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Abstract

Starting with an analysis of the result that for any coprime integers a and b, and

some ε > 0, we have eventually that gcd(an − 1, bn − 1) < aεn holds for all n, we are

motivated to look for geometric reasons why this should hold. After some discussion

on the general geometry and arithmetic needed to examine these questions, we take

a quick look into how Vojta’s conjectures provide a generalization of our first result.

In particular, we also note a case where this implies a similar equality on particular

elliptic curves.
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1 Introduction

1.1 Overview

A persisting and fascinating example from which a lot of very difficult yet interesting ques-

tions may be asked is by considering integer sequences of the form (dn = an − bn)n≥1 for

some integers a, b ∈ Z. From its very construction, some natural questions arise concerning

divisibility given that dn|dm whenever n|m, as well as the fact that for b = 1, the sequence

(an − 1)n≥1 is always one off from increasingly greater perfect power.

In a paper by Bugeaud, Corjava, and Zannier [BCZ02], the following interesting relation-

ship between neighbouring sequences an− 1 and bn− 1 is shown in regards to their greatest

common divisor.

Theorem 1.1.1. Given two multiplicatively independent integers a, b ∈ Z at least 2, and

some ε > 0, we may eventually determine some N ≥ 1 such that for n ≥ N thereafter

gcd(an − 1, bn − 1) < exp(εn).

When dealing with such sparse sequences, most methods of counting factors such as

sieves will not suffice, and instead we turn towards Diophantine approximation. The proof

produced by the authors here is first carried out with Schmidt’s Subspace Theorem, which

is a very powerful result in modern Diophantine approximation.

Our trick for analyzing these points will be to acknowledge that powers of integers fall into

only so many primes, exactly the finite primes which divide our initial integers. From here,

we are able to analyze the height relative to this finite set of primes and force a contradiction

by using the tools of Diophantine geometry to conclude that infinitely many integers belong

where only finitely many should be. This technique is standard such as the use of Roth’s

theorem on the so-called S-unit equation, or using Siegel’s Theorem on elliptic curves to

conclude finitely many integer points.
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With this in mind, it is natural to explore generalizations of the [BCZ02] result to further

geometries as well as related problems. One such tool which generalizes the Subspace Theo-

rem and Siegel’s Theorem is a main conjecture of Vojta. By using algebraic heights to relate

GCDs and Vojta’s conjecture, we will use blowups of projective space and products of elliptic

curves to find various conditional results by Silverman. To obtain more context on Vojta’s

conjecture applied to blowups, we will mention McKinnon’s paper to show a particular case

of blowups of products of elliptic curves.

This thesis is heavy in background as most of the tools used by McKinnon and Silverman

rely on the extensive machinery of algebraic geometry. Our first objective will be to cover

the main definitions and theorems used to determine the canonical class on blowups and

fibred products right from the definition of a sheaf. The machinery built up along the way

will also be used to briefly cover Weil’s height machine and some basic properties of the

group law on elliptic curves.

1.2 An Initial Result

We begin this section by stating a special case of the Subspace Theorem, first introduced

by Schmidt and generalized by Schlickewei to account for p-adic norms. While we will

explore the p-adic norms later, it is enough for now to note that for any prime p ∈ Z

we obtain a norm |x|p for any x ∈ Q by uniquely writing x = pk a
b
with a, b, k ∈ Z and

gcd(a, p) = gcd(b, p) = gcd(a, b) = 1 and taking

|x|p = p−k.

It should also be clear by unique factorization that

|x| ·
∏

p prime

|x|p = 1.
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We sometimes write |x|∞ = |x| as our usual absolute value and collect all of these absolute

values together into a set of places MQ. It should be noted that the real application to

algebraic numbers would require us to define similar absolute values on algebraic extensions

of Q, which we will explore later. We now recount a simplification the Subspace Theorem

from [Sch77] as stated in [BCZ02].

Theorem 1.2.1. Let S ⊆ MQ be a finite set of places, with ∞ ∈ S as to include the usual

absolute value, and fix some integer n ≥ 1. For each v ∈ S, take L1,v, . . . , Ln,v : Qn → Q

to be linearly independent set of linear forms. Fix some δ > 0 and C > 0, and consider the

inequality ∏
v∈S

n∏
i=1

|Li,v(x1, . . . , xn)|v < (max
1≤i≤n

|xi|)−δ.

Then the integer solutions (x1, . . . , xn) ∈ Zn with gcd(x1, . . . , xn) = 1 to the above inequality

lie in finitely many hyperplanes of Qn.

Let’s now go over the proof of the main result from [BCZ02].

Step 1: Setup

Let a, b ∈ Z be multiplicatively independent integers. For each n ≥ 1, we may take

Dn = gcd(an − 1, bn − 1), and write

dn =
an − 1

Dn

, cn =
bn − 1

Dn

.

With this, we clearly find for each n ≥ 1

bn − 1

an − 1
=
cn
dn
.

Fixing some ε > 0, suppose for a contradiction that there is some infinite exceptional

set E for which n ∈ E implies that Dn ≥ aϵn. Equivalently, note that this implies that

dn ≤ a(1−ε)n for exceptional n, a fact that will be exploited by Diophantine approximation

since our denominators will simply be too small for what we will ask of them.
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To get this proof moving, we will need some extra variables to allow for more flexibility

in our approach. For each n, j ≥ 1, we also write

cn,j = dn ·
bjn − 1

an − 1
=
bjn − 1

Dn

=
bn − 1

Dn

j∑
i=0

bin = cn

j∑
i=0

bin.

For the sake of convenience, we will write zn,j = cn,j/dn.

Step 2: An initial bound

To lean us towards an approximation, we consider the series representation for each n ≥ 1

as

1

an − 1
=

1

an
· 1

1− (1/a)n
=

1

an

∞∑
m=0

1

amn
=

∞∑
m=1

1

amn

We recall that for any M ≥ 1, we have that the difference between the full series and the

truncated series is

1

an − 1
−

M∑
m=1

1

amn
=
∑
m>M

1

amn

=
1

anM

∞∑
m=1

1

amn

=
1

anM(an − 1)

≪ 1

an(M+1)
.

Multiplying this difference by (bjn − 1) for a given j ≥ 1, we obtain an approximation for

zn,j as ∣∣∣∣∣bjn − 1

an − 1
−

M∑
m=1

bjn − 1

amn

∣∣∣∣∣ =
∣∣∣∣∣zn,j −

M∑
m=1

bjn

amn
+

M∑
m=1

1

amn

∣∣∣∣∣≪ bjn

an(M+1)
.

Step 3: Trying Schmidt’s Subspace Theorem

Moving towards the Subspace Theorem, notice that the previous approximation is a

bound on a linear form in the variables zn,j, b
jn/amn, and 1/aℓn. Fixing a finite number J

to only consider finitely many 1 ≤ j ≤ J , consider the space QN for N = J +M + JM and
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coordinates

QN = {(x1, . . . , xN) = (z1, . . . , zJ , u1, . . . , uM , v1,1, . . . , vJ,M) : zj, um, vj,m, xi ∈ Q}.

For each n ≥ 1, we consider the vector x⃗n ∈ ZN with coordinates

x⃗n = dna
Mn(zn,1, . . . , zn,J ,

1
an
, . . . , 1

aMn ,
bn

an
, . . . , b

nJ

aMn ),

where precisely zj = zn,j, um = 1/amn, and vj,m = bjn/amn for each 1 ≤ j ≤ J and

1 ≤ m ≤ M . Note that the multiple of dn clears the denominators of the first group of

coordinates, and the multiple of aMn clears the denominators of the rest of the coordinates.

We may now also consider linear form for each 1 ≤ j ≤ J

Lj,∞ = zj +
M∑
m=1

uM −
M∑
m=1

vj,m,

so that our bound form the previous step shows |Lj,∞(x⃗n)|∞ ≪ dnb
jn/an for any n ≥ 1.

Again towards the Subspace Theorem, it also follows that for any n ≥ 1 we have

∏
1≤j≤J

|Lj,∞(x⃗n)|∞ ≪ dJnb
J2n

aJn
.

In order to apply our Subspace Theorem, note that we should have at least as many

linear forms as the dimension of our input space. Just as in the case of Roth’s Theorem as

a special case, we will let the linear form Li,∞ for i > J be given by Li,∞ = xi, accounting

for the magnitude of the terms approximating zn,j.

Clearly, all of our linear forms are linearly independent. But taking their product, we
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find for any n ≥ 1 that

∏
1≤i≤N

|Lj,∞(x⃗n)|∞ ≪ dnb
J2n

aJn
·
∏

1≤m≤M

|an(M−m)| ·
∏

1≤m≤M
1≤j≤J

|bjnan(M−m)|

≪ dnb
J2n

aJn
· aM2n · bJ2MnaJM

2n = dnb
J2(M+1)naJ(M

2−1)n.

Unfortunately, adding these extra linear forms shows that our approximation is not ex-

ceptional with respect to how large our inputs are, even once we apply our bound to dn.

However, this is only one norm for which our bound is not exceptional, but we will see that

there are norms on which our approximation is very good.

Step 4: Applying Schlickewei’s Subspace Theorem

With the previous shortcoming’s in mind, let’s consider the set of places S ⊆ MQ con-

taining the standard absolute value, but also containing the p-adic absolute values for each

p|ab. For ease of notation, let’s represent S0 ⊆ S as the set of places in S corresponding

to a p-adic norm. For each 1 ≤ i ≤ N and v ∈ S0, we will take Li,v = xi, which is clearly

a linearly independent set of linear forms. Recall that exponents of a and b are very small

under the p-adic norms for p|ab, so this will allow us to balance out our product relative to

S.

Already, we may find that multiplying these linear forms balances out our product

somewhat. Specifically, for i > J and n ≥ 1, we find that Li,v(x⃗n) = dna
mnbjn for some
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1 ≤ m < M and 0 ≤ j ≤ J and so

∏
v∈S

|Li,v(x⃗n)|v =
∏
v∈S

|dn|v · |amnbjn|v

=

(∏
v∈S

|dn|v

)
·

(∏
v∈S

|amnbjn|v

)

= |dn|

∏
p|ab

|dn|p

 · |amnbjn|

∏
p|ab

|amnbjn|p


≤ dn.

Accounting for our remaining linear forms, for each 1 ≤ j ≤ J , v ∈ S0, and n ≥ 1, we

recall that Lj,v(x⃗n) = dnzn,ja
Mn = cn,ja

Mn, and so

∏
v∈S0

|Lj,v(x⃗)|v =
∏
p|ab

|cn,j|p|aMn|p ≤
∏
p|ab

|aMn|p =
1

aMn
.

Putting each of these bounds of these products together, we obtain that our full product

for x ∈ E, where we may assume dn ≤ a(1−ε)n, is given by

∏
v∈S

∏
1≤i≤N

|Li,v(x⃗n)|v =
∏

1≤j≤J

|Lj,∞(x⃗n)|∞ ·
∏

1≤j≤J

∏
v∈S0

|Lj,v(x⃗n)|v ·
∏

J<i≤N

∏
v∈S

|Li,v(x⃗n)|v

≪ dJnb
J2n

aJn
· 1

aJMn
· dN−J

n

≪ dNn b
J2n

aJ(M+1)n

≪ aN(1−ε)nbJ
2n

a(N−M)n

≪
(
bJ

2

aM−εN
)n

To keep simplifying, we are ready to fix choices of M and J . Ideally, we would like to
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choose J so that M − εN < J −M , and then by choosing M for which aM > 2bJ
2
aJ gives

(
bJ

2

aM−εN
)n

<
(
bJ

2

aJ−M
)n

<
1

2n
.

Fortunately, J > 2
ε
will suffice since this gives

M − εN < M + J − εMJ < M + J − 2M = J −M.

To obtain a bound in the form of the Subspace Theorem, as the coordinates of x⃗n are

given as rational polynomials in an, bn, and dn of degrees no more thanMJ+1, and dn ≤ an

is true for n ∈ E, there is some constant C > 1 for which max1≤i≤N |x⃗n| < Cn. Thus, by

choosing 0 < δ < log 2/ logC we must have for all sufficiently large n ∈ E that

∏
v∈S

∏
1≤i≤N

|Li,v(x⃗n)|v < ( max
1≤i≤N

|x⃗n|)−δ.

Step 4: Too many integers, not enough hyperplanes

With the work of setting up the inequality from the Subspace Theorem completed, we

may now reap the benefits of its conclusion. This means that the vectors x⃗n for n ∈ E must

lie in only finitely many hyperplanes of QN . In particular, since E is infinite, there exists

some infinite subset E ′ for which x⃗n all lie on some rational hyperplane H.

To derive a contradiction, we may explicitly write out our hyperplane as the equation

J∑
j=1

ζjzj +
J∑

m=1

α1u1 +
J∑
j=1

J∑
m=1

βj,mvj,m = 0,

with ζk, αm, βj,m ∈ Q for 1 ≤ j ≤ J and 1 ≤ m ≤ M . Writing β0,m = αm for each

1 ≤ m ≤M , notice that we have for any n ∈ E ′,

J∑
j=1

ζj
bjn − 1

an − 1
+

∑
0≤j≤J
1≤m≤M

βj,m
bjn

amn
= 0,
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which follows easily by the coordinates of x⃗n and dividing out by dna
Mn. That is, the integer

polynomial

F (x, y) = xM
J∑
j=1

ζj(y
j − 1) + (x− 1)

∑
0≤j≤J
0≤m<M

βj,M−mx
myj

has infinitely many roots along {(an, bn) : n ∈ E ′}. However, this must mean that F (x, y) = 0

since we’d otherwise find a finite set of coefficients αi,j ∈ Q for 1 ≤ i, j ≤ K, such that for

infinitely many n ∈ E ′, ∑
1≤i,j,≤K

αi,ja
inbjn = 0.

Specifically, taking 1 ≤ i0, j0 ≤ k for which αi0, j0 ̸= 0 and ai0bj0 > aibj for any i0 ̸= i, j0 ̸= j

and αi,j ̸= 0, which may be done since we are assuming ai ̸= bj for all i, j ≥ 1, we find

lim
n→∞

1

(ai0bj0)n

∑
1≤i,j,≤K

αi,ja
inbjn = αi0,j0 ,

contradicting the fact that we may always find some n ∈ E ′ large enough for which the term

is zero.

Using the fact that F (x, y) = 0, and gcd(xM , x− 1) = 1, we must have

(x− 1)|
J∑
j=1

ζj(y
j − 1),

which is only possible if each coefficient is zero. Consequently, this must imply that βj,M−m =

0 for each 0 ≤ j ≤ J and 0 ≤ m < M as (x− 1) ̸= 0.

Finally, we have deduced a contradiction as our vectors x⃗n do not lie on the trivial

hyperplane, granting us the desired result.
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2 Geometry

2.1 Sheaves

We begin this section with the basic building block we will use for endowing the various

geometrical spaces we will encounter with various rings of locally defined functions. We

follow closely the work of [Har13] in their representation of the material.

Definition 2.1.1 (Presheaf). A presheaf F on a topological space X is mapping on the

open sets U 7→ F(U), where the sets F(U) may either be groups, rings, modules, or objects

in other categories. Importantly, given a containment of open sets V ⊆ U , there exists a

restriction morphism ρV→U : F(V ) → F(U). As well, these groups (rings, modules, etc.)

and restriction morphisms must satisfy:

1. F(∅) is trivial,

2. ρU→U is the identity on F(U), and

3. Given the containment of open sets W ⊆ V ⊆ U , the restriction morphism from W to

U is the composition of the other two restriction morphisms, captured by the diagram

below.
F(W )

F(V ) F(U)

ρW→V

ρW→U

ρV →U

Some other notation we will encounter when dealing with presheaves is that the elements

of each local group may be referred to as sections and we may alternatively use the notation

Γ(U,F) opposed to F(U). Also, with the idea of functions in mind, given a section s ∈

Γ(U,F) and a containment of open sets V ⊆ U ⊆ X, we will almost always prefer to write

s|V opposed to ρU→V (s) for the restriction of s.

Alongside this, we also want to consider maps between presheaves which, in some sense,

respect the underlying algebra.
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Definition 2.1.2 (Presheaf map). Given two sheaves F and G on a space X, we may define

a map of presheaves φ : F → G as a homomorphism φ(U) : F(U) → G(U) on each open set

U which commutes with the restriction maps. This relationship is demonstrated with the

diagram below for open sets V ⊆ U ⊆ X.

F(U) G(U)

F(V ) G(V )

φ(U)

ρF,U→V ρG,U→V

φ(V )

Composition of sheaf maps is given in the straightforward manner by composition on

each underlying homomorphism. Such a mapping is considered an isomorphism when each

homomorphism is itself an isomorphism. Also, when it is clear which open set a given section

s ∈ F(U) belongs to, we may elect to write φ(s) instead of the much more verbose φ(U)(s).

While a presheaf satisfies the job of attaching local data to the various open subsets of

our space, it doesn’t have strong enough requirements to glue sections together or guarantee

uniqueness.

Definition 2.1.3 (Sheaf). A sheaf F on a topological spaceX is a presheaf which has certain

local properties which mimic the usual notions of functions defined in an open neighbourhood.

Specifically, these extra conditions are given as follows.

1. Given an open cover ∪i∈IUi of some open subset U ⊆ X, if a section s ∈ F(U) satisfies

s|Ui
= 0 ∈ F(Ui), then s = 0. That is, we may conclude that the local properties of

each section uniquely determine the global properties.

2. Given an open cover ∪i∈IUi of some open subset U ⊆ X, and some sections si ∈ F(Ui)

for which si|Ui∩Uj
= sj|Ui∩Uj

for any i, j ∈ I, then there exists some section s ∈ F(U)

such that si = s|Ui
. That is, given some sections defined on an open cover which agree

on overlaps, we may always extend this to construct a section on the broader open

subset.
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One more key concept to keep in mind with a sheaf is the idea of the stalk. This is a set

of local data to a particular point which is obtained by considering the sections on all open

neighbourhoods of our point.

Definition 2.1.4 (Stalk). Let P ∈ X be some point and F a presheaf. We define the stalk

FP at the point P as the set of equivalence classes ⟨U, s⟩, with U ⊆ X open containing P

and s ∈ F(U). Two pairs ⟨U, s⟩ and ⟨V, t⟩ are said to be equivalent when there exists some

open subset W ⊆ U ∩ V such that s|W = t|W .

Stalks are very useful tools since for a map of sheaves φ : F → G on a space X, we get

an associated map of stalks φP : FP → GP . With the associated maps, we find that φ is

an isomorphism if and only if φP is an isomorphism for each P ∈ X. We will also say a

sheaf morphism is injective (surjective) precisely when the associated map on the stalks is

injective (surjective) for all P ∈ X. Note that our injectivity condition is equivalent to each

map of sections being injective, but our surjectivity condition is not equivalent to each map

of sections being surjective.

The power of sheaves is demonstrated with the following useful lemma. Note that sheaf

restriction to an open set is done so in the obvious way.

Lemma 2.1.5 (Gluing sheaves). Consider an open cover X = ∪i∈IUi, with sheaves Fi on

Ui for each i ∈ I. Suppose for each i, j ∈ I there exists a sheaf isomorphism φij : Fi|Ui∩Uj
→

Fj|Ui∩Uj
which behaves nicely in the following ways for any indices i, j, k ∈ I:

1. φii is the identity sheaf map.

2. φik = φjk ◦ φij on the intersection Ui ∩ Uj ∩ Uk.

Then there exists a sheaf F on X such that Fi = F|Ui
.

Proof. We may in fact show the sheaf in question directly. Given an open set U ⊆ X, we

may define the sections as

F(U) = {(si)i∈I ∈
∏
i∈I

Fi(Ui ∩ U) : φi,j(si|Ui∩Uj∩U) = sj|Ui∩Uj∩U∀i, j ∈ i},

12



where the operations are done component wise. Clearly, by defining the restriction maps

componentwise, we have a presheaf, so it remains is to validate the sheaf axioms.

Starting with our uniqueness axiom, let V ⊆ X be arbitrary with open cover V = ∪j∈JVj.

Suppose for some s ∈ F(V ) that s|Vj = 0 for each j ∈ J . To show that s = (si)i∈I = 0,

we notice that it suffices to show that each component of s is zero. For this, we recall that

for each i ∈ I, that Ui and Fi form a sheaf and Ui ∩ V = ∪j∈JUi ∩ Vj is an open cover.

Thus, since s|Vj = 0 for each j ∈ J , we find si|Ui∩Vj = 0 and so si = 0 by our sheaf axiom.

Therefore, it must be that s = 0 as well.

Next, similarly take V ⊆ X open with the same open cover as before. Suppose now that

we are given some sections s(j) = (s
(j)
i )i∈I ∈ F(Vj) for which s(j)|Vj∩Vj′ = s(j

′)|Vj∩Vj′ for all

j, j′ ∈ J . As before, we wish to use our sheaf axioms to determine for each i ∈ I some

si ∈ Fi(Ui ∩ V ) so that for all j ∈ J ,

(si)i∈I |Vj = s(j) ⇐⇒ si|Ui∩Vj = s
(j)
i .

As before, fixing i ∈ I, note that
⋃
j∈J Ui ∩ Vj is an open cover of Ui ∩ V . Thus, since for

each j, j′ ∈ J we have s(j)|Vj∩Vj′ = s(j
′)|Vj∩Vj′ , we must then have

s
(j)
i |Ui∩Vj∩Vj′ = s

(j′)
i |Ui∩Vj∩Vj′ .

Therefore, it follows that there exists some section si ∈ F(Ui ∩ V ) such that si|Ui∩Vj = s
(j)
i .

Lastly, we also remark that for each i, k ∈ I that φik(si|Ui∩Uk∩V ) = sk|Ui∩Uk∩V ). This is since

∪j∈JVj ∩Ui ∩Uk is an open cover of V ∩Ui ∩Uk and we have on each restriction Vj ∩Ui ∩Uk
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that

φik(si|Ui∩Uk∩V )|Vj∩Ui∩Uk
= φik(s

(j)
i |Ui∩Uk∩Vj)

= s
(j)
k |Ui∩Uk∩Vj

= (sk|Ui∩Uk∩V )|Vj∩Ui∩Uk
.

Finally, we also briefly mention why Fi
∼= F|Ui

for any particular i ∈ I. The isomorphism

from F|Ui
to Fi is given by projection onto the corresponding coordinate. The mapping

is clearly injective by the fact that the other components are given by isomorphisms on

intersections. Also, the mapping is surjective since given U ⊆ Ui, if si ∈ Fi(U), then we can

consider

(φik(si|U∩Uk
))k∈I ∈ F|Ui

(U),

which clearly projects onto our given section.

While this clearly demonstrates the utility of the sheaf axioms, we are often left with

only a presheaf. However, we may in fact uniquely extend any given presheaf to a sheaf by

examining the stalks.

Theorem 2.1.6 (Sheaf associated to a presheaf). Let F be a presheaf on a topological space

X. There exists a sheaf F+ and map θ : F → F+, unique up to isomorphism, such that

FP
∼= F+

P for any P ∈ X. Moreover, we have the following universal property.

Given a sheaf G and a map φ : F → G, there exists a unique morphism of sheaves

ψ : F+ → G such that the following diagram commutes.

F G

F+

φ

θ
ψ

One way to view our associated sheaf is to define it as the gluing of sections from F .
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Fundamentally, we may represent our algebras as sets of the following form.

F+(U) = {{(Ui, si)}i∈I : U = ∪i∈IUi, si ∈ F(Ui), si|Ui∩Uj
= sj|Ui∩Uj

}.

There is also an implicit equivalence relationship when two sets of pairs agree on all mutual

overlaps. Note that restriction is done pairwise and we may simply discard any empty

restrictions, while our algebra is done on intersection pairs between the two open covers.

We also define our stalks to be given by taking any of the open set and section pairs. As

they agree on overlaps, this is well-defined. For more details on the sheaf associated to the

presheaf, we refer to Proposition-Definition II.1.2 of [Har13].

For one last important aspect of sheaves which we will make use of, consider two topolog-

ical spaces X and Y with sheaves F and G respectively. Given a continuous map f : X → Y ,

we are able to consider how F may act as a sheaf on Y and likewise for G on X.

We consider the pushforward f∗F on Y as for each U ⊆ Y , (f∗F)(U) = F(f−1(U)).

Likewise, we are able to consider the inverse image sheaf f−1G on X by the sheaf associated

to the presheaf given below

U 7→ {(V, s) : f(U) ⊆ V, s ∈ G(V )}
/
∼

with (V, s) ∼ (W, t) whenever there exists some open neighbourhood O ⊆ V ∩ W also

containing f(U) for which s|O = t|O.

2.2 Affine Schemes

Next, let’s create a topological space for which a given ring will act like a space of functions.

A natural place where functions and rings coincide are polynomial rings, and indeed this is

a motivating example and basis for all of algebraic geometry with the so-called affine spaces.

Consider the polynomial ring A = k[x1, . . . , xn] for some algebraically closed field k

and integer n ≥ 1. Common sets of interest include the zero sets of some polynomials
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f1, . . . , fm ∈ A. However, to speak of a zero set, it is not always clear what exactly this

entails for general rings where the notion of “plugging-in” is not well-defined. For exactly

these cases, it is convenient to note that a point (a1, . . . , an) ∈ An
k , where An

k can be regarded

as kn for now, is a common zero of our functions precisely when we have

f1 ≡ · · · ≡ fm ≡ 0 mod ⟨x1 − a1, . . . , xn − an⟩.

In fact, even for the non-vanishing points of An
k , it is easy to see that the value of a given

polynomial f(a1, . . . , an) can be seen to be the unique representative in k modulo the ideal

generated by the polynomials a1−x1, . . . , an−xn ∈ A. This can even be generalized to take

an integer n ∈ Z and use it as a function on the primes of Z given by

p 7→ n mod p,

and n vanishes precisely at those p which divide it, or equivalently using ideals, when

(n) ⊆ (p).

We are now ready to define a topological space derived from a ring for which the ring

itself will provide us a sheaf of functions.

Definition 2.2.1 (Zariski Topology). Given a commutative ring A, we define the spectrum

of A, written Spec(A), to be the set of all prime ideals of A. The Zariski Topology will be

generated by open subsets given for f ∈ A of the form

Df = {P ∈ Spec(A) : f /∈ P},

or equivalently, with closed sets given by the ideals I ⊆ A as

V (I) = {P ∈ Spec(A) : I ⊆ P}.
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Let’s first explore our topology. Note that the sets Df do in fact form a basis for a

topology.

1. Given P ∈ Spec(A), we may find some f ∈ A \ P so that P ∈ Df .

2. For f, g ∈ A, we have Df ∩Dg = Dfg as for any P ∈ Spec(A), fg ∈ P if and only if

f ∈ P or g ∈ P .

Examining our other topology, we see that the sets V (I) do in fact form a system of

closed sets since we may likewise check a few basic facts.

1. It is clear that V (⟨0⟩) = Spec(A) and V (A) = ∅.

2. Given I, J ⊆ A, we find that V (IJ) = V (I)∪V (J), following from basic facts of prime

ideals. Note that this implies V (P ) is an irreducible closed set in the topology as we

cannot write P = IJ non-trivially.

3. For a system of ideals Ij indexed by j ∈ S, V (
∑

j∈S Ij) = ∩j∈SV (Ij). This one is only

slightly less obvious as clearly
∑

j∈S Ij ⊆ P implies V (Ij) contains P for all j ∈ S.

Conversely, if P ∈ V (Ij) for all j ∈ S, then as the smallest ideal containing each Ij,∑
j∈S Ij ⊆ P .

We may also explain briefly why the two topologies given agree. Clearly, we have Df =

Spec(A) \ V ((f)) from reading definitions. Checking that the basis generates this topology

as well, we may consider an arbitrary open subset U = Spec(A) \ V (I) from a given ideal

I ⊆ A and a point P ∈ U . We may then take any f ∈ I \ P (non-empty or else P ∈ V (I)),

such that P ∈ Df ⊆ U .

In this case, we will refer to the closed sets as algebraic sets or affine varieties. Recall

that Spec(A) is defined as the set of all prime ideals while An
k was originally defined by the

tuples kn. A closed point is some P ∈ Spec(A) such that {P} = {P}. It is clear that the

closed points of An
k will then be maximal ideals of A, and hence the following correspondence

(a1, . . . , an) ∈ kn ⇌ ⟨x1 − a1, . . . , xn − an⟩ ∈ An
k .
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For our other prime ideals which are not maximal, these will then correspond to irreducible

algebraic sets as mentioned previously, such as curves or surfaces contained in An
k defined by

algebraic equations. Under this correspondence, it is clear that our closed sets V (I) ⊆ An
k

correspond to the points on which all polynomials in I vanish.

Next, we turn towards Hilbert’s Nullstellensatz from Theorem 1.3A of [Har13].

Theorem 2.2.2 (Hilbert’s Nullstellensatz). Consider the polynomial ring A = k[x1, . . . , xn]

over an algebraically closed field k. Let I ⊆ A be an ideal and consider V (I) ⊆ An
k . If f ∈ A

vanishes along V (I), then fk ∈ I for some integer k ≥ 1.

In this context, if we find g ∈ A vanishes only on a subset of V (f), then f vanishes along

V (g) so fk ∈ ⟨g⟩ for some k ≥ 1. Therefore, we may write fk = gh for some h ∈ A and

1

g
=

h

gh
=

h

fk
.

Hence, our ring of functions is exactly the functions whose denominators are powers of

f . This may be expressed as the localization Af of A by the multiplicative system {fn}n≥0.

This definition works well even on more general rings A. Thinking of restriction maps,

consider Dg ⊆ Df ⊆ Spec(A) for some f, g ∈ A. While it is obvious how to restrict a ∈ A to

a
1
∈ Af , it is not as clear how to restrict Af to Ag. Fortunately, we have the following chain

of equivalences

Dg ⊆ Df ⇐⇒ V (f) ⊆ V (g) ⇐⇒
√

⟨g⟩ ⊆
√

⟨f⟩,

where
√
I is the radical of the ideal I ⊆ A, and we may use the following characterization

from Corollary 2.21 of [Eis13],

√
I =

⋂
P∈Spec(A)

I⊆P

P = {a ∈ A : ∃n ≥ 1, an ∈ I}.

While the second equality is clear from the definition as an intersection of prime ideals, we

also find from the other part of the definition that since g ∈
√

⟨g⟩, there must be some

18



n ≥ 1 such that gn ∈ ⟨f⟩. Writing gn = fh, it is clear that f ∈ A maps to a unit in

Ag under the canonical ring homomorphism. Thus, we may use the universal property of

localization to determine a unique ring homomorphism Af → Ag such that the following

diagram commutes.

A Ag

Af

Let’s now examine what our expected stalks should be by considering the ring Z. Taking

n ∈ Z arbitrarily, we may consider n−1 defined as a function on the open set Dn since for

any (p) ∈ Dn, n has a multiplicative inverse in the ring Z/pZ by the fact gcd(n, p) = 1.

Thus, if we fix a prime p and examine all open basis sets Dn containing p, we find that the

pair ⟨Dn, n
−1⟩ belongs to our stalk. After considering all such possibilities in this regard, we

should expect our stalk to be

Z(p) =
{a
b
: a ∈ Z, b ∈ Z \ (p)

}
,

which is the localization of Z by the multiplicative system of integers not contained in (p).

With this, for an arbitrary ring A, we determine our sheaf of functions OSpec(A).

Theorem 2.2.3. Given a ring A with X = Spec(A), there exists a unique sheaf of rings OX

referred to as the structure sheaf such that the following three properties hold.

1. Our global sections are the entire ring, given by OX(X) ∼= A.

2. For any f ∈ A, OX(Df ) ∼= Af . The restriction map OX(X) → OX(Df ) is given by

the canonical ring homomorphism A → Af , and likewise for OX(Df ) → OX(Dg) by

Af → Ag when Dg ⊆ Df for some g ∈ A.

3. For any P ∈ X, OX,P
∼= AP .

Proof. Refer to Proposition II.2.2 of [Har13].
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With the previous theorem from as the defining characteristics of our affine space, the

best way to truly understand affine spaces is via maps between them. Indeed, there is a

very natural way to interpret all the maps Spec(A) → Spec(B), and this is through ring

homomorphisms B → A. Certainly, by following directly from the definition, if φ : B → A

is a ring homomorphism, then φ−1(P ) ⊆ B is a prime ideal whenever P ⊆ A is a prime

ideal. Moreover, for any distinguished open set Db ⊆ B, it is clear that

P ∈ (φ−1)−1(Db) ⇐⇒ φ−1(P ) ∈ Db

⇐⇒ b /∈ φ−1(P )

⇐⇒ φ(b) /∈ P

⇐⇒ P ∈ Dφ(b),

and hence φ−1 : Spec(A) → Spec(B) is continuous.

Let’s consider a case that will be of interest and how these maps fit together with the

geometry of the situation. Consider an algebraically closed field k and let A and B be

finitely generated k-algebras with ring homomorphism φ : B → A. Explicitly, for some

integers n,m ≥ 1, we consider surjective ring homomorphisms

α : k[x1, . . . , xn] → A, β : k[y1, . . . , ym] → B.

Notice that we may understand the map φ entirely from how it acts on the images of

y1, . . . , ym ∈ B, where the quotient by the kernel of β is implicit. That is, for each 1 ≤ i ≤ m,

there is some function fi(x1, . . . , xn) ∈ k[x1, . . . , xn] for which

φ(yi) = fi(x1, . . . , xn),

where again the quotient by the kernel of α is taken implicitly. Note that fi may be taken

equivalently up to the kernel of α and hence from the ring A under isomorphism, something
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we will note shortly.

Staying close to the geometry, let P ∈ SpecA be a maximal ideal, which corresponds to a

maximal ideal of k[x1, . . . , xn] containing kerα. As discussed previously, this maximal ideal

is generated by xi − ai for 1 ≤ i ≤ n. Therefore, we find that

⟨y1 − f1(a1, . . . , an), . . . , ym − fm(a1, . . . , am)⟩ ⊆ φ−1(P ),

since fi(x1, . . . , xn) − f1(a1, . . . , an) ∈ P . However, this containment is equality since the

ideal on the left is a maximal ideal.

Therefore, we have seen in the fundamental case of maximal ideals of finitely generated

k-algebras, that our functions Spec(A) → Spec(B) are actually given by the polynomial ring

A, mapping

(a1, . . . , an) ∈ Spec(A) 7→ (f1(a1, . . . , an), . . . , fm(a1, . . . , an)) ∈ Spec(B).

Based on the previous example, we see that there is a good reason to believe that the

spectrum of a quotient ring is a subspace. Consider the ring surjection A → A/I, where

I ⊆ A is any ideal of the ring A. In this case, the map Spec(A/I) → Spec(A) is exactly the

map which sends an ideal P/I to the ideal P , where I ⊆ J ⊆ A. It is an easy exercise to

verify that all prime ideals of A/I are given in this form.

Note that this map is certainly injective as the ideal P/I is generated by the elements

of P under the surjection A → A/I, and hence Spec(A/I) can be viewed as a subspace of

Spec(A). Furthermore, this subspace is also a closed set, as it is exactly V (I) ⊆ Spec(A).

In this way, we see that we can recover all the closed subspaces of Spec(A), and we refer to

the map Spec(A/I) ↪→ Spec(A) as a closed immersion.

Just as for closed sets, we too have inclusion for open sets defined by ring maps. Let

f ∈ A be arbitrary and consider the localization Af with the canonical ring homomorphism

φ : A → Af , which is the same as the restriction map OX(X) → OX(Df ) Since we know
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OX(Df ) ∼= Af , we should expect Spec(Af ) to be bijective correspondence to Df ⊆ Spec(A).

Let P ∈ Spec(Af ) be a prime ideal. Immediately, we find fn /∈ φ−1(P ) for any n ≥ 1, or

else P generates all of Af by 1
fn

· fn
1

= 1
1
. From this, we may conclude that not only is

φ−1(P ) ∈ Df , but also that the for any element a
fn

∈ Af represented by some a ∈ A and

n ≥ 1, it is equivalent for a
fn

to belong to P as it is for a
1
to belong to P , where the latter is

also equivalent to the condition that a belongs to φ−1(P ).

Thus, prime ideals of Af are generated by elements in the image of the map A → Af ,

and so it is clear that Spec(Af ) is precisely Df . The map Spec(Af ) → Spec(A) is therefore

able to be seen as the inclusion, or specifically the open immersion, of Df ⊆ Spec(A). In

fact, for any open subset U ⊆ Spec(A), we may define the inclusion along U by restricting

to distinguished open sets as these maps are certainly compatible on overlap.

Let’s look at some further cases as to how these ring maps induce maps between the

structure sheaves of our affine spaces. Let f : X → Y be given by a ring map φ : B → A,

where X = Spec(A) and Y = Spec(B). Take U ⊆ Spec(B) to be the distinguished open

subset Db for some b ∈ B, and recall from previous discussion that f−1(U) = Dφ(b). What we

wish to consider is a map f#(U) : OY (U) → f∗OX(U), so that we may ultimately construct

a sheaf map f# : OY → f∗OX .

In this case, it is easy since OY (U) = Bb and f∗OX(U) = Aφ(b) and we may define the

map of rings Bb → Aφ(b) as simply

s

bk
7→ φ(s)

φ(b)k
,

which is well-defined and injective when kerφ = 0 by checking on equivalent fractions. Im-

portantly, this definition agrees when you restrict to overlapping distinguished open subsets,

and so we may indeed glue these maps together to form a sheaf map f# : OY → f∗OX .

Lastly, we may consider the stalks. Let (f, f#) : (X,OX) → (Y,OY ) be as above and fix

some prime P ∈ Spec(A). Just as before on distinguished open subsets, we obtain a map

f#
P : OY,f(P ) → OX,P by applying φ to the numerator and denominator of the fractions in

Bf(P ). Moreover, this is a local homomorphism since (f#
P )

−1(PAP ) = f(P )Bf(P ), sending
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the unique maximal ideal on one local ring to the unique maximal ideal of the other.

2.3 Schemes and Properties

With some sense to the geometry of the fundamental affine spaces, we are ready to consider

the generalized concept of a scheme.

Definition 2.3.1 (Scheme). An affine scheme is a space X with structure sheaf OX which

is isomorphic to Spec(A) and structure sheaf OSpec(A), in the sense that Spec(A) is homeo-

morphic to X and OX is isomorphic to the pushforward of OSpec(A) as sheaves on X.

A scheme is a topological space X with sheaf of rings OX such that for any point P ∈ X,

there exists some open neighbourhood U ⊆ X of P such that (U,OX |U) is an affine scheme.

A morphism of schemes (f, f#) : (X,OX) → (Y,OY ) is a continuous map f : X →

Y and sheaf map f# : OY → f∗OX . Additionally, we require that when restricted to

affine open subschemes (U,OX |U) and (V,OY |V ) such that U ⊆ f−1(V ), that the restricted

map (f |U , f#|U) : (U,OX |U) → (V,OY |V ) is given by a ring homomorphism Γ(V,OY |V ) →

Γ(U,OX |U).

Let’s consider our first fundamental example of a scheme which is not necessarily affine.

Consider a graded ring S =
⊕

d∈Z Sd, where for d ∈ Z, Sd denotes an additive group of

homogeneous elements of the same degree, and we require that Sd ·Se ⊆ Sd+e for any integers

d, e ∈ Z. We will also denote S+ to be all elements of positive degree in S. Lastly, we will

say that an ideal is a homogeneous ideal when it is generated by homogeneous elements.

With this, we define Proj(S) to be the space of all homogeneous prime ideals which do

not contain all of S+. To induce a topology on Proj(S), our closed sets will be given for each

homogeneous ideal I ⊆ S as

V+(I) = {P ∈ Proj(S) : I ⊆ P}.

Just as in the affine case, we have same familiar rules of arbitrary intersections and finite
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unions of these closed sets. Similarly, we also have distinguished open subsets given for each

homogeneous element f ∈ S+ as D+(f) = Proj(S) \ V+((f)).

Let’s now put a sheaf of rings on Proj(S) to define a scheme.

Theorem 2.3.2. Let S be a graded ring and denote Proj(S). There exists a sheaf of rings

O on Proj(S) satisfying the following:

1. (Proj(S),O) defines a scheme.

2. For any P ∈ Proj(S), OX,P
∼= S(P ), where S(P ) is the subring of elements of degree

zero in the localized graded ring SP .

3. For any f ∈ S+, we have (D+(f),OX |D+(f)) is an affine scheme isomorphic to Spec(S(f)),

where S(f) is the subring of Sf of elements of degree zero.

Proof. Refer to Proposition II.2.5 of [Har13].

A very important example following from the previous theorem is projective space. Given

some ring A, we define projective n-space over A to simply be

PnA = Proj(A[x0, . . . , xn]).

Over our projective space, notice that for each 0 ≤ i ≤ n, we may cover the entire space

with affine patches

D+(xi) = Spec(A[x0
xi
, . . . , xn

xi
]).

Moreover, when considering Pnk for an algebraically closed field k, the closed points of Pnk are

given by homogeneous coordinates (a0 : · · · : an) corresponding to the maximal ideals

⟨aixj − ajxi⟩0≤i,j≤n ⊆ k[x0, . . . , xn],

which is described locally on D+(xi) for 0 ≤ i ≤ n as (a0
ai
, . . . , an

ai
) ∈ An

k . Notice that in

both cases our homogeneous coordinates are invariant to scaling by α ∈ k∗. With the latter
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property, Pnk is sometimes thought of as the space of lines through the origin in An+1
k , and

the open affine sets D+(xi) ∼= An
k is the projection of each line onto the plane {xi = 1}. Also

under this interpretation, the lines contained within {xi = 0} that never intersect the plane

are thought of as being contained in the hyperplane at infinity. This inspires an obvious

interpretation, at least for the closed points, that for any n ≥ 1,

Pnk = An
k ∪ Pn−1

k = An
k ∪ An−1

k ∪ · · · ∪ A1
k ∪ A0

k.

Moving on from projective space for now, let’s consider the closed subschemes of Proj(S)

for a graded ring S. As before, consider a map φ : S → T which is surjective and preserves

degree. Clearly, the preimage of homogeneous prime ideals in Proj(T ) will likewise be homo-

geneous prime ideals, and by surjectivity and degree preservation, any homogeneous prime

ideal whose preimage contains all of S+ must therefore contain all of T+. Thus, we obtain

a map f : Proj(T ) → Proj(S) which is injective for the same reason as the affine case. We

also obtain surjective maps on local rings and open affine pieces defined by ϕ, and so we see

that Proj(T ) ∼= Proj(S/ kerφ) is a closed subscheme identified with V+(kerφ). These facts

follow from Exercise II.2.14 and Exercise II.3.12 of [Har13].

So far, we’ve kept our schemes and rings quite general in our setup, but our examples

are often finitely generated k-algebras for an algebraically closed field k. While these rings

provide very nice geometric intuition in the ways we’ve just described, we can take some

caution and state which properties of our rings and spaces we would like or require.

Another type of scheme we will look towards will be integral schemes. A scheme X, with

structure sheaf OX , is said to be integral when OX(U) is an integral domain for all open

subsets U ⊆ X. We also note that SpecA is integral if and only if A is an integral domain.

To understand this further, let’s take a quick look at some consequences of this.

The first deduction we can make is that an integral scheme X is irreducible, and not the

union of any two proper closed subsets. Otherwise, we would be able to find the complements
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of these closed subsets, which we will denote as U and V , would necessarily have trivial

intersection. Following the diagram below resulting from the open cover X = U ∪ V ,

OX(U)

OX(X) OX(U ∩ V ) = 0

OX(V )

we must have that OX(X) ∼= OX(U) × OX(V ), which is certainly not an integral domain,

with the restriction maps granting the isomorphism s 7→ (s|U , s|V ). By applying our sheaf

axiom regarding the vanishing of a global section with respect to vanishing of local sections

this open cover, it is clear why the proposed map is injective. Likewise, using the sheaf

axiom regarding the existence of a global section from local sections, this open cover with

trivial overlap also explains why the map is surjective.

Note that irreducibility of a closed subset Z ⊆ X implies that it has a generic point. By

taking U ∼= Spec(A) ⊆ Z which is open affine, we may consider the nilpotent elements of

the ring η =
√

(0). This ideal must be prime as ab ∈ η means U = V (a) ∪ V (b), and so one

of a or b is an element of every prime ideal of A by irreducibility. By definition, the set {η}

is dense in U . Going one step further, since we know U ∩V ̸= ∅ for all open subsets V ⊆ X,

it follows that {η} is dense in X as well. This point is also unique since being dense in U

necessitates being the radical of A.

Resuming our discussion on integral schemes, another deduction we can make is that X

is reduced. That is, for any P ∈ X, OX,P has no nilpotent elements. By taking an affine

neighbourhood of any point, we can immediately see this holds. Additionally, when X is

both reduced and irreducible, we notice that the generic point corresponds to just the trivial

ideal of each open affine subset, or else we would be able to find some P ∈ X for which OX,P

has nilpotent elements. As this holds over any affine open subscheme of X, for any U ⊆ X,

fg = 0 over OX(U) grants the same relationship on every affine subset of U . Therefore, by
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partitioning our open cover V of open affine subsets of V , we find

 ⋃
V ∈V
f |V =0

V

 ∩

 ⋃
V ∈V
f |V ̸=0

V

 = ∅

and so it follows by irreducibility one of the two must be the empty set and the other all of

U . When the condition f |V = 0 holds for all V ∈ V , then f = 0 and we are done. Otherwise,

since V ∈ V is integral, g|V = 0 for every open affine subset, and then g = 0 as desired.

We summarize this discussion in the following proposition.

Proposition 2.3.3. A scheme X is integral if and only X is both reduced and irreducible.

Moreover, an affine scheme is integral if and only if the defining ring is an integral domain.

Proof. See previous discussion above, as well as Proposition II.3.1 of [Har13]

One last aspect of integrality we will enjoy is the notion of a fraction field for the entire

scheme. Indeed, taking an affine subset U ∼= SpecA of an integral scheme X, which is

necessarily an integral domain, we may localize at the prime ideal (0) and obtain a field of

fractions. As before, this ideal corresponds to the generic point η ∈ X, we obtain the same

field OX,η regardless of choice of affine subset.

Next, let’s consider the property of being noetherian, which applies both to spaces and

to rings. For our space X, a noetherian topological space is defined by the descending chain

condition. That is, for any family closed subsets (Yn)n≥1, satisfying the following descending

chain condition,

Y1 ⊇ Y2 ⊇ · · · ,

then it must be the case that there is some sufficiently large N for which YN = Yn for all

n ≥ N thereafter. An interesting consequence is that any closed subset of a noetherian

topological space can be covered uniquely by a finite number of irreducible closed subsets.

We may also define the dimension of X as a topological space as the supremum of such
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chains with distinct closed sets strictly contained in X by

dimX = sup{n : X ⊋ Y1 ⊋ · · · ⊋ Yn}.

If we fix some closed subset Z ⊆ X, then the codimension is defined by the supremum

of lengths of descending chains strictly contained in X, ending with Z, and no two closed

subsets are equal. This definition can be extended to any other subset Y ⊆ X by considering

the infimum of codim(Z,X) for all closed subsets Z ⊆ Y .

For our rings, a noetherian ring is one for which all ideals are finitely generated. Equiva-

lently, it is a ring that satisfies an ascending chain condition (section 1.4 of [Eis13]). Specif-

ically, for a noetherian ring A, that for a family of ideals (In)n≥1 such that

I1 ⊆ I2 ⊆ I3 ⊆ · · · ,

then it must be the case that there is some sufficiently large N for which IN = In for all

n ≥ N thereafter.

For any prime ideal P ∈ Spec(A), we may take its height as the supremum of the lengths

of chains strictly contained within P . We also define the Krull dimension of A by the

supremum of all heights of prime ideals.

With so many similarities, it does not come across as a surprise that these notions coin-

cide. We summarize the relationships between our terminology in the following proposition.

Proposition 2.3.4. Let X = SpecA be an affine scheme.

1. The dimension of X as a topological space is the same as the Krull dimension of A.

2. X is noetherian if and only if A is noetherian.

3. If we suppose further that A is an integral domain, which is also a finitely generated
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k-algebra, then for any closed irreducible subset V (P ) ∼= Spec(A/P ),

dimV (P ) + codim(X, V (P )) = dim(A/P ) + ht(P ) = dimX,

where the two sums are equal term wise.

Proof. We refer to Propostion II.3.2 of [Har13], Corollary 13.4 of [Eis13], and our character-

ization of the irreducible closed subsets of an affine space as the closures of prime ideals.

To explain some further properties, we will examine relative schemes and relatively valued

points.

Definition 2.3.5. A scheme X is said to be a scheme over Y when there exists a morphism

X → Y . We will often write X/Y to denote this, or X/A when Y = Spec(A) for some ring

A.

This generally captures the notion that the defining equations and algebras of our scheme

are drawn from the rings associated to Y . Notably, since there is a canonical map Z → A

for any ring A, any affine scheme is over Z and thus all schemes when gluing is accounted

for. This follows from exercise 7.3.G of [Vak22].

Definition 2.3.6. Given schemes X and Z, a Z-valued point on X is a morphism Z → X.

The space of Z-valued points on X is denoted X(Z). Moreover, when Z = Spec(k) for a

field k, we refer these points as k-rational (or rational when k = Q), and write X(k).

To make sense of this, for a k-rational point f : Spec(k) → X, the unique prime ideal of

Spec(k) is sent to some point P ∈ X, so we would like to think of P as the rational point

itself. However, the image in X is not enough to characterize our rational point, as we also

have an associated map of sheaves OX → f∗Ok.

To understand this sheaf map, for any U ⊆ X, it is clear that f∗Ok(U) = k when P ∈ U ,

and f∗Ok(U) = 0 otherwise. Moreover, this map is characterized by the map OX,P → k

since sheaf maps commute with restriction homomorphisms.
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To further dive into this map on the local ring OX,P , we recall that the local ring OX,P

has a unique maximal ideal denoted mP . And so we may define the residue field κ(P ) =

OX,P/mP . Since we require this to be a local homomorphism, it should be immediate that

the kernel of OX,P → k is exactly mP , and so the map κ(P ) → k is an inclusion. This

therefore characterizes our rational points.

Examining the residue field for a given point P ∈ X, consider the OX,P module mP/m
2
P .

As the elements of mP vanish under multiplication, we in-fact have a well-defined κ(P )-

vector space. For the affine variety V (f1, . . . , fn) ⊆ An
k , notice that there is a correspondence

between the Jacobian (∂fi/∂xj)i,j and the vector space mP/m
2
P .

Definition 2.3.7. Given a connected scheme X and a point P ∈ X, we say that P is regular

if

dimκ(P ) mP/m
2
P = dimX.

If all the points of X are regular, we that X is a regular scheme, or X is non-singular.

For one last construction essential to our geometry, we come to the product of schemes.

Consider for example some ring homomorphisms f : C → A and g : C → A for some rings

A, B, and C. With these, note that we may also define morphisms A → A ⊗C B and

B → A⊗C B by

a ∈ A 7→ a⊗ 1 b ∈ B 7→ 1⊗ b.

With these ring maps, suppose for a fourth ring R that we have homomorphisms α : A→ R

and β : A→ R for which α ◦ f = β ◦ g as maps C → R. Then there is a ring homomorphism

A⊗C B → R given by

a⊗ b 7→ α(a)β(b),

which is well-defined by our requirements on α and β, such that the maps α and β may be

factored through A⊗C B. Moreover, it is clearly unique since the images of a⊗ 1 and 1⊗ b

for a ∈ A and b ∈ B determine the map on the rest of the ring. With this in mind, note
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that the same must be true for the associated affine schemes with the arrows reversed. More

generally, by taking affine covers, we may construct a product over general schemes.

Theorem 2.3.8. Let X, Y , and Z be schemes with morphisms A → Z and Y → Z. Then

there exists a scheme X×Z Y , referred to as the fibred product, such that there are projection

maps π1 : X×Z Y → X and π2 : X×Z Y → Y such that, for any scheme W with morphisms

to A and B, there is a morphism W → X ×Z Y such that the following diagram commutes

W

X ×Y Z

X Y

Z

The projection morphisms also satisfy that the preimage π−
1 (U) for an open subset U ⊆ A is

the product U ×Z B. Moreover, if U ⊆ Z is affine, with V1 ⊆ X and V2 ⊆ Y affine contained

in preimages of U , then V1 ×U ×V2 is an open affine subset of X ×Z Y given by the ring

tensor.

Proof. See Theorem II.3.3 of [Har13].

With fiber products, we uncover our last general properties of schemes which helps us

describe varieties as schemes.

Definition 2.3.9. A map X → Y is said to be separated if the diagonal map ∆ : X →

X ×Y X, which is derived from the identity X → X and the morphism X → Y , is a closed

immersion. If the canonical map X → Z is separated, we say that X is separated.

Definition 2.3.10. Let X and Y be schemes. Defining projective n-space over Y as PnZ×ZY ,

we say that a map f : X → Y is projective if it is factored by a closed immersion X → PnY .
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More generally, the map f : X → Y is quasi-projective if we may factor first by some open

immersion into a projective map. If A is a ring and f : X → Spec(A) is a (quasi) projective

map, we say that X is (quasi) projective over A.

Finally, we come to our very nice schemes referred to as varieties. These are exactly the

quasi-projective integral schemes over k, where k is an algebraically closed field.

2.4 Divisors and Sheaves of Modules

While schemes and the rings associated to them have proven to be very useful, there is

no reason we cannot examine other sheaves on our topological spaces. A natural step to

obtaining further algebras is to go from sheaves of rings to sheaves of modules.

Definition 2.4.1. Let X be a scheme with sheaf of rings OX . A sheaf of OX-modules is a

sheaf of modules M such that for any U ⊆ X, M(U) is an OX(U)-module. Moreover, for

an inclusion V ⊆ U of open sets, for any a ∈ OX(U) and m1,m2 ∈ M(U), we have

(am1 +m2)|V = a|vm1|v +m2|v.

The morphisms of such sheaves also preserve the structure as a OX-module.

Example. Consider a closed immersion ι : Y ↪→ X. We may consider the ideal sheaf IY

associated to Y by

IY = ker(OX → ι∗OY ).

Clearly, IY (U) = ker(OX(U) → ι∗OY ) is an ideal of OX(U), and thus an OX(U)-module,

for any U ⊆ X open. Moreover, the restriction map preserves the module structure since

it’s just a ring homomorphism on OX elements.

Just as we may associate a structure sheaf OX to a ring A, we may also associate a sheaf

of OX-modules to an A-module M . In fact, one may do so in the following obvious way.
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Proposition 2.4.2. Fix a ring A and an A-module M . If (X,OX) = SpecA, there exists

an OX-module M̃ on X associated M which satisfies the following properties.

1. Γ(X, M̃) =M .

2. Given f ∈ A, Γ(Df , M̃) ∼= Mf .

3. For any P ∈ X, M̃P
∼= MP .

Proof. See Proposition II.5.1 of [Har13].

Although the affine case is quite useful, we are more interested in how it applies to

projective cases. In order to do so, however, we must first discuss graded modules.

Definition 2.4.3. Let S =
⊕

d∈Z Sd be a graded ring. A graded S-module M =
⊕

d∈ZMd

is such that Md is an S0-module and Se ·Md ⊆ Md+e for any e, d ∈ Z. We also define the

twisted module M(n) for each n ∈ Z as M(n)d =Mn+d for any d ∈ Z.

With this, we may describe how the affine case generalizes to our projective case.

Proposition 2.4.4. Let S be a graded ring and M a graded S-module. Writing (X,OX) =

Proj(S), there exists a sheaf of OX-modules M̃ which has the following characteristics.

1. For any f ∈ S+, we have M̃ |D+(f)
∼= M̃(f), where M(f) is the submodule of Mf that

contains only degree zero elements.

2. For any P ∈ X, (M̃)P ∼= M(p), where the module M(p) is again the submodule of Mp

of elements of degree zero.

Proof. See Proposition II.5.11 of [Har13].

Example. As a perfect example, let S = k[x0, . . . , xn] and X = Proj(S) = Pn. For each

n ≥ 1, we write OX(n) to denote the sheaf of OX-modules associated to the graded module

S̃(n). We also specifically refer to OX(1) as the twisting sheaf of Serre.
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To understand the sheaf OX(1), we can look locally on each piece D+(xi) for each 0 ≤

i ≤ n. Specifically, note that

S(n)(xi) =
⋃
d≥0

{x−di f(x0, . . . , xn) : deg f(x) = n+ d} = xni k[
x0
xi
, . . . , xn

xi
].

Thus, we see that OX(n)|D+(xi) = xniOX . Moreover, the global sections have the form

Γ(X,OX(n)) = Spank{xa00 · · ·xann : a0 + · · ·+ an = d}.

From the previous example, which may be generalized to other graded rings S generated

by S1 as an S0 algebra (see Proposition II.5.12 of [Har13]), we note a few properties that

make this sheaf nice. To start, we note that our open cover revealed OX(n) to be free on

the subsets Ui = D+(xi), in the sense that it is isomorphic to
⊕m

i=1Ox|Ui
with m = 1. We

refer to the exact integer on which our module is the direct sum copies of as the rank, which

must be constant on connected components. When the rank is one, we refer to our sheaf of

modules as an invertible sheaf for reasons which will become apparent.

Additionally, we refer to OX(n) as coherent, which means that we may cover X with

open affine patches upon which OX |U is the sheaf associated to a finitely generated module.

More generally, we may say that a sheaf of modules is quasi-coherent when this condition

holds without the module necessarily being finitely generated.

Examining the invertible sheaves further, suppose that M is an invertible sheaf on an

integral scheme X. In this case, let ∪i∈IUi be an open cover of X for which M|Ui
∼= OX |Ui

for all i ∈ I. We notice that for any i ∈ I, we may take some si ∈ Γ(Ui,M) such that

M|Ui
= siOX |Ui

since si cannot restrict to 0 on any open subset of Ui without changing the

entire structure of M|Ui
. With this in mind, let’s consider a pair i, j ∈ I and the intersection

Ui ∩ Uj. On Γ(Ui ∩ Uj), we find that both si and sj generate the module, and so there is
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some fi,j, fj,i ∈ OX(Ui ∩ Uj) for which

sifi,j = sj, sjfj,i = si.

In fact, we must have that fi,j = f−1
j,i in the ring OX(Ui ∩ Uj). Fixing some i0 ∈ I, and

denoting fi0,i = fi, we may identify M with a sub-OX-module L of K(X), now referring to

K(X) as the constant sheaf as a OX-module, by L|Ui
= fiOX |Ui

.

Interestingly, this in-fact takes us back to our previous discussion of ideal sheaves asso-

ciated to closed subschemes, specifically in the case where fi ∈ OX(Ui), where identification

is done through localizing at the generic point. In this case, our sheaf of ideals is locally

principal, but we can speak more generally to this.

As an illustrative example, let’s take OX(1) with X = P2. Following the same procedure,

we have the following association of open subsets to K(X) as

D+(x) 7→ 1 D+(y) 7→
x

y
,

so that O(1)|D+(x)
∼= OX and O(1)|D+(y)

∼= x
y
OX |D+(y) under this isomorphism. More gen-

erally, however, we may multiply the functions 1, x
y
∈ K(X) by any other g ∈ K(X)∗, and

we would still obtain an isomorphism. Looking at the associated ideal sheaf, it is quite clear

that we have described (0 : 1) ∈ Pn as a closed subscheme. And if we do take the liberty

of using the functions g and g x
y
for g = y

x
∈ K(X)∗, we may move from (0 : 1) to the point

(1 : 0).

Without knowing yet whether a given ideal sheaf of K(X) corresponds to a closed sub-

scheme, there may be two distinct ideas we are looking at. Namely, closed subschemes of

codimension one, sub-OX-modules of K(X), and invertible sheaves.

Definition 2.4.5. Let X be an integral separated scheme such that for every x ∈ X, if

dimOx = 1, then dimκ(x) m/m
2 = dimOx = 1. We refer to a closed integral subscheme Y of

X as a prime divisor. A Weil divisor is a formal sum D =
∑n

i=1 aiYi, with ai ∈ Z and Yi a

35



prime divisor for each 1 ≤ i ≤ n.

The support of a Weil divisor D is the union of prime divisors Y for which the associated

coefficient in D is non-zero. We say that a divisor D is effective, and write D ≥ 0, if the

integers may be taken to be non-negative, and we identify such divisors with their support.

As we may add and subtract these formal sums, the Weil divisors form a group, which

we will denote as Div(X).

To make sense as to how the group of Weil divisors operates, consider the fact that

a prime divisor Y of X has a generic point η ∈ Y . By the codimension of Y , we find

dimOX,η = 1, and so by our regularity proposition, OX,η is principal and thus a discrete

valuation ring. Therefore, on the units of our field of fractions of K(X), we may define an

order of vanishing at the prime divisor Y , denoted vY : K(X)∗ → Z. For a prime divisor Y ,

f ∈ K(X)∗, and an integer m > 0, we say that f has a zero of order m at Y if vY (f) = m,

and that f has a pole of order m at Y if vY (f) = −m.

Definition 2.4.6. Given X as before and f ∈ K(X)∗, we may define the principal divisor

div(f) ∈ Div(X) as

div(f) =
∑

codim(Y,X)=1

vY (f)Y.

If D1, D2 ∈ Div(X) are such that D1 − D2 = div(f) for some f ∈ K(X)∗, we say that D1

and D2 are linearly equivalent and may write D1 ∼ D2.

Just as we had noticed before in our example derived from invertible sheaves, we see that

there is some notion of equivalence by the elements of K(X)∗.

For another example, let k/Q be a finite extension with ring of integers Rk. Since Rk is a

Dedekind domain, it is clear that X = Spec(Rk) satisfies all the defining properties required

to describe Div(X). Indeed, our principal divisors are just elements of k∗ and our prime

divisors are prime ideals P ⊆ Rk. We recall from Corollary 3.9 of [Neu13] that given some

finitely generated sub-Rk-module of k∗, we may associate a unique factorization as prime

ideals, and this corresponds to the valuation along our prime divisors as before. As expected,
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when we consider Div(X) under linear equivalence, we have described the class group of Rk

which describes how far Rk is from being a principal ideal domain.

Definition 2.4.7. Let X be such that we may define Div(X) as above. Then we may define

the class group of divisors on X, denoted Cl(X), as the quotient of Div(X) by the subgroup

of principal divisors.

To obtain a more geometric picture of our class group of divisors, consider an open subset

U ⊆ X, with Cl(X) well-defined. In the case where codim(X \ U,X) ≥ 2, notice that the

prime divisors of U will be given exactly as the restriction of a prime divisor from X, and

we likewise haven’t removed any prime divisors in this process, up to at least what may be

permuted by the principal divisors. However, if codim(X \U,X) = 1, we have the following

proposition.

Proposition 2.4.8. Let X be such that Cl(X) is well-defined, and suppose that U ⊆ X

is open with complement Y . Then Cl(U) is well-defined, and the restriction of the prime

divisors of X to U grants a map D 7→ D|U which is surjective. If codim(Y,X) ≥ 2, we have

Cl(X) ∼= Cl(U). However, if codim(Y,X) = 1, we have the following exact sequence,

⟨Y ⟩ → Cl(X) → Cl(U) → 0,

where the first map is just the inclusion as a subgroup.

Proof. Refer to Proposition II.6.5 of [Har13].

As another hint in the direction towards unification of these ideas, let X be such that

the class group is well-defined and take any D ∈ Div(X). For each U ⊆ X, we may define a

subgroup of K(X)∗/OX(U)
∗ as

L(D)(U) = {f ∈ K(X)∗/OX(U)
∗ : D|U + div(f |U) ≥ 0}
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where we note the quotient may be taken as units of OX(U) certainly have no poles or

zeroes on U . Notice that linear equivalence, whether globally or locally on just the open

set of interest, induces an isomorphism between these subgroups by simply performing the

group action of multiplication by the principal divisor on K(X)∗/OX(U)
∗

Also, we see that L(D)(U)∪ {0} is an OX(U)-module. For any prime divisor Y , f1, f2 ∈

L(D)(U), and c1 ∈ OX(U) non-zero,

vY (c1f1 + f2) ≥ min(vY (c1f1), vY (f2)) = min(vY (f1) · vY (f1), vY (f2)) ≥ min(vY (f1), vY (f2)).

If OX(U) were to contain a field, this would then be a vector space, as is the case with

varieties.

While this may appear to be a sheaf, in general this is not. However, this may be easily

accounted for.

Definition 2.4.9. Let X be an integral scheme. We recall that K(X) acts as a constant

sheaf on X. Taking O∗
X to be the sheaf defined by the group of multiplicative units of O, a

Cartier divisor D is a global section of Γ(X,K(X)∗/O∗
X), where the quotient sheaf is defined

as the sheaf associated to the presheaf U 7→ K(X)∗/OX(U)
∗. The group Γ(X,K(X)∗/O∗

X)

is denoted CaDiv(X) and referred to as the group of Cartier divisors.

Moreover, if a section lies in the image K(X)∗ → K(X)∗/O∗
X , we say that the Cartier

divisor is principal. Using additive language, when the difference between two Cartier divisors

is principal, we say that they are linearly equivalent. We denote the quotient of CaDiv(X)

by the principal Cartier divisors as CaCl(X).

By our explanation of a sheaf associated to a presheaf, a Cartier divisor D ∈ CaDiv(X)

may be represented by a set of pairs

D = {(Ui, fi) : fi ∈ K(X)/OX(Ui)
∗, i ∈ I}
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for which
⋃
i∈I Ui = X, and fif

−1
j ∈ OX(Ui∩Uj)∗ for any i, j ∈ I. The group action on such

sets is simply done by pairwise multiplication on intersections.

Just as with the Weil divisors, the Cartier divisors as well have a similarly notated and

similarly behaving associated group. Taking D = {(Ui, fi)}i∈I ∈ CaDiv(X) for an integral

scheme X, we define the sheaf associated to D, notated L(D), to be the sub-OX-module of

K(X)∗ which is defined locally as

L(D)|Ui
=

1

fi
OX |Ui

,

which may be glued together since fi/f
−1
j ∈ OX(Ui ∩ Uj)

∗ for any i, j ∈ I. Furthermore,

notice that L(D + div(f)) ∼= L(D) by multiplication by f ∈ K(X)∗, so it this sheaf is

well-defined on CaDiv(X).

Notice for the case of

DW = (1 : 0) ∈ Div(P1), DC = {(D+(x), 1), (D+(y),
x
y
)} ∈ CaDiv(P1),

we immediately find a correspondence between L(DW )(U) ∼= Γ(U,L(DC)) ∼= Γ(U,O(1)) for

any open U ⊆ P1.

Definition 2.4.10. The Picard group of X, denoted Pic(X), is the group of invertible

sheaves of OX-modules up to isomorphism. The group operation is given by L1 ⊗OX
L2 for

L1,L2 ∈ Pic(X), where L1 ⊗OX
L2 is the sheaf associated to the presheaf

U 7→ cL1(U)⊗OX(U) L2(U).

Theorem 2.4.11. Suppose that X is a non-singular, integral, separated, noetherian scheme.

Then there are group isomorphisms between Cl(X), CaCl(X), and Pic(X).

With our concepts joined together, we may see how these groups allow us to understand

a given non-singular variety X/k. Take D ∈ Div(X) arbitrarily and consider the global
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sections of Γ(X,L(D)). In the projective case, as Γ(X,OX) = k, we may consider a basis

Γ(X,L(D)) = Spank{f0, . . . , fn},

which is finite by A.3.2.7 of [HS13]. Next, define a map φ : X → Pn by

φ(P ) = (f0(P ) : · · · : fn(P )).

The first issue which might be encountered is that one of our maps has a pole. We may be

able to move a pole around by multiplying through by g ∈ K(X)∗, and clearly this will not

change the value of φ away from supp(div(g)). However, we may encounter the issue as well

that we could have a base point of D on which all global sections vanish. If this does not

occur, and the resulting map is a closed immersion, then we say that D is very ample, while

D being ample refers to the property that some multiple mD is very ample for m ≥ 1.

For an alternative picture, consider a map φ : X/k → Y/k of non-singular varieties.

Fixing D ∈ Pic(Y ), represented as {(Ui, fi)}i∈I , we would like to define

φ∗D = {(φ−1(Ui), fi ◦ φ)}i∈I ,

where fi ◦ φ is understood by considering η ∈ X as the generic point and the map

κ(φ(η)) → κ(η) = K(X)∗.

However, κ(φ(η)) may be a proper subset of K(Y )∗ in the case where φ(X) is not dense in

Y . Fortunately, if all defining functions belong to κ(φ(η)), this map makes sense, and this is

the condition that φ(X) is not contained in the support of D. It is known that for varieties

by Lemma A.2.2.5 of [HS13], we may always determine a representative D′ of the class of D
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for which the pullback is defined. Alternatively, we have for the associated sheaves,

φ∗L(D) = φ−1L(D)⊗OY
OX .

This allows us to express the following.

Definition 2.4.12. Let X be a scheme and M a sheaf of OX-modules. We say that M

is generated by global sections if there exists an indexed set {si}i∈I of global sections of

Γ(X,M) such that

Mx =
∑
i∈I

si|xOX,x,

for any x ∈ X.

Theorem 2.4.13. Let X/k be a non-singular variety.

1. If φ : X → Pnk is a morphism, then φ∗O(1) is an invertible sheaf generated by the

global sections {xi ◦ φ}ni=0.

2. For any D ∈ Pic(X), if L(D) is generated by global sections s0, . . . , sn ∈ Γ(X,L(D)),

then the map

φ(x) = (s0(x) : · · · : sn(x))

is a morphism such that φ∗O(1) ∼= L(D) with xi ◦ φ = si for each 0 ≤ i ≤ n.

Proof. See Theorem II.7.1 of [Har13].

2.5 Blowups

One of the advantages of algebraic geometry is the ability to analyze a space regardless of

coordinates or embedding. As such, we often look towards birational maps which capture

the geometry of a given space but may transform into an easier to understand or better

behaved space. One such way of constructing these birational maps comes from the idea of

41



a blow up. We capture blow ups unique up to isomorphism using the following universal

property definition.

Definition 2.5.1 (Blow up). Let Y ⊆ X be a closed subscheme. The blowup of X along Y ,

with centre Y , is a space X̃ and a map π : X̃ → X which is an isomorphism on X \ Y . We

denote E = π−1(Y ) as the exceptional divisor, which is an effective Cartier divisor.

Finally, for any space W with closed subscheme Z for which the ideal sheaf is locally

invertible, along with a map φ : W → X satisfying Z = φ−1(Y ), then there exists a unique

map ψ : W → X̃ which satisfies π ◦ ψ = φ. This is captured by the following commutative

diagram.

Z W

E X̃

Y X

Let’s investigate this definition by examining the example on the affine caseX = Spec(A),

where our closed subscheme Y is described by an ideal I = ⟨f1, . . . , fr⟩. We claim that a

good candidate for X̃ is Proj(
⊕

d≥0 I
dtd), where Id = A and the parameter t is kept to

account for the degree in our graded ring. We may write A[It] as a shorthand for the graded

module in question.

A natural place to start is by first establishing a map π : X̃ → X. In this case, we have a

very simple and natural map by taking P ∈ Proj(A[It]) and considering P ∩A, which simply

follows from the inclusion A ↪→ A[It]. Under such a mapping, let’s consider our exceptional

divisor E = π−1(Y ). Following the inclusion Y ↪→ X by prime ideals containing I, we have
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the equivalence below.

P =
⊕
d≥0

Pdt
d ∈ π−1(Y ) ⇐⇒ I ⊆ π(P ) = P0

⇐⇒ ∀d ≥ 0, Id+1td = I · Idtd ⊆ P0 · Idtd ⊆ Pdt
d.

Therefore, as P ∈ E contains Id+1td for the degree d components of the homogeneous

prime ideal P , our exceptional divisor E may be thought of as cut out by the ideal sheaf

IE = (
⊕

d≥0 I
d+1td)∼.

We check as well that this ideal sheaf is indeed invertible. To do so, consider for some

1 ≤ j ≤ r the section fjt ∈ A[It](1). On the open set D+(fjt) ∼= Spec(A[It])(fjt), note we

have

A[It](fjt) = A+
1

fj
I +

1

f 2
j

I2 + · · ·

Note as well that since fkj ∈ Ik for all k ≥ 1, it follows that we may cut off arbitrarily

many terms from the start as A ⊆ 1
fj
I ⊆ 1

f2j
I2 and so forth. Likewise, taking the ideal sheaf

associated to E and localizing to D+(fjt), we have from definition that

IE|D+(fjt) =

(⊕
d≥0

Id+1td

)
(fjt)

= I +
1

fj
I2 +

1

f 2
j

I3 · · ·

demonstrating that IE|D+(fjt)
∼= fjOX̃ |D+(fjt). Note as well the parallels of IE to OX̃(1) as

they are the same invertible sheaf.

Next, consider a pair Z ↪→ W with IZ invertible, and a map φ : W → X such that

Z = φ−1(Y ). With our map φ, it is easy to construct a map ψ : W → X̃ which factors

through π : X̃ → X as for any Q ∈ W ,

ψ(Q) =
⊕
d≥0

(φ(Q) ∩ Id)td.

A full verification of our universal property follows from Proposition II.7.14 [Har13], and
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shows we have indeed constructed the blow up π : X̃ → X.

In fact, we have indeed shown that the blow up exists in general. We explore this and

some consequences in the following propositions and corollaries.

Proposition 2.5.2. Blow ups are locally defined. That is, given U ⊆ X and a blow up

π : X̃ → X with centre Y and exceptional divisor E, π−1(U) is the blow up of U along Y ∩U

with exceptional divisor E ∩ π−1(U).

Proof. To show this, we need only demonstrate the universal property. For this, consider

Z ↪→ W satisfying all necessary conditions. We may immediately draw the following dia-

gram.

Z W E ∩ π−1(U) π−1(U)

Y ∩ U U E X̃

Y X

Following our maps Z → Y and W → X, we may use our universal property to determine

a map W → X̃. However, since it must commute with the map W → X which has

image contained in U , we see that we in-fact have a map W → π−1(U), which satisfies all

requirements.

Corollary 2.5.3. Let π : X̃ → X be a blow up along Y with exceptional divisor E. Then

π : X̃ \ E → X \ Y is an isomorphism, and hence π is birational.

Proof. For this, we simply consider that π−1(X \Y ) is the blow up of X \Y along the empty

set. However, the empty set is already cut out by the ideal sheaf generated by 1 on any

open subset. Therefore X \ Y satisfies the universal property and hence is isomorphic to

π−1(X \ Y ) = X̃ \ E.

We also cite Exercise 23.2.A of [Vak22] in the following proposition.
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Proposition 2.5.4. Blow ups may be glued together. That is, if ∪i∈IUi is an open cover of

X, and there exists blow ups πi : Ũi → Ui along center Y ∩ Ui, then there exists a blow up

π : X̃ → X along center Y .

With the basics of construction covered, let’s examine some notable properties of blow

ups. For our first example, let’s see how blow ups separate crossing lines and hence could

resolve singularities, though we will not dive further into this as it is unnecessary for our

cases. We first take a quick detour to define the strict transform.

Lemma 2.5.5. Let Y, Z ⊆ X be closed subschemes. If Z̃ is the blow up of Z along Y ∩ Z

and X̃ is the blow up of X along Y , then there exists a closed immersion Z̃ ↪→ X̃. Moreover,

we may draw the following commutative diagram.

Z̃ X̃

Z X

Proof. See Corollary II.7.15 of [Har13].

Definition 2.5.6 (strict/proper transform). Taking X, Y, Z and Z̃ as above, we refer to Z̃

as the strict transform of Z.

Proposition 2.5.7. Let Y ⊆ X be the intersection Y = ∩ri=1Yi such that IY =
∑r

i=1 IYi.

Then if π : X̃ → X is the blow up of X along Y , then the intersection of the strict transforms

of Yi is empty in X̃.

Proof. To begin, we note that this suffices to prove locally since any intersection would

lie in the preimage of some open subset of X. Therefore, we may assume X = Spec(A),

Y = Spec(A/I) for some ideal I ⊆ A, and Yi = Spec(A/Ji) for some ideal Ji ⊆ A for each

1 ≤ i ≤ r. Next, note that Y ∩ Yi is then given as V (I/Ji) ⊆ Yi, so we may write each strict
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transform and our blow up X̃ as

Ỹi = Proj

(⊕
d≥0

(I/Ji)
dtd

)
, X̃ = Proj

(⊕
d≥0

Idtd

)
.

With this, we may proceed by noting that there is a clear surjective graded ring homomor-

phism A[It] → A[(I/Ji)t] which gives each closed immersion. Therefore, any prime ideal in

the image of a given closed immersion must contain the kernel of this graded ring homo-

morphism. Hence, if P ∈ ∩ri=1Ỹi, then by examining the degree one terms in each kernel, it

follows that Jit ⊆ P for each 1 ≤ i ≤ r. However, since I =
∑r

i=1 Ji by hypothesis, we must

have It ⊆ P and so P contains all of A[It]+, which is a contradiction.

Another useful way strict transforms and blow ups come together is in the pullback of

an effective Cartier divisor. Let π : X̃ → X be a blow up of a non-singular variety with

irreducible, non-singular center Y of codimension at least 2 and exceptional divisor E. We

will also assume that X̃ is non-singular as well. The first objective is to determine the

relation between Pic(X̃) and Pic(X).

To explore this further, recall that we have the exact sequence

Z → Pic(X̃) → Pic(X̃ \ E) → 0.

In fact, this is a short exact sequence. Consider the fact that π∗ : K(X) → K(X̃) is an

isomorphism as it is the pullback of a birational map. Thus, if mE = div(f) for some

m ∈ Z and f ∈ K(X̃), then we may write mE = π∗div(g) = div(g ◦ π) for some g ∈ K(X).

However, this implies that g may not vanish outside Y , but because codim(Y,X) ≥ 2, this

is only possible if g is a non-vanishing constant and m = 0.

Next, we also have isomorphisms between Pic(X̃ \ E), Pic(X \ Y ), and Pic(X), where

the last isomorphism is due to the fact codim(Y,X) ≥ 2. Therefore, we may now write a
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short exact sequence as

0 → Z → Pic(X̃) → Pic(X) → 0

Lastly, we also have a section π∗ : Pic(X) → Pic(X̃) which composes with the previous

morphism as the identity. To confirm this, fix some Cartier divisor D = {(Ui, fi)}ri=1 ∈

Pic(X). We then find that

(π∗D)|π−1(X\Y ) = {(π−1(Ui), fi ◦ π)}|X̃\E

= {(π−1(Ui) ∩ X̃ \ E, fi ◦ π|X̃\E)}

= {(π|−1

X̃\E
(Ui ∩X \ Y ), fi|X\Y ◦ π|X̃\E)}

= π|∗
X̃\ED|X\Y .

As the map Pic(X̃) → Pic(X) follows by restricting to Pic(X̃ \E), and then following π|X̃\E∗

to Pic(X \ Y ), we see that this composition is indeed the identity on Pic(X). Therefore, we

may write Pic(X̃) ∼= Pic(X)⊕ Z.

Since an effective Cartier divisor D on X corresponds to ideal sheaf of a closed subscheme

via L(−D), it is natural for us to associate a strict transform D̃ to this divisor. As such,

locally writing out D = {(Ui, fi)}ri=1, we also consider the pullback

π∗D = {(π−1(Ui), f ◦ π)}ri=1.

In the case where Y is a point, we find that π∗D = D̃ + ordY (D)E, where E = π−1(Y ) is

the exceptional divisor, following from Exercise 23.4.P of [Vak22]. To clarify, ordY (D) ≥ 0

is defined such that if η ∈ Y is the generic point, and D|U = div(f) for some neighbourhood

U ⊆ X of η, then f ∈ m
ordY (D)
η \mordY (D)+1

η . This is well-defined regardless of neighbourhood

for the same reason the usual mapping from Cartier divisors to Weil divisors is.

47



2.6 Canonical Divisor Class

To tie our geometry together, we take a page from differential geometry and consider the

derivatives of our functions. Following from the operations familiar to us for derivatives in

ordinary calculus, let’s examine the generalization of Kähler differentials.

Definition 2.6.1 (Relative Derivation). Let A be a commutative ring, B and A-algebra,

and M some B-module. An A-derivation d : B → M is a map satisfying for all b1, b2 ∈ B

and a ∈ A:

1. (Additivity) d(b1 + b2) = d(b1) + d(b2).

2. (Leibniz Rule) d(b1b2) = b1d(b2) + b2d(b1).

3. (Constant Rule) d(a) = 0.

Note that the Leibniz rule, constant rule, and additivity pair together to mean that a

k-derivation over a k-vector space is indeed linear.

Paired with our relative derivations, we also have an associated module which satisfies a

certain universal property. The most straightforward way to go about constructing such a

module is by taking

M =
⟨db⟩b∈B

⟨d(b1 + db2)− db1 − db2, d(b1b2)− b1db2 − b2db1, da⟩b1,b2∈B,a∈A
,

where we imply the free B-modules generated by such symbols. However, another such way

we may do so is by considering the ring B ⊗A B.

Following a construction familiar if you have worked with differential forms, suppose we

have the map D : B ⊗A B → B given on the pure tensors as D(b1 ⊗ b2) = b1b2. Using the

kernel I = kerD, we may determine an A-derivation d : B → I/I2 by

db = b⊗ 1− 1⊗ b+ I2,
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where I/I2 inherits B-multiplication from B⊗AB defined by b1(b2⊗ b3) = b1b2⊗b3. Clearly,

without even considering B-multiplication, we immediately see this derivation satisfies ad-

ditivity and the constant rule. Additionally, we do also find for b1, b2 ∈ B that

d(b1b2) = b1b2 ⊗ 1− 1⊗ b1b2 + I2,(1)

b1db2 + b2db1 = b1b2 ⊗ 1− b1 ⊗ b2 + b2b1 ⊗ 1− b2 ⊗ b1 + I2,(2)

db1 · db2 = b1b2 ⊗ 1− b2 ⊗ b1 − b1 ⊗ b2 + 1⊗ b1b2 + I2.(3)

However, since the representative for db1 · db2 is necessarily an element of I2, it follows that

b1db2 + b2db1 = d(b1b2) + db1 · db2 = d(b1b2).

This discussion is summarized in the following proposition.

Proposition 2.6.2. Let B be an A-algebra, both commutative rings. There exists a module

of relative differential forms, denoted ΩB/A with an A-derivation d : B → ΩB/A and unique

up to isomorphism, such that if d2 : B → M is another A-derivation, there there exists a

unique map φ : ΩB/A →M such that the following diagram commutes.

B M

ΩB/A

d

d2

φ

Proof. See Proposition 26.1 of [Mat70].

Example. LetA = k andB = k[x1, . . . , xn] for a number field k. Then ΩB/k = Spank{dx1, . . . , dxn},

and the derivation map d : B → ΩB/k corresponds to the derivative of a given polynomial

as a complex function.

Let’s now construct a sheaf which corresponds to our module of relative differentials.

Suppose that X and Y are schemes and we are given a map f : X → Y . Consider first the
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case where X = Spec(B) and Y = Spec(A). We recall that X ×Y X ∼= Spec(B ⊗A B), and

there is a map X → X ×Y X which comes from the map D : B⊗AB → B as defined above.

As this ring map is surjective, we have identified X as a closed subscheme of X ×Y X whose

ideal sheaf is generated by the kernel of D.

With this setup, we may now impose that ΩX/Y be defined as (ΩB/A)
∼, where we now

obtain a derivation d : OX → ΩX/Y . It should be noted that the localization of a module

of relative differential forms is precisely the differential forms of the localized ring, so our

derivation map remains well defined as a sheaf map. For more general schemes X and Y ,

it suffices to patch both with affine open subsets and glue these modules together to define

the sheaf ΩX/Y .

Example. Let X = P1
k with projective coordinates (x : y), and take Y = Spec(k) for an

algebraically closed field k. We may compute ΩP1
k/k

as isomorphic to the sheaf O(−2). To

see why, fix an affine patch U = D+(x). On this patch, we know that ΩU/k is a free sheaf of

rank 1 generated by the global section d
(
y
x

)
. By using a similar argument on V = D+(y),

we have on the open cover P1
k = U ∪ V

ΩP1
k/k

|U ∼= d
(y
x

)
OP1

k
|U ΩP1

k/k
|V ∼= d

(
x

y

)
OP1

k
|V .

On the intersection U ∩ V , it follows from our rules of derivation (or by standard calculus

rules) that

x

y
· d
(y
x

)
= −y

x
· d
(
x

y

)
.

Therefore, by comparing local generators, ΩP1
k/k

is isomorphic to the sheaf generated by

the Cartier divisor {(U, x
y
), (V, y

x
)}. Since this divisor has a pole at {y = 0} and a pole at

{x = 0}, and no zeroes or poles anywhere else, it must be isomorphic to O(−2).

An interesting fact of the sheaf of relative differentials is that it encodes the information

regarding whether a particular scheme is non-singular by its rank should it be a free sheaf.

Unfortunately, this also means that for surfaces and beyond, we no longer have an invertible
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sheaf and cannot connect it to the Picard group. However, we may recover this via the

exterior algebra.

Definition 2.6.3. Let X/k be non-singular. The canonical divisor sheaf on X, is ωX =∧nΩX/k, where
∧nΩX/k is the sheaf associated to the presheaf

U 7→
n∧
ΩX/k(U).

We often write KX as the canonical divisor associated to ωX/k when we have all divisor

groups isomorphic.

We refer to such a sheaf as canonical since it has been defined without any choices.

Notably, each of our previous divisors which granted us maps to projective space each came

with some choice of coordinates or hyperplanes. Now, however, we have a purely geometric

way to examine non-singular schemes. Let’s investigate a few propositions which help give

a sense for how this sheaf behaves.

Proposition 2.6.4. Let X = Pn. Then ωX ∼= O(−n− 1).

Proof. While a similar argument follows for n ≥ 2 as it did for P1, this also follows from

Theorem II.8.13 of [Har13].

We also recall Exercise II.8.3 and Exercise II.8.5 of [Har13] in the following two proposi-

tions.

Proposition 2.6.5. Let X and Y be non-singular schemes over k. Then if π1 : X×kY → X

and π2 : X ×k Y → Y are the projection maps, we have

KX×kY ∼ π∗
1KX + π∗

2KY .

Proposition 2.6.6. Let X be a non-singular scheme, with Y ⊆ X a non-singular closed

subscheme with codim(Y,X) = r ≥ 2. If π : X̃ → X is the blow up of X along Y , with
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exceptional divisor E. Then

KX̃ = π∗KX + (r − 1)E.

2.7 Elliptic Curves

With much of the geometry behind us, let’s turn to another interesting curve, which encodes

a similar level of novel arithmetic information on a level comparable to P1. To understand

elliptic curves, we begin with a famous result of projective curves.

Theorem 2.7.1 (Riemann-Roch for Curves). Let C be a non-singular projective curve with

canonical sheaf KC. For any D ∈ Div(C), we denote

ℓ(D) = dimk L(D).

Then there exists an integer g ≥ 0, referred to as the genus, such that for any D ∈ Div(C),

ℓ(D)− ℓ(KC) = deg(D)− g + 1

Proof. Refer to Theorem IV.1.3 of [Har13].

Note that when D = 0, we have deg(D) = 0 and ℓ(D) = 1, so that ℓ(KC) = g after

re-arrangement.

Proposition 2.7.2. Let C/k be a smooth projective curve of genus 1, then there exists

a1, . . . , a6 ∈ k such that we may embed C into P3
k by

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

Proof. To begin, notice by Riemann-Roch that the canonical divisor is trivial as it must

have dimension 1. Next, choose a point O ∈ E, consider ℓ(nO) for n ≥ 0. Since nO is

effective, there is certainly no f ∈ K(C)∗ for which div(f)−nC has no poles anywhere, and
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so ℓ(−nO) = 0. Therefore, now applying Riemann-Roch again, we may conclude ℓ(nO) = n

for all n ≥ 1

Next, let’s go through the construction of L(nO) for each n ≥ 0.

When n = 1, we simply have L(nO) = Spank{1}.

For n = 2, we may then obtain some x ∈ K(C)∗ such that 2O + div(x) ≥ 0. From this

point, we also note that 2mO + div(xm) ≥ 0. Now our space is L(2O) = Spank{1, x}.

For n = 3, we may necessarily obtain an additional y ∈ K(C)∗ such that 3O + div(y) ≥

0. From this point, we also note that 3mO + div(ym) ≥ 0. Now our space is L(3O) =

Spank{1, x, y}.

At n = 4, we finally may obtain a new rational function from our previous basis. It then

suffices to take L(4D) = Spank{1, x, y, x2}.

Likewise, at n = 5, the section xy ∈ K(C)∗ will suffice, bringing us up to L(5D) =

Spank{1, x, y, x2, xy}.

Finally, for n = 6, we have reached a conflict since we know of seven sections in K(C)∗

which belong to L(6O), but ℓ(6O) = 6. Thus, we may obtain some a1, . . . , a6 ∈ k such that

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

With these rational functions, we take φ : C → P2 to be the rational map given as

φ(P ) = (x(P ) : y(P ) : 1).

It can be deduced from Theorem A.4.2.4 of [HS13] that 3O is very ample, and hence we

obtain our desired result.

Assuming the defining field is not of characteristic 2 or 3, by following the proof of
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Theorem A.4.4.1 in [HS13], We may also write our defining equation in Weierstrass form by

Y 2Z = X3 + aXZ2 + bZ3.

The fact that C is non-singular is equivalent to the condition that 4a3 + 27b2 ̸= 0, an

assumption we will often make. We may also use this form of the equation to analyze a

rational point P = (xP : yP : 1) ∈ C(Q). By substituting into our Weierstrass equation and

clearing denominators, we may determine that we can write xP = AP/D
2
P and yP = BP/E

3
P

in reduced form.

Fix a point O ∈ C and consider a mapping on the closed points of C to Pic0(C), divisors

of degree zero in the equivalence class, by P 7→ P − O. Note that for any pair of points

P,Q ∈ C, by Bézout’s Theorem (Corollary I.7.8 of [Har13]), the line through P and Q

passes through a third point R, up to multiplicity. If we take L to be the rational function

associated to this line, then by dividing by the line T which vanishes to order 3 at O, we

obtain in our Picard group that

div(L/T ) + 3O = P +Q+R.

Therefore, as (P −O)+ (Q−O)+ (R−O) is the identity in Pic0(P ), this grants us a group

law that P +Q = −R.

54



3 Height Functions

3.1 Projective Height Functions

As with our initial result from [BCZ02], a key element to characterizing our result was the

arithmetic complexity of a given integer. While it is simple in the case of integers, we note

that we may easily and naturally extend our notion of arithmetic complexity. We follow

closely the work of [HS13] throughout the next few sections.

As an example, consider Roth’s theorem, as cited from [HS13], mentioned previously.

Theorem 3.1.1 (Roth’s Theorem). Given an algebraic number α ∈ R, for any ε > 0, there

exist at most finitely many co-prime integers p, q ∈ Z such that

∣∣∣∣α− p

q

∣∣∣∣ < 1

|q|2+ε
.

In this example, we have a notion on the arithmetic complexity of a fraction p/q by

taking its denominator. It should be noted that only the denominator is considered in this

expression of Roth’s theorem due to the common analysis of reals in the interval [0, 1). For

completeness, we may more symmetrically examine max(|p|, |q|).

However, looking at only this norm on the rationals is only half of the picture. We

recall that for each prime p ∈ Z, that Z(p) is a discrete valuation ring with pZ(p) the unique

maximal ideal. From this, we obtain a function

ordp : Z(p) \ {0} → N

such that ordp(ab) = ordp(a) + ordp(b), ordp(p) = 1, and ordp(x) = 0 for any x /∈ pZ(p).

Clearly, this corresponds to our notion of the unique power of p in the unique prime factor-

ization of a given integer.

Extending this to the field of fractions by preserving our additive rule, we obtain a new p-

adic norm on our rational numbers given for a ∈ Q \ {0} as |a|p = p−ordp(a) and |0|p = 0. We
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may also note one interesting quirk when verifying our triangle inequality that we rather find

an ultrametric inequality. For any a, b ∈ Q, we may show that |a+b|p ≤ max{|a|p, |b|p}, which

easily follows as a result of unique prime factorization. Due to this, the natural numbers are

obviously bounded, and hence we refer to such absolute values as non-archimedean while

our usual absolute value is archimedean. We refer to the collection of norms on Q by the set

MQ and use the notation | · |v to represent the v-norm.

With this, we are ready to define the height of a rational number r ∈ Q. Looking

instead at the rational point (r : 1) ∈ P1, which can be re-expressed with co-prime integer

coordinates (a : b), we set

HQ(a : b) =
∏
v∈MQ

max{|a|v, |b|v}.

While this perfectly coincides with our original definition for gcd(a, b) = 1, we also note

that this norm is perfectly invariant to the scaling of coordinates as we’d expect for P1.

This definition can be easily extended to higher dimensional projective spaces by taking a

maximum over more coordinates.

Next, let’s mention how we can extend our notion of algebraic complexity to finite field

extensions k/Q. We begin with our non-archimedean norms, denotedM0
k . Setting Rk as our

ring of integers and fixing a prime ideal P ∈ Spec(R), note that Rk,P is likewise a local ring

with a valuation. Therefore, we may similarly obtain a homomorphism ordP : k∗ → Z.

In order to now find an exponential base, we will use Nk/Q(p) = |Rk/p|. With this, we

take for x ∈ k∗,

∥x∥p = Nk/Q(p)
−ordp(x),

and of course ∥0∥p = 0. In this way, as Rk/p is a finite field and Spec(Rk) → Spec(Z) puts

Rk over some prime p ∈ Z, we may define all of our p-adic norms on k. Pay special attention

to this case as if p ∈ Z is still prime in Rk, then Nk/Q(pRk) = p[k:Q], so it is not the case that

∥x∥pRk
= |x|p for x ∈ Q.
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However, we also usually have more than one archimedean norm on k as well. In fact,

we obtain one for each real embedding of k → R, as well as one for each pair of conjugate

complex embeddings k → C. Once a particular embedding ρ : k → C is chosen, we simply

take for x ∈ k

∥x∥ρ = |ρ(x)|nρ ,

where nρ = [F : R] with F = C for a complex embedding and F = R for a real embedding.

We commonly denote the archimedean norms on k as M∞
k .

Finally, with an understanding of the set of places Mk of a finite field extension k/Q,

we may define our relative heights with respect to a choice of coordinates on Pn. Note that

k-rational points in Pn may be thought of as any point who has some choice of coordinates

all lying k.

Definition 3.1.2. Let k/Q be a finite field extension. For a point P = (a0, . . . , an) ∈ Pn(k),

we define the multiplicative height as

Hk(P ) =
∏
v∈Mk

max{∥a0∥v, . . . , ∥an∥v}.

We also define the logarithmic hieght as hk(P ) = Hk(P ).

We also attribute a more general height on our projective space.

Definition 3.1.3. The absolute multiplicative height H : Pn(Q) → [1,∞) is given by

H(P ) = Hk(P )
1

[k:Q] ,

where P ∈ P(k) and choice of finite extension k/Q is arbitrary. We similarly define the

absolute logarithmic height h : Pn(Q) → [0,∞) as h(P ) = logH(P ).

Let’s show that these height functions are well-defined irrespective of homogeneous co-

ordinates or choice of field for our absolute heights. First, we recount an important fact

regarding absolute values.
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Lemma 3.1.4 (Product formula). Let k/Q be a finite field extension. For any x ∈ k∗, we

have ∏
v∈Mk

∥x∥v = 1.

Proof. We note that this is clearly true for k = Q as each p-adic norm will divide out by the

part of a rational lying over p. To verify for a field extension k/Q with ring of integers Rk,

consider by the fact that Rk is a Dedekind domain (Theorem 3.1 in [Neu13]) that for any

x ∈ k∗,

xRk =
r∏
i=1

p
ordpi (x)

i .

By taking norms, we find

|Nk/Q(x)| = Nk/Q(xRk) =
r∏
i=1

Nk/Q(pi)
ordpi (x).

Therefore, once we consider a particular prime p ∈ Z, as each p-adic norm corresponds to

the primes lying over p, we must have

|Nk/Q(x)|p =
r∏
i=1

|Nk/Q(pi)
ordpi (x)|p

=
∏

P∈Spec(Rk)
x,p∈p

Nk/Q(p)
−ordp(x)

=
∏
v∈Mk
v|p

∥x∥v.

This similarly holds for archimedean extensions of the usual absolute value on Q as well. In

the following calculation, note that the squaring of absolute values associated to complex

embeddings can be accounted for as a product of the embedding and its conjugate, and that

the norm of an algebraic number of Q is often defined as the product of all embeddings.
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Putting this together with Proposition 2.6 of [Neu13] grants us

∏
v|∞

∥x∥v =
∏
σ:k→C

|σ(x)|∞ = |Nk/Q(x)|∞.

With our identity true for all places MQ, we conclude

∏
v∈Mk

∥x∥v =
∏
v0∈Q

∏
v∈Mk
v|v0

∥x∥v

=
∏
v0∈Q

|Nk/Q(x)|v0

= 1.

Also, we recall the fundamental identity found in Proposition 8.2 of [Neu13].

Lemma 3.1.5. Let k′/k be a finite extension of number fields with rings of integers Rk′ and

Rk. Suppose that p ∈ Spec(Rk) has the following unique decomposition over Rk′

pRk′ =
r∏
i=1

peii .

Moreover, for each 1 ≤ i ≤ r, as Rk/p may be regarded as a subfield of Rk′/pi, take

fi = [Rk′/pi : Rk/p].

Then the following fundamental identity holds

r∑
i=1

eifi = [k′ : k].

Now, we may confirm that our height functions are well-defined.
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Proposition 3.1.6. Fix a finite field extended k/Q and fix some point P ∈ Pn(k). Then

the height Hk(P ) is independent of choice of homogeneous coordinates. Moreover, if k′/k is

an additional finite extension, then Hk′(P ) = Hk(P )
[k′:k] and hence our absolute height is

well-defined.

Proof. We begin by verifying our first claim. Choose some coordinate P = (a0, . . . , an) and

consider some non-zero scalar c ∈ k∗. Then, using our product formula,

∏
v∈Mk

max{∥ca0∥v, . . . , ∥can∥v} =
∏
v∈Mk

∥c∥vmax{∥a0∥v, . . . , ∥an∥n}

=

( ∏
v∈Mk

∥c∥v

)( ∏
v∈Mk

max{∥a0∥v, . . . , ∥an∥v}

)

=
∏
v∈Mk

max{∥a0∥v, . . . , ∥an∥v}.

Next, let’s inspect Hk′(P ) given below as

Hk′(P ) =
∏
v∈Mk′

max{∥a0∥v, . . . , ∥an∥v}.

To analyze this with respect to the absolute values on our base field, let’s break down this

product by absolute values on k′ which lie over a particular absolute value on k,

Hk′(P ) =
∏
v∈Mk

∏
w∈Mk′
w|v

max{∥a0∥w, . . . , ∥an∥w}.

To proceed, let’s consider the cases of an archimedean or non-archimedean absolute value.

If w ∈ Mk′ extending v ∈ Mk corresponds to some embedding σ′ : k′ → k′w, then v would

correspond to σ : k → kv, where k
′
w, kv = C or R and kv ⊆ k′w. Hence, for any x ∈ k,

∥x∥w = |σ′(x)|[k′w:R] = |σ(x)|[k′w:kv ]·[kv :R] = ∥x∥[k′w:kv ]
v .
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With this, we find for the component of our product extending the archimedean values that

∏
v∈M∞

k

∏
w∈Mk′
w|v

max{∥a0∥w, . . . , ∥an∥w} =
∏

v∈M∞
k

∏
w∈Mk′
w|v

max{∥a0∥v, . . . , ∥an∥v}[k
′
w:kv ]

=
∏

v∈M∞
k

max{∥a0∥v, . . . , ∥an∥v}[k
′:k],

following simply from the fact that [k′ : k] is the number of embeddings k′ → C which extend

an embedding of k → C, and [k′w : kv] ensures we count twice for each complex embedding

and its conjugate when extending a real embedding by a complex one.

Next, let P ′ ∈ Spec(Rk′) lie over P ∈ Spec(Rk). Then, as we may view Rk/P as a subfield

of Rk′/P
′, we may calculate

Nk′/Q(p
′) = |Rk′/p

′|

= |Rk/p|[Rk′/p
′:Rk/p]

= Nk/Q(P )
[Rk′/p

′:Rk/p],

where f = [Rk′/p
′ : Rk/p] is the inertia degree of p′ over p. Moreover, if e is the ramification

index of p′ over p in the factorization of pRk′ , then it is clear that ordp′(x) = eordp(x) for

any x ∈ k∗. Therefore,

∥x∥w = Nk′/Q(P
′)−ordp′ (x) = Nk/Q(P )

−efordp(x) = ∥x∥efv .

With this line of reasoning, using ew and fw to correspond to the ramification index and

inertia degree of the primes associated to w|v, we may use our earlier fundamental identity
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to show

∏
v∈M0

k

∏
w∈Mk′
w|v

max{∥a0∥w, . . . , ∥an∥w} =
∏
v∈M0

k

∏
w∈Mk′
w|v

max{∥a0∥v, . . . , ∥an∥v}ewfw

=
∏
v∈M0

k

max{∥a0∥v, . . . , ∥an∥v}[k
′:k].

Finally, putting these two cases together

Hk′(P ) =
∏
v∈Mk

max{∥a0∥v, . . . , ∥an∥v}[k
′:k] = Hk(P )

[k′:k].

As one more note, we also find that our projective heights don’t change significantly by

change of coordinates. Indeed, if A : kn+1 → km+1 is an injective linear map, then for any

(a0 : · · · : an) ∈ Pn(k), we may define a constant M > 0 such that

max
0≤j≤m

∥∥∥∥∥
n∑
i=0

Ai,jai

∥∥∥∥∥
v

≤M max
0≤i≤n

∥ai∥v.

Indeed, we may simply take

M = max
v∈Mk

n∑
i=0

m∑
j=0

∥Ai,j∥v,

which makes sense over all places since there’s only finitely many which don’t evaluate to

(n + 1)(m + 1). Also, because our map was invertible on its image, there is some N > 0

which satisfies for all (a0 : · · · : an) ∈ Pn(k) that

max
0≤j≤m

∥∥∥∥∥
n∑
i=0

Ai,jai

∥∥∥∥∥
v

≥ N max
0≤i≤n

∥ai∥v.

Using our product rule on these two bounds, it is immediate that we find h(A(P )) = h(P )+

O(1) for all P ∈ Pn, with the implied constant independent of P .
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3.2 Weil’s Height Machine

With a notion for the arithmetic complexity of a point in projective space established, we

are now ready to extend this definition considerably. Indeed, there exists a very natural

method to extend to a much wider class of geometries.

Definition 3.2.1. Let φ : X/k → Pn be a morphism. We may take the (absolute logarithmic)

height on X relative to φ as h : V (Q) → [0,∞) defined by hφ(P ) = h(φ(P )).

One should note that for a given quasi-projective variety over Q, there are always many

maps which one can construct to projective space. This does make sense, however, since

arithmetic complexity will naturally depend on the choices we are using to analyze our

space, just as much as it matters where we fix the origin on the number line when setting up

height functions for the abstract curve P1(Q) itself. Fortunately, when our choices of maps

are similar with respect to the underlying geometry, there is a strong relationship between

the resulting height functions.

Indeed, for a projective variety X/k, when φ : X → Pn and ψ : X → Pm are mor-

phisms for which L1 = ϕ∗OPn(1) and L2 = ψ∗OPm(1) are isomorphic, we in particular have

Γ(X,L1) ∼= Γ(X,L2) as a k = Γ(X,OX) module. Thus, we may express the generating

global sections of one module as a linear combination of global sections from another. Then

regarding these sheaves of modules as a OX-module of K(X), the associated maps to pro-

jective space may be composed with a k-linear map to obtain the other. As a result, we may

state the following theorem.

Theorem 3.2.2. Let X/k be a projective variety and k a number field, and consider two

morphisms φ : X → Pn and ψ : X → Pm. Suppose as well that ϕ∗OPn(1) ∼= ψ∗OPm(1). Then

there exists some constant C > 0 such that for any P ∈ X(k),

|hφ(P )− hψ(P )| ≤ C.

Proof. In addition to the discussion above, we refer to Theorem B.3.1 of [HS13].
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Using this fact, let’s consider the maps associated to the base point free divisors on some

variety X/k. Immediately, we note that the choice of basis for L(D) does not matter up to

an O(1) constant by the previous proposition. Also, when D1 ∼ D2 for D1, D2 ∈ Div(X), it

is also immediate that a basis {f0, . . . , fn} of L(D1) grants a basis {f0g, . . . , f2g} of L(D2)

provided D1 = D2 + div(g), so these maps agree away from the support of div(g) since

φD(x) = (f0(x) : · · · : fn(x)) = (f0(x)g(x) : · · · : fn(x)g(x)).

Thus, we have a well-defined notion of heights associated to base point divisors in our Picard

group up to O(1), which we denote as hD for any D ∈ Div(X).

To extend this a bit, note that for any base point free divisorsD1, D2 ∈ Div(X), if we have

L(D1) = Spank{fi}ni=0 and L(D2) = Spank{gj}m0=1, then there is some subset I ⊆ {(i, j) : 0 ≤

i ≤ n, 0 ≤ j ≤ m} such that L(D1 +D2) = Spank{figj}(i,j)∈I . Using this, and the fact that

there is some linear map A : k|I| → knm+n+m such that A((figj)(i,j)∈I
) = (figj)0≤i≤n,0≤j≤m,

for any P ∈ X(k),

[k : Q]hD1+D2(P ) = [k : Q]h(ϕD1+D2(P ))(P )

= h(A(ϕD1+D2(P ))) +O(1)

=
∑
v∈Mk

max
0≤i≤n
0≤j≤m

log ∥fi(P )gj(P )∥v +O(1)

=
∑
v∈Mk

max
0≤i≤n

log ∥fi(P )∥v +
∑
v∈Mk

max
0≤j≤m

log ∥gj(P )∥v +O(1)

= [k : Q](hD1(P ) + hD2(P )) +O(1),

implying hD1+D2 = hD1 + hD2 . Therefore, since we find that for any D ∈ Div(X), we may

always find base point free divisors D1, D2 ∈ Div(X) for which D = D1 − D2, we may

extend our notion to all such divisors in this additive way, which is well-defined up to O(1).

This map is referred to as Weil’s Height Machine, and we will explore how the geometric
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and algebraic way the divisor class group behaves on our space correspondingly affects the

arithmetic of rational points.

While we have explored additivity, linear equivalence, and some aspects of uniqueness,

there are a few other properties which make our height machine very useful.

Theorem 3.2.3. Let the map D 7→ hD be the association of height functions to divisors

described above. Letting X and Y be a variety over a number field k and D1, D2 ∈ Div(X),

we have the following properties.

1. (Uniqueness) The properties described here force a unique choice of height functions, as

constructed above, up to O(1) equivalence. It is in fact possible as well to give effective

bounds with respect to the defining equations of varieties, divisors, and morphisms.

2. (Normalization) Let H ⊆ Pn be a hyperplane. Then hH = h+O(1), where h : Pn(Q) →

[0,∞) is the absolute logarithmic height.

3. (Functiorality) Let φ : X → Y be a morphism of varieties and fix D ∈ Div(Y ), then

hφ∗D = hD ◦ φ+O(1).

4. (Additivity) hD1+D2 = hD1 + hD2 +O(1).

5. (Linear Equivalence) If D1 is linearly equivalent to D2, then hD1 = hD2 +O(1).

6. (Positivity) If D1 is effective and U is an open subset on which none of the global

sections of L(D) vanish then hD1|U ≥ O(1).

7. (Northcott Property) Suppose that D1 is ample. Then for any finite extension k2/k

and M > 0, there are only finitely many P ∈ V (k′) for which hD(P ) ≤ B.

Proof. We refer to the proof of Theorem B.3.2 of [HS13] for more details.
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3.3 Local Height Functions

We begin this section by recalling our projective height definition on P1. Fixing (x : 1) ∈

P(k) \ {(0 : 1)} for some finite extension k/Q, we recall

h(x : 1) = h(1 : x−1) =
1

[k : Q]

∑
v∈Mk

max{− log ∥x∥v, 0}.

To simplify things, we may consider for each v ∈ Mk an associated function v+ : k∗v → R≥0

given by v+(x) = 1
[k:Q]

max{− log ∥x∥v, 0}. From here, it is clear that v+ is morally behaving

as minus the logarithm of v-adic distance function from x ∈ k∗v to 0 ∈ kv.

In particular, we see that the height h(x : 1) is broken down as the v-adic distances

from (x : 1) to the point (0 : 1). Fundamentally, this is an interesting example since the

divisor given by (0 : 1) corresponds to the invertible sheaf O(1), which is exactly the identity

embedding on P1 as we would hope. Overall, we would like to show that we could think of

our height functions as the sum of v-adic distances to the divisor in question.

To explore local heights further, fix a base field k which is a finite extension of Q, and let

X/k be a projective variety. For each v ∈Mk, writing kv as the completion of k with respect

to this place and v : k× → R as the function v(x) = − 1
[kv :Qv ]

log ∥x∥v, we may endow X(kv)

with a minimal topology containing the Zariski open sets, and such that P 7→ log v(f(P )) is

continuous away from the poles and zeroes of f ∈ K(x).

With this topology, for a given divisor D, we would like to describe a family of functions

(λv)v∈Mk
such that

λv : (X \ supp(D))(kv) → R

is continuous and roughly approximates the negative logarithm of v-adic distance to D in

the sense that if D|U is given by div(f), we have

∑
v∈Mk

|λv(P )− v(f(P ))| = O(1).
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Definition 3.3.1. Let X/k be a projective variety with k a number field. A family of

functions (γv)v∈Mk
, with γv : X(kv) → R, is an Mk-constant when each γv is constant and

γv ̸= 0 for only finitely many v ∈Mk. If we are given a similar family of functions (αv)v∈MK

and (βv)v∈Mk
, we write αv = βv +Ov(1) if their difference is an Mk-constant.

We also speak towards bounded regions.

Definition 3.3.2. Let X/k be a variety and consider a family of subset S = (Sv)v∈Mk
for

which Sv ⊆ X(kv). We say that the family S is affine Mk-bounded when there exists some

affine open subset U ⊆ X and Mk constant γ, with coordinates (x1, . . . , xn), such that for

any v ∈Mk and (x1, . . . , xn) ∈ Sv ∩ U(kv),

min
1≤i≤n

v(xi) ≥ −γv.

We say that a family S is Mk-bounded when we may cover our family with finitely many

affine Mk-bounded families.

Proposition 3.3.3. Let X/k be a projective variety. Then the family (X(kv))v∈Mk
is Mk-

bounded.

Proof. See Proposition 10.1.2 of [Lan13].

With the above in mind, we would like to be able to write for a Cartier divisor D =

{(Ui, fi)}, and associated family λ = (λv)v∈Mk
for which we have for all P ∈ Ui(kv) which is

neither a pole nor zero of fi,

λv(P )− v(f(P ))

is continuous and bounded above and below by a predetermined Mk constant on all Mk-

bounded families of Ui. This condition simplifies in projective space as we just require that

we are bounded by an Mk-constant. We often attribute a family of functions αi = (αi,v)v∈Mk

to represent this difference

λv = v ◦ fi + αi,v,
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and would then require that v◦fif−1
j = αj,v−αi,v on the intersections Ui∩Uj. Such functions

are referred to as Weil functions, or local height functions, and we consequently obtain the

following properties.

Theorem 3.3.4. Let X/k be a non-singular projective variety and D a Cartier divisor. A

Weil function λD associated to D satisfies the following properties.

1. (Uniqueness) If λ′D satisfies the same difference requirement as above, then λD,v =

λ′D,v +Ov(1).

2. (Additivity) For another divisor E ∈ Div(X), we have λD1+D2,v = λD1,v+λD2,v+Ov(1).

3. (Functiorality) Given a morphism φ : X → Y of non-singular projective varieties and

E ∈ Div(Y ), we find that λφ∗E,v = λE,v ◦ φ+Ov(1)

Proof. The above properties are given in Proposition 10.2.1, Proposition 10.2.2, and Propo-

sition 10.2.5 of [Lan13].

To explore this relationship further, consider the following proposition.

Proposition 3.3.5. Let X/k be a non-singular projective variety, and let D,D1, . . . , Dn ∈

Div(X) a family of divisors such that ∩1≤i≤nsupp(Di) = ∅. Then we may calculate for any

v ∈Mk and P ∈ (X \ supp(D))(kv) that

λD,v = min
1≤i≤n

λD+Di,v(P ),

where the minima only takes into account 1 ≤ i ≤ n for which P /∈ supp(Di).

Proof. See Proposition 10.3.2 in [Lan13].

As a consequence, we may construct a Weil function for any divisor. To do so, fix some

D ∈ Div(X) and choose E1, . . . , En and F1, . . . , Fm ∈ Div(X) such that

⋂
1≤i≤n

supp(Ei) =
⋂

1≤j≤m

supp(Fi) = ∅,
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and D+Ei = Fj by Lemma 10.3.4 of [Lan13]. Next, taking fi,j ∈ K(X) such that div(fi,j) =

Fj − D − Ei for each 1 ≤ i ≤ n and 1 ≤ j ≤ m, we may use the following proposition to

determine that for all v ∈Mk, 1 ≤ i ≤ n, and P ∈ (X \ supp(D + Ei))(k),

λ−D−Ei,v(P ) = min
1≤j≤m

λFj−D−Ei,v(P ) = min
1≤j≤m

v(fi,j(P )),

or λD+Ei
= max1≤j≤m−v(fi,j(P )). With one more application of our proposition, we arrive

at

λD,v(P ) = max
1≤j≤m

min
1≤i≤n

−v(fi,j(P )).

This is indeed a very useful way to compute local heights. In particular, if we have a

hypersurface of Pn defined by a single equation F (x0, . . . , xn) = 0 of degree d, note that we

have for each 0 ≤ i ≤ n that

d{xi = 0} − {F (x) = 0} = div(xdi /F (x)).

Since ∩0≤i≤n{xi = 0} = ∅, we then have

λ{F (x)=0}(x) = max
0≤j≤m

v(F (x)/xdi ).

This very nice computational aspect aside, we also have a few other properties which

allow local height functions to apply quite generally. Referring to Theorem B.8.1 of [HS13],

we write the following.

Theorem 3.3.6. Consider a non-singular projective variety X/k with divisor D. Let D 7→

λD be the local height machine as described above. We also have the following two properties.

1. (Positivity) If D is effective, then λD,v ≥ Ov(1).

2. (Local to Global Property) We may determine the Weil height hD by the local heights
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as

hD(P ) =
∑
v∈Mk

[kv : Qv]

[k : Q]
λD,v(P ) +O(1).
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4 Vojta’s Conjecture

At the heart of this paper’s conclusion lies a conjecture of Vojta. To explore this conjecture

further, let’s re-examine the Subspace Theorem.

Fix a number field k, with algebraic closure k and ring of integers Rk, and let S ⊆ Mk

be a finite set of places containing all the archimedean places. Let’s also consider a set of

linearly independent linear forms L0, . . . , Ln ∈ k[x0, . . . , xn]. Taking δ > 0, our inequality of

the Subspace Theorem is

n∏
i=0

∏
v∈S

∥Ln(x0, . . . , xn)∥v ≥ ( max
0≤i≤n,v∈M∞

k

∥xi∥v)−δ,

for all x0, . . . , xk ∈ Rk except for those solutions contained in finitely many hyperplanes.

However, notice that through scaling both sides of the inequality by the same constant, this

inequality may be viewed for points of Pn(k) except for an exceptional union of hyperplanes

denoted Z.

To proceed, we note by Lemma 2.2.2 of [Voj06] that

max
0≤i≤j,v∈M∞

K

∥xi∥v ≪ Hk(x)

So we may generally write that outside of Z we have for ε > 0 sufficiently small that

n∏
i=0

∏
v∈S

∥Ln(x)∥v ≥ H(x)−ε.

Notice as well that this reformulation is independent of our base field k, so long as it is still

a finite extension of Q.

Next, consider the divisor D = {L0 · · ·Ln = 0}. We know for each v ∈ Mk that our
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corresponding local height function can be written out as

λD,v(x) = log max
1≤j≤n

∥∥∥∥∥ xn+1
j

L0(x) · · ·Ln(x)

∥∥∥∥∥
v

= log max
1≤j≤n

∏
0≤i≤n

∥∥∥∥ xj
Li(x)

∥∥∥∥
v

.

Rearranging our main inequality and taking logarithms, we may now write that

∑
v∈S

λD,s(x) ≤ εh(x) + (n+ 1)
∑
v∈S

log max
0≤j≤n

∥xj∥v.

To simplify this, note that logmax0≤j≤n ∥xj∥v ≥ O(1) for any v ∈ M0
k . To see why, recall

that the class group of Rk is finite, and so we may fix a subset of small primes to which we

scale our coordinates to having potentially positive division at. Therefore, we may replace

the sum over the places in S with the full sum over all of Mk while preserving inequality.

Lastly, note that on Pn, our canonical divisor KPn is given by the invertible sheaf

O(−n− 1), and so we may replace −(n+ 1)h(x) = hKPn (x) +O(1) to obtain

∑
v∈S

λD,s(x) + hKPn (x) ≤ εh(x) +O(1).

With the above, we have found that the Subspace Theorem is actually a geometrical

result on the space Pn. To explore this relationship in more generality, let’s go over some

terminology.

Definition 4.0.1 (Proximity Function and Counting Function). Given a divisor D and a

finite set of places S ⊆Mk for a number field k, we denote the proximity function mS(D,P )

for each P /∈ supp(D) as

mS(D,P ) =
∑
v∈S

λD,s(x).

Intuitively, this is minus the logarithm of the distance from P to D on the places S of

interest.

We similarly define the complimentary counting function NS(D,P ) for each P /∈ supp(D)
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as

NS(D,P ) =
∑
v/∈S

λD,s(x) = hD(P )−mS(D,P )

Definition 4.0.2 (Normal Crossings Divisor). A strict normal crossings divisor D on a

non-singular scheme X is an effective Cartier divisor D, such that for any P ∈ D as a closed

subscheme, there is a κ(P ) basis for mP/m
2
P with representatives f1, . . . , fd ∈ mP \ m2

P for

which D is cut out by f1, . . . fr in OX,P for some 1 ≤ r ≤ d.

Remark. Normal crossings divisors generalize the concept of hyperplanes in general position.

Indeed, for a projective non-singular variety X, we may take a choice of coordinates of the

surrounding projective space for which each hyperplane is some coordinate vanishing, and

then these coordinates also generate any particular maximal ideal mP for P ∈ X.

Definition 4.0.3. (Big Divisor) A divisor L is said to be big if nL is the sum of an effective

divisor and ample divisor for sufficiently large n.

Let’s now state Vojta’s conjecture in more generality.

Conjecture 4.0.4. (Vojta’s Conjecture) Let X/k be a non-singular projective variety and k

a number field. We will also take A to be a big divisor on X, D a normal crossings divisor

on X, and K the canonical divisor class on X. Then for any ε > 0, there exists a proper

closed subset Z, depending on all choices made, such that for any P /∈ Z

mS(D,P ) + hK(P ) ≤ εhA(P ) +O(1).

While not much is known with respect to particular cases of Vojta’s conjecture, we have

the following result from [McK03] which is applicable to our next section.

Theorem 4.0.5. Let C/k be a smooth elliptic curve where the group C(Q) is rank one.

Suppose that there exists a birational k-morphism f : X → C × C, where X is a non-

singular, projective k-scheme. Moreover, suppose that the image of the exceptional set is
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contained in a finite subset of (C × C)(k). If L is a big divisor on X, D is the zero divisor

with trivial height function, and KX is the canonical divisor, then for any ε > 0, there exists

an effectively computable proper closed subset Z ⊆ X for which P ∈ (X \Z)(k) implies that

hK(P ) ≤ εhL(P ) +O(1).

74



5 Application to GCD Problems

5.1 Generalized GCD

With our toolkit in place, let’s now dive into some generalizations of the GCD. Consider two

integers a, b ∈ Z. We recall that

gcd(a, b) =
∏

p prime

pmin{ordp(a),ordp(b)}.

Re-arranging the above expression, and recalling some notation from the section on local

heights, we have

log gcd(a, b) =
∑
v∈M0

Q

min{v+(a), v+(b)}.

Notice as well that for the usual archimedean absolute value on Q that for x ∈ Z

v+∞(x) = max(− log |x|v, 0) = 0,

so our sum may as well be over all places of MQ.

This strongly suggests that the GCD could be generalized by considering the minus

logarithm of the v-adic distance to (0, 0) (abusing notation for an affine piece of P1), using the

tools of local heights. However, we run into the immediate pitfall that if we are considering

(a, b) ∈ (P1 × P1)(Q), then (0, 0) is of co-dimension 2 and not a divisor.

Fortunately, the situation can still be recovered and generalized easily. The key idea is

that blowing up P1 × P1 at the point (0, 0) yields an exceptional divisor, which we can use

for constructing local heights.

Definition 5.1.1 (Generalized GCD). Suppose X/k is a smooth variety, with a closed

subvariety Y of co-dimension at least 2. Let π : X̃ → X be the blowup of X along Y ,

and take E = π−1(Y ) to be the exceptional divisor. We may then define the generalized
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logarithmic greatest common divisor for a point P ∈ (X \ Y )(k) as

hgcd,Y (P ) = hX̃,E(π
−1(P )).

Let’s re-examine our motivating example to see how this definition plays out. Consider

the following special case of Lemma 2.5.2 of [Voj06].

Lemma 5.1.2. Let X/k be a non-singular variety of dimension at least 2 and consider a

closed point Y ∈ X(k). Suppose as well that Y is given as the intersection of finitely many

effective divisors {Di}mi=1 in the sense that IP ∼=
∑m

i=1 L(−Di). If π : X̃ → X is the blowing

up of X with respect to Y with exceptional divisor E = π−1(Y ), then the local Weil height

for any P ∈ X \ Y with respect to the divisor E and place v ∈Mk is given by

λE,v(π
−1(P )) = min{λDi,v(P )}mi=1.

Proof. This is rather intuitive that the v-adic distance to the exceptional divisor could be

determined by determining the v-adic distance to the closest divisor containing Y on X. For

this, note that π∗Di = D̃i + E with ∩mi=1D̃i = ∅, where D̃i is the strict transform of the

closed subvariety associated to Di. Hence, for any P ∈ X \ Y and v ∈Mk,

λE, v(π
−1(P )) = min

1≤i≤m
λπ∗D(π

−1(P )) = min
1≤i≤m

λD,v(P ).

We also require one more tool to assist in computation on products of curves.

Lemma 5.1.3. Let X and Y be curves over an algebraically closed field k. Let Z = X ×k Y

be the product surface with projections p1 : Z → X and p2 : Z → Y . If p1(R) = P and

p2(R) = Q for closed points P ∈ X, Q ∈ Y , and R ∈ Z, then the ideal sheaf associated to R

on Z is isomorphic to L(−p∗1P ) + L(−p∗2Q), where P and Q are effective Cartier divisors.
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Proof. For this, we can work locally and assume that U = Spec(A) ⊆ X, V = Spec(B) ⊆ Y ,

P is the zero of some f ∈ A locally, and Q is the zero of some g ∈ B locally. For ease

of variables, we identify each closed point with the associated maximal ideal. As our open

neighbourhood of R is U × V = Spec(A ⊗k B), we will determine R as associated to some

maximal ideal A⊗B. As p1(R) = P , it should be noted that R contains f ⊗ 1, and likewise

that R contains 1⊗ g.

However, we may stop here as for any pure element a ⊗ b ∈ A ⊗ B, we can determine

some u ∈ A and v ∈ B for which au− 1 ∈ fA and bv − 1 ∈ gB, allowing us to write

(a⊗ b) · (u⊗ v) = au⊗ bv = (1 + As)⊗ (1 + gB) = 1⊗ 1 + 1⊗ gB + fA⊗ 1 + fA⊗ gB.

As the sets on the right are contained in ⟨f⊗1, 1⊗g⟩ by closure, we see that A⊗B/(f⊗1, 1⊗g)

is a field. Consequently, ⟨f ⊗ 1, 1⊗ g⟩ is maximal and thus all of R.

With this description, let’s now consider what p∗1P and p∗2Q are as ideals of A⊗kB. For-

tunately, as these are principal subschemes, we may simply note that they are the vanishing

of f ◦ p1 = f ⊗ 1 and g ◦ p2 = 1⊗ g. Therefore, we obtain that R = p∗1P + p∗2Q. Moreover,

since we may cover X, Y , and Z with patches in this way and the construction agrees on

overlaps, it must be the case that IR ∼= L(−p∗1P ) + L(−p∗2Q).

Let’s go over some examples, ignoring error terms which may be taken as zero by choice

of local height functions.

Example. Consider the point Y = ((0 : 1), (0 : 1)) in X = P1 × P1. Let π : X̃ → X

be the blowing up of X along our point Y with exceptional divisor E. Let’s also denote

p1, p2 : X → P1 to be our projection maps from our product. From our previous lemmas, we

may determine that for any place v ∈MQ, we have for any closed point (a, b) ∈ (X \ Y )(Q)
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that

λE,v(π
−1(a, b)) = min(λp∗1(0:1),v(a, b), λp∗2(0:1),v(a, b))

= min(λ(0:1),v(a), λ(0:1),v(b))

= min(v+(a), v+(b)).

Therefore, using our local to global property, we find that

hgcd((a, b);Y ) =
∑
v∈MQ

min(v+(a), v+(b)) = log gcd(a, b),

exactly as desired.

Example. Take some f1, . . . , fm ∈ Z[x0, . . . , xn] to simultaneously vanish at a smooth sub-

variety V ⊆ Pn of co-dimension at least 2. We will aim to determine hgcd(P ;V ) for a given

P = (a0 : · · · : an) ∈ (Pn \ V )(Q), where we are assuming that the coordinates have been

chosen to be coprime integers. As before, we may write V = ∩1≤i≤m{fi = 0}, and so we

find with the full generality of Lemma 2.5.2 from [Voj06] that hgcd(P ;Q) is given by a local

height function, for each v ∈MQ, as min1≤i≤m λ{fi=0},v(P ).

To analyze these local heights, note that for any v ∈MQ and 1 ≤ i ≤ m we have

λ{fi=0},v(P ) = log max
0≤j≤n

∣∣∣∣∣ a
di
j

fi(P )

∣∣∣∣∣
v

= di log max
0≤j≤n

|aj|v − log |fi(P )|v,

where di = deg(fi). To simplify this calculation, we find for any rational prime p ∈ Z,

max0≤j≤n |aj|p = 1 by our coprime assumption and so λ{fi=0},p(P ) = − log |fi(P )|p.

Applying our local to global principle and summing over all places MQ, and performing

some rearrangements on our local height functions, we may now see that

hgcd(P ;V ) = log

(
min

1≤i≤m

(max0≤j≤m |aj|)di
|fi(P )|

)
− log

 ∏
p∈M0

Q

max
1≤i≤m

|fi(P )|p

 .
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Clearly, the product on the right is simply gcd(f1(P ), . . . , fm(P ))
−1. Referring to Example

4 of [Sil04], we may then write hgcd(P ;V ) = log gcd(f1(P ), . . . , fm(P )) +O(1).

Notation. Let C/Q be an elliptic curve, with rational point P = (xP , yP ) ∈ C(Q). We may

then write xP as AP/D
2
P , with gcd(AP , DP ) = 1 and DP > 0.

Example. Consider an elliptic curve C/k with identity O ∈ C. Assume without loss of

generality C is given in P2 as the curve y2z = x3 + Axz2 + Bz3, with 4A3 + 27B2 ̸= 0,

and our identity point is the intersection with z = 0 at (0 : 1 : 0). To examine O ∈ C

as an effective Cartier divisor, let’s specialize to the affine subspace y = 1 on D+(y) with

coordinates u = x/y and v = z/y. Therefore, we are equivalently looking for the vanishing

(0, 0) ∈ Spec(k[u, v]/⟨u3 + Auv2 +Bv3 − v⟩).

The maximal ideal associated to (0, 0) is simply ⟨u, v⟩. Writing in our function field

v = u
u2 + Av2

Bv2 − 1
,

since Bv2 − 1 does not vanish at (0, 0), we find that u is an uniformizer for the unique

maximal ideal of our local ring. Therefore, u vanishes to order 1, and we may similarly show

(as expected) that v vanishes to order 3.

With this, on the affine subspace we are interested in of z = 1, we see that the function

z
x
= x−1 vanishes to order 2 at O and 2O = div(x−1). Using the additivity of our local height

functions, for any v ∈MQ and P ∈ C(Q),

λO,v(P ) =
1

2
v+(x−1

P ) = v(DP ).

Now, with this calculation and our lemma for heights on blowups, we may show that for
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any P,Q ∈ C(Q) not the identity and v ∈MQ that

λE,v(π
−1(P,Q)) = min(λp∗1O,v(P,Q), λp∗2O,v(P,Q))

= min(λO,v(P ), λO,v(Q))

= min(v(DP ), v(DQ)),

where π : X̃ → C × C is the blowup along (O,O) with exceptional divisor E = π−1(O,O).

Combined with our local to global principal, we may state that

hgcd((P,Q); (O,O)) =
∑
v∈MQ

min(v(DP ), v(DQ)) = log gcd(DP , DQ).

5.2 Main Result

We are now ready to go over our main result from [Sil04].

Theorem 5.2.1. Let X/k be smooth with Y ⊆ X a smooth subvariety of co-dimension

r ≥ 2. Let A be some ample divisor on X, and assume that −KX is a normal crossings anti

canonical divisor such that supp(−KX) ∩ Y = ∅.

Assuming Vojta’s conjecture, then for every finite set S ⊆ Mk and any 0 < ε < r − 1,

there is a closed subvariety Z ⊊ X and a constant δ ∈ R, with δ only depending only on X,

Y , and A, such that for any P ∈ (X \ Z)(k)

hgcd(P ;Y ) ≤ εhA(P ) +
1

r − 1 + δε
NS(−KX , P ) +O(1).

Proof. Let π : X̃ → X be the blow up of X with centre Y and exceptional divisor π−1(Y ) =

E. We begin by recalling that the canonical bundle KX̃ may be described with the given

codimension as

KX̃ = π∗KX + (r − 1)E,

up to linear equivalence. Next, since A is an ample divisor, we may find some m ≥ 1 and
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Ã ∈ Pic(X̃) that is ample such that

π∗A = Ã+mE.

As supp(KX) ∩ Y = ∅, it is clear as well that −π∗KX is a normal crossings divisor as

π is an isomorphism at relevant points. Thus, we are ready to apply Vojta’s conjecture to

−π∗KX and Ã.

Taking ε > 0 and S ⊆ Mk as above, we may assume that away from some exceptional

proper closed subset W , for any P̃ ∈ X̃ \W ,

mS(−π∗KX , P̃ ) + hK
X̃
(P̃ ) ≤ εhÃ(P̃ ) +O(1)

⇒−mS(KX , π(P̃ )) + hKX
(π(P̃ )) + (r − 1)hE(P̃ ) ≤ εhA(π(P̃ ))− εmhE(P̃ ) +O(1)

Next, we may as well assume that E ⊆ W , and so there is some P ∈ (X \ Y )(k) such

that π(P ) = P̃ . Recalling our definition of the generalized GCD, and simplifying using the

counting function NS(−KX , P ), we may then write

NS(KX , P ) + (r − 1)hgcd(P ;Y ) ≤ εhA(P )− εmhgcd(P ;Y ) +O(1).

After just one more re-arrangement by grouping terms, and setting δ = m, we finally arrive

at

hgcd(P ;Y ) ≤ ε

r − 1 + δε
hA(P ) +

1

r − 1 + δε
NS(KX , P ) +O(1).

Notice that the above theorem is indeed a general case of the special result on Vojta’s

conjecture mentioned in a previous section. Indeed, let C/k be an elliptic curve with identity

O ∈ C, and choose any ample A divisor onX = C×C. Notice that since C is an elliptic curve

that KX = 0, satisfying our necessary conditions and simplifying our inequality. Moreover,
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if K is the canonical divisor on π : X̃ → X blown up at Y , then K is linearly equivalent

to the exceptional divisor by our co-dimension and that the canonical sheaf is trivial on X.

Thus, we may write for P ∈ (X \ Y )(k)

hK(π
−1(P )) = hgcd(P ;Y ) ≤ εhA(P ) +O(1) = εhπ∗A(π

−1(P )) +O(1).

5.3 Applications of Main Result

Definition 5.3.1. Let S be a finite set of rational primes. For any integer x ∈ Z \ {0}, The

“prime-to S” part of x, denoted |x|′S, is the unique multiplicative component of x which does

not lie over the primes of S. That is,

|x|′S = |x| ·
∏
p∈S

|x|p =

∏
p/∈S

|x|p

−1

Theorem 5.3.2. Let V ⊂ Pn be a smooth variety of co-dimension r = n − dim(V ) not

intersecting any of the hyperplanes {xi = 0} for 0 ≤ i ≤ n. Suppose as well that V is given

as the vanishing set of some homogeneous polynomials f1, . . . , fm ∈ Z[x0, . . . , xn]. We will

also fix some 0 < ε arbitrarily.

Suppose that Vojta’s conjecture is true in the case of Pn blown up along V . Then we

may determine some non-zero homogeneous polynomial g ∈ Z[x0, . . . , xn] depending on the

polynomials defining V and ε, as well as a constant δ only depending on f1, . . . , fm, so that

every coprime integer tuple (a0, . . . , an) ∈ Zn+1 is either a root of g or

gcd(f1(a0, . . . , an), . . . , fk(a0, . . . , an)) ≤ max{|a0|, . . . , |an|}ε · (|a0 · · · an|′S)
1

r−1+δε .

Proof. Let S ⊆M0
Q be a finite set of rational primes and ε > 0 taken arbitrarily. Note that

showing it for ε < r − 1 suffices to prove for ε ≥ r − 1, so we also assume this without loss

of generality. Using our main result with X = Pn, Y = V , and A = {x0 = 0}, we may find
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some proper closed subset Z ⊊ Pn and δ depending only on V (assuming Pn and {x0 = 0}

fixed), for which any P ∈ (X \ Z)(k) satisfies

hgcd(P ;V ) ≤ εhA(P ) +
1

r − 1 + δε
NS∪{∞}(−KPn , P ) +O(1).

Note we may take some homogeneous g′ ∈ Z[x0, . . . , xn] for which D+(g) ⊆ X \ Z, we may

assume that Z is contained in the vanishing of g′. Additionally, as V does not intersect any

hyperplane of the form {xi = 0} for 0 ≤ i ≤ n, we will assume g = x0 · · ·xng′.

To begin, we must consider local height functions for the anti-canonical divisor class

−KPn ∼= O(n + 1). To do so, for each 0 ≤ j ≤ m we may define local height functions for

the divisor {xj = 0} for each v ∈Mk and P ∈ (Pn \ {xj = 0})(Q) as

λ{xj=0},v(P ) = logmax(|x0
xj
|v, . . . , |xnx0 |v, 1).

By additivity, we may take λ−KPn ,v(P ) = λ{xj=0},v(P )+ · · ·+λ{xn=0},v(P ) away from the set

{x0 · · ·xn = 0}, ignoring any Ov(1) terms by this choice of local height function. Note this

divisor representative for the anti canonical class is a normal crossings divisor.

If we are given that P = (a0 : · · · : an) ∈ Pn(Q) not vanishing on x0 · · ·xn, assuming

without loss of generality that gcd(a0, . . . , an) = 1, we obtain

NS∪{∞}(−KPn , P ) =
∑
p/∈S

n∑
j=0

logmax(|a0
aj
|p, . . . , |anaj |p, 1)

=
∑
p/∈S

n∑
j=0

(
logmax(|a0|p, . . . , |an|p)− log |aj|p

)
= − log

∏
p/∈S

|a0 · · · an|p

= log |a0 · · · an|′S.

Next, we will take our ample divisor A to be given as the hyperplane {x0 = 0}. As the
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map Pn → Pn given by A may be taken as the identity, we may simply write the formula for

projective heights with co-prime integer coordinates as

hA(a0 : · · · : an) = logmax(|a0|, . . . , |an|).

Finally, with our result on hgcd(P ;V ) as shown in a previous section, we have deduced

that for any (a0, . . . , an) ∈ Zn+1 coprime and not vanishing on g,

log gcd(f1(a0, . . . , an), . . . , fm(a0, . . . , an))

≤ ε logmax(|a0|, . . . , |an|) +
1

r − 1 + δε
log |a0 · · · an|′S +O(1),

which is a logarithmic version of our desired inequality.

Remark. It should be noted that this theorem gives a conditional proof of [BCZ02]. In-

deed, fix integers a, b ∈ Z multiplicatively independent and let ε > 0 be arbitrary. Using

f(x, y, z) = x − z, g(x, y, z) = y − z, and S = {p ∈ M0
k : p|ab}, we obtain some polynomial

h(x, y, z) such that for all n ≥ 1, either h(an, bn, 1) = 0, or

gcd(an − 1, bn − 1) ≤ max{|a|, |b|}εn.

Since we have already shown that a polynomial h(x, y, z) may vanish at only finitely many

triples (an, bn, 1) without being trivial, the result follows.

Theorem 5.3.3. Let E/Q be an elliptic curve given by a Weierstrass equation. Assuming

Vojta’s conjecture for E2 blown up at (O,O), we then find that for any ε > 0 that there is a

proper closed subvariety Z ⊆ E2 such that for any points P,Q ∈ E(Q) \ Z,

gcd(DP , DQ) ≤ (H(P ) ·H(Q))ε,

Proof. As before, we begin by using our main result. Set X = E × E, A = p∗1O + p∗2O,
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Y = (O,O), and S =M∞
Q , where p1, p2 : E×E → E are the projection maps. Since KE = 0

for an elliptic curve, it follows that KX = 0 as well. Therefore, for any ε > 0, there exists

some closed subset Z ⊊ X such that for all (P,Q) ∈ (X \ Z)(Q),

hgcd((P,Q); (O,O)) ≤ εhA(P,Q) +O(1).

To make a quick understanding this, we start on the left as

hgcd((P,Q); (O,O)) = log gcd(DP , DQ).

On the right, we may use additivity and linearity to find

hA(P,Q) = hO(P ) + hO(Q) +O(1).

Putting these results together, and rephrasing the result exponentially, we obtain our desired

result.
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6 Conclusion

While there were many technicalities, we find overall there is particular relationship between

the geometry of our spaces and the arithmetic of their rational points. Indeed, while [BCZ02]

does initially focus on Diophantine approximation, a reinterpretation of the result under the

geometry of Pn provides a generalization and even conjectures a result when you expand

the set of places of MQ of interest. In a similar vein, McKinnon’s theorem ([McK03]) on

products of elliptic curves was able to prove a similar result on elliptic curve groups.

When we then generalize to Vojta’s conjecture, provided computation of the generalized

GCD is available, we have a reliable way of creating such conjectures on the GCD of arith-

metic sequences and the geometry which gives rise to them. In these cases, we note that the

sequences (xn)n≥1, either given as xn = an−1 for some a ∈ Z, or xn = DnP with P a rational

point of infinite order on an elliptic curve, follow a pattern that if n|m, then xn|xm. Such

sequences are referred to as divisibility sequences, and Silverman conjectures in [Sil04] that

sequences which arise from group schemes in the way of the previous two, should have that

the GCD returns to small values infinitely often. However, the question over the integers

whether the inequality, stated as

gcd(an − 1, bn − 1) ≤ C,

holds true for infinitely many n ≥ 1, assuming a and b multiplicatively independent and

C ≥ 1 arbitrary, is currently a conjecture and not much is known.

A natural improvement on many of these results will be to first convert them into effective

arguments, and in this way, more could be concluded from computation alone. However, the

cases which are still conditional on unproven cases of Vojta’s conjecture remain elusive. If

we look to the future with an optimistic lens, we may hope that the relationship between

geometry and arithmetic continues to act as both a compass for navigating which results

should hold, as well a tool which permits their conclusion.
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