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Abstract

This thesis covers multiple areas within computable structure theory, analyzing the

complexities of certain aspects of computable structures with respect to different notions

of definability.

In chapter 2 we use a new metatheorem of Antonio Montalbán’s to simplify an otherwise

difficult priority construction. We restrict our attention to linear orders, and ask if, given

a computable linear order A with degree of categoricity d, it is possible to construct

a computable isomorphic copy of A such that the isomorphism achieves the degree of

categoricity and furthermore, that we did not do this coding using a computable set of

points chosen in advance. To ensure that there was no computable set of points that

could be used to compute the isomorphism we are forced to diagonalize against all possible

computable unary relations while we construct our isomorphic copy. This tension between

trying to code information into the isomorphism and trying to avoid using computable

coding locations, necessitates the use of a metatheorem. This work builds off of results

obtained by Csima, Deveau, and Stevenson [13] for the ordinals ω and ω2, and extends it

to ωα for any computable successor ordinal α.

In chapter 3, which is joint work with Alvir and Csima, we study the Scott complexity

of countable reduced Abelian p-groups. We provide Scott sentences for all such groups,

and show some cases where this is an optimal upper bound on the Scott complexity. To

show this optimality we obtain partial results towards characterizing the back-and-forth

relations on these groups.

In chapter 4, which is joint work with Csima and Rossegger, we study structures under

enumeration reducibility when restricting oneself to only the positive information about a

structure. We find that relations that can be relatively intrinsically enumerated from such

information have a definability characterization using a new class of formulas. We then use

these formulas to produce a structural jump within the enumeration degrees that admits

jump inversion, and compare it to other notions of the structural jump. We finally show

that interpretability of one structure in another using these formulas is equivalent to the

existence of a positive enumerable functor between the classes of isomorphic copies of the

structures.
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Chapter 1

Introduction

Notational conventions for basic definitions on computability will be following Turing Com-

putability by Robert Soare [30]. Results on enumeration degrees mentioned in this thesis

can be found in Computability Theory by S. Barry Cooper [11]. For computable structure

theoretic results the reader can consult Computable Structures and the Hyperarithmetical

Hierarchy by C.J. Ash and Julia F. Knight [5] or Computable Structure Theory: Within

the Arithmetic and Computable Structure Theory: Beyond the Arithmetic by Antonio

Montalbán[26] [27].

1.1 Computability Theory

Mathematicians in the early 1900s were concerned with formally defining what it meant

for a procedure to be algorithmic. Intuitively, it should mean that there is some finite

number of simple steps which one can follow without much thought, and arrive at the

desired result. Many different notions were proposed, but the one that has prevailed is

Alan Turing’s definition of a Turing Machine, which accepts binary strings as input and

can read and alter these strings, either halting and outputting a binary string, or running

forever. Using clever coding techniques of Gödel and others, we can talk about much more

than binary strings using Turing Machines, and in fact we often refer to these machines
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as computing functions from the natural numbers to the natural numbers with the coding

specifics left in the background. One such coding technique that will come up frequently

throughout this paper is the Cantor pairing function x y : NˆNÑ N. This function assigns

a unique natural number to each pair of numbers in such a way that the original elements

of the pair can be computably recovered. This recoverability allows us to unambiguously

write xa1, . . . , any “ x¨ ¨ ¨ xa1, a2y, a3y ¨ ¨ ¨ y, any.

1.1.1 Turing Degrees

Thankfully, we do not need to understand the complexities of Turing Machines because

we choose to adopt the Church-Turing thesis, which states that a function is computable

by a Turing Machine exactly when it is intuitively computable. What we do need to know

about Turing programs is that they are all finite sets of symbols from countable alphabets,

and so we can effectively list them under some chosen ordering P0, P1, . . . and associate to

each Pe the partial computable function Φe determined by Pe. We will write Φepxq Ó“ y to

say that Φe on input x converged to y. We can then say that a function f is computable

if there is some Turing functional Φe which converges and mirrors f on all inputs. We

likewise say that a set of natural numbers A is computable when its characteristic function

χA is. We will often make no distinction between a set and its characteristic function.

To compare the computability theoretic properties of sets of natural numbers Church

and Turing developed the notion of an oracle machine. These are Turing machines that

have all the information of a certain set B and at any stage in the computation can access

a finite portion of the set. We think of these extra steps as “queries to the oracle” B, and

we say that B computes another set A and write A ďT B if there is some Turing functional

Φe such that ΦB
e “ χA. An example of this is the join of two sets A and B. We define

their join to be the set A‘B “ t2n : n P AuY t2n` 1 : n P Bu. It is easy to see that with

access to the information of the set A‘ B we can compute the members of A and B and

so A ďT A‘B and B ďT A‘B.

The work done in the previous paragraph would be meaningless if every set was com-

putable. To this end Kleene provided the fundamental example of a non-computable set

with the halting set K “ tx P N : Φxpxq Óu. This is the set of all programs in our listing
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that halt on their own input. It is easily shown to be non-computable by a diagonalization

argument. The issue being that we could end up waiting forever for a program to halt.

Those programs that do halt will do so in finite time, and so we can enumerate the set K.

LettingWe “ dompΦeq we obtain an effective listing of all the computably enumerable sets.

As before we can let WB
e “ dompΦB

e q and say that a set A is computably enumerable in a

set B if there is an e such that A “ WB
e . We can talk about computable approximations to

c.e. sets, by saying thatWe,s is all of the elements x such that Φepxq Ó in fewer than s steps

of the computation. We say that an element n enters We at stage s if n P We,szWe,s´1.

By looking at the halting set relative to some oracle A we produce a set KA “ A1 :“

tx P N : ΦA
x pxq Óu called the jump of A which is not computable from A. By iterating this

jump operator we produce a hierarchy of non-computable sets. We write A ”T B if A ďT B

and B ďT A and define the Turing degree of a set A to be a “ degpAq :“ tB : B ”T Au.

We let 0 “ degpHq and a1 “ degpA1q. Thus degpKq “ degpH1q “ 01. For two degrees

a “ degpAq, b “ degpBq we say that a ď b if A ďT B.

A stronger notion of reducibility between sets is that of 1-reducibility. We say that A is

one-one reducible to a set B and write A ď1 B if there is a one-to-one computable function

f such that x P A ðñ fpxq P B. A nice fact about the Turing jump operator is that

A ďT B if and only if A1 ď1 B
1. An additional important property shown by Schoenfeld is

that we can invert the jump operator. That is, given a set B such that H1 ďT B, we can

find a set A such that A1 ”T B.

1.1.2 Enumeration Degrees

While oracle Turing reducibility allows the Turing machine to ask questions about what

is and is not in the oracle set, in practice we often do not know the negative information

about a set, and receive our information in a setting more akin to enumerations. This led

Friedberg and Rogers to introduce the notion of enumeration reducibility in 1959.

We say that a set A is enumeration reducible to another set B and write A ďe B if there

is an enumeration operator Ψe which is just a c.e. set such that A “ ΨB
e “ tx : xx,Dy P

Ψe for D Ďfin Bu. Note that using this convention we obtain from an enumeration of the
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members of B an enumeration of the members of A. Furthermore, the order in which B

is enumerated does not matter. We then define degepAq “ tB Ď N : A ”e Bu as we did

for the Turing degrees. Unlike the Turing degrees however, we cannot use the halting set

as our token non-computable set because it is computably enumerable. In our proposed

hierarchy the bottom degree 0e will consist of all c.e. sets.

It is easy to show that a set A is computable if and only if A and its complement A

are computably enumerable. Using this result we can see that it must be the case that K

is not c.e., and so it acts as a good candidate for providing the extra information that we

would want an enumeration jump operator to have. Thus, we define 01
e “ degepKq and the

enumeration jump of a set A to be the set JepAq :“ A‘KA where KA “ tx |x P Ψ
A
x u. We

thus obtain a hierarchy of enumeration degrees just as before.

The enumeration degrees De differ from the Turing degrees D, but they are related as

we shall now see.

Definition 1.1.1. The totalization of a set A is the set A` “ A‘ A ”e χA.

Any set such that A ”e A
` is said to be total and an enumeration degree is total if

it contains a total set. If a set is total and c.e. then it is computable. Similarly, we have

that A ďT B if and only if A` ďe B
` and A is c.e. in B if and only if A ďe B

`. Thus we

get that the Turing degrees embed in the enumeration degrees as exactly the total degrees,

and we define the embedding ιpdegT pAqq “ degepA
`q. On total degrees, the enumeration

jump agrees with the Turing jump, i.e. degeppA
1q`q “ degepJepA

`qq. We also know that

the range of the enumeration jump operator is exactly the total degrees a ě 01
e, since

KA ďe A and A ďe KA implies that JepAq ”e JepAq
`.

Enumeration degrees also admit jump inversion. Soskov [31] showed that given a total

set B we can always find a total set F such that JepF q ”e B.

1.1.3 Hyperarithmetic Hierarchy

One method to study the complexity of sets is to place them on the hierarchy of degrees as

we’ve seen above. Another method is to study their definability in the set theoretic sense.
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We say that a set is Σ0
n if it is the projection of a Σ0

n relation, that is, a set of the form

tx|Dx1, @x2, Dx3 . . . QxnRpx, x1, . . . , xnqu for n alternating quantifiers, Q P t@, Du depending

on the parity of n, and R a computable relation. Similarly we say that a set A is Π0
n if A

is Σ0
n and say A is ∆0

n if A is Σ0
n and Π0

n. A formula is Σ0
n if it is Σ0

n when viewed as a

relation of its free variables.

An important theorem of Emil Post relates the two notions by saying that a set A is

computable in Hpnq if and only if A is ∆0
n`1. Thus A is Σ0

1 if and only if it is computably

enumerable and our prime example of a Σ0
1 set remains the halting set K. It is stronger

than just being Σ0
1 because given any other Σ0

1 set We there is a 1-reduction from We to

K. We call any set with this property Σ0
1-complete and generalize it naturally to say that

Hpnq is Σ0
n-complete.

An issue arises when we move to transfinite ordinals because there is no single-valued

system of notations for all computable ordinals. To surmount this issue, Kleene developed

a system of notations for ordinals called Kleene’s O where each computable ordinal α gets

a notation a P O such that |a| “ α. We build up O and a partial order ăO as follows:

• 1 P O and |1| “ 0,

• If i P O and |i| “ α then 2i P O and |2i| “ α ` 1 and i ăO 2i,

• If Φe halts on all inputs and ranpΦeq Ă O and for all n, Φepnq ăO Φepn ` 1q, then

3 ¨ 5e P O and for all n, Φepnq ăO 3 ¨ 5e and |3 ¨ 5e| “ limn |Φepnq|.

This is why, once a notation is fixed for an infinite ordinal α there is a unique path

through O with limit α. Now to each a P O we define the set Hpaq by transfinite recursion.

• Hp1q “ H,

• Hp2aq “ Hpaq1,

• Hp3 ¨ 5eq “ txu, vy : u ď3 ¨5
e& v P Hpuqu.
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This labeling system produces sets that still agree with our arithmetic hierarchy for

finite n, for if |a| “ n then Hpaq “ Hpnq. For infinite α, there are infinitely many total

computable functions with limit α, but all of their notations produce Turing equivalent

sets Hpaq [2]. Now we can continue defining our hyperarithmetic sets by saying that a

relation R is Σ0
α if it is c.e. with respect to Hpaq, where |a| “ α. Similarly to before, a

relation is Π0
α if its complement is Σ0

α, and ∆0
α if and only if it is Σ0

α and Π0
α.

Each limit ordinal α has a unique strictly increasing sequence of ordinals tαppqupPω

with limit α which is determined by our notation for α, and so to take the jump at limit

ordinals, we let Apαq be the set txx, py : x P Apαppqqu. When we iterate the Turing jump

transfinitely many times a discrepancy appears between the two hierarchies, and the set

Hpα`1q is Σ0
α-complete.

If we are instead working with the logic Lω1ω, as there is more occasion to do in

computable structure theory, then we still allow finitely many nested quantifiers, but allow

conjunctions over any countable set. This adds expressive power to the language L. For

this logic, Σ0
0 and Π0

0 formulas are the same as in first-order logic, but a Σ0
α formula is

one of the form
ŽŽ

iPω Dxφipx, yq where each φi is a Π0
β formula for β ă α. Similarly, Π0

α

formulas are of the form
ŹŹ

iPω @xφipx, yq where each φi is a Σ0
β formula for β ă α. We

say that a formula is d´ Σ0
α if it is the conjunction of a Σ0

α formula and a Π0
α formula. A

sentence is a formula with no free variables.

The superscript 0 in all classes of formulas denotes the fact that we are restricting our

quantification to natural numbers. Since no other types of quantification will be used in

this thesis, the superscript may be omitted.

1.2 Computable Structure Theory

To study the complexity of mathematical structures, we need to agree upon a notion of

when such a structure is computable. The universe of the structure certainly must be com-

putable, but we also ask that the atomic diagram of the structure be computable. We will

see later how to effectively associate a set of natural numbers to the atomic diagram DpAq
of a structure A. A structure A is said to be decidable if its elementary diagram DepAq
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is computable. The elementary diagram contains all first-order sentences with parameters

from the structure that are true in the structure. Since we will only be discussing struc-

tures with countable domain, we may assume that the domain is a subset of the natural

numbers. We call such structures ω-models or ω-presentations.

A natural question to then ask is “given a structure A, how difficult is can it be

to compute isomorphic copies of A”. The answer to that question turns out to be “as

difficult as we want”, since we can encode almost any set into the domain and relations of

a structure. LettingDgSppAq be the set of Turing degrees of all copies ofA, Knight showed

that it is closed upwards in the Turing degrees. That is, for any setX such thatDpAq ďT X

there is a copy B of A such thatDpBq ”T X. The question of finding a maximal complexity

for isomorphic copies of a structure remains interesting if we restrict our attention to

computable copies of A and ask how difficult it is to compute the isomorphism between

copies. A structureA that is isomorphic to a computable structure is said to be computably

presentable and the computable dimension of a computably presentable structure is the

number of computable presentations up to computable isomorphism. Special interest is

given to those structures with computable dimension 1 or ω.

We say that a computable structureA is d-computably categorical if, for all computable

B – A, there exists a d-computable isomorphism between B and A. Under this notation,

structures of computable dimension 1 are computably categorical. We call d the degree of

categoricity ofA ifA is d-computably categorical and, for all c such thatA is c-computably

categorical, we have d ď c. It is not guaranteed that a structure will have a degree of

categoricity. We say that A is ∆0
α categorical on a cone if there is a c P D such that for all

d ě c, whenever B and C are d-computable copies of A, there exists a ∆0
αpcq-computable

isomorphism between B and C. In chapter 2, we study isomorphic copies of linear orders

where the isomorphism achieves the degree of categoricity of the structure, and see if there

must always be a computable unary relation whose image can compute the isomorphism.

1.2.1 Scott rank and back-and-forth relations

A related notion for studying the complexity of structures is the Scott complexity of a

structure. Scott proved that for every countable structure A there is a sentence φA in
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the infinitary logic Lω1ω called a Scott sentence of A such that A |ù φA and for all other

countable structures B, B |ù φA if and only if A – B [5]. The complexity of this sentence

in the hyperarithmetical hierarchy can tell us about how complicated it is to describe the

structure, however if a structure has a Π0
α Scott sentence, then it trivially has a Π0

η Scott

sentence for all η ě α. The Scott rank of a structure A has gone through many different

proposed definitions, but a recent and robust notion by Montalbán [24] is to define it to be

the least α such that A has a Π0
α`1 Scott sentence. As previously mentioned, this notion

of complexity is related to categoricity and it was shown by Montalbán that a structure

has Scott rank α if and only if A is ∆0
α-categorical on a cone. This notion of Scott rank

has many other applications as well such as providing an upper bound on the complexity

of defining the automorphism orbits of tuples from the structure.

A slightly finer notion concerning the Scott rank introduced by Alvir, Greenberg,

Harrison-Trainor, and Turetsky in [2] is to look more closely at the possible complexi-

ties for the formula. A formula that is the conjunction of a Σ0
α and a Π0

α formula is called

a d´Σ0
α formula and is more complex than both a Σ0

α and a Π0
α formula. However it is less

complicated than both a Σ0
α`1 formula and a Π0

α`1 formula. Thus the complexities form a

lattice hierarchy with Σ0
α and Π0

α being incomparable for all α. The Scott complexity of

a structure is the least complexity on this hierarchy such that A has a Scott sentence of

that complexity. In chapter 3 we produce Scott sentences for arbitrary countable reduced

Abelian p-groups and seek to show that they are best possible to determine the Scott

complexity of such structures.

Broadening our scope a bit, we can ask how difficult it is to tell apart different structures

over a fixed language. Even broader still, is asking how difficult it is to distinguish two

tuples within their respective structures. This question stems from a model-theoretic

notion, and so we try to distinguish the tuples using definability, but we have seen above

the relation between definability and computability.

Definition 1.2.1. Given two structures A,B, tuples a, b of the same length from their

respective structures, and a computable ordinal α, we say that pA, aq is α back-and-forth

below pB, bq, written pA, aq ďα pB, bq if all of the Π0
α formulas true of a in A are true of b

in B.
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At the zero level, we say that pA, aq ď0 pB, bq if all of the quantifier-free formulas φ

of Gödel number φ ď |a| true of a in A are true of b in B. If we are not interested in a

specific tuple, we may write A ďα B to mean pA,Hq ďα pB,Hq. Similarly, we shorten

pA, aq ďα pA, bq to a ďα b.

The reason that they are called back-and-forth relations, is because there is an equiv-

alent definition for ordinals α ą 0 where we say that pA, aq ďα pB, bq if and only if for

all β ă α and d P Băω there is c P Aăω such that pB, bdq ďβ pA, acq (See Ash-Knight

[5]). Determining whether tuples satisfy the relations then can be viewed as going back

and forth with an opponent who is trying to extend the b tuple in such a way that there

is a Π0
β formula true of their new tuple that you cannot satisfy with an extension of your

a tuple. Gamification of proof methods is a common theme in computability theory that

we will explore more later in chapter 2.

1.2.2 R.i.c.e. relations and the structural Turing jump

Using either of the notions of a jump operator discussed in previous sections, we can take

the jump of the atomic diagram of a structure A and get a set that is not computable from

DpAq. But, there is no guarantee that this set could be viewed as the atomic diagram of a

structure. When dealing with structures, we would like to give a jump that produces a new

structure that has the same complexity as if we had applied the regular jump operator. In

the Turing degree setting this problem has been solved by Montalbán [26].

The structural jump of a structure A is formed by adding a relation that encodes all

of the relations that a relatively intrinsically computably enumerable in A.

Definition 1.2.2 (Montalbán [26]). A relation R on A is said to be relatively intrinsically

computably enumerable (r.i.c.e.) if, in any isomorphic copy B “ fpAq, fpRq ďT DpBq.

These r.i.c.e. relations turn out to be exactly the ones that are definable by Σ1 formulas

using countable disjunctions over c.e. index sets with parameters from the structure, and

so, by creating a r.i.c.e. complete relation and adding it to the language, we mimic the

addition of K in the enumeration jump. Other versions of the structural jump have been
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proposed, but the strongest evidence that this version is the best is that it admits jump

inversion. Letting JpAq be the structural jump of A, we have that DgSppJpAqq “ ta1 : a P

DgSppAqu. There has not yet been an analogue of the structural jump in the enumeration

degree setting. In chapter 4 we develop a fitting definition for the enumeration jump of a

structure and consider its properties.
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Chapter 2

Degrees of Categoricity

2.1 Background

Let N be the standard copy of the structure pω,ăq. We shall construct a copy A such

that the isomorphism f : A Ñ N can compute the halting set K. We construct this by

stages, adding a new element at each stage, ensuring that the limit structure is computable,

isomorphic to N , and that the resulting isomorphism can compute K. For every even stage

2s we add a new even number to the end of our current finite linear order by declaring

that 2s is greater than everything else on which we have defined the order. For odd stages

2s` 1 we will wait until a new number is enumerated into the halting set. If n enters the

halting set at stage s, then we declare that 2n ăA 2s ` 1 ăA 2n ` 2. We may assume

that our enumeration is such that only one element is enumerated at each stage. It is not

difficult to see that this construction will result in a structure A which is isomorphic to N .

Furthermore, if we know the isomorphism f : A Ñ N , then to decide whether n is in the

halting set, we look at the images of 2n and 2n` 2 in N . They are mapped to immediate

successors if and only if n never entered the halting set. This is an f computable question,

and the successor relation on N is computable. Thus, K ďT f .

This proof is an example of a typical computable structure theoretic proof. If we want

to show that an isomorphism or other object can attain a certain degree of difficulty, we
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simply construct a copy to ensure that it does. Throughout the construction we keep track

of certain special points, whose eventual locations under the isomorphism will compute the

set of known complexity. Herein lies the issue. In the above example we did not need the

full isomorphism to compute K. As long as we know where the even numbers are sent,

we will still be able to compute the halting set. As is the case with many constructions

that use a predetermined computable set of points. We then ask whether it is possible to

construct a computable copy of ω on which there is no computable unary relation whose

image will compute the isomorphism.

This question was answered by Csima, Deveau, and Stephenson [13] who were able to

show the following:

Proposition 2.1.1. Let A be any computable copy of pω,ăq and let f : A Ñ N be the

isomorphism from A into the standard copy. Let U :“ tm | pDnqrn ăN m ^ m ăA nsu.

Then fpUq ”T f .

However they also showed

Proposition 2.1.2. There exists a computable copy B of pω,ăq such that the isomorphism

f : N Ñ B can compute the Halting set K and furthermore, there is no computable unary

relation U on N with fpUq ”T f .

This provides an interesting asymmetry between maps into and out of N that shall

be explored in greater detail below. Before we continue though, important clarifications

should be made. We are only considering maps for which there is no computable unary

relation whose image computes the isomorphism. We make this choice over n-ary relations

because for any two computable copies A,B of a structure with isomorphism f : A Ñ B
it is the case that fpRq ”T f , where R “ tpn, n ` 1q |n P ωu. Additionally, we must

explain why, in the above example, we ask that the map computes K instead of a different

non-computable set. This is because K is the degree of categoricity of pω,ăq.

There remain two major questions at this point.

• Why does the asymmetry exist?
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• Does it exist for more complicated linear orders?

The first point turns out to be rather easy to answer. If the image of the relation lies

in the decidable copy, then we get extra information for free. We can perform bounded

searches as in Proposition 2.1.1 because we know the entire elementary diagram of the

structure.

Towards the second question, more work has been done by Csima, Deveau, and Stephen-

son [13]. They were able to show that

Proposition 2.1.3. Let N 2 be the decidable copy of pω2,ăq. There is a computable copy

A of pω2,ăq such that if f : AÑ N 2, then for no computable unary relation U do we have

fpUq ”T f .

as well as strengthening it to show that

Proposition 2.1.4. Let N 2 be the decidable copy of pω2,ăq. There is a computable copy

A of pω2,ăq such that if f : AÑ N 2, then for no computable unary relation U do we have

fpUq ”T f , and furthermore f ěT H
2.

However, the proofs become increasingly difficult as more information needs to be coded

into the isomorphism, and so the question with regards to the degree of categoricity for

pω2,ăq, 03, was left open. The degrees of categoricity for all computable well-orderings

are given below.

Theorem 2.1.5 (Bazhenov [7]). Assume that α is a computable ordinal.

(a) If 0 ă k ă ω and ωk ď α ă ωk`1 then α has strong degree of categoricity 0p2k´1q.

(b) If γ is a computable infinite ordinal and ωγ ď α ă ωγ`1 then α has strong degree of

categoricity 0p2γq.

To push the result up to higher linear orders, we will need a general proof framework to

manage the increasing amounts of non-computable information with which we have to work.

To do so purely through priority constructions would be a Herculean task. Thankfully, we

have metatheorems, which do exactly what we need for this situation.
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2.2 Metatheorems

When tasked with doing a priority construction, the complexity of the information that

we need to code in will affect the construction process. For computable information, we

can simply compute the answers that we want at each stage, and code that information

in without ever needing to change what we previously did. For a 01-priority construction,

we will be using computable approximations to H1 to answer our questions, and so as our

approximation gets better, we may have to change things that we have already done. The

challenge increases as we move up to a 02 construction, as our approximation to the Σ0
2

set might be incorrect infinitely often and we have to ensure that we devise a strategy for

meeting the requirements that accounts for this, and still produces a computable structure.

Beyond 02, the conditions become too difficult to keep track of in a purely combinatorial

setting, and so many general proof frameworks for 0pαq-priority constructions have been

proposed, the most intuitive of which is the game metatheorem of Antonio Montalbán [25].

Most metatheorems seek to construct a tree, with paths through the tree representing

possible forms the constructions can take. The goal then, is to ensure that the tree is

built in such a way that there is always a suitable branch above what we have already

constructed, thereby ensuring that there is an infinite path that meets our requirements.

The game metatheorem envisions the construction as a game between two players, with

a third omniscient Oracle that can answer queries. Together, the two players take turns

playing longer and longer initial segments of a structure L. The Engineer is in charge

of making sure that the structure satisfies a certain property B that we would like the

structure to have. She can ask questions to the Oracle, which is a ∆0
α`1-complete set. The

other player is the Extender, who is in charge of making sure that the limit structure is

computable. He will not coordinate with the Engineer, and does not care if L satisfies

property B. Were the Extender left to his own devices, there would be no way that the

resulting structure would satisfy any properties. Thankfully, the Engineer can restrict

how the Extender can play by choosing the structure in which they play. Likewise, if the

Engineer did not have to respect the Extender’s moves in some fashion, L would never

be computable as she uses information from the Oracle in her moves. We will now give a

formal definition of the metatheorem.
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Formally, an η ´ A-game is played on a list of structures A “ tAnunPω such that the

back-and-forth relations between tuples are uniformly computable up to η. At each stage

j of the game, the Engineer will play a triple xij, aj, ejy with ij, ej P N and aj P Aăω
ij

. The

Engineer will respond by playing a tuple bj P Aăω
ij

and the Oracle will play the pair xnj, βjy

where the number nj represents the answer to the ethj ∆0
η`1pDpLqq question and βj is an

ordinal below η.

Engineer i0, a0, e0 i1, a1, e1 i2, a2, e2 ¨ ¨ ¨

Extender b0 b1 b2 ¨ ¨ ¨

Oracle η0, β0 η1, β1 η2, β2 ¨ ¨ ¨

For stages j ą 0 the tuple aj must satisfy pAj´1, bj´1q ďβj´1
pAj, ajq. The Extender’s

tuple must be such that bij Ą aij . Thus, after ω many moves a structure L is constructed

such that DpLq “
Ť

nDAnpanq. Given X P 2ω, we fix a ∆0
η`1pXq Turing-complete set Sη

X

as our Oracle in advance, and say that n is the answer to the eth ∆0
η`1pXq question if

n “ Φ
Sη
X

e p0q. If η is a successor ordinal, then for each stage we may assume that βj “ η´1.

If η is a limit ordinal, then we may assume that the sequence tβjuj is strongly increasing

with limit η.

A strategy for the Engineer is a function that tells her what to play next, based on

what the Extender has already played. It is called a valid strategy if on all possible plays

by the Extender, all queries to the Oracle converge. The metatheorem can now be stated.

Theorem 2.2.1 (Montalbán [25]). Let η be a computable ω presentation of an ordinal

and suppose A “ tA0,A1, . . . u is a list of structures where the back-and-forth relations

are computable up to η. For every computable valid strategy in the η -A-game there is a

sequence of moves by the Extender, such that, if the Engineer follows her strategy and the

Oracle answers truthfully, the limit ω-presentation L is computable.

2.3 Isomorphisms of ω2

Our goal is to create a computable isomorphic copy A of ω2 with isomorphism f : AÑ N 2

where N 2 is the decidable copy such that f ”T H
3 and there is no computable unary
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relation U on A such that fpUq ”T f . To use the game metatheorem with linear orders,

we must first understand the back-and-forth relations on these structures.

Lemma 2.3.1 (Montalbán [26]). If a, b are tuples of different lengths from the same struc-

ture, then a ďα b iff |a| ă |b| and a ďα bæ|a|.

Lemma 2.3.2 (Knight [5] lem 15.8). Suppose A and B are linear orders. Let a “

pa0, . . . , an´1q and b “ pb0, . . . , bn´1q be increasing tuples from A and B respectively, and

let Ai, Bi be intervals such that

A “ A0 ` ta0u `A1` ¨ ¨ ¨ ` tan´1u `An

B “ B0 ` tb0u ` B1` ¨ ¨ ¨ ` tbn´1u ` Bn

Then pB, bq ďα pA, aq if and only if for all 0 ď i ď n, Bi ďα Ai.

Lemma 2.3.3 (Knight [5] lem 15.10). Let δ be either a limit ordinal or 0, and let α and

β be computable ordinals. For each ordinal ζ let

α “ ωζ
¨ αζ ` ρζ ,

β “ ωζ
¨ βζ ` σζ ,

where ρζ , σζ ă ωζ, and let sζ , tζ be the coefficients of ωζ in the Cantor normal form expres-

sions for α, β, respectively. Then

(a) α ďδ`2n`1 β if and only if one of the following holds:

(i) α “ β

(ii) ρδ`n “ σδ`n, αδ`n`1 ě 1, and βδ`n`1 ě 1,

(iii) ρδ`n “ σδ`n, αδ`n`1 “ βδ`n`1 “ 0, and sδ`n ě tδ`n.

(b) α ďδ`2n`2 β if and only if one of the following holds:

(i) α “ β

(ii) ρδ`n “ σδ`n, αδ`n`1 ě 1, βδ`n`1 ě 1, and sδ`n ě tδ`n.

16



(c) for δ a limit ordinal, α ďδ β if and only if one of the following holds:

(i) α “ β

(ii) ρδ “ σδ, αδ ě 1, and βδ ě 1.

We will use this lemma to ensure that our moves at each stage of the game respect the

conditions imposed by the Extender. The specific way in which we will use the lemma is

given below.

Corollary 2.3.4. Let k, l,m P ω such that 0 ă l,m. Then

ωk
¨ l ď2k ω

k
¨m.

Proof. Take Lemma 2.3.3 (b)(ii) with δ “ 0, n “ k´1. Then ρδ`n “ σδ`n “ 0, αδ`n`1 “ l,

βδ`n`1 “ m, and sδ`n “ tδ`n “ 0

We are now ready to set up our game and describe the strategy for the Engineer.

Theorem 2.3.5. There exists a computable isomorphic copy A of ω2 with isomorphism

f : AÑ N 2, where N 2 is the decidable copy, such that f ”T H
3 and there is no computable

unary relation U on A such that fpUq ”T f .

Proof. To answer our question we will use Theorem 2.2.1 with η “ 2. For our pool of

structures A, we will use the single structure ω2. The back-and-forth relations are thus

computable up to 2 using Lemma 2.3.3. Each move made by the Engineer and Extender

will be a pair pω2, asq where as is a tuple from ω2, and so we omit the structure as it never

changes. The role of the Extender ensures that the limit structure is an ω-presentation,

and so the Engineer must ensure that each point is only moved finitely often, and that

every grid point is filled, so that the limit tuple a “ lims as forms an isomorphism by

sending i ÞÑ ai. We will denote the associated partial map of a tuple a with pa. The copy

of ω2 we seek will be the pullback of N 2 through the isomorphism we construct.

Instead of playing the tuple as, we can think of putting labeled balls on a grid presen-

tation of ω2. Each column of the grid represents a copy of ω within ω2, and the point pe, iq
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Figure 2.1: A representation of the tuple xx1, 4y, x5, 6y, x4, 2yy

Figure 2.2: A representation of the tuple xx1, 4y, x7, 6y, x6, 2y, x5, 6y, x4, 2yy

on the grid represents the element ω ¨ e` i of ω2. If there is the ball labeled s on position

pe, iq in the grid, then we know that xe, iy will be in position s of the tuple. By the end

of the construction we will have covered the grid in balls inducing a natural isomorphism

with the standard presentation. The only types of changes that we will make to our grid

are shifting balls to columns further to the right, and replacing balls that were shifted with

new balls, so that the oracle of the computation against which we are trying to diagonalize

is preserved. Both of these are demonstrated by the shift from Fig. 2.1 to Fig. 2.2, and

both will be elaborated upon later. Using Lemma 2.3.1, we see that the new tuple pro-

duced by making these changes is in the same order as our old tuple when we restrict to

the same length. The only difference is that the distance between the two balls closest to

the insertion point is some number of copies of ω greater than in the old tuple. Corollary

2.3.4 tells us that this is a valid move.

We are allowed to ask questions to our H2 Oracle in this 2-tω2u-game, and H3 is c.e.

in H2. Thus, at each stage we will ask the Oracle to enumerate a bit more of H3, and

when we see numbers enter the set we will code that into our isomorphism. We will denote
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the stage s approximation to H3 by KH2

s . The strategy is to sequentially pick special grid

locations called coding locations. Their eventual locations in the limit structure will tell

us whether or not the corresponding numbers are in H3.

The way that we will code when a number n enters the halting set is by shifting a spe-

cial limit point γn to the right by inserting copies of ω into our copy of ω2. This is the same

as moving every ball in a certain column of our grid or higher to the right, and Corollary

2.3.4 tells us that it preserves the back-and-forth relations. The eventual grid placement

of a coding location will also indicate to us where to find the next coding location. For

each i we have the following requirement;

Γi: The coding location γi is mapped to an even multiple of ω if and only if i P H3.

Additionally, the distance between γi´1 and γi is of the form 2x|bs|,my or 2x|bs|,my` 1 for

some s,m where |bs| ` 1 is the label of the ball marked γi`1.

We will say that the requirement Γi requires attention at stage s if i P KH
2

s .

Marking and unmarking balls is imprecise terminology. In reality we can imagine that

we are building an infinite well-ordered set G alongside our actual construction. To mark

a ball as γi, we simply ensure that the label on that ball is the ith element of G. If an

injury forces us to unmark balls, we simply remove the corresponding label from G. While

this is not explicitly permitted in the game construction, at each stage of the construction

we can just code the finite set as a single number and ask the Oracle to remind us of

the number at the next stage. In this way, at the end of the construction we will have

the code for an infinite well-order whose elements tell us precisely the columns of the grid

containing coding locations. It also avoids the issue of using a predetermined computable

set of coding locations to code H3. Each new location depends on the previous move of

the Extender. If they could be computed, then we would have a way of computing H3,

which is impossible.

To further aid in the visualization of our construction, we can imagine that the com-

putable unary relations on A colour the balls, either green if the relation holds of that ball,

or red otherwise. Since our map sends the label to its grid location, the colour of the ball

that rests upon a grid location will determine whether that grid location is in the image

19



of the relation under our eventual isomorphism. This is important, because we will shift

balls to other grid locations, but as long as we replace it with one of the same colour, the

image of the relation will remain unchanged. Note, however, that the colour of a ball may

change if we are diagonalizing against a different unary relation.

We also know that, if there is some computable unary relation U on A whose image

will compute f , its characteristic function will be φe for some e and there will be some Φi

such that Φ
fpUq

i “ f . To avoid this, we are required to diagonalize against all φe that could

pose a threat. If φe is not total, or does not code a set Ue which is infinite and coinfinite,

then there is no hope of fpUeq ”T H
3. If Ue is finite or cofinite then fpUeq will also be,

and if either fpUeq or fpUeq is finite, then fpUeq is computable and cannot compute the

set H3.

The plan for diagonalizing against a single pair xe, iy is to pick a witness x and wait

for the partial isomorphism that we’re building to have enough information to say that

Φ
fpUeq

i pxq Ó“ fpxq. We then seek to change fpxq without changing Φ
fpUeq

i pxq. This means

that we cannot change the oracle used for the computation ( i.e. fpUeq). And so, when we

insert copies of ω to shift the ball that was witnessing this agreeance, we must replace any

shifted green balls with green balls, and likewise red with red. This can always be done,

since the only case in which we diagonalize is if Ue is infinite and coinfinite. Truthfully, we

have no choice in the label of the next ball that we play. Each move must be the least label

not yet used in the computation. If the colour of this ball matches the color that we are

trying to replace, which is to say, they are both in the computable unary relation, then we

have no problem. Otherwise, we play the ball out beyond anything that we have currently

played, so that its placement does not injure any requirement, and check the colour of the

next smallest ball. This gives us the following requirement, which we seek to meet for all

pairs xe, iy;

Rxe,iy: If φe is total and codes an infinite and coinfinite set Ue then there exists some

x such that Φ
fpUeq

i pxq ‰ fpxq.

We will say that the requirement Rxe,iy requires attention as stage s if Ue is a threat,

and there is an x in the column directly to the right of γxe,iy such that Φ
pas pUeq

i pxq “ paspxq.

Recall that each grid location is a pair xn,my. To figure out the column of a ball, all we
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must do is figure out where it is sent using our finite partial isomorphism, and compute

the first element of the pair.

The main issue with this construction is that our two different objectives will interfere

with each other. If we have diagonalized against a certain computation somewhere in the

construction, and then we are forced to move things because we saw a lower number enter

the halting set, it will injure the oracle that we were trying to preserve. To fix this, we will

give the requirements a priority order Γ0 ą R0 ą Γ1 ą R1 ą ¨ ¨ ¨ , so that a requirement of

a lower priority cannot injure one of a higher priority. Thus, each requirement can only be

injured finitely many times, and at a certain point will be permanently met. When an Ri

requirement is injured, it will choose a new witness, and can only choose a witness once

the corresponding γi has been marked. This will not be an issue, as we will mark a new γi

at each step.

Construction: At stage 0 the Engineer will play the ball 0 on the grid location p1, 0q and

mark it as γ0. She will also ask the Oracle whether 0 P KH2

0 , whether φ0 is a total function

which determines an infinite and coinfinite set U0, and finally, if Φ
pa0 pU0q

0 pxq Ó“ pa0pxq for

some x in the column immediately to the right of γ0.

At stage s ` 1 the Extender will have played a tuple bs, and the Oracle will have

answered for all j ď s and all xe, iy ď s whether j P KH2

s , and whether φe is total and

determines an infinite coinfinite set Ue. Furthermore, we will know whether or not there

exists an x in the column immediately to the right of γxe,iy such that Φ
pas pUeq

i pxq Ó“ paspxq.

At each stage the Engineer will mark the smallest coding location γj that hasn’t been

marked, and attempt to meet the highest priority requirement that requires attention.

For marking the coding location, she will take the smallest ball that hasn’t been used

yet and place it at the bottom of the smallest odd column to the right of everything that

has been played so far. She will mark the ball as γj, and insert enough copies of ω directly

to the left of γj´1 that the number of columns between it and γj´2 is 2xγj, ℓjy if requirement

Γj´1 has not been met, or 2xγj, ℓjy ` 1 if Γj´1 has been met, where ℓj´1 is the number of

columns between γj´2 and γj´1 before any are inserted (chosen so that we will never end

up in a situation where there are already too many columns between them). If j ´ 1 is
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zero, then there is no γj´2, and so the Engineer inserts columns until there are 2xγj, ℓjy (or

2xγj, ℓjy ` 1 as before) to the left of γj´1. If Rj´1 has been met, then we must replace the

balls shifted with ones of the same colour as described above.

The Engineer will then act to meet the highest priority requirement that requires at-

tention. Recall that inserting columns is the same as shifting all balls in a certain column

or higher to the right which is the same as increasing the first coordinate of the element

xn,my of the tuple a which represents the current location of all of the balls.

If the highest priority requirement is of the form Rxe,iy, then we let ℓ be the largest

column with a ball in it thus far, and we tell the Engineer to shift all balls in the column

of our witness or greater to the right by 2ℓ and replace all balls that were shifted with new

ones of the same colour as described above. Meeting Rxe,iy will injure all requirements of

lower priority, and un-mark all γk for k ą xe, iy ` 1.

If the highest priority requirement is of the form Γj, then the Engineer must shift every

ball in γj’s column or higher to the right by one to change the parity of γi from odd to even,

thus meeting Γj. She must also shift everything in a strictly higher column by one more,

to preserve the parity of γj`1. Meeting Γj injures all of the lower priority requirements

and unmarks γk for k ą j ` 1.

Finally, the Engineer must place a ball at the top of every column that currently has a

ball to the right of it. This completes our construction.

Claim 1: At each stage s of the game, we have that bs´1 ď2 as.

Proof. Since our only move in meeting a requirement is to insert extra copies of ω between

columns of the grid, this will not change the order of elements, neither in the tuple, nor in

the linear order. Thus, while bsæ|as`1| and as`1 are not necessarily in increasing order, if

we were to write each in increasing order, the corresponding elements of the tuples would

match, and every subinterval would be identical, save for the one that we made larger.

Then applying Lemma 2.3.2 and Corollary 2.3.4 we see that each subinterval for as`1 is

2-above the corresponding bs subinterval.

Claim 2: The strategy for the Engineer is computably valid.
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Proof. We must ensure all of the questions to the Oracle are ∆0
3 and will converge. The

set Tot is Π0
2, and once we know that a φe is total, the question of whether it is infinite or

coinfinite can be phrased as @xDyrφepxq ‰ φepyq ^ x ă ys. We are also only using H2 to

enumerate H3.

The strategy for the Engineer based on the responses to the question uses only com-

putable information about the tuple as and bs to construct as`1. During the construction

we can view any finite portion of the grid, and so looking at the number of columns between

the coding locations is computable at any stage. While we are asking different questions

at each stage of the construction, in the same way that we can code multiple questions

into one single question, we can ask any finite number of questions to the Oracle. So at

each step we have access to the answers of all previous questions to the Oracle, because if

we wanted to, we could have asked all previous questions and more at each new stage.

Thus, the metatheorem (Theorem 2.2.1) tells us that there is a ∆0
3 sequence of moves

by the Extender such that, if the Engineer follows her computably-valid strategy, the limit

presentation A is computable. The limit presentation is such that DpAq “
Ť

jPNDAj
pajq.

We must check that each requirement is met during the construction, and that in doing

so, our isomorphism has the desired properties.

Claim 3: For each requirement, there is a stage of the construction after which it is

never injured.

Proof. We will prove this by induction on the priority ordering. Assume that the first s-

many requirements are only injured finitely and that we are at a stage in the construction

past which any of them will be injured.

If the next highest priority requirement is Γi for some i, then Ri´1 is the only re-

quirement that could injure it, because anything else would also injure higher priority

requirements contradicting our hypothesis. If i “ 0 then there is no Ri´1 and nothing can

injure Γi so the result holds. For i ą 0, if Ri´1 never acts then Γi is never injured again and

we are done. If we must diagonalize against a computation to meet Ri´1 then we will shift

the ball γi outside of the use of the computation that gives us the diagonalization. Notice
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that γi`1 is not unmarked in this case. This is important because part of the requirement

Γi is that γi can tell us where to find γi`1. The number of columns between γi´1 and γi will

be of the form 2xγi`1, ℓsyp`1q. If we were to unmark γi`1 in meeting Ri, we would have to

insert more copies of ω into our grid before γi to indicate the new location of γi`1, which

could injure Ri ad infinitum. Thus γi`1 is moved to a place on the grid where it will not

disturb, Ri, but the label remains the same. Every lower priority requirement from then

on will be met to the right of γi in the grid, and so nothing else will injure Γi. Thus Γi is

only ever injured a finite number of times.

If the next requirement is of the form Ri for some i, then inductively it can only be

injured by Γi. If we never see i enter our enumeration of H3 then Ri will never be injured.

If we do need to act to meet Γi then we will shift γi an by one and only search for witnesses

in the column immediately to the right of it. Since γi`1 is at least two columns to the right

nothing else will injure Ri.

Claim 4: The γi’s are only unmarked finitely often.

Proof. A coding location γ1 is only unmarked when a requirement of higher priority is

injured. Since we have established that they are only injured finitely often, each γi will

only be unmarked finitely often as well.

Claim 5: f “ lims pas is a well-defined isomorphism.

Proof. The Engineer is the only one who can change the location of the balls on the grid.

In Claims 3&4 we have showed that each requirement is only injured finitely often and

that each γi is only unmarked finitely often as well. Since we mark a new γi at each step

and since each subsequent requirement is met further to the right of the grid, this means

that the grid will eventually settle.

Since at every turn the Engineer places a ball in a new column and new balls at the

tops of each current column, the grid will eventually fill in completely.

Claim 6: f ”T H
3.
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Proof. To figure out whether or not n P 03 one must first answer the same question for

0, . . . , n´1. Based on the strategy above we know that the ball 0 will be on the grid point

p2xγ1, ℓsy, 0q or p2xγ1, ℓsy ` 1, 0q for some s. The parity of odd/even will tell us whether

0 P H3 and the value γ1 will tell us which ball to check to see if 1 P H3. We then check

where the ball γ1 is sent under our isomorphism. Knowing already where γ0 was sent, we

can count the number of columns in between the two and it will be a number of the form

2xγ2, ℓty or 2xγ2, ℓty ` 1 for t ą s. The parity will again tell us whether or not 1 P H3 and

we get the value of γ2 exactly as above and repeat until n. The value ℓt is large enough

that if R1 moves the ball γ2 the Extender can still add more columns before γ1 to indicate

where to find γ2.

Claim 7: There is no computable unary relation U on A such that fpUq ”T f .

Proof. Assume, towards a contradiction, that there was such a relation. Furthermore,

WLOG assume that φe “ χU (a.k.a. Ue) and that Φ
fpUeq

i “ f . By the use principle,

there is a finite part of the oracle fpUeq that witnesses this computation. After a certain

stage s in the construction, every requirement of a higher priority that was going to act

would have acted, and so Rxe,iy will not be injured any further. At every stage t ą s we

then would have asked the Oracle if there was any ball x in a certain column on which

Φ
ptpUeq

i pxq “ ptpxq. Since pt Ă f , there must be a stage where we witness an agreement, or

in the limit we would not have Φ
fpUeq

i pxq “ fpxq for all x in the aforementioned column.

We then would have diagonalized against it and preserved the use of the computation.

This is a contradiction, and so our claim is satisfied.

Thus, we have a computable valid strategy for our Engineer and the resulting structure

provided by the metatheorem has the properties we set out to construct.

2.4 Isomorphisms of ωα

We now seek to extend this proof to show that for any finite 1 ă k ă ω we can construct

two copies of ωk such that the isomorphism achieves the degree of categoricity for the
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structure without using a predetermined computable set of coding locations.

Theorem 2.4.1. For k P ω, k ě 2 there exists a computable isomorphic copy A of ωk with

isomorphism f : AÑ N k where N k is the decidable copy such that f ”T H
p2k´1q and there

is no computable unary relation U on A such that fpUq ”T f .

Proof. To prove this, we play a p2k´2q´tωku´game, and use aHp2k´2q Oracle to enumerate

KHp2k´2q. To view ωk as a grid, we must take an ordinal in its Cantor normal form

ωk ¨ nk ` ωk´1 ¨ nk´1 ` ¨ ¨ ¨ ` ω ¨ n1 ` n0 and write it as xnk, xnk´1, . . . , n0yy. This is the

same as making each column in the grid of the form ωk´1. Since Corollary 2.3.4 tells us

that adding copies of ωk´1 results in a tuple that is 2pk ´ 1q above the previous, we can

proceed with the construction exactly as above. The questions we ask to the Oracle do

not change, except, that we ask it to enumerate KHp2k´2q

instead, which is a valid question

in our p2k ´ 2q-game.

When we move to transfinite ordinals α, the degree of categoricity increases from 0p2α´1q

to 0p2αq, but so does the computational strength of our Oracle. Instead of using 0pkq as our

∆0
k`1 set, we may use 0pα`1q as a ∆0

α`1 set. This, together with Corollary 2.4.2 allows us

to continue to extend the theorem to any computable infinite successor ordinal

Corollary 2.4.2. Let α “ δ` n` 1 where δ is a computable limit ordinal. Let l,m P ω be

such that 0 ă l,m. Then

ωα´1
¨ l ďδ`2n ω

α´1
¨m.

Proof. Following Lemma 2.3.3 (b)(ii) for δ`2pn´1q`2, we see that ρδ`n´1 “ σδ`n´1 “ 0,

αδ`n “ l, βδ`n “ m, and sδ`n´1 “ tδ`n´1 “ 0.

Theorem 2.4.3. For all computable ordinals α “ δ ` n ` 1 where δ is an infinite limit

ordinal and n P ω, there exists a computable isomorphic copy A of ωα with isomorphism

f : A Ñ N α, where N α is the decidable copy, such that f ”T Hp2αq and there is no

computable unary relation U on A such that fpUq ”T f .

Proof. We will be playing a pδ ` 2nq ´ tωαu-game. Since α is a successor ordinal, we may

use the same grid technique as in Theorem 2.4.1. Our Oracle in this game is Hpα`2n`1q,
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which is strong enough to enumerate KHpαq

which is the degree of categoricity for the

structure ωα. Corollary 2.4.2 tells us that our insertion strategy will still provide tuples

that respect the back-and-forth restraints imposed by the metatheorem.

If we are not requiring the isomorphism to compute the degree of categoricity of the

structure, then our game becomes simpler. We can use an Oracle strong enough to directly

compute the set we would like to code into our isomorphism, and yet the back-and-forth

relations that our Oracle necessitates us to obey still allow us wiggle-room to change our

play between stages. For limit ordinals, we use one final application of Lemma 2.3.3 in the

following Corollary.

Corollary 2.4.4. Let ζ, η, λ be computable ordinals such that λ is a limit ordinal and

λ ă η ď ζ. Then

ωη
ďλ ω

ζ .

Proof. We apply Lemma 2.3.3 (c)(ii) with δ “ λ, ρδ “ σδ “ 0, and αδ “ ωη´β, βδ “

ωζ´β.

Proposition 2.4.5. Let α, β be computable ordinals such that 0pβq is less than the degree of

categoricity of ωα. There exists a computable isomorphic copy A of ωα with isomorphism

f : A Ñ N α, where N α is the decidable copy, such that Hpβq ďT f and there is no

computable unary relation U on A such that fpUq ”T f .

Proof. If α is finite or an infinite successor ordinal, then this is an immediate corollary of

Theorems 2.4.1 and 2.4.3.

If α is a limit ordinal, then we must make bigger changes to our strategy. We can

no longer immediately meet the strongest possible level of respect to account for any β.

However, since β ă α we may ensure that at each stage we are playing a tuple β above the

previous, so that we do not have to deal with the increasing levels of respect that would

come from an α game. The big change comes from the way that we must view our grid.

We can write ωα “
ř

pPω ω
αppq and view it as a grid where the i´ th column is of the form

ωαpiq. Having to obey the β restraint relations effectively fixes any column where αppq ă β,

and so our first play, instead of being on the grid spot p1, 0q, will be on the location pn, 0q
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for the least odd n such that β ă αpnq. The rest of the strategy is as before, except that

instead of inserting copies of ωk we are inserting the appropriate columns. This changes the

way that balls are moved in the copy of ωα that we are building, but does not change the

strategy, nor the grid visualization. The validity of each move follows still from Corollary

2.4.4.

2.5 Further Work

While the game strategy above works for successor ordinals, the case of building a com-

putable copy of ωα for α a limit ordinal remains open. Recall that when using the metathe-

orem for a limit ordinal, at each step of the construction the Oracle gives us a larger ordinal

which signifies the level of back-and forth relations which we have to respect. The game

that we played in Theorem 2.3.5 becomes nullified when we do not know the back-and-forth

level of respect that we will have to obey before we ask the question. If α “ ω then at each

stage we would have to obey some finite level n of back-and-forth restraint. This restraint

effectively fixes the first n columns of our ωω grid. Not knowing what the next level of

restraint will be means that any predetermined coding location could become fixed before

we are able to insert columns to the left of it. It also fixes what the Extender has done in

those columns, and so we lose some of our power to diagonalize. If we try limiting what

can be fixed and where the Extender can play by increasing our pool of structures, then

we run into the issue of the increasing levels of restraint. If we move to a bigger structure,

then trying to mirror the tuple played by the Extender will always result in one subinterval

that is larger (and therefore not back-and-forth below). This means that any proof of the

result using the game metatheorem would have to use a drastically different approach.

We encounter issues with the metatheorem as well, if we try building a computable

copy B of ωα where α ą 1 such that there is no computable unary relation on N α whose

image fpUq can compute the isomorphism f : N α Ñ Bα. Let us consider the case α “ 2,

so that it may be compared to Theorem 2.3.5. Since the computable relations are now

on the standard copy, as we build the computable copy B we are building the image of
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the relations. Before, if we needed to change the image of the relation, we could do so

by moving a ball and replacing it with one of the same colour. In this way the image of

the ball remains in the relation and yet the isomorphism has changed. This was always

possible because the relations we were diagonalizing against were infinite and coinfinite, so

there were always balls with which to replace.

In the case of mapping out of the standard copy, instead of colouring the balls we

are colouring the grid spots. Therefore, to change the isomorphism while preserving the

image of the relation, we must move a ball from a grid spot to one of the same colour.

This becomes an issue as the grid fills in, because we can only insert copies of ω while

respecting the 2 back-and-forth relations. So if we shift a column that has finitely many

balls placed in it, we must find another column with the same coloured grid points in each

location. This is not guaranteed to exist.

The main tools enabling us to employ the game metatheorem are an understanding

of the back-and-forth relations on a structure, and an understanding of the degrees of

categoricity. Understanding these aspects is easy to achieve when the structures are simple,

of computable dimension 1 for example. A different class of structures where the back-and-

forth relations are well understood and, which additionally provide interesting examples

to work with, are superatomic Boolean algebras. It would be interesting to see which of

the results proved in this section for linear orders carry over. Every superatomic Boolean

algebra can be thought of as an interval algebra over a linear order, and so many results on

the degree spectra of relations included in Hirschfeldt [18] are mentioned for linear orders

and superatomic Boolean algebras together.
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Chapter 3

Scott Complexity of Groups

The work done in the previous chapter cannot presently be extended to mathematical

groups. This is because neither the degrees of categoricity nor the back-and-forth relations

are well understood for this class of structures. Barker [6] managed to give a character-

ization for the back-and-forth relations between tuples from the same reduced countable

Abelian primary group, but even to try and look at two different reduced Abelian p-groups

becomes much more difficult. A result that will help us greatly in this class of groups is

Ulm’s theorem, which uniquely characterizes countable torsion groups up to isomorphism.

Ulm’s theorem proves to also be a helpful tool for trying to determine the Scott com-

plexity of such groups. Alvir and Rossegger [3] were able to construct Scott Sentences of

optimal complexity for scattered linear orders. Our goal in this chapter is to characterize

the back-and-forth relations for countable reduced Abelian p-groups, and use that to try

and find the Scott complexity of such groups.

3.1 Background

In this section, given a group G, when we write nx for n P ω, x P G, we mean x`
n
¨ ¨ ¨ ` x.

We will only be working in Abelian groups for which the group operation is commutative.

For a fixed prime p, a group G is said to be primary (or p-primary) if for each group
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element x P G pnx “ 0 for some n ě 1. We say that G is divisible if for every x P G there

exists a y P G and n P ω such that x “ ny. A reduced group is one with no non-trivial

divisible subgroups. Going forward, when we refer to a group we will mean a countable

reduced Abelian primary group unless stated otherwise.

Let G0 “ G, and for any ordinal α we define Gα`1 “ pGα. That is to say, Gα`1 “

tx P G : Dy P Gα py “ xu. We call this the set of elements of height at least α. If α is

a limit ordinal, then we define Gα “
Ş

βăαGβ. Notice that if α ă β then Gα Ě Gβ. We

define the largest α such that x P Gα to be the height of x and denote it hpxq. The height

function does not always play nicely with respect to sums. For x, y P G if hpxq ă hpyq

then hpx ` yq “ hpxq, but if hpxq “ hpyq then hpx ` yq ě hpxq. Given a subgroup S of

G, we say that x is proper with respect to S if hpxq ě hpx ` sq for all s P S. This is

the same as the height of x being maximal in its coset modS. For such proper elements,

hpx ` sq “ minthpxq, hpsqu. We also know that for all x ‰ 0 we have hppxq ą hpxq. We

define hp0q “ 8 to be greater than any ordinal to ensure this property.

We similarly define, for all α, Pα “ P X Gα, where P “ tg P G : pg “ 0u. Viewing

Pα{Pα`1 as a vector space over Zp, we define the α-th Ulm invariant to be its dimension,

and denote it fGpαq. In addition, since G is countable, there must be an ordinal λ called

the length of G such that Gλ “ Gξ for all ξ ě λ. Since G is reduced, we can conclude that

Gλ “ t0u.

If G is a direct sum of cyclic groups then its length is bounded by ω, and we know that

fpnq is exactly the number of cyclic summands of order pn`1 for each n.

Theorem 3.1.1 (Ulm [20]). Two reduced countable primary abelian groups are isomorphic

if and only if they have the same Ulm invariants.

For groups of length greater than ω, it is harder to find explicit examples of groups

with certain Ulm invariants. Additionally, determining the Ulm invariants from a group’s

presentation is not easy. We know, from a paper of Droste and Göbel [14], that any

sequence can be realized as a group with those Ulm invariants, and so ideally we can work

exclusively with Ulm sequences.

Thus, to describe a given a group G of length λ up to isomorphism, we wish to say for

each α up to λ that there is a basis of Pα{Pα`1 of size k. Barker [6] has shown that
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Proposition 3.1.2. Let α be an ordinal. The group Gω¨α is definable by a Π0
2α formula.

The group Gω¨α`n for n ą 0 is definable by a Σ0
2α`1 formula.

Given an x P Gα we have seen that hppxq ą hpxq. Most of the time, it is the case

that hppxq “ hpxq ` 1, but there are some x for which it increases more. Let p´1Gα`2 “

tz P G : pz P Gα`2u. Then given a subgroup S, we define Sα “ S X Gα and look at the

subgroup S˚
α “ Sα X p´1Gα`2. For any x P S

˚
α we can find a y P Gα`1 such that px “ py.

Given such a y we may add any element of Pα`1 and we will get a new element with the

same desired property. Observe that the element x ´ y is in Pα since ppx ´ yq “ 0 and

hpx´ yq “ hpxq. The mapping of x to x´ y for such a y as above, followed by the natural

homomorphism from Pα to Pα{Pα`1 thus forms a homomorphism of S˚
α into Pα{Pα`1. The

kernel of this map is exactly Sα`1. Hence, we get an isomorphism which we shall call

u : S˚
α{Sα`1 Ñ Pα{Pα`1. This map does not seem to be very natural, but the usefulness

comes from the following Lemma.

Lemma 3.1.3 (Kaplansky [20]). Let S be a subgroup of the group G and u as defined

above. Then the following are equivalent:

1. The range of u is not all of Pα{Pα`1.

2. There exists an x P Pα proper with respect to S.

This Lemma will prove useful to us in Section 3.3.

3.2 Scott Complexity

We begin this section by building off of the work done in Proposition 3.1.2. Notice that,

for an element x P G, x P P ðñ p ¨ x “ 0. Thus, to say that x P Pα requires the

same number of quantifiers as to say that x P Gα. So the task becomes expressing the

dimension of Pα{Pα`1 as a vector space over Zp. Letting φγ, ψγ define Gγ,Pγ respectively,

the following says Pα{Pα`1 has dimension at least m for m P ω:
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θmα ” Dg1, . . . , gm

«

ľ

iďm

ψαpgiq ^
ł

n1,...,nmPZp

˜

ψα`1pn1g1 ` ¨ ¨ ¨ ` nmgmq Ñ
ľ

iďm

ni “ 0

¸ff

If α “ ω ¨β`n for n ě 0, then ψα`1 has complexity Σ0
2β`1 and θ

m
α has complexity Σ0

2β`2.

To then say that fpαq “ m we must use the formula θmα ^ ␣θ
m`1
α which has complexity

d´ Σ0
2α`2

If Pα{Pα`1 has dimension 8 over Zp then we must say

θ8
α ”

ľľ

mPω

θmα

and the above formula has complexity Π0
2β`3.

We also need to know the length λ of the group G, so that we can distinguish it from a

group G1 of longer length, but with all the same Ulm invariants up to λ as G. The length

of the group is the first ordinal λ such that Gλ “ 0, so a formula saying this fact is

Lλ ” @xpφλpxq Ñ x “ 0q ^
ľľ

αăλ

Dxpφαpxq ^ x ‰ 0q.

If λ “ ω ¨ α is a limit ordinal, then this formula is Π0
2α`1. If λ “ ω ¨ α ` n for n ą 0

then this formula has complexity d ´ Σ0
2α`1. Thus, the group G with length λ and Ulm

invariants given by f has Scott sentence

Lλ ^
ľ

αăλ

θfpαq
α ^ Ω

Where Ω is a Π0
2 sentence saying that G is an Abelian p-group. Any structure that

is isomorphic to G will trivially satisfy this formula, and if a group satisfies this formula,

then Ulm’s Theorem tells us that it is isomorphic to G.

Notice that for a fixed α, the complexity of Lα will be less than that of ψα. This means

that we will end up with cases for the complexity of the Scott sentence for G based on the

length and the Ulm invariants.
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Theorem 3.2.1. Let G be a group with length λ ą 0 and Ulm invariants given by f . Then

for 0 ă n ă ω,

(i) If λ “ ω ¨ α` n and fpω ¨ α` kq ă 8 for 0 ď k ă n then G has a Scott Sentence of

complexity d´ Σ0
2α`2.

(ii) If λ “ ω ¨ α` n and fpω ¨ α` kq “ 8 for 0 ď k ă n then G has a Scott Sentence of

complexity Π0
2α`3.

(iii) If λ “ ω ¨ α ` n and fpω ¨ α ` iq ă 8 and fpω ¨ α ` jq “ 8 for some i “ j with

0 ď i, j ă n, then G has a Scott Sentence of complexity Π0
2α`3.

(iv) If λ “ ω ¨ α then G has a Scott Sentence of complexity Π0
2α`1.

Proof. (i) From our work above we note that the complexity of Lλ will be d ´ Σ0
2α`1 and

the complexity of θ
fpω¨α`kq

ω¨α`k will be d ´ Σ0
2α`2 for all 0 ď k ă n. All lower Ulm invariants

will be easier to describe and so the complexity of the Scott sentence becomes d´ Σ0
2α`2.

(ii) Similarly to the previous case, the complexity of θ8
ω¨α`k will be Π0

2α`3 for all 0 ď

k ă n.

(iii) If G has a finite and an infinite Ulm invariant withing finite distance from the

length of the group then there will be a d ´ Σ0
2α`2 and a Π0

2α`3 appearing in the infinite

conjunction of Ulm invariant formulae. The length of the group will still be d ´ Σ0
2α`1 to

describe, and so the Scott sentence has complexity Π0
2α`3.

(iv) If the length of G is a limit ordinal λ “ ω ¨ α then the formula Lλ has complexity

Π0
2α`1. The infinite conjunction of Ulm invariant formulae is only for those less than the

limit ordinal λ. Thus their complexities are dominated by that of Lλ and the Scott sentence

has complexity Π0
2α`1.

Note that this is not claiming to demonstrate the Scott complexities of any groups. In

fact there are many cases where there exist Scott sentences of lower complexity for groups.

Any finite group is expressible by a Π0
2 formula for example. What we have done provides

an upper bound on the Scott complexities of countable reduced Abelian primary groups.
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Our next goal is to show when it is a tight upper bound, and to this end we need to

understand better the back-and-forth relations between such groups.

Recall from Definition 1.2.1 that for two groups G,H, G ďα H if and only if all Σ0
α

formulas true of H are true of G if and only if all Π0
α formulas true of G are true of H.

This would include Scott sentences, and so if we can find two non-isomorphic groups that

are α back-and-forth equivalent, then neither can have Scott complexity Σ0
α nor Π0

α. To do

this we need conditions that guarantee that two groups are α equivalent and so we seek to

characterize the back-and-forth relations for groups. If we are looking at tuples from the

same group then the characterization is known.

Proposition 3.2.2 (Barker [6]). Let a, b P Găω and let g : b Ñ a map corresponding

members of the tuples to one another.

1. a ď2δ b if and only if

(a) g extends to an isomorphism g : xby Ñ xay and

(b) for every b P xby and a “ gpbq we have

hpbq “ hpaq ă ω ¨ δ or hpbq, hpaq ě ω ¨ δ.

2. a ď2δ`1 b if and only if

(a) g extends to an isomorphism g : xby Ñ xay and

(b)(i) If Pω¨δ`k is infinite for every k ă ω then for every b P xby and a “ gpbq we have

hpbq “ hpaq ă ω ¨ δ or hpbq ě ω ¨ δ and hpaq ě minthpbq, ω ¨ δ ` ωu.

(b)(ii) If Pω¨δ`k is infinite and Pω¨δ`k`1 is finite, then for every b P xby and a “ gpbq

we have

hpbq “ hpaq ă ω ¨ δ or ω ¨ δ ď hpbq ď hpaq ď ω ¨ δ ` k or hpaq “ hpbq ą ω ¨ δ ` k

(b)(iii) If Pω¨δ is finite, then for every b P xby and a “ gpbq we have

hpbq “ hpaq.
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With the allowance of different groups comes many more moving pieces leading to many

more cases to be considered, and before that we can turn to a different model-theoretic

condition concerning the satisfaction of formulas to try and show optimality of our Scott

Sentences.

Definition 3.2.3. We say that A is a Σ0
α-elementary substructure of B and write

A ĺΣ0
α
B ifA is a substructure of B, andA,B satisfy the same Σ0

α formulas with parameters

from A.

This has the following connection to back-and-forth relations.

Proposition 3.2.4. If A ĺΣ0
α
B then B ďα`1 A.

However, it is no easier to characterize when a group G is a Σ0
α-elementary substructure

of another group H than it is to characterize the back-and-forth relations. For the smallest

back-and-forth relations, work of Eklof’s [15] can be applied. He showed that G ĺΣ0
1
H if

and only if G is a pure subgroup of H and every Π0
1 sentence true of G is true of H. If

we combine these definitions with the following theorem we get our first usable results on

pinning down Scott complexity.

Theorem 3.2.5 (Alvir [1]). Suppose that pAiqiPω is a chain such that Ai ĺΣ0
α
Ai`1, and

A “
Ť

iPω Ai where A is not isomorphic to any Ai. Then A has no d-Σ0
α`1 Scott sentence.

The definition of a pure subgroup is unnecessary, and for this context it is sufficient to

know that direct summands of primary groups are pure subgroups.

Theorem 3.2.6. If G is a direct sum of cyclic groups and has two infinite Ulm invariants

then G does not have a d´ Σ0
2 Scott Sentence.

Proof. Assuming that G has two infinite Ulm invariants fpnq “ 8 and fpmq “ 8 for

n ă m we can write G as H ‘ pZpnq
ω or more importantly. as a chain

Ť

iH ‘ pZpnq
i. We

seek to show that at each stage H ‘ pZpnq
i ĺΣ0

1
H ‘ pZpnq

i`1. By the remark above we

trivially have that H‘pZpnq
i is a pure subgroup of H‘pZpnq

i`1, so to apply Eklof’s result

we just need to show that every Π0
1 sentence true of H ‘pZpnq

i is true of H ‘pZpnq
i`1, i.e.
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H ‘ pZpnq
i ď1 H ‘ pZpnq

i`1. This is true because we can embed Zpn ‘ pZpmq
ω into pZpmq

ω

since Zpm contains a subgroup isomorphic to Zpn . Therefore we can embed H ‘ pZpnq
i`1

into H ‘ pZpnq
i using the same trick.

Corollary 3.2.7. If G is a direct sum of cyclic groups with length λ ě 2 and all Ulm

invariants infinite then Π0
3 is the best possible Scott Sentence.

3.3 Back-and-Forth Relations

Barker’s back-and-forth relations between tuples of the same group allowed for many sim-

plifying assumptions, including the fact that there is only one length, one set of Ulm

invariants, and one set of elements of each height. When those things can be different

many possibilities open up for ways to map elements between tuples. In this section we

obtain a partial result in extending the back-and-forth relations to arbitrary countable

reduced Abelian p-groups. To give a full characterization of such back-and-forth relations

has been a long-standing open problem [5].

Theorem 3.3.1. Let A,B be countable reduced Abelian p-groups of lengths λA, λB respec-

tively. Further assume that |PA
β | “ 8 for all β ă mintλA, ω ¨α`ωu for a countable ordinal

α. Let a P Aăω, b P Băω and let g : bÑ a map corresponding members of the tuples to one

another.

1. pA, aq ď2α`1 pB, bq if and only if

(a) for all β ă ω ¨ α we have fApβq “ fBpβq,

(b) λA “ λB ă ω ¨ α or λB ě ω ¨ α and λA ě mintλB, ω ¨ α ` ωu,

(c) for all k P ω, |PA
ω¨α`k| ě |P

B
ω¨α`k| and |G

A
ω¨α`k| ě |G

B
ω¨α`k|,

(d) g extends to an isomorphism g : xby Ñ xay, and

(e) for every b P xby and a “ gpbq we have

hpaq “ hpbq ă ω ¨ α or phpbq ě ω ¨ α and hpaq ě minthpbq, ω ¨ α ` ωuq .
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2. pA, aq ď2α`2 pB, bq if and only if

(a) for all β ă ω ¨ α we have fApβq “ fBpβq,

(b) λA “ λB ă ω ¨ α ` ω or ω ¨ α ` ω ď λA, λB,

(c) for all k P ω, |PA
ω¨α`k| “ |P

B
ω¨α`k| and |G

A
ω¨α`k| “ |G

B
ω¨α`k|,

(d) g extends to an isomorphism g : xby Ñ xay, and

(e) for every b P xby and a “ gpbq we have

hpbq “ hpaq ă ω ¨ α ` ω or hpbq, hpaq ě ω ¨ α ` ω.

3. pA, aq ďα pB, bq for α a limit ordinal or zero if and only if

(a) for all β ă ω ¨ α we have fApβq “ fBpβq,

(b) λA “ λB ă ω ¨ α or ω ¨ α ď λA, λB,

(c) g extends to an isomorphism g : xby Ñ xay, and

(d) for every b P xby and a “ gpbq we have

hpbq “ hpaq ă ω ¨ α or hpbq, hpaq ě ω ¨ α.

Proof. pñq Recall from our work at the beginning of the previous section, that the formula

describing the Ulm invariant at the level ω¨α is either Σ2α`3 or Π2α`3 depending on whether

the Ulm invariant is finite or infinite. This means that for any β “ ω ¨ γ ă ω ¨ α we have

γ ď pα´ 1q, and so the complexity of the Ulm invariant formulas are at most Σ2pα´1q`3 or

Π2pα´1q`3. Recall from Definition 1.2.1 that if pA, aq ď2α`1 pB, bq then any Π2α`1 formula

true of A must hold of B, and any Σ2α`1 true of B must hold of A. Hence, any Ulm

invariant of A that is infinite below ω ¨α forces the corresponding Ulm invariant of B to be

infinite. Likewise any Ulm invariant of B that is finite and below ω ¨ α can be completely

described, and so the corresponding Ulm invariant of A must be equal. Together, this

forces all Ulm invariants below ω ¨α to be equal and shows why part (a) is necessary in all

conditions.

We showed earlier that, to say that the length of a group is exactly ω ¨α, has complexity

Π2α`1. To say that it has length at least ω ¨α`n we just have to say that Gω¨α`n ‰ t0u, and
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so this is Σ2α`1 as above. To say that the length of a group is at most ω ¨ α` n it suffices

to say that Gω¨α`n “ t0u. This would correspondingly have complexity Π2α`1. Thus as

before, λA ď ω ¨ α ` n implies λB ď ω ¨ α ` n and λB ě ω ¨ α ` n implies λA ě ω ¨ α ` n.

Below the ω ¨α level they must be equivalent and above the ω ¨α`ω level we do not need

to preserve formulas of that complexity. This shows that condition 1(b) is necessary. If

pA, aq ď2α`2 pB, bq, then pA, aq ”2α`1 pB, bq. We shall use this fact again to show that an

asymmetric condition in 1, must become symmetric with one more quantifier. For now,

we have shown that 2(b) is necessary. If α is a limit ordinal, then α “ 2α, and so the

conditions look a lot like 2pα ´ 1q ` 2 for non-limit ordinals, but there is no α ´ 1 level,

and so condition 2(b) would not make sense. For 3(b), (c), and (d) though, it is sufficient

to show that 2(b), (d), and (e) are necessary.

Similarly as above, we recall from Proposition 3.2.2 that the subgroups Gω¨α and Gω¨α`k

are describable using Π2α and Σ2α`1 formulas respectively. Adding an existential quantifier

in front of a Σ2α`1 formula will not change its complexity, and so to say that there are at

least κ things in GB
ω¨α`k for κ a finite cardinal is Σ2α`1 and this formula must then be true

of GA
ω¨α`k. The subgroups Pω¨α`k have the same complexity and so this demonstrates why

condition 1(c) is necessary. As before our asymmetric condition becomes symmetric when

we add one more quantifier.

If g does not extend to an isomorphism between xby and xay then we can find a quantifier

free formula true of b that does not hold of a, so conditions 1(d), 2(d), and 3(c) are

necessary.

For any b P b, hpbq ě ω ¨ α` n ðñ b P Gω¨α`n. From Proposition 3.2.2, we know that

this is a Σ2α`1 statement, and so if pA, aq ď2α`1 pB, bq then this forces hpaq ě ω ¨ α` n as

well. Likewise, hpaq ă ω ¨ α ` n ðñ a R Gω¨α`n which is a Π2α`1 statement. Combining

these two facts we have that whenever ω ¨ α ď hpbq ď ω ¨ α ` ω we have hpaq ě hpbq.

Note that when (1) holds and hpaq, hpbq ă ω ¨α, to express that the height of an element

x is β ă ω ¨ α we need only say that x P Gβ ^ x R Gβ`1, so we must have hpaq “ hpbq

given that these groups are definable by low-complexity formulas. As before, anything

asymmetric for 2α ` 1 becomes symmetric for 2α ` 2, and so this proves why conditions

1(e), 2(e) and 3(d) must hold.
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pðq We will proceed by induction on α. When α “ 0 and pA, aq, pB, bq meet the

conditions of 3 (really just (c), (d)), then we see that any quantifier free formula true of a

in A will hold of b in B. We proceed differently depending on whether α is odd, even, or

a limit ordinal, and so separate into those cases below.

Case 1: Assume that pA, aq, pB, bq satisfy the above conditions for part 1. We wish to

show that for any d P Băω we can find a c P Aăω such that by induction pB, bdq ď2α pA, acq.
Using a result of Kaplansky’s ([20] Problem 36) if λB ě ω ¨α then |PB

β | “ 8 for all β ă ω ¨α.

This allows us to apply the inductive hypothesis despite its asymmetric assumptions on A
and B. Notice that the conditions of 2 are more restrictive than the conditions of 3, so if

2α is a limit ordinal then if we show it meets the conditions of 2 it will suffice. Conditions

2(a) and (b) for 2pα ´ 1q ` 2 follow from our assumptions of 1(a) and (b) respectively.

If λA “ λB ă ω ¨ α then by Ulm’s theorem they are isomorphic and so 2(c) is satisfied.

If α is a successor ordinal and λA, λB ě ω ¨ α, then by (Kaplansky [20] Problem 36)

|PA
ω¨pα´1q`k| “ |P

B
ω¨pα´1q`k| “ 8 and so 2(c) is satisfied. If α is a limit ordinal then we are

instead trying to meet the conditions of 3 which does not mention |PA
ω¨pα´1q`k|, |P

B
ω¨pα´1q`k|.

Let A “ xay, B “ xby be subgroups of A,B respectively. Given a d P Băω we seek to

extend the isomorphism g : B Ñ A to an isomorphism g : B1 “ xb, dy Ñ C 1 “ xa, cy for a

suitable c P Aăω such that it meets the conditions of part 2. We will do this by making a

sequence of extensions B “ B0 Ď B1 Ď ¨ ¨ ¨ Ď B1, and choosing at each stage i an x P B1zBi

with px P Bi if possible, and extending g to Bi`1 “ xx,Biy.

Case 1(a): If λA “ λB ă ω ¨α then our assumption of condition 1(a) forces the groups

to be isomorphic by Ulm’s theorem. So we can certainly extend g as needed.

Case 1(b): If ω ¨ α ď λB ď λA ă ω ¨ α ` ω. We shall ensure that each extension of g

to Bi satisfies the following condition.

hpaq “ hpbq ă ω ¨ α or ω ¨ α ď hpbq ď hpaq ă λA,

which we will call condition ‹. If this is met for all i ď |B1zB|, then g : B1 Ñ A1 will satisfy

hpaq “ hpbq ă ω ¨ α or ω ¨ α ď hpaq, hpbq.

Note that by our assumption of condition 1(d) g meets condition ‹ for B0.
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As stated above we now choose an x P B1zBi such that px P Bi and x is proper with

respect to Bi, and hppxq is maximal among all x with this property. B is a p-group, and

so B1 being finitely generated means that it is finite. This allows us to use Lemma 3.1.3

to choose such an x.

Since g meets condition ‹i, we know that either hppxq “ hpyq ă ω ¨ α or hppxq ě ω ¨ α

and hpyq ě hppxq.

Case 1(b)(i): If hpyq “ hppxq “ hpxq`1 ă ω ¨α then we choose a w such that pw “ y

and hpwq “ hpxq. This is possible from our assumption that fAphpxqq “ fBphpxqq. We

know that w R Ai because if w “ gpzq for some z P Ai then pz “ px since g is a group

isomorphism. This would mean that hppx ´ pzq “ hp0q “ 8 ą hppxq which contradicts

our choice of x.

We also get that w is proper with respect to Ai, for if there were some a P Ai such that

hpw ` aq ě hpwq ` 1 “ hpxq ` 1 and a “ gpbq for b P Bi, then since w ` a ‰ 0 we must

have hpppw` aqq ě hpxq` 2 which forces hpppx` bqq ě hpxq` 2. This also contradicts the

maximal height of px P Bi.

We can now extend g to Bi`1 “ xx,Biy by mapping gprx ` bq “ rw ` a for 0 ă r ă

p, b P Bi and a “ gpbq. Since w was proper with respect to Ai we see that g still preserves

heights for everything ď ω ¨ α, and so g meets ‹i`1.

Case 1(b)(ii): If hpxq “ γ, hpyq ą γ ` 1, then since hppxq ą γ ` 1, there is a

v P Bγ`1 such that pv “ px. The element x ´ v is then in PB
γ and it also has height γ

and is proper with respect to Bi. We can apply Lemma 3.1.3 to see that the range of u is

not all of PB
γ {P

B
γ`1. By induction on i, g preserves heights for elements of height ă ω ¨ α.

Furthermore, g maps BiXBγ`1 onto AiXAγ`1, BiXBγ onto AiXAγ and BiXBγXp
´1Bγ`2

onto Ai XAγ X p
´1Bγ`2.

Since pBiXBγ X p
´1Bγ`2q{pBiXBγ`1q is finite, its dimension as a vector space over Zp

is strictly less than fBpγq “ fApγq. Combining these facts, we see that the dimension of

pAi XAγ X p
´1Aγ`2q{pAi XAγ`1q is also less than fApγq, so we can apply Lemma 3.1.3 in

reverse, giving us an element w1 P A such that pw1 “ 0, hpw1q “ γ, and which is proper

with respect to Ai.
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Since hpyq ą γ ` 1 we know that y “ pw2 for w2 P Aγ`1. Let w “ w1 ` w2. Then

pw “ 0 ` y, hpwq “ hpw1q “ γ, and w is proper with respect to Ai. If we extend g by

gpxq “ w as before, we see that g preserves heights ă ω ¨ α and so satisfies ‹i`1.

Case 1(b)(iii): If hpxq ě ω ¨ α then hpxq ă hppxq ď hpyq. So we can choose a w1 P A
such that pw1 “ y and hpw1q “ hpyq ´ 1 ě hpxq. The fact that there is an element of

height ě ω ¨ α implies that λA ą ω ¨ α, which justifies our use of the ordinal λA ´ 1. By

our assumptions on A, PA
λA´1 is infinite, hence we can get an element w2 P P

A
λA´1zAi. Let

w “ w1 ` w2 and extend g to Bi`1 by defining gpxq “ w.

To see that g still meets condition ‹ take an arbitrary element rx ` b of Bi`1 where

0 ď r ă p since px P Bi and b P Bi. We have that gprx ` bq “ rw ` a. If hpbq ă ω ¨ α

then hprx ` bq “ hpbq and hpbq “ hpaq by our induction on i, thus hprw ` aq “ hpaq

and g preserves heights below ω ¨ α. If hpbq ě ω ¨ α then by induction we still know that

hpaq ě hpbq. We also have that

hprw ` aq ě minthpwq, hpaqu ě minthpw1q, hpw2q, hpaqu ě minthpxq, λA ´ 1, hpbqu.

Since λB ď λA we must have hpxq ď λA ´ 1 and since x is proper with respect to

Bi we have that hprx ` bq “ minthpxq, hpbqu. Thus g meets condition ‹ for Bi`1 and by

induction on i and our inductive hypothesis on α we have shown that pB, bdq ď2α pA, acq
for c “ gpdq.

Case 1(c): Assume that λA ě ω ¨ α ` ω. We know in this case that PA
ω¨α`k is infinite

for all k P ω (Kaplansky [20] Problem 36). Let N0 “ |B
1zB| and Ni`1 “ Ni ´ 1.

We shall ensure that we extend g to B1 such that for all b P Bi we have

hpaq “ hpbq ă ω ¨ α or hpbq ě ω ¨ α and hpaq ě minthpbq, ω ¨ α `Niu.

If this is accomplished for all i ď N0 then we would meet condition 2(d) (or 3(d)), which

would mean pB, bdq ď2α pA, acq from our inductive hypothesis. We shall call the above

condition ‹i, and, by our assumption of condition 1(d), g meets ‹0.

Now by induction on i we again take an x P B1zBi such that px P Bi, x is proper with

respect to Bi, and hppxq is maximal amongst all such elements of x`Bi, and let gppxq “ y.
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Case 1(c)(i): We can prove this case exactly as in 1(b)(i).

Case 1(c)(ii): We similarly follow the proof of 1(b)(ii).

Case 1(c)(iii): hpxq ě ω ¨α and hpyq ě minthppxq, ω ¨α`Niu. Since hppxq ě hpxq`1

we know hpyq ą ω ¨ α and so there exists a w1 P A such that pw1 “ y and hpw1q ě

minthpxq, ω ¨α`Ni´ 1u. Since PA
ω¨α`Ni

is infinite we can find a w2 P P
A
ω¨α`Ni

zAi. Set w “

w1 `w2 we extend g by sending x to w. Note that w R Ai and hpwq ě minthpw1q, hpw2qu.

For all b P Bi such that hpbq ă ω ¨ α, g preserves height as before. Let b P Bi have

height ě ω ¨ α. Then for a “ gpbq and 0 ď r ă p using condition ‹i we have

hprw ` aq ě minthpwq, hpaqu ě minthpxq, ω ¨ α `Ni ´ 1, hpbq, ω ¨ α `Niu

ě minthpxq, hpbq, ω ¨ α `Ni`1u

“ minthprx` bq, ω ¨ α `Ni`1u

where the last equality follows from the fact that x is proper with respect to Bi. Thus g

satisfies condition ‹i`1.

In all cases above g satisfies ‹i for all i ă N0 and so we can extend g to a map which

meets the conditions to show that pB, bdq ď2α pA, acq for c “ gpdq.

Case 2: Now if pA, aq, pB, bq meet the conditions for Part 2 of the Theorem, we must

do something very similar to before to show that given any d we can find a c such that

pB, bdq, pA, acqmeet the conditions for Part 1. This time, conditions 1(a), (b), and (c) follow

immediately from 2(a), (b) and (c), and so our primary concern is again extending the

isomorphism g to a map xb, dy Ñ xa, cy. Let d P Băω and we once again let B0 “ B “ xby,

B1 “ xbdy, and A0 “ A “ xay.

Case 2(a): If λA “ λB ă ω ¨ α then, as in case 1(a), we conclude that A and B are

isomorphic.

Case 2(b): If λB ě ω ¨ α and λA ě mintλB, ω ¨ α ` ωu, then as before we know that

|PA
ω¨α`k| “ 8 for all k ă λA. Let

M “ maxtm : b1
P B1, hpb1

q “ ω ¨ α `m for m P ωu ` 1,

N0 “ |B
1
{B| `M, and Ni`1 “ Ni ´ 1.
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For each 0 ď i ď N0 we would like to extend g to Bi in such a way that it satisfies

hpbq “ hpaq ă ω ¨ α `M or phpbq ě ω ¨ α ` ω and hpaq ě ω ¨ α `Niq

for all b P Bi, a “ gpbq. We will call this condition ‹i. If this is met for all i then g will

satisfy

hpb1
q “ hpa1

q ď ω ¨ α or hpa1
q ě ω ¨ α and hpb1

q ě minthpa1
q, ω ¨ α ` ωu

for all b1 P B1, which would complete our proof that pB, bdq ď2α`1 pA, acq. By our assump-

tion of condition 2(d), g meets condition ‹0.

Now by induction on i, we take an x P B1zBi such that px P Bi, x is proper with respect

to Bi, and hppxq is maximal amongst all such elements of x` Bi. Let gppxq “ y. Since g

meets condition ‹i we know that either hppxq “ hpyq ă ω ¨ α`M or hpxq ě ω ¨ α` ω and

hpyq ě ω ¨ α `Ni.

Case 2(b)(i): If hpyq “ hppxq “ hpxq ` 1 ă ω ¨ α `M then we proceed exactly as in

case 1(b)(i).

Case 2(b)(ii): If hpxq “ γ ă ω ¨ α ` ω, γ ` 1 ă hpyq ă ω ¨ α then we similarly follow

case 1(b)(ii).

Case 2(b)(iii): hpxq ě ω ¨ α ` ω and hpyq ě ω ¨ α ` Ni. As in case 1(b)(iii), we can

find a w1 P A such that pw1 “ y and hpw1q “ hpyq ´ 1 ě ω ¨ α `Ni ´ 1. Furthermore, if

we are in this case, then λB ě ω ¨ α ` ω which forces λA ě ω ¨ α ` ω. Thus, since PA
ω¨α`Ni

is infinite, we can find a w2 P P
A
ω¨α`Ni

zAi. Set w “ w1 ` w2 and extend g by sending x to

w. Note that w R Ai and hpwq ě ω ¨ α `Ni`1 ą ω ¨ α `M .

Let b P Bi. If hpbq ď ω ¨ α `M then by assumption hpaq “ hpbq and so for 0 ď r ă p,

hprx ` bq “ hpbq and hprw ` aq “ hpaq. If hpbq ě ω ¨ α ` ω then by induction on i,

hpaq ě ω ¨ α ` Ni ą ω ¨ α ` Ni`1. Thus, hprx ` bq ě ω ¨ α ` ω and hprw ` aq ě

minthpwq, hpaqu ě ω ¨ α `Ni`1. This shows that g meets condition ‹i`1.

In all cases g meets ‹i for all i and so we can extend it to B1. This shows that

pB, bdq ď2α`1 pA, acq for c “ gpdq.
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Case 3: The limit case is where we first invoke our inductive hypothesis. Assume that

pA, aq, pB, bq meet the conditions of 3 and let d P Băω and β ă α.

Case 3 (a): If λA “ λB ă ω ¨ α then as before the groups are isomorphic.

Case 3 (b): If λA, λB ě ω ¨ α then we know that |PA
ω¨β`k| “ |P

B
ω¨β`k| “ 8 (Kaplansky

[20] Problem 36) and so we meet the conditions for pA, aq ďβ`1 pB, bq regardless of whether
β is odd, even, or a limit ordinal. Hence, by induction there exists a c P Aăω such that

pB, bdq ďβ pA, acq.

This finishes our induction on α and so the conditions of the theorem are sufficient to

imply the back-and-forth relations on countable reduced Abelian p-groups.

3.4 Further Work

To be able to extend the back-and-forth characterization to arbitrary groups we would

need to include many more cases in the proof of Theorem 3.3.1. without the assumption

on the cardinality of PA
β we cannot guarantee that, given an x P B1zBi, we can always

choose a corresponding w P AzAi of the appropriate height. We have seen that in all cases

is ω ¨ α ď hpbq ď ω ¨ α ` ω then we must have hpgpbqq ě hpbq, so if we have the same

finite number of elements of each height in both groups, then having hpbq ă hpgpbqq would

be a problem. Purely by a counting argument, this would force g to send something of

high height to something of lower height, which violates our preservation of formulas. So

Theorem 3.3.1 can be partially extended under a great number of simplifying assumptions

that essentially force the groups to be isomorphic, putting us in the realm of Barker’s proof

of 3.2.2.

The eventual goal is to extend our partial characterization of the back-and-forth rela-

tions to cover all countable reduced Abelian p-groups and then to use that characterization

to show the optimality of our Scott sentences given in Theorem 3.2.1. This would charac-

terize the Scott complexities of such groups. Our current characterization already shows

promise in being able to help this goal by showing that d´Σ2α`2 is the best possible Scott

sentence for case (i) of Theorem 3.2.1. To show that d ´ Σ2α`2 is the best possible Scott
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sentence for a group of length ω ¨α` n, we need to find groups B and C, both not isomor-

phic to A, such that B ď2α`2 A and A ď2α`2 C. Without any tuples to mention, we can

only use conditions (a), (b), (c) from Theorem 3.3.1. This forces the size of the subgroups

|PA
α `k|, |P

B
α `k| to be the same, but only requires the Ulm invariants to be equal ă ω ¨α.

This affords us a little room in which to look for non-isomorphic groups, but we return to

the problem of not having concrete examples of groups of fixed Ulm sequences.

46



Chapter 4

Positive Enumerability

While in computable structure theory countable structures are classically studied up to

Turing reducibility, researchers have successfully used enumeration reducibility to both

contribute to the classical study and develop a beautiful theory on its own. One example

of a contribution to classical theory is Soskov’s work on degree spectra and co-spectra [32]

which allowed him to show that there is a degree spectrum of a structure such that the set

of degrees whose ω-jump is in this spectrum is not the spectrum of a structure [33]. Another

example is Kalimullin’s study of reducibilities between classes of structures [19] where he

studied enumeration reducibility versions of Muchnik and Medvedev reducibility between

classes of structures. This topic has also been studied by Knight, Miller, and Vanden Boom

[21] and Calvert, Cummins, Knight, and Miller [9]. There is a rich theory on these notions

with interesting questions on the relationship between enumeration reducibility and the

classical versions. In this chapter we develop a novel approach to study relations that are

enumeration reducible to every copy of a given structure.

4.1 Background

Since enumeration reducibility is based only on positive information, it is natural to con-

sider structures given by their positive atomic diagram in this setting. This is quite rea-

sonable. When doing computability theory and looking at an infinite object, we often view
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it as being revealed stage by stage. It is natural to find out only about positive informa-

tion, and our approach is general enough to handle negative information by considering

the associated structure in the language including relation symbols for the cosets of the

relations in the original language.

More formally, say that given a countable relational structure A, a relation R is rela-

tively intrinsically positively enumerable (r.i.p.e.) in A if for every copy B of A and every

enumeration of the basic relations on B, we can compute an enumeration of RB. We obtain

a syntactic classification of the r.i.p.e. relations using the infinitary logic Lω1ω. Theorem

4.2.10 shows that the r.i.p.e. relations on a structure are precisely those that are definable

by computable infinitary Σ0
1 formulas in which neither negations nor implications occur.

This definition is similar to Definition 1.2.2, and we hope to show an equivalent de-

finability concept in the same way that r.i.c.e. relations were shown to be exactly those

definable by an infinitary Σ0
1 formula. Since this result, there has been much work on r.i.c.e.

relations and related concepts. For a summary, see Fokina, Harizanov, and Melnikov [16].

One particularly interesting generalization of r.i.c.e. relations is due to Montalbán [23]. He

extended the definition of r.i.c.e. relations from relations on ωn to ωăω and to sequences

of relations, obtaining a classification similar to the one given by Ash or Chisholm [4, 10].

This extension allows the development of a rich theory such as an intuitive definition of the

jump of a structure, and an effective version of interpretability with a category theoretic

analogue: A structure A is effectively interpretable in a structure B if and only if there

is a computable functor from B to A as given in Harrison-Trainor, Melnikov, Miller, and

Montalbán [17]. For a complete development of this theory see Montalbán [26]. The main

goal of this chapter to develop a similar theory for r.i.p.e. relations.

Definition 4.1.1. Let A be a countable structure in relational language L with universe

ω. We let P pAq be the set “A ‘ ‰A ‘
À

RiPL
RA

i , which we call the positive diagram of

A.

The mindful reader might notice that we include inequality in the positive atomic

diagram. The reason for this is that for enumerations of A that are not injective “A

will become an equivalence relation instead of equality and we want to take the quotient

under this equivalence relation to be able to enumerate an isomorphic copy of A from this
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enumeration. Having‰ in the diagram allows us to do this effectively. The positive diagram

is Turing equivalent to the standard definition of the atomic diagram of a structure, which

can be viewed as the set “A ‘ ‰A ‘
À

RiPL
RA

i ‘Ri
A
. Now, a relation R Ď ωăω is r.i.c.e. if

for every copy B – A, RB is c.e. in DpBq. The relatively intrinsically positively enumerable

relations are the natural analogue to the r.i.c.e. relations for enumeration reducibility.

Recall that a set of natural numbers A is enumeration reducible to B, A ďe B if there

exists a c.e. set Ψ consisting of pairs xx,Dy where D is a finite set under some fixed coding

such that

A “ ΨB
“ tx : D Ď B ^ xx,Dy P Ψu.

Enumeration reducibility allows us to formally define the notion of a r.i.p.e. relation.

Definition 4.1.2. Let A be a structure. A relation R Ď Aăω is relatively intrinsically

positively enumerable in A, short r.i.p.e., if, for every copy pB, RBq, of pA, Rq, RB ďe P pBq.
The relation is uniformly relatively intrinsically positively enumerable in A, if the above

enumeration reducibility is uniform in the copies ofA, that is, if there is a fixed enumeration

operator Ψ such that RB “ ΨP pBq for every copy B of A.

The study of the computability theoretic properties of structures with respect to enu-

meration reducibility is an active research topic; see A. Soskova and M. Soskova [37] for a

summary of results in this area.

4.2 First results on r.i.p.e. relations

In our proofs we will often build structures in stages by copying increasing pieces of finite

substructures of a given structure A. The following definitions will be useful for this.

Definition 4.2.1. Given an L-structure A and a P Aăω, let P pAqæa denote the positive

diagram of the substructure of A with universe a in the restriction of L to the first |a|

relation symbols.

Definition 4.2.2. Let A be an L-structure and a “ xa0, . . . , as´1y P A
s. The set PApaq is

the pullback of P pAqæa along the index function of a, i.e.,

xi, n0, . . . , nriy P PApaq ô xi, an0 , . . . , anri
y P P pAqæa.
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The main feature of 4.2.2 is that if we approximate the positive diagram of a structure

A in stages by considering larger and larger tuples, i.e., limsPω P pAqæas “ P pAq, then the

limit of PApasq gives a structure isomorphic to A. This fact is useful in constructions.

We denote by Ψe the e
th enumeration operator in a fixed computable enumeration of all

enumeration operators and by Ψe,s its stage s approximation. Without loss of generality

we make the common assumption that Ψe,s is finite and does not contain pairs xn,Dy ą s.

Notice that Ψe,s itself is an enumeration operator. In our proofs we also frequently argue

that a set A is enumeration reducible to a set B by using a characterization of enumeration

reducibility due to Selman [29].

Theorem 4.2.3 (Selman [29]). For any A,B Ď ω

A ďe B iff @XrB is c.e. in X ñ A is c.e. in Xs

We refer the reader to Cooper [11] for a proof of this result and further background on

enumeration reducibility and enumeration degrees.

Notice that by 4.1.2 pA, Rq is technically not a first order structure as R Ď ωăω. We

may however still think of it as a first order structure in the language expanded by relation

symbols pQiqiPω, each Qi of arity i, where Q
A
i “ ta P A

n : a P RAu. The positive diagrams

P pA, RAq and P pA, pQA
i qiPωq are enumeration equivalent.

4.2.1 Examples of r.i.p.e. relations

Example 4.2.4. Let R be a countable ring. Then the relation P “ ta : Dx ra0 ` a1x `

¨ ¨ ¨ ` akx
k “ 0su holding of the polynomials with a root in R is uniformly r.i.p.e.

Proof. Enumerate the graphs of `,¨, “ and 0 of a copy R̂ of R and whenever you see ab

such that a0 ` a1b` ¨ ¨ ¨ ` akb
k “ 0 enumerate a. Clearly this gives an enumeration of P R̂

from an enumeration of any copy of R.

Example 4.2.5. The reachability relation reachpx, yq on graphs is uniformly r.i.p.e.
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Proposition 4.2.6. There is a graph G in the language p“,‰, Eq such that ␣E is not

r.i.p.e. in G.

Proof. Let K be the halting set and let G be the following graph:

1. For every n P ω, G contains a vertex vn and an pn` 1q-cycle with least vertex cn and

an edge vn E cn,

2. if xx, yy P K, then v2x`1 E v2y`2.

Then it is not hard to see that from any enumeration of K we can enumerate P pGq. Notice

that the set C “ tpv2x`1, v2y`2q : px, yq P ωˆωu is r.i.p.e. If ␣E was r.i.p.e., then so would

be CX␣E, i.e., CX␣E ďe P pGq. But clearly CX␣E ěe K and since we have K ěe P pGq

this would imply K ěe K, a contradiction.

4.2.2 A syntactic characterization

The main purpose of this section is to show that being r.i.p.e. in a structure A is equivalent

to being definable by infinitary formulas in A of the following type.

Definition 4.2.7. A positive computable infinitary Σp
1 formula is a formula of the infinitary

logic Lω1ω of the form

φpxq ”
łł

iPI

Dyiφipx, yiq

where each φi is a finite conjunction of atomic formulas that can contain ‰, and the index

set I is a computably enumerable subset of ω.

Notice that the above definition includes all c.e. disjunctions of finitary Σ0
1 formulas

without negation and implication symbols, as every such formula is equivalent to a fi-

nite disjunction of conjunctions with each existential quantifier occurring in front of the

conjunctions.

Definition 4.2.8. A relation R Ď ωăω is Σp
1-definable with parameters c in a structure A if

there exists a uniformly computable sequence of Σp
1 formulas pφipx1, . . . , xi, y1, . . . , y|c|qqiPω

such that for all a P ωăω

a P Rô A |ù φ|a|pa, cq.
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Our goal is to show that a relation R is r.i.p.e. in a structure A if and only if it is

Σp
1-definable over some parameter. We will do this by using forcing to build a generic copy

of A and then read the syntactic definition of this copy. The right notion of genericity for

this purpose is the following.

Definition 4.2.9. Let A˚ “ tσ P Aăω : p@i ‰ j ă |σ|qrσpiq ‰ σpjqsu. We say that γ P A˚

decides an upwards closed subset R Ď A˚ if γ P R or σ R R for all σ Ě γ. A 1´1 function

g : ω Ñ A is a r.i.p.e.-generic enumeration, if for every r.i.p.e. subset R Ď A˚ there is an

initial segment of g that decides R. We say that B is a r.i.p.e.-generic presentation of A
if it is the pull-back along a r.i.p.e.-generic enumeration of P pAq.

The existence of r.i.p.e. generics follows from the Baire category theorem. Let us give

a quick hands-on construction. Given a structure A and an enumeration pReqePω of all

r.i.p.e. subsets of A˚ we build an sequence p0 “ H Ă p1 . . . with lim ps “ g. At even stages

2s we guarantee that g is onto by defining p2s “ p2s´1
⌢x where x P A is least such that

x is not in the range of p2s´1. At odd stages 2s ` 1 we check whether there is q Ě p2s
with q P Rs. If so, let p2s`1 “ q, otherwise p2s`1 “ p2s. It is easy to see that g “ lim ps

decides every upwards closed r.i.p.e. subset of A˚ and is thus a r.i.p.e. generic enumeration.

Furthermore, note that if Re is dense in A
˚, then there is some p Ă g forcing that g meets

Re and thus x0, . . . , |p|y P R
g´1pAq
e . We will study properties of r.i.p.e. generics in 4.3.1. For

now, let us obtain a syntactic characterization of r.i.p.e. relations.

Theorem 4.2.10. Let A be a structure and R Ď Aăω a relation on it. Then the following

are equivalent:

(i) R is relatively intrinsically positively enumerable in A,

(ii) R is Σp
1-definable in A with parameters.

Proof. Assuming (ii), there is a uniformly computable sequence pφipx, zqqiPω of Σp
1 formulas

where each φi is of the form
ŽŽ

jPω Dyi,jψi,jpx, yi,j, zq with the property that for every

B – A there is a tuple c P ω|z| such that for all i P ω and a P ωi, B |ù φipa, cq if

and only if a P RB. Recall that each ψi,j is a finite conjunction of atomic formulas, i.e.,

ψi,j “ θ1px, yi,j, zq ^ ¨ ¨ ¨ ^ θnpx, yi,j, zq for some n P ω. For θpxq an atomic formula, let
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xθpaqy be the function mapping θpaq to its code in the positive diagram of a structure. For

example, if θpxq “ Ripx3, x5q, then xθpaqy “ xi ` 2, xa3, a5yy for a P ω
ăω. Consider the set

Xa,b,c
i,j “ txθkpa, b, cqy : k ă nu. Clearly, Xa,b,c

i,j Ď P pAq if and only if A |ù ψi,jpa, b, cq for any

L-structure A. We define an enumeration operator Ψ by enumerating all pairs xa,Xa,b,c
i,j y

into Ψ. It follows that

a P ΨP pBq
ô Dxa,Xa,b,c

|a|,j y P Ψ^X
a,bc
|a|,j Ď P pBq

ô B |ù Dy|a|,jψ|a|,jpa, y|a|,j, cq

ô B |ù φ|a|pa, cq

and thus R is r.i.p.e.

Let g be a r.i.p.e. generic enumeration of A produced as in the paragraph above the

theorem and let B “ g´1pAq. Our goal is to produce a Σp
1 definition of RB. As B – A, we

get that this is then also a definition for R. Towards this, consider the set

Qe “ tq P A
˚ : Dl, j1, . . . jl ă |q| rxj1, . . . , jly P Ψ

PApqq
e and xqj1 , . . . , qjly R Rsu.

We have that g meets Qe if and only if RB ‰ ΨPB
e . By our assumption that R is r.i.p.e.,

there is e0 such that Ψ
P pBq
e0 “ RB, and thus g does not meet Qe0 .

We will use this to give a Σp
1 definition of R with parameters ps, where ps is the stage

in the construction of g at which we decide Qe0 .

Notice that if there is some q Ě ps and sub-tuple xqj1 , . . . , qjly such that xj1, . . . , jly P

Ψ
PApqq
e then we must have xqj1 , . . . , qjly P R or else we will have that q P Qe0 . We now show

that R is equal to the set

S “ txqj1 , . . . , qjly P A
˚ : for some q P Aăω and l, j1, . . . , jl ă |q| satisfying q Ě ps

and xj1, . . . , jly P Ψ
PApqq
e u

By the previous paragraph, S Ď R. If a P R then there are indices j1, . . . , j|a| such that

a “ xgpj1q, . . . gpj|a|qy and so if we take a long enough initial segment of g it will witness

the fact that a P S. Fix an enumeration pφat
i qiPω of all atomic formulas where without loss
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of generality the free variables of φat
i are a subset of tx0, . . . , xiu. The following is a Σp

1

definition of S
łł

CĂfinω

ł

xj1,...,j|a|yPWC
e

D q Ě ps rxqj1 , . . . , qj|a|
y “ a ^

ľ

iPC

rφat
i s
q0
x0
¨ ¨ ¨

q|q|

x|q|

s

where the latter half of the formula is simply saying that C Ď PApqq.

Corollary 4.2.11. Let A be a structure and R Ď Aăω be a relation on it. Then the

following are equivalent:

(i) R is uniformly relatively intrinsically positively enumerable in A,

(ii) R is Σp
1-definable in A without parameters.

Proof. For piq ñ piiq we mimic the proof of Theorem 4.2.10. Let Ψe be the fixed enumer-

ation operator such that RB “ Ψ
P pBq
e and Qe as above. Note that no q can be in Qe and

so we mimic the construction of our set S with ps being the empty tuple.

For piiq ñ piq we again mimic the same direction in 4.2.10 excluding the parametrizing

tuple c to make the process uniform.

4.2.3 R.i.p.e. completeness

Similar to the study of computably enumerable sets we want to investigate notions of

completeness for r.i.p.e. relations on a given structure. Before we obtain a natural example

of a r.i.p.e. complete relation we have to define a suitable notion of reduction.

Definition 4.2.12. Given a structure A and two relations P,R Ď Aăω, we say that P is

positively intrinsically one reducible to R, and write P ďp1R, if for all B – A P pBq‘PB ď1

P pBq ‘RB.

Proposition 4.2.13. Positive intrinsic one reducibility (ďp1) is a reducibility.

Proof. Let A be a structure with relations P,Q,R Ď Aăω. It is easy to see that ďp1 is

reflexive, since for any structure B – A we have that P pBq ‘ PB ď1 P pBq ‘ PB, which

means P ďp1 P . To see that it is transitive assume that P ďp1R and Rďp1Q and let

B – A. By assumption P pBq ‘ PB ď1 P pBq ‘RB ď1 P pBq ‘QB and so P ďp1Q.
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Definition 4.2.14. Fix a structure A. A relation R Ď Aăω is r.i.p.e. complete if R is

r.i.p.e. and for every r.i.p.e. relation P on A, P ďp1R.

The most natural way to obtain a complete set is to follow the construction of the Kleene

set in taking the computable join of all r.i.p.e. sets. The result is a relation R Ď ω ˆ Aăω

which can be seen as a uniform sequence of r.i.p.e. relations in the sense that there is a

enumeration operator Ψ such that pΨAqris “ Ri. For any isomorphic copy of A, the nth

slice of its Kleene set should correspond to the nth r.i.p.e. relation. In order to accomplish

this we use the following coding. Given a relation R Ď ω ˆAăω, we can identify it with a

subset R1 Ď Aăω as follows. For any two elements b, c P A let

iˆ
hkkikkj

b . . . b ca P R1
ðñ xi, ay P R.

One can now easily see that R is a uniform sequence of r.i.p.e. relations if and only if the

so obtained relation R1 is uniformly r.i.p.e.

We can now give a natural candidate for a r.i.p.e. complete relation.

Definition 4.2.15. Let φ
Σp

1
i,j be the ith formula with free variables x1, . . . , xj in a com-

putable enumeration of all Σp
1 formulas. The positive Kleene predicate relative to A is

K⃗A
p “

`

KA
i

˘

iPω
, where

KA
i “

ď

jPω

ta P Aj : A |ù φ
Σp

1
i,j paqu.

Notice that we defined the positive Kleene predicate as a sequence of relations instead

of a single relation. It is slightly more convenient as we do not have to deal with coding, but

we could write it as a single relation on ωˆAăω and code it as above. Another alternative

definition would be to break down the sequence even further and let the Kleene predicate

be the sequence

pta : A |ù φ
Σp

1
i,j paquqxi,jyPω

so that pA, K⃗A
p q is a first order structure. However, as all of these definitions are compu-

tationally equivalent these distinctions are irrelevant for our purpose.

Proposition 4.2.16. The positive Kleene predicate K⃗A
p is uniformly r.i.p.e., and r.i.p.e.

complete.
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Proof. Since K⃗A
p is defined in a Σp

1 way without parameters we can use Corollary 4.2.11 to

see that it is uniformly relatively intrinsically positively enumerable. Let R be any relation

on A of arity aR. Notice that RB is trivially Σp
1 definable, and so there is a formula φ

ΣP
1

i,aR

such that a P RB ô B |ù φ
Σp

1
i,aR
paq. This shows that P pBq ‘RB ď1 P pBq ‘ K⃗B

p .

4.2.4 R.i.p.e. sets of natural numbers

Our above discussion of sequences of r.i.p.e. relations allows us to code sets of natural

numbers as r.i.p.e. relations.

Definition 4.2.17. A set X Ď ω is r.i.p.e. in a structure A if the following relation is

r.i.p.e.:

RX :“ t

iˆ
hkkikkj

b . . . b c : i P X, b, c P Au

A natural question is which sets of natural numbers are r.i.p.e. in a given structure.

One characterization can be derived directly from the definitions: The sets X such that

X ďe P pBq for all B – A. Another one can be given using co-spectra, a notion defined

by Soskov [32]. Intuitively, the co-spectrum of a structure A is the maximal ideal in the

enumeration degrees such that every member of it is below every copy of A. More formally.

Definition 4.2.18. The co-spectrum of a structure A is

CopAq “
č

B–A
td : d ď degepP pBqqu.

Let us point out that Soskov’s definition of co-spectra appears to be different from ours.

We will prove in 4.3 that the two definitions are equivalent. This definition also agrees

with the definition of co-spectra on Turing degrees when we restrict our attention to total

degrees.

Definition 4.2.19. A set A is said to be total if A ”e A ‘ A. An enumeration degree is

said to be total if it contains a total set, and a structure A is total if P pf´1pAqq is a total

set for every enumeration f .

56



Given a tuple a in some structure A let Σp
1-tpApaq be the set of positive finitary Σ0

1

formulas true of A. The equivalence of 1 and 3 in 4.2.20 is the analogue to a well-known

theorem of Knight [22] for total structures.

Theorem 4.2.20. The following are equivalent for every structure A and X Ď ω.

1. X is r.i.p.e. in A
2. degepXq P CopAq
3. X is enumeration reducible to Σp

1-tpApaq for some tuple a P Aăω.

Proof. If degepXq P CopAq, then for all B – A, X ďe P pBq. Given an enumeration of X,

enumerate bnc into RX for all elements b, c P B whenever you see n enter X. The relation

RX clearly witnesses that X is r.i.p.e. in A. This shows that 2 implies 1. On the other

hand if X is r.i.p.e. in A, then given any B – A and an enumeration of RB
X build a set S

by enumerating n into S whenever you see bnc enumerated into RB
X for any two elements

b, c P B. Clearly n P S if and only if n P X and thus 1 implies 2.

To see that 3 implies 2 assume that X is enumeration reducible to the positive Σ1 type

of a tuple b in any copy B of A. As the Σp
1-tpBpbq is enumeration reducible to P pBq, by

transitivity X ďe P pBq for every B – A and thus degepXq P CopAq. At last, we show

that 1 implies 3. Assume that X is r.i.p.e. in A. Then there is a computable enumeration

of Σp
1 formulas ψn with parameters p such that for some a P Aăω, n P X ô A |ù ψnpaq.

Simultaneously enumerate Σp
1-tpApaq and the disjuncts in the formulas ψn. Whenever you

see a disjunct of ψn that is also in Σp
1-tpApaq enumerate n. This gives an enumeration of

X given an enumeration of Σp
1-tpApaq and thus X ďe Σ

p
1-tpApaq as required.

4.3 The positive jump and degree spectra

In this section we compare various definitions of the jump of a structure with respect to

their enumeration degree spectra, a notion first studied by Soskov [32].

Definition 4.3.1. The positive jump of a structure A is the structure

JppAq “ pA, K⃗A
p q “ pA, pKA

i qiPωq.
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We are interested in the degrees of enumerations of A and JppAq. To be precise, let f

be an enumeration of ω, that is, a surjective mapping ω Ñ ω, and for X Ď ωăω let

f´1
pXq “ txx1, . . . y : pfpx1q, . . . , q P Xu.

Then, given a structure A let f´1pAq “ pω, f´1p“q, f´1p‰q, f´1pRA
1 q, f

´1pRA
2 q, . . . q. This

definition differs from the definition given in Soskov [32] where f´1pAq means what we will

denote as P pf´1pAqq, i.e.,

“ ‘ ‰ ‘f´1
p“q ‘ f´1

p‰q ‘
à

iPω

f´1
pRA

i q.

Definition 4.3.2 (Soskov [32]). Given a structure A, define the set of enumerations of a

structure EnumpAq “ tP pBq : B “ f´1pAq for f an enumeration of ωu. Further, let the

enumeration degree spectrum of A be the set

eSppAq “ tdepP pBqq : P pBq P EnumpAqu

If a is the least element of eSppAq, then a is called the enumeration degree of A.

In classical computable structure theory many results often do not hold for structures

that are structurally too simple, called the automorphically non-trivial structures. One

example of this phenomenon is a basic result about Turing degree spectra due to Knight

[22]: The degree spectra of automorphically non-trivial spectra are closed upwards in the

Turing degrees. However, if a structure is automorphically trivial, then its degree spectrum

contains a single Turing degree. Consider for example the structure pN,“,‰q. All its

isomorphic copies are computable and in fact, there exists only one copy with universe N
of this structure. Considering enumerations of a structure that are not bijective allows us

to avoid these dichotomies when studying enumeration degree spectra. It is not hard to

see that the enumeration degree spectrum of any structure is closed upwards in the Turing

degrees [32, Proposition 2.6].

As mentioned after 4.2.18, Soskov’s definition of the co-spectrum of a structure was

slightly different [32]. He defined the co-spectrum of a structure A as the set

td : @pa P eSppAqqd ď au.

We now show that the two definitions are equivalent.
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Proposition 4.3.3. For every structure A, CopAq “ td : @pa P eSppAqqd ď au.

Proof. First note that td : @pC – Aqd ď degepP pCqqu Ě td : @pa P eSppAqqd ď au as

every P pCq is the pullback of A along an injective enumeration.

On the other hand for any enumeration f : ω Ñ ω, f´1pAq{f´1p“q – A. Consider the

substructure B of f´1pAq consisting of the least element in every f´1p“q equivalence class.

Since f´1pAq{f´1p“q – A, we get that B – A. As P pf´1pAqq contains both f´1p“q and

f´1p‰q we can compute an enumeration of B ‘ B from any enumeration of P pf´1pAqq
and thus also the graph of its principal function pB. Let C “ p´1

B pBq. Then C – A, and

P pCq ďe P pf
´1pAqq. Thus,

td : @pa P eSppAqqd ď au “ td : @pC – Aqd ď degepP pCqqu “ CopAq.

Using this notation we can see that for any structure A, and any enumeration f of ω

we have that Jppf
´1pAqq is the structure pf´1pAq, K⃗f´1pAq

p q. Thus

P pJppf
´1
pAqqq “ f´1

p“q ‘ f´1
p‰q ‘

à

jPω

K
f´1pAq

j ‘
à

iPω

R
f´1pAq

i .

If we instead apply the enumeration to JppAq we will get the structure f´1pJppAqq. Now,
for every relation R on A, Rf´1pAq “ f´1pRAq and thus K

f´1pAq

j “ f´1
´

KA
j

¯

. So

P pf´1pJppAqqq “ P pJppf
´1pAqqq.

4.3.1 Properties of R.i.p.e. generics

Recall 4.2.9 of r.i.p.e.-generic enumerations and presentations. We are now ready to study

their properties. The following lemma is an analogue of the well-known result that there

is a ∆0
2 1-generic.

Lemma 4.3.4. Every structure A has a r.i.p.e.-generic enumeration g such that

Graphpgq ďe P pJppAqq. In particular, P pg´1pJppAqqq ďe P pJppAqq.
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Proof. Recall our hands-on definition of a r.i.p.e. generic enumeration g of A after 4.2.9

using an enumeration pReqePω of all r.i.p.e. subsets of A˚. The set tp : Dq Ą p , q P Reu is

Σp
1-definable in A and so enumerable from P pJppAqq, which contains P pAq. The coset tp :
@q Ą p, q R Reu is co-r.i.p.e. and so enumerable from K⃗A

p . Hence, P pJppAqq will be able to
decide when a tuple ps belongs to the upward closure of Re. Thus Graphpgq ďe P pJppAqq.

If we can enumerate the graph of g and also JppAq, then to enumerate g´1pJppAqq,
we wait for something of the form px, gpxqq P Graphpgq to appear with gpxq P JppAq and
enumerate x into the corresponding slice of g´1pJppAqq.

R.i.p.e. generic presentations have many useful properties. One of them is that they are

minimal in the sense that the only sets enumeration below a r.i.p.e. generic presentation

are the r.i.p.e. sets.

Lemma 4.3.5. If B is a r.i.p.e.-generic presentation of A, then X Ď ω is r.i.p.e. in B if

and only if X ďe P pBq.

Proof. IfX r.i.p.e. then it is enumerable from P pBq by definition. AssumeX is enumerable

from P pBq. Then X “ Ψ
P pBq
e for some e. Recall the set Qe from 4.2.10 which we know to

be r.i.p.e. because we gave a Σp
1 description of it.

Qe “ tq P A
ăω : Dl, j1, . . . jl ă |q| rxj1, . . . , jly P Ψ

PBpqq
e and xqj1 , . . . , qjly R Xsu.

Now because B is r.i.p.e.-generic, there is some tuple x0, . . . , k ´ 1y that decides Qe. It

must be that x0, . . . , k ´ 1y R Qe, or we would contradict the fact that X “ Ψ
P pBq
e , and so

x0, . . . , k ´ 1y forms the parameterizing tuple ps from the set S in 4.2.10.

Another useful property is that the degree of the positive jump of a r.i.p.e. generic

agrees with the enumeration jump of the degree of their positive diagram.

Proposition 4.3.6. Let A be a structure. For an arbitrary enumeration f of A, let B “
f´1pAq. Then P pJppBqq ďe JepP pBqq. Furthermore, if B is a r.i.p.e.-generic presentation

then P pJppBqq ”e JepP pBqq.
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Proof. Recall that JppBq “ pB, K⃗B
p q and JepP pBqq “ P pBq ‘ KP pBq, so to show that

P pJppBqq ďe JepP pBqq it is sufficient to show that K⃗B
p ďe KP pBq. As K⃗B

p is r.i.p.e.,

K⃗B
p “ Ψ

P pBq
e for some e. Thus K⃗B

p appears as a slice of txx, iy : x R Ψ
P pBq

i u and hence

K⃗B
p ďe txx, iy : x R Ψ

P pBq

i u. The latter set is m-equivalent to KP pBq and thus K⃗B
p ďe KP pBq.

It remains to show that JepP pBqq ďe P pJppBqq if B is r.i.p.e.-generic. For every e

consider the set

Re “ tq P B
˚ : e P ΨPBpqq

e u.

Note that the Re are all trivially r.i.p.e. and are closed upwards as subsets of B˚. So since

B is r.i.p.e.-generic, for every e there is an initial segment of B˚ that either is in Re or such

that no extension of it is in Re. The set Qe “ tp P B
˚ : @pq Ě pqpq R Requ of elements in

B˚ that are non-extendible in Re is co-r.i.p.e. Also note that these sets are uniform in e,

that is, given e we can compute the indices of Re and Qe as r.i.p.e., respectively, co-r.i.p.e.

subsets of B. Thus, given an enumeration of P pJppBqq we can enumerate P pBq and the

sets Qe and Re. By genericity for all e P ω there is an initial segment of b of B such that

either b P Qe or b P Re. So whenever we see such a b in Qe we enumerate e and thus obtain

an enumeration KP pBq.

The above properties of r.i.p.e. generics are very useful to study how the enumeration

degree spectra of structures and their positive jumps relate.

Proposition 4.3.7. For every structure A, JppAq is a total structure.

Proof. First, note that we have the following equality for arbitrary relations R and enu-

merations f .

x P f´1
pRq ô fpxq P Rô fpxq R Rô x R f´1

pRq ô x P f´1pRq

Recall that for every Ri in the language of A, Ri is r.i.p.e. in A and that

P pf´1
pJppAqqq “ f´1

p“q ‘ f´1
p‰q ‘ f´1

pK⃗A
p q ‘ f

´1
pRA

1 q ‘ ¨ ¨ ¨

and we observe that all RA
i are trivially r.i.p.e., uniformly in i, so in particular f´1pRA

i q ďe

f´1pK⃗A
p q “ f´1pK⃗A

p q. Also, f
´1pK⃗A

p q ďe P pf
´1pAqq ďe P pf

´1pJppAqqq.
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We will now see that the positive jump of a structure jumps, in the sense that the

enumeration degree spectrum of the positive jump is indeed the set of jumps of the degrees

in the enumeration degree spectrum of the structure. The following version of a Theorem

by Soskova and Soskov [36] is essential to our proof.

Theorem 4.3.8 (Soskova, Soskova[36, Theorem 1.2]). Let B be an arbitrary set of natural

numbers. There exists a total set F such that

B ďe F and JepBq ”e JepF q.

Theorem 4.3.9. For any structure A,

eSppJppAqq “ ta1 : a P eSppAqu

Proof. To show that ta1 : a P eSppAqu Ď eSppJppAqq, consider an arbitrary enumeration f

of ω and let B “ f´1pAq. Then from Proposition 4.3.6 we know that P pJppBqq ďe JepP pBqq.
Note that P pJppBqq “ P pJppf

´1pAqqq “ P pf´1pJppAqqq, and
depP pf

´1pJppAqqq P eSppJppAqq. Since the enumeration jump is always total and enu-

meration degree spectra are closed upwards with respect to total degrees, depJepP pBqqq P
eSppJppBqq.

To show eSppJppAqq Ď ta1 : a P eSppAqu, let us look at P pf´1pJppAqqq for some

enumeration f of ω, and again write B “ f´1pAq so that P pf´1pJppAqqq “ P pJppBqq.
Since JppAq is a total structure, we know that P pJppBqq is total. By 4.3.4 we can use

P pJppBqq to enumerate a r.i.p.e.-generic enumeration g of B such that P pg´1pJppBqqq ďe

P pJppBqq. Then, letting C “ g´1pBq and using the latter part of 4.3.6 we know that

JepP pCqq ”e P pJppCqq which makes JepP pCqq ďe P pJppBqq. Using 4.3.8 there is a total

set F such that P pCq ďe F and JepF q ”e JepP pCqq ďe P pJppBqq. As F and P pJppBqq are
total, we have that F 1 ďT P pJppBqq.

We can now apply the relativized jump inversion theorem for the Turing degrees to

get a set Z ěT F such that Z 1 ”T P pJppBqq. For this Z, we have that ιpdegpZ 1qq “

depJepχZqq “ depP pJpppBqqq P eSppJppAqq and depP pBqq ď depF q ď depχZq. Since χZ is

total and enumeration degree spectra are upwards closed in the total degrees, this means

depχZq P eSppBq Ď eSppAq. So in particular, depJepχZqq “ depP pJppBqqq P ta1 : a P

eSppAqu.
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We now compare the enumeration degree spectrum of the positive jump of a structure

A with the spectrum of the original structure and the spectrum of its traditional jump as

was defined in Section 1.2.2.

We will also consider the structure A` as defined in 1.1.1.

We will not compare the enumeration degree spectra directly but instead the sets of

enumerations. This gives more insight than comparing the degree spectra as we can make

use of the following analogues to Muchnik and Medvedev reducibility for enumeration

degrees. Given A,B Ď P pωq we say that A ďwe B, A is weakly enumeration reducible to

B, if for every B P B there is A P A such that A ďe B. We say that A ďse B, A is

strongly enumeration reducible to B, if there is an enumeration operator Ψ such that for

every B P B, ΨB P A.

It is not hard to see that given an enumeration ofA` one can enumerate an enumeration

of JpAq and the converse holds trivially. We thus have the following.

Proposition 4.3.10. For every structure A, degepJpAqq “ degepA`q. In particular

EnumpJpAqq ”se EnumpA`q.

Proof. By replacing every subformula of the form ␣Ripx1, . . . , xmq by the formula

Ripx1, . . . , xmq we get a Σp
1 formula in the language of A`. Similarly, given a Σp

1 for-

mula in the language of A` we can obtain a Σc
1 formula in the language of A by sub-

stituting subformulas of the form Ripx1, . . . , xmq with ␣Ripx1, . . . , xmq. Indeed we get

a computable bijection between the Σp
1 formulas in the language of A` and the Σc

1 for-

mulas of A. Thus JpAq ”e pA`, K⃗A`

p q, but A` ”e pA`, K⃗A`

p q given the first equiva-

lence. All of these equivalence are witnessed by fixed enumeration operators and thus

EnumpJpAqq ”se EnumpA`q.

4.3.10 is not very surprising, as adding a r.i.c.e. set such as K⃗A to the totalization of

A won’t change its enumeration degree. We will thus consider a slightly different notion

of jump by adding the coset of K⃗A:

T pAq “ pA, K⃗Aq
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Clearly T pAq ”T JpAq; however, the two sets are not necessarily enumeration equivalent

as the following two propositions show.

Proposition 4.3.11. Let A be a structure. For every presentation Â of A, P pÂq ďe

DpÂq “ P pÂ`q ďe JppÂq ďe T pÂq. In particular

EnumpAq ďse EnumpA`
q ďse EnumpJppAqq ďse EnumpT pAqq.

Proof. Straightforward from the definitions.

Proposition 4.3.12. There is a structure A such that

EnumpAq ğwe EnumpA`
q ğwe EnumpJppAqq ğwe EnumpT pAqq.

Proof. Sacks [30] showed that there is an incomplete c.e. set X of high Turing degree.

Thus, X has enumeration degree degepXq “ 0e and degT pX
1q “ 02. Let A be the graph

coding X as follows. A contains a single element a with a loop, i.e. aEAa and one circle

of length n` 1 for every n P ω. Let y be the least element in A that is part of the cycle of

length n` 1. If n P X, then connect a to y, i.e., aEAy. This finishes the construction.

As X is c.e., A has enumeration degree 0e. However, 0e R eSppA`q, as A` has enu-

meration degree degepX ‘Xq ą 0e. So, in particular EnumpAq ğwe EnumpA`q. By 4.3.9

the enumeration degree of JppAq is 01
e and 01

e Q H
1 ‘ H1 ąe X ‘ X, so EnumpA`q ğwe

EnumpJppAqq. For the last inequality notice that both T pAq and JppAq are total struc-

tures and that by the analogue of 4.3.9 for the traditional jumps of structures we have

that the enumeration degree of T pAq is degepH2 ‘H2q. As mentioned above the enumer-

ation degree of JppAq is 01
e, H

1 ‘ H1 P 01
e, and H

1 ‘ H1 ăe H
2 ‘ H2. So, in particular,

EnumpJppAqq ğwe EnumpT pAqq.

For total structures the traditional notion of the jump and the positive jump coincide.

Proposition 4.3.13. Let A be a structure, then EnumpJppA`qq ”se EnumpT pAqq and
eSppJppA`qq “ eSppT pAqq.

Proof. This proof is similar to the proof of 4.3.10. Mutatis mutandis.
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4.4 Functors

When comparing structures with respect to their enumerations it is natural to want to use

only positive information. Csima, Rossegger, and Yu [12] introduced the notion of a positive

enumerable functor which uses only the positive diagrams of structures. Reductions based

on this notion preserve desired properties such as enumeration degree spectra of structures.

Recall that a functor F from a class of structures C to a class D maps structures in C

to structures in D and morphisms f : A Ñ B to morphisms F pfq : F pAq Ñ F pBq with
the property that F pidAq “ idF pAq and F pf ˝ gq “ F pfq ˝ F pgq for all morphisms f and g

and structures A P C.

To account for non-total enumerations we consider the category Iso˚pBq, where the

objects are tB̃ : B – B̃ and dompB̃q Ď ω is infinite and c.e.u and the arrows are the iso-

morphisms among the quotient structures of the objects.

Definition 4.4.1. A functor F : Iso˚pBq Ñ Iso˚pAq is positive enumerable if there is a

pair pΨ,Ψ˚q where Ψ and Ψ˚ are enumeration operators such that for all B, B̃ P Iso˚pBq,

1. ΨP pBq “ P pF pBqq.
2. For all f P Iso˚pBq with f : B Ñ B̃, ΨP pBq‘Graphpfq‘P pB̃q

˚ “ GraphpF pfqq.

For ease of notation, when a graph of a function occurs in an oracle, we will simply

write the name of the function to represent it.

An alternative and purely syntactical method of comparing classes of structures is

through the model-theoretic notion of interpretability. Since we are restricting ourselves to

positive information, we introduce a new notion of interpretability that uses Σp
1 formulas.

Definition 4.4.2. A structure A “ pA,PA
0 , . . . q is positively interpretable in a structure

B if there exists a Σp
1 definable sequence of relations pDomB

A,„,ȷ, R0, . . . q called the in-

terpretation of A in B in the language of B such that

1. DomB
A Ď Băω,

2. „ is an equivalence relation on DomB
A and ȷ its corelation,

3. Ri Ď pB
ăωqaPi

1 is closed under „ on DomB
A,

1aPi is the arity of Pi
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and there exists a function fA
B : AÑ DomB

A, which induces an isomorphism:

pDomB
A{ „, R0{ „, . . . q – pA{ “, P0{ “, . . . q

We seek to provide analogues to the results proven in a paper by Harrison-Trainor,

Melnikov, Miller, and Montalbán [17], starting with the following.

Theorem 4.4.3. There is a positive enumerable functor F : Iso˚pBq Ñ Iso˚pAq if and
only if A is positively interpretable in B.

Proof. Suppose that A is positively interpretable in B using pDomB
A,„,ȷ, R

B
0 , . . . q. We

want to construct a functor F : Iso˚pBq Ñ Iso˚pAq, so let B P Iso˚pBq. We define F pBq
to be the structure pDomB

A,„,ȷ, R
B̃
0 , . . . q. Since the domain and all of the relations are Σp

1

definable with no parameters we can apply Theorem 4.2.11 to see that they are u.r.i.p.e.

and thus the positive diagram of F pBq is as well. We can use the enumeration operator Ψ

given by the corollary as our witness that F is positively enumerable.

Now to define our functor on isomorphisms we assume we have a map f : B̃ Ñ B̂.
Notice that DomB

A Ď Băω and so f induces a map which we will call F pfq : F pB̃q Ñ F pB̂q.
Since F pB̃q and F pB̂q are uniformly enumerable from P pB̃q and P pB̂q respectively, we can
uniformly enumerate the graph of an isomorphism F pfq from P pB̃q ‘ Graphpfq ‘ P pB̂q.
We let Ψ˚ be the enumeration operator that witnesses the uniform enumeration. The fact

that F is a functor follows easily.

Now suppose that there is a positive enumerable functor F “ pΨ,Ψ˚q from Iso˚pBq
to Iso˚pAq. We want to produce the Σp

1 sequence of relations providing the positive

interpretation of B in A.

In what follows, we will often write P pbq instead of PBpbq when it is clear from context

which structure B is meant.

We can view any finite disjoint tuple b as a map i ÞÑ bi for i ă |b|. Note that viewing

b as such a map, if f is any permutation of ω extending b, then PBpbq Ď P pBf q where

Bf “ f´1pBq.

Let DomB
A be the set of pairs pb, iq P Băω ˆ ω such that

pi, iq P ΨP pbq‘λæ|b|‘P pbq
˚
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where λ is the identity function. Since the domain of B is u.r.i.p.e., and due to the finite

oracle DomB
A is u.r.i.p.e., and thus Σp

1-definable.

For pb, iq, pc, jq P DomB
A we let pb, iq „ pc, jq exactly if there exists a finite tuple d which

does not mention elements from b or c, such that if b
1
lists the elements that occur in b but

not c and c1 lists the elements in c but not in b, and if σ “ pcb
1
dq´1 ˝ bc1d then

pi, jq P ΨP pbc1dq‘σ‘P pcb
1
dq

˚ and pj, iq P ΨP pcb
1
dq‘σ´1‘P pbc1dq

˚ .

It is easy to see that „ is uniformly relatively intrinsically positively enumerable. Rather

than showing immediately that the complement of „ is uniformly r.i.p.e., we define a

clearly uniformly r.i.p.e. relation ȷ, and then show that it is indeed the complement of „.

For pb, iq, pc, jq P DomB
A we say pb, iq ȷ pc, jq if there exist k ‰ j, l ‰ i, and a finite

tuple d which does not mention elements from b or c, such that if b
1
lists the elements that

occur in b but not c and c1 lists the elements in c but not in b, and if σ “ pcb
1
dq´1 ˝ bc1d

then

pi, kq P ΨP pbc1dq‘σ‘P pcb
1
dq

˚ or pj, lq P ΨP pcb
1
dq‘σ´1‘P pbc1dq

˚ .

Claim 4.4.3.1. ȷ is the complement of „.

Proof. We want to show that, for any tuples pb, iq, pc, jq P DomB
A, exactly one of pb, iq „

pc, jq, pb, iq ȷ pc, jq hold. Let b
1
list the elements in b but not c, and let c1 list the elements

in c but not b. Let σ “ pcb
1
q´1 ˝ bc1. Let f, g : ω Ñ A be bijections extending bc1, cb

1

respectively which agree on all inputs k ą |bc1| “ |cb
1
|. We can then pull back f and g to

get structures Bf ,Bg. Then h “ g´1 ˝ f is an isomorphism extending σ which is constant

on all k ą |σ|. Hence

pi, hpiqq P Ψ
P pBf q‘h‘P pBgq
˚ and pj, hpjqq P Ψ

P pBf q‘h‘P pBgq
˚

If hpiq “ j and hpjq “ i, then taking a long enough initial segment of h witnesses pb, iq „

pc, jq. If however hpiq ‰ j or hpjq ‰ i, then a long enough initial segment of h witnesses

pb, iq ȷ pc, jq.

We now assume towards a contradiction that both pb, iq „ pc, jq, and pb, iq ȷ pc, jq and

that their equivalence is witnessed by d1, σ and their inequivalence is witnessed by k, l,d2
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and τ . Without loss of generality assume that pi, kq P Ψ
P pbc1d2q‘τ‘P pcb

1
d2q

˚ . We also have

pi, jq P Ψ
P pbc1d1q‘σ‘P pcb

1
d1q

˚ . Let

f1 Ą bc1d1 g1 Ą cb
1
d1 f2 Ą bc1d2 g2 Ą cb

1
d2

Then we have isomorphisms as shown below.

B

Bf2 Bf1 Bg1 Bg2

f´1
1 ˝f2

g´1
2 ˝f2

f2

g´1
1 ˝f1

f1

g´1
2 ˝g1

g1
g2

Since F is a functor,

F pg´1
2 ˝ f2q “ F pg´1

2 ˝ g1q ˝ F pg
´1
1 ˝ f1q ˝ F pf

´1
1 ˝ f2q.

Since pb, iq P DomB
A we know that pi, iq P Ψ

P pbq‘λæ|b|‘P pbq
˚ . Notice that f´1

1 ˝ f2 Ą λæ|bc1|

and P pBf1q Ą P pbq, P pBf2q Ą P pbq. Thus we get

pi, iq P Ψ
P pBf2

q‘pf´1
1 ˝f2q‘P pBf1

q

˚ “ GraphpF pf´1
1 ˝ f2qq ñ F pf´1

1 ˝ f2qpiq “ i.

Similarly, since pc, jq P DomB
A,

pj, jq P ΨP pcq‘λæ|c|‘P pcq
˚ ñ pj, jq P Ψ

P pBg1 q‘pg´1
2 ˝g1q‘P pBg2 q

˚ “ GraphpF pg´1
2 ˝ g1qq.

Following from our choices for f1, g1, f2, g2 we have that g´1
1 ˝ f1 Ą σ and g´1

2 ˝ f2 Ą τ , so

pi, jq P ΨP pbc1d1q‘σ‘P pcb
1
d1q

˚ ñ pi, jq P Ψ
P pBf1

q‘pg´1
1 ˝f1q‘P pBg1 q

˚ “ GraphpF pg´1
1 ˝ f1qq

pi, kq P ΨP pbc1d2q‘τ‘P pcb
1
d2q

˚ ñ pi, kq P Ψ
P pBf2

q‘pg´1
2 ˝f2q‘P pBg2 q

˚ “ GraphpF pg´1
2 ˝ f2qq.

The first three equations tell us that

F pg´1
2 ˝ g1q ˝F pg

´1
1 ˝ f1q ˝F pf

´1
1 ˝ f2qpiq “ F pg´1

2 ˝ g1q ˝F pg
´1
1 ˝ f1qpiq “ F pg´1

2 ˝ g1qpjq “ j

whereas the fourth equation tells us that F pg´1
2 ˝ f2qpiq “ k. This contradicts our earlier

statement of F being a functor, and so only one of „,ȷ can hold at once.
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Claim 4.4.3.2. The relation „ is an equivalence relation on DomB
A.

Proof. Let pa, iq, pb, jq, pc, kq P DomB
A. It is reflexive, since pa, iq P DomB

A means that

pi, iq P Ψ
P paq‘λæ|a|‘P paq
˚ , and so the equivalence is witnessed by the empty tuple and λæ|a|.

If pa, iq „ pb, jq via d, σ, then pb, jq „ pa, iq via d, σ´1. Now assume that pa, iq „ pb, jq

and it is witnessed by a1, b
1
d

1
, σ and pb, jq „ pc, kq via b

2
, c2, d

2
, τ . Let a3 and c3 list the

elements of azc and cza respectively. Choose bijections as follows

f1 Ą ab
1
d

1
g1 Ą bc2d

2
h1 Ą ac3

f2 Ą ba1d
1
g2 Ą cb

2
d

2
h2 Ą ca3

such that h1 and h2 agree outside an initial segment of length |a| ` |c3|.

B

Bh1 Bf1 Bf2 Bg1 Bg2 Bh2

ac3 ab
1
d

1
ba1d

1
bc2d

2
cb

2
d

2
ca3

h´1
2 ˝h1

f´1
1 ˝h1

h1

f´1
2 ˝f1

f1

g´1
1 ˝f2

f2

g´1
2 ˝g1

g1

g2

h´1
2 ˝g2

h2

p¨qρ

p¨qσ

p¨qτ

Since F is a functor, we have

F ph´1
2 ˝ h1q “ F ph´1

2 ˝ g2q ˝ F pg
´1
2 ˝ g1q ˝ F pg

´1
1 ˝ f2q ˝ F pf

´1
2 ˝ f1q ˝ F pf

´1
1 ˝ h1q.

Since pa, iq P DomB
A, and f´1

1 ˝ h1 Ą λæ|a| we can show as we did in Claim 4.4.3.1 that

F pf´1
1 ˝ h1qpiq “ i. Similarly, F pg´1

1 ˝ f2qpjq “ j, F ph´1
2 ˝ g2qpkq “ k. By assumption

F pf´1
2 ˝ f1qpiq “ j and F pg´1

2 ˝ g1qpjq “ k. Thus

pi, kq P GraphpF ph´1
2 ˝ h1qq “ Ψ

P pBh1
q‘ph´1

2 ˝h1q‘P pBh2
q

˚

69



Similarly, one can show that pk, iq P Ψ
P pBh2

q‘ph´1
1 ˝h2q‘P pBh1

q

˚ . Since h1 and h2 agree outside

of the initial segment of length |a| ` |c3|, if we take a long enough d
3
and let ρ Ă h´1

2 ˝ h1

be the permutation sending ac3d
3
to ca3d

3
, we witness that pa, iq „ pc, kq.

Claim 4.4.3.3. For all i P F pBq, there is some n P ω such that for c “ Bæn, we have

pc, iq P DomB
A.

Proof. Since i P F pBq “ ΨP pBq we have that pi, iq P Ψ
P pBq‘λ‘P pBq
˚ where λ is the identity

function. Then, by the use principle, there is a sufficiently long initial segment c of B such

that pc, iq P DomB
A.

Claim 4.4.3.4. For pb, iq P DomB
A, there is an initial segment c “ Bæn of B and j P ω

such that pb, iq „ pc, jq.

Proof. Let m be greater than the maximum number in the tuple b, and let c1 list the

numbers less than or equal to m not occurring in b. Let c “ Bæm, and let f Ą c´1 ˝ bc1

be defined by fpnq “ n for all n ě m. Then since pb, iq P DomB
A we have that pi, jq P

GraphpF pfqq “ Ψ
P pBf q‘f‘P pBq
˚ for some j. So by the use principle, there exists d such that

pi, jq P Ψ
P pbc1dq‘σ‘P pcdq

˚,|cd|
where σ “ pcdq´1 ˝ bc1d, witnessing that pb, iq „ pc, jq.

Claim 4.4.3.5. If pb, iq, pc, jq P DomB
A and b Ď c then pb, iq „ pc, jq iff i “ j.

Proof. To see this we note that since pb, iq P DomB
A, we have pi, iq P Ψ

P pbq‘λæ|b|‘P pbq
˚ . So

since b Ď c, by properties of enumeration operators pi, iq P Ψ
P pcq‘λæ|c|‘P pcq
˚ , so pb, iq „ pc, iq.

Now let d, σ witness that pb, iq „ pc, jq. Then σ Ě λæ|b| and the oracle P pbc1dq‘σ‘P pcdq

extends P pbq ‘ λæ|b| ‘ P pbq. So again pi, iq P Ψ
P pbc1dq‘σ‘P pcdq
˚ . As Ψ

P pbc1dq‘σ‘P pcdq
˚ must

extend to the graph of a function g, we cannot have gpiq “ i and gpiq “ j. This shows

that j “ i.

We now define relations Ri on Dom
B
A. For each relation Pi of arity ppiq we let

pb1, k1q, . . . , pbppiq, kppiqq be in Ri if there is an initial segment c “ Bæn of B and j1, . . . , jppiq P

ω such that pbl, klq „ pc, jlq for all l and Pipj1, . . . , jppiqq P ΨP pcq. Note that by 4.4.3.5, it

does not matter which initial segment is chosen.
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Claim 4.4.3.6. If pb1, k1q, . . . , pbppiq, kppiqq P Dom
B
A and pc1, j1q, . . . , pcppiq, jppiqq P Dom

B
A

with pbl, klq „ pcl, jlq for each l, then pb1, k1q, . . . , pbppiq, kppiqq is in Ri if and only if

pc1, j1q, . . . , pcppiq, jppiqq is in Ri.

Proof. This follows immediately from the transitivity of the equivalence relation „.

Using Claim 4.4.3.3 we can define an isomorphism F : F pBq Ñ DomB
A by sending i to

pc, iq for the initial segment Bæn that is guaranteed to exist. Claim 4.4.3.4 proves that it

is surjective and Claim 4.4.3.5 tells us that F is injective.

In the above theorem we not only show the existence of an interpretation given a positive

enumerable functor, but provide a method for building the relations of the interpretation

given the functor F . Using the other direction of the proof we can use these relations to

enumerate a new functor. We call this new induced functor IF . We would like IF to agree

with our original functor F in some fashion, and so we introduce the following definitions.

Definition 4.4.4. Two positive enumerable functors F : Iso˚pBq Ñ Iso˚pAq and G :

Iso˚pBq Ñ Iso˚pAq are said to be enumeration isomorphic if there is an enumeration

operator Λ such that for any A P Iso˚pBq, ΛP pAq is the graph of an isomorphism F pAq Ñ
GpAq. Moreover, for any morphism h P HompA,Bq in Iso˚pBq when viewing ΛP pAq, ΛP pBq

as isomorphisms, ΛP pBq ˝ F phq “ Gphq ˝ ΛP pAq. That is, the diagram below commutes.

F pAq

F pBq

GpAq

GpBq

ΛP pAq

ΛP pBq

F phq Gphq

Proposition 4.4.5. Let F : Iso˚pBq Ñ Iso˚pAq be positive enumerable and IF : Iso˚pBq Ñ
Iso˚pAq be the functor obtained from Theorem 4.4.3. Then F and IF are enumeration iso-

morphic.
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Proof. Given a presentation B P Iso˚pBq, we can uniformly enumerate the map F from

P pBq as in the proof of Theorem 4.4.3. To then turn the interpretation given by this functor

into the induced functor we simply use the identity function on tuples xx0, . . . , xny P Dom
B
A.

Both of these processes are enumberable and so we let Λ be the enumeration operator

which witnesses this fact. To show Λ is an enumeration isomorphism we want to show the

following diagram commutes for all B̃, B̂ P Iso˚pBq and all morphisms h : B̃ Ñ B̂. We

extend h to a map B̃ăω Ñ B̂ăω and then restrict to DomB̃
A Ñ DomB̂

A.

F pB̃q DomB̃
A ÎF pB̃q

F pB̂q DomB̂
A ÎF pB̂q

FB̃

F phq

ΛP pB̃q

h ÎF phq

FB̂

ΛP pB̂q

The right-hand square commutes from the first part of the proof of Theorem 4.4.3 since

IF phq is defined to be h. To see that the left-hand square commutes, take i P F pB̃q. Then
F phqpiq “ j for some j P F pB̂q and FB̃piq “ pa, iq, FB̂pjq “ pb, jq where a and b are initial

segments of ω. We want to show that hpa, iq “ phpaq, iq „B̂ pb, jq.

Since pi, jq P Ψ
P pB̃q‘h‘P pB̂q
˚ we can get pi, jq P Ψ

PB̃paq‘hæ|a|‘PB̂pbq

˚ by extending a and b.

Note that PB̃paq “ PB̂phpaqq and assume without loss of generality that b contains both

a and hpaq. Since b is an initial segment, the map associated to it is the identity. So the

map σ “ b
´1
˝ hpaqb

1
is an initial segment of hæ|a|. Hence

pi, jq P Ψ
PB̂phpaqq‘σ‘PB̂pbq

˚ and pj, iq P Ψ
PB̂pbq‘pσq´1‘PB̂phpaqq

˚

Clearly if we have a functor F : Iso˚pBq Ñ Iso˚pAq, then every enumeration of B can

enumerate an enumeration of A. In order to preserve enumeration degree spectra of struc-

tures we need the relationship between the two isomorphism classes to be even stronger.
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In the paper by Csima, Rossegger, and Yu [12] positive enumerable bi-transformability

was introduced and it was shown that two positive enumerable bi-transformable structures

have the same enumeration degree spectra. The next definition is the same as positive enu-

merable bi-transformability. We chose to rename it, as we learned that the notion is not

new, but rather an effectivization of the highly influential notion of an adjoint equivalence

of categories in category theory.

Definition 4.4.6. An enumeration adjoint equivalence of categories Iso˚pBq and Iso˚pAq
consists of a tuple pF,G,ΛIso˚pBq,ΛIso˚pAqq where F : Iso˚pBq Ñ Iso˚pAq andG : Iso˚pAq Ñ
Iso˚pBq are positive enumerable functors, ΛIso˚pBq and ΛIso˚pAq witness enumeration iso-

morphisms between the compositions ofG˝F and IdIso˚pBq, respectively F ˝G and IdIso˚pAq,

and the two isomorphisms are mapped to each other. I.e.,

F pΛ
P pBq

Iso˚pBq
q “ Λ

P pF pBqq

Iso˚pBq
and GpΛ

P pAq

Iso˚pAq
q “ Λ

P pGpAqq

Iso˚pAq

for all B P Iso˚pBq and A P Iso˚pAq. If there is an enumeration adjoint equivalence

between Iso˚pAq and Iso˚pBq then we say that A and B are enumeration adjoint.

We will show that the following notion based on positive interpretability is equivalent

to enumeration adjointness.

Definition 4.4.7. Two structures A and B are positively bi-interpretable if there are

effective interpretations of one in the other such that the graphs of the compositions

fA
B ˝ f̂

B
A : Dom

DomB
A

B Ñ B and fB
A ˝ f̂

A
B : Dom

DomA
B

A Ñ A

are Σp
1 definable without parameters in B and A respectively. (Here the function f̂B

A :

pDomB
Aq

ăω Ñ Aăω is the canonical extension of fB
A : DomB

A Ñ A mapping Dom
DomB

A
B to

DomA
B )

Theorem 4.4.8. A and B are positively bi-interpretable if and only if they are enumeration

adjoint.

Before proving this theorem, we give an alternate characterization of positive

bi-interpretability that will prove useful.
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Proposition 4.4.9. Let A and B be structures. If A is positively interpretable in B and

B is positively interpretable in A, then the following are equivalent.

(1) A and B are positively bi-interpretable.

(2) There are uniformly r.i.p.e. isomorphisms g : Dom
DomB

A
A Ñ A and h : Dom

DomA
B

B Ñ B
in A and B respectively, along with isomorphisms α : DomB

A Ñ B and β : DomA
B Ñ

A, such that α ˝ ĥ ˝ ˆ̂α´1 “ g and β ˝ ĝ ˝
ˆ̂
β´1 “ h

(3) There are uniformly r.i.p.e. isomorphisms g : Dom
DomB

A
A Ñ A and h : Dom

DomA
B

B Ñ

B in A and B respectively such that, for all isomorphisms α : DomB
A Ñ B and

β : DomA
B Ñ A, we have α ˝ ĥ ˝ ˆ̂α´1 “ g and β ˝ ĝ ˝

ˆ̂
β´1 “ h

Proof. (3) ñ (1) Let fA
B be any isomorphism DomA

B Ñ B and define fB
A “ g ˝ pxfA

B q
´1.

Then g “ fB
A ˝

xfA
B and

h “ fA
B ˝ ĝ ˝ p

x

xfA
B q

´1
“ fA

B ˝
xfB
A ˝

x

xfA
B ˝ p

x

xfA
B q

´1
“ fA

B ˝
xfB
A.

So fA
B ˝

xfB
A and fA

B ˝
xfB
A are uniformly r.i.p.e. by assumption.

(1) ñ (2) By assumption,

fA
B ˝

xfB
A : Dom

DomA
B

B Ñ B and fB
A ˝

xfA
B : Dom

DomB
A

A Ñ A

are uniformly r.i.p.e., so we let h “ fA
B ˝

xfB
A and g “ fA

B ˝
xfB
A. Additionally, we let α “ fA

B

and β “ fB
A, satisfying (2).

(2) ñ (3) We assume (2) and let α1 : DomB
A Ñ A, β1 : DomA

B Ñ B be arbitrary isomor-

phisms. Then let δ : DomB
A Ñ DomB

A be such that α1 ˝ δ “ α. Hence

g “ α ˝ ĥ ˝ p ˆ̂αq´1
“ α1

˝ δ ˝ ĥ ˝ p
ˆ̂
δq´1

˝ p
ˆ̂
α1
q

´1.

We claim that δ ˝ ĥ ˝ p
ˆ̂
δq´1 “ ĥ. We define the automorphism of B, γ “ h ˝ δ̂ ˝ h´1. Since

h is uniformly r.i.p.e., we must have γpGraphphqq “ Graphphq. Thus, γ ˝ h ˝ pˆ̂γq´1 and so

if we can show that γ̂ “ δ we will have proved our claim. Notice that by definition of γ

id “ γ´1
˝ h ˝ δ̂ ˝ h´1

“ h ˝ pˆ̂γq´1
˝ δ̂ ˝ h´1,
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and so ˆ̂γ “ δ̂. We let

ĝ “ pαq´1
˝ g ˝ p ˆ̂αq´1 : Dom

Dom
DomB

A
B

A Ñ DomB
A.

Since DomB
A is Σp

1-definable, Dom
B
A is u.r.i.p.e. This, together with the fact that g is

uniformly r.i.p.e. in A, means that ĝ is uniformly r.i.p.e. in B. Then

γ̂ “ ĝ ˝
ˆ̂
γ̂ ˝ pĝq´1

“ ĝ ˝
ˆ̂
δ ˝ pg̃q´1

“ δ

and so the claim is proven.

We are now in a position to prove Theorem 4.4.8.

Proof. pñq Using our positive interpretation of B in A, we build a positively enumerable

functor F “ pΨ,Ψ˚q from Iso˚pAq to Iso˚pBq as in Theorem 4.4.3. Additionally, since

the processes described in the theorem are r.i.p.e., we get an enumeration operator Ω such

that ΩP pÃq : DomÃ
B Ñ F pÃq is an isomorphism. Similarly, from the functor G we can get

an enumeration operator Γ such that, for any B̃ P Iso˚pBq we have ΓP pB̃q : DomB̃
A Ñ GpB̃q

By our assumption of positive bi-interpretability, we have functions fA
B : DomB

A Ñ A,

and fB
A : DomA

B Ñ B. Also following from our assumptions, the function fB
A ˝

xfA
B :

Dom
DomA

B
A Ñ A is uniformly r.i.p.e., and so there is an enumeration operator Θ such that

ΘP pÃq is an isomorphism ÃÑ Dom
DomÃ

B
A . Hence we have the following diagram, which we

wish to show commutes.

Ã DomÃ
B Dom

DomÃ
B

A

F pÃq Dom
F pÃq

A

GpF pÃqq

F

ΘP pÃq

ΩP pÃq Ω̂P pÃq

G
ΓP pF pÃqq
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Given Ã P Iso˚pAq, let ΛP pÃq “ ΓP pF pÃqq ˝ Ω̂P pÃq ˝ΘP pÃq. We aim to show that Λ witnesses

the fact that G˝F is enumeration isomorphic to the identity functor. Assuming the above

diagram commutes, for any j : ÃÑ Â we have the following diagram.

Dom
DomÃ

B
A DomÃ

B Ã Â DomÂ
B Dom

DomÂ
B

A

Dom
F pÃq

A F pÃq F pÂq Dom
F pÂq

A

GpF pÃqq GpF pÂqq

Ω̂P pÃq
ΩP pÃq

j

F

ΘP pAq

ΛP pÃq
F

ΘP pÂq

ΛP pÂq ΩP pÂq Ω̂P pÂq

ΓP pF pÃqq

F pjq

G G
ΓP pF pÂqq

GpF pjqq

By definition, we have that GpF pjqq “ ΓP pF pÂqq ˝ ˆF pjq ˝ pΓP pF pÃqqq´1, and by Theorem

4.2.10, we have that F pjq “ ΩP pÂq ˝ ĵ ˝ pΩP pÃqq´1. Thus,

GpF pjqq ˝ ΓP pF pÃqq
˝ Ω̂P pÃq

“ ΓP pF pÂqq
˝ Ω̂P pÂq

˝
ˆ̂j.

Since Θ is uniformly r.i.p.e. on A, for any j : ÃÑ Â, we have that ˆ̂j ˝ΘP pÃq “ ΘP pÂq ˝ j.

Hence

GpF pjqq ˝ ΓP pF pÃqq
˝ Ω̂P pÃq

˝ΘP pÃq
“ ΓP pF pÂqq

˝ Ω̂P pÂq
˝ΘP pÂq

˝ j.

We then see that GpF pjqq ˝ΛP pÃq “ ΛP pÂq ˝ j. Therefore, G ˝F is enumeration isomorphic

to the identity functor via Λ. We can similarly show that F ˝G is enumeration isomorphic

to the identity. Let ΛIso˚pAq denote the Λ obtained for G˝F , and ΛIso˚pBq likewise for F ˝G.

As we did for Θ, let Υ denote the enumeration operator obtained from the uniformly r.i.p.e.

isomorphism fA
B ˝ f̂

B
A : Dom

DomB
A

B . So

Λ
P pB̃q

Iso˚pBq
“ ΩP pGpB̃qq

˝ Γ̂P pB̃q
˝ΥP pB̃q

whence

F pΛ
P pÃq

Iso˚pAq
q “ ΩP pGpF pÃqqq

˝ Γ̂P pF pÃqq
˝
ˆ̂
ΩP pÃq

˝ Θ̂P pÃq
˝ pΩP pÃq

q
´1.

We are now in a position to use Proposition 4.4.9 with h´1 “ ΥP pF pÃqq, g´1 “ ΘP pÃq, and

β “ ΩP pÃq. The proposition gives us that

ΥP pF pÃqq
“

ˆ̂
ΩP pÃq

˝ Θ̂P pÃq
˝ pΩP pÃq

q
´1,
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which means

F pΛ
P pÃq

Iso˚pAq
q “ Λ

P pF pÃqq

Iso˚pBq
,

and similarly

GpΛ
P pB̃q

Iso˚pBq
q “ Λ

P pGpB̃qq

Iso˚pAq
.

(ð) Now, we assume thatA and B are enumeration adjoint via pF,G,ΛIso˚pAq,ΛIso˚pBqq.

Using the functors F and G to get interpretations of A and B in each other as before, we

can show the existence of enumeration operators Ω, Γ. Thus, for each Ã P Iso˚pAq we get

ΘP pÃq
“ pΩ̂P pÃq

q
´1
˝ pΓP pF pÃqq

q
´1
˝ Λ

P pÃq

Iso˚pAq

which is an isomorphism ÃÑ Dom
DomÃ

B
A .

Let j : Ã Ñ Â be any isomorphism. We want to show that ˆ̂jpGraphpΘP pÃqqq “

jpGraphpΘP pÂqqq, which is to show that GraphpΘP pÃqq is fixed under isomorphisms.

By definition of Λ, as in the other direction of the proof, we have that

Λ
P pÂq

Iso˚pAq
˝ j “ GpF pjqq ˝Λ

P pÃq

Iso˚pAq
“ ΓP pF pÃqq

˝ Ω̂P pÃq
˝
ˆ̂j ˝ pΩ̂P pÂq

q
´1
˝ pΓP pF pÂqq

q
´1
˝Λ

P pÂq

Iso˚pAq
,

and so viewing Θ as an isomorphism

ΘP pÃq
˝j “ pΩ̂P pÃq

q
´1
˝pΓP pF pÃqq

q
´1
˝Λ

P pÃq

Iso˚pAq
˝j “ ˆ̂j˝pΩ̂P pÂq

q
´1
˝pΓP pF pÂqq

q
´1
˝Λ

P pÂq

Iso˚pAq
“

ˆ̂j˝ΘP pÂq.

Since ΘP pÂq is fixed under automorphism, it is Lω1,ω-definable. We also can see that the

same formula defines ΘP pÃq. ΘP pÃq is enumerable from P pÃq, and so we get that Θ is

uniformly r.i.p.e. Similarly, we can define ΥP pB̃q : B̃ Ñ Dom
DomB̃

A
B and show that it is

uniformly r.i.p.e.

By definition of ΛIso˚pBq, we have that for any B̃ P Iso˚pBq, ΛB̃
Iso˚pBq

: B̃ Ñ F pGpB̃qq is
an isomorphism. We will show that Proposition 4.4.9 (2) is satisfied with h´1 “ ΥP pF pÃqq,

g´1 “ ΘP pÃq, α “ ΓP pF pÃqq, and β “ ΩP pÃq.

As before, we have that

ΥP pF pÃqq
“ pΓ̂P pF pÃqq

q
´1
˝ pΩP pGpF pÃqqq

q
´1
˝ Λ

P pF pÃqq

Iso˚pBq
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Hence

Ω̂P pÃq
˝ Θ̂P pÃq

˝ pΩ̂P pÃq
q

´1
“ pΓ̂P pF pÃqq

q
´1
˝ Λ̂

P pÃq

Iso˚pAq
˝ pΩP pAq

q
´1.

In addition

F pΛ
P pÃq

Iso˚pAq
q “ ΩP pGpF pÃqqq

˝ Λ̂
P pÃq

Iso˚pAq
˝ pΩP pAq

q
´1,

and so

Ω̂P pÃq
˝ Θ̂P pÃq

˝ pΩ̂P pÃq
q

´1
“ pΓ̂P pF pÃqq

q
´1
˝ pΩP pGpF pÃqqq

q
´1
˝ F pΛ

P pÃq

Iso˚pAq
q.

Now since F pΛ
P pÃq

Iso˚pAq
q “ Λ

P pF pÃqq

Iso˚pBq
we get that Ω̂P pÃq ˝ Θ̂P pÃq ˝ pΩ̂P pÃqq´1 “ ΥP pF pÃqq. Simi-

larly we can show that ΓP pB̃q ˝ Υ̂P pB̃q ˝ pΓP pB̃qq´1 “ ΘP pGpB̃qq. Thus, Proposition 4.4.9 gives

us a positive bi-interpretation.

4.4.1 Positive reductions between classes of structures

4.4.8 shows that we can interpret positive bi-interpretability as a notion of reduction be-

tween the isomorphism classes of two structures. This can be naturally extended to arbi-

trary classes as follows.

Definition 4.4.10. A class of structures C is reducible via positive bi-interpretability to a

class D if there are Σp
1 formulas defining domains, co-domains, relations and isomorphisms

of a positive bi-interpretation such that every structure in C is positively bi-interpretable

with a structure in D using this bi-interpretation.

In Csima, Rossegger, and Yu [12] the following notion of reduction between classes of

structures based on enumeration adjoints was defined.

Definition 4.4.11. A class of structures C is u.p.e.t. reducible to a class D if there is a

subclass D1 Ď D such that C and D1 are enumeration adjoint.

By precisely the same methods used to prove 4.4.8 we get the following.

Theorem 4.4.12. A class of structures C is reducible via positive bi-interpretability to a

class D if and only if C is u.p.e.t. reducible to D.
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The classical analogue of u.p.e.t. reduction are u.c.t. reductions introduced in Harrison-

Trainor, Melnikov, Miller, Montalbán [17]. This reduction is defined similarly to u.p.e.t.

reductions with the difference that computable functors are used instead of positive enu-

merable functors. It is well-known that graphs are universal for u.c.t. reducibility, i.e.,

every class of structures is u.c.t. reducible to the class of graphs, via standard codings used

in computable structure theory.

We will present a coding that shows that graphs are complete for u.p.e.t. reducibility.

The coding is based on a coding used by Rossegger in [28], but, since we only require the

preservation of positive information our coding is simpler.

Proposition 4.4.13. Any class of structures C is reducible via positive bi-interpretability

to the class of undirected graphs.

Proof sketch. We may assume without loss of generality that C is a class of structures in

relational language L “ pR1, . . . q where each Ri has arity i. Given an enumeration of

A P C, we enumerate a graph GA as follows. The graph GA has a unique vertex a which is

a member of the unique 3-cycle in the graph. For each element x P A we add a vertex vx

and an edge aE vx. When we see RA
i px0, . . . , xi´1q for some x0, . . . xi´1 P A enumerated for

the first time, we enumerate a chain ck1 E ¨ ¨ ¨ E cki`k for every k ă i, a vertex y, and edges

xkEc
k
1 and cki`k E y for all k ă i. This finishes the construction. See 4.1 for an example. It

can be shown that Iso˚pAq and Iso˚pGAq are enumeration adjoint.

3

v3

v2

v1

Figure 4.1: Example of GA, where R
A
3 p1, 2, 3q and R

A
2 p3, 2q
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4.5 Further Work

R.i.p.e. relations are a new and exciting addition to the study of enumeration spectra.

The hope of these initial results is that they reignite interest in older results on the inter-

play between enumeration reducibility and countable structures achieved by Soskov and

co-authors. We already start to see how the ideas developed in this section can be taken

further. In upcoming work by Bazhenov, Fokina, Rossegger, Soskova, and Vatev [8] de-

finability by positive formulas is used to prove a Lopez-Escobar theorem for continuous

domains: The sets of structures definable by Σp
α formulas are precisely the ΣΣΣ0

α sets in the

Scott topology on the space of structures.

The work done by Bazhenov, Fokina, Rossegger, Soskova, and Vatev [8] on forcing

conditions for Σp
α formulas is an important step towards extending the positive jump of a

structure to transfinite ordinals. For any finite ordinal, we can simply iterate the positive

jump operator, but more work is needed to go beyond the finite case.
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