“)_l.

—~

Then g = f5§ o f4 and

h=fgogo(fg)™ =fgoffofgo(fi)™ =fgofi
A 7B A 7B - : :
So fg o fz and fg' o f3 are uniformly r.i.p.e. by assumption.

(1) = (2) By assumption,

D

fito 5 Domg”™® — B and f50 f§': Dom ;"™ — A

are uniformly r.i.p.e., so we let h = f§' o ﬁf‘ and g = f§ o ]/”E. Additionally, we let o = f!
and 3 = f5 satisfying (2).

2) = (3) We assume (2) and let o : Dom5 — A, B’ : Domj# — B be arbitrary isomor-
( A B y
phisms. Then let 6 : Dom5 — Dom¥ be such that o/ o § = a. Hence

~
~ ~

g:aoho(&)_l:o/o(SoiLo(g)_lo(O/)_l.

~
~

We claim that § o h o (6)~! = h. We define the automorphism of B, v =hodoh . Since
h is uniformly r.i.p.e., we must have v(Graph(h)) = Graph(h). Thus, v o ho (3)~* and so
if we can show that 4 = § we will have proved our claim. Notice that by definition of v

~

id=~"'ohoboh™ =ho(})todoh,
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and so fy = 4. We let
. 1 A1 A B
Gg= ()" ogo(a) " : Domj, — Dom;.

Since Dom5 is ¥¥-definable, Dom¥% is w.r.i.p.e. This, together with the fact that g is

uniformly r.i.p.e. in A, means that ¢ is uniformly r.i.p.e. in B. Then

>>

o)t =godols) =

~>>>

y=go
and so the claim is proven. O]

We are now in a position to prove Theorem 4.4.8.

Proof. (=) Using our positive interpretation of B in 4, we build a positively enumerable
functor F' = (¥, V,,) from [so*(A) to Iso*(B) as in Theorem 4.4.3. Additionally, since
the processes described in the theorem are r.i.p.e., we get an enumeration operator {2 such
that QP Domé — F (.,éi) is an isomorphism. Similarly, from the functor G we can get

an enumeration operator I' such that, for any B € I'so*(B) we have ['P(8) . Domﬁ — G(B)

By our assumption of positive bi-interpretability, we have functions f3' : Dom5 — A,
and f% : Domj — B. Also following from our assumptions, the function f5 o fg :

Dom# . . . . .
Dom Aoms — A is uniformly r.i.p.e., and so there is an enumeration operator © such that

- ~ A
O is an isomorphism A — Domiom“ . Hence we have the following diagram, which we

wish to show commutes.

75



Given A € Iso*(A), let APA) = DPE@D) o OPA) o 9P We aim to show that A witnesses
the fact that G o F' is enumeration isomorphic to the identity functor. Assuming the above

diagram commutes, for any j : A — A we have the following diagram.

or orM)
Domﬁomg\ — DomB~ c > A ! > A % DomB — DomDomB
AP(A) QP (A) EF AP(A) AP(A) Fi QP(A) QPA
. v _ -
Domi( F( r0) y F(A) < > DomA
P(F ! !
v -
G(F(A) —E9 s q(P(A))
By definition, we have that G( (j)) = PPEA) o F ( ) o (PPEAN =1 and by Theorem

4.2.10, we have that F(j) = Q"™ o jo (QP ) . Thus,

G(F(j)) o TPEAD o QA — PEA) 5 OPA

%

Since © is uniformly r.i.p.e. on A, for any j : A — A, we have that j 0 OFA) — 9P o J.
Hence

G(F(j)) o TPEA) 5 OPA) o @PA) = PPEA) 5 OP(A) o gPA) o 5.
We then see that G(F(§)) o AP = APA) o . Therefore, Go F is enumeration isomorphic
to the identity functor via A. We can similarly show that F'o G is enumeration isomorphic
to the identity. Let Ajgx(4) denote the A obtained for Go F, and Ay« (5 likewise for F'oG.
As we did for ©, let T denote the enumeration operator obtained from the uniformly r.i.p.e.

. . o Dom?%
isomorphism fg' o f&: Domg”"*. So

Afs(ﬁ([;) — QP(G®B) , PPB) o T PB)

whence )
F(Ai(gi)(A)) _ QPGFEWA)) ( PPEA) o GPA) o §PA) QP
We are now in a position to use Proposition 4.4.9 with h~! = TP(F(A))7 gl = @P(A)7 and
B = QP The proposition gives us that
TPFA) _ GPA) 4 PA) 4 QP
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which means
P(A) _ AP(F(A)
l7<[\lso*(f0) AIso*(B)

and similarly

P(B) P(G(B))
(;(/\Iso*(B)) - /\Iso*(Ji)’

(<) Now, we assume that A and B are enumeration adjoint via (F, G, Arsox (), Arsox(5))-
Using the functors ' and G to get interpretations of A and B in each other as before, we

can show the existence of enumeration operators , I'. Thus, for each A € Iso* (A) we get

OFA — (OPA)~1 4 (FP(F( o AISO* (A)

. . . . rt Dom#A
which is an isomorphism A — Dom ;%

Let j : A — A be any isomorphism. We want to show that ;’(G’mph(@P(“‘I))) =
§(Graph(©F™)), which is to show that Graph(©F™) is fixed under isomorphisms.

By definition of A, as in the other direction of the proof, we have that

AP(A) : oj = G(F(5)) oAP(A) — TPFEA) , GPA) 05 o (QP(A)) (I‘P(F(A )t o AE(

Iso*(A Iso*

and so viewing © as an isomorphism

i D) — P(A LA AP(A)— ) — P(A A i
QP Ao = (QP(A) (FP(F(A))) o AIs(o*)(A) 0j = j O(QP(A)) 1 O(FP(F(A))) 1, AIs(o*)(A) = jo@P ),

Since ©F@ is fixed under automorphism, it is £, ,-definable. We also can see that the
same formula defines O ©PA) is enumerable from P(A), and so we get that © is
uniformly r.i.p.e. Similarly, we can define Y* ® . B - Domgomi and show that it is
uniformly r.i.p.e.

By definition of Azyx(s), we have that for any B € Iso*(B), AISO* ) B — F(G(lg’))~ is
an isomorphism. We will show that Proposition 4.4.9 (2) is satisfied with h=! = TP A),
g ' = QP o =TPEA) and g = QFA

As before, we have that

™,
N
=

TPEA) _ (fP(F(A)))fl o (QP(G(F(«‘U)))*l o APUX

Iso*(
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Hence

~ ~ ~ iV A~ T . AP A _
OPA) 5 §PA) 4 (QP(A)) 1_ (FP(F(A))) 1y A]s(o*)(.A) o (QP(A)> 1
In addition

P(A i A
F(Als(o*)(A)) = QP(G(F(A))) © Als(o*)A) (QP )

Y

and so

QLA o @PUA) o (OPA) =1 — (PPFAN)=1 5 (QPGFEAN) -1 5 F(Af(é)(A))-

Now since F(AP(A) ) = APEED) o oot that QP o @P A o (QPA)-L = YPEA) - Gimi-

Iso*(A Iso* (B)
larly we can show that TP®) o TP®) o (DP(B))~1 — @P(E(B)  Thus, Proposition 4.4.9 gives
us a positive bi-interpretation. 0

4.4.1 Positive reductions between classes of structures

4.4.8 shows that we can interpret positive bi-interpretability as a notion of reduction be-
tween the isomorphism classes of two structures. This can be naturally extended to arbi-

trary classes as follows.

Definition 4.4.10. A class of structures € is reducible via positive bi-interpretability to a
class © if there are ¥} formulas defining domains, co-domains, relations and isomorphisms
of a positive bi-interpretation such that every structure in € is positively bi-interpretable

with a structure in ® using this bi-interpretation.

In Csima, Rossegger, and Yu [12] the following notion of reduction between classes of

structures based on enumeration adjoints was defined.

Definition 4.4.11. A class of structures € is u.p.e.t. reducible to a class ® if there is a

subclass ©’ € ® such that € and @’ are enumeration adjoint.

By precisely the same methods used to prove 4.4.8 we get the following.

Theorem 4.4.12. A class of structures € is reducible via positive bi-interpretability to a
class ® if and only if € is u.p.e.t. reducible to ©.
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The classical analogue of u.p.e.t. reduction are u.c.t. reductions introduced in Harrison-
Trainor, Melnikov, Miller, Montalbén [17]. This reduction is defined similarly to u.p.e.t.
reductions with the difference that computable functors are used instead of positive enu-
merable functors. It is well-known that graphs are universal for u.c.t. reducibility, i.e.,
every class of structures is u.c.t. reducible to the class of graphs, via standard codings used

in computable structure theory.

We will present a coding that shows that graphs are complete for u.p.e.t. reducibility.
The coding is based on a coding used by Rossegger in [28], but, since we only require the

preservation of positive information our coding is simpler.

Proposition 4.4.13. Any class of structures € is reducible via positive bi-interpretability

to the class of undirected graphs.

Proof sketch. We may assume without loss of generality that € is a class of structures in
relational language L = (Ry,...) where each R; has arity i. Given an enumeration of
A € €, we enumerate a graph G4 as follows. The graph G 4 has a unique vertex a which is
a member of the unique 3-cycle in the graph. For each element x € A we add a vertex v,
and an edge a F'v,. When we see R;“(:Uo, ..., x;_1) for some xg,...x; 1 € A enumerated for
the first time, we enumerate a chain ¥ £ --- E C§+k for every k < i, a vertex y, and edges
zpEc and ¢, Ey for all k < 4. This finishes the construction. See 4.1 for an example. It

can be shown that Iso*(A) and Iso*(G4) are enumeration adjoint. O

U3 A N
0—0:70
(%) e

U1

Figure 4.1: Example of G4, where R5'(1,2,3) and R3'(3,2)

79



4.5 Further Work

R.i.p.e. relations are a new and exciting addition to the study of enumeration spectra.
The hope of these initial results is that they reignite interest in older results on the inter-
play between enumeration reducibility and countable structures achieved by Soskov and
co-authors. We already start to see how the ideas developed in this section can be taken
further. In upcoming work by Bazhenov, Fokina, Rossegger, Soskova, and Vatev [3] de-
finability by positive formulas is used to prove a Lopez-Escobar theorem for continuous
domains: The sets of structures definable by .2 formulas are precisely the X9 sets in the

Scott topology on the space of structures.

The work done by Bazhenov, Fokina, Rossegger, Soskova, and Vatev [8] on forcing
conditions for 2 formulas is an important step towards extending the positive jump of a
structure to transfinite ordinals. For any finite ordinal, we can simply iterate the positive

jump operator, but more work is needed to go beyond the finite case.
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