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Abstract

The canonical algorithm for differentially private mean estimation is to first clip the
samples to a bounded range and then add noise to their empirical mean. Clipping controls
the sensitivity and, hence, the variance of the noise that we add for privacy. But clipping
also introduces statistical bias. We prove that this tradeoff is inherent: no algorithm can
simultaneously have low bias, low variance, and low privacy loss for arbitrary distributions.

On the positive side, we show that unbiased mean estimation is possible under approx-
imate differential privacy if we assume that the distribution is symmetric. Relaxing to
approximate differential privacy is necessary. We show that, even when the data is sampled
from a Gaussian, unbiased mean estimation is impossible under pure or concentrated
differential privacy.
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Chapter 1

Introduction

While the goal of statistical inference and machine learning is to learn about a population,
most statistical and learning algorithms reveal lot of information that is specific to their
sample, raising concerns about the privacy of the individuals who contribute their data. In
response, differential privacy (DP) (Dwork et al. 2006) has emerged as the standard frame-
work for addressing these privacy concerns. Informally, a differentially private algorithm
guarantees that no attacker can infer much more about any one individual in the sample
than they could have inferred in a hypothetical world where that person’s data was never
collected. There is a rich literature providing differentially private algorithms for various
statistical inference and machine learning tasks, and many of these are now deployed.

Adding the constraint of differential privacy to a statistical inference or machine learning
task can, and often does, incur an inherent cost (Bun et al. 2014, Dwork, Smith, Steinke,
Ullman & Vadhan 2015, Karwa & Vadhan 2018, Kamath, Li, Singhal & Ullman 2019), and
there has been a large body of work pinning down these costs for a variety of tasks. The
costs are typically studied via the two-way tradeoff between privacy and error, as measured
by some loss function. However, in many applications, we have multiple desiderata for the
estimator, not all of which can be captured by a single loss function.

In this work, we study the statistical bias of differentially private mean estimators, which
adds an extra dimension to the tradeoff betweeen privacy and error. More precisely, given
n independent samples X1, . . . , Xn ∈ R from an unknown univariate distribution P , we
estimate the mean µ(P ) := EX←P [X], subject to the constraint that the estimator µ̂ be
differentially private. Without a privacy constraint, the empirical mean X̄ = 1

n

∑n
i=1Xi

is both unbiased and provides optimal error bounds for all the settings we consider.
Research on private mean estimation has also pinned down the optimal mean squared error
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(MSE) E[(µ̂(X)− µ(P ))2] for a variety of families of distributions, such as sub-Gaussian
distributions (Karwa & Vadhan 2018, Bun & Steinke 2019) and distributions satisfying
bounded moment conditions (Barber & Duchi 2014, Kamath et al. 2020). Unfortunately,
these estimators can be very biased. Estimators with little or no bias are desirable because
error due to variance can be averaged out by combining multiple estimates, whereas error
due to bias can be difficult to eliminate.

1.1 Differential Privacy

A dataset x = (x1, . . . , xn) ∈ X n is a sequence of elements from a data universe X . Two
datasets x, x′ ∈ X n are neighboring (denoted x ∼ x′) if they differ in at most one element.

Definition 1.1.1 (Differential Privacy (DP) (Dwork et al. 2006)). For ε, δ ≥ 0, we say
that a randomized algorithm A : X n → Y satisfies (ε, δ)-differential privacy ((ε, δ)-DP)
when, for every neighboring pair of datasets x ∼ x′ ∈ X n and every measurable Y ⊆ Y ,

P[A(x) ∈ Y ] ≤ eεP[A(x′) ∈ Y ] + δ.

This property is called pure DP (or ε-DP) when δ = 0, and approximate DP when δ > 0.

1.2 Overview of Results

Our main contribution is to show that privacy inherently leads to statistical bias, by
establishing a trilemma between bias, variance, and privacy for the fundamental task of
mean estimation. Estimating the mean of a distribution is both a ubiquitous task on its
own, and a subroutine in algorithms for more sophisticated tasks such as optimization.
We also identify asymmetry as the primary cause of bias in private mean estimation by
constructing unbiased private estimators for symmetric distributions.

There are a variety of methods for private mean estimation, all of which introduce bias.
To understand the source of bias, it is useful to review one common approach – the noisy
clipped mean M(X), which we define as follows. First, it clips the samples to some bounded
range [a, b], defined by

clip[a,b](x) := min{max{x, a}, b}.

Next, it computes the empirical mean of the clipped samples µ̂[a,b](X) := 1
n

∑n
i=1 clip[a,b](Xi).

Finally, it perturbs the clipped mean with random noise whose variance is calibrated to
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the sensitivity of the clipped mean – i.e., the width of the clipping interval. Specifically, to
ensure ε-differential privacy (ε-DP), we have

M(X) :=
1

n

n∑
i=1

clip[a,b](Xi) + Lap

(
b− a
εn

)
,

where Lap denotes the Laplace distribution, which has mean 0 and variance 2(b−a)2

ε2n2 .

Since the Laplace distribution has mean 0, we have E[M(X)] = E[clip[a,b](Xi)], so the
only step that can introduce bias is the clipping. If we choose a large enough interval so
that the support of the distribution P is contained in [a, b], then clipping has no effect, and
the estimator is unbiased. However, in this case, [a, b] might have to be very wide, resulting
in a large variance. On the other hand, if we reduce the variance by choosing a small
interval [a, b], then we will have E[clip[a,b](Xi)] 6= E[Xi] and the estimator will be biased.
Thus, we are faced with a non-trivial bias-variance-privacy tradeoff. The exact form of the
bias and the variance depends on what assumptions we make about P . In particular, if we
consider the class of distributions P with bounded variance EX←P [(X − µ(P ))2] ≤ 1, then
for any β > 0, one can instantiate the noisy-clipped-mean estimator M with an appropriate
interval so that it satisfies ε-DP, has bias at most β, and has MSE

E
[
(M(X)− µ(P ))2

]
≤ O

(
1

n
+ β2 +

1

n2 · ε2 · β2

)
. (1.1)

We show that no private estimator with bias bounded by β can achieve a smaller MSE.

We do so by proving an optimal lower bound on the MSE of any differentially private
estimator for the mean of an arbitrary bounded-variance distribution.

Theorem 1.2.1 (Bias-Variance-Privacy Trilemma). Let M : Rn → R be an (ε, δ)-DP
algorithm, for some ε, δ satisfying 0 < δ ≤ ε2/200 ≤ 1. Suppose M satisfies the following
bounds on its bias β and MSE α2: for every distribution1 P with E

X←P
[X] = µ ∈ [0, 1]2 and

EX←P [(X − µ)2] ≤ 1,∣∣∣∣ E
X←Pn,M

[M(X)− µ]

∣∣∣∣ ≤ β ≤ 1

100
and E

X←Pn,M

[
(M(X)− µ)2

]
≤ α2.

Then

α2 ≥ Ω

(
min

{
1

n2 · ε2 · β2
,

1

n2 · ε · δ1/2

})
. (1.2)

1We write X ← Pn to mean that X is a sequence of n i.i.d. samples from a distribution P .
2Since this theorem proves a lower bound, restricting the mean only strengthens the result. In particular,

even if our estimator is provided a coarse estimate of the mean, we still face the same bias-variance-privacy
tradeoff. It is common to consider coarse and fine private mean estimation separately.
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To interpret the lower bound in Theorem 1.2.1 and compare it to the upper bound (1.1),
it helps to start by assuming δ is small – specifically, δ � β4ε2 – so that the first term in
the minimum dominates and the bound simplifies to α2 ≥ Ω(1/n2ε2β2). This is the most
interesting case, because (ε, δ)-DP is only a meaningful privacy constraint when δ is quite
small (see, e.g., Kasiviswanathan & Smith (2014)). Observe that the upper bound (1.1) has
two other terms, which are not reflected in Theorem 1.2.1’s lower bound (1.2). These terms
are also inherent, but for reasons unrelated to the privacy constraint. First, we also know
that α2 ≥ Ω(1/n), which is a lower bound on the MSE of any mean estimator, even those
that are not private (such as the unperturbed empirical mean). Second, by the standard
bias-variance decomposition of MSE, we have that α(P )2 ≥ β(P )2 for each distribution P ,
where β(P ) and α(P )2 denote, respectively, the bias and MSE of the estimator on that
distribution P . Thus, if we set3 β = supP β(P ) and combine the three lower bounds, we
conclude that

α2 ≥ Ω

(
1

n
+ β2 +

1

n2 · ε2 · β2

)
, (1.3)

which matches the upper bound (1.1) up to constant factors.

However, there is also a corner case when δ � β4ε2, where the second term in the
minimum of Theorem 1.2.1 dominates. For small enough β, this privacy guarantee is
still meaningful. Thus, for completeness, we address this corner case by constructing an
estimator that nearly matches the lower bound of Theorem 1.2.1 in most parameter regimes.

Theorem 1.2.2 (Tightness of Bias-Variance-Privacy Trilemma). For all ε, δ, β > 0 and n ∈
N, there exists an (ε, δ)-DP algorithm M : Rn → R satisfying the following bias and accuracy
properties. For any distribution P on R with E

X←P
[X] = µ ∈ [0, 1], E

X←P
[(X − µ)2] ≤ 1, and

E
X←P

[(X − µ)4] ≤ ψ4, we have

∣∣∣∣ E
X←Pn,M

[M(X)− µ]

∣∣∣∣ ≤ β and

E
X←Pn,M

[
(M(X)− µ)2

]
= O

(
1

n
+ min

{
1

n2 · ε2 · β2
+ β2,

ψ2

n3/2 · ε · δ1/2
+

1

n2 · ε2
,

1

n · δ

})
.

The lower bound in Theorem 1.2.1 applies to private mean estimators that are accurate
for the entire class of distributions with bounded variance. Can we obtain unbiased private
estimators by making stronger assumptions on the distribution? Our subsequent results
show that the answer depends on what assumptions we are willing to make. Namely, we
show that a generalization of the lower bound in Theorem 1.2.1 holds even for the case of

3Theorem 1.2.1 permits us to set β � supP β(P ). Thus, we cannot conclude α2 ≥ β2 in the theorem.
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distributions with bounded higher moments, but we also show that unbiased private mean
estimation is possible for symmetric distributions.

Generalization to Higher Moment Bounds. If the distribution P is supported on a
bounded interval, then unbiased private mean estimation is possible, as clipping to this
support becomes an identity operation. More generally, if P is more tightly concentrated,
then we can clip more aggressively and obtain better bias-variance-privacy tradeoffs for the
noisy clipped mean.

We consider the class of distributions that satisfy the stronger assumption EX←P [|X − µ|λ] ≤
1 for some λ > 2. For bias β we can achieve MSE

E
[
(M(X)− µ(P ))2

]
≤ O

(
1

n
+ β2 +

1

n2 · ε2 · β2/(λ−1)

)
.

Note that, although we can achieve a lower MSE for the same bias, this tradeoff is still
qualitatively similar to the case of Theorem 1.2.1 in that estimators with optimal MSE
must have large bias. We prove an analogue of Theorem 1.2.1 showing that this tradeoff
is tight for this class of distributions, for every λ > 2, and conclude that bias remains an
essential feature of private estimation even under stronger concentration assumptions.

Symmetric Distributions. The reason the noisy clipped mean method leads to bias
is because clipping to the interval [a, b] might affect the distribution asymmetrically, in-
troducing bias. Thus, it is natural to consider whether we can achieve unbiased private
estimation when the distribution is symmetric around its mean, which holds for many
families of distributions like Gaussians. If the distribution is symmetric and we could clip
to an interval [a, b] = [µ − c, µ + c], then the clipped mean would be unbiased, but this
would require us to already know µ. Nonetheless, we construct a private, unbiased mean
estimator for any symmetric distribution.

Theorem 1.2.3 (Unbiased Private Mean Estimation for Symmetric Distributions). For
all ε, δ > 0, λ > 2, and n ≥ O(log(1/δ)/ε) with δ ≤ 1/n, there exists an (ε, δ)-DP
algorithm M : Rn → R satisfying the following: Let P be a symmetric distribution on R
– i.e., there exists µ ∈ R so that X − µ and µ−X are identically distributed – satisfying
E

X←P

[
|X − µ|λ

]
≤ 1. If X ← P n, then E[M(X)] = µ, and

E
[
(M(X)− µ)2

]
≤ O

(
1

n
+

1

(n · ε)2−2/λ
+
δ · µ2

n

)
.

Note that the MSE in the theorem has a dependence on µ, which can be unbounded.
However, if we assume that we know some r such that |µ| ≤ r, then we can remove this term
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by setting δ ≤ 1/O(nr2). Furthermore, if the distribution P is Gaussian (or sub-Gaussian),
then the central moments satisfy EX←P [|X − µ|λ] ≤ O((log λ)λ/2) for all λ. In particular,
for the special case of Gaussians with bounded mean, we can set λ = Θ(log n) and the
guarantee of our algorithm simplifies to

µ2 ≤ 1/δ =⇒ E
X←N (µ,1)n,M

[
(M(X)− µ)2

]
≤ O

(
1

n
+

log log n

n2 · ε2

)
.

This matches what is possible without the unbiasedness constraint (Karwa & Vadhan 2018,
Kamath, Li, Singhal & Ullman 2019, Kamath et al. 2020).

We note that, unlike the noisy clipped mean method, and many other methods for
private mean estimation, the estimator of Theorem 1.2.3 only satisfies (ε, δ)-DP for δ > 0.
This is fundamental to the techniques we use; our estimator cannot be made to satisfy
(ε, 0)-DP. We show that this is inherent by proving that every unbiased mean estimator
even for restricted classes of distributions like Gaussians cannot satisfy (ε, 0)-DP.

Theorem 1.2.4 (Impossibilty of Unbiased Estimators under Pure DP). Let M : Rn → R
be a randomized algorithm. Assume that M satisfies the following guarantee: there is a
nonempty open interval (a, b) such that for every µ ∈ (a, b),

E
X←N (µ,1)n,M

[M(X)] = µ and E
X←N (µ,1)n,M

[|M(X)− µ|] <∞.

Then M does not satisfy (ε, 0)-DP for any ε <∞.

We also extend this impossibility result beyond Gaussians to exponential families and
from pure DP to concentrated DP (Dwork & Rothblum 2016, Bun & Steinke 2016).

1.3 Related Work

Unbiased estimators have long been a topic of interest in statistics. For example, topics
such as the minimum variance unbiased estimator (MVUE) and the best linear unbiased
estimator (BLUE) are textbook. A number of celebrated results derive properties of
estimators with low or no bias, often proving certain estimators are optimal within this
class. Some examples include the Gauss-Markov theorem (Gauss 1823, Markov 1900), the
Lehman-Scheffé theorem (Lehmann & Scheffé 1950), and the Cramèr-Rao bound (Rao
1945, Cramér 1946). These results often focus on unbiased estimators for mathematical
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convenience: it is easier to prove optimality within this restricted class than for general
estimators.

Within the context of differential privacy, relatively little work has considered the
bias of private estimators separately from their overall mean squared error. A number
of works (Duchi et al. 2013, Barber & Duchi 2014, Karwa & Vadhan 2018, Kamath, Li,
Singhal & Ullman 2019, Kamath et al. 2020) bound the bias of the clipped mean, though
only to the ends of trying to minimize the overall error of the estimator. Amin et al. (2019)
examine bias-variance tradeoffs of a similar procedure in the context of private empirical
risk minimization. Kamath, Liu & Zhang (2022) employ the mean estimation approach
of Kamath et al. (2020) as an oracle for stochastic first-order optimization, but, due to
specifics of their setting, employ a different balance between bias and noise. They raise
the question of whether unbiased algorithms for mean estimation exist. Barrientos et al.
(2021b,a) empirically measure the bias induced by various mean estimation algorithms.
Works by Zhu et al. (2021, 2022, 2023) study bias induced by a variety of differentially
private algorithms. Evans & King (2021), Evans et al. (2022), Covington et al. (2021) give
methods for unbiased private estimation, though these rely upon strong assumptions or
caveat their unbiasedness guarantees (e.g., guaranteeing a statistic is unbiased only with
high probability). Ferrando et al. (2022) appeal to the parametric bootstrap to help reduce
the bias introduced by data clipping in parameteric settings. Asi & Duchi (2020) study
instance-specific error bounds for private mechanisms (on fixed datasets), and prove lower
bounds on the error of the class of unbiased mechanisms. Concurrent and independent work
by Nikolov & Tang (2023) shows that appropriate Gaussian noise addition is essentially
an optimal unbiased private mechanism for mean estimation in certain cases. Our setting
and theirs are different: while we focus on mean estimation with distributional moment
assumptions and on an unbounded domain, they study mean estimation for arbitrary
distributions (and fixed datasets) on a bounded domain.

Beyond considerations of bias, private statistical estimation has been a topic of much
recent interest. Mean estimation is perhaps the most fundamental question in this space,
enjoying significant attention (see, e.g., Barber & Duchi (2014), Karwa & Vadhan (2018),
Bun & Steinke (2019), Kamath, Li, Singhal & Ullman (2019), Kamath et al. (2020), Wang
et al. (2020), Du et al. (2020), Biswas et al. (2020), Cai et al. (2021), Brown et al. (2021),
Huang et al. (2021), Liu et al. (2021, 2022), Kamath, Liu & Zhang (2022), Hopkins, Kamath
& Majid (2022), Kothari et al. (2022), Tsfadia et al. (2022), Duchi et al. (2023)). Most
relevant to our work are those which focus on estimation in settings with bounds on only the
low-order central moments of the underlying distribution (Barber & Duchi 2014, Kamath
et al. 2020, Hopkins, Kamath & Majid 2022), as the bias introduced due to clipping is more
significant. Other related problems involve private covariance or density estimation (Bun
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et al. 2019, Aden-Ali, Ashtiani & Kamath 2021, Kamath, Mouzakis, Singhal, Steinke
& Ullman 2022, Ashtiani & Liaw 2022, Alabi et al. 2022, Hopkins, Kamath, Majid &
Narayanan 2022). Beyond these settings, other works have examined statistical estimation
under privacy constraints for mixtures of Gaussians (Kamath, Sheffet, Singhal & Ullman
2019, Aden-Ali, Ashtiani & Liaw 2021, Chen et al. 2023), graphical models (Zhang et al.
2020), discrete distributions (Diakonikolas et al. 2015), median estimation (Avella-Medina &
Brunel 2019, Tzamos et al. 2020, Ramsay & Chenouri 2021, Ramsay et al. 2022, Ben-Eliezer
et al. 2022), and more. Several recent works explore connections between private and robust
estimation (Liu et al. 2021, Hopkins, Kamath & Majid 2022, Georgiev & Hopkins 2022, Liu
et al. 2022, Kothari et al. 2022, Alabi et al. 2022, Hopkins, Kamath, Majid & Narayanan
2022, Chen et al. 2023) and between privacy and generalization (Hardt & Ullman 2014,
Dwork, Feldman, Hardt, Pitassi, Reingold & Roth 2015, Steinke & Ullman 2015, Bassily
et al. 2016, Rogers et al. 2016, Feldman & Steinke 2017). Emerging directions of interest
include guaranteeing privacy when one person may contribute multiple samples (Liu et al.
2020, Levy et al. 2021, George et al. 2022), a combination of local and central DP for
different users (Avent et al. 2019), or estimation with access to some public data (Bie et al.
2022). See Kamath & Ullman (2020) for more coverage of recent work on private statistical
estimation.
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Chapter 2

Main Bias-Variance-Privacy
Trilemma

We now discuss our main negative result. Informally, we show that if an algorithm is
differentially private and has low bias, then it must have high error. There are, of course,
other parameters that arise in the analysis, such as bounds on the tails of the unknown
distribution P .

We provide two different proofs, which give slightly different results. The first proof
directly applies the fingerprinting technique for lower bounds on differentially private
estimation (Bun et al. 2014), while the second proof is a “black-box” reduction.

2.1 Negative Result via Fingerprinting

Our primary approach to a lower bound leverages the fingerprinting method (alternatively
called “tracing attacks” or “membership-inference attacks”), which emerged from the
study of fingerprinting codes (Boneh & Shaw 1998) in the context of cryptographic traitor-
tracing schemes. Tardos (2008) gave an optimal construction of fingerprinting codes. Bun
et al. (2014), Dwork, Smith, Steinke, Ullman & Vadhan (2015) showed how the theory of
fingerprinting codes could be used to prove optimal lower bounds on the error of differentially
private estimation. Subsequently, many works have expanded this methodology (Steinke &
Ullman 2015, Bun et al. 2017, Steinke & Ullman 2017a,b, Cai et al. 2020, 2021, Kamath,
Mouzakis & Singhal 2022, Cai et al. 2023). Our proof of Theorem 1.2.1 is based on a
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refinement of this method that separately accounts for the bias and mean squared error of
the estimator, and thus allows for us to prove tradeoffs between these two parameters.

We begin by stating our general result and provide some remarks and corollaries to help
interpret the result.

Theorem 2.1.1 (Bias-Variance-Privacy Tradeoff). Let ε, δ, β, α, τ ≥ 0 and λ > 1. Let M :
Rn → R be an (ε, δ)-DP algorithm that satisfies the following bias and accuracy properties.
For any distribution P on R with µ(P ) := E

X←P
[X] ∈ [0, 1] and E

X←P

[
|X − µ(P )|λ

]
≤ 1, we

have the following: ∣∣∣∣ E
X←Pn,M

[M(X)]− µ(P )

∣∣∣∣ ≤ β,

E
X←Pn,M

[|M(X)− µ(P )|] ≤ α,∫ ∞
0

min

{
δ, P
X←Pn,M

[|M(X)− µ(P )| > x]

}
dx ≤ α · τ.

If 16β ≤ γ ≤ 1/5, then α ≥
(
32n · sinh(ε) · γ1/(λ−1) + 16n · τ · γ−1

)−1
.

Note that, for small values of ε, sinh(ε) ≈ ε, but, for large ε, sinh(ε) ≈ 1
2
eε. Since this is

the “usual” dependence on ε in many such bounds under the constraint of DP, sinh allows
us to capture behaviour in both regimes with a single function.

The first two accuracy conditions are not hard to interpret: The parameter β bounds the
bias of the algorithm, while α bounds the mean absolute deviation. By Jensen’s inequality,∣∣∣∣ E

X←Pn,M
[M(X)]− µ(P )

∣∣∣∣ ≤ E
X←Pn,M

[|M(X)− µ(P )|] ≤
√

E
X←Pn,M

[
(M(X)− µ(P ))2].

Thus, we can assume that β ≤ α. Furthermore, if an estimator M(X) has a bound on
the mean squared error of α2, it consequently also has a mean absolute error of at most α.
Thus, our somewhat unconventional assumption controlling the mean absolute error only
broadens the class of estimators against which our lower bound holds: for interpretability,
one could instead replace this with α2 being the mean squared error of M(X).

The third property and the parameter τ is somewhat harder to interpret. We note that
this condition is implied by a bound on the MSE of the estimator via the following lemma.
It applies in more general circumstances as well, when we may have bounds on higher or
lower moments of the estimator’s error. See Appendix A.1 for the proof.
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Lemma 2.1.2 (Setting τ = δ1−1/κ in Theorem 2.1.1). Let α, δ ≥ 0 and κ > 1. Let Y be a
random variable satisfying E[|Y |κ] ≤ ακ. Then

∫∞
0

min{δ,P[|Y | > x]} dx ≤ α · δ1−1/κ.

In particular, if we have a mean squared error bound for the estimator E[(M(X)− µ(P ))2] ≤
α2, then the third condition of Theorem 2.1.1 holds with τ =

√
δ. Larger values of κ entail

sharper tail bounds on the estimator, allowing us to set τ larger (and thus implying stronger
lower bounds), with τ → δ as κ→∞.

In general, Theorem 2.1.1’s lower bound on the error α is maximized by setting

γ = clip[16β,1/5]

((
(λ− 1)τ

2 sinh(ε)

)1−1/λ
)
. (2.1)

Combining this parameter setting for γ, along with the bound of τ = δ1−1/κ given by
Lemma 2.1.2, and focusing on the most natural case of κ = 2 (i.e., we assume only that the
estimator has bounded variance), gives the following result.

Corollary 2.1.3 (Combining Theorem 2.1.1, Lemma 2.1.2 (with κ = 2), and Equation 2.1.).
Let M : Rn → R be (ε, δ)-DP and satisfy the following bias and accuracy properties. For
any distribution P on R with µ(P ) := E

X←P
[X] ∈ [0, 1] and E

X←P

[
|X − µ(P )|λ

]
≤ 1, we have∣∣∣∣ E

X←Pn,M
[M(X)]− µ(P )

∣∣∣∣ ≤ β and E
X←Pn,M

[
(M(X)− µ(P ))2] ≤ α2.

If β ≤ 1
80

and δ ≤
(

2·sinh(ε)

5
1+ 1

λ−1 ·(λ−1)

)2

, then

α ≥

32 · n · sinh(ε) · λ

λ− 1
·max

(16β)
1

λ−1 ,

(
(λ− 1)

√
δ

2 · sinh(ε)

)1/λ

−1

.

We illustrate the representative case where the underlying distribution has bounded
variance by further fixing λ = 2. Combining the resulting lower bound with the non-private
rate (Proposition A.2.1) gives the following result.

Theorem 2.1.4 (Setting λ = 2 in Corollary 2.1.3 to get Theorem 1.2.1). Let M : Rn → R
be (ε, δ)-DP and satisfy the following bias and accuracy properties. For any distribution P
on R with µ(P ) := E

X←P
[X] ∈ [0, 1] and E

X←P
[(X − µ(P ))2] ≤ 1, we have∣∣∣∣ E

X←Pn,M
[M(X)]− µ(P )

∣∣∣∣ ≤ β and E
X←Pn,M

[
(M(X)− µ(P ))2] ≤ α2.
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If β ≤ 1/80 and δ ≤
(

2
25

sinh(ε)
)2

, then

α ≥ max

 1√
6(n+ 2)

,
1

64 · n · sinh(ε) ·max
{

16 · β,
√ √

δ
2·sinh(ε)

}
 ≥ Ω

(
1√
n

+ min

{
1

nεβ
,

1

n
√
ε
√
δ

})
.

A full proof can be found in Appendix A.3. In any case, to give intuition for the
argument, we consider the case where M is an unbiased estimator, in which case the
argument is similar to the proof of the Cramér-Rao bound. Assume that we have a suitable
family of distributions Pµ with mean EX←Pµ [X] = µ and an unbiased estimator M such
that EX←Pnµ [M(X)] = µ. As in the proof of the Cramér-Rao bound, we take the derivative
of the unbiasedness constraint, which gives

1 =
d

dµ

[
E

X←Pnµ ,M
[M(X)]

]
=

n∑
i=1

E
X←Pnµ ,M

[
M(X) · d

dµ
logPµ(Xi)

]
,

where Pµ(x) denotes the probability mass or density function of Pµ evaluated at x. The (ε, δ)-
differential privacy guarantee of M says that M(X) and Xi are close to being independent
where ε and δ quantify the distance from independence. Moreover, a straightforward
calculation shows that EX←Pµ [ d

dµ
logPµ(X)] = 0. Thus, for all i ∈ [n], we have

E
X←Pnµ ,M

[
M(X) · d

dµ
logPµ(Xi)

]
≈ε,δ E

X←Pnµ ,M
[M(X)] · E

X←Pnµ

[
d

dµ
logPµ(Xi)

]
= 0.

Intuitively, this leads to the contradiction

1 =
n∑
i=1

E
X←Pnµ ,M

[
M(X) · d

dµ
logPµ(Xi)

]
≈ε,δ

n∑
i=1

0.

To make this argument precise, we must exactly quantify the approximation ≈ε,δ, which
depends both on the privacy parameters ε and δ, as well as on the variances of M(X)
and of d

dµ
logPµ(Xi). The variance of M(X) is the quantity that we are trying to bound.

The variance of d
dµ

logPµ(Xi) (which is known as the Fisher information) is something we
control by choosing the distribution Pµ to be a distribution supported on two points.

The above proof sketch applies to the unbiased case (β = 0). The general case (β > 0)
introduces some additional complications to the proof. In particular, we cannot simply
consider a single fixed value of the mean parameter µ, as we must rule out the pathological
algorithm that ignores its input sample and outputs µ, which has somehow been hardcoded
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into the algorithm. This pathological algorithm trivially satisfies privacy and is unbiased for
the single distribution Pµ. To rule out this algorithm, we consider a distribution over the
parameter µ and average over this distribution, where the distribution’s support is wider

than the allowable bias β. While we can no longer assume that 1 = d
dµ

[
E

X←Pnµ ,M
[M(X)]

]
,

we can still argue that the derivative must be ≥ Ω(1) on average over the choice of µ.

2.2 Negative Result via Amplification

In this section, we show that known MSE lower bounds (without bias constraints) (Kamath
et al. 2020) combined with privacy amplification via shuffling (Erlingsson et al. 2019,
Cheu et al. 2019, Balle et al. 2019, Feldman et al. 2022, 2023) can also be used to derive
qualitatively similar lower bounds on MSE for private estimators with low bias as those
yielded by fingerprinting in the previous section. Our reduction provides an alternative
perspective on the bias-variance-privacy tradeoff, and could prove useful in future work as
it is more “generic” than the fingerprinting approach. Specifically, we will use the following
lower bound on the MSE of a private estimator in a black-box manner.

Theorem 2.2.1 ((Kamath et al. 2020, Theorem 3.8)). Let M : Rn → R be (ε, δ)-DP. Then,
for some distribution P with µ(P ) := EX←P [X] ∈ [−1, 1] and EX←P [(X − µ(P ))2] ≤ 1,

E
X←Pn

[
(M(X)− µ(P ))2

]
≥ Ω

(
1

n(ε+ δ)

)
.

The other ingredient in our proof is the following extension of the privacy amplification
by subsampling result of Feldman et al. (2022). Specifically we extend from the setting of
local differential privacy (where each algorithm has one input) to the setting where a dataset
is randomly partitioned into blocks of fixed size n > 1, and these blocks are processed by a
sequence of private mechanisms. A complete proof of the following result can be found in
Appendix A.4.

Theorem 2.2.2 (Extension of Privacy Amplification by Shuffling (Feldman et al. 2022) to
Larger Inputs). Suppose we have a randomized function Li : Y1 × · · · × Yi−1 × X n → Yi
for each i ∈ [m] such that Li(y, x) is (ε0, δ0)-DP in the parameter x ∈ X n for every fixed y.
Consider Lm ⊗ · · · ⊗ L1 : (X n)m → Y1 × · · · × Ym defined by

(Lm ⊗ · · · ⊗ L1)(x1, . . . , xm) := (y1, . . . , ym)

13



where we recursively define yi := Li(y1, . . . , yi−1, xi). In addition, consider the shuffle
operator Π : (X n)m → (X n)m given by

Π((x1
1, . . . , x

n
1 ), . . . , (x1

m, . . . , x
n
m)) := ((x1

π1(1), . . . , x
n
πn(1)), . . . , (x

1
π1(m), . . . , x

n
πn(m)))

where π1, . . . , πn are uniform i.i.d. permutations of [m]. Then, for any δ1 ∈ [2 exp(− m
16eε0

), 1],
Lm ⊗ · · · ⊗ L1 ◦ Π is (ε1, δ1 + (eε1 + 1)(e−ε0/2 + 1)mδ0)-DP, where

ε1 := log

(
1 + 8

eε0 − 1

eε0 + 1

(√
eε0 log(4/δ1)

m
+
eε0

m

))
. (2.2)

Note that, when ε0 = O(1), we have ε1 = O(ε0

√
log(1/δ1)/m).

We use this result to prove a slightly weaker version of Theorem 1.2.1 by reduction to
Theorem 2.2.1. The proof is given in Appendix A.5.

Theorem 2.2.3 (Bias-Variance-Privacy Trilemma via Shuffling). Let M : Rn → R be
(ε, δ)-DP and satisfy the following bias and accuracy properties. For any distribution P
over R with µ(P ) := E

X←P
[X] ∈ [−1, 1] and E

X←P
[(X − µ(P ))2] ≤ 1, we have∣∣∣∣ E

X←Pn,M
[M(X)]− µ(P )

∣∣∣∣ ≤ β and E
X←Pn,M

[
(M(X)− µ(P ))2] ≤ α2.

If β2 ≤ Ω̃
(

1
nε

)
and δ ≤ O(n3ε4β6), then α2 ≥ Ω

(
1

n2ε2β2 log(1/nε2β2)

)
.
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Chapter 3

Low-Bias Estimators for General
Distributions

In this chapter, we describe and analyze algorithms for private estimation with low or
no bias. We give three algorithms: an (ε, 0)-DP algorithm based on the clipped mean
(Proposition 3.0.1), a (0, δ)-DP algorithm based on a variant of the “name-and-shame”
algorithm (Proposition 3.0.2), and an (ε, δ)-DP algorithm obtained by combining the two
(Proposition 3.0.3). By taking the best of the three resulting bounds, we get Theorem 1.2.2.

We first have a positive result based on clipping and adding noise, which satisfies pure
DP. The clipped and noised mean is folklore in differential privacy. Analyzing such a
procedure with bounded moments has been done in a few works (Duchi et al. 2013, Barber
& Duchi 2014, Kamath et al. 2020). These works generally set algorithm parameters to
achieve a prescribed bias, towards the goal of minimizing the overall error. As our goal is
to explicitly quantify the bias, we leave it as a free variable.

Proposition 3.0.1 (ε-DP Algorithm). Fix any ε, β > 0, a < b, λ ≥ 2, and n ∈ N.
Consider the following ε-DP mechanism M : Rn → R:

M(x) :=

(
1

n

n∑
i

clip[â,b̂](xi)

)
+ Lap

(
b̂− â
εn

)
,

where â := a − β−1/(λ−1) and b̂ := b + β−1/(λ−1). M satisfies the following bias and
accuracy properties. For any distribution P on R with µ(P ) := E

X←P
[X] ∈ [a, b] and
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E
X←P

[
|X − µ(P )|λ

]
≤ 1, we have∣∣∣∣ E

X←Pn,M
[M(X)]− µ(P )

∣∣∣∣ ≤ β,

E
X←Pn,M

[
(M(X)− µ(P ))2

]
≤ 1

n
+ β2 +

2

ε2n2

(
b− a+

2

β1/(λ−1)

)2

.

Next, we give an algorithm based on the folklore “name-and-shame” procedure, which
is (0, δ)-DP. The name-and-shame procedure is generally phrased as randomly selecting
a point from a dataset and outputting it, sans any further privacy protection. It is most
commonly used as an illustration of which values of δ may or may not be meaningful when
it comes to informal uses of the word “privacy”, and not as a serious algorithm. However,
we note that such a procedure gives an exactly unbiased estimate of the mean, which the
previous (ε, 0)-DP was unable to do. We thus use it to design an unbiased algorithm for
mean estimation, albeit at a high price in the dependence on δ, which we recall is usually
chosen to be very small.

Proposition 3.0.2 ((0, δ)-DP Algorithm). Fix any δ ∈ (0, 1] and n ∈ N. Consider
the following (0, δ)-DP algorithm M : Rn → R: M(x) = 1

n

∑n
i A(xi) where where each

instantiation of A(xi) is independent and A : R→ R is the randomized algorithm

A(x) :=

{
0 with probability 1− δ
x
δ

with probability δ
.

M satisfies the following bias and accuracy properties. For any distribution P on R,

E
X←Pn,M

[M(X)] = µ(P ), (i.e., M is unbiased)

E
X←Pn,M

[
(M(X)− µ(P ))2

]
=

E
X←P

[(X − µ(P ))2] + (1− δ) · µ(P )2

δ · n
.

We can combine both of these methods to obtain a new algorithm for (ε, δ)-DP mean
estimation. Essentially, it decomposes a sample into the non-tail and tail components,
releasing the former via the (ε, 0)-DP clip-and-noise method, and the latter via the (0, δ)-DP
name-and-shame approach. Note that we must consider a higher moment in our assumption
about the unknown distribution P .
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Proposition 3.0.3 ((ε, δ)-DP Algorithm). Fix any ε > 0, δ ∈ (0, 1], ψ > 0, λ > 2, a < b,
and n ∈ N. Consider the following (ε, δ)-DP algorithm M : Rn → R:

M(x) :=

(
1

n

n∑
i

clip[â,b̂](xi)

)
+ Lap

(
b̂− â
nε

)
︸ ︷︷ ︸

(ε, 0)-DP

+

(
1

n

n∑
i

A
(
xi − clip[â,b̂](xi)

))
︸ ︷︷ ︸

(0, δ)-DP

,

where c :=
(
nε2ψλ(λ−2)

4λ2δ

)1/λ

, â := a − c, and b̂ := b + c, and the Laplace noise and all

instantiations of A (defined as in Proposition 3.0.2) are independent. M satisfies the
following bias and accuracy properties. For any distribution P on R with µ(P ) := E

X←P
[X] ∈

[a, b] and E
X←P

[(X − µ(P ))2] ≤ 1 and E
X←P

[
|X − µ(P )|λ

]
≤ ψλ, we have

E
X←Pn,M

[M(X)] = µ(P ), (i.e., M is unbiased)

E
X←Pn,M

[
(M(X)− µ(P ))2

]
≤ 2

n
+

4(b− a)2

n2ε2
+

24ψ2

n2ε2
·
(
nε2

4λδ

)2/λ

.

Combining Propositions 3.0.1, 3.0.2, and 3.0.3 yields Theorem 1.2.2.
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Chapter 4

Unbiased Estimators for Symmetric
Distributions

We now present our unbiased private mean estimation algorithm for symmetric distributions
over R that are weakly concentrated, i.e., those that have a bounded second moment.

Definition 4.0.1 (Symmetric Distribution). We say that a distribution P on R is symmetric
if there exists some µ(P ) ∈ R, such that ∀x ∈ R, P

X←P
[X − µ(P ) ≤ x] = P

X←P
[µ(P )−X ≤ x].

The value µ(P ) is called the center of the distribution P .

Note that the center of the distribution is unique and coincides with the mean and the
median (whenever these two quantities are well-defined).

Our algorithm is based on the approach of Karwa & Vadhan (2018), but with some
modifications to ensure unbiasedness. First, we obtain a coarse estimate of the mean, and
then we use this coarse estimate to perform clipping to obtain a precise estimate via noise
addition. The key observation is that, if the coarse estimate we use for clipping is unbiased
and symmetric (and also independent from the data used in the second step), then the
clipping does not introduce bias. We obtain the coarse estimate via a DP histogram, where
each bucket in the histogram is an interval on the real line. To ensure that this is unbiased
and symmetric, we simply need to apply a random offset to the bucket intervals.
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4.1 Coarse Unbiased Estimation

Our coarse estimator (Algorithm 1) is similar to that of Karwa & Vadhan (2018). The key
modification to ensure unbiasedness is adding a random offset to the histogram bins. We
define roundZ : R→ Z to be the function that rounds real numbers to the nearest integer,
i.e., for any x ∈ R, we have x ∈ [roundZ(x)− 1/2, roundZ(x) + 1/2).

Algorithm 1: Unbiased DP Coarse Estimator DPUCoarseε,δ(x)

Input: Dataset x = (x1, . . . , xn) ∈ Rn.
Output: Estimate µ̃ ∈ R ∪ {⊥}.
Let T be uniform on the interval [−1/2,+1/2].
Let K = {roundZ(xi − T ) : i ∈ [n]} ⊂ Z.
For each k ∈ K, sample ξk ← Lap(2/ε) independently.

If maxk∈K |{i ∈ [n] : roundZ(xi − T ) = k}|+ ξk ≤ 2 + 2 log(1/δ)
ε

, output ⊥.
Otherwise, output T + arg maxk∈K |{i ∈ [n] : roundZ(xi − T ) = k}|+ ξk.

First, it is easy to verify that Algorithm 1 is private. Similar to previous work (see,
e.g., Vadhan (2017)), privacy follows from the privacy of the stable histogram algorithm,
plus post-processing via argmax. A complete proof can be found in Appendix C.1.

Proposition 4.1.1. Algorithm 1 (DPUCoarseε,δ) satisfies (ε, δ)-DP.

Now we turn to the utility analysis, which consists of two parts. First, conditioned on not
outputting ⊥, the estimate is symmetric and unbiased (Proposition 4.1.2). Second, we show
that the probability of outputting ⊥ is low for appropriately concentrated distributions,
and that the MSE is bounded, as well (Proposition 4.1.3). To show that our estimator
preserves symmetry, note that, unlike the static histogram bucket approach of prior work,
the introduction of the uniformly random offset T ∈ [±1/2] in Algorithm 1 endows
DPUCoarseε,δ with equivarience under translation. The random offsets also endow our
estimator with equivariance under refleciton about the origin. See Appendix C.2 for the
details.

Proposition 4.1.2 (Conditional Symmetry of DPUCoarse). Let P be a symmetric
distribution with center µ(P ). Let X1, · · · , Xn ∈ R be independent samples from P . Let
µ̃ = DPUCoarseε,δ(X1, · · · , Xn). Let Q be the distribution of µ̃ conditioned on µ̃ 6= ⊥.
Then Q is symmetric with the same center as P – i.e., µ(P ) = µ(Q).

The details of the MSE analysis can be found in Appendix C.3.
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Proposition 4.1.3 (Accuracy of DPUCoarse). Let P be a distribution over R with
mean µ(P ) and variance E

X←P
[(X − µ(P ))2] < 1/64 and E

X←P

[
|X − µ(P )|λ

]
≤ ψλ for

some λ ≥ 2 and ψ > 0. Let X = (X1, . . . , Xn) be independent samples from P , and
µ̃← DPUCoarseε,δ(X). If n ≥ 7 + 7

ε
log(1/δ), then

P[µ̃ 6= ⊥ ∧ |µ̃− µ(P )| ≤ 1] ≥ 1− e−n/128 − n

2
e−nε/16,

E
[
I[µ̃ 6= ⊥] · |µ̃− µ(P )|λ

]
≤ 1

2
+ n · 2λ−1 · ψλ.

In particular, for γ > 0, to ensure P[µ̃ 6= ⊥ ∧ |µ̃− µ(P )| ≤ 1] ≥ 1− γ, it suffices to set

n ≥ max

{
7 +

7

ε
log(1/δ), 128 log(2/γ),

16

ε
log(n/γ)

}
= O(log(n/γδ)/ε). (4.1)

4.2 Final Algorithm

Now, we present our main algorithm (Algorithm 2) for unbiased mean estimation of
symmetric distributions under (approximate) DP. The idea is straightforward: invoke our
coarse estimator (Algorithm 1) to get a symmetric, unbiased, mildly accurate estimate of
the mean privately; then apply the standard clip-average-noise technique on our dataset.
The second step will not create any new bias because the clipping is performed around a
symmetric, unbiased estimate that is independent of the data we are clipping and averaging,
and the added noise has mean 0. There is an additional hiccup though: the coarse estimator
may fail to produce an estimate. In this case, we fall back to a different algorithm that
exploits (0, δ)-DP and does not require a coarse estimate, as in Proposition 3.0.2.

The following privacy and utility gurantee is the more general version of Theorem 1.2.3.

Theorem 4.2.1 (Unbiased DP Estimator). Fix ε, δ ∈ (0, 1), n2 ∈ N, ψ ≥ 1, and
λ ≥ 2. Set γ = δ2, σ = 10, c = σ + ψ · (n2ε)

1/λ, n1 = O(log(n1/γδ)/ε) (as in
Proposition 4.1.3(4.1)), and n = n1 + n2. Algorithm 2 (DPUMeanε,δ,c,σ,n1,n2) satis-
fies (ε, δ)-DP and the following. Let P be a symmetric distribution with center µ(P ),
E

X←P
[(X − µ(P ))2] ≤ 1, and E

X←P

[
|X − µ(P )|λ

]
≤ ψλ. Let X = (X1, · · · , Xn) ← P n and
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Algorithm 2: Unbiased DP Estimator DPUMeanε,δ,c,σ,n1,n2(x)

Input: Dataset x = (x1, . . . , xn1 , xn1+1, . . . , xn1+n2) ∈ Rn1+n2 . Parameters: Privacy:
ε, δ > 0. Clipping & Scale: c, σ > 0. Dataset split: n1, n2 ∈ N.

Output: Estimate µ̂ ∈ R.

// Get a coarse unbiased symmetric estimate of the mean privately.

µ̃← σ ·DPUCoarseε,δ
(
x1
σ
, . . . ,

xn1
σ

)
.

If µ̃ = ⊥ // When the coarse estimator fails.
Let ξ1, ξ2, · · · , ξn2 ∈ {0, 1} be independent samples from Bernoulli(δ).
Let µ̂ = 1

n2δ

∑n2

i=1 xn1+i · ξi.

Else // When the coarse estimator outputs µ̃ ∈ R.

Let µ̂ =

(
1
n2

n2∑
i=1

clip[µ̃−c,µ̃+c](xn1+i)

)
+ Lap

(
2c
n2ε

)
.

Return (µ̃, µ̂).

(µ̃, µ̂)← DPUMeanε,δ,c,σ,n1,n2(X). Then

E[µ̂] = µ(P ),

E
[
(µ̂− µ(P ))2] ≤ 1

n2

+O

(
ψ2

(n2ε)2−2/λ
+ δ · µ(P )2

n2

+ δ2−4/λ · (n1 + n2ε)
2/λ · ψ2

)
,

P[µ̃ 6= ⊥] ≥ 1− γ = 1− δ2,

E[µ̂ | µ̃ 6= ⊥] = E[µ̃ | µ̃ 6= ⊥] = µ(P ),

E
[
(µ̂− µ(P ))2 | µ̃ 6= ⊥

]
≤ 1

n2

+O

(
ψ2

(n2ε)2−2/λ
+ δ2−4/λ · (n1 + n2ε)

2/(λ−1) · ψ2

)
.

The proof is in Appendix C.4. In particular, we can apply Theorem 4.2.1 to (sub-
)Gaussians. Using the bound E

X←N (0,1)

[
|X|λ

]
= O(

√
log λ)λ and setting λ = Θ(log n) yields

the following. Note that we restrict |µ| ≤ δ−1/2 to remove the δ · µ2/n term.

Corollary 4.2.2 (Unbiased Gaussian Mean Estimation). Let ε ∈ (0, 1), δ ∈ (0, 1/n), and
n ≥ O(log(1/δ)/ε). Let M = DPUMeanε,δ,c,σ,n1,n2 be as in Algorithm 2 with appropriate
settings of parameters. Then, for all µ ∈ [−δ−1/2, δ−1/2],

E
X←N (µ,1)n,M

[M(X)] = µ and E
X←N (µ,1)n,M

[
(M(X)− µ)2

]
≤ O

(
1

n
+

log log n

n2ε2

)
.
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Chapter 5

Impossibility of Pure DP Unbiased
Estimation

In Chapter 4, we showed that it is possible to perform unbiased mean estimation for
symmetric distributions. However, this result only provides approximate DP (i.e., (ε, δ)-DP
with δ > 0). We now show that this is inherent. We show that unbiased estimation is
impossible under pure DP (i.e., (ε, 0)-DP) when the data comes from an exponential family.
Exponential families include a wide range of distributions, including Gaussians, exponential
distributions, Laplace distributions with fixed mean, and Gamma distributions.

Definition 5.0.1 (Exponential Family). Let D ⊆ Rn, h : D → [0,∞), and T : D → Rk.
The exponential family with carrier measure and sufficient statistic h and T respectively is
the collection of probability measures Pη with density fT,h,η(x) = h(x)eη

>T (x)−Z(η), where

Z(η) = log

(∫
S

h(x)eη
>T (x) dx

)
is called the log-partition function of the family. The family

is defined over all values η ∈ Rk for which Z(η) <∞. The set of these values, which we
denote U , is called the family’s range of natural parameters.

Theorem 5.0.2 (Impossibility of Pure DP Unbiased Estimation for Exponential Families).
Let U ⊆ R be an interval of infinite length, let {Pη : η ∈ U} be an exponential family, and
let I ⊆ U be any interval of positive length. Then, for any ε ≥ 0 and n ≥ 0, there exists no
(ε, 0)-DP algorithm M : Rn → R satisfying EX←Pnη ,M [M(X)] = η for all η ∈ I.

We remark that the interval over which the algorithm is unbiased must have positive
length. It is easy to construct a pathological estimator that is unbiased at a single point
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η0 ∈ U but not anywhere else, e.g. by setting M(x) = η0 for all x ∈ Rn. On the other hand,
the theorem implies that there can be no pure DP estimator that gives an unbiased estimate
for the mean of Exponential(λ) for all λ ∈ (0, 0.1). The range of natural parameters having
infinite length is also essential to our analysis. We emphasize that this is a property of the
distribution and not of the algorithm; that is, the algorithm does not need to “know” about
U . Note that the family of distributions {Bernoulli(p) : p ∈ [0, 1]} is an exponential family1

and it is possible to estimate the mean p under pure DP. In this case U = [0, 1] has finite
length, so we see that the assumption that U has infinite length is also necessary.

Proving this result requires tools from complex analysis and measure theory, a review
of which can be found in Appendices D.1 and D.2, respectively. We first show that, for
an estimator φ : Rn → R and an exponential family {Pη : η}, the expected value of the
estimator EX←Pnη [φ(X)] is an analytic function in η. We then apply the identity theorem
for analytic functions to argue that if φ is locally unbiased, i.e., unbiased when η lies in
some small set, then φ must also be globally unbiased, i.e., unbiased for all choices of η. On
the other hand, we will argue that global unbiasedness over an infinite interval is impossible
for pure DP estimators as a consequence of the strong group privacy properties of pure DP.

5.1 Locally Unbiased Estimators Are Globally Unbi-

ased

The following result states that any estimator for the parameter of an exponential family
that is locally unbiased is also globally unbiased. That is, if we have an unbiased estimator
for a restricted range of parameter values (of nonzero length), then we have an unbiased
estimator for the entire range. The proof can be found in Appendix D.3.

Proposition 5.1.1 (Locally Unbiased Implies Globally Unbiased). Let φ : Rn → R be any
well-defined estimator for an exponential family {Pη : η ∈ U}. Let I ⊆ U be an interval of
nonzero length. If EX←Pη [φ(X)] = η for all η ∈ I, then EX←Pη [φ(X)] = η for all η ∈ U .

We prove this result by showing that the expectation of the estimator EX←Pη [φ(X)]
must be an analytic function of the parameter η. A function being analytic means that its
Taylor series provides an exact representation of the function. Thus, if an analytic function
is linear in some nontrivial interval, we can compute the Taylor series at an interior point
of that interval to deduce that the function is linear globally, which yields the result.

1Definition 5.0.1 is stated in terms of densities, but it can be extended to discrete distributions.
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5.2 Pure DP Estimators Are Uniformly Bounded

We now exploit the strong group privacy property of pure DP to show that a pure DP
estimator that is bounded locally is uniformly bounded globally.

Proposition 5.2.1 (Pure DP Estimators Are Uniformly Bounded). Let A : X n → R be a

randomized algorithm. If A is (ε, 0)-DP, then for all x, x∗ ∈ X n,
∣∣∣E
A

[A(x)]
∣∣∣ ≤ eεnE

A
[|A(x∗)|].

The proof is in Appendix D.4. We emphasize that the above result holds for any x, x∗

and thus the bound on
∣∣∣E
A

[A(x)]
∣∣∣ is uniform – i.e., it does not depend on x.

Our impossibility result for exponential families now follows by stringing together the
tools we have collected so far.

Proof of Theorem 5.0.2. Suppose, for the sake of contradiction, there exist ε ≥ 0, n ≥ 0,
and an ε-DP algorithm M : Rn → R for which EX←Pnη ,M [M(X)] = η when η ∈ I. By
Proposition D.3.2, {P n

η : η} is an exponential family, such that for every P ∈ {Pη : η}, the
natural parameter of P n is the same as that of P . Therefore, by Proposition 5.1.1, we have
EX←Pnη ,M [M(X)] = η for all η ∈ U . In particular, since U is unbounded, EX←Pnη ,M [M(X)]
must be an unbounded function of η, which contradicts Proposition 5.2.1.
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Appendix A

Proofs for Chapter 2

Throughout the proofs given here, we will use the symbol “
d
=” to denote distributional

equivalence. That is, if two random variables X and Y have the same distribution, then we

write X
d
= Y . Moreover, for distributions P and Q over a set X , we say that P and Q are

(ε, δ)-indistinguishable (denoted by P ∼ε,δ Q), if for all measurable E ⊆ X ,

e−ε(Q(E)− δ) ≤ P (E) ≤ eεQ(E) + δ

A.1 Proof of Lemma 2.1.2

Proof of Lemma 2.1.2. We assume, without loss of generality, that δ < 1. Suppose, for
now, there exists c > 0 such that P[|Y | > c] = δ. If x ≥ c, then min{δ,P[|Y | > x]} =
P[|Y | > x] = P[|Y | · I[|Y | > c] > x]. Likewise, if x ≤ c, then min{δ,P[|Y | > x]} = δ =
P[|Y | · I[|Y | > c] > x]. Thus,∫ ∞

0

min{δ,P[|Y | > x]}dx =

∫ ∞
0

P[|Y | · I[|Y | > c] > x]

= E[|Y | · I[|Y | > c]]

≤ E[|Y |κ]
1
κ · E

[
I[|Y | > c]

κ
κ−1

]κ−1
κ

(Hölder’s Inequality)

= E[|Y |κ]
1
κ · P[|Y | > c]1−1/κ

≤ α · δ1−1/κ.
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If the distribution of Y is continuous, then such a quantity c is guaranteed to exist. In
general, there exists c ≥ 0 such that P[|Y | > c] ≤ δ ≤ P[|Y | ≥ c]. We can define a
random I : R → {0, 1} such that I[|Y | > c] ≤ I(|Y |) ≤ I[|Y | ≥ c] with probability 1 and
E[I(|Y |)] = δ. The above proof carries through in general if we replace I[|Y | > c] with
I(|Y |).

A.2 Non-Private Error of Mean Estimation

Given independent samples X1, · · · , Xn ∈ R from an unknown distribution P , the empirical
mean µ̂(X) := 1

n

∑n
i Xi is an unbiased estimator of the distribution mean µ(P ) := E

X←P
[X]

and its mean squared error is

α2 := E
X←Pn

[
(µ̂(X)− µ(P ))2] =

E
X←P

[(X − µ(P ))2]

n
= O(1/n).

This mean squared error is asymptotically optimal in a minimax sense and is optimal for
the univariate Gaussian case P = N (µ, σ2).

We have the following well-known result which shows that the empirical mean is
asymptotically optimal even for the simple case of Bernoulli data.

Proposition A.2.1. Let M : {0, 1}n → R be an estimator satisfying

∀p ∈ [0, 1] E
X←Bernoulli(p)n

[
(M(X)− p)2

]
≤ α2.

Then α2 ≥ 1
6(n+2)

.

The empirical mean attains MSE E
X←Bernoulli(p)n

[(µ̂(X)− p)2] = p(1−p)
n

. However, this is

not the minimax optimal estimator of the mean of a Bernoulli distribution, rather it is the
biased estimator

µ̌(X) :=
1

n+
√
n

(√
n

2
+

n∑
i

Xi

)
,

which has MSE

E
X←Bernoulli(p)n

[
(µ̌(X)− p)2

]
=

1

4(
√
n+ 1)2

for all p ∈ [0, 1] (Hodges & Lehmann 1950).
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Proof of Proposition A.2.1. Let P ∈ [0, 1] be uniform and, conditioned on P , let X ←
Bernoulli(P )n be n independent bits, each with conditional expectation P . Note that the
marginal distribution of

∑n
i Xi is uniform on {0, 1, · · · , n}.

Given X = x, the conditional distribution of P is

P |X=x
d
= Beta

(
1 +

n∑
i

xi, 1 +
n∑
i

(1− xi)

)
.

In terms of mean squared error, the best estimator of P is simply the mean of this conditional
distribution. That is, the function f : {0, 1}n → R that minimizes E

P,X
[(P − f(X))2] is the

conditional expectation f(x) = E[P | X = x]. Indeed, this is the definition of conditional
expectation in the general measure theoretic setting. Consequently, the best possible mean
squared error of an estimator of P given X is the variance of this conditional distribution
P |X.

The distribution Beta(a, b) has mean a
a+b

and variance ab
(a+b)2(a+b+1)

. Now we have

α2 ≥ E
P←[0,1],X←Bernoulli(P )n

[
(M(X)− P )2

]
≥ E

X

[
E
P

[(
E
P

[P | X]− P
)2

| X
]]

= E
P←[0,1],X←Bernoulli(P )n

[(
1 +

∑n
i Xi

2 + n
− P

)2
]

= E
P←[0,1],X←Bernoulli(P )n

[
(1 +

∑n
i Xi)(1 +

∑n
i (1−Xi))

(n+ 2)2(n+ 3)

]
=

1

n+ 1

n∑
k=0

(1 + k)(1 + n− k)

(n+ 2)2(n+ 3)
=

1

(n+ 1)(n+ 2)2(n+ 3)

n∑
k=0

(1 + n) + n · k − k2

=
1

(n+ 1)(n+ 2)2(n+ 3)

(
(1 + n) · (n+ 1) + n · n(n+ 1)

2
− n(n+ 1)(2n+ 1)

6

)
=

6(n+ 1)2 + 3n2(n+ 1)− n(n+ 1)(2n+ 1)

6(n+ 1)(n+ 2)2(n+ 3)
=

6(n+ 1) + 3n2 − n(2n+ 1)

6(n+ 2)2(n+ 3)

=
5n+ 6 + n2

6(n+ 2)2(n+ 3)
=

(n+ 2)(n+ 3)

6(n+ 2)2(n+ 3)
=

1

6(n+ 2)
.

This completes the proof.
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If we change the distribution of P ∈ [0, 1] from uniform to Beta(
√
n/2,

√
n/2) in the

above proof, then we obtain the stronger conclusion α2 ≥ 1
4(
√
n+1)2

, which is exactly optimal.

However, this requires a more complicated calculation.

A.3 Proof of Theorem 2.1.1

We will use the following lemma in the proof.

Lemma A.3.1 (Fingerprinting Derivative Lemma (Steinke & Ullman 2017b, Lemma
9)). Let f : {0, 1}n → R be an arbitrary function. Define g : [0, 1] → R by g(p) =
EX←Bernoulli(p)n [f(X)]. Then, for all p ∈ [0, 1], we have

g′(p) · p(1− p) = E
X←Bernoulli(p)n

[
f(X) ·

n∑
i

(Xi − p)

]
.

Proof of Theorem 2.1.1. For p ∈ [0, 1] and v > 0, defineDv,p = v·Bernoulli(p) – i.e., a sample
fromDv,p is 0 with probability 1−p and v with probability p. Then µ(Dv,p) = E

X←Dv,p
[X] = vp

and
E

X←Dv,p

[
|X − µ(Dv,p)|λ

]
= (1− p)(vp)λ + p(v(1− p))λ ≤ 2pvλ.

If we ensure v ≤ (2p)−1/λ ≤ 1/p, then the λ-th absolute central moment is below 1, and
the mean is in the interval [0, 1], so the bias and accuracy guarantees of M apply.

For v > 0, define gv : [0, 1]→ R by

gv(p) := E
X←Dnv,p,M

[M(X)].

By Lemma A.3.1, for all v > 0 and p ∈ [0, 1], we have

E
X←Dnv,p,M

[
M(X) ·

n∑
i

(
1

v
Xi − p

)]
= p(1− p)g′v(p). (A.1)

Fix 0 < a < b ≤ 1/2 and 0 < v ≤ (2b)−1/λ (to be determined later). Now, let P ∈ [a, b]

be a random variable with density ∝ 1
P (1−P )

– i.e., ∀t ∈ [a, b], P[P ≤ t] =
∫ t
a

1
x(1−x)dx∫ b

a
1

x(1−x)dx
.
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Conditioned on P , let X1, . . . , Xn ∈ R be independent samples from Dv,P . Now,

E
P,X,M

[
M(X) ·

n∑
i

(
1

v
Xi − P

)]
= E

P
[P (1− P )g′v(P )] (Equation A.1)

=

∫ b
a
g′v(p)dp∫ b

a
1

x(1−x)
dx

=
gv(b)− gv(a)

log(b/(1− b))− log(a/(1− a))
.

By our bias assumption, |gv(b)− vb| ≤ β and |gv(a)− va| ≤ β. Thus,

E
P,X,M

[
M(X) ·

n∑
i

(
1

v
Xi − P

)]
≥ v · (b− a)− 2β

log
(
b·(1−a)
a·(1−b)

) .

Since E[Xi] = vP for all i, we can center M(X) and rearrange slightly:

n∑
i

E
P,X,M

[
(M(X)− vP ) ·

(
1

v
Xi − P

)]
≥ v · (b− a)− 2β

log
(
b·(1−a)
a·(1−b)

) .

Next, we will use differential privacy to prove an upper bound on this quantity. Fix an ar-
bitrary i ∈ [n] and fix P = p ∈ [a, b]. Our goal is to upper bound E

X←Dnv,p,M

[
(M(X)− vp) ·

(
1
v
Xi − p

)]
.

SinceM satisfies (ε, δ)-DP, the distribution of the pair (M(X), Xi) is (ε, δ)-indistinguishable

from that of
(
M(X−i, X̃i), Xi

)
, where (X−i, X̃i) denotes the dataset X with Xi replaced

by X̃i; here X̃i ← Dv,p is a fresh sample from the distribution. Now X̃i and Xi are

interchangeable, this means the distribution of
(
M(X−i, X̃i), Xi

)
is identical to that of(

M(X), X̃i

)
. By transitivity, the distribution of (M(X), Xi) is (ε, δ)-indistinguishable

from that of
(
M(X), X̃i

)
. In particular,

(M(X)− vp) ·
(

1
v
Xi − p

)
∼ε,δ

(
M(X−i, X̃i)− vp

)
·
(

1
v
Xi − p

) d
= (M(X)− vp) ·

(
1
v
X̃i − p

)
.

We also have
∣∣(M(X)− vp) ·

(
1
v
Xi − p

)∣∣ ≤ |M(X)− vp| with probability 1.
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Thus

E
[
(M(X)− vp) ·

(
1

v
Xi − p

)]
= E

[
max{(M(X)− vp) ·

(
1

v
Xi − p

)
, 0}
]

− E
[
max{−(M(X)− vp) ·

(
1

v
Xi − p

)
, 0}
]

=

∞∫
0

P
[
(M(X)− vp) ·

(
1

v
Xi − p

)
> x

]
dx

−
∞∫

0

P
[
(M(X)− vp) ·

(
1

v
Xi − p

)
< −x

]
dx.

We have

P
[
(M(X)− vp) ·

(
1

v
Xi − p

)
> x

]
≤ P[|M(X)− vp| > x]

and simultaneously,

P
[
(M(X)− vp) ·

(
1

v
Xi − p

)
> x

]
≤ eε · P

[
(M(X)− vp) ·

(
1

v
X̃i − p

)
> x

]
+ δ

= eε · p · P[(M(X)− vp) · (1− p) > x]

+ eε · (1− p) · P[(M(X)− vp) · (0− p) > x] + δ.
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Define δ(x) := min{δ,P[|M(X)− vp| > x]}. Then

∞∫
0

P
[
(M(X)− vp) ·

(
1

v
Xi − p

)
> x

]
dx ≤

∞∫
0

eε · p · P[(M(X)− vp) · (1− p) > x]dx

+

∞∫
0

eε · (1− p) · P[(M(X)− vp) · (0− p) > x]dx

+

∞∫
0

δ(x)dx

= E[eε · p ·max{(M(X)− vp) · (1− p), 0}]
+ E[eε · (1− p) ·max{(M(X)− vp) · (0− p), 0}]

+

∞∫
0

δ(x)dx

≤ eε · p(1− p) · E[|M(X)− vp|] + α · τ.

In the above, the final inequality holds because

E[max{M(X)− vp, 0}] + E[max{−M(X) + vp, 0}] = E[|M(X)− vp|]
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and due to the third utility assumption in our theorem statement. Similarly,

∞∫
0

P
[
(M(X)− vp) ·

(
1

v
Xi − p

)
< −x

]
dx

≥
∞∫

0

max

{
0,

e−ε
(
P
[
(M(X)− vp) ·

(
1
v
X̃i − p

)
< −x

]
− δ
) }

dx

= e−ε ·
∞∫

0

P
[
(M(X)− vp) ·

(
1

v
X̃i − p

)
< −x

]
dx

+ e−ε ·
∞∫

0

max

{
−δ,

−P
[
(M(X)− vp) ·

(
1
v
X̃i − p

)
< −x

] }
dx

≥ e−ε ·
∞∫

0

P
[
(M(X)− vp) ·

(
1

v
X̃i − p

)
< −x

]
− δ(x)dx

= e−ε ·
∞∫

0

p · P[(M(X)− vp) · (1− p) < −x]dx

+ e−ε ·
∞∫

0

(1− p) · P[(M(X)− vp) · (0− p) < −x]dx

− e−ε ·
∞∫

0

δ(x)dx

≥ e−ε · p(1− p) · E[|M(X)− vp|]− e−ε · α · τ.
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Putting these two pieces together, we have:

E
X1,··· ,Xn←Dv,p

[
(M(X)− vp) ·

(
1

v
Xi − p

)]
≤

∞∫
0

P
[
(M(X)− vp) ·

(
1

v
Xi − p

)
> x

]
dx

−
∞∫

0

P
[
(M(X)− vp) ·

(
1

v
Xi − p

)
< −x

]
dx

≤
(
eε − e−ε

)
· p(1− p) · E[|M(X)− vp|]

+ (1 + e−ε) · α · τ
≤
(
eε − e−ε

)
· b(1− b) · α + 2ατ,

as p ≤ b ≤ 1/2. Then, combining this with our lower bound, we have

v · (b− a)− 2β

log
(
b·(1−a)
a·(1−b)

) ≤
n∑
i

E
P,X,M

[
(M(X)− vP ) ·

(
1

v
Xi − P

)]
≤ n ·

((
eε − e−ε

)
· b(1− b) · α + 2ατ

)
≤ α · n · 2 · (sinh(ε) · b+ τ),

which rearranges to

α ≥ v · (b− a)− 2β

2n · (sinh(ε) · b+ τ) · log
(
b·(1−a)
a·(1−b)

) .
It only remains to set the parameters subject to the constraints 0 < a < b ≤ 1/2 and
0 < v ≤ (2b)−1/λ. First, we set b = 2a, and v = (2b)−1/λ = (4a)−1/λ and assume

(8β)
λ
λ−1 ≤ a ≤ 1/5, which simplifies the above expression to

α ≥ a1−1/λ · 4−1/λ − 2β

2n · (sinh(ε) · 2a+ τ) · log
(

2·(1−a)
1−2a

) ≥ a1−1/λ − 8β

8n · (sinh(ε) · 2a+ τ)
.

We reparameterize a = γ
λ
λ−1 for some 16β ≤ γ ≤ 1/5 to obtain

α ≥ γ − 8β

8n · (sinh(ε) · 2 · γ
λ
λ−1 + τ)

≥ γ/2

8n · (sinh(ε) · 2 · γ
λ
λ−1 + τ)

=
1

32n sinh(ε)γ1/(λ−1) + 16nτγ−1
.

This completes our proof.
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A.4 Proof of Theorem 2.2.2

We first prove the extension of privacy amplification by shuffling (Theorem 2.2.2). This
proof is a direct reduction to the following result of Feldman et al. (2022).

Theorem A.4.1 (Local Privacy Amplification by Shuffling (Feldman et al. 2022, Theo-
rem 3.8)). Let m ∈ Z+, let X be the data universe, and let Y1, . . . ,Ym be image spaces.
Suppose for each i ∈ [m], we have a randomized function Ri : Y1 × · · · × Yi−1 × X → Yi
such that Ri(y, a) is (ε0, δ0)-DP in the parameter a ∈ X for every fixed y ∈ Y1 × · · · × Yi−1.
Consider Rm ⊗ · · · ⊗R1 : Xm → Y1 × · · · × Ym defined by

(Rm ⊗ · · · ⊗R1)(x1, . . . , xm) := (y1, . . . , ym)

where we recursively define yi := Ri(y1, . . . , yi−1, xi). In addition, consider the random
shuffle operator S : Xm → Xm given by

S(x1, . . . , xm) := (xπ(1), . . . , xπ(m))

where π is a uniformly random permutation on [m]. Then, for any δ1 ∈ [2 exp(− m
16eε0

), 1],
the function Rm⊗· · ·⊗R1◦S : Xm → Y1×· · · Ym is (ε1, δ1 + (eε1 + 1)(1 + e−ε0/2)mδ0)-DP,
where ε1 is as in Equation 2.2.

Proof of Theorem 2.2.2. Consider neighboring datasets x = ((x1
1, . . . , x

n
1 ), . . . , (x1

m, . . . , x
n
m))

and x′ = ((x′11, . . . , x
′n
1 ), . . . , (x′1m, . . . , x

′n
m)) in (X n)m and assume, without loss of generality,

that they differ in only the first entry of the first block. That is, xji = x′ji for all (i, j) 6= (1, 1).

Now, decompose the operator Π = Π1 ◦ Π−1 as follows.

Π1(x)ji :=

{
Π(x)ji if j = 1

xji otherwise
and Π−1(x)ji :=

{
xji if j = 1

Π(x)ji otherwise

In other words, Π1 applies the permutation π1 to the first row and leaves the remaining
n− 1 rows fixed, whereas Π−1 applies the permutations π2, . . . , πn to every row except the
first.

We claim that

(Lm ⊗ · · · ⊗ L1 ◦ Π1)(x) ∼ε′,δ′ (Lm ⊗ · · · ⊗ L1 ◦ Π1)(x′) (A.2)

with ε′ = O(ε0

√
log(1/δ)/m) and δ′ = δ1 +O(δ0m), as in the conclusion of Theorem A.4.1.
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To that end, consider the randomized function

Ri(y, a) := Li(y, (a, x
2
i , . . . , x

n
i ))

for i ∈ [m]. Since (a, x2
i , . . . , x

n
i ) and (a′, x2

i , . . . , x
n
i ) are neighboring datasets for any

a, a′ ∈ X , Ri must be (ε0, δ0)-DP in the parameter a and hence Rm⊗ · · · ⊗R1 ◦ S is (ε′, δ′)-
DP by Theorem A.4.1. In particular, since x̂ := (x1

1, . . . , x
1
m) and x̂′ := (x′11, . . . , x

′1
m) are

neighbors, (Rm⊗· · ·⊗R1◦S)(x̂) must be (ε′, δ′)-indistinguishable from (Rm⊗· · ·⊗R1◦S)(x̂′).

Therefore, to prove our claim, it suffices to show that (Lm ⊗ · · · ⊗ L1 ◦ Π1)(x) is
identically distributed to (Rm ⊗ · · · ⊗R1 ◦ S)(x̂), and likewise for (Lm ⊗ · · · ⊗ L1 ◦ Π1)(x′)
and (Rm ⊗ · · · ⊗R1 ◦ S)(x̂′). Indeed,

Li(y,Π1(x)i) = Li(y, (x
1
π1(i), x

2
i , . . . , x

n
i )) = Ri(y, x

1
π1(i))

for all i. So, it follows by induction that

(Lm ⊗ · · · ⊗ L1 ◦ Π1)(x) = (Rm ⊗ · · · ⊗R1)(x1
π1(1), . . . , x

1
π1(m))

d
= (Rm ⊗ · · · ⊗R1 ◦ S)(x̂).

Analogously, we get

(Lm ⊗ · · · ⊗ L1 ◦ Π1)(x′)
d
= (Rm ⊗ · · · ⊗R1 ◦ S)(x̂′),

as desired.

We can now leverage the decomposition Π = Π1 ◦ Π−1 to prove the theorem. Fixing
Π−1, Π−1(x) and Π−1(x′) are neighboring datasets differing only on the first element of the
first block. So, by the claim that we proved above (Equivalence A.2), which used only the
fact that x and x′ differ at x1

1 6= x′11, we have that

(Lm ⊗ · · · ⊗ L1 ◦ Π1)(Π−1(x)) ∼ε′,δ′ (Lm ⊗ · · · ⊗ L1 ◦ Π1)(Π−1(x′)).

But Π−1 depends only on π2, . . . , πn and is, thus, is independent of Lm ⊗ · · · ⊗ L1 ◦ Π1.
Therefore, it follows that

P[(Lm ⊗ · · · ⊗ L1 ◦ Π)(x) ∈ E] = E
Π−1

[P[(Lm ⊗ · · · ⊗ L1 ◦ Π1)(Π−1(x)) ∈ E | Π−1]]

≤ E
Π−1

[
δ′ + eε

′P[(Lm ⊗ · · · ⊗ L1 ◦ Π1)(Π−1(x′)) ∈ E | Π−1]
]

= δ′ + eε
′P[(Lm ⊗ · · · ⊗ L1 ◦ Π)(x′) ∈ E]

for any measurable E.
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A.5 Proof of Theorem 2.2.3

Before we proceed, we recall the well-known post-processing property of differential privacy.

Lemma A.5.1 (Post-Processing (Dwork et al. 2006)). If M : X n → Y is (ε, δ)-DP and
P : Y → Z is any randomized function, then the algorithm P ◦M is (ε, δ)-DP.

Proof of Theorem 2.2.3. Let m ∈ N (we delay our choice of m until later). Consider
Am : (Rn)m → R defined by

∀x1, . . . , xm ∈ Rn, Am((x1, . . . , xm)) =
1

m

m∑
i=1

M(xi).

Fix some distribution P with mean and variance bounded by 1. This gives us the following
guarantee about the mean of Am.

µ̌ := E
(X1,...,Xm)←(Pn)m,Am

[Am((X1, . . . , Xm))] = E
(X1,...,Xm)←(Pn)m,M

[
1

m

m∑
i=1

M(Xi)

]

=
1

m

m∑
i=1

E
Xi←Pn,M

[M(Xi)]

= E
X←Pn,M

[M(X)]

Thus, the bias of Am is at most β, as we see from the following.

|µ̌− µ(P )| =
∣∣∣∣ E
(X1,...,Xm)←(Pn)m,Am

[Am((X1, . . . , Xm))]− µ(P )

∣∣∣∣ =

∣∣∣∣ E
X←Pn,M

[M(X)]− µ(P )

∣∣∣∣ ≤ β

Similarly, the MSE of Am is

E
(X1,··· ,Xm)←(Pn)m,Am

[
(Am(X1, · · · , Xm)− µ(P ))2] = (µ̌− µ(P ))2

+ E
(X1,··· ,Xm)←(Pn)m,Am

[
(Am(X1, · · · , Xm)− µ̌)2]

= (µ̌− µ(P ))2

+ E
(X1,··· ,Xm)←(Pn)m,M

( 1

m

m∑
i=1

M(Xi)− µ̌

)2


= (µ̌− µ(P ))2 +
1

m
· E
X←Pn,M

[
(M(X)− µ̌)2]

≤ β2 +
α2

m
.
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Let Π : (X n)m → (X n)m be the shuffle operator described in Theorem 2.2.2. Since
any set of samples drawn i.i.d. from a distribution is invariant under shuffling, (Am ◦
Π)(X) has the same distribution as Am(X) when X ← (P n)m. In particular, Am ◦ Π
has the same bias and MSE as Am on inputs from (P n)m. Privacy amplification by
shuffling (Theorem 2.2.2) and post-processing (Lemma A.5.1), imply that Am ◦ Π is(
ε′ := O(ε

√
log(1/δ1)/m), δ′ := δ1 +O(δm)

)
-DP for all δ1 ∈ [2 exp(− m

16eε
), 1].

Now, we apply Theorem 2.2.1 (Kamath et al. 2020, Theorem 3.8) to Am: There exists a
distribution P with mean and variance bounded by 1, such that

E
(X1,··· ,Xm)←(Pn)m,Am

[
(Am(X1, · · · , Xm)− µ(P ))2] ≥ Ω

(
1

nm(ε′ + δ′)

)
.

Combining all these inequalities gives

β2 +
α2

m
≥ E

(X1,··· ,Xm)←(Pn)m

[
(Am(X1, · · · , Xm)− µ(P ))2]

≥ Ω

(
1

nm(ε′ + δ′)

)
≥ Ω

(
1

nm(ε
√

log(1/δ1)/m+ δ1 + δm)

)
.

This rearranges to

α2 ≥ Ω

(
1

nε
√

log(1/δ1)/m+ nδ1 + nmδ

)
−mβ2.

It only remains to set m ∈ N and δ1 ∈ [2 exp(− m
16eε

), 1] to maximize this lower bound.

Now, we assume that δ1 ≤ O(ε/
√
m) and δ ≤ O(ε/m3/2). Then the first term in the

denominator dominates and we have

α2 ≥ Ω

(
1

nε
√

log(1/δ1)/m

)
−mβ2.

Then setting m = Θ
(

1
n2ε2β4 log(1/δ1)

)
optimizes the expression giving

α2 ≥ Ω

(
1

n2ε2β2 log(1/δ1)

)
.
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We set δ1 = nε2β2 ≤ O(ε/
√
m). This satisfies δ1 ∈ [2 exp(− m

16eε
), 1] as long as β2 ≤ 1/nε2

and m = Θ
(

1
n2ε2β4 log(1/nε2β2)

)
≥ O(eε log(1/nε2β2)). The latter constraint rearranges to

β2 log(1/nε2β2) ≤ Ω
(
e−ε

nε

)
. To conclude, we note that the assumption δ ≤ O(ε/m3/2) is

implied by δ ≤ O(n3ε4β6).
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Appendix B

Proofs for Chapter 3

B.1 Proof of Proposition 3.0.1

We will require a couple of technical lemmata in our analysis.

Lemma B.1.1. ∀λ > 1 ∀c > 0 ∀t ∈ R, max{0, t− c} ≤ (λ−1)λ−1

λλ·cλ−1 · |t|λ.

Proof. If t = 0, the claim holds as an equality. Now, we assume that t ∈ R \ {0}. Define
f : R\{0} → R by f(t) = |t|λ. Then f ′(t) = λ·|t|λ−1 ·sign(t) and f ′′(t) = λ(λ−1)·|t|λ−2 ≥ 0
for all t ∈ R \ {0}. Since f is convex,

∀a ≥ 0 ∀t ∈ R\{0}, f(t) ≥ f(a)+f ′(a)·(t−a) = aλ+λ·aλ−1·(t−a) = λ·aλ−1·
(
t− λ− 1

λ
· a
)
.

Taking the maximum over a = 0 and a = cλ
λ−1

and rearranging yields the result.

The following lemma decomposes the mean squared error of the clipped mean into the
sum of the sampling error and the (squared) population bias introduced (which is further
bounded).

Lemma B.1.2. Fix λ > 1 and a < b. Let P be a distribution with mean µ(P ) ∈ (a, b). Let
µ[a,b](P ) := E

X←P

[
clip[a,b](X)

]
∈ [a, b]. Let X1, . . . , Xn be independent samples from P . Then

E

( 1

n

n∑
i

clip[a,b](Xi)− µ(P )

)2
 ≤ E

X←P
[(X − µ(P ))2]

n
+ (µ[a,b](P )− µ(P ))2

46



and

∣∣µ[a,b](P )− µ(P )
∣∣ ≤ (λ− 1)λ−1

λλ
·

E
X←P

[
|X − µ(P )|λ

]
(min{µ(P )− a, b− µ(P )})λ−1

≤ 1

λ
·

E
X←P

[
|X − µ(P )|λ

]
(min{µ(P )− a, b− µ(P )})λ−1

.

Proof. We have

E

( 1

n

n∑
i

clip[a,b](Xi)− µ(P )

)2
 = E

( 1

n

n∑
i

clip[a,b](Xi)− µ[a,b](P )

)2
+ (µ[a,b](P )− µ(P ))2

=
1

n2

n∑
i

E
[(
clip[a,b](Xi)− µ[a,b](P )

)2
]

+ (µ[a,b](P )− µ(P ))2

≤ 1

n2

n∑
i

E
[(
clip[a,b](Xi)− µ(P )

)2
]

+ (µ[a,b](P )− µ(P ))2

≤ 1

n2

n∑
i

E
[
(Xi − µ(P ))2]+ (µ[a,b](P )− µ(P ))2

=
E

X←P
[(X − µ(P ))2]

n
+ (µ[a,b](P )− µ(P ))2.

The first inequality follows from the fact that E
X←P

[(X − µ(P ))2] = infu∈R E
X←P

[(X − u)2].

The second inequality follows from the fact that µ(P ) ∈ [a, b] and, hence, (clip[a,b](x) −
µ(P ))2 ≤ (x− µ(P ))2 for all x ∈ R.

It remains to bound µ[a,b](P )− µ(P ). We have

µ[a,b](P )− µ(P ) = E
X←P

[
clip[a,b](X)−X

]
= E

X←P
[I[X > b](b−X) + I[X < a](a−X)]

= E
X←P

[max{a−X, 0}]− E
X←P

[max{X − b, 0}].

By Lemma B.1.1,

0 ≤ E
X←P

[max{X − b, 0}] = E
X←P

[max{(X − µ(P ))− (b− µ(P )), 0}]

≤ E
X←P

[
(λ− 1)λ−1

λλ · (b− µ(P ))λ−1
· |X − µ(P )|λ

]
.
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Similarly,

0 ≤ E
X←P

[max{a−X, 0}] ≤ (λ− 1)λ−1

λλ · (µ(P )− a)λ−1
· E
X←P

[
|X − µ(P )|λ

]
.

Thus,

(λ− 1)λ−1

λλ · (b− µ(P ))λ−1
· E
X←P

[
|X − µ(P )|λ

]
≤ µ[a,b](P )−µ(P ) ≤ (λ− 1)λ−1

λλ · (µ(P )− a)λ−1
· E
X←P

[
|X − µ(P )|λ

]
.

Finally, note that (λ−1)λ−1

λλ
=
(
1− 1

λ

)λ−1 · 1
λ
≤ e−1+1/λ

λ
≤ 1

λ
.

Finally, we will also require standard properties of the well-known Laplace mechanism.

Definition B.1.3 (Sensitivity). Let f : X n → R be a function, its sensitivity is

∆f := sup
x∼x′∈Xn

|f(x)− f(x′)|.

Lemma B.1.4 (Laplace Mechanism). Let f : X n → R be a function with sensitivity ∆f .
Then, denoting by Lap(b) the Laplace distribution with location 0 and scale parameter b, the
Laplace mechanism M(x) := f(x) + Lap(∆f/ε) satisfies ε-DP. Furthermore,

P
[
|M(x)− f(x)| ≥ ∆f · log(1/β)

ε

]
≤ β.

Proof of Proposition 3.0.1. The properties of the Laplace distribution ensure that M satis-

fies ε-DP, as the sensitivity of µ̂(x) := 1
n

∑n
i clip[â,b̂](xi) is b̂−â

n
(Lemma B.1.4).

It only remains to analyze the bias and accuracy. Fix an arbitrary distribution P which
satisfies the conditions in the proposition statement. By Lemma B.1.2, the bias satisfies

E
X←Pn,M

[M(X)]− µ(P ) = E
X←Pn

[µ̂(X)]− µ(P )

= E
X←P

[
clip[â,b̂](X)−X

]
≤ (λ− 1)λ−1

λλ
·

E
X←P

[
|X − µ(P )|λ

]
(min{µ(P )− â, b̂− µ(P )})λ−1

≤ 1 · 1

(min{a− â, b̂− b})λ−1

= β,
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and the mean squared error satisfies

E
X1,··· ,Xn←P,M

[
(M(X)− µ(P ))2] = E

X←Pn

ξ←Lap( b−aεn )

[
(µ̂(X) + ξ − µ(P ))2

]

= E
X←Pn

( 1

n

n∑
i

clip[â,b̂](Xi)− µ(P )

)2
+ E

ξ←Lap
(
b̂−â
εn

)[ξ2
]

≤
E

X←P
[(X − µ(P ))2]

n
+ β2 + 2

(
b̂− â
εn

)2

≤ 1

n
+ β2 +

2

ε2n2

(
b− a+

2

β1/(λ−1)

)2

.

Our proof is complete.

B.2 Proof of Proposition 3.0.2

Proof of Proposition 3.0.2. Since A satisfies local (0, δ)-DP, M satisfies (0, δ)-DP. Since A
is unbiased (i.e., ∀x ∈ R E

A
[A(x)] = x), so is M . Finally, we calculate the mean squared

error:

E
X←Pn,M

[
(M(X)− µ(P ))2

]
=

1

n
E

X←P,A

[
(A(X)− µ(P ))2

]
=

E
X←P,A

[A(X)2]− µ(P )2

n

=
E

X←P
[0 + δ · (X/δ)2]− µ(P )2

n

=
E

X←P
[X2]− δ · µ(P )2

δ · n

=
E

X←P
[(X − µ(P ))2] + (1− δ) · µ(P )2

δ · n
.

We have the required result.
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B.3 Proof of Proposition 3.0.3

Proof of Proposition 3.0.3. Since E
A

[A(x)] = x for any x ∈ R, the bias of the (ε, 0)-DP and

the (0, δ)-DP components cancel and thus M is unbiased – i.e. ∀x ∈ Rn E
M

[M(x)] = 1
n

∑n
i xi.

By composition and post-processing, M satisfies (ε, δ)-DP.

Now, we bound the mean squared error. Define µ[â,b̂](P ) := E
X←P

[
clip[â,b̂](X)

]
. We have:

E
X←Pn,M

[
(M(X)− µ(P ))2] = E

X←Pn

ξ←Lap

(
b̂−â
nε

)
,A

( 1
n

∑n
i clip[â,b̂](Xi) + ξ

+ 1
n

∑n
i A
(
Xi − clip[â,b̂](Xi)

)
− µ(P )

)2


= E
X←Pn,A

( 1
n

∑n
i clip[â,b̂](Xi)− µ[â,b̂](P )

+ 1
n

∑n
i A
(
Xi − clip[â,b̂](Xi)

)
− (µ(P )− µ[â,b̂](P ))

)2


+ E
ξ←Lap

(
b̂−â
nε

)[ξ2
]

≤ 2

n
· E
X←P

[(
clip[â,b̂](X)− µ[â,b̂](P )

)2
]

+ 2

(
b̂− â
nε

)2

+
2

n
· E
X←P,A

[(
A
(
X − clip[â,b̂](X)

)
−
(
µ(P )− µ[â,b̂](P )

))2
]
.

(B.1)

The final inequality uses the fact that for independent mean-zero random variables U and
V , we have E[(U + V )2] = E[U2] +E[V 2]. For the terms that are not independent, we apply
the inequality E[(U + V )2] ≤ 2E[U2] + 2E[V 2].

Since µ(P ) := E
X←P

[X] ∈ [a, b] ⊂ [â, b̂], we have

E
X←P

[(
clip[â,b̂](X)− µ[â,b̂](P )

)2
]
≤ E

X←P

[(
clip[â,b̂](X)− µ(P )

)2
]
≤ E

X←P

[
(X − µ(P ))2] ≤ 1.
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Finally we bound the last term:

E
X←P,A

[(
A
(
X − clip[a,b](X)

)
−
(
µ(P )− µ[â,b̂](P )

))2
]
≤ E

X←P,A

[(
A
(
X − clip[â,b̂](X)

))2
]

= (1− δ) · 0 + δ · E
X←P

[(
1

δ

(
X − clip[â,b̂](X)

))2
]

=
1

δ
· E
X←P

[(
X − clip[â,b̂](X)

)2
]

=
1

δ
· E
X←P

[(
(X − µ(P ))−

clip[â−µ(P ),b̂−µ(P )](X − µ(P ))

)2
]

≤ 1

δ
· E
X←P

[(
(X − µ(P ))− clip[−c,c](X − µ(P ))

)2
]

=
1

δ
· E
X←P

[
(max{0, |X − µ(P )| − c})2],

where the final inequality holds because c = b̂− b ≤ b̂− µ(P ) and c = a− â ≤ µ(P )− a.
By Lemma B.1.1,

max{0, |X − µ(P )| − c} ≤ 1

λ/2
· |X − µ(P )|λ/2

cλ/2−1
.

Thus,

E
X←P

[
(max{0, |X − µ(P )| − c})2] ≤ ( 1

(λ/2) · cλ/2−1

)2

· E
X←P

[
|X − µ(P )|λ

]
≤ 4

λ2
· ψ

λ

cλ−2
.

Now, we set parameters and assemble the bound from Inequality B.1:

E
X←Pn,M

[
(M(X)− µ(P ))2] ≤ 2

n
+ 2

(
b− a+ 2c

nε

)2

+

(
2

n
· 1

δ
· 4

λ2
· ψ

λ

cλ−2

)
≤ 2

n
+

4(b− a)2

n2ε2
+

16

n2ε2
· c2 +

8ψλ

nδλ2
· (c2)1−λ/2

=
2

n
+

4(b− a)2

n2ε2
+

16ψ2

n2ε2
·
(
nε2

4λδ

)2/λ

·
(

λ

λ− 2

)1−2/λ

≤ 2

n
+

4(b− a)2

n2ε2
+

24ψ2

n2ε2
·
(
nε2

4λδ

)2/λ

,
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where the final equality follows from setting c =
(
nε2ψλ(λ−2)

4λ2δ

)1/λ

to minimize the expression,

and the final inequality follows from the fact that
(

λ
λ−2

)1−2/λ
= (1− 2/λ)−1+2/λ ≤ ee

−1
<

3
2
.
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Appendix C

Proofs for Chapter 4

Recall that, if two random variables X and Y have the same distribution, then we write

X
d
= Y .

C.1 Proof of Proposition 4.1.1

We recall the group privacy property of differential privacy, which quantifies the privacy
guaranteed by a DP algorithm for a group of individuals within a dataset.

Lemma C.1.1 (Group Privacy (Dwork et al. 2006, Dwork & Roth 2014)). Let A : X n → Y
be (ε, δ)-DP. Then for any integer k ∈ {0, . . . , n}, measurable subset Y ⊆ Y, and pairs of
datasets x, x′ ∈ X n differing in k elements,

P[A(x) ∈ Y ] ≤ ekε · P[A(x′) ∈ Y ] +
ekε − 1

eε − 1
· δ.

Proof of Proposition 4.1.1. We will prove that DPUCoarseε,δ satisfies (ε/2, δ/2eε/2)-DP
with respect to addition or removal of one element of the dataset. By group privacy
(Lemma C.1.1), this implies (ε, δ)-DP for replacement of an element.

Consider a fixed pair of datasets x and x′ = x−i∗ , where x′ is x with xi∗ removed for
some i∗ ∈ [n]. For the privacy analysis, we also consider the offset T to be fixed – i.e., T is
not needed to ensure privacy.
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By post-processing, we can consider an algorithm that outputs more information.
Specifically, we can assume that for each k ∈ Z, the algorithm outputs

νk(x) :=

{
max

{
|{i ∈ [n] : roundZ(xi − T ) = k}|+ ξk − 2− 2 log(1/δ)

ε
, 0
}

if k ∈ K
0 if k ∈ Z \K

}
.

Note that only finitely many of these νk(x) values will be nonzero, so the algorithm can
output a compressed version of this infinite vector of values. We can obtain the true output
of DPUCoarseε,δ by taking the argmax of this vector or outputting ⊥ if this vector is all
zeros. The advantage of this perspective is that each νk(x) is independent, as it depends
only on the noise ξk (the input x and offset T are fixed).

The output distributions on the neighboring inputs are the same except for one νk(x) 6 d=
νk(x

′), namely k = roundZ(xi∗ − T ). Thus, we must simply show that this value satisfies
(ε/2, δ/2eε/2)-DP. That is, we must show νk(x) ∼ε/2,δ/2eε/2 νk(x′), where νk(x) and νk(x

′)
denote the relevant random variables on the two different inputs. There are two cases to
consider: |{i ∈ [n] : roundZ(xi − T ) = k}| = 1 and |{i ∈ [n] : roundZ(xi − T ) = k}| ≥ 2.
(Note that |{i ∈ [n] : roundZ(xi − T ) = k}| = 0 is ruled out because k = roundZ(xi∗ − T ).)

Suppose |{i ∈ [n] : roundZ(xi − T ) = k}| = 1. Then νk(x
′) = 0 deterministically.

Therefore, it suffices to prove that P[νk(x) = 0] ≥ 1− δ/2eε/2. We have

P[νk(x) 6= 0] = P
[
|{i ∈ [n] : roundZ(xi − T ) = k}|+ ξk − 2− 2 log(1/δ)

ε
> 0

]
= P

[
1 + ξk − 2− 2 log(1/δ)

ε
> 0

]
= P

[
ξk > 1 +

2 log(1/δ)

ε

]
=

1

2
exp

(
−ε

2
·
(

1 +
2 log(1/δ)

ε

))
=

δ

2eε/2
,

where the penultimate equality follows from the fact that ξk ← Lap(2/ε) (Lemma B.1.4).

Now suppose |{i ∈ [n] : roundZ(xi − T ) = k}| ≥ 2. Then νk(x) and νk(x
′) are post-

processings of |{i ∈ [n] : roundZ(xi − T ) = k}|+ ξk and, respectively, |{i ∈ [n] : roundZ(xi −
T ) = k}| − 1 + ξk. Thus, by the properties of Laplace noise, we have e−ε/2P[νk(x

′) ∈ S] ≤
P[νk(x) ∈ S] ≤ eε/2P[νk(x

′) ∈ S] for all S, as required.
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C.2 Proof of Proposition 4.1.2

Lemma C.2.1. For any x = (x1, . . . , xn) ∈ Rn and c ∈ R, we have

DPUCoarseε,δ(x+ c)
d
= DPUCoarseε,δ(x) + c

where ⊥+ c := ⊥ and x+ c := (x1 + c, . . . , xn + c).

Proof of Lemma C.2.1. It will be easier to proceed by rewriting Algorithm 1 in a non-
algorithmic form. To that end, we define the following notations.

• For r ∈ R, set p̂r(x) := 1
n
|i ∈ [n] : xi ∈ [r ± 1/2)| and sample T ← U [±1/2], p̃r(x)←

p̂r(x) + Lap(0, 2/(εn)) such that T and {p̃r(x)}r∈R are all mutually independent.

• For t ∈ R and S ⊆ R, we define S + t := {s + t : s ∈ S}, and denote by S + T the
distribution over the set of sets {S + t : t ∈ [±1/2]} induced by the randomness of T .

• Set R(x) := {r ∈ Z + T : p̂r(x) > 0} and put R∗(x) := arg maxr∈R(x) p̃r(x), provided

there is an r ∈ R(x) for which p̃r(x) > 2 log(2/δ)
εn

+ 2
n

=: η, otherwise R∗(x) := ⊥.

Essentially, we have reparameterized the terms of DPUCoarseε,δ(x) so that R(x) = K+T

and p̂k+T (x) = 1
n
|{i ∈ [n] : roundZ(xi − T ) = k}| hold, so it follows that R∗(x)

d
=

DPUCoarseε,δ(x).

Now, notice that

p̂r(x+ c) =
1

n
|{i ∈ [n] : xi + c ∈ [r ± 1/2)}| = 1

n
|{i ∈ [n] : xi ∈ [r − c± 1/2)}| = p̂r−c(x),

so in particular, we have that p̃r(x+ c) is identically distributed to p̃r−c(x) for any r ∈ R.
Moreover, Z + T is identically distributed to Z + T − c, so it follows that

R(x+ c) = {r ∈ Z + T : p̂r(x+ c) > 0}
= {r ∈ Z + T : p̂r−c(x) > 0}
= {r ∈ Z + T − c : p̂r(x) > 0}+ c

d
= {r ∈ Z + T : p̂r(x) > 0}+ c

= R(x) + c.
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As T and the Laplace noise were all sampled in a mutually independent manner, these

distributional equivalences hold jointly, i.e., ((p̃r(x+c))r∈R, R(x+c))
d
= ((p̃r−c(x))r∈R, R(x)+

c). Hence,

R∗(x+ c) =

{
arg maxr∈R(x+c) p̃r(x+ c) if ∃r ∈ R(x+ c), p̃r(x+ c) > η

⊥ otherwise.

d
=

{
arg maxr∈R(x)+c p̃r−c(x) if ∃r ∈ R(x) + c, p̃r−c(x) > η

⊥ otherwise.

=

{
arg maxr′∈R(x) p̃r′(x) + c if ∃r′ ∈ R(x), p̃r′(x) > η

⊥ otherwise.
(r = r′ + c)

= R∗(x) + c. (⊥ = ⊥+ c)

The equivalence of R∗(x) and DPUCoarseε,δ(x) gives us the desired result.

Lemma C.2.2. For any x = (x1, . . . , xn) ∈ Rn, we have

DPUCoarseε,δ(−x)
d
= −DPUCoarseε,δ(x)

where −⊥ := ⊥ and −x := (−x1, . . . ,−xn).

Proof of Lemma C.2.2. Recall the notation from the proof of Lemma C.2.1. Then, we have
that

p̂r(−x) =
1

n
|{i ∈ [n] : −xi ∈ [r ± 1/2)}| = 1

n
|{i ∈ [n] : xi ∈ [−r ± 1/2)}| = p̂−r(x),

so it follows that for any r ∈ R, p̃r(−x) is identically distributed to p̃−r(x). Moreover,

R(−x) = {r ∈ Z + T : p̂r(−x) > 0}
= {r ∈ Z + T : p̂−r(x) > 0}
= −{r ∈ −(Z + T ) : p̂r(x) > 0}
d
= −{r ∈ Z + T : p̂r(x) > 0}
= −R(x).

As T and all of the Laplace noise is sampled independently, these distributional equivalences

hold simultaneously, namely ((p̃r(−x))r∈R, R(−x))
d
= ((p̃−r(x))r∈R,−R(x)). Combining

these with −⊥ = ⊥, we obtain R∗(−x)
d
= −R∗(x) by the same argument as the one we

used to prove Lemma C.2.1.
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Proof of Proposition 4.1.2. Due to Lemma C.2.1, we may assume without loss of generality
that P has center 0. Then, since P is symmetric, X ← P n is identically distributed to −X.
So, for any a ≥ 0,

P
X←Pn

[DPUCoarseε,δ(X) ∈ [a,∞)] = E
X←Pn

[P[DPUCoarseε,δ(X) ∈ [a,∞)|X]]

= E
X←Pn

[P[DPUCoarseε,δ(−X) ∈ (−∞,−a]|X]]

(Lemma C.2.2)

= P
X←Pn

[DPUCoarseε,δ(−X) ∈ (−∞,−a]]

= P
X←Pn

[DPUCoarseε,δ(X) ∈ (−∞,−a]].

(X
d
= −X)

In particular,

Q([a,∞)) =
P[µ̃ ∈ [a,∞)]

P[µ̃ 6= ⊥]
=

P[µ̃ ∈ (−∞,−a]]

P[µ̃ 6= ⊥]
= Q((−∞, a])

for all a ≥ 0, so Q must also be symmetric with center 0.

C.3 Proof of Proposition 4.1.3

Proof of Proposition 4.1.3. By Lemma C.2.1, we assume, without loss of generality, that
µ(P ) = 0.

Let X ← P n be the input to DPUCoarseε,δ and let µ̃ ∈ R ∪ {⊥} be the output. Let
T ∈ [±1

2
], K ⊂ Z, and ξk ← Lap(2/ε) be as in the algorithm (and define ξk = 0 for k /∈ K).

For k ∈ Z, define
Ck := |{i ∈ [n] : roundZ(Xi − T ) = k}|.

Recall, from Algorithm 1, that k ∈ K ⇐⇒ Ck ≥ 1 and that µ̃ = ⊥ ⇐⇒ maxk∈K Ck+ξk ≤
2 + 2

ε
log(1/δ) and, otherwise, µ̃ = T + arg maxk∈K Ck + ξk.

We begin by showing µ̃ ∈ [±1] with high probabiliy.

Define

k+ = roundZ

(
1

2
− T

)
and k− = roundZ

(
−1

2
− T

)
.

Note that k+ = k−+1 and k+, k− ∈ (−T−1,−T+1]. Thus, if arg maxk∈K Ck+ξk ∈ {k+, k−}
(and maxk∈K Ck + ξk > 2 + 2

ε
log(1/δ)), then µ̃ ∈ {k+ + T, k− + T} ⊂ (−1,+1], as required.
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In other words, it suffices for us to show that, with high probability, Ck+ + ξk+ or Ck− + ξk−
are large and all other Ck + ξk values are small.

For any x ∈
(
−1

2
,+1

2

)
, we have roundZ(x− T ) ∈ {k−, k+}. Thus

Ck− + Ck+ ≥
n∑
i

I
[
Xi ∈

(
−1

2
,+

1

2

)]
.

Due to our assumption that E
X←P

[(X − µ(P ))2] < 1/64, Chebyshev’s inequality yields

P
X←P

[
X ∈

(
±1

2

)]
≥ 15

16
. Furthermore, by Hoeffding’s inequality, we have

P
X←Pn

[
n∑
i

I
[
Xi ∈

(
−1

2
,+

1

2

)]
≥ 15

16
n− s

]
≥ 1− e−2s2/n

for all s ≥ 0. In particular,

P
X←Pn

[
n∑
i

I
[
Xi ∈

(
−1

2
,+

1

2

)]
≥ 7

8
n

]
≥ 1− e−n/128.

This means P
[
Ck− + Ck+ ≥ 7

8
n
]
≥ 1− e−n/128. Define k∗ := arg maxk∈{k+,k−}Ck (break-

ing ties arbitrarily). If Ck−+Ck+ ≥ 7
8
n, then Ck∗ ≥ 7

16
n, while Ck ≤ 1

8
n for all k /∈ {k+, k−}.

Thus

P
[
Ck∗ ≥

7

16
n ∧ max

k∈K\{k+,k−}
Ck ≤

1

8
n

]
≥ 1− e−n/128.

The next step is to analyze the noise. For all k ∈ K and r ≥ 0, P[ξk ≥ r] = P[ξk ≤ −r] =
1
2
e−rε/2. Note that |K| ≤ n. Setting r = n/8 and taking a union bound over k ∈ K, we

have

P
[
ξk∗ ≥

−n
8
∧ max
k∈K\{k+,k−}

ξk ≤
n

8

]
≥ 1− n

2
e−nε/16.

Combining the high probability bounds on the noise bound and the data, we have

P
[
Ck∗ + ξk∗ ≥

5

16
n ∧ max

k∈K\{k+,k−}
Ck + ξk ≤

1

4
n

]
≥ 1− e−n/128 − n

2
e−nε/16.

Since 5
16
n ≥ 2 + 2

ε
log(1/δ), the event Ck∗ + ξk∗ ≥ 5

16
n∧maxk∈K\{k+,k−}Ck + ξk ≤ 1

4
n implies

µ̃ ∈ {T + k+, T + k−} ⊂ [−1,+1], as required.
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Finally, we bound E
[
I[µ̃ 6= ⊥] · |µ̃− µ(P )|λ

]
. Observe that µ̃ = T + k for some T ∈

[−1/2,+1/2] and k = roundZ(Xi − T ) for some i ∈ [n]. Thus, |µ̃ − Xi| ≤ 1/2 for some
i ∈ [n] and, hence, |µ̃− µ(P )| ≤ 1/2 + maxi∈[n] |Xi − µ(P )|. It follows that

E
[
I[µ̃ 6= ⊥] · |µ̃− µ(P )|λ

]
≤ E

[(
1

2
+ max

i∈[n]
|Xi − µ(P )|

)λ]
(A)

≤ E
[

1

2
+ 2λ−1 ·max

i∈[n]
|Xi − µ(P )|λ

]
(B)

≤ 1

2
+ 2λ−1 ·

∑
i∈[n]

E
[
|Xi − µ(P )|λ

]
≤ 1

2
+ n · 2λ−1 · ψλ,

where Inequality A follows from the fact that ∀p ≥ 1 ∀x, y ≥ 0, (x+ y)p ≤ (xp + yp) · 2p−1,
and Inequality B holds because the maximum among a set of non-negative real numbers
should be at most the sum of those numbers. This completes our proof.

C.4 Proof of Theorem 4.2.1

To prove Theorem 4.2.1, we use the following lemma that characterizes the symmetry of a
clipped random variable from a symmetric distribution under special circumstances.

Lemma C.4.1. Let P and Q be symmetric distributions with the same center µ(P ) = µ(Q).
Let c > 0. Define a distribution R to be clip[Y−c,Y+c](X) where X ← P and Y ← Q are
independent. Then R is symmetric with the same center µ(R) = µ(P ) = µ(Q).

Proof. Assume, without loss of generality, that µ(P ) = µ(Q) = 0. Let X ← P and Y ← Q
be independent. Let Z = clip[Y−c,Y+c](X).

We claim that

∀x, y ∈ R clip[(−y)−c,(−y)+c](−x) = −clip[y−c,y+c](x).

This can be verified by analyzing the following cases: (1) x < y − c; (2) x ∈ [y − c, y + c];
and (3) x > y + c.

Since P and Q are symmetric, clip[(−Y )−c,(−Y )+c](−X) has the same distribution as Z.
By the claim, this is simply −Z. Ergo, the distribution of Z is symmetric and centered at
0.
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Proof of Theorem 4.2.1. The privacy of Algorithm 2 follows from parallel composition, as
we split the dataset in two, and apply (ε, δ)-DP algorithms to each half. Computing µ̃
is (ε, δ)-DP by Proposition 4.1.1. If µ̃ = ⊥, then we compute µ̂ in a (0, δ)-DP manner
by sampling a δ fraction of the data points. If µ̃ 6= ⊥, then we compute µ̂ in a (ε, 0)-DP
manner using clipping and Laplace noise addition (Lemma B.1.4).

Note that µ̃ is independent from Xn1+1, . . . , Xn1+n2 , which are the data points used to
compute µ̂. If µ̃ = ⊥, then we compute µ̂ in an unbiased manner:

E[µ̂ | µ̃ = ⊥] = E

[
1

n2δ

n1+n2∑
i=n1+1

Xiξi

]
=

1

n2δ

n1+n2∑
i=n1+1

E[Xi]E[ξi] =
1

n2δ

n1+n2∑
i=n1+1

µ(P )δ = µ(P ).

Now, condition on µ̃ 6= ⊥. By Proposition 4.1.2, µ̃ has a symmetric distribution with
center µ(P ). By Lemma C.4.1, E

[
clip[µ̃−c,µ̃+c](Xi) | µ̃ 6= ⊥

]
= µ(P ), which implies that

E[µ̂ | µ̃ 6= ⊥] = µ(P ) because the Laplace noise has expected value 0. Combining these two
cases implies E[µ̂] = µ(P ).

Finally, we analyze the variance:

E
[
(µ̂− µ(P ))2

]
= P[µ̃ = ⊥] ·E

[
(µ̂− µ(P ))2 | µ̃ = ⊥

]
+P[µ̃ 6= ⊥] ·E

[
(µ̂− µ(P ))2 | µ̃ 6= ⊥

]
.

We bound the two terms for µ̃ = ⊥ and µ̃ 6= ⊥ separately. For the first term, Proposi-
tion 4.1.3 gives us P[µ̃ = ⊥] ≤ γ. Then we have the following.

P[µ̃ = ⊥] · E
[
(µ̂− µ(P ))2 | µ̃ = ⊥

]
= P[µ̃ = ⊥] · E

( 1

n2δ

n1+n2∑
i=n1+1

Xiξi − µ(P )

)2


= P[µ̃ = ⊥] · 1

n2
2δ

2

n1+n2∑
i=n1+1

E
[
(Xiξi − µ(P ))2]

≤ P[µ̃ = ⊥] · 1

n2
2δ

2

n1+n2∑
i=n1+1

E
[
(Xiξi)

2]
= P[µ̃ = ⊥] ·

µ(P )2 + E
X←P

[(X − µ(P ))2]

n2δ

≤ γ · µ(P )2 + 1

n2δ
.

Now, we bound the second term: P[µ̃ 6= ⊥]·E[(µ̂− µ(P ))2 | µ̃ 6= ⊥] = E[I[µ̃ 6= ⊥] · (µ̂− µ(P ))2].
We split this into two cases: A := [µ̃ ∈ [µ(P )− σ, µ(P ) + σ]] andB := [µ̃ ∈ R \ [µ(P )− σ, µ(P ) + σ]].
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Note that the event A ∧ µ̃ 6= ⊥ is equivalent to A because A cannot happen if µ̃ = ⊥,
because ⊥ /∈ R. Similarly, B ∧ µ̃ 6= ⊥ is equivalent to B. Note that µ̃ 6= ⊥ =⇒ A ∨ B.
Thus, we have

P[µ̃ 6= ⊥] · E
[
(µ̂− µ(P ))2 | µ̃ 6= ⊥

]
= P[µ̃ 6= ⊥] · P[A | µ̃ 6= ⊥] · E

[
(µ̂− µ(P ))2 | µ̃ 6= ⊥ ∧ A

]
+ P[µ̃ 6= ⊥] · P[B | µ̃ 6= ⊥] · E

[
(µ̂− µ(P ))2 | µ̃ 6= ⊥ ∧B

]
= P[µ̃ 6= ⊥ ∧ A] · E

[
(µ̂− µ(P ))2 | µ̃ 6= ⊥ ∧ A

]
+ P[µ̃ 6= ⊥ ∧B] · E

[
(µ̂− µ(P ))2 | µ̃ 6= ⊥ ∧B

]
= P[µ̃ 6= ⊥ ∧ A] · E

[
(µ̂− µ(P ))2 | µ̃ 6= ⊥ ∧ A

]
+ E

[
I[µ̃ 6= ⊥] · I[B] · (µ̂− µ(P ))2

]
≤ E

[
(µ̂− µ(P ))2 | µ̃ 6= ⊥ ∧ A

]
+ E

[
I[µ̃ 6= ⊥] · I[B] · (µ̂− µ(P ))2

]
= E

[
(µ̂− µ(P ))2 | A

]
+ E

[
I[B] · (µ̂− µ(P ))2

]
. (C.1)

If A holds (i.e., µ̃ ∈ [µ(P )− σ, µ(P ) + σ]), then µ(P ) ∈ [µ̃− σ, µ̃+ σ], so we can bound the

61



first term of the last line in Inequality C.1 as follows.

E
[
(µ̂− µ(P ))2 | A

]
= E

( 1

n2

n1+n2∑
i=n1+1

clip[µ̃−c,µ̃+c](Xi) + Lap

(
2c

n2ε

)
− µ(P )

)2

| A


(A)
= E

( 1

n2

n1+n2∑
i=n1+1

clip[µ̃−c,µ̃+c](Xi)− µ(P )

)2

| A

+ 2

(
2c

n2ε

)2

(B)

≤ E

[ E
X←P

[(X − µ(P ))2]

n2

| A

]

+ E

 E
X←P

[
|X − µ(P )|λ

]
λ · (min{µ(P )− (µ̃− c), (µ̃+ c)− µ(P )})λ−1

2

| A

+
8c2

n2
2ε

2

≤
E

X←P
[(X − µ(P ))2]

n2

+

1

λ
·

E
X←P

[
|X − µ(P )|λ

]
(c− σ)λ−1

2

+
8c2

n2
2ε

2

≤ 1

n2

+
ψ2λ

λ2 · (c− σ)2(λ−1)
+

8c2

n2
2ε

2

(C)
=

1

n2

+
ψ2λ

λ2 · ψ2(λ−1) · (n2ε)2−2/λ
+

8c2

n2
2ε

2

=
1

n2

+
8c2 + ψ2 · (n2ε)

2/λ · λ−2

n2
2ε

2

≤ 1

n2

+
8c2 + ψ2 · (n2ε)

2/λ

n2
2ε

2
.

In the above: Equality A follows from the fact that the Laplace noise is independent from
everything else. Inequality B follows from Lemma B.1.2 and linearity of expectations; and
Equality C follows from the setting of c = σ + ψ · (n2ε)

1/λ.
Next, we bound the second term in the last line of Inequality C.1. We use the fact that

∀x ∈ R |clip[µ̃−c,µ̃+c](x)− µ(P )| ≤ |µ̃− µ(P )|+ c.
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We have

E
[
I[B] · (µ̂− µ(P ))2

]
= E

I[B] ·

(
1

n2

n1+n2∑
i=n1+1

clip[µ̃−c,µ̃+c](Xi) + Lap

(
2c

n2ε

)
− µ(P )

)2


(D)
= E

I[B] ·

(
1

n2

n1+n2∑
i=n1+1

clip[µ̃−c,µ̃+c](Xi)− µ(P )

)2
+ 2

(
2c

n2ε

)2

· P[B]

≤ E
[
I[B] · (|µ̃− µ(P )|+ c)2]+

8c2

n2
2ε

2
· P[B]

(E)

≤ E
[
I[B]

λ
λ−2

]λ−2
λ · E

[
I[µ̃ 6= ⊥] · (|µ̃− µ(P )|+ c)λ

]2/λ

+
8c2

n2
2ε

2
· P[B]

(F)

≤ E[I[B]]
λ−2
λ · E

[
I[µ̃ 6= ⊥] ·

(
|µ̃− µ(P )|λ + cλ

)
· 2λ−1

]2/λ
+

8c2

n2
2ε

2
· P[B]

(G)

≤ γ
λ−2
λ ·

(
1

2
+ n1 · 2λ−1 · ψλ + cλ

)2/λ

· 22−2/λ +
8c2

n2
2ε

2
· γ

(H)

≤ γ
λ−2
λ ·

(
2−2/λ + n

2/λ
1 · 22−2/λ · ψ2 + c2

)
· 22−2/λ +

8c2

n2
2ε

2
· γ

≤ 4γ
λ−2
λ

(
1 + 4n

2/λ
1 ψ2 + c2

)
+

8c2

n2
2ε

2
· γ.

In the above: Equality D follows from the independence of the Laplace noise; Inequality E
follows from Hölder’s inequality; Inequality F holds because ∀p ≥ 1 ∀x, y ≥ 0 (x+ y)p ≤
(xp + yp) · 2p−1; Inequality G follows from Proposition 4.1.3; and Inequality H holds because
∀p ∈ (0, 1] ∀x, y ≥ 0 (x+ y)p ≤ xp + yp.

Finally, we can combine all the pieces, and use our parameter settings γ = δ2 ≤ 1 and
c2 = (10 + ψ · (n2ε)

1/λ)2 ≤ 2ψ2(n2ε)
2/λ + 200, to get the following.

E
[
(µ̂− µ(P ))2

]
≤ γ

(
µ(P )2 + 1

n2δ

)
+

(
1

n2

+
8c2 + ψ2(n2ε)

2/λ

n2
2ε

2

)
+

(
4γ

λ−2
λ

(
1 + 4n

2/λ
1 ψ2 + c2

)
+

8c2

n2
2ε

2
· γ
)

≤ 1

n2

+
16c2 + ψ2 · (n2ε)

2/λ

n2
2ε

2
+ δ · 1 + µ(P )2

n2

+ δ2−4/λ · 4
(

4n
2/λ
1 · ψ2 + c2 + 1

)
≤ 1

n2

+
33ψ2(n2ε)

2/λ + 3200

n2
2ε

2
+ δ · 1 + µ(P )2

n2

+ δ2−4/λ ·
(

16ψ2n
2/λ
1 + 8ψ2(n2ε)

2/λ + 804
)

=
1

n2

+O

(
ψ2

(n2ε)2−2/λ
+ δ · µ(P )2

n2

+ δ2−4/λ · (n1 + n2ε)
2/λ · ψ2

)
.
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Appendix D

Proofs for Chapter 5

D.1 Background on Complex Analysis

The primary objects of interest in complex analysis are the holomorphic functions in the
complex plane, namely those functions f : U → C that are differentiable at every point
z ∈ U . Many familiar functions, such as the polynomials, are in fact holomorphic or may
be extended to a holomorphic function. Note that when U = C, i.e., f is differentiable on
the whole complex plane, we say that f is an entire function.

A basic result of complex analysis asserts that a function f : U → C is holomorphic
exactly when it is analytic, i.e., its Taylor series expansion around any point z0 ∈ U
converges to f in some neighborhood of z0. For this reason, holomorphic functions are
typically referred to as analytic functions. We consider analyticity in our work as there
exist useful mathematical tools to check when functions are analytic, and even more useful
tools for constraining functions that we have established to be analytic.

For our purposes, we define a closed contour in a region D ⊆ C to be a continuously
differentiable map γ : [0, 1]→ D with γ(0) = γ(1). Informally, we say that a region in the
plane is simply connected if it contains no holes. For instance, the disk {z ∈ C : |z| ≤ 3} is
simply connected, whereas the “donut” {z ∈ C : |z| ∈ [1, 3]} is not.

A thorough review of the language of complex analysis with the precise definitions of the
above (which are not necessary for the understanding of our application) is outside the scope
of this work, so we recommend the textbook by Ahlfors (1953) for a more comprehensive
background.
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A useful property of analytic functions is that their closed contour integrals vanish in
simply connected regions. The following theorem characterises this more formally.

Theorem D.1.1 (Cauchy’s Theorem). Let U be an open, simply connected subset of C
and let f : U → C be analytic. Then, for any closed contour γ in U , we have

∮
γ

f(z) dz = 0.

The converse is true, as well, and is a convenient technique for establishing analyticity.

Theorem D.1.2 (Morera’s Theorem). Let U ⊆ C be open and let f : U → C be continuous.
Suppose that, for all simply connected D ⊆ U and any closed contour γ in D, we have∮
γ

f(z) dz = 0. Then f is analytic.

Next, for functions f1, f2 : U → C and any L ⊆ U , we write f1|L ≡ f2|L, if for all x ∈ L,
f1(x) = f2(x). Additionally, we write f1 ≡ f2, if f1|U ≡ f2|U . Finally, we define the limit
points of a set.

Definition D.1.3 (Limit Point of a Set). Given a topological space X and S ⊆ X , we say
that x ∈ X is a limit point of S, if for every neighbourhood B ⊆ X of x (with respect to
the topology of X ), there exists a point y ∈ B, such that y ∈ S and y 6= x.

In other words, a limit point x of S can be “approximated by points in S.” The main
property of analytic functions that we exploit is the fact that any two analytic functions
that agree locally must, in fact, agree globally, as we show next.

Theorem D.1.4 (Identity Theorem). Let U ⊆ C be open, and f1, f2 : U → C be analytic.
Suppose there is a set L ⊆ U with a limit point in U , such that f1|L ≡ f2|L. Then f1 ≡ f2.

D.2 Background on Measure Theory

Recall that a measure space is the combination of a set X with a collection Σ of subsets
of X , which are closed under complement and countable unions, as well as a function
µ : Σ→ [0,∞] satisfying µ(∅) = 0 and µ(

⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai) for disjoint A1, A2, · · · ∈ Σ.

The subsets making up Σ are called the measurable subsets of X and µ is called a measure
on X . We say that X is σ-finite when it can be decomposed as X =

⋃∞
i=1Ai where

A1, A2, · · · ∈ Σ are all of finite measure µ(Ai) < ∞. A function f : X → C is said to be
measurable if f−1(U) is a measurable subset of X for any open U ⊆ C. In this case, we say
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that f : X → R is µ-integrable if
∫
X |f | dµ, the Lebesgue integral of |f | with respect to µ,

exists and is finite.

Now, in order to apply Morera’s theorem, we will require some standard integral-limit
interchange theorems. The first is the dominated convergence theorem, which asserts that
pointwise convergence of a sequence of functions may be interchanged with integration,
provided that the sequence is uniformly bounded by an integrable function.

Theorem D.2.1 (Dominated Convergence Theorem). Let X be a measure space. Suppose
that (fn)n∈N is a sequence of measurable functions X → C converging pointwise to some f ,
i.e., fn(x)→ f(x) for all x ∈ X as n→∞. Suppose further that there is some measurable
G : X → [0,∞) such that

∫
X
Gdµ <∞ and |fn(x)| ≤ G(x) for all x ∈ X and n ∈ N. Then

f is integrable such that

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.

Switching the order of integration is a very useful operation that is permitted under
fairly general measure-theoretic conditions. We describe it as follows.

Theorem D.2.2 (Fubini’s Theorem). Let X and Y be σ-finite measure spaces and suppose
that f : X × Y → R is measurable such that∫

X

∫
Y

|f(x, y)| dy dx <∞.

Then ∫
X

∫
Y

f(x, y) dy dx =

∫
Y

∫
X

f(x, y) dx dy.

D.3 The Expectation of an Estimator on an Exponen-

tial Family is Analytic

In this section we prove the following result, which yields Proposition 5.1.1.

66



Theorem D.3.1 (Analyticity under Exponential Families). Let {Pη : η ∈ U} be an
exponential family on Rn in canonical form (recall Definition 5.0.1) and let φ : X n → R
be any well-defined estimator for {Pη : η ∈ U}, i.e., EX←Pη [|φ(X)|] is finite for all η ∈ U .
Then g : U → R defined by g(η) := EX←Pη [φ(X)] is an analytic function.

Before delving into the proof of Theorem D.3.1, we need to show, for the sake of
completeness, that the product distribution where each marginal has the same distribution
from an exponential family is also an exponential family.

Proposition D.3.2. Let {Pη : η ∈ U} be an exponential family with support D ⊆ R. Then
for any n ∈ N, the family of distributions

{
P n
η : η ∈ U

}
is an exponential family over Dn

with the same natural parameters as well as carrier measure and sufficient statistic given,
respectively, by

hn(x1, . . . , xn) =
n∏
i=1

h(xi) and Tn(x1, . . . , xn) =
n∑
i=1

T (xi).

Proof. Let η ∈ U with density function fT,h,η as described in Definition 5.0.1. Suppose
f : Dn → R is the density function of P n

η . Then for any x = (x1, . . . , xn) ∈ Dn, we have
the following.

f(x) =
n∏
i=1

fT,h,η(xi)

=
n∏
i=1

h(xi) exp(η · T (xi)− Z(η))

=

(
n∏
i=1

h(xi)

)
exp

(
η

n∑
i=1

T (xi)− nZ(η)

)

This gives us: Tn(x) =
n∑
i=1

T (xi); hn(x) =
n∏
i=1

h(xi); and the natural parameter of P n
η being

ηn = η ∈ U . One can easily verify that the log-partition function (Zn(ηn)) of P n
η equals

nZ(η).

With this detail out of the way, the main idea behind the proof of Theorem D.3.1 is
that analyticity is preserved under integration under certain circumstances, which we show
next. Although a proof for the real plane is possible, it will be technically convenient to
pass to the complex plane where we can wield Morera’s theorem (Theorem D.1.2).
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Lemma D.3.3. Let Ω be a σ-finite measure space with measure ν, let V ⊆ C be open, and
let f : Ω× V → C. Assume that f(ω, η) is analytic in η for every fixed ω ∈ Ω and that, for
every compact K ⊆ V , there is a ν-integrable function (see Section D.2) G : Ω → [0,∞)
for which |f(ω, η)| ≤ G(ω) for all η ∈ K. Then g(η) :=

∫
Ω

f(ω, η) dν(ω) is analytic, as well.

Proof. Our plan is to apply Morera’s theorem (Theorem D.1.2). To that end, we must
first show that g is continuous, so let (ηn)n∈N be any sequence with ηn → η as n → ∞.
By our assumption, there is a ν-integrable G : Ω → [0,∞) such that |f(ω, ηn)| ≤ G(ω)
for all n ∈ N and ω ∈ Ω. So, by the dominated convergence theorem (Theorem D.2.1),
g(ηn)→ g(η) as n→∞.

Now, let γ : [0, 1]→ C be any closed contour lying in a simply connected (see Section D.1)
subset of V , and let γ′ denote its first derivative. Then, |γ′| must be bounded by some
C > 0, so

1∫
0

∫
Ω

|f(ω, γ(t))γ′(t)| dν(ω) dt ≤
1∫

0

∫
Ω

G(ω)C dν(ω) dt = C

∫
Ω

Gdν <∞

and thus Fubini’s theorem (Theorem D.2.2) implies that∮
γ

g(η) dη =

1∫
0

∫
Ω

f(ω, γ(t))γ′(t) dν(ω) dt

=

∫
Ω

1∫
0

f(ω, γ(t))γ′(t) dt dν(ω)

=

∫
Ω

∮
γ

f(ω, η) dη dν(ω)

=

∫
Ω

0 dν(ω) (Theorem D.1.1)

= 0.

As γ was arbitrary, g must be analytic by Morera’s theorem.

Proof of Theorem D.3.1. Our main goal is to show that g(η) := EX←Pη [φ(X)] is analytic.
To that end, let h, T , and Z be the carrier measure, the sufficient statistic, and the
log-partition function of {Pη : η ∈ U}, respectively.
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We first show that exp(Z(η)) is analytic by way of Lemma D.3.3. Indeed, r(x, η) :=
h(x) exp(ηT (x)) is entire (see Section D.1) in η ∈ C for each fixed x ∈ Rn. Let K ⊆ C
be an arbitrary compact set, and let m and M be the minimum and the maximum real
coordinates among the points within K, respectively. Then for any x ∈ Rn and η ∈ K,

T (x) < 0 =⇒ |r(x, η)| = h(x) exp(Re(η)T (x)) ≤ h(x) exp(mT (x))

and
T (x) ≥ 0 =⇒ |r(x, η)| ≤ h(x) exp(MT (x)),

so we have
|r(x, η)| ≤ h(x) exp(mT (x)) + h(x) exp(MT (x)).

But
∫
Rn
h(x) exp(mT (x)) + h(x) exp(MT (x)) dx = exp(Z(m)) + exp(Z(M)) <∞, so, since

K was arbitrary, exp(Z(η)) =
∫
Rn
r(x, η) dx must be entire by Lemma D.3.3.

As a consequence, h(x) exp(ηT (x)− Z(η)) is analytic in η for every fixed x ∈ Rn, so we
can apply nearly the same argument to h(x) exp(ηT (x)− Z(η)) in order to conclude that

g(η) = E
X←Pη

[φ(X)] =

∫
Ω

φ(x)h(x) exp(ηT (x)− Z(η)) dx

is analytic, as well.

D.4 Proof of Proposition 5.2.1

Recall that E[Y ] =
∞∫
0

P[Y ≥ t] dt for any non-negative random variable Y . For any x ∈ X n,

we have

∣∣∣E
A

[A(x)]
∣∣∣ (a)

≤ E
A

[|A(x)|] =

∞∫
0

P
A

[|A(x)| ≥ t] dt
(b)

≤ exp(εn)

∞∫
0

P
A

[|A(x∗)| ≥ t] dt = exp(εn)E
A

[|A(x∗)|],

where inequalities (a) and (b) follow from Jensen’s inequality and group privacy (Lemma C.1.1),
respectively.
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