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Abstract

Functional data analysis is a branch of statistics that studies models for information
represented by functions. Meanwhile, finite mixture models serve as a conerstone in the
field of cluster analysis, offering a flexible probabilisitic framework for the representation of
heterogeneous data. These models posit that the observed data are drawn from a mixture
of several different probability distributions from the same family, where each is convention-
ally thought to represent a distinct group within the overall population. However, their
representation in terms of densities makes their application to function-valued random
variables, the foundation of functional data analysis, difficult. Herein, we utilize density
surrogates derived from the Karhunen-Loeve expansion to circumvent this discrepancy and
develop functional finite mixture models for the clustering of functional data. Models de-
veloped for real-valued and vector-valued functions of a single variable. Estimation of all
models is done using the expectation-maximization algorithm, and copious amounts of sim-
ulations and data examples are provided to demonstrate the properties and performance
of the methodologies. Additionally, we present a new estimation approach to be used in
tandem with the stochastic expectation-maximization algorithm. This estimation method
offers increased precision in estimation with respect to the algorithm chain length when
compared to averaging the chain. Asymptotic properties of the estimator are derived, and
simulation studies are given to demonstrate its performance.
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Chapter 1

Introduction

The present thesis constitutes a contribution to the literature of the relatively unexplored
domain of functional data clustering with finite mixture models. The work is structured
as a compilation of four distinct studies, each contributing either directly or indirectly to
this field.

The initial three works primarily focus on the development of models for clustering
functional data, with finite mixture models as the clustering mechanism of choice. Model
development is facilitated by an interplay between the Karhunen-Loève expansion, a prin-
cipal component analysis for stochastic processes, and finite mixture models, probabilistic
models that represent the presence of subpopulations within an overall population. A
symbiotic connection between these two concepts is the heart of the proposed modelling
approaches, leading to a coherent framework for unsupervised learning with functional
data.

Mixture models, as a class of probabilistic models, have emerged as a particularly
effective tool in the field of clustering, where they serve to discern and represent homo-
geneous subpopulations within an overall population. Their ability to unveil underlying
structure in complex data sets, coupled with their inherent specification flexibility, has
spurred a wealth of literature dedicated to their development and application. However,
their tendency to suffer from the curse of dimensionality, a phenomenon that exponen-
tially expands the parameter space in higher dimensions, poses a significant drawback. To
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mitigate this issue, parsimonious parameter specifications are often invoked. By efficiently
scaling back the number of model parameters, these specifications aim to alleviate the curse
of dimensionality, thereby bolstering the feasibility and performance of mixture models in
high-dimensional data contexts.

One such approach posits the existence of component-specific latent subspaces, which
are presumed to be of substantially lower dimension. Intuitively, this specification presumes
the observations specific to each mixture component aggregate around this low-dimensional
subspace in a noisy fashion. This assumption facilitates a parsimonious parameter specifi-
cation for each component distribution, while the modularity of the mixture density permits
flexibility in the modelling of this space for each component. The proposed functional finite
mixture models extend this notion of parsimony to the case of three-way data, and later
space curves, thereby enhancing the feasibility of the resulting models in application.

Mixture models are frequently fitted using the Expectation-Maximization (em) algo-
rithm, a deterministic optimization procedure often touted for its property of monotonic
convergence. The em algorithm operates through the iteration of two steps: the e-step,
which computes the expected value of the complete-data log-likelihood, and the m-step,
which maximizes this expected value with respect to the parameters. However, the e-step
can sometimes prove intractable, particularly in complex or high-dimensional settings. In
such instances, a stochastic expectation-maximization algorithm may be employed as an
alternative. Unlike its deterministic counterpart, stochastic em does not converge to a
limit point, but rather, a stationary distribution. Although this necessitates the inclusion
of an additional estimation step in the algorithm, stochasticity also provides the benefit
allowing the algorithm to slip free of local maxima, enabling superior navigation of the
parameter space.

The final contribution of this thesis proposes a new way to implement the estimation
step of a stochastic em algorithm. The benefit of this approach is that it increases esti-
mator precision in terms of the algorithm chain length. As a result, fewer iterations of
the algorithm are needed to obtain precision thresholds, leading to a more computation-
ally efficient algorithm. Additionally, enhancing the precision of the estimation process
increases the robustness and reliability of the fitted model, thereby contributing to the
ongoing development and application of these versatile models.
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Chapter 2

Background

2.1 Functional Data Analysis

One of the fundamental scenarios of statistics is the analysis of data observations drawn
independently from a given probability distribution. Frequently, the support of this distri-
bution is embedded within Euclidean space, so that observations arise in the form of finite
dimensional vectors. There are however, areas of statistics that study random variables
taking values in spaces that are not necessarily Euclidean. For example, some data natu-
rally arise in the form of a continuous observation over time, and are properly considered
as functions. Airplane trajectories and speech pitch are two examples. The study of such
data and their underlying constructs is known as functional data analysis.

In probability theory, random variables are defined to be measurable maps from some
underlying probability space into the real numbers. That definition clearly does not work
when the context is shifted to functional data, although the same idea can be applied.
Indeed, function-valued random variables are often characterized as random elements of an
infinite-dimensional, separable Hilbert space. Typically, this space is chosen to be L2(T , µ),
where T is a closed interval and µ is the Lebsegue measure. This is the Hilbert space of
functions defined over T which are square integrable with respect to µ. An alternative
definition posits functional data to be observed paths of some underlying stochastic process.
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When this process is mean-square continuous with continuous paths, the Hilbert space
perspective and the stochastic process perspective coincide.

The infinite dimensional nature of functional data poses challenges for the formulation
of useful models. A useful tool in this regard is the Karhunen-Loeve expansion. Let
(Ω,A, P ) be a probability space and let X : T × Ω → R be a second-order, mean-square
continuous stochastic process taking values in L2(T ). Then, there are zero-mean random
variables Ci and a countable orthonormal basis ψi for L2(T ) such that X(t, ω) can be
represented as

X(t, ω) =
∞∑
i=1

Ci(ω)ψi(t).

Modelling may then proceed by, for example, assuming that the function-valued random
variable of interest lives in a space spanned by finitely many of the ψj, or by assuming that
much of the variation in the process is governed by the first few Ci.

Another important point regarding functional data analysis is that technological lim-
itations often inhibit our ability to fully capture observations. In such cases, functional
data are only truly functional in a theoretical sense. In particular, it is quite common
that only finitely many entries of the infinite dimensional data point are actually observed.
In many applications then, functional data are recorded as finite dimensional vectors, an
object which we have already explained that the statistics community is quite comfort-
able handling. However, (Ramsay and Silverman, 2005) cautions against the temptation
to analyze these data using established multivariate techniques, suggesting that methods
specifically taking the functional origin of the data into account will provide a better anal-
ysis. Stemming from this notion, statistical researchers have busied themselves extending
many of the familiar methods used in multivariate analysis to accommodate data of a
functional nature. For example, linear models (Cardot et al. (1999), Cardot et al. (2003),
Chen et al. (2011)) , graphical models (Zhu et al. (2016), Qiao et al. (2019)), principal
component analysis (Dauxois et al. (1982), Rice and Silverman (1991), Silverman (1996),
Jacques and Preda (2014b)), and hypothesis testing (Hall and Keilegom (2007), Zhang
et al. (2011), Fremdt et al. (2013)) have all been modified to accommodate function-valued
random variables. A good introduction to functional data analysis is provided in Ramsay
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and Silverman (2005), while Wang et al. (2016) provides a high level overview of more
contemporary methods in the functional data literature.

2.2 Model-Based Clustering and Parsimony

A data observation X is said to arise from a finite mixture model with G components if
the density of the distribution can be expressed as a convex combination of G component
densities,

X ∼
G∑

g=1

πgf(x | θg) such that,
G∑

g=1

πg = 1 and, πg > 0,∀ g.

Model-based clustering is the employment of finite mixture models to identify latent ho-
mogeneous subgroups within data. The standard interpretation is that each of the G
components in the fitted mixture model correspond to a latent group in the data (Mc-
Nicholas, 2016). The first known use of finite mixture models for this purpose is Wolfe
(1965), while the idea was popularized by works such as Duda and Hart (1973), Dempster
et al. (1977), McLachlan and Peel (2000), and Fraley and Raftery (2002).

One unfortunate issue is the tendency for mixture model inference to suffer from the
curse of dimensionality (Bellman, 1954)—the number of parameters required to fit the
mixture increases rapidly with data dimension. This issue is the driving force behind
research into parsimonious mixture models—models in which parameters are provided
parsimonious specifications, reducing the rate at which the total number of parameters
increases with dimensionality of the data.

One clever way to foster parsimony is to assume that common parameters exist across
the components. This is the approach taken by Banfield and Raftery (1993), which consid-
ered estimating the covariance matrix through the components of its spectral decomposi-
tion. In this way, volume, orientation, and shape of each component covariance matrix can
be controlled; specifying that some or any of these are also equal across groups introduces
parsimony. The work of Celeux and Govaert (1995) outlines estimation procedures for
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fitting these models. Fraley and Raftery (2003) reports the release of publicly available
software for fitting models of this class.

Another method for skirting dimensionality issues is subspace clustering, which lever-
ages the empty space phenomenon (Scott and Thompson, 1983) and seeks to identify com-
ponent specific, low-dimensional subspaces in which the data are well represented. The
mixture of factor analyzers (Ghahramani and Hinton, 1996), and their specific application
to high dimensional data (McLachlan et al., 2003; McNicholas and Murphy, 2008), are an
example of such a model, where complexity is increased only to characterize subspaces of
interest.

Another methodology for subspace clustering is proposed in Bouveyron et al. (2007).
This approach assumes that trailing covariance eigenvalues are all equal, hence any in-
formation within the subspace spanned by the associated eigenvectors is contained in the
projection of the data onto the orthogonal complement of the free eigenvectors. As such,
the subspace spanned by the free eigenvectors becomes the subspace of interest.

There are, of course, multiple options for introducing parsimony into models, although
the two mentioned here are among the most popular in the current model-based clustering
meta. Good reviews and references of parsimonious model-based clustering can be found
in Bouveyron and Brunet-Saumard (2014) and Bouveyron et al. (2019).

2.3 Stochastic EM Algorithm

The em algorithm is a numerical optimization procedure, in which an objective function,
often a likelihood, is maximized indirectly by iteratively defining a lower bound and then
proceeding to maximize it. This algorithm was used heavily in classical latent variable
modelling literature due to its ease of implementation with data models derived from
exponential family distributions. It is also the de facto algorithm for fitting finite mixture
models for frequentist inference, owing to its effective accomodation of the latent cluster
memberships.

Each iteration of the algorithm is comprised of two steps, the e-step and the m-step. In
the e-step, the complete-data loglikelihood, which is the likelihood formed from the joint
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distribution of the observed and latent data, is integrated with respect to the latent data
conditional on the observed data and the current best estimate of the unknown parameter.
The resulting construct is the aforementioned lower bound, which is more rightfully referred
to as a minorizer. Obtaining the argmax of this minorizer is the duty of the m-step. Once
obtained, this value will serve as the next best guess of the unknown parameter, and thanks
to the properties of minorizers, this estimate is guaranteed not to be worse than that of
the previous iteration.

Both steps of the em algorithm can present challenges when it comes to implemen-
tation. The e-step, for example, requires the conditional distribution of the latent data
given the observed, which may be difficult to obtain. It also involves integration, which
may prove intractable. In this latter scenario, a common workaround is to use a Monte
Carlo approximation to the e-step. This results in the stochastic em algorithm, so-called
because the aforementioned Monte Carlo approximation injects an element of randomness
into the algorithm’s trajectory. When stochastic em is employed in lieu of the standard
algorithm, an additional estimation step is required, as the resulting sequence of param-
eter values no longer correspond to monotonic increases in the observed-data likelihood.
Common estimation approaches include averaging the elements of the chain, and choosing
the element of the chain corresponding to the largest likelihood value. For more details see
Chapter 6.
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Chapter 3

Functional Data Clustering by
Projection into Latent Generalized
Hyperbolic Subspaces

3.1 Introduction

Model-based clustering is an unsupervised learning algorithm which enables the clustering
of unlabelled data into homogeneous groups. In contrast to non-parametric approaches,
which amalgamate data into clusters through some measure of closeness, model-based clus-
tering assumes each cluster arose from a known probability distribution having unknown
parameter values. These unknown parameters are estimated using an appropriate nu-
merical method, and cluster assignment is completed using the posterior probability of
belonging to the gth group. Model-based clustering has a rich literature, and many re-
searchers continue to work on extending the applicability of this clustering approach into
previously problematic scenarios.

Model-based clustering often falters when extended to the high dimensional setting,
due to the large number of parameter estimates required. This is related to what Bellman
(1954), called “The curse of dimensionality." Many strides have been taken to amend this
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deficiency, with a multitude of more recent research focusing on developing adaptations
to model-based clustering that extend efficiently to the high dimensional setting without
sacrificing the properties that make the model-based approach desirable. These include
regularization of the covariance matrix (Hastie et al. (1995), Bickel and Levina (2008)), par-
simonious model specification (Banfield and Raftery (1993), Celeux and Govaert (1995)),
mixtures of factor analyzers (Mclachlan et al. (2007), Baek et al. (2010)) among others.
For a relatively recent review of the model-based clustering meta, refer to Bouveyron and
Brunet-Saumard (2014).

One notable adaptation, aptly named High Dimensional Data Clustering (HDDC), is
outlined in Bouveyron et al. (2007). The results of this research sprouted from the clever
notion of projecting separate group clusters into distinct, lower dimensional subspaces. It
goes on to demonstrate that employing this approach in the context of a GMM reduces the
total number of required parameter estimates to be a linear function of the data dimension,
p. The idea of subspace clustering was not originally developed in Bouveyron et al. (2007).
As Bouveyron and Brunet-Saumard (2014) notes, some of the earliest methods correspond
to the work of Ghahramani and Hinton (1997) and McLachlan et al. (2003). Extensions
of HDDC to alternative distributions are given in Pesevski et al. (2017), which develops a
subspace clustering method for a multivariate-t distribution, and Kim and Browne (2018)
which adapts subspace clustering to the aforementioned mixture of generalized hyperbolic
distributions. For a complete review of high dimensional data clustering methods, and
subspace clustering methods in particular, see Bouveyron and Brunet-Saumard (2014) and
Parsons et al. (2004), where the latter details mainly nonparamteric approaches. Methods
such as these, together with the aforementioned methods, contribute to the successful
extension of model-based clustering to the high dimensional setting.

A relatively new area in which model-based clustering is being experimented with is
functional data analysis. Often, functional data arise in clearly defined groups, such as
longitudinal biological measurements of a control and treatment groups, or the observed
trajectories of different types of baseball pitches. The problem, however, is that the notion
of a probability density or likelihood function is extremely difficult to define on general,
infinite dimensional function spaces, see for example Lin et al. (2018). This suggests that
the model-based approach to clustering is not feasible as a direct approach in this context.
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As a consequence, most early methods for functional clustering relied on either simple di-
mension reduction — through regularization approaches applied directly to the discretely
observed functional data—or basis projection, in which the basis expansion coefficients are
treated as multivariate data. The former approach is referred to as “raw-data clustering"
while the later are called “two-stage" approaches, according to Jacques and Preda (2014a).
As noted in James and Sugar (2003) these methods “break down" in the face of fairly
realistic conditions, such as non-uniformity across the sets of time points on which the
functional data are observed, or if the functional data are sampled sparsely. Accordingly,
the work in James and Sugar (2003) alleviates these issues by proposing a latent random
effects model on the basis expansion coefficients, allowing them to "borrow information
across curves." This could be considered the first model-based approach to clustering func-
tional data. Some of the more recent works in this area are Bouveyron and Jacques (2011),
which extends HDDC to the domain of functional data clustering, Schmutz et al. (2020)
which extends clustering methods to multivariate functions, and Bouveyron et al. (2015)
which chooses a discriminating subspace. For a full review of functional data clustering
algorithms, see Jacques and Preda (2014a).

In this chapter, we propose a method for clustering functional data. The method ex-
tends the ideas of the latent subspace approach presented in Bouveyron and Jacques (2011),
by generalizing to a mixture of jointly generalized hyperbolic distributions. Parameter es-
timation is done via the EM algorithm, although here we employ a multicycle extension
of the algorithm. The number of mixture components will be chosen using the Bayesian
Information Criterion (BIC). The remainder of the chapter will have the following struc-
ture: In section 3.2 we provide an overview of the distribution that will be imposed on
the data, and some of its desirable properties. Section 3.3 will then provide the theoretical
framework of our method, while section 3.4 outlines the specifics of parameter estimation.
Section 3.5 gives the results of running the proposed method against a predecessor on sim-
ulated and real world data, and finally, section 3.6 gives a full summary of our results and
a discussion on directions for further work.
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3.2 Distributional Overview

The model component of our functional clustering algorithm will rely on the generalized
hyperbolic distribution (GHD). The benefits of employing the GHD in modelling has been
demonstrated in the fields of quantitative risk management and model-based clustering by
McNeil et al. (2015), and Browne and McNicholas (2015) respectively. The present section
will provide a brief overview of the generalized hyperbolic distribution.

3.2.1 Generalized Hyperbolic Distribution

A random variable X is said to have a p dimensional generalized hyperbolic distribution,
denoted by Gp(µ,β,Σ, λ, ω, η), if it satisfies,

X
d
= µ+Wηβ +

√
WηU (3.1)

where µ and β are p dimensional vectors, U ∼ Np(0,Σ), and Wη is a generalized inverse-
Gaussian (GIG) distribution with pdf

h(w|ω, η, λ) = (w/η)λ−1

2ηKλ(ω)
exp

{
− ω

2

(w
η
+
η

w

)}
. (3.2)

In this parameterization, η is a scale parameter, ω is a concentration parameter, and λ is
an index parameter. To indicate that a random variable has a GIG distribution with this
parameterization we write I(ω, η, λ). As discussed in Browne and McNicholas (2015), the
given formulation of the generalized hyperbolic distribution has an identifiability issue in
the sense that,

Gp(µ,β,Σ, λ, ω, η)
d
= Gp(µ, cβ, cΣ, λ, ω, c

−1η),

for any c ∈ R+. McNeil et al. (2015) dicuss multiple ways to remedy this identifiability
issue. For consistency, we follow the convention adopted by Browne and McNicholas (2015),
who choose to set η = 1 to obtain indentifiable parameters. With this choice, the pdf of
X is given by,

f(x|θ) =
[
ω + δ(x,µ|Σ)

ω + β′Σ−1β

](λ−p/2)/2 Kλ−p/2

(√
[ω + β′Σ−1β][ω + δ(x,µ|Σ)]

)
(2π)p/2|Σ|1/2Kλ(ω) exp(−(x− µ)′Σ−1β)

(3.3)

11



where θ = (µ,β,Σ, λ, ω) is the set of parameters required to specify a GHD, and Kλ is
the modified Bessel function of the third kind with index λ.

What makes the GHD alluring for clustering applications is its wide assortment of
special-case and limiting distributions. Distributions that fall under this category are the
multivariate t, Laplace, Gaussian, skew-normal. In a sense, it allows for a mixture model
consisting of varying mixing distributions, under a framework in which the distributions
are decided by parameter estimation of a single parent distribution. Borrowing the no-
tation used in Browne and McNicholas (2015), we indicate a random variable X has a p
dimensional GHD by writing, X ∼ G∗p(µ,β,Σ, λ, ω).

3.3 Functional Latent Mixture Model

Assume that there is a set of observed curves {xi}n that we wish to cluster into G homo-
geneous groups. We will accomplish this task by implementing a model-based, subspace
clustering approach that imposes a mixture of jointly generalized hyperbolic distributions
(JGHD). This choice further increases flexibility of the mixing distributions, as detailed in
the section that follows.

3.3.1 Basis Expansion

Observed functional data often take the form of a discrete time series. In functional data
analysis, we want our models to account for the fact that these are functional observations,
so quite often the first step is to return the data to a functional form. This is done through
a basis expansion approach, where the data are assumed to have arisen from a function
space spanned by a discrete set of basis functions. That is, if X is the L2 continuous
process that generated the observed curves in L2[0, T ], we assume there exists a set of
basis functions {ψj}pj=1 such that X can be expressed as,

X(t) =

p∑
j=1

υj(X)ψj(t) (3.4)
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where the vector of coefficients Υ = (υj(X))pj=1 is assumed to be a random vector in Rp.
In particular, we specifically assume there exists a basis such that the resulting coefficients
for each of the G groups are distributed according to a JGHD. Once an appropriate basis
is chosen, we project each of the observed curves {xi} into this space. We implement basis
expansion using least-squares smoothing. If the observations were assumed to be exactly
correct, basis expansion could be approached using an interpolation procedure. Upon
basis expansion of the data, our observations of the functional random variable X can be
equivalently thought of as individual observations of the finite dimensional, vector-valued
random variable Υ. It is this interpretation that will allow us to proceed with clustering
these functional data.

3.3.2 A Functional Latent Model

Restricting attention to one particular group g in G, we consider the random variable Υg

that generates corresponding coefficients. That is, we consider the function,

X(t) = ⟨Υg,Ψ(t)⟩ (3.5)

generating observations in the gth group, where Ψ(t) = (ψj(t))
p
j=1. We assume that the

observed curves in this group, {υgi}ng

i=1 are generated by making ng independent draws
from the random variable Υg and substituting them into the equation above.

For any full rank transformation of the space L2[0, T ] given by an orthogonal matrix
Γg, we have,

X(t) = ⟨Γ′gΥg,Γ
′
gΨ(t)⟩

= ⟨X,Φg(t)⟩+ ⟨ξ,Φ⊥g (t)⟩

where Φg(t) = (ϕj(t))
dg
j=1 is a vector of basis functions which span the dg dimensional

subspace Hg[0, T ] of L2[0, T ]. Now suppose there exists a particular Γg such that the true
function X(t) is adequately represented in the resulting functional latent space Hg[0, T ].
That is, we assume

X(t) ≈ ⟨X,Φ(t)⟩ (3.6)
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where the approximation ⟨X,Φ(t)⟩ accounts for much of the variance among the data,
while the dimension of the space Hg[0, T ] is such that dg ≪ p. Now, if the matrix Γg has
the form Γg = [Qg Eg ], where Qg is the p × dg matrix containing the first dg columns of
Γg, then it is possible to write the coefficient random variable Υg as,

Υg = QgX+ ε (3.7)

where X is a random variable which generates the coefficients for the function X(t) ex-
pressed in the latent space Hg[0, T ], and ε is an independent random noise term in Rp. By
extension of the assumption that the observed coefficients {υgi}ng

i=1 were drawn indepen-
dently, the latent expansion coefficients of the observed curves {xig}ng

i=1 are also assumed
to be independent observations of the random variable X.

We now proceed with some distributional assumptions on the latent random vectors
X and ε. First, we assume that X is distributed according to a generalized hyperbolic
distribution with dimension dg,

X = µ1g +W1gβ1g +
√
W1gU1g (3.8)

where U1 ∼ N(0,Sg), W1g ∼ I(ω1, 1, λ1) and Sg = diag(s1g, ..., sdgg). We also assume that
the error term ε is such that the (p− dg) dimensional vector ξ has distribution,

ξ = E′gε = µ2g +W2β2g +
√
W2gU2g (3.9)

where U2 ∼ N(0, bgI(p−dg)) and W2g ∼ I(ω2, 1, λ2). Therefore, the distribution of the
coefficients for the gth cluster, Υg, is a multiple-scaled generalized hyperbolic distribution
with stochastic relationship,

Υg = Γgµg + Γg∆Wβg + ΓgVg (3.10)

where, µg = (µ1g,µ2g)
⊤, βg = (β1g,β2g)

⊤, and Vg ∼ N(0,∆WDg) with Dg = diag(Sg, bgI(p−dg)).
We also have that ∆W is given by,

∆W =

[
W1g Idg 0

0 W2gIp−dg

]
. (3.11)
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The distribution of Υg can then be written as,

fΥ(υ) =

[
ω1 + δ(Q′gυ,µ1g|Sg)

ω1 + β′1gS
−1
g β1g

]λ1−dg/2

2
Kλ1−dg/2

(√
[ω1 + β′1gS

−1
g β1g][ω1 + δ(Q′gυ,µ1g|Sg)]

)
(2π)

dg
2 |Sg|

1
2Kλ1(ω1) exp{−(Q′gυ − µ1g)S−1g β1g}

×

[
ω2 + b−1g ||E′gυ||2

ω2

]λ2−(p−dg)/2

2
Kλ2−(p−dg)/2

(√
ω2

[
ω2 + b−1g ||E′gυ||2

])
(2π)

p−dg
2 b

p−dg
2

g Kλ2(ω2)
,

where δ(x,µ|A) = (x−µ)′A(x−µ) is the squared Mahalanobis distance between x and
µ, and Kλ is the modified Bessel function of the third kind, with index λ.

From (3.10) it follows that,

cov(Γ′gΥg |∆W ) =

[
w2

1gSg 0

0 w2
2gbgI(p−dg)

]
(3.12)

with sig > bg for i = 1, ..., dg. By projecting the data into the spaceHg[0, T ], the coefficients
of the observed curves become independent with variances w2

1gsig, while the error due to
restricting the data exclusively to the space Hg[0, T ], is assumed to have expected value
0 and spherical variance given by w2

2gbgI(p−dg). Thus, by rotating the data, we find that,
for each group g ∈ G, only the first dg eigenvalues are important, while the remaining
eigenvalues can be sufficiently represented by a single value bg.

3.3.3 Functional Latent Mixture Model

We now turn attention to the entire set of observed curves, {xi}ni=1. Our desire is to cluster
these observations into G homogeneous groups, and therefore assign to each observation
a group designation. Let Z = (Zg)

G
g=1 be an unobserved random variable dictating the

group membership of an observation x. If x belongs to group g, then Zg = 1, otherwise
Zg = 0. Group membership is assumed to be mutually exclusive, so that each observation
is generated by exactly one of the Υg’s. However, each time we draw an observation from
X, we assume that each Υg has a non-zero probability of being chosen. Thus, our model
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for the coefficients becomes,

p(υ) =
G∑

g=1

πgfΥg(υ|θg) (3.13)

where f(·|θg) is the density of a multiple-scaled generalized hyperbolic distribution, θg is
the corresponding vector of parameters, i.e.

θg = (µg,βg, ω1, ω2, λ1, λ2,Sg, σg,Qg),

and πg is the prior probability of the gth group.

3.4 Parameter Estimation

The specified model is fit using a multicycle ECM algorithm, which proceeds with multiple
E-steps performed before partial, and mutually exclusive M-steps. We define the missing
data to be the group membership indicators zig, as well as the observations of the latent
generalized inverse Gaussian distribution, wi1g and wi2g. The complete data is then given
by the set of observed coefficients {υi}ni=1, along with the corresponding zig, wi1g and wi2g.
Therefore, the complete data likelihood is given by,

Lc({υi}n|θ) =
n∏

i=1

G∏
g=1

[
πgfΥg(Γ

′
gυi|∆wig

)h∆wg
(∆wig

)
]zig
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It follows that the complete data log-likelihood is,

ℓc(θ; υ) =
n∑

i=1

G∑
g=1

zig log πg −
1

2

n∑
i=1

G∑
g=1

zig log |Sg|

− 1

2

n∑
i=1

G∑
g=1

zig

[
w−1i1g(Q

′
gυi −m1g)

′S−1g (Q′gυi −m1g)

]

+
n∑

i=1

G∑
g=1

zig log hw1(wi1g|ω1g, λ1g)

− 1

2

n∑
i=1

G∑
g=1

zig

[
(p− qg) log σg +

1

wi2g

||E′gυi||2

σg

]

+
n∑

i=1

G∑
g=1

zig log hw2(wi2g|ω2g, λ2g) + C,

where m1g := µ1g+w1gβ1g and C is a collection of terms that do not depend on any of the
model parameters. Our multicycle ECM performs two CM steps, with an E-step performed
before each. The first CM step provides updates for (πg,µg,βg, ω1g, ω2g, λ1g, λ2g,Sg, σg) for
each group g, while the second CM step provides the updates for Qg’s. Note that efficiency
is gained in that all terms involving Eg can be written in terms of Qg, so that estimation
of Eg is not required.

E-Step: We compute the expected value of the complete data log-likelihood function
with respect to the random variables representing the missing data. To do this, we need
to compute the following expectations:

E[Zig|υi] =
πgfΥ(υi|θg)∑G
k=1 πkfΥ(υi|θk)

=: ẑig,

E[Wi1g|υi, zig = 1] =

[
ui1g
v1g

] 1
2 Kλ1g−qg/2+1

(
√
ui1gv1g

)
Kλ1g−qg/2

(
√
ui1gv1g

) =: âi1g,

E[W−1
i1g |υi, zig = 1] =

[
ui1g
v1g

]− 1
2 Kλ1g−qg/2+1

(
√
ui1gv1g

)
Kλ1g−qg/2

(
√
ui1gv1g

) − 2λ1g − qg
ui1g

=: b̂i1g and
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E[logWi1g|υi, zig = 1] =
1

2
log

[
ui1g
v1g

]
+
∂

∂t
logKt

(
√
ui1gv1g

)∣∣∣∣∣
t=λ1g−qg/2

=: ĉi1g,

where ui1g = ω1g + δ(Q′gυi,µ1g|Sg) and v1g = ω1g + β′1gS
−1
g β1g. We also have,

E[Wi2g|υi, zig = 1] =
[ui2g
ω2g

] 1
2

Kλ2g−(p−qg)/2+1

(
√
ω2gui2g

)
Kλ2g−(p−qg)/2

(
√
ω2gui2g

) =: âi2g,

E[W−1
i2g |υi, zig = 1] =

[ui2g
ω2g

]− 1
2

Kλ2g−(p−qg)/2+1

(
√
ω2gui2g

)
Kλ2g−(p−qg)/2

(
√
ω2gui2g

) − 2λ2g − (p− qg)

ui2g
=: b̂i2g and

E[logWi2g|υi, zig = 1] =
1

2
log
[ui2g
ω2g

]
+
∂

∂t
logKt

(
√
ω2gui2g

)∣∣∣∣∣
t=λ2g−(p−qg)/2

=: ĉi2g,

where ui2g = ω2g + σ−1g (||υi||2 − ||Q′gυi||2). Plugging these updates into the log-likelihood
function we obtain the following expected complete data log-likelihood function,

Q(θ;θ(t)) =
n∑

i=1

G∑
g=1

ẑig log πg −
1

2

n∑
i=1

G∑
g=1

ẑig log |Sg|

− 1

2

n∑
i=1

G∑
g=1

ẑig

[
b̂i1g(Q

′
gυi − m̂i1g)

′S−1g (Q′gυi − m̂i1g)

]

+
n∑

i=1

G∑
g=1

ẑig ĉi1g

− 1

2

n∑
i=1

G∑
g=1

ẑig

[
(p− qg) log σg + b̂i2g

||E′gυi||2

σg

]

+
n∑

i=1

G∑
g=1

ẑig ĉi2g + C.

First CM Step: We maximize all other parameters while keeping Q
(t)
g fixed. These
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updates are given by,

π̂g =
n
(t)
g

n
,

µ
(t+1)
1g =

∑n
i=1 ẑ

(t)
ig Q

′(t)
g υi

(
a1g b̂i1g − 1

)
∑n

i=1 ẑ
(t)
ig

(
a1g b̂i1g − 1

) and

β
(t+1)
1g =

∑n
i=1 ẑ

(t)
ig Q

′(t)
g υi

(
b1g − b̂i1g

)
∑n

i=1 ẑ
(t)
ig

(
a1g b̂i1g − 1

)
respectively, where ng =

∑n
j=1 ẑ

(t)
jg , a1g = n−1g

∑n
j=1 ẑ

(t)
jg â

(t)
j1g, and b1g = n−1g

∑n
j=1 ẑ

(t)
jg b̂

(t)
j1g.

The update for the jth diagonal element of Sg, j = 1, ..., dg is then

ŝjg =

∑n
i=1 ẑig

[
b̂
(t)
i1g(Q

′(t)
g υi − µ

(t+1)
1g )2j − 2(Q

′(t)
g υi − µ

(t+1)
1g )jβ

(t+1)
1g(j) + â

(t)
i1gβ

2 (t+1)
1g(j)

]
n
(t)
g

.

The update for the remaining eigenvalues in each group, σg, is given by,

b̂(t+1)
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∑n
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.

We update ωkg and λkg, k = 1, 2 by maximizing the function,
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2
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Second CM-Step: To estimate Qg = B
1
2Pg we need to maximize,

f(Pg) = −1

2
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Maximizing this function is equivalent to minimizing,

f(Pg) =
1
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with respect to Pg. We do this by using a majorizing function g(Pg), which is a function
such that, f(Pg) ≤ g(Pg) for all Pg. Such a function is given in Kiers (1990, 2002), and
Browne and Mcnicholas (2014) as having the form g(Pg) = constant + tr(F (t)Pg), where
F (t) is given by,

F (t) =
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where αig is the largest value of the diagonal matrix w−1 (t)i1g S
−1 (t+1)
g . Employing svd we get

−F (t) = L(t)O(t)R′(t), where L(t) and R(t) are orthogonal and O(t) is diagonal. The update
for Γg is then Γ

(t+1)
g = B

1
2R(t)L′(t).

3.4.1 Initialization Strategies and Stopping Criteria

Initialization of the algorithm detailed above, which we denote as funGHDDC, can be
done with an assortment of approaches. Currently, we have implemented four initialization
strategies: k-means, Gaussian parsimonious clustering (GPC), hierarchical clustering, and
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random. Each of these approaches makes use of the same idea: use some algorithm to
generate a set of potential class labels, run a few iterations of the EM algorithm using
these class labels, and choose the labels that maximize the log-likelihood. The names of
the initialization methods then correspond exactly to the way in which the potential class
labels are generated. By default we use a k-means initialization, but in the simulation
study we also demonstrate that the GPC initialization performs well.

For stopping, we use an Aitken acceleration-based convergence criterion, which depends
on the linear convergence of EM. At the kth iteration, the estimate of the limit is given by,

ℓ(k)∞ = ℓ(k) +
ℓ(k+1) − ℓ(k)

1− a(k)

where,

a(k) =
ℓ(k+1) − ℓ(k)

ℓ(k) − ℓ(k−1)
.

For a chosen tolerance ε > 0, we stop the algorithm when we have,∣∣ℓ(k)∞ − ℓ(k−1)∞
∣∣ < ε.

3.5 Simulation Study

In this section we present three simulation studies designed to demonstrate the proper-
ties, and advantages of clustering with the funGHDDC algorithm. In the first, data are
generated according to the data generative assumptions of the funGHDDC method, where
we then demonstrate the parameter recovery potential of the algorithm. In the second
simulation study, we compare the performance of some classic selection criteria in choosing
the correct number of groups, and the true value for the intrinsic subspace dimension of
each group. The third study is comparative, and commences to test the performance of
funGHDDC against alternative functional clustering methods.
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3.5.1 Parameter Recovery

We show parameter recovery in two separate scenarios. In the first, we have two groups of
data, each with a true subspace dimension of d = 3. The full dimension of the dataset is
set to p = 100 and we draw 500 observations from each group. The parameters are chosen
as follows:

µ1 = (10, 10, 10)

β1 = (0.3, 0.6, 0.9)

S1 = diag(2.75, 2.30, 2.10)

η1 = 1

(ω11, λ11) = (0.3,−10)

(ω12, λ12) = (0.01,−3)

µ2 = (−10,−10,−10)

β2 = (−0.3,−0.6,−0.9)

S2 = diag(3, 2.5, 2.25)

η2 = 1.1

(ω21, λ21) = (0.3,−10)

(ω22, λ22) = (0.01,−3)

We have omitted Γg for each group as its inclusion over-encumbers, and adds little to, the
presentation. Means and standard deviations for this parameter are similar to the rest.
Those curious can reach out to the author for the complete set of results. The scenario
described above is simulated 1000 times, with initialization of the clustering algorithm done
with a k-means based approach. The resulting estimate statistics are provided in Table
3.1.

For the second parameter recovery demonstration, we make some alterations. We set
the intrinsic dimensions to be different, with d1 = 2 and d2 = 4. We also set the prior
probabilities to be π = (0.3, 0.7). We set the group parameter values as follows,

µ1 = (10, 10)

β1 = (0, 0)

S1 = diag(3, 3)

η1 = 1

(ω11, λ11) = (1, 1)

(ω12, λ12) = (0.001,−30)

µ2 = (0, 0, 0, 0)

β2 = (1, 1, 10, 10)

S2 = diag(1.5, 2, 2, 1.5)

η2 = 1

(ω21, λ21) = (0.5,−2)

(ω22, λ22) = (0.1,−50)

Initialization in this case is done using the GPC approach. The results of this parameter
recovery simulation are given in Table 3.2.
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Table 3.1: Estimation results from the first parameter recovery simulation.

Component 1 Component 2

True
Mean

[ Std. Dev ]
True

Mean
[ Std. Dev ]

µg (10, 10, 10)
(10.25, 9.93, 9.87)

[ 0.584, 0.551, 0.542 ]
(-10, -10, -10)

(-10.22, -9.78, -10.06)
[ 0.519, 0.621, 0.554 ]

βg (0.3, 0.6, 0.9)
(0.29, 0.58, 0.94)

[ 0.332, 0.362, 0.384 ]
(-0.3, -0.6, -0.9)

(-0.28, -0.62, -0.96)
[ 0.271, 0.426, 0.328 ]

Sg (2.75, 2.30, 2.10)
(2.77, 2.28, 2.11)

[ 0.183, 0.151, 0.141 ]
(3, 2.50, 2.25)

(2.94, 2.50, 2.26)
[ 0.190, 0.165, 0.143 ]

ηg 1
1.013
[ 0.002 ]

1.1
1.127
[ 0.002 ]

(ωg1, λg1) (0.3, -10)
(0.32, -10.11)
[ 0.144, 0.198 ]

(0.3, -10)
(0.28, -9.98)

[ 0.142, 0.193 ]

(ωg2, λg2) (0.01, -3)
(0.013, -3.00)
[ 0.041, 0.491 ]

(0.01, -3)
(0.010, -3.03)
[ 0.042, 0.513 ]

The results of these two parameter recovery simulations demonstrate the algorithm’s
ability to recover the parameters in favorable scenarios. That is, with the data generated
exactly according to the model assumptions, and with generously chosen sample sizes and
replications. We see that variations in the intrinsic subspace dimensions, the distribution
of the prior probabilities, the relatively large dataset dimension, and the initialization
strategy do not hinder recovery. In addition, we note that for each of the 1000 simulated
cases, the algorithm was also able to attain perfect observation classification.

3.5.2 Comparison of Selection Criteria

In this study we check the ability of various selection criteria to choose both the correct
number of groups, and the correct values for each of the intrinsic subspace dimensions.
Specifically, we test three selection criteria: AIC, BIC, and Hannan-Quinn Information
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Table 3.2: Estimation results from the second parameter recovery simulation.

Component 1 Component 2

True
Mean

[ Std. Dev ]
True

Mean
[ Std. Dev ]

µg (10, 10)
(10.33, 9.90)
[ 0.607, 0.511 ]

(0, 0, 0, 0)
(-0.34, 0.08, 0.35, 0.17 )

[ 0.546, 0.625, 0.633, 0.489 ]

βg (0, 0)
(0.26, -0.12)

[ 0.401, 0.357 ]
(1, 1, 10, 10)

(0.99, 1.12, 10.24, 10.04)
[ 0.431, 0.515, 0.486, 0.545 ]

Sg (3, 3)
(3.21, 3.17)

[ 0.283, 0.200 ]
(1.5, 2, 2, 1.5)

(1.37, 1.86, 2.18, 1.61)
[ 0.231, 0.313, 0.254, 0.207 ]

ηg 1
1.048
[ 0.005 ]

1
1.033

[ 0.0039 ]

(ωg1, λg1) (1, 1)
(0.92, 1.07)

[ 0.136, 0.154 ]
(0.5, -2)

(0.52, -1.99)
[ 0.115, 0.138 ]

(ωg2, λg2) (0.001, -30)
(0.001, -29.91)
[ 0.003, 0.491 ]

(0.1, -50)
(0.106, -3.10)
[ 0.055, 0.213 ]

Criterion (HQC).

Each of these criterion are dependent on the total number of estimated parameter
values, k, and both BIC and HQC also depend on the number of sample points, n. For
the funGHDDC algorithm, the full set of parameters k is calculated as,

k = (G− 1) +
G∑

g=1

[(p+ 3)dg − dg(dg + 1)/2 + 6] . (3.14)

We then have the following formulae for the selection criteria:

AIC = 2k − 2ℓ(θ̂),

BIC = k log n− 2ℓ(θ̂) and

HQC = 2k log log n− 2ℓ(θ̂).
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The simulation procedure proceeds as follows. The true number of groups is chosen to be
G = 2, and each of these groups has a three dimensional intrinsic subspace. We generate
100 datasets consisting of two groups, each with a three dimensional intrinsic subspace
dimension. The group parameters are randomly generated using various distributions of
large variance. For each dataset, we fit a model for every possible combination of group
values G = 1, 2, ..., 5, and intrinsic subspace dimension values dg = 2, 3, 4. For example,
G = 3, and d1 = 2, d2 = 2, d3 = 4 is one possible combination. In total, 363 models are
fit for each dataset. For each of these fits, we calculate the three chosen selection criteria.
For each of the selection criteria, we chose the model that minimizes its value. The results
of this simulation are given in Figure 3.1.

Figure 3.1: A heatmap of the models selected by the three selection criteria. Yellow
indicates higher frequency.

Figure 3.1 illustrates that all three criteria do an adequate job of choosing the correct
model. This is evidenced by the intense yellow band in Figure 3.1 which corresponding to
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the frequency with which the correct model as chosen. In particular, of the 100 datasets,
HQC chose the correct model most frequently, with 70 successes. It was closely followed
by AIC, which chose the correct model 66 times. Finally, BIC chose the correct model
54 times. Interestingly, BIC chooses the wrong number of groups the least, with only 5
such occurrences. Indeed, it seems BIC, when it chooses incorrectly, settles on a model
specification that is very close to the true model. In some sense, the variance in model
selection of the BIC seems to be smaller than the other two criteria. We conclude that any
of these three selection criteria perform sufficiently well for model selection in the context
of the funGHDDC algorithm.

3.5.3 Comparison Study

We now proceed to compare the performance of funGHDDC with alternative methods of
functional clustering. The comparison is done on simulated datasets, which are constructed
as follows: generate 200 observations from each of four separate, 3 dimensional generalized
hyperbolic distributions whose parameters are randomly generated. Appended to each
of these four sets of observations an additional 98 dimensions of data generated by an-
other generalized hyperbolic distribution with randomly generated parameters constrained
to satisfy equation (3.9). The resulting four datasets each consist of two-hundred, 101-
dimensional observations. Each of these four datasets is then transformed by a randomly
generated orthogonal matrix. Finally, the four separate datasets are brought together to
form a single dataset consisting of 800 observations. We assume that these data repre-
sent the observed coefficients of functional random variables living in a function space
spanned by an orthonormal basis. We procedurally generate 500 such datasets and apply
the competing clustering algorithms to each one.

For alternative methods, we choose funHDDC (Bouveyron and Jacques (2011)), the
direct predecessor of funGHDDC, and funFEM (Bouveyron et al. (2015)), a best discrim-
inating subspace approach. For further details on these methods, we direct readers to the
corresponding papers in which they are developed.

One particular set of simulated functions is depicted in Figure 3.2. The coloring and
segmentation of the plot represent the separate groups. The groups vary about an obvious
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Figure 3.2: One of the simulated functional datasets. Subplots
correspond to separate groups

mean function, however each group also has some observations that deviate significantly
from this mean, which is a behaviour allowed by the distributional assumption on the
coefficients. As for the methods, both funGHDDC and funHDDC are initialized using a
k-means approach, while funFEM is initialized by hierarchical clustering. To make the
results directly comparable, the true number of groups is set to the true value, G = 4

for each algorithm. The success of the classification reported by each of the competing
methods is measured by Correct Classification Rate (CCR), which reports the proportion
of correctly classified observations to the total number of observations. The simulation
results are given in Figure 5.3.

On the left of Figure 5.3 we see three overlaid histograms, each representing the distribu-
tion of CCR values generated by a particular clustering method on the simulated datasets.
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Figure 3.3: [Left]: A histogram of the CCR results from the funHDDC model (blue), the
funGHDDC model (green) and the funFEM model (red). Zeros represent cases where the
algorithm failed to converge. [Right]: A histogram of the difference in CCR between
funGHDDC and funHDDC (aqua) and funGHDDC vs funFEM (red) on each of the
simulated datasets.

The first thing to note is that the funHDDC and funFEM histograms are trimodal. The
mode at 0 indicates cases where these methods failed to converge. It is important to note
that these methods would almost certainly attain convergence on these datasets should
the number of groups become a free parameter. Otherwise, it seems that these methods
performed adequately, with an average CCR of 0.873 for funHDDC, and 0.836 for funFEM,
when the zeros are ignored. As for the funGHDDC algorithm, the numerical results reflect
the theory, with near perfect classification exhibited in each case. The second plot in Figure
5.3 graphs two overlaid histograms, each representing the difference in the resulting CCR
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of funGHDDC and the CCR of one of the competing methods on each of the simulated
datasets. We see that almost all of the differences are positive, signifying that funGHDDC
consistently outperformed its competitors. We conclude that, in the context of functional
basis coefficients exhibiting jointly generalized hyperbolic distributions, funGHDDC is the
best functional clustering approach among the tested algorithms.

3.6 Real Data Application

We consider the clustering of three observational datasets. The chosen datasets are the
ECG, Wafer, and Symbols datasets. All three datasets are available at Dau et al. (2018).
The ECG dataset has been commonly analyzed in the functional clustering context, for
example see Jacques and Preda (2014b) and Jacques and Preda (2014a). It is comprised
of ECG readings sampled at 96 equally spaced points for two distinct groups.

The Wafer dataset corresponds to 152 measurements made during specialized processing
of silicon wafers. Groups are defined by normal vs abnormal observations, based on the
results of these measurements, and hence the dataset contains two distinct groups.

Finally, the Symbols dataset is the result of an experiment where people were asked to
draw a randomly chosen symbol from 6 possible choices. The observed discrete measure-
ments correspond to the x movement of the writing utensil as the symbol was drawn. This
dataset includes six classes, however the classes mostly exhibit highly distinct functional
behaviour with the exception of two classes that display an interesting entanglement. We
choose to work solely with these two groups. Projections of the three datasets onto a 23
dimensional Fourier basis are plotted in Figure 3.4.

For each of these datasets, we project the discrete observations onto both a Fourier and
B-spline basis, each consisting of 23 basis functions. The coefficients of these projections
are then fed into each of the competing clustering algorithms. We compare the clustering
methods using correct classification rate (CCR), which we define as the proportion of
observations that have been correctly classified by the algorithm, and BIC. In contrast to
Section 3.5.2, we here define BIC so that larger values are better, to make comparison with
the results of other models more intuitive.
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Figure 3.4: The three observational datasets. The top plot
corresponds to the Symbols data, bottom left is the ECG data, and
bottom right is the Wafer data. Colorings are done according to the
true labels, so we see that each dataset is composed of two groups.

Each method was initialized using the default parameter values provided by the associ-
ated R function, except in the case that convergence was not attained or the chosen model
was a poor fit. In particular, we made the following alterations to the default parameters
when required:

i) funHDDC was run with a random initialization for the wafer dataset, when it was
projected onto the B-spline basis.

ii) Selection of the subspace dimension was done using BIC for the funHDDC algorithm
for the ECG data projected onto the Fourier basis.

iii) The funFEM method was initialized using k-means on both the Wafer and ECG
datasets.
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Table 3.3: The results of the three observational analyses. Each cell is reported in the
format of CCR (BIC). The best CCR for each basis is bolded and best BIC is denoted by
an asterisk.

Fourier Bspline
ECG Wafer Symbols ECG Wafer Symbols

funHDDC
71.7

(6509)
65.4

(65484)
73.2

(37942)
65.7

(-446645)
90.1

(-5770441)
N/A

funFEM
75.8

(2216)
65.6

(19136)
86.3

(17341)
77.8

(-2307)
65.2

(-30254)
91.3

(1874)

Funclust
56.7

(1296)
N/A

53.6
(14614)

51.0
(1222)

N/A
51.6

(14638)

funGHDDC
82.8

(6774)*
93.0

(67462)*
95.3

(38389)*
80.8

(6296)*
93.5

(57618)*
97.1

(37831)*

iv) In all cases, we specified that the funFEM algorithm selects the best model from all
possible sub-models.

Occasionally, a method would not converge under any parameter specifications, in which
case we simply report the value N/A. We can only speculate that in such cases, it is likely
that initialization of the class labels results in classes that are highly nonconforming to the
assumptions of the model. The results of analyzing these datasets are given in Table 3.3.

In terms of classification rate, we see that funGHDDC is very competitive, producing
the best results in each of the six analyses. It is also uniformly chosen as the best model by
BIC. We note that when we have the Fourier basis, the BIC values of the funHDDC model
closely rival those of the funGHDDC model. Further, we draw attention to the fact that
BIC values are fairly stable across basis choice, except in the case of funHDDC, where they
vary wildly. This can be explained, in part, by two procedures of the algorithms. First,
when the basis is not orthonormal, the coefficients are modified by the basis inner product
matrix. This is done to take into account the functional nature of the data, and follows
from the underlying theory of functional principal component analysis. In the current
scenario, the Fourier basis is orthonormal while the B-spline basis is not. This difference in
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the treatment of the coefficients across the test bases could explain the BIC deviance here.
Additionally, in our own earlier simulation results, we noticed that scaling the coefficients
can also cause noticeable changes in the BIC values of the resulting model. It is possible
that both of these factors are combining to cause the BIC variation noted in the funHDDC
(and to a less extent, the funFEM) results.

3.7 Conclusion

We have introduced a model-based, subspace clustering approach for clustering functional
data, funGHDDC. Our work has demonstrated that, in carefully curated scenarios, as well
as in observational data analyses, this algorithm can outperform other functional clustering
methods and special case counterparts. However, echoing the sentiment of Browne and
McNicholas (2015), we do not claim that funGHDDC is a uniformly best approach to
functional clustering. Indeed, one heel of our approach is that, although computation for
our algorithm is efficient, it is often still slower than competitors. That is, our method
appears to be quite widely applicable for clustering functional data, but it is not without
drawbacks. Further, there is more to be done regarding the general details of this approach.
For example, our model currently assumes that the rotation matrix Γ is full rank. This
implies that the span of the chosen basis exactly matches that of the true underlying basis.
This would in fact almost never occur, and therefore an adjustment for the model to account
for differing basis spans should be considered. With respect to basis choice, currently the
choice is rather arbitrary, being guided by simple heuristics. To further improve functional
clustering models, one might think of developing a data-driven basis, so that the model
assumed by the basis is always guaranteed to cover a good portion, or at least contain,
the span of the true underlying basis. This would likely lead to more robust models, and
better clustering results overall. Certainly there are many interesting questions still left to
explore regarding this model, and functional data clustering in general.

32



Chapter 4

A Dual Subspace Parsimonious Mixture
of Matrix Normal Distributions

4.1 Introduction

An observation X is said to arise from a finite mixture of G components if the density of
the distribution can be expressed as a convex combination of G component densities,

X ∼
G∑

g=1

πgf(x | θg) such that
G∑
i=1

πg = 1 and πg > 0 , ∀ g.

Model-based clustering is the employment of finite mixture models to identify latent ho-
mogeneous subgroups within data. In a typical application, each latent group in the data
is assumed to correspond to a unimodal component within the fitted mixture model Mc-
Nicholas (2016). The first known use of finite mixture models for this purpose is Wolfe
(1965), while the idea was popularized by works such as Duda and Hart (1973), Dempster
et al. (1977), McLachlan and Peel (2000), and Fraley and Raftery (2002).

One unfortunate issue is the tendency for mixture model inference to suffer from the
curse of dimensionality—the number of parameters required to fit the mixture increases
rapidly with data dimension Bellman (1954). This issue was the driving force behind re-
search into parsimonious mixture models, in which parameters are provided parsimonious
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specifications so as to reduce the rate at which the total number increases with dimension-
ality.

One clever way to foster parsimony is to assume that common parameters exist across
the components. This is the approach taken by Banfield and Raftery (1993), which con-
siders fitting the spectral decomposition of the group covariance matrices. In this way,
volume, orientation, and shape of each component covariance matrix can be controlled;
specifying that some or any of these are also equal across groups provides parsimony. The
work of Celeux and Govaert (1995) provides estimation procedures for these models and
extends to approach to a more general class of models. Fraley and Raftery (2003) reports
the release of publicly available software for fitting models of this class.

Another method for skirting dimensionality issues is subspace clustering, which lever-
ages the empty space phenomenon Scott and Thompson (1983) and seeks to identify
component-specific, low-dimensional subspaces in which the data are well represented.
The mixture of factor analyzers Ghahramani and Hinton (1996), and their specific applica-
tion to high dimensional data (McLachlan et al. (2003), McNicholas and Murphy (2008)),
increase in complexity only to characterize subspaces of interest. Another approach to
subspace clustering is proposed in Bouveyron et al. (2007). The approach assumes that
trailing covariance eigenvalues are all equal, hence any information within the subspace
spanned by the associated eigenvectors is contained in the projection of the data onto the
orthogonal complement of the free eigenvectors. As such, the subspace spanned by the free
eigenvectors becomes the subspace of interest. Good reviews and references to parsimo-
nious model-based clustering can be found in Bouveyron and Brunet-Saumard (2014) and
Bouveyron et al. (2019).

The prevalence of problems considering matrix-valued data observations has increased
steadily over recent years, elevated by our continued improvements in computational effi-
ciency and power. Commonly referred to as three-way data, instances typically arise in the
form of image data, where the elements of each matrix observation represent some value
for each pixel of an image, or longitudinal data, where rows of the matrix correspond to
multivariate observations of on a particular subject, and columns represent the change of
a particular covariate of interest over time (or vice versa). As with any dataset, it is often
of interest to assess the presence of a latent grouping structure in matrix data, as this can

34



often give deeper insight into the patterns and relations inherent therein. For example,
clustering of image data may help identify images with similar palette, or representing a
similar scene. In the longitudinal case, it may help us find groups of patients who should
receive similar treatments, or are exhibiting similar health trends.

The first contribution to model-based clustering of matrix-variate data is provided by
Basford and McLachlan (1985). Since then, and in the last decade in particular, attention
to developing model-based approaches for clustering matrix-valued data has increased, to
great results. Viroli (2011a) derived a general model-based approach under the assumption
that the data arise from a finite mixture of matrix normal distributions, as defined in Dawid
(1981). Following this, Viroli (2011b) introduced a Bayesian equivalent. Continuing this
line of research, Dogru et al. (2016) introduced an analogous extension of the t-distribution
to matrix variate data. Concerned with a lack of modelling options for three-way data that
provide elliptical distributions with heavier tails than the Gaussian distribution, Tomarchio
et al. (2020) introduces two additional distributions for three-way data in the matrix-
variate shifted exponential normal (MVSEN) and the matrix-variate tail-inflated normal
(MVTIN), which satisfy these conditions. Tomarchio et al. (2021) extend cluster-weighted
models to the matrix context, by extending them to work with matrix-variae regression
models. Skewness is again considered in the work Melnykov and Zhu (2018a), which
proposes to handle skewness in matrix-variate data by assuming a transform to approximate
normality exists. Parsimony is inherited by modelling the spectral decomposition of the
associated component covariance matrices, or underlying ARMA assumptions regarding
the temporal domain (when applicable). The efficacy of this model is demonstrated in
Melnykov and Zhu (2018b) through the analysis of crime data. The work of Sarkar et al.
(2019) further extends these ideas by introducing parsimony in each of the matrix-normal
covariance matrices using the ideas presented in Banfield and Raftery (1993). Gallaugher
and McNicholas (2018) also fosters models that account for skewness, and implement this
by introducing finite mixture models of matrix variate skew-t and generalized hyperbolic,
among others. As one can imagine, the specification of matrix variate distributions results
in an abundance of model parameters. This prompts Gallaugher and McNicholas (2019)
to investigate parsimonious modelling of matrix variate data through a generalization of
the mixture of factor analyzers Ghahramani and Hinton (1996) to matrix variate data.
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In a similar vein to this last approach, we propose a parsimonious model for clustering
of three-way matrix by extending the subspace clustering approach detailed in Bouveyron
et al. (2007) to a finite mixture of matrix normal distributions through a dual-subspace
projection. The remainder of the paper proceeds as follows: in Section 4.2, we give a brief
overview of the matrix normal distribution and finite mixture models. In Section 4.3.1
we discuss the dual-subspace perspective that serves as the foundation for the proposed
model. Section 4.3.3 details our method for parameter estimation, which comprises an
Expectation Conditional Maximization algorithm, in which all updates are presented in
closed form. Finally, Section 4.3.4 discusses good initialization strategies for the model,
including a modification to an algorithm introduced in Bouveyron et al. (2007) for auto-
matically choosing the hyperparameters corresponding to the dimension of the latent data
subspaces. In Section 4.4 we demonstrate the parameter recovery and model selection
through simulation. We also present two data analyses which demonstrate the capacities
of the dual-subspace approach. Section 4.5 ends the chapter with a short summary and
some thoughts on future research.

4.2 Background

4.2.1 Matrix Normal Distribution

A p1 × p2 matrix Xp1×p2 is said to have a matrix normal distribution Dawid (1981) with
mean matrix M, and co-variance matrices Σ1, Σ2 if its pdf can be expressed as

f(X | M,Σ1,Σ2) =
exp

(
−1

2
tr
[
Σ−11 (X−M)Σ−12 (X−M)T

])
(2π)p1p2/2|Σ1|p2/2|Σ2|p1/2

. (4.1)

When a random variable X is distributed according to a matrix normal distribution, we
denote it as

X ∼MNp1×p2(M,Σ1,Σ2).

The matrix normal distribution is in fact a special form of the multivariate normal, and
arises when the co-variance matrix can be decomposed as the kronecker product of two
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matrices Srivastava et al. (2008). That is,

X ∼MNp1×p2(M,Σ1,Σ2) iff vec(X) ∼ Np1p2(vec(M),Σ2 ⊗Σ1).

In situations where this covariance structure assumption is met, employing the ma-
trix normal distribution allows for parsimonious modelling, with the number of effective
parameters decreasing from,

p1p2 + (p1p2)(p1p2 + 1)/2 to p1p2 + p1(p1 + 1)/2 + p2(p2 + 1)/2− 1,

which is, however, still quadratic as a function of both p1 and p2. It follows that imposing
the matrix normal structure on three-way data results in modest model parsimony.

Note that the parameterization of the distribution given in Equation (4.1) implies that
we have,

E[(X−M)(X−M)T ] = Σ1 tr(Σ2) and, E[(X−M)T (X−M)] = Σ2 tr(Σ1).

In particular, this covariance structure specifies the covariance between rows i and j to be,

Cov
(
Xi·,Xj·

)
= Σ1ijΣ2,

while the covariance between columns i and j is specified to be,

Cov
(
X·i,X·j

)
= Σ2ijΣ1.

Hence, we call Σ1 the “across-column” covariance, while Σ2 is the “across-row” covariance.
In light of this structure, we observe that the matrix normal is especially well-suited to
the analysis of data for which the rows (columns) are related apriori. We reiterate that
repeated measures data Srivastava et al. (2008) is one instance where this structure arises
naturally.

4.2.2 Identifiability

A matrix normal model for data, as specified in equation (4.1), is not identifiable. Given
α ̸= 0, the substitutions Σ∗1 = αΣ1, and Σ∗2 =

1
α
Σ2 leave the distribution unchanged. This
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identifiability problem for the matrix normal distribution can be addressed using Glanz
and Carvalho (2013), which proposes to alleviate the problem through the introduction of
a general scale parameter σ2. We henceforth substitute,

Σi = σ2Ψi, i = 1, 2, (4.2)

into equation (4.1), where the matrix Ψi is specified to have unit determinant. This allows
us to write Σ2⊗Σ1 = σ2(Ψ2⊗Ψ1), which results in identifiability of the model parameters.

4.3 Methodology

Utilizing the results of Glanz and Carvalho (2013), the model density is expressed as,

f(X | M,Ψ1,Ψ2, σ
2) =

exp
(
− 1

2σ2 tr
[
Ψ−11 (X−M)Ψ−12 (X−M)T

])
(2πσ2)p1p2/2|Ψ1|p2/2|Ψ2|p1/2

. (4.3)

Let I = {1, 2} be the index set of the model parameter subscripts. For the remainder of
this section, all statements made in terms of the index variable i implicitly hold for all
i ∈ I.

4.3.1 A Matrix Normal Model for High Dimensional Data

Suppose Xp1×p2 is a random matrix variable having Lebesgue density given by equation
(4.3). That is,

X ∼MNp1×p2(M,Ψ1,Ψ2, σ
2).

Let Λ1 be an orthogonal matrix with dimension p1. Defining Ẋ := Λ⊤1 X, we find that Ẋ

is again matrix normal distributed, and can be specified by,

Ẋ ∼MNp1×p2(Λ
⊤
1 M,Λ⊤1 Ψ1Λ1,Ψ2, σ

2).

Note that this transformation has changed the mean parameter M and the normalized
“across-column" covariance Ψ1, but left the “across-row" covariance and scale parameter
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untouched. We now assume that there exists a particular Λ1 such that the “across-column"
covariance becomes a diagonal matrix with the form,

Λ⊤1 Ψ1Λ1 =

[
Φ1

η1Ip1−q1

]
=: ∆1. (4.4)

That is, with the column space of X transformed by Λ⊤1 , the “across-column" covariance
matrix has become diagonal, with the first q1 elements given by Φ1 = diag(ϕ1, ..., ϕq1), and
the remaining p1 − q1 elements given by a single value η1, which is smaller in magnitude
than any element of Φ1. Under such a transformation, the column covariances become,

Cov
(
Ẋ·j, Ẋ·k

)
= Ψ2jk∆1. (4.5)

Note that σ2 = 1 has been implicitly assumed without loss of generality. This assumption
continues throughout the remainder of this discussion. Intuitively, Equation (4.5) says that
the columns of X are well approximated by projection into an affine space parallel to the
subspace spanned by the first q1 column vectors of Λ⊤1 . Further, outside of this space, the
covariance of the columns is spherical.

The assumptions on Ψ1 also imposes a parsimonious structure on the marginal covari-
ances of the rows of Ẋ in the following form,

Cov
(
Ẋj·, Ẋk·

)
= ∆1jkΨ2 =


ϕ1jjΨ2 if j = k, and j ≤ q1

η1Ψ2 if j = k, and j > q1

0p1×p2 if j ̸= k.

(4.6)

We see that under the constraints imposed on ∆1 the final p1 − q1 rows of Ẋ now share a
common covariance matrix. Note that this form is not dependent on the original order of
the rows (columns) of X, as permutation matrices are also orthogonal.

We may also consider Ψ2 in the same way. Suppose Λ2 is an orthogonal matrix of
dimension p2. Then Ẍ := XΛ2 follows a matrix normal distribution, with parameter
specification given by,

Ẍ ∼MNp1×p2(MΛ2,Ψ1,Λ
⊤
2 Ψ2Λ2, σ

2).
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Noting that Ẍ⊤ = Λ⊤2 X
⊤, we see that equation (4.5) now applies to the rows of Ẍ rather

than the columns, while equation (4.6) holds for the columns of Ẍ rather than the rows.
Finally, Λ⊤1 XΛ2 is easily seen to be matrix normal as well, and thus we may combine these
two subspace projection approaches to generate model parsimony through a dual-subspace
projection model specification.

4.3.2 Specification of the Model Likelihood

Following the preceeding discussion, the parameter Ψi admits an eigen decomposition,
which we denote by Ψi = Λi∆iΛ

T
i . We suppose ∆i has the form specified in Equation

(4.4), so that we may write,

Ψi = [Γi,Ξi]

[
Φi

ηi Ipi−qi

]
[Γi,Ξi]

T , (4.7)

where Φi = diag (ϕi) = diag (ϕi1, . . . , ϕiqi), Γi is pi × qi, and the eigenvalue matrix ∆i is,

∆i = diag (ϕi, ηiIpi−qi) .

Defining θ := (M, σ2,Λ1,∆1,Λ2,∆2, η1, η2) the log-likelihood for a single observation
can be written,

ℓ(X | θ) =− p1p2
2

log 2π − p1p2
2

log σ2 − p1
2

(
log|Φ1|+ (p1 − q1) log η1

)
−

p2
2

(
log|Φ2|+ (p2 − q2) log η2

)
− 1

2σ2
tr
[
Ψ−11 RΨ−12 RT

]
,

(4.8)

where we have used R to denote the centered observation X − M. Two constraints are
imposed on the model, namely,

det(∆i) = 1 and ΓT
i Γi = Ipi .

As discussed in Section 4.2.2, the determinant constraint ensures parameter identifiability,
while the eigenvector constraint is the usual one.

Looking at the log-likelihood provides some insight into what exactly our model implies.
Specifically, it becomes evident that while our model significantly reduces parameter count,
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it does not do so by discarding much discriminatory information. While it may assume
that the ∆i are equally spread along their last (pi − qi) principal components, our model
fully considers those directions.

With this new assumption the model now contains p1p2 +
∑2

i=1 qi
(
pi − (qi − 1)/2

)
+ 2

parameters. When compared against the fully parameterized model, we see that the total
number of model parameters has been reduced from a quadratic function of the data
dimensions, to a linear one.

4.3.3 A Parsimonious Mixture of Matrix Normal Distributions

Let S = {Xj}n be a sample of size n drawn from a mixture of matrix normal distributions,

p(Xj) =
G∑

g=1

πgf
(
Xj | θg

)
where each distribution in the mixture has covariance structure as in Equation (4.7). For
a sample S of size n drawn from such a model, the observed likelihood has the form,

L(Θ;S) =
n∏

j=1

G∑
g=1

πgf
(
Xj | θg

)
, (4.9)

with Θ := (θ1, ...,θg). To proceed with estimation, we implement an Expectation-Maximization
(EM) algorithm Dempster et al. (1977). This allows the accommodation of a latent un-
observed random variables, denoted by Z = Zjg, indicating group membership of the
individual observations. Under this assumption, the complete data likelihood, which in-
cludes these new latent variables, can then be written as a product of a product, from
which we get the complete data log-likelihood,

ℓc(Θ;S) =
n∑

j=1

G∑
g=1

Zjg

[
log πg + log f

(
Xj | θg

)]
. (4.10)

The EM algorithm maximizes Equation (4.9) through two-step, iterative maximization of
Equation (4.10). The first step is the Expectation step, or E-step, and consists of replacing
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the latent variable with its conditional expected value given the data and current parameter
values,

zjg =
πgf
(
Xj | θg

)∑G
k=1 πkf

(
Xj | θk

) .
Plugging these estimates into Equation (4.10), we get the expected complete-data log-
likelihood,

Q(Θ;S) =
1

2

G∑
g=1

[
ng log πg − ngp1p2 log σ

2
g − ngp2 log |Ψ1g|

− ngp1 log |Ψ2g| − σ−2tr
{
W2gΨ

−1
1g

}]
+ C (4.11)

which can equivalently be written,

Q(Θ;S) =
1

2

G∑
g=1

[
ng log πg − ngp1p2 log σ

2
g − ngp2 log |Ψ1g|

− ngp1 log |Ψ2g| − σ−2tr
{
W1gΨ

−1
2g

}]
+ C, (4.12)

where we have defined W1g =
∑n

j=1 zjgR
T
jgΨ

−1
1g Rjg and W2g =

∑n
j=1 zjgRjgΨ

−1
2g R

T
jg, as well

as ng =
∑n

j=1 zjg and Rjg = Xj −Mg. Additionally, C represents the sum over terms not
involving model parameters.

Constructing the expected complete-data log-likelihood completes the E-step, and we
now turn our attention to the Maximization step, or M-step. In this step, the expected
complete-data log-likelihood is maximized with respect the model parameters. Some of
the updates for our model depend on the values of other model parameters, so that our
algorithm falls under the Expectation Conditional Maximization framework Meng and
Rubin (1993). Algorithms of this kind still retain the same monotonicity and convergence
guarantees as vanilla EM.

Updates are presented in the order in which they are calculated by the algorithm, and
we require an update for each group g = 1, 2, ..., G. Beginning with πg, maximization of
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Q(Θ;S) under the condition
∑G

g=1 πg = 1 yields the update,

π̂g =
1

n

n∑
j=1

zjg =
ng

n
.

Next, maximization with respect to the group mean Mg gives,

M̂g =

∑n
j=1 zjgXj

ng

,

as an update for the group means. To update the eigenvalues ∆1g, we take the derivative
of Equation (4.11) with respect to ∆1g under the constraint |∆1g| = 1, yielding,

∆̂1g =
∣∣∣ diag

{
ΛT

1gW2gΛ1g

}∣∣∣−1/p1 diag
{
ΛT

1gW2gΛ1g

}
.

Denoting c1g =
∣∣ diag{ΛT

1gW2gΛ1g}
∣∣−1/p1 , our updates for the model “across-column" co-

variance eigenvalues are then,

Φ̂1g = c1g diag
{
ΓT

1gW2gΓ1g

}
, and η̂1g =

c1g
p1 − q1g

tr
{
W2g(Ip1 − Γ1gΓ

T
1g)
}
.

Following a similar procedure with Equation (4.12), our updates for the parameters
comprising ∆2g are given by,

Φ̂2g = c2g diag
{
ΓT

2gW1gΓ2g

}
, and η̂2g =

c2g
p2 − q2g

tr
{
W1g(Ip2 − Γ2gΓ

T
2g)
}
,

where we have defined c2g =
∣∣ diag{ΛT

2gW1gΛ2g}
∣∣−1/p2 .

To derive an update for the eigenvectors, Γ1g, we note that the objective function Q

only depends on Γ1g through the trace term. Thus maximization of Q with respect to Γ1g

is equivalent to solving,

Γ̂1g = min
Γ1g

tr
{
W2gΓ1g

(
Φ−11g − η−11g Ip1

)
Γ⊤1g

}
. (4.13)

To perform this optimization, we utilize the property that W2g is a positive definite matrix.
Making the substitution, W2g := A2gD2gA

⊤
2g, the optimization problem becomes,

Γ̂1g = min
Γ1g

tr
{
Γ⊤1gA2gD2gA

⊤
2gΓ1g

(
Φ−11g − η−11g Ip1

)}
.
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The problem is now solved by realizing Φ−11g − η−11g Ip1 is negative definite. Optimization
then occurs when Γ⊤1gA2gD2gA

⊤
2gΓ1g is as large as possible, a condition satisfied when Γ1g

comprises the q1g columns of A2g corresponding to the q1g largest eigenvalues of W2g.
Similarly, Γ̂2g is found to be the first q2g eigenvectors in the spectral decomposition of
W1g.

Finally, direct maximization with respect to the scaling parameter σ2
g results in the

update,

σ̂2 =
1

ngp1p2

n∑
j=1

tr
{
W2gΨ

−1
1g

}
=

1

ngp1p2

n∑
j=1

tr
{
W1gΨ

−1
2g

}
.

updating this parameter then completes the M-step.

4.3.4 Initialization Strategies, Convergence Criteria, and Hyper-
parameters

Our optimization algorithm is a version of the Expectation-Maximization algorithm, and
as such requires parameter initialization. We implement multiple initialization strategies,
most of which are some variation of the emEM approach detailed in Biernacki et al. (2003).
Generally, this approach works by choosing a relatively large number of starting param-
eter values and performing a small number of EM iterations for each of them. The best
performing set of starting parameters, measured by highest achieved likelihood value, is
then chosen to initialize the EM algorithm, which is then run until convergence. Choos-
ing the starting parameters for this initialization strategy can be done in multiple ways.
We implement k-means, parsimonious Gaussian clustering Browne and Mcnicholas (2014),
hierarchical clustering, random hard, and random soft cluster assignments for this purpose.

Convergence of the algorithm is assessed using an Aitken acceleration-based convergence
criterion, which depends on the linear convergence rate of EM. At the kth iteration, the
estimate of the limit is given by,

ℓ(k)∞ = ℓ(k) +
ℓ(k+1) − ℓ(k)

1− a(k)
where a(k) =

ℓ(k+1) − ℓ(k)

ℓ(k) − ℓ(k−1)
.
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For a chosen tolerance ε > 0, we stop the algorithm when the difference ℓ(k)∞ − ℓ
(k−1)
∞ falls

below this tolerance.

All that remains is to discuss choosing values for the model’s hyperparameters—the
number of groups G, and the intrinsic subspace dimensions q = {(q1g, q2g)}Gg=1. Both can
be chosen simultaneously by searching the space of all possible combinations of values for
G and q, and picking the best model according to an appropriate model selection criterion.
The Bayesian Information Criterion (BIC, Schwarz (1978)) is a commonly used criterion,
and we implement it here. For a fitted model M, the corresponding BIC is calculated as,

BIC(M) = k log n− 2 log(L̂M),

where L̂M represents the likelihood evaluated at the parameter values fitted by M, n is
the number of data points, and k is the number of free parameters.

One issue with an exhaustive search approach to hyperparameter optimization is that it
scales quite poorly with data dimension. Supposing we wish to fit a G-component mixture
model, and given that the data have p1 row, and p2 column dimensions, there are then
(p1p2)

G unique ways to choose the intrinsic subspace dimensions. This number is large,
even for modest values of the involved parameters, hence fitting all possible combinations
in such a case is an infeasible approach.

To combat this issue, we adapt a method developed in Bouveyron et al. (2007). Here,
the authors present a way to estimate the intrinsic subspace dimensions q when each group
is projected into the eigenspace of the associated covariance matrix. By estimating q from
the data, one skirts the requisite computational burden of exhaustively searching the space
of all possible q’s. The proposed estimation method for q finds the full set of eigenvalues for
each component’s covariance matrix, and then, implementing some form of thresholding,
chooses the number of “significant" eigenvalues. This number then serves as an estimate
of qg, the dimension of that component’s intrinsic subspace. In the case of our model,
this procedure requires decomposing both W1g and W2g, and then applying a threshold
condition to each set of computed eigenvalues accordingly.

The threshold condition for determining significance can be implemented in different
ways, and is somewhat arbitrary. Bouveyron et al. (2007) suggest one possible way is to
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take the sequential difference of the sorted (descending) eigenvalues and choose a cutoff
value below which the normalized differences can be considered small. We opt for a different
approach in our implementation. We instead use the proportion of total variance explained
by the retained eigenvalues as a threshold. For example, if we choose a threshold of 0.75,
then our estimate for qig would become the smallest integer such that the sum of the
retained eigenvalues exceeds 75% of the total variance in the data, i = 1, 2 and g = 1, ..., G.
A threshold value that gives good performance can then be chosen using BIC.

4.4 Numerical Demonstrations

4.4.1 Parameter Recovery

We now demonstrate the model’s ability to recover parameter values under an appropriate
data-generation scheme. Our simulation proceeds as follows. We generate a random true
parameter set, denoted by θ, from which we proceed to generate m = 1000 datasets
according to the model details given momentarily. For each dataset, we apply the proposed
clustering algorithm. Performance is assessed through a measure of proximity between the
estimated parameter values of the model and the true parameter vector θ. Owing to the
multiple mixture components and the matrix structure of the data, our model admits many
parameters even in fairly simple specifications. Displaying individual recovery results in a
set of tables is therefore impractical. Instead, we report the distribution of the estimated
mean squared error (MSE) in estimation, which we compute as,

M̂SE = L−1 ∥ θ̂ − θ ∥22,

where θ̂ is the vectorized set of parameter estimates given by the model, L is the number
of entries in the vector θ̂, and ∥ · ∥2 is the Euclidean norm. To account for the possibility
of label switching, we calculate this estimate of the MSE in both possible ways, and then
choose the smallest one. The model is said to be recovering the true parameters if the
estimated MSE trends to zero as the sample size increases. The simulation method above
is applied in three scenarios, corresponding to increasing data dimension. That is, (p1, p2) is
chosen from one of (6, 10), (10, 20), and (20, 20), which correspond to scenario 1, scenario
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Figure 4.1: Results of parameter recovery simulations. Top left corresponds to p=(6,10),
top right corresponds to (10,20), bottom corresponds to (20,20).

2, and scenario 3 respectively. For each simulation scenario we generate data from a
four-component mixture model. For each set of components, we specify the associated
dual-subspace dimensions (q1g, q2g) to be (2, 2) for component 1, (2, 3) for component 2,
(3, 3) for component 3, and (2, 4) for component 4. Finally, we run each scenario for four
chosen sample sizes, N = 50, 100, 500, and 1000.

Figure 4.1 shows the change in the distribution of the MSE as the sample size increases,
for scenario 1 (data dimension 6×10). We see that as the sample size increases both the
mean and variance of the distribution of MSE values approaches 0, exactly as we would
expect. The plots of the other two scenarios are nearly identical to Figure 4.1, and so are
omitted from the main text. Indeed, this shows that our model is effective at recovering
the true model parameters when the data have been generated according to the underlying
assumptions of matrix normality. Additionally, we note that in all cases, perfect clustering
results were achieved.
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4.4.2 Model Selection

The viability of the Bayesian Information Criterion (BIC) for choosing the number of com-
ponents in a finite mixture model is well documented ( Aitkin and Rubin (1985), Roeder
and Wasserman (1997), Fraley and Raftery (1998), Keribin (2000)). Often BIC is used pri-
marily for this purpose, however here we propose to use it for choosing the latent subspace
dimensions as well, via the thresholding method of Bouveyron et al. (2007) discussed in
Section 4.3.4. We investigate the viability of the BIC in this scenario empirically through
a simple simulation study. For the simulation we generate one true parameter set, which is
then manipulated to generate different scenarios for study. The true parameter set parame-
terizes a four-component mixture model which generates matrix observations of dimension
5 × 5. The latent subspace dimensions of each component is set to two (q1g = q2g = 2),
while ηg is chosen so that the proportion of variance explained by the first two principal
components is 0.57 in each group. The exact parameter values can be found in Appendix
A.1. The means are initially chosen so that the clusters have some overlap, and we push
the means further away as we progress through scenarios. That is, we run k = 4 scenarios,
and in each scenario we set,

M⋆
g = kMg,

where M⋆
g is the specified mean matrix of group g, and Mg is the mean matrix for group

g in the original true parameter set. For each value of k, we use the specified parameters
to generate a random dataset, which we then fit our model to. For each dataset, we
fit the model using all combinations of G = {1, 2, 3, 4, 5, 6, 7} for the components and
T = {0.50, 0.55, ..., 0.95} for the thresholds. Each time we run a scenario, the latent
subspace for each component is determined randomly. Each of the four scenarios is run
m = 500 times for sample sizes N = 100, 250, and 500. To initialize the algorithm we
implement the emEM of Biernacki et al. (2003) using 20 starts, each performing 5 iterations
of EM. The best set of parameters from this initialization is then used to run the model for
50 iterations. We also keep track of the Adjusted Rand Index (ARI, Hubert and Arabie,
1985) to see how well the best clustering found by the model matches the true labels. The
results are provided in Table 4.1.

From the results presented in Table 4.1, we see that BIC does a good job in all scenarios
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Scenario Ḡ Min BIC Ave BIC Max ARI Min ARI q1 q2

M

N=100 3.96 27395.69 27565.00 0.915 0.577 2.19 2.19

N=250 4 74249.97 74579.51 0.897 0.810 2.20 2.20

N=500 4 147383.99 148151.90 0.896 0.847 2.14 2.14

2M

N=100 4 23751.07 24043.80 1 0.980 2.14 2.15

N=250 4 58434.27 58908.40 1 0.990 2.10 2.11

N=500 4 116480.21 116814.00 1 0.992 2.14 2.14

3M

N=100 4 19855.61 20168.00 1 1 2.23 2.19

N=250 4.04 48783.63 49189.61 1 0.914 2.25 2.22

N=500 4.00 96594.29 97279.02 1 0.999 2.20 2.20

4M

N=100 4 16323.90 16623.93 1 1 2.22 2.20

N=250 4 39942.95 40299.08 1 1 2.23 2.23

N=500 4.04 78618.17 79406.90 1 1 2.22 2.19

Table 4.1: Group selection results for the chosen scenarios. Number of model components
and dimension of latent subspace seem to be well estimated using BIC.

at choosing the correct number of groups, faltering only occasionally. The column Min BIC
refers to the minimum value of BIC achieved across all 500 runs of the specified scenario.
The closeness of this value to the that of the column Ave BIC, which reports the average
BIC value across all runs, reflects consistency in the model fitting approach. Pair this
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consistency with the consistently large maximum ARI value and correct hyperparameter
values, and we see that the model is, in some sense, recovering the true latent model.
The relatively weak minimum ARI values and decreasing maximum ARI values of the
first scenario are a result of component overlap which we alluded to earlier. The columns
q1 and q2 average the value of the latent subspace dimensions across all 500 runs, and all
components fit in each of those runs. With a true value of 2 in every case, it seems that the
thresholding method of Bouveyron et al. (2007) along with BIC seems to perform well at
choosing the latent subspace dimension as well. The performance of this method, however,
does not seem to improve with increasing N or decreasing overlap in the components of
the model. Across all scenarios, when fitting a model with 4 groups and a threshold value
of 0.55, the average run time for N = 100 across all scenarios was 31.06 seconds, while
increasing to N = 500 we found average run time to be 120.14 seconds.

4.4.3 Data Analysis: Landsat Satellite Data

The Landsat data set is taken from the UCI Machine Learning Repository Dua and Graff
(2017) and contains multi-spectral values for 3×3 pixel neighbourhoods of a satellite im-
age. Each observation in the dataset corresponds to one 3×3 neighbourhood, and contains
4 values per pixel representing the value at that pixel for different spectral bands. In to-
tal, there are 36 values per observation which are arranged into a 4×9 matrix, where the
columns correspond to a specific pixel, and rows correspond to a specific spectral band.
The structure of the data is then seen to fall under the category of repeated measures
data, for which the matrix normal is well-suited. Each observation is also associated with
a particular class label, determined by the physical contents of the central pixel of the 3×3
neighbourhood. The classes of interest for our purposes are grey soil (n = 397), damp grey
soil (n = 211) and soil with vegetation stubble (n = 237). Attempts to classify this data
using unsupervised approaches have been made previously. Namely, Viroli (2011a) restrict
attention to only the four measurements on the central pixel, so that each observation
is now a vector rather than a matrix, and cluster the results using the mclust package
Fraley and Raftery (2003). They report that the best model in terms of misclassifica-
tion rate follows from fitting heteroskedastic components, resulting in a 0.258 MCR. Using
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MCR = 0.116
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Figure 4.2: The results of all fitted models. Colors corresponds to ARI, size to BIC. The
best ARI is marked with a circle, best BIC with an arrow.

the vectorized full data, so that each observation is now a 36 dimensional vector, they
achieve a best MCR of 0.283. Finally, using the parsimonious mixture of matrix Gaussian
distributions derived therein, Viroli (2011a) reports a best misclassification rate of 0.116,
achieved using totally unconstrained model parameters (i.e. with respect to MCR, they
found no advantages in parsimonious parameter specification when modelling this data).
More recently, Sarkar et al. (2019) also analyzed this dataset using their matrix clustering
algorithm which achieves parsimony through assumptions of common parameter values
across the eigen decomposition of component “across-row" and “across-column" covariance
matrices. Their best fitted model according to BIC achieves an MCR of 0.358, although
they note that some models with worse BIC values attained much better clustering per-
formances, with a best ARI of 0.72.

We proceed to model this data using the dual-subspace approach, intending to discover
if these data will admit parsimony from an alternative approach. Intuition tells us that
parsimony may be attainable in modelling of the rows. This idea stems from the fact that
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each pixel represents a large geographical area (approximately 80m×80m), as well as the
fact that each row represents the same spectral band. Accordingly, for a given spectral band
(row) we expect variation to be similar across pixels. This is analogous to assuming the
columns reasonably represent iid samples. This assumption is not wholly unreasonable, as
groups correspond to homogeneous land topography. Despite intuition, we try all possible
values for the intrinsic subspace dimensions. That is, in our model fitting, we try q1g ∈
{1, 2, 3} for the latent subspace dimension of the columns, and q2g ∈ {1, 2, 3, 4, 5, 6, 7, 8} for
the latent subspace dimension of the rows. We try each possible combination of elements
(q1g, q2g) across the three groups.

We then let BIC determine which choice of q1g and q2g allows the model to best represent
each component g. For comparison with Viroli (2011a) we also consider the best performing
models in terms of MCR. Additionally, in the interest of utilizing more contemporary
metrics, we also provide the ARI (Adjusted Rand Index, Hubert and Arabie (1985)) values
for each fit.

Initialization of the models is done with an emEM approach utilizing Gaussian parsi-
monious clustering and random soft classifications, each with 50 initializations.

Latent Dimensions
q1 q2 q3

MCR ARI BIC Parameters

MCR
(2, 8) (3, 5) (3, 4) 0.098 0.738 8182.1 251

(3, 8) (2, 6) (2, 3) 0.099 0.739 8560.0 247

(2, 8) (3, 5) (2, 3) 0.101 0.737 8555.7 243

BIC
(3, 8) (3, 6) (3, 5) 0.108 0.720 7901.0 262

(3, 8) (3, 6) (2, 6) 0.109 0.717 7901.0 264

(3, 8) (3, 6) (2, 5) 0.110 0.715 7903.7 260

Table 4.2: Most parsimonious models for each of the best three MCR values, and top
models by BIC, respectively. Best overall values are bolded.

The results of fitting all models are presented graphically in Figure 4.2. We see that all
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fitted models do an adequate job in terms of classification, coming in under the previously
mentioned 0.258 MCR of the mclust results, and hanging competitively with the 0.116
MCR presented by the model of Viroli (2011a). We notice that the total number of model
parameters is correlated with MCR, but the relationship is not particularly strong. That
is, for any given MCR value, models with a wide range of total estimated parameters
are seen to achieve it. The only difference between these models is the specification of
the latent subspace dimensions for each component, so that Figure 4.2 suggests model
performance, as measured by MCR (equivalently ARI), is more strongly associated with
good specification of the latent subspace dimensions than with general increases in the
total number of model parameters.

The top performing models with respect to MCR and BIC are presented in Table
4.2. We see that the best BIC model achieves the same overall maximum ARI found by
Sarkar et al. (2019). Our top ARI, inrrespective of BIC, is 0.739, which is only a slight
improvement. We see that MCR noticably favors parsimonious models a bit more than
BIC for this dataset. Indeed, all of the best MCR models can be seen to have less total
parameters than the BIC models, and in particular, each models the third group (vegetation
stubble) fairly parsimoniously. Overall, none of the top models find much parsimony in
modelling the first group (grey soil) however, with each model using the maximum number
of row dimensions for modelling this group, and most also using the maximum number of
column dimension dimensions.

4.4.4 Data Analysis: Fashion-MNIST

The Fashion-MNIST dataset Xiao et al. (2017) became available publicly in the month of
August, 2017. It was released by its creators with intentions of supplanting the MNIST
handwritten digits as the standard benchmark dataset for machine learning classifiers.
Although the handwritten digits are still quite ubiquitous in the field, Fashion-MNIST did
see a fair share of success—it was utilized in over 250 academic papers within one year of
its release.

The dataset itself consists of 60000 grey scale images, each comprising 748 pixels ar-
ranged into a 28 by 28 square matrix. There are 10 different groups in the data, each
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Figure 4.3: A sample of data points from the Fashion-MNIST dataset used in our study.

consisting of 6000 observations. The groups are distinguished by the content of the im-
ages, with each group corresponding to a specific article of clothing, hence the “Fashion”
moniker. More details can be found in Xiao et al. (2017).

Using the Fashion-MNIST dataset, we task the proposed dual-subspace mixture model
with clustering images of t-shirts, pants, and shoes—the basic components of a typical
outfit. To do this, we take a sample from the Fashion-MNIST dataset of t-shirt images,
pants images, and shoe images, each consisting of n = 250 observations. This gives us an
operational dataset consisting of N = 750 total data points. Some of the images in our
operational dataset are presented in Figure 4.3.

The Fashion-MNIST data are fairly high dimensional in the sense that the associated
parameter space for q cannot be searched exhaustively in any reasonable amount of time for
any interesting values of G. We therefore implement the procedure of estimating q from
the data, which was discussed in Section 4.3.4, when fitting the dual-subspace mixture
model to Fashion-MNIST.

In terms of fitting the model, our goal is to find a generative model which fits the data
well, but also provides a parsimonious representation. We therefore fix the threshold value
to be 0.50, and set the possible number of groups to be in G = {3, 4, 5, 6}. We then fit a
model for each value in G, where each fitted model is initialized with 40 random starts, with
the best trajectory according to BIC chosen as the best fitted model for that particular
number of groups.

The best model according to BIC for each value of G is presented in Table 4.3, while the
confusion matrices for each model are provided in Figure 4.4. Thanks to our choice to hold
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G BIC Accuracy OOS Accuracy
3 724177.8 0.903 0.885
4 649969.4 0.897 0.868
5 631428.0 0.931 0.837
6 635905.6 0.929 0.859

Table 4.3: Top model by BIC and its associated accuracy for each value of G. The best
performance by a model for each of the three metrics is bolded.

(a) Confusion Matrix for G = 3

label 1 2 3
t-shirts 217 24 9
pants 39 0 211
sneakers 1 249 0
q1 3 3 4
q2 3 5 2

(b) Confusion Matrix for G = 4

label 1 2 3 4
t-shirts 38 202 8 2
pants 3 34 213 0
sneakers 30 0 0 220
q1 3 3 5 2
q2 3 3 2 4

(c) Confusion Matrix for G = 5

label 1 2 3 4 5
t-shirts 8 1 0 203 38
pants 212 0 0 35 3
sneakers 0 167 78 0 5
q1 5 2 3 3 3
q2 2 4 5 3 3

(d) Confusion Matrix for G = 6

label 1 2 3 4 5 6
t-shirts 0 8 36 202 2 2
pants 0 212 3 35 0 0
sneakers 80 0 3 0 165 2
q1 3 5 3 3 2 2
q2 5 2 3 3 4 1

Figure 4.4: All Confusion Matrices along with the associated fitted values of the hyperpa-
rameters q1 and q2 for each group.

the threshold value at 0.5, all models produce values of q1 and q2 less than 5. Comparing
to the data dimension of 28× 28, this results in quite noteworthy parameter savings.

In Table 4.3 we have also included the accuracy, which reports the proportion of cor-

55



Figure 4.5: Sample data points of each label from its two largest amalgamations. From
left to right: component 1 pants, component 4 pants, component 4 t-shirts, component 5
t-shirts, component 2 sneakers, component 3 sneakers.

rect classifications for the sampled data, and out-of-sample (OOS) accuracy, which is the
proportion of correct classifications on the data not used to fit the model. From the table
we see that the accuracy corresponding to each model is relatively high, suggesting that
the obtained mixture models are identifying approximately correct groupings of the data
regardless of the value of G. This is made more granular by inspection of Figure 4.4, and
in particular, we see that the models seem to be finding similar solutions. That is, the
additional groups in the larger fitted models seem to be formed from partitions of the
groups composing the smaller models. Additionally, OOS accuracy results demonstrate
that the sample dataset used to fit the models is a good approximation to the population
of included images, or alternatively, that the fitted models all generalize fairly well to the
population distribution. Overall, all fitted models do a good job at identifying the data
groups and generalizing to unseen images, despite their parsimonious specification. In
terms of the overall best model, BIC chooses G = 5, which also corresponds to the most
accurate model.

Looking at Figure 4.4, based on the confusion matrix for the best fitted model by BIC,
each image type is seen to be largely collected into a single group while also having a non
trivial number of observations sorted into a second group. For example, pants are largely
group into the first model component, however, there is a small collection of pants also
appearing in the fourth component. We take a look inside these groups to see if the model’s
distinction between these subsets of each image is associated with any visual differences.
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Some sample images for each image (sub)cluster is presented in Figure 4.5.

The first two columns of this figure correspond to sample pants from the first model
component and the fourth model component respectively. Based on these images, it seems
that the first component corresponds to pants which are dark and have a slim profile. The
fourth component, however, has collected pants with a wider profile, and also pants with
a bent leg.

The next two columns of Figure 4.5 correspond to t-shirts from the fourth component
and fifth component respectively. The fourth component seems to correspond to typical
t-shirts, while the fifth component seems to be a catch all for t-shirts that don’t fit the
mold of the fourth component.

Finally, the last two columns of the figure correspond to sneakers from the second
component and the third component respectively. It is quite obvious from these images
that the second component corresponds to low-profile sneakers, while the third component
corresponds to high-top sneakers.

In conclusion, its seems that, not only has the model been able to distinguish between
the true labels of the FMNIST data, but that it has also further separated these groups
according to key visual distinctions which correspond to real subgroups within the same
general fashion category (e.g. high-top sneakers and regular sneakers). We conclude that
the resulting model has achieved the goal of fitting a reasonable approximation to the data
distribution of interest while also providing good parsimony.

4.5 Conclusion

In this work, we have defined and investigated a parsimonious, finite mixture of matrix-
normal distributions. We have demonstrated that the adaptation of subspace projec-
tion to the matrix normal distribution leads parsimony in parameter estimation, reducing
quadratic parameter growth to a linear rate. The model formulation is quite flexible, of-
fering the ability to parsimoniously model the rows, the columns, or both, and either of
these can be specified with prior knowledge of the data in mind. We have demonstrated

57



the model’s applicability in modelling data through two analyses. The first demonstrated
competitive performance on a tough dataset, while the second demonstrated the parsimo-
nious benefits that dual-subspace projection can provide. Future work in the area might
find a more clever way to choose the threshold for the latent dimensions q, or to estimate
q in general. Additionally, modelling of each covariance matrix is somewhat independent
for the other, and an extension where different forms of parsimony are found in modelling
each covariance matrix may be considered.
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Chapter 5

A Joint Latent Factor Analyzer and
Functional Subspace Model for
Clustering Multivariate Functional Data

5.1 Introduction

Baseball trajectories, air plane flight paths, the motion of a writing utensil or body part—
these kinds of measurements are examples of functional data, so-named for their attribute
of evolving continuously over some interval of time. Due to technological limitations, the
full trajectory of a functional data object is often not observed, but is instead recorded
at a discrete set of time points. Despite the fact that these functional data are recorded
in the same format as multivariate data, there is potential for information loss if they
are analyzed as such (Ramsay and Silverman, 2005). Indeed, a branch of statistics, aptly
named Functional Data Analysis, focuses on the development of methods that specifically
consider the functional nature of the data to be analyzed. Many of the familiar methods for
analyzing univariate and multivariate data have been extended to the functional context.
For example, linear models (Cardot et al., 1999, 2003; Chen et al., 2011), graphical models
(Zhu et al., 2016; Qiao et al., 2019), PCA (Dauxois et al., 1982; Rice and Silverman, 1991;
Silverman, 1996; Jacques and Preda, 2014b), and hypothesis testing (Hall and Keilegom,
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2007; Zhang et al., 2011; Fremdt et al., 2013). A good introduction is provided in Ramsay
and Silverman (2005), while one may check out the recent review Wang et al. (2016) for a
high level overview of more contemporary ideas in the functional data literature.

Our research is specifically interested in the extension of mixture models and model-
based clustering to the functional data context. Functional data often arise from clearly
defined groups, such as longitudinal biological measurements of healthy and sick individ-
uals. Functional mixture models would then be employed to help identify these groups
when the labels are latent or unobserved. The main challenge in using this approach for
functional modelling stems from the fact that a random variable taking functional values
does not in general admit a probability density function (Lin et al., 2018). Despite this
fact, workable approximations for a density have been theorized. Delaigle and Hall (2010)
show that by projecting the functional random variable into the eigen basis associated
with its covariance operator, one can attribute to it a surrogate density by assuming a
distribution on the resulting functional principal component scores (see also: Bongiorno
and Goia, 2017). This result is utilized by Jacques and Preda (2013) to create Funclust,
a methodology which assumes a group specific Gaussian distribution on the first principal
components. The advantage of this approach over previous approaches such as Chiou and
Li (2007), is that it allows the number of retained terms in the Karhunen-Loeve expansion
(KLx) to be group specific, and allows the variance matrices to be non-spherical. In a sim-
ilar vein to this, Bouveyron and Jacques (2011) also assume a Gaussian distribution on the
group specific KLx coefficients, however, rather than modelling only the first few principal
components as in Jacques and Preda (2013), this method models all computable principal
components under parsimonious assumptions that make the method amount to an exten-
sion of Bouveyron et al. (2007) to the function case. In Jacques and Preda (2014b) the
authors utilize the multivariate extension of the KLx derived in Saporta (1981) to extend
the work of Jacques and Preda (2013) to the case of multivariate functional observations.
Likewise, Schmutz et al. (2020) extend Bouveyron and Jacques (2011) to the multivariate
case using the same machinery. Other good methods exist for clustering univariate (see:
James and Sugar, 2003; Sangalli et al., 2010; Bongiorno and Goia, 2016; Zambom et al.,
2019) and multivariate (see: Singhal and Seborg, 2005; Tokushige et al., 2007; Kayano
et al., 2010; Ieva et al., 2013) functional data.
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The method introduced in this chapter also makes use of the surrogate density of
Delaigle and Hall (2010) and employs this alongside a direct sum decomposition of the
function space to develop a model for multivariate functional data that treats it as p
dependent univariate functional random variables. Under this framework we may utilize
the properties of the matrix normal distribution to allow distinct parsimonious modelling
of the univariate function spaces and the associated coefficient spaces. That is, we assume
a latent subspace structure for the functional principal components, as in Bouveyron et al.
(2007), while we assume a latent factor structure on the associated latent coefficients. This
formulation allows for interpretation at the component function level, which is useful when
the multivariate functional data arise as multiple continuous observations on a single entity
which are interesting in their own right.

5.2 Background

5.2.1 Multivariate Functional Principal Component Analysis

We now review how the method of principal component analysis extends to the multivariate
function setting. There are a few ways to approach the extraction of functional principal
components, however we will focus on the variety of functional principal component analysis
(FPCA), and the associated multivariate extension, that is rooted in the works of Dauxois
et al. (1982), Jacques and Preda (2014a), and Jacques and Preda (2014b).

Let (Ω,A, Q) be a probability space and (T ,F , λ) a measure spaces—where T is a
compact interval, F its associated Borel σ-algebra, and λ a finite measure—and L2

p(T ) the
associated space of p-dimensional square-integrable functions on T . Let X : T × Ω → Rp

be a second-order continuous-time stochastic process taking values in L2
p(T ) with mapping,

(t, ω) 7→ X(t, ω) =
(
X1(t, ω), . . . ,Xp(t, ω)

)⊤
, (5.1)

and imbue this process with a continuous mean function µ(t) := EQX(t) and autocovari-
ance function V (s, t) := EQ

[
(X(s) − µ(s))(X(t) − µ(t))T

]
, for all s, t ∈ T . That is, X

is a p-dimensional function-valued random variable, where p ≥ 1. In the sequel, we use

61



X(t, ·) and X(t) interchangeably to represent the random variable at t, X(·, ω) and x in-
terchangeably to represent observed paths, and we use P = {1, 2, ..., p} to index the spatial
dimensions.

The random variable X establishes an integral operator V : L2
p(T ) → L2

p(T ) defined by,

(Vϕ)(s) =
∫
T
V (s, t)ϕ(t)dλ, ϕ ∈ L2

p(T ).

Under the specified conditions on X, Mercer’s Theorem (Mercer (1909), Hsing and Eubank
(2015)) states that the covariance function admits the following representation,

V (s, t) =
∑
j∈N

σ2
jψj(s)ψj(t)

T,

where (σj, ψj) are the eigenpairs of the operator V , so-called because they satisfy Vψj =

σjψj. We also have for all j that σj > 0 and ⟨ψj, ψk⟩ = I{j = k}, where ⟨·, ·⟩ is the
L2
p-space inner product defined by,

⟨f, g⟩ =
∫
T

∑
i∈P

fi(t)gi(t) dλ, f, g ∈ L2
p(T ). (5.2)

From the results of Wang (2008) we may express X using the (multivariate) Karhunen-
Loeve expansion (KLx) as,

X(t) = µ(t) +
∑
j∈N

〈
X− µ, ψj

〉
ψj(t), t ∈ T , (5.3)

where C̃j = ⟨X−µ, ψj⟩ is the length of the projection of the centered process onto the the
jth eigenfunction, known as the jth principal component score. Note that each principal
component is a function of a random variable and are hence itself a random variable. It
is apparent that constructing a methodology that utilizes the results of Delaigle and Hall
(2010) will require representation of the associated data in the KLx form of Equation (5.3).
To do this, we first note that the assumptions on X are equivalent to assuming X exhibits
mean square continuity so that it satisfies,

EQ

[∥∥X(ti)−X(t)
∥∥2] i ↑∞−−→ 0, ∀t ∈ T , (5.4)
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where (ti) is some sequence of elements in T converging to t, and ∥·∥2 is the norm induced
by the inner product of Equation (5.2). Aside from mean square continuity of the p-
dimensional X, Equation (5.4) additionally implies that each subprocess of X, denoted Xi,
is also mean square continuous with values lying in L2(T ) for all i in P and for each ω in Ω.
From this it follows that the full realizations X(·, ω) can be equivalently thought to live in
⊕i∈PL

2(T ). This formulation is important because it allows us the liberty of modelling X

through joint modelling of its subprocesses Xi. Indeed, we suppose that each component
process Xi produces realizations in a finite dimensional subspace of L2(T ), and without loss
of generality, we suppose that space is in the span of the b-dimensional basis Φ := {ϕj}j∈B
with index set B := {1, 2, ..., b}. We use H(T ) to denote the space spanned by the basis
Φ. Define the vector of basis functions evaluated at t in T by Φ(t) :=

(
ϕj(t)

)T
j∈B and let

Ci be the coefficients such that Xi(t) = C⊤i Φ(t). We then define the coefficient matrix C

as,

C :=


C⊤1
C⊤2
...
C⊤p

 .
With this notation we may then write,

X(t) = CΦ(t), (5.5)

to represent the stochastic process X succinctly in matrix form. Additionally, we may also
write the process using a vectorized representation, viz,

X(t) =
[
Ip ⊗Φ(t)

]Tvec
{
CT
}
. (5.6)

Under these assumptions we may represent the mean and auto covariance function as,

µ(t) =
[
Ip ⊗Φ(t)

]Tvec
{
EQC

T
}
, and,

V (s, t) =
[
Ip ⊗Φ(s)

]T
Σ
[
Ip ⊗Φ(t)

]
,

(5.7)

where we have define Σ = EQvec
{
(C− EQC)T

}
vec
{
(C− EQC)T

}T.
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Functional principal component analysis consists of finding the functions in L2
p(T ) that

solve, ∫
T
V (s, t)ψ(t) dλ = σψ(s).

Substituting in the expression for V (s, t) given in Equation (5.7) the functional principal
component problem becomes,∫

T

[
Ip ⊗Φ(s)

]T
Σ
[
Ip ⊗Φ(t)Φ(t)T

]
e dλ =

σ
[
Ip ⊗Φ(s)

]T
e,

where we have also substituted ψ(t) =
[
Ip ⊗ Φ(t)

]T
e. Pulling constant terms out of the

integral, we find the equivalent expression,[
Ip ⊗Φ(s)

]T
Σ
[
Ip ⊗W

]
e = σ

[
Ip ⊗Φ(s)

]T
e, (5.8)

where W is the b × b symmetric matrix of inner products between the basis functions of
Φ, defined by,

Wij = ⟨ϕi, ϕj⟩, i, j ∈ B.

Equation (5.8) must hold for all s in T , so that we may finally write,(
Ip ⊗W

1
2

)
Σ
(
Ip ⊗W

1
2

)
u = σu, (5.9)

where we have defined e =
(
Ip ⊗ W9 1

2

)
u. To compute these eigenpairs in the case of

observed data S = {xi}ni=1, we use the sample estimators,

µ̂(t) =
1

n

∑
i∈S

xi(t), and,

V̂ (s, t) =
1

n− 1

∑
i∈S

[
xi(s)− µ̂(s)

][
xi(t)− µ̂(t)

]T
,

where xi(t) =
[
Ip ⊗ Φ(t)

]T
ĉi. The estimated coefficients ĉi are typically found through

least-squares. We may then plug these estimates into the equations above, at which point
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Equation (5.9) can be solved using regular PCA methods. The coefficients for the jth
eigenfunction are given by êj =

(
Ip ⊗ W9 1

2

)
ûj and the associated score is computed as

c̃j = ĉTj (Ip ⊗W)êj. Note that the matrix W9 1
2 accounts for the function metric, so as to

make the solutions eigenfunctions rather than eigenvectors, that is,

1 :=
〈
ψj, ψj

〉
= eT

j

(
Ip ⊗W

)
ej.

5.2.2 Matrix Normal Distribution

A p1 × p2 matrix Xp1×p2 is said to have a matrix normal distribution (Dawid, 1981) with
p1×p2 dimensional mean matrix M, and covariance matrices Σ1 and Σ2 having dimension
p1 × p1 and p2 × p2 respectively, if its associated pdf can be expressed as,

f(X |M,Σ1,Σ2) =

exp
(
−1

2
tr
[
Σ−11 (X−M)Σ−12 (X−M)T

])
(2π)p1p2/2|Σ1|p1/2|Σ2|p2/2

.
(5.10)

When a random variable X is distributed according to a matrix normal distribution, we
denote it by

X ∼ Np1×p2(M,Σ1,Σ2).

The matrix normal distribution arises as a special case of the multivariate normal, and
occurs when the specified covariance matrix can be decomposed as the kronecker product
(Srivastava et al., 2008). That is,

X ∼ Np1×p2(M,Σ1,Σ2)

iff (5.11)

vec(X) ∼ Np1p2(vec(M),Σ2 ⊗Σ1).

By assuming the full covariance matrix can be specified as a kronecker product of two
lower dimensional covariance matrices, the total number of parameters needed to specify
the full covariance matrix is reduced, bringing parsimony. The total number of model
parameters is still a quadratic function of both the row and column dimension however, so
the gains are modest.
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Identifiability

A matrix normal model for data, as specified in Equation (5.10), is not identifiable. Given
α ̸= 0, the substitutions Σ∗1 = αΣ1, and Σ∗2 =

1
α
Σ2 leave the distribution unchanged. This

identifiability problem for the matrix normal distribution can be addressed using Glanz
and Carvalho (2013), which proposes to alleviate the problem through the introduction of
a general scale parameter σ2. The suggested substitution is,

Σi = σΨi, i = 1, 2, (5.12)

where the matrix Ψi is specified to have unit determinant. This allows us to write Σ2⊗Σ1 =

σ2(Ψ2 ⊗ Ψ1), which results in identifiability of the model parameters. In our work, we
instead absorb σ2 into Ψ1, i.e. we define Σ1 = σ2Ψ1. This specification is used to keep
the estimation procedure for the proposed model fairly simple.

5.3 Methodology

In this section, we delve into the details of our proposed methodology. We begin by
specifying the context in which our functional data analysis will take place. This involves
recognizing functional data as path realizations of some multivariate stochastic process.
We follow up that discussion by relating our model formulation to the previous work of
Jacques and Preda (2014b) and Schmutz et al. (2020). Finally, we give full details of our
model specification, and discuss the implications thereof.

5.3.1 A Model-Based Approach for Clustering Functional Data

Let X and Φ be as defined in Section 5.2.1. We suppose that the coefficent matrix C is
distributed according to a matrix normal distribution,

C ∼ Np×b(M,Σ1,Σ2). (5.13)

Our intention in defining a distribution on the coefficient matrix C is to employ a model-
based approach for finding homogeneous groups within a set of sample paths from X. The
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work of Delaigle and Hall (2010), however, enlightens us to the fact that distributional
assumptions on X must be theoretically justified, as X does not generally admit a density.
The alternative they provide, and the direction we follow here, is that one may impose
a surrogate density on X through a joint distribution on its principal component scores.
We now show that in the setting specified by Equation (5.13), defining a distribution on
the coefficient matrix C is equivalent to defining a distribution on its associated principal
component scores.

By the distributional assumptions on C, the autocovariance function V (s, t) may be
written as,

V (s, t) =
[
Ip ⊗Φ(s)

]T[
Σ1 ⊗Σ2

][
Ip ⊗Φ(t)

]
= Σ1 ⊗

[
Φ(s)TΣ2Φ(t)

]
.

With the autocovariance function formulated in this manner, Equation (5.9) of Section
5.2.1 becomes,

Σ1 ⊗
(
W1/2Σ2W

1/2
)
uj = ωjuj. (5.14)

Note that since the matrix Σ1 ⊗
(
W1/2Σ2W

1/2
)

has spectral decomposition of the form
(Γ1 ⊗ Γ2)(∆1 ⊗∆2)(Γ1 ⊗ Γ2), the pb × 1 vectors uj that solve Equation (5.14) can each
be expressed as a Kronecker product of a p× 1 and a b× 1 dimensional vector. Using this
result, we discover that the principal components of X are obtained through the following
transformation of the coefficients,

C̃ =
(
Γ1 ⊗ Γ2

)Tvec
{
W

1
2 (C−M)T

}
. (5.15)

The principal components are a linear transformation of the Gaussian distributed coeffi-
cients, hence they are themselves Gaussian. Thus our distributional assumptions on the
coefficients C imply the existence of a distribution on the principal components C̃, fulfilling
the stipulations made in Delaigle and Hall (2010) for defining a surrogate density on X.
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5.3.2 A Latent Factor Model for Parsimonious Principal Compo-
nents

Recall Equation (5.14), and observe that the problem of finding the eigen-pairs of the
autovariance function V (s, t) has been decomposed into distinct parts: an FPCA problem
pertaining to W

1
2Σ2W

1
2 and a regular PCA problem pertaining to Σ1. Noting that the

autocovariance function of the subprocess Xi is,

Vi(s, t) = Φ(s)TΣ1iiΣ2Φ(t),

we see that the FPCA problem corresponds to projection of each subprocess into its as-
sociated eigenspace. We call the space spanned by the resulting eigenfunctions Υ(t) :=

ΓT

2W
9 1
2Φ(t) the intrinsic functional subspace. We can represent the data in the intrinsic

functional subspace with the following transformation,

X(t)− µ(t) =
(
Ip ⊗W9 1

2Φ(t)
)T(

Γ1 ⊗ Γ2

)
(
Γ1 ⊗ Γ2

)T

vec
{
W

1
2 (C−M)T

}
= (C−M)W

1
2Γ2Υ(t).

Let the projected coefficients be represented by C⋆ = CW
1
2Γ2, and define M⋆ analo-

gously. Then C̃
⋆
:= C⋆−M⋆ are the subprocess principal components and are distributed

according to,

C̃
⋆ ∼ Np×b(0,Σ1,∆2), (5.16)

where ∆2 is a b × b diagonal matrix with unit determinant. Under the matrix normal
assumption, the eigenvalues associated with each subprocess Xi are proportional to ∆2,
with proportionality constant given by the ith diagonal element of Σ1. Model parsimony
is achieved by assuming only the first d eigenvalues are important,

∆2 =

[
Ω2

η2Ib−d

]
,
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where Ω2 = diag{ω1, ω2, ..., ωd} and η2 is a scalar with smaller magnitude than any entry
of Ω2. This particular model for the eigenvalues is akin to that of the subspace clustering
approach detailed in Bouveyron et al. (2007). Additionally, the latent coefficient mean is

M⋆ =
[
m1 m2 . . . md 0p×(b9d)

]
.

The formulation of M⋆ also follows from the works of Bouveyron et al. (2007) and Sharp
and Browne (2021), in which the mean of the coefficients in the latent intrinsic functional
subspace is restricted to have non-zero values only in the components corresponding to
the d-dimensional intrinsic subspace. Intuitively the formulation on ∆2 and M⋆ supposes
the existence of a d-dimensional subspace around which the data accumulate in a noisy
fashion. This formulation is often referred to as a latent subspace model.

When represented in the base-space, we assume that each set of same index subprocess
principal components admit a latent factor structure. That is,

C̃
⋆
=
[
Λ1u+ ϵ1 | Λ2u+ ϵ2 | . . . | Λbu+ ϵb

]
,

where Λj is a p × q matrix of factor loadings for each j in B. With the matrix normal
distribution, each of the latent loading matrices Λj will be proportional to a single loading
matrix, say Λ1, hence we may write the full coefficient model as,(

C−M
)
W

1
2 = Λ1U∆

1/2
2 ΓT

2 + ε, (5.17)

where we have defined,

U ∼ Nq×b(0, Iq, Ib), and

ε ∼ Np×b
(
0,Ξ1,Γ2∆2Γ

T

2

)
.

With this model specification, we then find that the coefficients are distributed according
to a matrix normal distribution, viz,

C ∼ Np×b
(
M,Λ1Λ

T

1 +Ξ1,W
9 1
2Γ2∆2Γ

T

2W
9 1
2

)
. (5.18)

Intuitively, the q latent factors serve to identify subprocesses of X whose variation in terms
of each base-space eigenfunction is similar. The factor weights Λj := ∆2jjΛ1 identify the
strength and direction of this variation for basis function υj.
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In Equation (5.17), the random matrix U is a latent variable whose first and second
moments will need to be estimated in the model fitting process. To that end, we state the
conditional distribution of this latent variable given the observed coefficients, which one
may show is given by,

U | CW
1
2 = c ∼

Nq×b

(
β1(c−M)Γ2∆

9 1
2

2 , Iq − β1Λ1, Ib

)
,

(5.19)

where we have defined β1 = Λ⊤1 Σ
−1
1 . The moments of interest are then given by,

E
[
U | c

]
= β1(c−M)Γ2∆

9 1
2

2 , and

E
[
UUT | c

]
= b
(
Iq − β1Λ1

)
.

5.3.3 A Mixture of Joint Latent Factor Analyzer and Functional
Subspace Models

Suppose data arise from a functional random variable as defined in Equation (5.5). In
particular, let G := {1, 2, ..., G} be an index set and suppose the existence of a random
variable Z = (Zg)g∈G which is distributed according to a multinoulli distribution with
parameter vector π = (πg)g∈G such that πg > 0 for each g, and

∑
g∈G πg = 1. A single

draw from Z will produce a vector z = (zg)g∈G where only one of the zg’s takes the value
1, while the rest take the value zero. Associate with each element of G a set of parameters
θg = {Mg,Λ1g, ξ1g,Γ2g,Ω2g, η2g}. By linking the location of the value 1 in a roll of Z with
the corresponding element of G, we may equate a roll of Z with random selection from our
collection of parameters {θg}g∈G. Indeed, we suppose that generating an observation from
X proceeds in this manner: first roll Z to choose a set of parameters θg. With θg specified,
draw a single observation for the matrix normal distribution,

Np×b
(
Mg,Λ1gΛ

T

1g +Ξ1g,W
1
2Γ2g∆2gΓ

T

2gW
1
2

)
, (5.20)

which we will denote by C. An observation from X is then given by the curve CΦ(t) which
is drawn as t traverses through the values of T .
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Generating the random coefficients in this manner, i.e. by randomly choosing their
distribution using a set of G densities each time an observation is drawn, imbues the
coefficients with a mixture distribution. The density of a mixture distribution can be
written as,

p(C) =
∑
g∈G

πgf(C;θg),

where πg is the prior probability of choosing θg, while f(·;θg) is the density of the ma-
trix normal distribution given in Equation (5.20). Our methodology proceeds under the
assumption that the coefficients of the functional random variable X are generated in this
manner, with G known apriori, while the collection of parameters, θg∈G, is considered un-
known. It is also possible to handle the case of unknown G through the aid of model
selection tools, which is discussed in Section 5.4.3.

Note that since the parameter vectors θg need only parameterize the density discussed
in Section 5.3.2 and are otherwise arbitrary, the mixture model specification implicitly
allows the values of the hyperparameters q and d to vary across mixture components.
We use qg and dg respectively to refer to the specific values of these parameters for a
given component, and we use q = (qg)g∈G and d = (dg)g∈G to refer to collection of these
hyperparameters for a particular mixture model.

Occasionally, it will be necessary to discuss the mixture from the perspective of a single
component. For that purpose, we define the notation Xg and Xg(t) which we use to denote
the functional random variable, and the random variable at time t, constructed by drawing
coefficients exclusively from the distribution with density f(·;θg).

5.4 Parameter Estimation of a Functional Mixture

Suppose we have a sample of data, {Xi}i∈S , with index set S = {1, 2, ..., n} which arise as a
set of independently observed paths generated according to the random variable described
in Section 5.3.3. Using the basis Φ we project these data to obtain a set of coefficients
{Ci}i∈S . Note that each Ci is a matrix with dimension p × b. We denote the associated
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vectorization of each matrix observation by ci. Under our model, the likelihood for these
data can be expressed generally as,

L(Θ;S) =
∏
i∈S

∑
g∈G

πgf(Ci | θg). (5.21)

Equation (5.21) displays the likelihood function of a mixture distribution, which is difficult
to optimize directly. When faced with a mixture objective function it is common to assume
the existence of a latent variable Z, as described in Section 5.3.3, whose value indicates
mixture component membership for each of the observed data points. Assuming the value
of this random variable is observed alongside each data point, our data then consists of a
set of tuples (Ci, zi)i∈S , where zi = (zig)g∈G is the observation of Z corresponding to the ith
observation. Assuming we have access to this “complete" dataset, the model complete-data
log-likelihood becomes,

ℓc(Θ;S,Z) =
∑
i∈S

∑
g∈G

zig log
[
πgf
(
Ci | θg

)]
=
∑
i∈S

∑
g∈G

zig

[
log πg −

b

2
log |Σ1g|

− p

2

(
log |Ω2g|+ (b− dg) log η2g

)
− 1

2
tr
{
Σ−11g RigΓ2g∆2gΓ

T

2gR
⊤
ig

}]
,

(5.22)

where we have defined Θ = (θg)g∈G the vector of all component parameters, and Rig =

Ci − Mg. It will be convenient to re-express the trace term of Equation (5.22) in the
following form,

tr
{
HgΛ2g

(
Ω91

2g − η912gIb
)
ΛT

2g

}
,

where Hg :=
∑

i∈S zigR
T
igΣ

91
1gRig and Λ2g consists of the first dg eigenvectors of Γ2g. The

objective function ℓc therefore only depends on Γ2g through Λ2g.

Our model also involves the random variable U, which is present latently in Equation
(5.22) as a component of the Ci for each data point. Let Ui denote the true value drawn
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from U for observation i. Assuming momentarily that the Ui are observed, the group
specific density for the transformed coefficients becomes,

Ci | Ui = Ui, Zig = 1 ∼ Np×b
(
Mg,Ξ1g,Γ2g∆2gΓ

T

2g

)
.

It follows that the model complete-data log-likelihood in the case that both Z and U are
observed for each observation can be written,

ℓc(Θ;S)

=
∑
i∈S

∑
g∈G

zig

[
log πg −

b

2
log |Ξ1g| −

p

2
log |∆2g|

− 1

2
tr
{
Ξ−11g

(
Rig −Λ1gUi

)(
Rig −Λ1gUi

)⊤}]
,

(5.23)

where we define the notation Rig := RigΓ2g∆
9 1
2

2g . From the perspective of either Equa-
tion (5.22) or Equation (5.23) (we will need both), the formulation of our model includes
both observed and latent variables, making the expectation-maximization (EM) algorithm
(Dempster et al., 1977) a natural choice for parameter estimation.

The EM algorithm is an iterative algorithm composed of two general steps: an expec-
tation step (E-Step) and a maximization step (M-step). Initialization is necessary, and
can be achieved by specifying an initial value for either the latent variable Z for each data
point or the model parameters Θ. At iteration k, the E-step updates our estimate of
the unobservable latent variables based on our previous estimate of the model parameters
Θ(k−1). The M-step then proceeds to update our estimate for the model parameter vector
Θ given the estimated value of the latent variables found in the E-step. This iterative pro-
cess proceeds for some predetermined number of steps or until some convergence criterion
is satisfied.

All parameter updates for the proposed model are demonstrated to have a closed form,
however some of the updates can only be computed conditional on the value of other pa-
rameters. Thus, we will need to proceed with an Expectation-Conditional Maximization
(ECM) algorithm for estimation (Meng and Rubin, 1993). Due to the latent Gaussian
portion of the model, our estimation procedure must also perform multiple cycles per
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iteration, and is therefore more specifically an Alternating Expectation-Conditional Max-
imization algorithm (AECM). This particular flavor of EM was developed in Meng and
Van Dyk (1997) and maintains the monotonicity and convergence guarantees of the vanilla
EM algorithm.

In this section we will derive both the E-step and the M-step for each cycle of our
AECM algorithm. All parameter updates are presented in order of computation for each
cycle. Following these derivations, we will discuss appropriate initialization strategies and
convergence criteria for the model.

5.4.1 First Cycle

The formulation of our model involves both the latent variable Z, which determines com-
ponent membership for the observed data, and U, the value of the latent Gaussian matrix.
In the first cycle of our AECM algorithm, we ignore U and suppose our latent data is
comprised of draws from Z alone. Since the value of Z is not actually observed for any of
the data points, the process of estimating the values of Z associated with the observed data
then composes the E-step for the first cycle of our algorithm. We use the expected value
of the conditional distribution of the random variable Z, given the observed data, as our
estimate. Based on our formulated mixture model, the random variable Zi = (Zig)g∈G | Ci

associated with the ith observation follows a multinoulli distribution with class probability
vector given by

pi =

(
πgf(Ci | θg)∑
h∈G πhf(Ci | θh)

)
g∈G

.

At iteration k, given the estimate of the model parameter Θ found in the previous iteration,
we find the conditional expected value to be,

E (Zig | Ci,Θ) =
πgf (Ci | θg)∑
h∈G πhf (Ci | θh)

=: ẑig. (5.24)
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Substituting the ẑig into Equation (5.22) then gives us the first cycle expected complete-
data log-likelihood,

Q1(Θ;S) =∑
g∈G

[
ng log πg −

bng

2
log |Σ1g|

− png

2

(
log |Ω2g|+ (b− dg) log η2g

)
− 1

2
tr
{
HgΛ2g

(
Ω91

2g − η912gIb
)
ΛT

2g

}]
,

(5.25)

where we have defined ng =
∑

i∈S ẑig. We may now initiate the M-step, which is comprised
of maximizing Equation (5.25) with respect to elements of Θ.

M-Step

In the first cycle M-step we update the parameters πg, mgj, Λ2g, and ∆2g. Thus, Σ1g

remains fixed at its estimated value from the previous iteration. Updates are provided in
running order, as determined by the algorithm. If a parameter has not been provided an
explicit update formula, yet appears in the update of another parameter, it takes its value
calculated in the previous iteration when used in that expression.

The algorithm first updates the prior group probabilities as,

π̂g =

∑
i∈S ẑig∑

g∈G
∑

i∈S ẑig
=
ng

n
.

Direct maximization of Equation (5.25) with respect to the mean parameters µgj gives the
updates,

m̂gj =

∑
i∈S ẑigCiΛ2g(·, j)

ng

, j = 1, 2, ..., dg, (5.26)

for each g ∈ G, where Λ2g(·, j) is the jth column of Λ2g. To update the eigenvalues ∆2g,
we perform differentiation on Equation (5.25) with respect to ∆2g under the constraint
|∆2g| = 1 yielding,

∆̂2g =
∣∣∣ diag

{
ΓT

2gHgΓ2g

}∣∣∣91/b diag
{
ΓT

2gHgΓ2g

}
.
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Denoting v2g =
∣∣ diag

{
ΓT

2gHgΓ2g

}∣∣91/b, our updates for the components of ∆2g are then,

Ω̂2g = v2g diag
{
HgΛ2gΛ

T

2g

}
, and

η̂2g =
v2g

b− dg
tr
{
Hg

(
Ib −Λ2gΛ

T

2g

)}
.

Finally, to derive an update for the eigenvectors Λ2g we note that the eigenvectors that
maximize Q1 equivalently solve,

Λ̂2g = min
Λ2g

tr
{
HgΛ2g

(
Ω91

2g − η912gIb
)
ΛT

2g

}
.

We now utilize that the fact that Hg is positive definite and hence admits a spectral
decomposition Hg := A1gD1gA

T
1g. Substituting this representation into the optimization

problem produces,

Λ̂2g = min
Λ2g

tr
{
ΛT

2gA1gD1gA
T

1gΛ2g

(
Ω91

2g − η912gIb
)}
.

The problem is now solved by realizing that Ω91
2g − η912gIb is negative definite, hence opti-

mization occurs when ΛT

2gA1gD1gA
T
1gΛ2g is as large as possible—a condition satisfied when

Λ2g comprises the dg columns of A2g corresponding to the first dg largest eigenvalues of
Hg.

5.4.2 Second Cycle

After completion of the first cycle, we are left without updates for the parameters Λ1g

and Ξ1g—the parameters which compose Σ1g. We now outline a second cycle for updating
these parameters. In this second cycle, we consider both Z and U, so that representation of
the objective function is more suitably done with Equation (5.23). Rearranging to obtain
an explicit function of the latent variables and the parameters of interest, we discover the
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expression,

ℓc(Θ;S) =∑
i∈S

∑
g∈G

zig

[
b

2
log
∣∣Ξ−11g

∣∣
− 1

2
tr
{
Ξ−11g RigR

T

ig −Ξ−11g Λ1gUiR
T

ig

−Ξ−11g RigU
⊤
i Λ
⊤
1g +Ξ−11g Λ1gUiU

⊤
i Λ
⊤
1g

}]
.

The estimated component memberships ẑig are updated in identical fashion to the first
cycle, while updating our belief regarding the latent matrix Gaussian Ui requires,

Ûig := E
[
Ui | Ci, zig

]
RT

ig = β̂1gRigR
T

ig

V̂ig := E
[
UiU

⊤
i | Ci, zig

]
= Iqg − β̂1gΛ1g + β̂1gRigR

T

igβ̂
T

1g.
(5.27)

Since β1g is a function of parameters to be estimated in this cycle, we have added a hat
to its instances within Equation (5.27) to indicate its role here is as a constant. Plugging
Equations (5.24) and (5.27) into ℓc, we discover the second cycle expected complete-data
log-likelihood,

Q2(Θ;S) =∑
g∈G

1

2

[
bng log

∣∣Ξ−11g

∣∣− tr
{
Ξ−11g Rg

}
− 2 tr

{
Ξ−11g Λ1gβ̂1gRg

}
+ tr

{
Ξ−11g Λ1gV̂gΛ

⊤
1g

}]
,

where we have defined Rg =
∑

i∈S ẑigRigR
T

ig, as well as V̂g =
∑

i∈S ẑigV̂ig. This completes
the second cycle E-step.

Second M-Step

The second cycle M-step proceeds with maximization of Q2 with respect to Λ1g and Ξ1g,
for each g in G. Holding Ξ1g fixed and differentiating with respect to Λ1g we obtain the
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update,

Λ̂1g = Rgβ̂
T

1gV̂
−1
g .

Substituting this estimate into Q2 and taking the derivative with respect to Ξ−11g we obtain,

Ξ̂1g = b91 diag
{(

Ip − Λ̂1gβ̂1g

)
Rg

}
.

5.4.3 Initialization Strategies, Convergence Criteria, and Hyper-
parameters

Our optimization algorithm is a version of the Expectation-Maximization algorithm, and
as such requires parameter initialization. We implement multiple initialization strategies,
most of which are derived from approaches detailed in Biernacki et al. (2003). In particular,
we find the SEMmax approach mentioned therein to work fairly well for our model, and
we generally employ this initialization strategy in our studies unless otherwise specified.
We note that the SEMmean strategy is problematic for our model, as we implement an
automatic strategy for choosing the latent subspace dimension dg (see the end of this
Section) which often leads to inconsistent parameter dimensions across iterations. We
therefore do not implement the SEMmean initialization.

To initialize the parameters for the SEMmax strategy, we usually choose random Z to
initialize cycle 1, while for cycle 2 we compute the maximum likelihood estimate of Σ̂1g

and then set the inital value for the factor loadings, Λinit
1g , to be the first qg eigenvectors

of this estimate, each multiplied by the square root of the associated eigenvalue. We then
initialize Ξ1 as Σ̂1g −Λinit

1g .

Convergence of the algorithm can be assessed using an Aitken acceleration-based con-
vergence criterion, which depends on the linear convergence rate of EM. At the kth iteration,
the estimate of the limit is given by,

ℓ(k)∞ = ℓ(k) +
ℓ(k+1) − ℓ(k)

1− a(k)
where a(k) =

ℓ(k+1) − ℓ(k)

ℓ(k) − ℓ(k−1)
.

For a chosen tolerance ε > 0, we stop the algorithm when the difference ℓ(k)∞ − ℓ
(k−1)
∞ falls

below this tolerance.
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All that remains is to discuss choosing values for the model’s hyperparameters—the
number of groups G, the latent subspace dimensions dg and the latent factor dimensions
qg, for each g in G. All can be chosen simultaneously by searching the space of all possible
combinations and picking the best model according to an appropriate model selection
criterion (Section 5.5). One issue with an exhaustive search approach to hyperparameter
optimization is that it scales quite poorly with data dimension. Supposing we wish to fit a
G component mixture model, and given that the data have p row, and b column dimensions,
there are then (pb)G unique combinations of hyperparameter values. This number is large,
even for modest values of the involved parameters, hence fitting all possible combinations
in such a case is an infeasible approach.

To combat this issue, we adapt a method developed in Bouveyron et al. (2007) for
choosing the latent subspace dimension dg. By estimating dg from the data, one skirts
the requisite computational burden of exhaustively searching the space of all possible dg’s.
The proposed estimation method for dg finds the full set of eigenvalues for Σ2g, and then,
implementing some form of thresholding, chooses the number of “significant" eigenvalues.
This number then serves as an estimate of dg, the dimension of that component’s intrinsic
subspace. In the case of our model, this procedure requires decomposing Hg and then
applying a threshold condition to the set of computed eigenvalues accordingly.

The threshold condition for determining significance can be implemented in different
ways, and is somewhat arbitrary. Bouveyron et al. (2007) suggest one possible way is to
take the sequential difference of the sorted (descending) eigenvalues and choose a cutoff
value below which the normalized differences can be considered small. We opt for a different
approach in our implementation. We instead use the proportion of total variance explained
by the retained eigenvalues as a threshold. For example, if we choose a threshold of 0.75,
then our estimate for dg would become the smallest integer such that the sum of the
retained eigenvalues exceeds 75% of the total variance in the data, for g ∈ G. A threshold
value that gives good performance can then be chosen using a model selection criterion.
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5.4.4 Comparison to Existing Methods

There are two works in the literature that propose methodologies which aim to cluster
multidimensional functional data through a mixture of Gaussians, namely, the funHDDC
model of Schmutz et al. (2020), and the Funclust model of Jacques and Preda (2014b). In
this section we briefly outline the construction of each model, and contrast them to the
proposed model.

Both models consider a functional random variable akin to that defined in Equation
(5.5),

X(t) = [Ip ⊗Φ(t)]TcT,

where c is the pb-dimensional random coefficient vector. The models are unified in their
assumption that c has a finite mixture distribution constructed from G Gaussian compo-
nents. Hence, for each element g of G we have a corresponding random variable,

Xg(t) = [Ip ⊗Φ(t)]TcT

g ,

where cg ∼ Npb(µg,Σg). Difference between the models is found in the specification of
the component covariance matrix Σg, which is motivated by the resulting interpretation of
the functional principal components. Specifically, for each g in G, if we suppose that the
covariance matrix in Equation (5.9) has spectral decomposition given by Γg∆gΓg, then the
Funclust and funHDDC models can be seen to differ in their specification of the diagonal
matrix of eigenvalues ∆g.

For the Funclust model of Jacques and Preda (2014b), it is assumed that for each g in
G there is a value kg ≤ pb and a diagonal kg × kg matrix Ωg such that ∆g can be written
as,

∆g =

[
Ωg

]
, (5.28)

where an omitted entry is implied to have the value 0. Although Equation (5.28) may
initially appear strange, the resulting interpretation for the functional principal components
is quite natural. Indeed, this formulation is equivalent to assuming that the kg term
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truncated KLx sufficiently distinguishes Xg(t) from the other G−1 processes, which ought
to be true for large enough kg. Hence, after MFPCA, the gth mixture component is assumed
to have a kg-dimensional multivariate Gaussian distribution with covariance matrix Ωg.

In a similar vein, the funHDDC model specifies that ∆g will have the form,

∆g =

[
Ωg

ηgIpb−kg

]
. (5.29)

It is immediately obvious from this formulation that the funHDDC model is a direct ex-
tension of the Funclust model, where now the information from the trailing p−kg principal
components is not completely discarded. Additionally, Equation (5.29) also conveys that
the funHDDC model extends the latent subspace model developed in Bouveyron et al.
(2007), discussed in Section 5.3.2, to the case of functional data. Intuitively, for each g in
G, this model assumes that there exists a kg dimensional subspace of H(T ) around which
the observations of the gth component accumulate in a noisy fashion. It follows that under
the funHDDC model, the gth functional principal components are distributed according
to c̃g ∼ Npb(µg,∆g).

Recall that the proposed model does not solve Equation (5.9) for the full functional
principal components, but instead opts to invoke properties of the assumed kronecker
product structure to transform the MPFCA problem to an FPCA problem corresponding
to the components of X (Equation 5.14). Despite this deviance in approach, the models
are comparable. Indeed, since Λ1gΛ1g + Ξ1g is still a positive definite matrix it admits a
spectral decomposition which we denote by Γ1g∆1gΓ

T

1g. Hence, whenever we specify an Σ1g

having the factor analyzer form, we are equivalently defining an ∆g of the form ∆1g ⊗∆2g

in the vectorized interpretation. It follows that the proposed model could coincide with
the Funclust model or the funHDDC model whenever the specification of Σ1g results in an
∆g whose elements can be permuted to form a matrix of the form given in Equation (5.28)
or Equation (5.29) respectively, for each g in G. Of course, the proposed model always
results in a fully specified ∆g and hence never coincides with the Funclust model, which
assumes trailing eigenvalues are 0. As for the funHDDC model, note that we may write
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∆1g ⊗∆2g as, [
∆1g ⊗Ω2g

η2g∆1g ⊗ Ib−dg

]
.

From this formulation we see that the proposed model formulation technically transposes
to the funHDDC model by defining ηg = δη2g, where δ is the smallest element of ∆1g,
and amalgamating the other eigenvalues into Ωg. However, this correspondence forces the
latent dimension kg of the funHDDC model to be pb − (b − dg) which is approximately
(p − 1)b. In this case, the ratio of the latent data dimension to the full data dimension
is (p − 1)/p, which is quite large. It follows that the funHDDC model is generally not
well-suited for modelling data generated according to the proposed model as the benefits
of its parsimonious specification are lost.

There are, however, ways to specify the models in which true overlap exists. For
example, consider the case in which ∆1g has the same form as ∆2g, where we now specify
its components as the qg×qg matrix Ω1g and η1g the error variance parameter. It is always
possible to do this by specifying Λ1g = Γ1g

(
Ω1g − η1gIqg

) 1
2 and Ξ1g = η1gIp. With this

additional structure we have,

∆1g ⊗∆2g =

[
Ωg

ηgIpb−kg

]
, (5.30)

where Ωg is written in terms of the proposed model parameters as,Ω1g ⊗Ω2g

η2gΩ1g ⊗ Ib−dg
η1gΩ2g ⊗ Ip−qg

 , (5.31)

while ηg = η1gη2g. It follows that the latent data dimension kg then takes the value
dgp + qgb − dqqg. With this specification, the ratio of the latent data dimension for the
funHDDC model is a more modest dg/b+ qg/p− dgqg/pb.

When both Σ1g and Σ2g are supposed to exhibit the latent subspace model structure,
the proposed model gains an additional interpretation as a sort of generalized latent sub-
space model. Here, we can consider the eigenfunctions corresponding to the eigenvalues
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(q,d) D1 D2 D3 D4

(1,1)
BIC 0.944 0.956 0.996 0.974
ICL 0.944 0.956 0.996 0.974

(3,3)
BIC 0.932 0.968 0.924 0.990
ICL 0.932 0.968 0.924 0.990

(5,5)
BIC 1.000 0.998 1.000 1.000
ICL 1.000 0.998 1.000 1.000

Table 5.1: The percentage of times each criterion chose the correct model for each of the
simulated scenarios.

of Ω1g ⊗ Ω2g to span the latent subspace which accounts for much of the variance in
the paths X(t), while the remaining directions account for noise directions, but now with
varying levels of variation.

5.5 Investigative Analyses

In this section we employ the proposed model in a number of application studies for the
purpose of demonstrating its clustering capabilities. This includes simulation studies re-
garding parameter recovery and model selection, two comparison studies alongside estab-
lished functional clustering methodologies, and two data analyses. To facilitate discussion
of proposed model in this section, we introduce the name Multivariate Functional Subspace
and Factor Analyzer model, from which we get the acronym MFSF. Both will be used in
the sequel to refer to the proposed model.

5.5.1 Model Selection Simulation

The MFSF model contains three hyperparameters—G, q and d—which cannot be esti-
mated from the likelihood. We intend to employ the Bayesian Information Criterion (BIC)
to facilitate the choice of these hyperparameters for the MFSF model in practical ap-
plications. The BIC (Schwarz, 1978) is a criterion for model selection that attempts to
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counteract the likelihood’s propensity to increase with the number of model parameters
through the addition of a penalization term. The BIC is defined as,

BIC(m) = km log n− 2 log p(X | m),

where m represents the fitted model and k is the total number of free parameters in the
model. For the proposed model k is computed as (2p + b + 0.5)

∑
g∈G dg − 1

2

∑
g∈G d

2
g +

1
2

∑
g∈G qg(qg − 1) + (p + 1)G. By the work of Keribin (2000), we know that the BIC is

asymptotically consistent for choosing the correct number of mixture components, i.e. G,
while Steele and Raftery (2010) demonstrates that it performs well in a number of practical
situations.

We also consider the Integrated Completed Likelihood of Biernacki et al. (2000), which
we define here as,

ICL(m) = km log n− 2 log p(X, Ẑ | m),

to align with our definition of BIC, with Ẑ being the MAP estimates of the latent class
labels. Use of this criterion has become commonplace in the mixture model literature,
and in particular, was shown to perform adequately in this context by Steele and Raftery
(2010).

In the present section we seek to provide evidence that these two criteria can also
be used for selecting the hyperparameters dg and qg of the MFSF model. We bring this
evidence using a simulation study. In an effort to make the simulation study informative, we
devise multiple experimental settings, each of which will be carried out for 500 replications.
These settings are differentiated by changing simulation hyperparameters. For this study,
we choose to vary the dimension of the data, and the true values of dg and qg. For data
dimension, we choose four scenarios: D1 = (10× 10), D2 = (10× 20), D3 = (20× 10), and
D4 = (20 × 20). For the values of the model hyperparameters we choose three settings:
(qg, dg) = (1, 1), (qg, dg) = (3, 3), and (qg, dg) = (5, 5). These are set to the same value of
each group in the mixture model. The number of components, G, is set to 2 in all scenarios.
This setup results in a simulation study with 4× 3 = 12 experimental conditions.

For each of the experimental conditions, we repeat 500 replications of the simulation
study. Each replication proceeds as follows: we first generate a random set of parameters
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for a mixture model satisfying the assumptions of the proposed methodology, according to
the specifications outlined in Appendix B.3. Using these parameters, we then generate a
dataset on which to fit the model. On this dataset we fit the model 25 times, once for each
unique combination of d = 1, 2, 3, 4, 5 and q = 1, 2, 3, 4, 5 for the model hyperparameters.
For example, q = (2, 2) and d = (5, 5) corresponds to one of these 25 settings. We
calculated the BIC and ICL for each of these fits, and then choose the model resulting
in the best value of each. The value of q and d for the chosen model of each criterion is
then returned, and if this value matches the value used to generate the data we say that
the criterion chose correctly, otherwise we say it did not. The results of carrying out this
simulation study are provided in Table 5.1.

Here we see that across all scenarios, both BIC and ICL do a fairly good job at iden-
tifying the structure of the true underlying model. We also see that there is no difference
between the performance of the BIC and the ICL in this simulation scenario. The reason
for this is likely due to the fact that the models are generated according to the data, hence,
we expected low entropy in the resulting model fits when the correct model is specified.
As the difference between our formulation of the BIC and ICL is simply the entropy of the
estimated matrix Ẑ, this result is not overly surprising. We conclude that either criterion
should perform well as a model selection tool for our method.

5.5.2 Parameter Recovery

Our first analysis will assess how well our methodology can estimate parameters the true
model parameters used to generate a sample dataset. Such an assessment is typically
referred to as parameter recovery, and it serves to reassure us that the model works as
expected in the context for which it is intended. Of course, since we are dealing with data
samples and iterative numerical algorithms, the true parameters are almost never recovered
exactly. We therefore need to choose a measure which informs about the quality of the
parameters recovered by the model from a given sample. In this study, we choose to assess
recovery performance with the mean squared error (MSE). Letting Θv :=

(
vec{θ1}, ...,

vec{θg}
)T be the vectorization of the model parameters, the mean squared error between

the true and estimated parameters is given by,
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Figure 5.1: Distributions of the parameter estimation error for each condition of the pa-
rameter recovery experiment, presented as boxplots. On the left are the plots related to
the two component mixtures, and on the right are the four component mixture results.
Color indicates the level of the error variance, with blue representing the larger value.

L−1
∥∥Θ̂v −Θv

∥∥2,
where L is the dimension of the vector Θv. The lower the value of the mean squared

error between the estimated parameters and the true parameters, the better the estimation
process is deemed to have performed.

To commence with the study we generate 12 different collections of datasets, each of
which follows from a unique set of experimental conditions. Specifically, we manipulate
three different simulation properties for this purpose: G, the number of mixture compo-
nents, n, the size of the sample taken from each component, and Ξ1g, the scaling matrix
for the factor analyzer errors of each component. The particular values we used for these
properties are given in Table 5.2.

There are an abundance of ways we could choose to vary the value of Ξ1g to specify
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Attribute Description Values
G Number of components 2, 4
n Sample size n1 = 50, n2 = 100, n3 = 500

η1 error variance scale 0.25, 0.5

Table 5.2: Values used to create the 12 different experimental settings for the param-
eter recovery simulation study.

different conditions. We settle for a simple implementation in which Ξ1g is spherical with
proportionality constant η1. We specify this matrix to be the same across all groups in each
of the conditions. Different conditions are achieved by changing the value of η1. Under
this specification, the error term of the jth factor analyzer, εj, has variance η1Γ2g∆2gΓ

T

2g,
for possible g. For specifics regarding the specification of parameters not changed across
simulation conditions, please see Appendix B.3. In short, these parameters were generated
randomly once, and fixed across conditions.

There are 12 unique combinations of the values in Table 5.2, and for each combination
we generate a collection of 500 datasets, which we then use to fit the MFSF model. Each
time the model is fit, the em-EM strategy of Biernacki et al. (2003) is used for initialization.
This comprises running multiple short (in terms of total iterations) instances of EM from
randomly chosen positions, with the parameter set corresponding to the best run (in terms
of highest likelihood) then being used to run the algorithm to convergence. Here we choose
to use 30 random starts, each run for 20 iterations. Of course, it would be much faster
and simpler to use the true parameter values to initialize the algorithm each time, which
ensures that we check if a local maximum exists in their vicinity. However, by refraining
from this approach we allow the model to converge to a solution close to the true parameters
only if there is a maximum in their vicinity, and if that maximum happens to be the best
among the randomly chosen search space. This second approach more closely reflects the
conditions of applying the model in practice, hence it is preferred here.

By varying some aspects of the underlying mixture model parameters we hope to show
that the model performs well generally when data are drawn according to its underlying
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assumptions. Further than that, however, we also aspire to provide a high level analysis of
how a change in each of these aspects impacts the performance of the model. The first goal
can be validated through assessment of the properties of the distribution of MSE values
resulting from running the model on each of 12 collections of datasets, while the second
goal can be assessed by comparing the differences in the distribution of MSE values across
these different conditions. The results of our parameter recovery simulation are reported
in Figure 5.1.

By looking at the blue boxplots and the red boxplots in each subfigure separately, we
see that as the sample size increases, estimation error, as measured my MSE, decreases.
This hints that the algorithm is providing consistent parameter estimation. Although this
pattern is exhibited by both colored sets of plots, it is notable that for a given sample
size, the corresponding blue boxplot has a larger central tendency than the corresponding
red boxplot. This suggests that larger error variance inherent in the data results in more
estimation error for each sample size, on average. Finally, we notice that the boxplots
associated with four group mixture models tend to have smaller variation than their two
component counterparts. This makes intuitive sense, as the MSE calculations regarding
the four component mixtures include twice as many terms as the two component calcula-
tions. Indeed, we can consider each four component calculation as an average of two two
component calculations. Overall, we conclude that the MFSF model has demonstrated
adequate performance in recovering the true model parameters by providing patterns in
the results which give evidence of consistency.

5.5.3 Comparison Study I

In this section, we compare MFSF to other existing methodologies that focus on unsuper-
vised clustering of vector-valued functional data. The methodologies chosen for this com-
parison are funHDDC (Schmutz et al., 2020) and Funclust (Jacques and Preda, 2014b),
both of which are model-based, and also the nonparametric methodology of Martino et al.
(2017), which is an adaptation of the k-means algorithm to the functional context.

We compare the algorithms using an extension of Scenario B from the simulation study
section of Schmutz et al. (2020). Similar to the original authors’ intentions, our motivation
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Figure 5.2: An instance of data generated according to our extension of the Schmutz
et al. (2020) Scenario B. Each row of plots shows data generated from a particular
dimension, with colors indicating group membership.

for choosing Scenario B lies in the fact that the data should not particularly favor any of
the chosen methodologies.
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Group 1: X1(t) = U + (1− U)h1(t) + ϵ(t),

X2(t) = U + (0.5− U)h1(t) + ϵ(t),

Group 2: X1(t) = U + (1− U)h2(t) + ϵ(t),

X2(t) = U + (0.5− U)h2(t) + ϵ(t),

Group 3: X1(t) = U + (0.5− U)h1(t) + ϵ(t),

X2(t) = U + (1− U)h2(t) + ϵ(t),

Group 4: X1(t) = U + (0.5− U)h2(t) + ϵ(t),

X2(t) = U + (1− U)h1(t) + ϵ(t),

Originally, scenario B was comprised of the following 4 group generative model, where
the time domain is chosen as t ∈ [1, 21], h1(t) = (6−|t−7|)+ and h2(t) = (6−|t−15|)+ are
the generating basis functions, U is a uniform random variable on [0, 0.1], and ϵ(t) is white
noise independent of U with variance 0.25. Each group is therefore composed of a two
dimensional vector-valued function X(t) =

(
X1(t), X2(t)

)T. We extend this generating
model to four dimensions by now specifying that the stochastic function of each group
takes the form X(t) = (X1(t), X2(t), X3(t), X4(t))

T, where X3(t) for each group has the
form −X1(t), while X4(t) has the form −X2(t), although they are distinguished from these
random variables through an independent draw from the random variable U . Assuming
we observe these functions at the specified time points, the observations are then returned
to functional form through projection onto a B-spline basis consisting of 35 functions.
Some data generated according to this adapted scenario, which we call Scenario B+, are
displayed in Figure 5.2.

Using datasets generated from Scenario B+, we compare the chosen methodologies in
both their ability to identify the correct number of latent groups, and their ability to find
the correct groups. Each iteration of our simulation study is orchestrated as follows: we
first generate a dataset according to Scenario B+. We then proceed to stage 1, in which
we run each of the algorithms on this dataset and provide them with the knowledge that
the true number of groups is four. We then assess how well each was able to recover the
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Figure 5.3: Histograms of the results for each of the clustering methods.

true underlying groups in the data. This assessment is completed using the Adjusted Rand
Index (ARI) which is a common tool for measuring the agreement between two different
clustering (Hubert and Arabie, 1985). In stage 2, we let each of the algorithms choose the
number of latent groups from the set of possible values {1, 2, 3, 4, 5}. For the model-based
approaches, this choices is made using BIC. For the functional k-means approach, this
choice is made using the silhouette method (Rousseeuw, 1987), as suggested by Martino
et al. (2017). Our study is completed by carrying out this process 1000 times.

In an effort to keep the playing field level, each model-based method is initialized in an
identical fashion. The em-EM initialization strategy proposed in Biernacki et al. (2003)
is the method of choice. We specify 20 random starts, each run for 20 iterations in each
case. Because the funHDDC results presented in Schmutz et al. (2020) for Scenario B
were found using a k-means initialization, and because this initialization is the default
for the R function, we also include this initialization for the funHDDC algorithm. If this
initialization out performs the results using the em-EM initialization in terms of BIC, then
we uses those results instead. Due to limitations in the provided package, we do not have
control over any aspects of initializing the functional k-means algorithm, hence the default
is used throughout.

The results of stage 1 are depicted graphically in Figure 5.3 as histograms. The mean
and standard error of the result data are provided in Table 5.3, along with the average
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Algorithm Avg. ARI ARI Std. Err. Avg. Time (secs)
funHDDC 0.40 0.07 249.7
Funclust 0.38 0.14 218.1
MFSF 0.99 0.10 228.8

L2FD K Means 0.85 0.18 5.7

Table 5.3: Summary statistics of results from stage 1 of the simulation study for each of
the algorithms.

computation time of each algorithm. Here we use the label L2FD for the results of the
functional k-means methodology. This label is chosen to reflect the fact that the L2 function
space metric is used when we run the algorithm (others are possible, see Martino et al.,
2017). From Figure 5.3 we see that both the MFSF and L2FD k-means approach perform
the best in stage 1 of the study, with each reporting a large number of perfect clusterings
across the simulated Scenario B+ datasets. The remaining two model-based approaches,
Funclust and funHDDC, did not perform as well. Of particular interest are the results
of the funHDDC algorithm, which reports a fairly low standard error. This suggests
that funHDDC is finding a very similar model specification each time, regardless of the
variation in the dataset and random starts. This could suggest that the implementation of
the em-EM algorithm in the funHDDC R function is using the same seed in each iteration,
and therefore always producing the same “random" starts, or that a global maximum
corresponding to the true groups is a steep peak and therefore difficult to find. Given that
the Funclust methodology, which is quite similar to funHDDC, produces more variation in
its results but obtains a similar mean ARI to that of funHDDC, we are inclined to believe
it is the former of these issue.

In terms of computation time, we see that the functional k-means methodology out-
performs the model-based approaches by a large margin, however, these times include the
em-EM initialization time for the model-based algorithms. Implementing an alternative
initialization strategy could speed up any of these algorithms, but this may come at the
cost of fitted model quality. Overall, the computation times of the three model-based ap-
proaches are fairly comparable, but Funclust is the fastest on average by about 10 seconds.
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Algorithm 1 2 3 4 5
funHDDC 0 0 1 99 900

MFSF 0 0 19 831 150
Funclust 110 860 30 0 0

L2FD K Means 0 3 77 632 288

Table 5.4: The number of times each possible value of G was chosen by each of the
algorithms over the course of the simulation. The numbers at the top denote the tested
values of G, and the numbers in each column represent the number of times that value of
G was chosen by each of tghe algorithms.

Stage 2 results are reported in Table 5.4. We again see that MFSF and functional
k-means are the best performers, each choosing the correct number of groups in a majority
of their runs. Interestingly, Funclust serially underestimates the number of groups, while
funHDDC serially overestimates. In fact, Funclust never chooses the correct number of
groups, and funHDDC only underestimates 1 time out of the 1000 trials. This seems
a bit odd, given the closeness of the two methodologies. Both MFSF and functional k-
means overestimate the number of groups quite a bit more often than they underestimate,
suggesting that the problem of Funclust may be the lack of flexibility in its modelling of
the trailing eigenvalues.

5.5.4 Comparison Study II

As we discussed in Section 5.4.4, in the special case that Σ1 exhibits both the factor analyzer
and latent subspace structure, the MFSF methodology and the funHDDC methodology
of Schmutz et al. (2020) overlap. In this second study, we investigate the impact of this
overlap as it relates to model performance. To do this, we generate five parameter sets
corresponding to five different models, denoted by M1−M5. We start with the model M3,
which is chosen to be comprised of parameters that satisfy both the assumptions of MFSF
and of funHDDC. This makes M3 the overlap model. Details on how M3 is generated can
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Attribute Description Values
p× b Data dimension 6× 11, 18× 33

n Sample size 50, 250
ρ Cluster overlap 3.5, 5, 7

Table 5.5: Values used for various properties of the parameter settings for comparison
study between the funHDDC methodology and our own.

be found in Appendix B.4. Data generated from M3 should be easily handled by both
algorithms. Next, we apply a deterministic perturbation to the parameters of M3 so that
the resulting parameters still satisfy the assumptions of funHDDC, but no longer satisfy the
assumptions of MFSF. We use this perturbation at two different strengths to get the models
M1 and M2, with M1 corresponding to the parameters resulting from the perturbation
with the larger strength. To get the parameters of M4 and M5 we proceed in a similar
fashion, this time perturbing the parameters of M3 so that they satisfy only the modelling
assumptions of MFSF. In this case, M5 corresponds to the stronger perturbation. Based on
this construction, the five models M1−M5 can be thought to form a sort of interpolation
between the assumptions of funHDDC and MFSF. For complete details regarding how the
model parameters are generated for this simulation study see Appendix B.4.

Our simulation intends to assess the performance of each model on data generated
according to the parameters of M1 − M5. If the overlap is important, each model will
do well only on data generated according to its own assumptions. We also include the
functional k-means algorithm in our analysis as a sort of baseline model. Its results should
reflect how well separated the clusters of functions are geometrically. A poor performance
by the kmeans algorithm should imply high cluster overlap.

In an attempt to make the analysis more insightful, we carry out the simulation un-
der different experimental settings. These settings are differentiated by variation in data
dimension, sample size, and cluster overlap. The number of groups G remains fixed at
2, and the hyperparameters qg and dg remaining fixed at 2 and 3 respectively across all
settings. In terms of data dimension, we specify a low dimensional (6 × 11) and a high
dimensional (18 × 33) setting. For sample size, we specify both a small (n = 50) and a
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moderate (n = 250) setting. We devise cluster overlap to be the value ρ := ∥M1 −M2∥,
which is the Euclidean distance between the vectorized group means. We specify three
values of ρ—3.5, 5, and 7. These conditions are summarized in Table 5.5. This results in
12 unique experimental conditions for testing each model M1−M5.

For each model M1 −M5, and for each unique combination of experimental settings
from Table 5.5, we generate 100 datasets on which to fit the competing models. We assess
the performance of the models using ARI and model complexity. The first, ARI, gives us an
idea of how well the models are able to identify the latent groups of the data, while model
complexity (number of parameters) gives us an idea of how many parameters the model
needs to achieve this performance. This second performance metric does not apply to the
functional k-means methodology, so model complexity values relating to this methodology
are not reported.

For initialization of the model-based methods, we again turn to the em-EM strategy,
this time using 30 starting points. For our algorithm, we use the automatic selection
method discussed in Section 5.4.3 for choosing the latent dg, and we use BIC to choose
the qg. When implementing the funHDDC algorithm, we use the default hyperparameter
selection method, which is based on Cattell’s scree test (Schmutz et al., 2020). As in Section
5.5.3, we use the default initialization strategy and the L2 distance for the functional k-
means method.

In general, we notice that all three simulation hyperparameters appear to impact the
performance of the tested models. For example, increasing the cluster overlap can be seen
to reduce each model’s ability to correctly ascertain the latent groups, as evidenced by
decreasing average ARI for each fixed model and sample size. The notion that increasing
the sample size positively benefits model performance is clearly supported by these results
as well. This is most noticeable in the performance of the funHDDC algorithm in Table
5.6, which often faltered for the small sample size n = 50, but performed quite well when
provided a bit more data to work with in the form of n = 250. Finally, the increased
challenge presented by high dimension data can be seen by comparing the results of Table
5.6 and Table 5.7, especially for models M1 and M2, on which every model performed
poorly.
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(p× b) = (6× 11) Avg. ARI Avg. Complexity
ρ n MFSF funHDDC LF2D MFSF funHDDC

M17 50 0.999 0.266 0.912 214.8 1233.5
5 50 0.986 0.015 0.363 215.6 1860.7
3.5 50 0.754 0.008 0.098 207.2 2132.4
7 250 0.999 0.991 0.991 222.9 3282.0
5 250 0.992 0.952 0.816 224.6 3402.2
3.5 250 0.931 0.848 0.258 224.8 3248.3

M27 50 0.999 0.320 0.895 219.0 1121.1
5 50 0.983 0.023 0.412 216.4 1783.2
3.5 50 0.823 0.008 0.108 213.0 2007.0
7 250 1.000 0.988 0.994 224.5 3081.9
5 250 0.990 0.936 0.865 225.9 3143.6
3.5 250 0.933 0.645 0.236 225.0 2674.4

M37 50 1.000 0.293 0.962 263.4 1028.3
5 50 0.991 0.028 0.414 264.1 1688.9
3.5 50 0.934 0.005 0.137 264.1 1929.8
7 250 1.000 0.962 0.992 278.4 2652.0
5 250 0.997 0.931 0.865 279.9 2503.2
3.5 250 0.970 0.321 0.258 280.1 1880.6

M47 50 1.000 0.247 0.890 261.8 1363.5
5 50 0.990 0.020 0.279 265.3 2000.1
3.5 50 0.943 0.007 0.086 263.0 2254.5
7 250 1.000 0.989 0.983 278.6 3061.1
5 250 0.995 0.942 0.801 279.0 2960.0
3.5 250 0.960 0.400 0.248 277.4 2561.6

M57 50 1.000 0.210 0.710 263.3 1673.5
5 50 0.998 0.039 0.251 265.1 2222.1
3.5 50 0.981 0.032 0.082 261.8 2312.9
7 250 1.000 0.990 0.963 278.5 3316.9
5 250 0.998 0.950 0.731 278.4 3391.4
3.5 250 0.993 0.591 0.240 278.2 2958.3

Table 5.6: Average ARI and model complexity results from the competing algorithms
on low dimensional datasets (6 × 11). When considering only these results, it seems
that ρ and n have the greatest impact on model performance.

In terms of the competing algorithms, both are able to perform well on all models
M1 −M5 for the low dimensional datasets. This suggests that the overlap is not such
an important distinction when data dimension is not high. It may be that for lower
dimensions, the structure of the noise for each model is well approximated by the structure
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(p× b) = (18× 33) Avg. ARI Avg. Complexity
ρ n MFSF funHDDC LF2D MFSF funHDDC

M17 50 0.152 0.000 0.020 607.3 57049.6
5 50 0.050 0.000 0.015 623.0 57051.3
3.5 50 0.022 0.000 0.009 631.4 57049.3
7 250 0.081 0.093 0.443 549.2 128336.6
5 250 0.017 0.000 0.130 512.6 234839.5
3.5 250 0.020 0.000 0.040 520.9 235161.3

M27 50 0.330 0.003 0.021 715.8 57050.0
5 50 0.140 0.003 0.014 703.7 57057.8
3.5 50 0.050 90.002 0.005 697.7 57051.5
7 250 0.330 0.192 0.700 725.4 119879.3
5 250 0.042 0.002 0.149 595.1 227179.0
3.5 250 0.003 0.001 0.041 585.2 226021.0

M37 50 0.844 0.000 0.038 1245.1 57050.0
5 50 0.354 0.000 0.017 1241.3 57049.3
3.5 50 0.138 0.000 0.001 1236.5 57072.3
7 250 1.000 0.105 0.837 1389.9 112860.4
5 250 0.998 0.002 0.159 1391.4 204289.5
3.5 250 0.984 0.010 0.050 1388.9 187345.4

M47 50 1.000 0.028 0.017 1257.0 47099.1
5 50 1.000 0.021 0.006 1255.7 47543.3
3.5 50 0.996 0.032 0.005 1258.1 47983.7
7 250 1.000 0.709 0.228 1387.4 121578.4
5 250 1.000 0.017 0.091 1387.4 230709.7
3.5 250 1.000 0.008 0.026 1387.5 229497.0

M57 50 1.000 90.008 0.030 1260.6 46171.6
5 50 1.000 90.009 0.023 1258.3 47111.1
3.5 50 1.000 90.007 0.013 1256.2 47096.3
7 250 1.000 0.074 0.160 1387.2 210630.9
5 250 1.000 0.017 0.054 1387.2 231167.0
3.5 250 1.000 0.003 0.026 1387.3 234235.0

Table 5.7: Average ARI and model complexity results for each of the algorithms on
the high dimensional datasets (18 × 33). Overall, high dimensional data seems to be
troublesome for all models, as performance is mostly poorer when compared to the
equivalent conditions in Table 5.6.

of the noise of the other, so that the difference in formulation does not have a severe impact
on clustering performance. The story appears to be different in the high dimensional data
scenario. According to Table 5.7, funHDDC did not able to perform well, on average, for
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any of the experimental settings. There are many potential reasons for this. For example,
it could be that the chosen sample sizes are too low to properly inform the model at for
the chosen data dimensions, or the initialization procedure was possibly not given enough
opportunities to explore the likelihood landscape. In any case, sinceM1−M3 are generated
according to the modelling assumptions of funHDDC, it is very likely that this performance
is indicative of some problem of implementation, and not of the methodology itself. The
results of the MFSF methodology presented in Table 5.7, more closely resemble the results
one would expect based on the simulation design. In particular, on data from models
M1 and M2, MFSF performs poorly, achieving an average ARI of just 0.152 and 0.330 in
the best case of each model, respectively. These are the models corresponding specifically
to funHDDC modelling assumptions. However, Table 5.7 also shows that datasets from
models M3 −M5 are clustered more favorably by MFSF, as the algorithm demonstrates
excellent performance, on average, for almost all conditions corresponding to these models.
Hence, the results of the MFSF algorithm suggest that the overlap is potentially important
in these higher dimensional settings.

Recall that in Section 4.4 we mentioned that the models MFSF and funHDDC were
such that even low values of the MFSF hyperparameters q and d correspond to relatively
large values of the funHDDC hyperparameter k. Indeed, q = (2, 2) and d = (3, 3) were the
values used for the MFSF hyperparameters in all models M1 −M5 in this study. These
correspond to a value of k = 34 for the low dimensional setting and a value of k = 114

for the high dimensional setting for each of the mixture components. In the first case k
is large relatively, accounting for more than half of the total data dimension (66/34 < 2).
Hence the funHDDC model is not parsimonously specified for these data. This is reflected
in the average complexity of the fitted funHDDC model in Table 5.6. In the case of the
high dimensional data, k is quite a bit smaller relatively, but now it is large absolutely.
As a result, the average complexity of the funHDDC model also reaches large absolute
values, sometimes even reaching values more than 100 times larger than the complexity of
MFSF on the same data. Under such specifications, the parsimony of the model is lost
and performance suffers.
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5.5.5 Energy Sector Data

For more than a century the vast majority of the world’s energy demands have been met
by oil, gas, and coal. Continued dependence on these materials, collectively known as
fossil fuels, is fueling two ballooning crises. First, the combustion of fossil fuels produces
toxic emissions that pollute the Earth’s air supply, negatively impacting public health and
leading to an estimated 10.2 million premature deaths annually (Vohra et al., 2021). On
top of their inherent toxicity, these emissions are also considered to be major agitators
of the global climate crisis, which sees global average temperatures rising steadily toward
dangerous levels. Second, the earth’s repository of fossil fuels is finite and quickly becoming
exhausted. In their 2020 review, the British multinational energy company BP noted that,
we have 132, 50, and 49.8 years left respectively of coal, oil, and natural gas reserves, given
2019 production levels. Thus, when it comes to energy production, business as usual is
no longer a viable option. With these crises looming, focus heightens on implementing
sustainable, scalable, and clean energy solutions, with preference toward those that are
based on renewable, rather than non-renewable, resources. In 2016 this sentiment lead to
the Paris Agreement, which seeks to guide countries to minimize harmful emissions and
reduce the increase in global temperatures. The agreement has been signed by all 197
members of the United Nations Framework Convention on Climate Change.

With so much discussion and attention surrounding energy production, we design
an analysis that endeavours to develop better understanding of the global energy sec-
tor landscape. We begin by gathering data on 15 energy sector indicators from the
World Bank’s World Development Indicators database (https://databank.worldbank.
org/source/world-development-indicators). The name and description of each chosen
indicator is presented in Table 5.8. Of the 15 indicators, 6 are provided by the Interna-
tional Energy Agency (IEA). We have highlighted these indicators in Table 5.8 with an
asterisk. All indicators are fully observed for 97 countries from the year 1993 to 2015, the
year before signing of the Paris Agreement began. A full list of all countries included in
the dataset can be found in Appendix B.1. Additionally, Figure 5.4 presents a map of the
included countries, with colors assigned by our best fitted model.

The 15 included indicators fall into four general categories. The first category is titled
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Series Description
Coal∗

( % of total )
Share of electricity generated by all coal and brown coal,
both primary and derived fuels. Peat is also included in this
category.

Energy Production
( Dirty )

Gas∗

( % of total )
The share of electricity generated by natural gas, excluding
natural gas liquids.

Oil∗

( % of total )
The share of total electricity generated by crude oil and
petroleum products.

Hydroelectric∗

( % of total )
Electrical energy from hydropower is derived from turbines
being driven by flowing water in rivers, with or without man-
made dams forming reservoirs.

Energy Production
( Clean )

Nuclear∗

( % of total )
The share of electricity produced by nuclear power plants in
total electricity production.

Renewable∗ (not Hydro)
( % of total )

The share of electricity produced by geothermal, solar, tide,
wind, waste, primary solid biofuels, liquid biofuels, and char-
coal. Hydro is not included.

Renewable Consumption
( % of total final energy consumption )

The share of renewables energy in total final energy con-
sumption.

Coal Rents
( % of GDP )

Coal rents are the difference between the value of both hard
and soft coal production at world prices and their total costs
of production.

Forest Rents
( % of GDP )

Forest rents are roundwood harvest times the product of
regional prices and a regional rental rate.

Rents
Mineral Rents
( % of GDP )

The difference between the value of production for a stock of
minerals at world prices and their total costs of production.
Minerals included in the calculation are tin, gold, lead, zinc,
iron, copper, nickel, silver, bauxite, and phosphate.

Natural Gas Rents
( % of GDP )

The difference between the value of natural gas production
at regional prices and total costs of production.

Oil Rents
( % of GDP )

The difference between the value of crude oil production at
regional prices and total costs of production.

CO2 Damage
( % of GNI )

Cost of damage due to carbon dioxide emissions from fossil
fuel use and the manufacture of cement, estimated to be
US$40 per ton of CO2 times the number of tons of CO2
emitted.

Adjusted Savings
Natural Resource Depletion

( % of GNI )
Depletion of natural resources, which covers net forest de-
pletion, energy depletion, and mineral depletion, reflects the
decline in asset values associated with the extraction and
harvest of natural resources - this is analogous to deprecia-
tion of fixed assets.

Particulate Emission Damage
( % of GNI )

The damage due to exposure of a country’s population to
ambient concentrations of particulates measuring less than
2.5 microns in diameter (PM2.5). Calculated as foregone
labor income due to premature death.

Table 5.8: Descriptions for each of the energy sector variables used in our analysis. An
asterisk denotes a measure provided by the International Energy Agency (www.iea.org/
statistics. All rights reserved.)
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Fourier B-Spline
G BIC q d BIC q d
2 -342.41 4 2 10457.67 5 1
3 -11645.75 3 {1,2} -3639.37 3 1
4 -18902.78 3 {1,2} -12443.45 5 1
5 -23311.65 3 {1,2} -16190.85 5 {1,2}
6 -21444.45 3 {1,2} -16460.58 2 {1,2}

Table 5.9: Best model by BIC for each potential number of groups and for each possible
basis, with corresponding latent factor dimensions and subspace dimensions.

Dirty Energy Production and includes the share of total electricity produced through means
of fossil fuels. The title alludes to the dangers of an economy hinged to continued use
of these fuels. These indicators give insight into the level of dependence each specific
country’s energy sector has on fossil fuels. The second category of indicators is labelled as
Clean Energy Production. This includes both renewable energy sources, and non-renewable
sources that result in low, or less dangerous emissions. These indicators highlight which
countries are adopting cleaner alternatives, what those cleaner alternatives are, and the
rate at which adoption has been taking place. The third category is Economic Rents
pertaining to natural resources. These are calculated as the price of a commodity minus its
average production cost, multiplied by the extracted haul of that resource for the particular
country. These are reported as a percentage of GDP, and they give an indication of the
importance of these materials, not just in terms of producing energy to run the economy,
but also in terms of generating revenue on the global marketplace. The final group is titled
Adjusted Savings. These attempt to measure some of the economic costs associated with
the production of energy through fossil fuel combustion. Higher values of these variables
imply higher damages and costs, and are therefore worse.

The collected set of indicators are transformed into functional data using basis pro-
jection, and we carry out this process using the fda package (Ramsay et al., 2009). We
project the data onto both B-spline and Fourier bases, each comprised of 14 basis func-
tions. We use MFSF to cluster the resulting functional data, intending to identify groups
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Figure 5.4: A plot illustrating the found clusters, identified by color. Countries in gray
are those for which data were not available. We note that many countries in the same
group share a border or a continent. This suggests that energy sectors are locally similar,
which may reflect that countries in the same geographic vicinity are likely to have similar
distributions of natural resources.

of countries with similarly structured energy sectors. When fitting, we choose the hyperpa-
rameter space as follows: we allow G ∈ {2, 3, 4, 5, 6} and q ∈ {1, 2, 3, 4, 5} for each group.
We choose the latent subspace dimension d using the thresholding approach, implying that
its value is bounded above by the number of basis functions. For computational reasons,
we fix q across model components. For each unique combination of hyperparameters, we
generate 1000 sets of random parameters and use them to initialize a stochastic EM algo-
rithm, which is subsequently run for 500 iterations. We retain the parameters associated
with the maximum achieved likelihood value and use them to initialize a regular EM al-
gorithm which is run until convergence. By way of this process, the best fitted model for
each choice of G is given in Table 5.9.

Inspecting the BIC values displayed in Table 5.9, we note that for each specified G,
the Fourier basis produces better BIC values than the corresponding B-spline basis, while
B-spline projection seems to result in a larger proportion of variance being explained by
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Figure 5.5: Plots of the univariate components of the mean function fitted to each of the
five groups in the best BIC model. Partially based on IEA data from the IEA, www.iea.
org/statistics. All rights reserved; as modified by Alex Sharp.

the first eigen-function. Overall, projecting the data into the Fourier space and fitting a
five component mixture with latent factor dimension q = 3 for each group results in the
best fit. The groups assigned by this model are represented visually in Figure 5.4. A table
listing the countries that belong to each group can be found is provided in Appendix B.1.
As a first preliminary analysis of the assigned groupings, Figure 5.4 seems to suggest that
the clustering algorithm is identifying trends in the data relating countries both geograph-
ical and by the size of their economy. We posit that these relations could certainly be
represented latently within energy production and economic rents, or that is, correlated
with resource abundance and therefore usage.

To get a sense of the general properties of each fitted group, we analyze the mean
functions, presented in Figure 5.5. Here, columns comprise the mean function for a spec-
ified group, while rows correspond to related sets of energy sector indicators, as defined
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Figure 5.6: The fitted factor loadings for each group. Columns correspond to groups, while
rows correspond to factors. The values presented are the results of a varimax rotation on
each of the loading matrices separately.

by the partitions of Table 5.8. Glancing over dirty energy production, we notice global
trends of increasing natural gas dependence and decreasing oil use, with the rates of these
changes varying across the groups. Group 3, which consists of countries such as Brazil,
Mexico, and Italy, seems to have the fastest rate of natural gas adoption, while group 5,
which is comprised of countries such as Iran, Norway, and Saudi Arabia, boast the highest
overall percentage of energy generated from natural gas, at over 40 percent. This may
be an indication that the world overall was concerned with CO2 emissions ahead of the
Paris Agreement as energy generated by natural gas produces lower overall emissions than
its other dirty energy counterparts. This shift toward natural gas could be seen as an
intermediate step toward transitioning away from fossil fuels, as the reduced emissions buy
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countries time to develop the infrastructure needed to support cleaner methods.

One clear distinction across groups is coal useage. Group 1, which consists of Canada,
America, most of Europe, and Australia, reports the highest percentage of energy produced
by coal. As we move across from group 1, across the plot from left to right, coal use
progressively decreases in an almost systematic, stepwise fashion, with group 5 exhibiting
almost zero coal dependency for energy production. There are clear distinctions across
the groups in terms of renewables as well. Group 1 seems to be the only group with a
non-negligible portion of energy produced through means of nuclear power. This group
also appears to possess the steepest increase in use of renewables, although this is closely
rivaled by the uptake of renewables in group 4. The title of most energy produced through
renewables on average, however, belongs to group 3. Hydro appears to be the largest
source of clean energy for all groups besides 1, although Hydro also touts a decreasing
average trend across all groups. Overall, group 2, which is composed of countries such as
Argentina, China, India, Russia, and South Africa, is the only one in which the dominate
method of energy production is a clean resource (hydro).

The factor loadings used to model the coefficients of the data on the first eigenvector
are presented in Figure 5.6 for each group. Recall that the loading matrix is the same up
to a scalar multiple across all eigenvectors, so that this analysis holds for the coefficients on
all eigenfunctions up to a rescaling of the x-axis. For the first three groups, the first latent
factor is synonymous with a single variable. For group 1 and 2 that variable is Coal Rents,
whereas for group 3 the variable is CO2 Damage. For group 4, Renewables, Natural Gases
and Crude Oil have the largest loadings on the first latent factor. The first two are in
opposition of the third, implying that this latent factor represents a measure of adoption
of cleaner fuels. The first latent factor of group 5 is a bit harder to unpack. We first notice
that there are large, opposite sign loadings on Hydro and Natural Gases so that this factor
measures some tension between these two methods of energy production. Additionally, we
see non-negligible loadings on Forest Rents and Mineral Rents, with these sharing the
same sign as Hydro. We also see non-negligible loadings on Nat Gas Rents and Crude Oil
having the same sign as the loading on Natural Gases. Recalling that the countries
comprising Group 5 produce no energy from coal on average, we conclude that this is an
overall cleanliness factor for the energy and resource sector.
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Mean
Features

Significant
Factors

Notable
Members

Group

1

• highest coal and nuclear en-
ergy production

• Resource rents not strong
contributors to GDP

• Lowest PM2.5 Damage and
Resource Depletion

• Coal rents

• Natural gas rents

• Hydro and coal trade-
off

Australia,
Canada,

Germany,
Japan,

South Korea

2

• Hydro is largest energy
source

• Increasing coal use

• High forest and mineral
rents; strong rents overall

• Second worst in resource de-
pletion and CO2 damage

• Coal Rents

• Mineral Rents

• Hydro and fossil fuel
tradeoff

Argentina,
China,

India, Rus-
sia,

South Africa

3

• Fastest increase in natural
gas use, greatest reduction
in oil use.

• Best renewable use outside
of hydropower

• Oil is only significant rent

• Increasing resource deple-
tion, low PM2.5 damage

• CO2 damage

• Resource extraction
(heavily influenced by
minerals)

• Renewable resources
versus coal

Brazil, Italy,

Mexico,

New
Zealand,

Thailand

4

• Highest oil production, low-
est natural gas

• High rate of renewable
adoption; second best nu-
clear and hydro

• Forest and mineral only
non-negligible rents

• Largest relative change in
PM2.5 damage

• Oil versus renewable
resources

• Coal versus renewable
resources

• Oil versus hydro

Costa Rica,
Dominican
Republic,

Kenya, Swe-
den,

Uruguay

5

• Highest natural gas use,
lowest coal use

• Overall lowest percentage of
energy by clean methods

• Extremely high oil rents

• Very high resource deple-
tion

• Hydro and non-fuel
rents versus fossil fu-
els and fuel rents
(cleanliness of sector)

• Natural gas and crude
oil tradeoff

• Oil extraction

Albania, Iran

Nigeria,
Saudi Ara-
bia,

Venezuela

Table 5.10: A summary of the characteristics of each group found by the best BIC model.
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For groups 1, 2, and 3, the second factor is mostly comprised of a single rent, whereas
for groups 4 and 5, the second factor represents the exchange of a dirty energy source for
a cleaner one. For all but group 5, factor 3 represents a shift in energy production. For
group 1 and 4, this takes the form of exchanging Coal for Hydro, for group 2 it takes the
form of Hydro versus fossil fuels, and for group 3 its a disproportionate tradeoff between
energy produced by renewable resources and Coal. Finally for group 5, the third factor is
comprised of large, same sign loadings on Oil Rents and Resource Depletion. Therefore,
we can interpret this latent factor as representing the state of a countries oil industry.

Collecting the findings of our analysis into Table 5.10, we make some concluding remarks
regarding the state of each energy sector group in terms of the aforementioned global crises.
We emphasize that these comments are based solely on the high level data summary
presented by the model, and we realize that real world circumstances surrounding energy
production are far more complex than what we present here. Accordingly, our comments
should not be interpreted as praise or condemnation of any particular country’s business,
nor should they be interpreted as comprehensive advice that we believe countries should
actually act on.

Group 1 reports the highest average dependency on coal among the five groups, and
this source stands out as this groups largest contributed to energy production on average
across the entire period of study. The glimmer of positivity here is that these countries also
showed increasing adoption of renewable fuels, as well as boasted the most well established
nuclear sector. Members of this group should continue to build on these promising trends,
and use the gains from investing in these cleaner sources to reduce dependency on coal.

Among all five groups, Group 2 was the only one in which the largest contributor to
energy production was a renewable resource throughout the entire period of study. This
is a great achievement, but some concerns linger. Although it was the largest contributor,
the percentage of energy generated by hydropower presented a decreasing average trend,
falling by 10% over the course of the 22 year period covered by the dataset. Over this same
time period, the contribution of coal was seen to rise about 5% on average. Additionally,
outside of hydropower, the countries comprising Group 2 seem to be relatively uninterested
in renewable energy sources. Whether this is a function of resource availability, indifference,
or insufficient infrastructure is unclear, however, it is an issue that these countries will need
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to address if the stipulations of the Paris Agreement are to be met. Even ignoring global
concerns, Group 2 also presented some of the worst trends in the adjusted savings category,
suggesting that it is also in the personal interest of these countries to make an effort to
alleviate fossil fuel dependence. However, this choice may be made harder by the fact that
Group 2 reported some of the most significant fossil fuel rents.

Group 3 presents itself as a set of countries whose energy sectors are in a state of tran-
sition. This is observed in plummeting oil use parallel to rising natural gas use, and is ad-
ditionally supported by exponential-like increases in energy contribution from renewables.
A slight blemish is that these increases are matched by decreased utility of hydropower,
which results in a relative decrease in clean energy consumption by this group over the pe-
riod of study. On the whole, these countries seem to be on a good path toward successfully
overhauling their energy sectors for more sustainable production.

On the surface, Group 4’s consistently high oil use and increasing resource depletion
seem to paint a picture of countries rooted firmly in the fossil fuel industry, however a closer
look reveals a different story. Like Group 2, this group also reports high contributions in
energy production from hydropower, but unlike Group 2, there is a clear interest in other
renewable sources of energy outside of hydro. Further, low average oil rents throughout
the period of study suggests these countries may not resist adoption of alternative energy
solutions as they become increasing viable. Outside of oil, Group 4 already seems relatively
unattached to fossil fuels, with some of the lowest average contributions from both coal
and natural gas among the five groups, along with negligible rents. Finally, relatively low
CO2 and PM2.5 damages suggest these countries are well on their way to achieving a clean
energy revolution.

Group 5 is the least dependent on coal of all groups, being nearly equal to 0% of overall
production for the entire period of study. Natural gas use in this group is also noteworthy—
in 1993 natural gas in this group was, on average, higher than is ever achieved by any other
group, and the trend steadily rises as time passes. Despite negigible coal use, extremely high
resource depletion numbers coupled with declining clean energy use paints a picture that
these countries are not preparing well for the future and have energy sectors completely
entrenched in the fossil fuels industry. This is likely perpetuated by obscenely large oil
rents, suggesting that these countries may be wary to move on from fossil fuels because
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Figure 5.7: A typical baseball field. The white diamonds and the encompassing sandy
clay area compose the infield, while the large section of green grass beyond it comprises
the outfield. The brown circle with the white bar in the middle of the diamond
represents the mound from which the pitcher throws, while the box at the bottom of
the diamond is where the batter stands.

they are proving to be very lucrative. However, owing to the fact that we will run out of
oil globally within the current generation, these countries would be wise to start investing
their money in energy sources of the future.

5.5.6 Baseball Pitch Trajectory Data

Baseball is a sport played between two teams, wherein each team alternates between fielding
and batting. The game has no time limit, rather, it progresses as the fielding team produces
“outs" against the batting team. When three outs are achieved, teams switch roles, with
the batting team moving to the field, and the fielding team taking up batting. Once each
team has both fielded and batted nine times, the game finishes. The game proceeds in
segments, wherein a player on the fielding team, called the pitcher, pitches (throws) a
ball toward a player on the opposing team, who must then try to swing and hit the ball.
The pitcher is penalized if the throw is errant, while the batter is penalized if the throw
is good but not struck. A penalty against the pitcher is called a “ball" while a penalty
against the batter is called a “strike." If the pitcher manages to rack up three strikes
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Figure 5.8: An example observation from our constructed dataset. The plot shows the
average fastball trajectory of MLB pitcher Jacob deGrom to each of the 13 zones defined
by the variable zone within the dataset. All axis measurements are in feet; the aspect ratio
has been adjusted for concise presentation.

against the current batter, the pitcher’s team accumulates an out, and the batter must
return to the bench. The batter is replaced with a new player from the batting team, the
number of balls and strikes are reset to zero, and play continues. Points are scored by
the batting team, and are accrued by batters hitting a pitched ball and proceeding to run
the bases (see Figure 5.7) before getting tagged with the ball by the fielding team. The
team with the most points at the end of the game is deemed the winner. Given that the
batting team can (generally) only score points by making contact with a pitched ball, one
quickly realizes that good pitching is integral to winning a baseball game. Good pitchers
are those who have an assortment of different pitches—particular ways of throwing the
ball—that are difficult for the opposing batter to hit, identify, or adjust to. There are
many types of pitches used in baseball, but there are five main types that find ubiquity
at the major league level: four-seam fastball (FF), curveball (CU), slider (SL), two-seam
fastball (FT/SI), and changeup (CH). For a short discussion on the role and proprieties
of each pitch, see https://www.mlb.com/glossary/pitch-types. We note that the type
and role of a given pitch is intimately related to its trajectory. That is, despite natural
variations across realizations of any particular pitch type, which occur due to differences
in physical stature of the pitcher or nuisances in the delivery of the pitch, each one is quite
easily identified through visual inspection of its associated trajectory. Interest now lies in
assessing whether or not MFSF can do the same, that is, identify similar pitches through
trajectory analysis.
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Since 2006, Major League Baseball (MLB) has been collecting pitch trajectory data for
every pitch thrown in every game played during both the regular season and the playoffs.
These data have been made publicly available, and an R function for scraping the data can
be found in Appendix B.2. For our analysis, we collect all pitches thrown from two different
seasons, which we label Season A (2019) and Season B (2018), by right-handed pitchers.
Left-handed pitchers are not included in our analysis due to the reflected nature of their
pitch trajectories with respect to right-handers. One could potentially include southpaws
if all included trajectories were reflected to appear as thrown from the same hand (left or
right).

Unfortunately, MLB does not provide the raw trajectory data, rather, a three-dimensional
constant acceleration model for space curves is fit, and trajectory data are released pub-
licly in the form of parameter values estimated by the fitted model. Details regarding the
fitting procedure can be found in Nathan (2008). Utilizing the model formulation provided
in Nathan (2008), we use the coefficients recorded in our dataset and generate 1000 points
along each trajectory. Each pitch in the dataset then represented by a 3 × 1000 matrix.
These are then projected onto a 29 dimensional B-spline basis, and the resulting 3 × 29

matrix of coefficients are extracted. The resulting matrices do not exhibit large enough
row dimensions to properly take advantage of the properties of MFSF. We therefore seek
an alternative representation for these data that result in increased row dimension. To do
this, we appeal to the context of the data as pitch trajectories.

For every recorded pitch, MLB also provides copious contextual meta-data, such as
which batter faced the pitch, who threw the pitch and much more (a complete list can
be found at https://baseballsavant.mlb.com/csv-docs). One of the provided meta-
data variables, titled zone, is of particular interest. As previously mentioned, a baseball
pitch is always thrown by a pitcher on the mound in the direction of a batter who stands
at the bottom of the playing diamond directly next to a special base called “homeplate"
(Figure 5.7). The variable zone records the location of the pitched ball as it crosses
the front of homeplate based on predefined zones. That is, the vertical plane in front of
homeplate, where the batter stands, is separated into 13 different zones, and pitch locations
are distinguished using these. A visual representation of these zones, and a set of fastball
pitch trajectories, one to each zone, is presented in Figure 5.8.
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Figure 5.9: [Top Left]: The confusion matrix for the model chosen by BIC. [Top Right]:
The confusion matrix for predictions by the chosen model on unseen data from Season
B. [Bottom]: A break down of classification rate by pitch type, for Season A and Season
B. Also included is the prediction accuracy on the subgroup of Season B corresponding
to pitchers who also threw in Season A (n=848) and the subgroup of those who did not
(n=364).

Each trajectory presented in Figure 5.8 is calculated as the average trajectory, within
each zone, of fastballs thrown by one particular pitcher ( in this case, New York Mets’
star pitcher Jacob deGrom). In a way, the set of trajectories displayed in Figure 5.8
could be said to represent Jacob deGrom’s fastball more holistically than any particular,
single realized trajectory does. We therefore proceed as follows: we group observations
in the dataset by pitcher name and pitch type, and we keep each group that consists of
at least 100 observations. This results in 1068 unique pitcher-name/pitch-type pairings.
We further partition the trajectories of each retained pairing according to the variable
zone. We then take the average of the trajectories in each subset of the partition, which
produces thirteen, 3 dimensional trajectories that together form a 39 dimensional space
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curve describing the associated pitcher-name/pitch-type pairing. We note that this space
curve has an interpretable embedding in 3-space, of which an example is plotted in Figure
5.8. These data are transformed to functional data using the approach previously detailed,
so that each curve pertains to a 39 × 29 matrix of coefficients on a B-spline basis. Our
hope for cluster analysis on these data is to find groups that are homogeneous with respect
to pitch type.

Before fitting the model, we must determine appropriate hyperparameter values. The
total number of different pitches in the dataset is known a priori, hence we set G = 5

accordingly. We allow the latent subspace dimension d to be chosen using the thresholding
method, with threshold set to 0.9. To find a good value of q for each component, we
adopt an approach reminiscent of the emEM algorithm of Biernacki et al. (2003). The
allowable values of the latent factor dimension q is Q = {3, 4, 5, 6}, and for each unique
5-tuple q = (q1, ..., q5) of elements in Q, we fit the model with the latent factor dimension
of group i specified by qi. For each q we initialize 20 runs of stochastic EM using random
soft memberships and run each one for 100 iterations, saving the parameter values that
result in the best BIC. The 5-tuple q which produces the overall best BIC value is then
considered the best choice for the latent factor dimensions.

With hyperparameter values set, we now focus on fitting the model. We initialize 100
stochastic EM algorithms using randomly generated soft membership matrices Z, and run
each for 500 iterations. We initialize one additional model using the best parameter set
from the selection of q. The set of parameters resulting in the lowest BIC is then used to
initialize an AECM algorithm which is run until convergence. Although both q and G are
fixed, BIC is still used for selection at this stage to account for potential variation across
the estimation of d.

The resulting best model achieves a BIC of 2158103, and reports a correct classification
rate of 0.852 and an ARI of 0.747. The top left plot of Figure 5.9 depicts the confusion
matrix for this model. Each component of the model approximately corresponds to a single
pitch type, as hoped. For each component, the associated latent factor and subspaces
dimension are (3, 5) for the CH component, (3, 6) for the CU component, (4, 7) for the
FF component, (6, 6) for the SI component, and (3, 7) for the SL component. The model
has therefore represented the data with satisfying amounts of parsimony, and the heavy
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diagonal in the top left plot of Figure 5.9 suggests that this representation produces a
workable approximation.

More specifically, Figure 5.9 shows that the model does a good job at representing
fastballs (FF), curveballs (CU) and changeups (CH), however, it does relatively poorly
at identifying sinkers (SI) and sliders (SL). Specifically, sliders are frequently identified
as curveballs or changeups, while sinkers are often guessed to be fastballs or changeups.
These misclassifications are reasonable in the baseball context. Sliders are quite similar to
curveballs, as both pitches trace a curved trajectory, while sinkers are essentially fastballs
thrown just a bit slower, producing an earlier dip. Changeups are a still slower version of
the sinker, albeit with a small degree more lateral movement.

In the interest of assessing the generality of our fitted model, we use it to predict pitch
type labels on the data accrued for Season B. The resulting confusion matrix is given in
the top right portion of Figure 5.9. Overall, the model produces numbers on these unseen
pitches similar to those reported on the pitches used for fitting. The one exception is
78% of sinker labels correctly predicted, marking a 10% increase over what would have
been expected based on the fitted model. We need to recognize, however, that Season B
contains data on some of the same pitchers who are included in Season A. Although the
Season A and Season B datasets are temporally partitioned and therefore share no common
observations, we suppose that the same pitch thrown by the same pitcher is likely to be
correlated across time. It follows that some of the observations in our Season B cannot
be truly considered as independent from those of Season A. We account for this issue by
including the graphic presented at the bottom of Figure 5.9. This plot presents the same
information as the twin confusion matrices, however, it additionally decomposes the results
on the Season B pitches into those pitches thrown by pitchers who are also present in the
Season A dataset (n=848), and those who are not (n=364). The results on previously
unseen pitchers is closer to what one would expect from prediction, although we note that
even in this case the prediction on sinkers is better than what was fitted to the original
data.
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5.6 Conclusion

In this work, we have defined and investigated a parsimonious, finite mixture model for
clustering observations of multivariate functional random variables. We have demonstrated
that modelling multivariate functions as a collection of dependent univariate functions on
the same domain, combined with the model-based assumption of a matrix normal distri-
bution on the functional principal components, results in a model which flexibly models
the function space and the coefficient space. Indeed, this formulation facilitates the speci-
fication of different levels and styles of parsimony in each of these spaces for each mixture
component, according to the nuances of the data under investigation. An analysis of mul-
tiple country energy sectors demonstrates the interpretability this brings to modelling, as
we were able to discuss the contributions of separate univariate functional covariates in
the context of the energy sector whole. An analysis of baseball pitch trajectories showed
that the model also attains good performance in the case of a large spatial dimension
and moderate basis dimension, as it was able to cluster the trajectories into groups which
roughly corresponded to the different pitch types, and it did so with a satisfying amount
of parameter parsimony. For future work, we have two suggestions. Previous work allows
one to choose the subspace dimension dg for each component without the computational
burden of a space search, however a search was still required for the latent factor dimen-
sion hyperparameter qg. As far as we know, there are no methods for automatic choice
of the latent dimension in factor analysis which can be seamlessly implemented alongside
the maximum likelihood estimation of the parameters. Discovering a convenient way of
choosing qg across the components would further ease computational burden of model fit-
ting, potentially allowing a good model to be fit in a single run (using SEM initialization
and assuming the number of model components is known). Additionally, one may look
at alternative specifications of parsimony for either Σ1 or Σ2 which may produce a model
formulation which is more natural to some particular context.
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Chapter 6

Maximum Contribution to the
Likelihood: Increasing the Precision of
Estimation with the Stochastic
Expectation-Maximization Algorithm

6.1 Introduction

The expectation-maximization (em) algorithm (Dempster et al., 1977) is a well known
method for obtaining maximum likelihood estimates of parameters for latent variable mod-
els. The algorithm is generally composed of two steps, an expectation (e) step, and a
maximization (m) step. Depending on the chosen data model, one or both steps may be
complex or intractable. The stochastic em algorithm (Celeux and Diebolt, 1985; Diebolt
and Ip, 1995; Celeux et al., 1995) is a methodology which aims to deal with cases of a
problematic e-step. In so-doing, it may also occassionally simplify the m-step (Celeux
et al., 1995). For a given parameter value, the stochastic em algorithm imputes the latent
variables by drawing from their conditional distribution given the observed data. One
may then approach the m-step as if the data were fully observed. This turns out to be
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equivalent to estimating the value of the expectation in the e-step using Monte Carlo inte-
gration based on a single sample (McLachlan and Krishnan, 2007). This imputation step
has been dubbed the s-step (Celeux and Diebolt, 1988; Diebolt and Ip, 1995), alluding to
its stochastic nature.

By replacing the deterministic e-step with the stochastic s-step, one sacrifices some of
the desirable convergence features of the em algorithm (Dempster et al., 1977; Wu, 1983).
For example, stochastic em does not guarantee monotonic increase in the observed data
log-likelihood, nor does it converge to a limit point, local or otherwise. However, the s-
step does bring the ability to escape from local maxima and saddle points, making the
algorithm less sensitive to initial conditions. Along with the simplicity of the s-step, this
property makes the stochastic em algorithm a fairly attractive approach for estimating
latent variable models. For example, it has recently been employed in the estimation of a
large-scale, full-information item factor analysis model (Zhang et al., 2020), a latent regres-
sion item response theory model (Chen et al., 2022), a Markov-modulated diffusion risk
model (Baltazar-Larios and Esparza, 2022), and a shape invariant model for co-clustering
of time-dependent data (Casa et al., 2021).

Under standard regularity conditions it was shown by Nielsen (2000) that the chain
produced by the stochastic em algorithm is an ergodic and irreducible Markov chain. He
further showed that the stationary distribution is asymptotically Gaussian and centered
at the maximum likelihood estimate (Similar results were shown in Celeux and Diebolt,
1985, 1987, for a more restricted class of models). These results also hold for the related
Monte Carlo em (Wei and Tanner, 1990), which differs from stochastic em by allowing the
s-step to utilize multiple draws from the conditional distribution of the latent variables.

From Nielsen (2000), we immediately get that the chain itself is a consistent and asymp-
totically Gaussian estimator. However, convergence of the stochastic em algorithm to a
stationary distribution, rather than a limit point, means the last element of the algorithm
chain is not necessarily the optimal choice for point estimation. A more efficient estimator,
and the most commonly used in application, is the average of the chain’s tail. This esti-
mator was investigated by Ip (1995) for exponential family models, while Nielsen (2000)
continued the investigation under more general conditions. The latter showed that, asymp-
totically in the sample size and with the chain tail having fixed length, the tail average is
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consistent and has an asymptotically Gaussian distribution under suitable normalization.

An alternate estimation scheme chooses the element of the chain with the largest like-
lihood value. This approach appears to be first mentioned in Diebolt and Ip (1995), where
it is noted as a potential alternative to the tail average. In Biernacki et al. (2003), this
estimator is put to the test in the context of Gaussian mixture models. Therein, however,
it is used as an initialization scheme, in that the value produced by a stochastic em algo-
rithm chain with the largest likelihood value is used as the starting point of a traditional
em algorithm.

Our first step is to demonstrate that the estimator obtained by selecting the element of
the chain with the highest likelihood possesses a precision that is the square of the precision
of the tail average, assuming that the model parameter is scalar-valued. Furthermore, we
establish that the estimator follows an asymptotic Laplace distribution.

The purpose of the present chapter is to propose an estimator, based on this alternate
scheme, which achieves greater precision than the tail average. We first prove that the
estimator obtained by selecting the element of the chain with the highest likelihood pos-
sesses a precision that is the square of the precision of the tail average, assuming that the
model parameter is scalar-valued. Furthermore, we establish that the estimator follows
an asymptotic Laplace distribution in this same context. We then show that this estima-
tor suffers from the curse of dimensionality in that, as the model parameter dimension
increases, this estimator becomes bounded away from the maxmimum likelihood estimate
with high probability. We therefore recommend against the use of this estimator in prac-
tical applications. However, the desirable behaviours of this estimator in the scalar-valued
parameter case motivate a new estimator. The proposed estimator utilizes the marginal
algorithm chains and the profile likelihood to extend the scalar-valued model parameter
properties of the largest loglikelihood estimator, namely its increased precision, to the
high-dimensional parameter case. We prove that the proposed estimator is consistent and
has asymptotically Laplace marginals, under suitable normalization.
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6.2 Preliminaries

6.2.1 Notation

The context in which the em algorithm operates starts with the assumption that there
exists a random variable Y whose values represent complete information regarding some
process or object of interest. This random variable can only be partially observed, and
we label the observable part with X. We denote the latent unobservable data as Z, so
that we have Y = (X,Z). We suppose X has density f(x | θ), with respect to a σ-finite
dominating measure denoted by dx, and support X . Similarly, Z is assumed to have
support Z and conditional density k(z | x, θ) given X, with respect to the dominating
measure dz. Finally, Y has support Y = X × Z and density g(y | θ) with respect to
dominating measure dy = dx× dz. We then have

f(x | θ) =
∫
Z
g(y | θ)dz, k(z | x, θ) = g(y | θ)f(x | θ)−1.

We denote the parameter space of the model by Θ ⊆ Rp, and we let θ0 ∈ Θ denote the
true underlying value of the parameter. Score and information functions for the random
variables of interest are identified by a subscript, e.g. sx(θ) denotes the score of the observed
data X, and Iz|x(θ) = E(sz|x(θ)sz|x(θ)

T | X = x) denotes the information of the latent data
Z given X = x.

We use X1:n = (X1, . . . , Xn) to denote a random sample of the observed data, while
x1:n denotes a realization. The related objects Y1:n, y1:n, Z1:n and z1:n are defined simi-
larly. Additionally, we will sometimes use f(x1:n) to denote the sequence of evaluations
(f(x1), . . . , f(xn)) in the interest of maintaining compact notation.

We let ℓx(θ) denote the observed data log-likelihood,
∑n

i=1 log fx(xi | θ), with the
dependence on n being suppressed. For a stochastic em algorithm based on the sample x1:n,
we let θ̃n,k denote the kth element of the resulting chain, while θ̃n,k:t = (θ̃n,k, . . . , θ̃n,k+(t−1))

denotes the chain section of length t which begins at index k. We use θ̃n to denote the
random variable distributed according to the stationary distribution of the stochastic em
Markov chain. Finally, θ̂n denotes the maximizer of ℓx(θ).
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6.2.2 The Stochastic EM Algorithm and Parameter Estimation

Given a sample x1:n, interest lies in estimating the parameter θ associated with the distri-
bution of X. The em algorithm is typically employed in cases where direct estimation of
θ by maximization of the observed data log-likelihood ℓx(θ) is difficult, but maximization
over the associated complete-data log-likelihood is comparatively simpler. Of course, in
practice the complete-data likelihood cannot be computed because it requires knowledge
of the unobserved values z1:n. The em algorithm circumvents this by instead considering

Q(θ | θ̂) = E
{
log g(y1:n | θ̂) | x1:n, θ̂

}
= E

[
n∑

i=1

log g
{
(xi, Zi) | θ

}
| x1:n, θ̂

]
,

where θ̂ is the current best guess for the unknown parameter θ, and the expectation is taken
with respect to the conditional distribution

∏n
i=1 k(zi | xi, θ̂). Computation of Q(θ | θ̂)

composes the so-called e-step of the em algorithm. Despite the supposed simplificiations
inherited by shifting efforts to the complete-data model, the e-step can still present diffi-
culties due to the presence of integration. Stochastic em allows one to avoid a problematic
e-step by instead performing the following s-step: At iteration k, given current parame-
ter estimate θ̃n,k, complete the observation xi with a draw from the conditional density
k(· | xi, θ̃n,k), for each xi. Denote the simulated value associated with xi by z̃i. The com-
pleted pseudo-sample produced by the s-step is then utilized at the m-step by maximizing
n−1

∑n
i=1 log g

{
(xi, z̃i) | θ

}
. The execution of both stochastic em steps produces a new

parameter value, denoted by θ̃n,k+1.

Construction of a point estimate from the resulting chain, θ̃n,1:t, is typically done in one
of two ways. The tail average, denoted by θ̄n,m, is the point estimator which averages the
lastm ≤ t elements of the chain. Alternatively, one may take the element of the chain which
produces the largest value of observed log-likelihood function ℓx(θ). Equivalently, one may
express this estimator in terms of the likelihood disparity function (LDF) which is defined
as Dx(θ) = −2{ℓx(θ) − ℓx(θ̂n)}. The LDF is just the likelihood ratio test statistic viewed
as a function of θ rather than the observed data x1:n. The estimator is then expressed as
θ̃n,min t = argmink=1,...,tDx(θ̃n,k). This latter perspective is more amenable to the derivation
of theoretical results, and hence is the perspective taken in the sequel.
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6.2.3 Framework

Conditonal on the observed data, parameter estimators obtained from the stochastic em
algorithm still exhibit randomness due to the stochastic nature of the s-step. In order to
understand the behaviour of these estimators, then, we must establish the nature of the
randomness due to the algorithm as well as the data models. We begin with a modelling
assumption.

Assumption 1. We assume the models of X, Y , and Z satisfy the conditions outlined in
Nielsen (2000). We additionally assume ergodicty of the Markov Chain θ̃n,k.

Details on the data models can be found in Section 2.3 of Nielsen (2000), while condi-
tions for ergodicity of the Markov chain θ̃n,k are outlined in Theorem 1 of Nielsen (2000) and
elaborated on in the subsequent remarks. Of particular importance to the present analysis
is regularity of the observed data model. Specifically, it is assumed that the observed data
log-likelihood ℓx(θ) behaves asymptotically as a quadratic function in the vicinity of its
maximum. More formally, for θn = θ̂n + n91/2h we have

Dx(θn) = hTIx(θ0)h+ rn(h), (6.1)

where rn(h) goes to zero uniformly over compact sets containing the maximum likelihood
estimate as n→ ∞ and θ0 is the true underlying value of the parameter.

Under Assumption 1, Nielsen (2000) showed that the stochastic behaviour of the algo-
rithm can be specified. Specifically, for the Markov chain θ̃n,k, we can specify when the
stationary distribution of the chain exists for finite sample sizes, and what the stationary
distribution will be in the limit a n→ ∞. Operating within the confines of these assump-
tions makes deriving results regarding the asymptotic behaviour of estimators obtained
from stochastic em achievable. We present these results formally as Proposition 2.

Proposition 2 (Nielson, 2000). Suppose Assumption 1 holds. Then the following proper-
ties hold regarding the Markov chain θ̃n,k and the stationary distribution θ̃n of the stochastic
em algorithm.

(i) Suppose θ̃n,k = θ̂n+(n91/2)h+ o(n91/2) and Z̃i ∼ k(zi | xi, θ̃n,k). Then, for almost all
observed sample sequences, the transition probabilities of the stochastic em Markov chain
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converge continously to those of a Gaussian autoregressive process of order 1,

n1/2(θ̃n,k+1 − θ̂n) →d N
(
F (θ0)

Th, Iy(θ0)
−1Iz(θ0)Iy(θ0)

−1) ,
where θ̃n,k+1 is the estimate generated by the algorithm based on the simulated z̃1:n, Iz =

E(Iz|x(θ0) | X = x), and F (θ0) = Iz(θ0)Iy(θ0)
−1 is the expected fraction of missing infor-

mation.

(ii) For almost all observed sample sequences, n1/2(θ̃n − θ̂n) is tight conditional on the
sample and,

n1/2(θ̃n − θ̂n) →d N
(
0, Ix(θ0)

−1{I − (I + F (θ0))
−1}) ,

so that the stationary distribution is asymptotically normal and root-n consistent for θ̂n.

(iii) For almost all samples,

n1/2(θ̃n − θ0) →d N
(
0, Ix(θ0)

−1{2I − (I + F (θ0))
−1}) .

The proof of Proposition 2, as with all proofs, can be found in Appendix C. Proposition
2 serves as the starting point of our investigation of the estimator θ̃n,min t. In addition, we
will also rely on the fact that there exists a sequence of integers kn such that the total
variation distance between θ̃n,kn and θ̃n is less than 1/n. For any n, this allows us to ap-
proximately draw from the stationary distribution after finitely many algorithm iterations.
In particular, a chain starting from the knth iteration still converges in distribution to a
chain drawn from the Gaussian autoregressive process in part (i), and the normalized ran-
dom variable n1/2(θ̃n,kn − θ̂n) still converges in distribution to the Gaussian distribution in
part (ii) of Proposition 2. Hence, our investigation will focus specifically on the estimator
θ̃n,min t = argmink=kn,...,kn+t−1Dx(θ̃n,k), as this is the one we will be employing in practice.

6.3 Asymptotics Regarding the Minimum Likelihood Dis-
crepancy Function Estimator

Interest lies in deriving properties of the estimator θ̃n,min t, with the idea of understanding in
what contexts (if any) its qualities make it preferable to the tail average θ̄n,t. Our investiga-
tion proceeds by first considering the related random variablemnt = mink=kn,...,kn+t−1Dx(θ̃n,k),
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which is the minimum LDF value associated with the chain of length t starting at the knth
chain component. The estimator θ̃n,min t is the chain value associated with mnt, hence the
level of concentration about 0 observed in the distribution of mnt gives insight into the
precision of θ̃n,min t.

Due to the Markov behaviour of the algorithm chain, the sequence Dx(θ̃n,kn:t) is corre-
lated. It follows that the extreme value theorem (See, e.g. Leadbetter et al., 1983), does
not directly apply to mnt. However, there is a so-called condition D (see Leadbetter et al.,
1983, ,pg. 53) such that, if a correlated sequence satisfies D condition, one can employ an
result analogous to the extreme value theorem. Intuitively, when a correlated sequence of
interest satisfies D, one can use an associated i.i.d. sequence to derive results regarding
the distribution of extremes related to the correlated sequence. Our first result confirms
that the sequence Dx(θ̃n,kn:t) satisfies this condition.

Proposition 3. The sequence of LDF values, Dx(θ̃n,kn:t), satisfies condition D.

The proof of Proposition 3, as well as details regarding condition D, can be found in
Appendix C. Proposition 3 tells us that the random variable mnt will converge in distribu-
tion to the same extreme value distribution as the minimum of t i.i.d. draws from Dx(θ̃n)

converges to, as t approaches infinity. We can therefore determine the distribution of mnt

by first determining the distribution of Dx(θ̃n,kn).

Using Equation (6.1) and Proposition 2, the observed data LDF can be written as
Dx(θ̃n,kn) = ZT∆Z + ξn + op(1), where ξn is a random variable such that ξn →P 0 as
n → ∞, ∆ is the diagonal matrix comprised of the eigenvalues of Ix(θ0)

91/2{I − (I +

F (θ0))
−1}Ix(θ0)1/2, and Z is a standard multivariate normal random variable. It is apparent

from this representation that the observed data LDF converges to a linear combination of
p independent Gamma distributions as the sample size n approaches infinity. Our next
Lemma is a first step to utlizing this behaviour.

Lemma 4. Let X =
∑p

i=1Wi be a linear combination of p independent random variables
with distribution Wi ∼ Gamma(αi, βi) where β1 ≤ . . . ≤ βp. Define mt = minj=1,..,t{Xj}
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as the minimum of t independent draws from X. Then, as t→ ∞ we have,

c−1t mt →d Weibull

(
p∏

i=1

(β1/βi)
αi/α

⋆

, α⋆

)
,

where α⋆ =
∑

i αi, and ct are the normalizing constants such that −c−1t max{−Y1, . . . ,−Yt}
converges in distribution as t→ ∞ with Yj ∼ Gamma(α⋆, β1) independently.

Remark. The proof of Lemma 4 relies on the closure of maximum domains of attraction
under tail equivalence. For minima of i.i.d. draws from non-negative random variables
X and Y , we consider X and Y to be tail-equivalent if there exists a constant c such
that limu→t0 SX(t)/SY (t) = c, where SX and SY are the respective survival functions, e.g.
SX(t) = 1 − FX(t), and t0 is their common right endpoint. With X and Y defined as
in Lemma 4, we show tail equivalance of −X and −Y with c =

∏p
i=1(β1/βi)

αi . Since
tS−Y (ctx) → (−x)α⋆ for appropriate normalizing constants ct, by tail equivalence we also
have tS−X(ctx) → c(−x)α⋆ . As a corollary, the normalizing constants ct used to normalize
the minimum of draws from a single Gamma distribution can be used to normalize the
minimum of a linear combination of independent Gamma distributions as well.

It remains to give an explicit form for the sequence of constants ct. By Embrechts et al.
(1997), −ctmax{−Y1, . . . ,−Yt} converges in distribution for ct = F←−Y (1 − t−1), where
F←(t) denotes the generalized inverse of a non-decreasing function F , which is defined
as F←(t) = inf{x | F (x) ≥ t}. Since F−Y = SY (−y) for y ∈ R−, we are interested in
the generalized inverse of SY (y) as y approaches 0 from the positive side. The Gamma
cdf is continuous and strictly increasing, so SY (−y) admits an inverse, although it cannot
generally be written in closed form. We therefore use the property that the lower incomplete
gamma function γ(α,−ϕ−1y) is approximately equal to α⋆91(−β−11 y)α

⋆ as −y ↓ 0 to find
that the normalizing constants can be written ct =

[
α⋆βα⋆

1 Γ(α⋆)
]1/α⋆

t91/α
⋆ for t sufficiently

large.

We now use the results of Lemma 4 to derive the asymptotic distribution of mnt for a
suitable normalization.
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Theorem 5. Conditional on the observed data sample and for almost all samples,

t2/pmnt →d Weibull

(
2
{p
2
Γ
(p
2

)}2/p
p∏

i=1

λ
1/p
i ,

p

2

)
,

where λ1, . . . , λp are the eigenvalues of Ix(θ0)91/2(I − [I + F (θ0)]
−1)Ix(θ0)

1/2.

Remark. Theorem 5 is not a corollary of Lemma 4 as it at first appears. This is because it
requires additionally taking n → ∞ to get Gamma samples, alongside sending t → ∞ to
apply the extreme value theory results.

Remark. The eigenvalues λ1:p of the covariance matrix Ix(θ0)
91/2(I− [I+F (θ0)]

−1)Ix(θ0)
1/2

are the same as those of I − (I + F (θ0))
−1, from which it follows that 0 < λi < 1/2 for

each i = 1, . . . , p. In the subsequent discussion, we assume that the minimum eigenvalue
λ(1) is always positive. This restricts attention to model specifications under which the
missing data is not identified in a redundant manner. We then have lim infp→∞

∏p
i=1 λ

1/p
(i) ≥

limp→∞ λ(1) > 0.

We now investigate the behaviour of the asymptotic distribution of mnt on intervals
of the form (0, δ), δ > 0, as the parameter dimension, p, increases. Let ϵ, δ > 0 and
consider the interval (0, δ). For a fixed dimension p, the asymptotic probability that the
(normalized) minimum LDF value occurs in this interval is,

1− exp

−

[
δ

2
{
Γ
(
p
2

)
p
2

}2/p {∏p
i=1 λi}

1/p

]p/2 ≤ 1− exp

−

[
δ

2λ(1)
{
Γ
(
p
2

)
p
2

}2/p
]p/2 .

Observing that limp→∞
{
Γ
(
p
2

)
p
2

}2/p
= ∞, we find that the scale parameter grows infinitely

in the parameter dimension p. It follows that there exists a p such that,

δ

2λ(1)
[
Γ
(
p
2

)
p
2

]2/p < ϵ.

Since ϵ is arbitrary, we conclude that the probability that the minimum is in the interval
(0, δ) can be made arbitrarily small by increasing p. Since δ is arbitrary, this result holds
for any positive real δ, so that the minimum LDF value escapes away from 0 with high
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probability as the parameter dimension p increases. Additionally, mnt = OP (t
2/p) so that

the rate of convergence is also slowed considerably with increasing parameter dimension.

In terms of the estimator θ̃n,min t, these results imply that its distribution puts diminish-
ing weight on open balls centered at θ̂n as p increases. Thus, as p increases, the distribution
becomes anti-modal at θ̂n. The distribution can therefore be visualized as a ripple, with
the crest of the ripple moving away from θ̂n as p increases. Interestingly, p = 1 would then
correspond to the case in which the ripple crest resides at θ̂n. It follows that θ̃n,min t could
be a precise estimator in this scenario. Investigating this idea begins with the following
corrollary to Theorem 5.

Corollary 6. When the model parameter θ is a scalar, we have

t2mnt →d Weibull
(
π

2

{
1− 1

1 + F (θ0)

}
,
1

2

)
,

as n, t→ ∞ for almost all observed data samples and conditional on the sample.

The shape parameter of the Weibull distribution in Corollary 6 is less than 1, which
means the density exhibits an asymptote at 0. Further, the fraction of missing information,
F (θ0), is on the unit interval, hence the scale parameter is in the interval (0, π/4). The
associated density is therefore concentrated near 0. It follows that the minimum approches
0 quickly in probability. More importantly, the estimator θ̃n,min t approaches the maximum
likelihood estimate θ̂n in probability quickly as the chain length increases. Our goal now
is to quantify what is meant by quickly. To do this, we obtain the asymptotic distribution
of θ̃n,min t in n and t.

Theorem 7. Suppose θ is a scalar, so that Corollary 6 holds. Then, as both n, t→ ∞ the
normalized random variable tn1/2(θ̃n,min t − θ̂n) satifies,

tn1/2(θ̃n,min t − θ̂n) →d Laplace

(
0, Ix(θ0)

91/2 {2πF (θ0)}1/2

2{1 + F (θ0)}1/2

)
,

so that it is asymptotically Laplace distributed with location parameter 0 and scale parameter
(π/2)1/2[F (θ0)/{1 + F (θ0)}]1/2Ix(θ0)91/2.
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Remark. The proof of Theorem 7 relies on Corollary 6, and hence only works when p =

1. In this context the random variable of interest tn1/2(θ̃n,min t − θ̂n) can be written as
sgn

{
θ̃n,min t − θ̂n

}
{t2mnt}1/2. The asymptotic symmetry of the stationary distribution

about θ̂n means sgn
{
θ̃n,min t − θ̂n

}
is asymptotically binomial and independent of mnt.

Deriving the distribution of the product is then straightforward.

It is interesting that the limiting distribution of the estimator is Laplace, however the
key property we are interested in is the rate of convergence with respect to chain length,
which we now justify. In Nielson’s investigation of the tail average (Nielsen, 2000), he found
that for a fixed tail length t, the random variable tn1/2(θ̄n,t − θ̂n) converges in distribution
to a Gaussian distribution with variance given by,

σ2
t = n−1t−1Ix(θ0)

−1 F (θ0)

1 + F (θ0)

(
1 + 2

F (θ0)

1− F (θ0)
− 2t−1

F (θ0)(1− F (θ0)
t)

(1− F (θ0))2

)
.

Unfortunately, the conditions underpinning his investigation (as well as ours) are too gen-
eral to guarantee convergence of the tail average to the expected value of the stationary
distribution as the length of the chain becomes infinite. Nielson was therefore unable to
give proper asymptotic results regarding convergence of θ̄n,t in terms of t. Nevertheless, for
comparison sake we will say that, for large n, we have n1/2(θ̄n,t − θ̂n) = Op(t

91/2), approx-
imately. On the other hand, Theorem 7 gives us that n1/2(θ̃n,min t − θ̂n) = Op(t

−1) for n
sufficient large. Hence, θ̃n,min t converges at square the rate of θ̄n,t in t asymptotically in n,
making it the more precise estimator in terms of chain length. Intuitively, when computed
from the same algorithm chain, we expect θ̃n,min t to be closer to θ̂n than θ̄n,t on average.
We demonstrate the difference this makes in practice with an example using right-censored
data.

6.3.1 Demonstrative Simulation: Right-Censored Data

We demonstrate and compare the two estimators using a right-censored data experiment.
We consider a sample from an exponential random variable X, where right censoring
of the observations at time t = t0 occurs. The observed data then take the form x =

(x1, ..., xn−r, t0, ..., t0), where r is the total number of censored data points. The associated
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complete-data loglikelihood is, ℓ(θ) = −n log θ − θ−1
∑n−r

j=1 xj − θ−1
∑r

j=1Xn−r+j. The
observed data information and the expected fraction of information are given respectively
by,

Ix(θ0) =
(
1− e9t0/θ0

)
θ920 , F (θ0) = e9t0/θ0 .

It follows that the variances of the respective estimators are approximately,

var(θ̃n,min t) ≈
θ20e
−t0/θ0

nt2
(
1− e−t0/θ0

)(
1 + e−t0/θ0

) , var(θ̄n,t) ≈
θ20e
−t0/θ0

nt
(
1− e−t0/θ0

)(
1 + e−t0/θ0

) .
These variances depend on the true parameter value θ0, the length of observation time,
t0, the chain length t, and the sample size n; their form is nearly identical, with the only
difference being the additional multiplicative factor of t in the denominator of var(θ̃n,min t).
To demonstrate the impact of this additional factor, we generate a right censored dataset
from an exponential distribution as described, using a true value θ0 = 2 and a cut off
value of t0 = 2.4. The dataset consists of 1000 observations, 305 of which are censored.
The true value of the maximum likelihood estimate for this dataset is θ̂n = 1.9833. We
initialize a stochastic em algorithm at θ̃n,0 = 1.9 and generate chains of length t = 1000.
We do this 1000 times. We then calculate parameter estimates from these chains using
both the minimum log-likelihood ratio estimate, θ̃n,min t, and the tail average, θ̄n,t. Note
that the minimum log-likelihood ratio estimate does not require knowledge of θ̂n, because
in practice it is instead obtained by the maximum likelihood value.

The empirical distributions are provided in Figure 6.1. The first two plots are given
on the same scale, while the third plot has an adjusted scale for clear presentation of
the densities structure. The leftmost plot is the empirical distribution of the tail average
estimator θ̄n,t, while the central plot corresponds to empirical distribution of the min-
imum log-likelihood ratio estimator θ̃n,min t. The stark contrast in the concentration of
the distributions about the maximum likelihood estimate accentuates the difference in the
performance of these estimators in the scalar-valued parameter case, and highlights the
significance of the increased convergence rate of θ̃n,min t.
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Figure 6.1: The simulated distributions from the right censored simulation. On the left, we
have the distribution of the tail average estimator, and in the middle we have the distribu-
tion of the minimum log-likelihood ratio estimator on the same scale. The rightmost plot
is a repeat of the central one with an adjusted scale to illustrate the Laplace resemblance.

6.4 Maximum Contribution via the Profile Likelihood

The results of Section 6.3 suggest that the estimator θ̃n,min t should be avoided in high di-
mensional problems, because the minimum LDF value on which it relies becomes bounded
away from 0 with high probability. Intuitively, this occurs because the squared, component-
wise differences between θ̃n,t and θ̂n, which comprise the dominant term of the LDF, accu-
mulate with p. The more dimensions we have, the less likely a random value drawn from
the chain will be close to θ̂n in all dimensions at the same time. We hope to address this
issue by instead assessing the closeness of each component separately.

Suppose θ̃n,1:t is the chain of values generated by a stochastic em algorithm, with p

large. Although each value in θ̃n,1:t is likely to produce a large squared deviation from θ̂n in
at least one component, it is also likely the case that, for each component of θ̂n, denoted θ̂ni,
there exists a value in θ̃n,1:t which has a small squared deviation from θ̂n in that particular
component. Hence, if we could cherry-pick from each marginal chain, θ̃ni,1:t, the value which
is closest to θ̂ni, we could construct an estimate that is closer to θ̂n than any value in θ̃n,1:t,
and in particular, θ̃n,min t. By relying on different members of θ̃n,1:t to estimate different
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components of θ̂n, we skirt the issue of requiring one particular memeber of θ̃n,1:t to provide
a sufficiently small LDF value. For such an approach to work, an appropriate definition of
closeness is required. Up to this point we have used the observed data likelihood for this
purpose, however it is no longer sufficient. Indeed, unless the log-likelihood decomposes
into a linear combination of terms, each of which is a function of only one component of
the model parameter, there is no way to determine the contribution of each parameter
component to the total likelihood value. Therefore, the likelihood cannot be used to assess
closeness of parameter components to the corresponding components of θ̂n.

We instead consider the profile likelihood, whose specific purpose is to evaluate a subset
of the model parameter. For a specific value θ of the model parameter, let θi be the ith com-
ponent and θ−i be all components except the ith, the latter of which has associated param-
eter space Θ−i. The profile log-likelihood at θi is then defined as ℓp(θi) = supθ∈Θ−i

ℓx(θi, θ);
in words, it is the maximum value the likelihood can achieve given that the ith component
of the model parameter is fixed to be θi. We further define the profile likelihood discrepancy
function as Dp(θi) = −2(ℓx(θ̂n) − ℓp(θi)). By construction, the profile LDF is minimized
by each component θ̂ni of θ̂n. Regularity of the observed data model then allows us to
conclude that the profile LDF exhibits the properties we seek. Subsequently, we propose
the estimator θ̃n,p t = (θ̃pn1,t, . . . , θ̃np,p t) such that,

θ̃ni,p t = argmin
k=kn,...,kn+t−1

Dp(θ̃ni,k).

The estimator θ̃n,p t estimates each component θ̂ni with the value in the marginal chain
θ̃ni,kn:t that maximizes the profile likelihood. We now show that this estimator is equiped
with improved convergence properties over its predecessors θ̃n,min t and θ̄n,t. We begin with
a proposition, which follows immediately from Proposition 2.

Proposition 8. Let θ̃ni,kn be the ith component of θ̃n,kn, i = 1, . . . , p. Then, the marginal
chain

√
n(θ̃ni,kn:t − θ̂ni) converges in distribution to a sample of the same length from the

stationary marginal vector autoregressive process with autoregressive parameter F (θ0)Ti and
innovation variance {Iy(θ0)−1Iz(θ0)Iy(θ0)−1}ii. It follows that,

(i) For all observed sample sequences and conditional on the sample,
√
n(θ̃ni,kn − θ̂ni) →d N(0, I−1x (θ0)ii − I−1x (θ0)

T

i·(I + F (θ0))
−1
·i ).
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(ii) Unconditionally,
√
n(θ̃ni,kn − θ0i) →d N(0, 2I−1x (θ0)ii − I−1x (θ0)

T

i·(I + F (θ0))
−1
·i ).

The idea is to utilize Proposition 8 as a starting point for obtaining results regarding
θ̃n,p t, in a similar vein to our utilization of Proposition 2 in Section 6.3. In particular, since
each component of θ̃n,p t is identical in form to θ̃n,min t when p = 1, if we can further show
that Dp(θ) has a similar form to Dx(θ), we should be able to achieve results equivalent to
Corollary 6 and Theorem 7 in this profile context.

Proposition 9. Under the assumed regularity conditions on the observed data model, for
a parameter component value of the form θni = θ̂ni + n91/2h the profile LDF exhibits the
approximation,

Dp(θni) = nI−1x (θ0)ii(θni − θ̂ni)
2 + op(1),

for almost all observed data samples, and conditional on the sample.

Proposition 9 shows that the profile LDF is asymptotically quadratic in the model
parameter, in a fashion reminiscent of the observed data LDF. Based on this result, and
the results of Section 6.3, the forthcoming corollary concerning the minimum profile LDF
value over the marginal chains, denoted bymnit = mink=kn,...,kn+t−1Dp(θ̃ni,k), follows almost
immediately.

Corollary 10. Assume Proposition 8 and Proposition 9 hold. Then, for all i = 1, . . . , p,

(i) The profile LDF value associated with the randon variable θ̃ni,kn converges in distri-
bution,

Dp(θ̃ni,kn) →d Gamma
(
1

2
, 2[1− {I−1x (θ0)ii}−1I−1x (θ0)

T

i·{I + F (θ0)}−1·i ]

)
,

as n→ ∞;

(ii) the minimum profile LDF associated with the chain θ̃ni,kn:t converges in distribution,

t2mnit →d Weibull
(
π

2
[1− {I−1x (θ0)ii}−1I−1x (θ0)

T

i·{I + F (θ0)}−1·i ],
1

2

)
,

as n, t→ ∞.
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Remark. In part (ii), the variable term of the scale parameter can be written as 1− {I−
F (θ0)}−1ii +

∑
k ̸=i Ix(θ0)

−1
ik {I + F (θ0)}−1ki . This has a lower bound of 0, which is achieved

as F (θ0) → 0. Likewise, as F (θ0) → I we have {I + F (θ0)}−1ki → 0 and {I + F (θ0)}−1ii →
1/2, after which we find the upper bound of the entire term to be 1/2. It follows that
the scale parameter lies in the interval (0, π/4). Couple this with the shape parameter
value of 1/2, and we find that this asymptotic distribution is concentrated near 0 for any
nontrivial F (θ0). This asymptotic distribution therefore has the same parameter space as
the asymptotic distribution in Corollary 6.

Remark. Since P (t−2mnit ≤ t−ϵx) → 0 for all ϵ > 0 and all x ∈ R+ as t → ∞, we have
mnit = op(t

−2+ϵ) for all ϵ > 0, and therefore mnit = Op(t
−2).

The speed with which mnit approaches 0 in probability, for each i, suggests that θ̃n,p t

should be a more efficient for θ̂n than θ̃n,min t and θ̄n,t in terms of chain length. The next
theorem aims to substantiate this claim.

Theorem 11. For the estimator θ̃ni,p t, we have,

tn1/2I−1x (θ0)
91/2
ii (θ̃ni,p t − θ̂n) →d Laplace

(
0,

(2π)1/2

2
[1− {I−1x (θ0)ii}−1I−1x (θ0)

T

i·{I + F (θ0)}−1·i ]1/2
)
,

as n, t→ ∞.

Theorem 11 verifies that the proposed estimator is Op(t
−1), which is the rate of stochas-

tic boundedness that we set out to achieve. It follows that the performance of θ̃n,p t for
p ≥ 2 relative to θ̄n,t should be similar to that of θ̃n,min t demonstrated in Section 6.3.1. In
the next section, we demonstrate the implications this result has in applications.

One concern regarding the estimator θ̃n,p t is its reliance on the profile likelihood. Com-
putation of the profile likelihood is not always feasible, and in such cases, the proposed
estimator cannot be used. A heuristic alternative, which can in theory always be obtained,
is to evaluate the LDF at all possible combinations of the components of the marginal
chains, and choose the combination which gives the smallest value. That is, for each
i = 1, . . . , p choose an element ji from {1, . . . , t} and evaluate the observed data LDF at
θ̂ = (θ̃n1,j1 , . . . , θ̃np,jp). Assuming a chain of length t, it would require tp evaluations of
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the LDF to check all possible estimates of this form. Even with state of the art computa-
tional hardware, this rapidly becomes infeasible for large t and p, especially in cases where
evaulation of the likelihood is difficult.

Additionally, one may choose instead to use an integrated likelihood (see e.g. Berger
et al., 1999; Severini, 2007), which is typically easier to obtain in practical applications
than is the profile likelihood. Generally, integrated likelihood functions do not exhibit the
properties which make likelihoods useful for frequentist analyses. To instead formulate
the proposed estimator in terms of the integrated likelihood, it is likely that additional
assumptions, and careful selection of the weighting function π(θ−i | θi), would be needed in
order to obtain results similar to those derived here. See Severini (2007) for more details.

6.5 Numerical Experiments

We demonstrate behaviours of interest for stochastic em estimators by way of numerical
experimentation. We choose to do this in the context of robust regression, wherein we
assume a random variable of the form,

T = µ+ σR; R = ZU 91/2,

where, Z ∼ N(0, 1), U ∼ Γ(ν/2, ν/2), µ ∈ R and σ ∈ R+. A regression model follows from
the assumption that µ has the linear representation µ = xTβ, where x is a known vector
of covariates and β is the corresponding parameter of regression coefficients. For a fixed
x, the random variable T exhibits a t-distribution, with T ∼ t(µ = xTβ, σ, ν). To keep the
example simple, we assume that the parameters σ and ν are known.

Given a sample (xi, ti)
n
i=1, the robust regression model can be estimated using the

stochastic em algorithm by designating U to be the missing data. Under the assumption
that U = u is observed, we find that the dependent variable is normally distributed,
T |(U = u) ∼ N(0, σ2/u). When the response is observed, the missing data has conditional
distribution U |(T = t) ∼ Gamma(ν+1

2
, 0.5(ν + r2)) with r = σ−1(t− xTβ). The stochastic

em algorithm proceeds as follows: for a given estimate β̂ the s-step draws the missing
values ũ1:n from the corresponding conditional distributions using r̂1:n = σ−1(t1:n − xT

1:nβ̂).
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Figure 6.2: Boxplots of the negative log likelihood-ratio values associated with each esti-
mator, for each simulation scenario. Each subplot corresponds to a different value of the
parameter dimension, while the plots within each subplot illustrate the distribution of the
negative log likleihood-ratio values across different chain lengths t.

The m-step updates the regression parameters as β̂ = (XTW̃X)−1XTW̃ t1:n, where X is the
n × p matrix with the observed covariate xi as its ith row, and W̃ is the diagonal matrix
with ũi as its ith diagonal element. After t iterations, we have a chain β̂1:t, which is then
used to compute point estimates for the model parameter β.

Estimators of interest for this numerical experiment are θ̃n,min t, θ̄n,t and θ̃n,p t. We in-
clude 3 additional estimators: one which serve as an alternative approach to averaging,
and two which serve as approximations to θ̃n,p t which do not include use of the profile
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liklelihood. For alternative to the average, we investigate a weighted average where the
normalized likelihood values of the chain elements are used as the weights. For approx-
imations to θ̃n,p t, we use the two approaches mentioned at the end of Section 6.4: the
exhaustive search through the chain elements, and an integrated likelihood approach. The
second uses a Monte Carlo approximation to an integrated likelihood, e.g. for a chain
estimate component β̃ik we compute ℓ̄x(β̃ik) = t−1

∑t
j=1 ℓx(β̃ik, β̃−i,j). The estimate of each

component of β is then the one corresponding to the largest value of this metric.

We choose two factors to vary in the simulation: the parameter dimension p, and
the chain length t. Specifically, we look at all combinations of p = 1, 10, 50, 100 and
t = 20, 50, 100. For each pair of simulation factors, (p, t), we generate a single dataset,
which is then used as the starting point for 1000 independent runs of the stochastic em
algorithm. Each resulting chain is used to compute the value of the estimators included
in the study. Across all simulations the sample size is set to n = 500, while the nusiance
parameters are fixed at σ = 2 and ν = 2.5.

Data generation begins with the n × p data matrix X, which has each row drawn
according to a standard Gaussian. The regression parameters, β, are drawn componentwise
and independently from a uniform distribution on [−2, 2]. Finally, we use the covariates
and model parameters to generate the response values, t1:n.

These data are used to generate 1000 estimate chains through independent runs of
stochastic em . Each chain is started at the maximum likelihood estimate so that it can
be considered to have been sampled from the stationary distribution of the algorithm. To
guard against the potential for bias, we give each chain an initial burn-in period of 20

iterations.

The results of the simulation study are given in Figure 6.2, which contains four subplots,
each corresponding to a particular value for the parameter dimension p. Within each
subplot are six sets of boxplots, one for each estimator included in the simulation. Each
boxplot corresponds to one particular value for the chain length, and plots the associated
distribution of negative log likelihood-ratio values produced by the estimator over the 1000

chains generated for that scenario.

A general trend can be seen to occur across all estimators: for a fixed value of the pa-
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rameter dimension p, increasing t shifts the central tendency of the LDF value distribution
toward 0. Of particular interest is the rate at which this shift occurs. The minimum LDF
estimator, for example, exhibits slow convergence, especially for larger values of the param-
eter dimension. This is evidenced by the relatively unchanged boxplots across increasing
values of t. In contrast, the proposed estimator demonstrates rapid convergence of the
central tendency towards 0 as chain length increases, regardless of p. For large values of p,
the proposed estimator achieves, in just 20 iterations, an average LDF value considerably
smaller than what the other estimators achieve in 50 or 100 iterations. Furthermore, a
comparison of the boxplots of the proposed estimator with those of the exhaustive search
estimator reveals striking similarities, suggesting the two approaches are nearly equivalent
in practice. Since the true value of the maximum likelihood estimate was directly used in
the computation of the exhaustive search estimator, this seems a satisfactory performance.

The heuristic estimators have also turned in good results, with both outperforming
the minimum LDF estimator as parameter dimension increases. However, the weighted
likelihood average estimator has not shown much, if any, improvement over the tail average
estimator, particularly for larger parameter dimensions. On the other hand, the Monte
Carlo integrated likelihood estimator outperformed the tail average estimator in terms
of accuracy and precision, supporting the earlier notion that this estimator may be a
worthwhile alternative to the proposed estimator.
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Chapter 7

Conclusion

This thesis has offered a small contribution to the field of functional finite mixture models
with a suite of model-based clustering methodologies which accomodate both real-valued
and vector-valued functions of a single variable. Each methodology rests on the notion
that the joint density of the Karhunen-Loeve expansion coefficients serves as a surrogate
for the density of the function-valued random variable to which they correspond. The
tabiya of the proposed methodologies is reached by assuming this density exhibits the
finite mixture architecture. The first methodology then specifed a joint generalized hy-
perbolic distribution on the principal components of a real-valued random function. The
second methodology extends the parsimonious dual-subspace parameter specification for
the matrix normal distribution of Chapter 4, to a more general latent factor analyzer
specification for the development of a finite mixture model for clustering high-dimensional
space curves. Addtionally, an estimatior to be used in tandem with SEM was introduced,
and its properties were investigated. By taking the idea of maximum likelihood literally
and harnessing the extreme value theory of weakly correlated sequences, the estimator was
able to achieve greater precision than topical approaches. In summary, the methodologies
presented herein not only contribute to the existing body of literature but also pave the
way for future research in this exciting and challenging field.
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Appendix A

Supplementary Material for Functional
Data Clustering by Projection in Latent
Generalized Hyperbolic Subspaces

A.1 Parameters Used in Model Selection Simulation

The parameters used to generate observations are as follows. The mean parameters are,

M1 =


1 0 0 0 1

0 1 0 1 0

0 0 1 0 0

0 1 0 1 0

1 0 0 0 1

 M2 =


0 1 0 0 0

0 0 1 0 1

0 1 1 1 0

1 0 1 0 0

0 0 0 1 0



M3 =


0 0 1 0 0

0 0 1 0 0

1 1 1 1 1

0 0 1 0 0

0 0 1 0 0

 M4 =


0 0 0 1 0

1 1 0 1 0

0 0 1 0 0

0 1 0 1 1

0 1 0 0 0
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The covariance parameters are the same across groups and across dimensions and are
specifed as,

Φig =

[
1.5157166 0

0 1.5157166

]
, and ηig = 0.7578583,

where i = 1, 2.
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Appendix B

Supplementary Materials for A Joint
Factor Analyzer and Functional
Subspace Model for Clustering
Multivariate Functional Data

B.1 Countries Included in the Energy Sector Analysis

We gather complete data on the following 97 countries:
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Africa Asia Europe North America Oceania South America
Algeria Bahrain Albania Canada Australia Argentina
Angola Bangladesh Austria Costa Rica Indonesia Bolivia
Benin Brunei Belarus Cuba New Zealand Brazil

Botswana China Belgium Dominican Republic Chile
Cameroon India Bulgaria Guatemala Colombia

Cote d’Ivoire Indonesia Cyprus Haiti Ecuador
Egypt Iran Czech Republic Honduras El Salvador

Ethiopia Israel Denmark Jamaica Peru
Gabon Japan Finland Mexico Uruguay
Ghana Jordan France Nicaragua Venezuela
Kenya Korea Germany Panama

Mauritius Lebanon Hungary Trinidad and Tobago
Morocco Malaysia Ireland United States

Mozambique Mongolia Italy
Namibia Nepal Netherlands
Nigeria Oman North Macedonia

South Africa Pakistan Norway
Tanzania Philippines Poland

Togo Russian Federation Portugal
Tunisia Saudi Arabia Romania
Zambia Singapore Spain

Zimbabwe Sri Lanka Sweden
Thailand Switzerland
Turkey Turkey

Vietnam United Kingdom
Yemen

Table B.1: Countries used in the energy sector analysis, sorted by geographical location
and listed in alphabetical order.

The following table lists the countries assigned to each group in alphabetical order.
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Group 1 Group 2 Group 3 Group 4 Group 5
Australia Argentina Austria Belgium Albania
Bulgaria Botswana Bangladesh Costa Rica Algeria
Canada Cameroon Brazil Cyprus Angola

Czech Republic Chile Cuba Dominican Republic Bahrain
France China Denmark El Salvador Belarus

Germany Colombia Guatemala Finland Benin
Hungary Ethiopia Ireland Haiti Bolivia
Japan India Israel Honduras Brunei

South Korea Indonesia Italy Jamaica Cote d’Ivoire
Netherlands Malaysia Mexico Kenya Ecuador

North Macedonia Mongolia New Zealand Lebanon Egypt
Poland Morocco Philippines Mauritius Gabon

Romania Mozambique Thailand Namibia Ghana
Spain Pakistan Nepal Iran
Turkey Peru Nicaragua Jordan

United Kingdom Russian Federation Panama Nigeria
United States South Africa Portugal Norway

Tanzania Singapore Oman
Vietnam Sri Lanka Saudi Arabia
Zambia Sweden Trinidad and Tobago

Zimbabwe Switzerland Tunisia
Togo Venezuela

Uruguay Yemen

Table B.2: Countries used in the energy sector analysis sorted by the best BIC model
grouping and listed in alphabetical order.

B.2 Code for Scraping Pitch Data

> get_statcast = function (start_date, end_date)
+ {
+ if (!is.character(start_date) | !is.character(end_date)) {
+ stop("Please wrap your dates in quotations in the 'yyyy-mm-dd' format.")
+ }
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+ if (as.Date(start_date) <= "2015-03-01") {
+ warning("Some metrics such as Exit Velocity and Batted Ball Events have
+ only been compiled since 2015.")
+ }
+ if (as.Date(start_date) <= "2008-03-25") {
+ stop("The data are limited to the 2008 MLB season and after.")
+ }
+ if (as.Date(start_date) > as.Date(end_date)) {
+ stop("The start date is later than the end date.")
+ }
+ year <- substr(start_date, 1, 4)
+ days <- seq.Date(as.Date(start_date), as.Date(end_date),
+ by = "day")
+ start_days <- as.character(days[(1:length(days))%%7 == 1])
+ end_days <- as.character(days[(1:length(days))%%7 == 0])
+ res <- list()
+ n <- max(length(start_days), length(end_days))
+ res <- foreach(i = 1:n) %do% {
+ if (i == n)
+ end_days[i] <- end_date
+ url <- paste0("https://baseballsavant.mlb.com/statcast_search/csv?all=true",
+ "&hfPT=&hfAB=&hfBBT=&hfPR=&hfZ=
+ &stadium=&hfBBL=&hfNewZones=&hfGT=R%7CPO%7CS%7C&hfC&hfSea=",
+ year,
+ "%7C&hfSit=&hfOuts=&opponent=&pitcher_throws=&batter_stands=&",
+ "hfSA=&player_type=pitcher&hfInfield=&team=&position=&",
+ "hfOutfield=&hfRO=&home_road=&game_date_gt=",
+ start_days[i],
+ "&game_date_lt=",
+ end_days[i],
+ "&hfFlag=&hfPull=&metric_1=&hfInn=&min_pitches=0&",
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+ "min_results=0&group_by=name&sort_col=pitches&",
+ "player_event_sort=h_launch_speed&sort_order=desc&min_abs=0",
+ "&type=details")
+ suppressMessages( suppressWarnings( readr::read_csv(url,na = "null") ) ) %>%
+ select( game_year, game_date, game_pk, pitcher_name=player_name, inning,
+ inning_topbot, strikes, balls, outs_when_up, p_throws,
+ pitch_number, pitch_type, pitch_name, release_speed,
+ release_pos_x, release_pos_y, release_pos_z, plate_x,
+ plate_z, vx0, vy0,vz0, ax, ay, az,
+ launch_speed, launch_angle, effective_speed,
+ release_spin_rate, release_extension,
+ launch_speed_angle, zone, type, at_bat_number, stand,
+ events, description, bb_type,
+ hit_location, hc_x, hc_y, hit_distance_sc
+ )
+ }
+ res_data <- do.call("rbind", res) %>%
+ arrange( game_year,game_date, game_pk, inning, desc(inning_topbot),
+ at_bat_number, pitch_number) %>%
+ as.data.frame()
+
+ return(res_data)
+ }

B.3 Parameter Specification for the Model Selection and
Parameter Recovery Simulation

In our parameter recovery simulation, we specify three simulation parameters which we
choose to vary the value of across different implementations. Every other model parameter
which is not mentioned here is fixed across these implementations. In this section we give
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a brief overview of how these parameters were generated. In particular, a clever specifica-
tion for these parameters eluded us, so we instead proceeded to generate the parameters
randomly. The generation process was the same for each group, and proceeded in the
following manner. The mean matrix M⋆

g was generated from a matrix normal distribution
specified as Np×dg(0, Ip, 4Idg). Next, we created a 2p×p matrix filled with iid samples from
a standard normal distribution. We then estimate the covariance matrix of these data and
set Λ1g to be the first qg eigenvectors found in the corresponding spectral decomposition.
Let U1 ∼ Unif(50, 100) and U2 ∼ Unif(0.5, 5) be two uniform random variables. Let Ωg be
a dg × dg diagonal matrix with diagonal elements comprised of iid draws from U1. Let ηg
be the result of a single draw from U2. We proceeded to construct a b-dimensional diagonal
matrix ∆g from these by specifying the diagonal to be Ωg followed by p− dg copies of ηg.
We then set,

Ω2g = |∆g|91/b Ωg, and,

η2g = |∆g|91/b ηg.

The associated matrix of eigenvalues, Γ2g, was generated randomly from a uniform dis-
tribution over the b × b orthogonal matrices. This completes the parameter generation
process.

B.4 Parameter Specification for Comparative Analysis
II

As mentioned in Chapter 5.4.4, MFSF and the funHDDC model overlap when we specify
our factor loadings and specific variances to have the form Λ1g = Γ1g(Ω1g − η1gIqg)

1
2 and

Ξ1g = η1gIp respectively, where Ω1g is a diagonal qg × qg matrix and η1g is a positive real
number which is less than any of the entries of Ω1g. Under such a scenario we will have
Σ1g = Λ1gΛ

T

1g + Ξ1g = Γ1g∆1gΓ
T

1g, where ∆1g has the subspace clustering form given in
Equation (5.28) with Ω1g in place of Ωg and η1g replacing ηg. Hence, Σ1g has both the
factor analyzer and subspace clustering form. The resulting group covariance matrix then
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has the subspace clustering form with Ωg given by Equation (5.31) and ηg given by η1gη2g.
Under such parameter specification, the MFSF and funHDDC overlap.

For our comparative analysis, this model specification serves as basis for M3, the sit-
uation in which parameter specification satisfies the requirements of both the funHDDC
algorithm as well as MFSF. With this starting point, we devise a way to deterministically
perturb these parameters so that they satisfy only one of the competing models, rather
than both. To do this, we need to identify a defining characteristic of each model that is
not important for the other. For the funHDDC model, that characteristic is the constant
value of the trailing eigenvalues, while for MFSF it is the presence of the kronecker product
form. We begin with the former. All subsequent discussion will pertain to a particular,
but arbitrary, group g of the model. We hence drop the subscript g in the remainder.

The overlap model is characterized by the dual specification of a latent factor model
and a latent subspace model through Σ1. However, as we noted previously in Chapter
5.4.4, when Σ1 does not exhibit the latent subspace form, then the funHDDC model no
longer holds. Hence, our goal is to find a transformation that can be applied to Σ1 which
will weaken or remove its latent subspace structure, but preserve its latent factor structure.
One obvious way to do this is to alter the specific variances Ξ1. In particular, the latent
subspace structure requires Ξ1 to be spherical, so altering its diagonal values so that they
differ from one another will subjugate Σ1 to deviance from this model. To this end, let
{δ1i} denote the trailing p− q eigenvalues of Σ1. Under the latent subspace model δ1i = η1

for each i. We let the following linear relationship define the δ1i,

δ1i = η1 + a

[
ω1q − η1
p− q − 1

]
(p− q − i), i = 1, 2, ..., p− q,

where ω1q is the smallest element of Ω1, and a is a value between 0 and 1. We see that when
a = 0, we recover the latent subspace structure, while a = 1 results in equally spacing the
δ1i along the line between the point ω1q and η1. A graphical example of how this changes
the eigenvalues of Σ1 for different values of a is provided in Figure B.1. In this figure,
q = 2, and hence the first two points plotted in the Figure correspond to Ω1. In the case
that a = 0, which corresponds to the black line, we get a constant line at η1, recovering the
latent subspace structure. As a increases the eigenvalues are lifted above η1 at different
rates, causing them to take different values and eliminating the latent subspace structure.
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Figure B.1: A depiction of the trailing eigenvalues for different values of the parameter a.
We see that as a increases, the eigenvalues move up like a drawbridge. This eliminates the
subspace structure from Σ1.

For our simulation, the value a = 0.5 corresponds to M4 and the value a = 1 corresponds
to M5.

A central component of MFSF is the assumption that the model covariance matrix is
formed as the kronecker product of two lower dimensional matrices. When we consider
parameter specifications that overlap with the funHDDC model, this causes the Ω matrix
to have the form given in Equation (5.28). From this structure, we see that Ω will always
have repeated eigenvalues, thanks to the terms involving η1Ω2 and η2Ω1. This property
is a direct result of the kronecker product assumption, hence, if we transform Ω so that
no repeated values appear, the resulting model will no longer satisfy the MFSF modelling
assumptions. Note that under the funHDDC assumptions, Ω is arbitrary (aside from being
diagonal with nonegative entries), so these assumptions will still be satisfied.

Let (ωij) be the sorted vector of the repeated eigenvalues of Ω under M3, where i

indexes the unique eigenvalues, and j indexes the repetitions of each, and let {ωi} be the
corresponding set of unique values. We specify the relationship between the eigenvalues
using a linear model. If ωi belongs to η1Ω2 then,

ωij = ωi−1 + a

[
ωi−1 − ωi

p− q

]
(p− q − j)
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where a is again some value between 0 and 1. If ωi belongs to η2Ω1, then,

ωij = ωi−1 + a

[
ωi−1 − ωi

b− d

]
(b− d− j).

This approach works in exactly the same manner as the previous. By increasing a, we
raise the set of repeated eigenvalues like a drawbridge to connect them with the preceding
eigenvalue. By doing this, we remove all repetitions in the eigenvalues, and hence remove
the kronecker structure. Setting the value of a to 0.5 corresponds to model M2 and setting
the value of a to be 1 corresponds to model M1.

In our study, for each of the 12 scenarios, we generated one parameter set according
to the specification M3 and then modified these according to the rules described above
to obtain the parameters for models M1 − M5. Lacking clever ideas for choosing the
particular values of these parameters ourselves, we resigned to generating them randomly.
Generation proceeded in the following manner. The mean matrix for the first group,
denoted by M1, was generated from Np×b(0, Ip, Ib), which is the standard matrix normal
distribution. The mean of the other parameter group, denoted by M2, was determined by
adding a random pb-dimensional vector of length ρ to M1, where ρ is the value such that
∥M1 −M2∥ = ρ, which is specified by each of the experimental conditions. Define the
random variables U1 ∼ Unif(5, 5.5) and U2 ∼ Unif(0.5, 5). Let Ω⋆

g be a qg × qg diagonal
matrix with elements composed of iid draws from U1. Define η⋆g as a single draw from U2.
Construct a p-dimensional diagonal matrix ∆⋆ from these by specifying the diagonal as
Ω⋆ followed by p− qg copies of η⋆. We then set,

Ω1g = |∆⋆|91/p ω⋆, and,

η1g = |∆⋆|91/p η⋆

from which we can then construct Γ1g and Ξ1g. The parameter ∆2g is generated similarly,
but with p replaced by b and qg replaced with dg. For simplicity, we specify that the
eigenvector matrix is equal to identity for each group. In each of the 12 experimental
conditions, the hyperparameters qg and dg are set to 2 and 3 respectively. This results in
a value of k for the funHDDC model of 34 for the low dimensional settings, and 114 for
the high dimensional settings.
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Appendix C

Proofs for Maximum Contribution to
the Likelihood

Proposition C.1 (Nielsen (2000)). Suppose the following properties hold regarding the
Markov chain θ̃n,k and stationary distribution θ̃n of the stochastic em algorithm.

(i) Suppose θ̃n,k = θ̂n+(n91/2)h+ o(n91/2) and Z̃i ∼ k(zi | xi, θ̃n,k). Then, for almost all
observed sample sequences, the transition probabilities of the stochastic em Markov chain
converge continously to those of a Gaussian autoregressive process of order 1,

n1/2(θ̃n,k+1 − θ̂n) →d N
(
F (θ0)

Th, Iy(θ0)
−1Iz(θ0)Iy(θ0)

−1) ,
where θ̃n,k+1 is the estimate generated by the algorithm based on the simulated z̃1:n, Iz =

E(Iz|x(θ0) | X = x), and F (θ0) = Iz(θ0)Iy(θ0)
−1 is the expected fraction of missing infor-

mation.

(ii) For almost all observed sample sequences, n1/2(θ̃n − θ̂n) is tight conditional on the
sample and,

n1/2(θ̃n − θ̂n) →d N
(
0, Ix(θ0)

−1{I − (I + F (θ0))
−1}) ,

so that the stationary distribution is asymptotically normal and root-n consistent for θ̂n.

(iii) For almost all samples,

n1/2(θ̃n − θ0) →d N
(
0, Ix(θ0)

−1{2I − (I + F (θ0))
−1}) .
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Proof. The proof of this proposition can be found in Nielsen (2000), as the proofs of Lemma
3 for part (i), and Theorem 2 for parts (ii) and (iii).

To prove the next proposition, we first introduce Condition D which can be found in
Chapter 3 of Leadbetter et al. (1983). To do that, we need some additional notation.
For a sequence of random variables {Xi} and the sets of indices I = {i1, . . . , im} and
J = {j1, . . . , jm′}, we define the joint distribution of the random variables with indices in I
as FI(xi1 , . . . , xim), and for indices in I and J as FI∪J(xi1 , . . . , xim). In addition, when for
the index I all the xi are equal to a common value u, we use FI(u) to denote FI(u, . . . , u).

Condition C.2 (D, Leadbetter et al. (1983)). The condition D will be said to hold if, for
sets of integers I = {i1, . . . , im} with i1 < · · · < ip and J = {j1, . . . , jm′} with j1 < · · · < jp′

such that j1 − im ≥ ℓ, and real u, we have

|FI∪J(u)− FI(u)FJ(u)| ≤ g(ℓ), (C.1)

where g(ℓ) → 0 as ℓ→ ∞.

Proposition C.3. The sequence of likelihood values, Rx(θ̃n,kn:t), satisfies condition D.

Proof. We prove in the general case of an ergodic Markov chain Yt taking values in Rp, and
the associated stochastic process Xt = R(Yt), where R is some deterministic, continuous,
many-to-one function taking values in R. We then link the result to the context of the
proposition.

Let µ be the stationary initial distribution of Yt. It follows that Xt is marginally
distributed according to µ ◦ R−1, where R−1 is the inverse image of R. That is, P{Xt ∈
A} = P{Yt ∈ R−1(A)} for any A in the σ-algebra associated with Xt. We then also have
that P (Xt+k ∈ A | Yt) = P{Yt+k ∈ R−1(A) | Yt} and hence by the ergodicity of Yt and the
continuity of R, P (Xt+k ∈ A | Yt) → P (Xt ∈ A) as k → ∞.

To prove condition D, we must first obtain the joint cdf of Xi1 , . . . , Xim for arbitrary,
finite index set I = {i1, . . . , im}. We start by finding the distribution of Xt+1 | Xt, the
conditional distribution given the previous observation.
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Since R(Yt) is many-to-one, knowing the value of Xt provides less information than
knowing Yt. Let xt = R(yt) be the observed value. We define C0 as the preimage of xt,
C0 = {y | R(y) = xt}. The distribution of Xt+1 | Xt is then,

P (Xt+1 ∈ A | Xt) =

∫
C0

P (Xt+1 ∈ A | yt)P (Yt ∈ C0)
−1dP (yt)

=

∫
P (Xt+1 ∈ A | Yt = yt)dP0(yt)

where P0 is the distribution of Yt restricted to C0. Extending to arbitary k, we then have,

P (Xt+k ∈ A | Xt) =

∫
P (Xt+k ∈ A | Yt = yt)dP0(yt).

By the dominated convergence theorem, we also get that P (Xt+k ∈ A | Xt) → P (Xt ∈ A)

as k → ∞.

Since Xt is not a Markov chain, the distribution of Xt+k | Xt is not sufficient for
specifying the joint distribution of the arbitrary chain Xi1 , . . . , Xim . To that end, we
continue to derive the distribution of Xt+2 | Xt+1, Xt which we then extend to Xt+k2 |
Xt+k1 , Xt, and finally to a finite, arbitrary number of conditioning terms.

For the random variable Xt+2 | Xt+1, Xt we must consider all paths (yt+1, yt) that
can produce the observed values (xt+1, xt). That is, Xt+1 = xt+1 implies we must have
yt+1 ∈ C1 = {y | R(y) = xt+1} and simultaneously Xt = xt means we must have yt ∈ C0.
The distribution of Xt+2 given the previous two iterates, Xt+1 and Xt is characterized by,

P (Xt+2 ∈ A | Xt+1, Xt) =

∫
C1

∫
C0

P (Xt+2 ∈ A | yt+1)P (Yt+1 ∈ C1 | yt)−1P (Yt ∈ C0)
−1dP (yt+1, yt)

=

∫
C1

P (Xt+2 ∈ A | yt+1)dP10(yt+1),

where P10(yt+1) represents the distribution of Yt+1 on C1, given that Yt was observed to be
in C0.

For the more general case Xt+k2 | Xt+k1 , Xt with k1 < k2 we have,

P (Xt+k2 ∈ A | Xt+k1 , Xt) =

∫
C1

P (Xt+k2 ∈ A | yt+k1)dPk10(yt+k1),
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where we have defined Ck1 and Pk10 as previously, replacing 1 with k1 everywhere appro-
priate.

LetK = {k1, . . . , km} be an index set with k1 < · · · < km and suppose we observe values
of the random variables Xt+km−1 , . . . , Xt. We know that the observed path (yt+km−1 , . . . , yt)

must lie in Cxt+km−1
× · · · × Cxt . Hence, in order to find the distribution of Xt+km |

Xt+km−1 , . . . , Xt we need to integrate Xt+km | (yt+km−1 , . . . , yt) with respect to all possible
paths (yt+km−1 , . . . , yt) ∈ Cxt+km−1

× · · · × Cxt . The distribution can be characterized by,

P (Xt+km ∈ A | xt+km−1 , . . . , xt) =∫
Ckm−1

· · ·
∫
C0

P (Xt+km ∈ A | yt+km−1)
m−2∏
i=0

P (yt+ki+1
∈ Cki+1

| yt+ki)
−1P (Yt ∈ C0) dP (yt+km−1 , . . . , yt)

=

∫
Ckm−1

P (Xt+km ∈ A | yt+km−1)dPkm−1···0(yt+km−1),

where we have defined Pkm−1···0(yt+km−1) as the distribution of Yt+km−1 on Ckm−1 given that
the chain of previous values were observed to have been in Cxt+km−2

× · · · ×Cxt , which can
be obtained by evaluating all of the integrals that do not depend on Xt+km .

Now consider two sets of indices, I = {i1, . . . , im} and J = {j1, . . . , jm′} with i1 < . . . <

im < j1 < . . . < jm′ , and j1− im ≥ ℓ. For brevity, we write Xt+ik as Xik , where observation
order is implied by the ordering on the elements of the index set. We also use XI to denote
the collection of random variables corresponding to the index I, and xI the collection of
their observed values. We do likewise for the index set J with XJ and xJ respectively.

Then, for any u ∈ R we have,

FI(u) = P (XI ≤ u)

= P (Xim ≤ u, . . . , Xi1 ≤ u)

=

∫ u

−∞
· · ·
∫ u

−∞
dP (xI)

=

∫ u

−∞
· · ·
∫ u

−∞
dP (xim , . . . , xi1)

=

∫ u

−∞
· · ·
∫ u

−∞
dP (xim | xim−1 , . . . , xi1) . . . dP (xi1),
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where dP (xim | xim−1 , . . . , xi1) . . . dP (xi1) represents the disintegration of the joint distribu-
tion of XI , which we know exists due to the implicit disintegrability of the joint distribution
of the associated elements of the Markov chain Yt and the continuity of R.

Likewise, for XJ we have,

FJ(u) = P (XJ ≤ u)

= P (Xj′m ≤ u, . . . , Xj1 ≤ u)

=

∫ u

−∞
· · ·
∫ u

−∞
dP (xJ)

=

∫ u

−∞
· · ·
∫ u

−∞
dP (xj′m , . . . , xj1)

=

∫ u

−∞
· · ·
∫ u

−∞
dP (xj′m | xjm′−1

, . . . , xj1) . . . dP (xj1).

However,

FI∪J(u) = P (XJ ≤ u ∧XI ≤ u)

=

∫ u

−∞
· · ·
∫ u

−∞
dP (xJ | xI)dP (xI)

=

∫ u

−∞
· · ·
∫ u

−∞
dP (xj′m | xjm′−1

, . . . , xj1 , xI) . . . dP (xj1 | xI)dP (xI).

We see that the difference between FI∪J and FIFJ is that, for each j ∈ J , the conditional
distribution of Xj contained in expression for FI∪J depends on XI . We therefore need to
show that P (xJ | xI) → P (xJ) as ℓ→ ∞.

To this end, let j⋆ be an arbitrary element of J , and consider the conditional distribution
P (xj⋆ | xj⋆−1 , . . . , xj1 , xI). Since dP (xj⋆ | xj⋆−1 , . . . , xj1 , xI) is uniquely determined by the
values of P{Xj⋆ ∈ (−∞, u) | xj⋆−1 , . . . , xj1 , xI} for u ∈ R, it is sufficient to consider the
behaviour of these probabilities as ℓ increases.
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Recall that we express the probability of interest as,

P{Xj⋆ ∈ (−∞, u) | xj⋆−1 , . . . , xj1 , xI}

=

∫
Cj⋆−1

P{Xj⋆ ∈ (−∞, u) | yj⋆−1}dPj⋆−1···i1(yj⋆−1)

=

∫
Cj⋆−1

P{Xj⋆ ∈ (−∞, u) | yj⋆−1}
∫
Cj⋆−2

· · ·
∫
Ci1

dPj⋆−1(yj⋆−1 | yj⋆−2) · · · dPi2(yi2 | yi1)dPi1(yi1),

where Pk(yk | yk−1) denotes the conditional distribution of yk given yk−1 on the set Ck. By
the ergodicity of the Markov chain Yt we have limℓ→∞ P (Yj1 | yim) → P (Yj1), and hence
we have,

lim
ℓ→∞

dPj⋆−1···i1(yj⋆−1)

= lim
ℓ→∞

∫
Cj⋆−2

· · ·
∫
Ci1

dPj⋆−1(yj⋆−1 | yj⋆−2) · · · dPj1(yj1 | yim) · · · dPi2(yi2 | yi1)dPi1(yi1)

=

∫
Cj⋆−2

· · ·
∫
Ci1

lim
ℓ→∞

dPj⋆−1(yj⋆−1 | yj⋆−2) · · · dPj1(yj1 | yim) · · · dPi2(yi2 | yi1)dPi1(yi1)

=

∫
Cj⋆−2

· · ·
∫
Cj1

dPj⋆−1(yj⋆−1 | yj⋆−2) · · · dPj1(yj1)

∫
Cim

· · ·
∫
Ci1

dPim(yim | yim−1) · · · dPi1(yi1)

=

∫
Cj⋆−2

· · ·
∫
Cj1

dPj⋆−1(yj⋆−1 | yj⋆−2) · · · dPj1(yj1)

= dPj⋆−1···j1(yj⋆−1),

where the limit and integration can be exchanged because Ck is compact for each k =

j⋆ − 1, . . . , i1, and integration is with respect to probability measures on these compact
spaces. Hence, we have that,

P{Xj⋆ ∈ (−∞, u) | xj⋆−1 , . . . , xj1 , xI} → P{Xj⋆ ∈ (−∞, u) | xj⋆−1 , . . . , xj1} as ℓ→ ∞.
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Since j⋆ was arbitary, this holds for all j ∈ J . We then have that,

lim
ℓ→∞

FI∪J(u)

=

∫ u

−∞
· · ·
∫ u

−∞
lim
ℓ→∞

dP (xj′m | xjm′−1
, . . . , xj1 , xI) . . . dP (xj1 | xI)dP (xI)

=

∫ u

−∞
· · ·
∫ u

−∞
dP (xj′m | xjm′−1

, . . . , xj1) . . . dP (xj1 |)
∫ u

−∞
· · ·
∫ u

−∞
dP (xI)

= FJ(u)FI(u),

where we may take the limit inside integration using Scheffé (1947). Since u is arbitrary,
condition D is satisfied. In particular, since g(ℓ) does not depend on u we can define
g(ℓ) = supu|FI∪J(u)− FI(u)FJ(u)|.

The proposition is now proved by working under a model for which ergodicity of the
chain θ̃n,kn:t is satisfied, as laid out in Nielsen (2000), which we assumed to get Proposition
C.1, and by defining Xt = Rx(θ̃n,t).

Lemma C.4. Let X =
∑p

i=1Wi be a linear combination of p independent random variables
with distribution Wi ∼ Gamma(αi, βi) where β1 ≤ . . . ≤ βp. Define mt = minj=1,..,t{Xj}
as the minimum of t independent draws from X. Then, as t→ ∞ we have,

c−1t mt →d Weibull

(
p∏

i=1

(β1/βi)
αi/α

⋆

, α⋆

)
,

where α⋆ =
∑

i αi, and ct are the normalizing constants such that −c−1t max{−Y1, . . . ,−Yt}
converges in distribution as t→ ∞ with Yj ∼ Gamma(α⋆, β1) independently.

Proof. Our goal will be to prove the result for p = 1, and then use tail equivalence (see
Embrechts et al., 1997) to extend the result to p ≥ 2.

To begin we define the random variable Y ∼ Gamma(α⋆, β1), where α⋆ =
∑p

i=1 αi and
β1 = mini=1,...,p{βi}. Our interest is then in the asymptotic distribution of min{Y1, ..., Yt}.
Since min{Y1, ..., Yt} = −max{−Y1, ...,−Yt} it is sufficient to work with the maximum.
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The random variable −Y has finite right end point 0, so it is natural to check that the
corresponding distribution function is in the maximum domain of attraction of the Type
III extreme value distribution, i.e. the reversed Weibull. A sufficient condition is that
the survival function satisfies S−Y (y−1) = y−α

⋆
L(y), where L is a slowly varying function

and α ∈ R (Leadbetter et al., 1983). This is equivalent to the statement that the survival
function is regulary varying with index −α. If a function g(y) is a regularly varying function
with index α then it satisfies,

lim
y↑∞

g(λy)

g(y)
= λα,

for all λ > 0. Set g(y) = S−Y (y
−1), with y ∈ R−. Then,

lim
y→∞

g(λy)

g(y)
= lim

y→∞

S−Y ({λy}−1)
S−Y (y−1)

= lim
y→∞

FY (−λ−1y−1)
FY (−y−1)

,

where FY is the cdf of Y . Substitution gives,

lim
y→∞

Γ(α⋆)−1βα⋆

1

∫ −λ−1y−1

0
uα

⋆−1e−β1u du

Γ(α⋆)−1βα⋆

1

∫ −y−1

0
uα⋆−1e−β1u du

= lim
y→∞

γ(α⋆,−β1λ−1y−1)
γ(α⋆,−β1y−1)

,

where γ(a, x) is the lower incomplete gamma function. Using the property that for any
a > 0,

γ(a, x)

xa
x↓0−−→ a−1,

we reexpress the limit as,

lim
y→∞

γ(α⋆,−β1λ−1y−1)
(−β1λ−1y−1)α⋆ · (−β1y−1)α

⋆

γ(α⋆,−β1y−1)
· λ−α⋆

=
1

α⋆

(
1

α⋆

)−1
λ−α

⋆

= λ−α
⋆

.

Therefore max{−Y1, ...,−Yt} is in the maximum domain of attraction of the reversed
Weibull distribution, which has cdf G(y;α) = e−(−y)

α⋆

. We therefore have that, P (c−1t (Mt−
dt) < y) → G(y;α⋆) with normalizing sequences ct > 0 and dt, which can be chosen as
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ct = −F←−Y (1 − t−1) and dt = 0 (These are, however, not unique. See: Leadbetter et al.,
1983). We may then write,

P (c−1t Mt < y) = 1− P (c−1t Mt ≥ y)

= 1− P (c−1t mt ≤ −y),

so that P (c−1t mt ≤ −y) → 1−G(−y;α⋆). We see that 1−G(−y;α⋆) = 1− e−y
α⋆

is the cdf
of the Weibull distribution with shape parameter α⋆ and scale parameter 1. This proves
the statement for p = 1.

To extend to the proof to p ≥ 2 we need both S9X(x) = FX(−x) and f9X(x) = fX(−x),
for x ∈ R−. These can be obtained from Moschopoulos (1985) as,

fX(x) = c
∞∑
k=0

δkx
α⋆+k−1e−x/β1/

(
Γ(α⋆ + k)βα⋆+k

1

)
1{x ∈ R+},

FX(x) = c
∞∑
k=0

δk
γ(α⋆ + k, xβ−11 )

Γ(α⋆ + k)
,

where β1 = mini{βi}, c =
∏p

i=1(β1/βi)
αi , α⋆ =

∑p
i=1 αi, and the coefficients are described

recursively as,

δk+1 = (k + 1)−1
k+1∑
j=1

j

(
p∑

i=1

αi[1− β1/βi]
k/k

)
δk+1−j, k = 0, 1, . . . (C.2)

with δ0 = 1.

Now, consider the gamma random variable Y with shape parameter α⋆ and scale pa-
rameter β1 as in the proof of the p = 1 case. Our goal is to show that −Y and −X are
tail-equivalent, from which it will follow that they belong to their distributions belong to
the same maximum domain of attraction. Recall −Y is in the maximum domain of attrac-
tion of the reversed Weibull distribution with parameter α⋆, and additionally notice that
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the distributions of −X and −Y both have right endpoint equal to 0. Now,

lim
x→0

S9X(x)

S9Y (x)
= lim

x→0

c
∑∞

k=0 δkγ(α
⋆ + k,−xβ−11 )/Γ(α⋆ + k)

γ(α⋆,−xβ−11 )/Γ(α⋆)

= c+ lim
x→0

c
∑∞

k=1 δk(−x)α
⋆+k/ [α⋆ + k)Γ(α⋆ + k)]

(−x)α⋆/ [α⋆Γ(α⋆)]

≤ c+ lim
x→0

c
∞∑
k=1

|δk|
α⋆Γ(α⋆)

(α⋆ + k)Γ(α⋆ + k)
(−x)k. (C.3)

To determine the limit on the right-hand side, we find an upper bound for |δk|. For any k
we have that, ∣∣∣∣∣

p∑
i=1

αi[1− β1/βi]
k/k

∣∣∣∣∣ ≤ α⋆bk/k,

where b = maxi ̸=1(1− β1/βi). Using Equation C.2 we may then write,

|δk+1| ≤
α⋆

(k + 1)

k+1∑
j=1

bj|δk+1−i|,

and by induction we have,

|δk+1| ≤
Γ(α⋆ + k + 1)bk+1

Γ(α⋆)(k + 1)!
.

Plugging this into the second term of Equation C.3 we find,

lim
x→0

∞∑
k=1

|δk|
α⋆Γ(α⋆)

(α⋆ + k)Γ(α⋆ + k)
(−x)k ≤ lim

x→0

∞∑
k=1

Γ(α⋆ + k)bk

Γ(α⋆)k!

α⋆Γ(α⋆)

(α⋆ + k)Γ(α⋆ + k)
(−x)k

= lim
x→0

α⋆

∞∑
k=1

(−bx)k

k!(α⋆ + k)

≤
∞∑
k=1

lim
x→0

(−bx)k

k!

= 0.
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However, the sum is nonnegative, so we have

lim
x→0

S9X(x)

S9Y (x)
= c,

and therefore the dfs of −X and −Y are tail equivalent. By the first part of the proof we
may write,

F t
9Y (ctx) → e−x

α⋆

.

Taking the logarithm of this expression and using the fact that S−Y (ctx) → 0 we can write,

tS9Y (ctx) → xα
⋆

.

Then, from tail equivalence we have

tS9X(ctx) → (c1/α
⋆

x)α
⋆

,

which then gives the result.

Theorem C.5. Conditional on the observed data sample and for almost all samples,

t2/pmnt →d Weibull

(
2
{p
2
Γ
(p
2

)}2/p
p∏

i=1

λ
1/p
i ,

p

2

)
,

where λ1, . . . , λp are the eigenvalues of Ix(θ0)91/2(I − [I + F (θ0)]
−1)Ix(θ0)

1/2.

Proof. Let {Fn} be the sequence of cdfs associated with the sequence of random variables
θ̃n,kn and {Hn} the sequence of cdfs associated with the sequence of random variables
Rx(θ̃n,kn). Since Fn → F with F continuous, Fn → F uniformly. By the continuity of Rx

it follows that Hn → H uniformly, where H is a linear combination of independent Gamma
distributions.

Let {ct} be the sequence of constants such that 1 − (1 − H(ctx))
t → G(x), chosen

according to e.g. Embrechts et al. (1997), where G is the cdf of the associated extreme
value distribution, and x is a continuity point of G. To prove the assertion it is sufficient
to show that,

lim
(n,t)→(∞,∞)

pr(c−1t mnt ≤ x) = 1− e−x
p/2

, (C.4)
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for all x ∈ R+. The limit in Equation C.4 must be shown to hold for all possible paths
of n and t to their respective limit point. To do this, we first consider properties of the
individual limits with respect to each argument. With respect to t we have that,

lim
t→∞

pr(c−1t mnt ≤ x) = lim
t→∞

1− (1−Hn(ctx))
t, (C.5)

exists for all t trivially since Hn(ctx) is bounded and ct is nonincreasing in t (hence, Hn(ctx)

is nonincreasing). The three possible limits are 0, 1, and G(x), where G is some extreme
value distribution. Hence, the limit exists for all n. Now consider,

lim
n→∞

1− (1−Hn(ctx))
t. (C.6)

By the uniform convergence of {Hn}, the limit in Equation (C.6) converges uniformly with
limit point 1−(1−H(ctx))

t. It follows by the Moore-Osgood theorem, that the multivariate
limit exists and the limit is equal to the limit of the iterated limit,

lim
t→∞

lim
n→∞

pr(c−1t mnt ≤ x).

We have already shown that this limit evaluates to,

lim
t→∞

lim
n→∞

pr(c−1nt mnt ≤ x) = lim
t→∞

pr(c−1t mt ≤ x) = 1− e−x
p/2

,

using Lemma C.4. To get the final result, we use Embrechts et al. (1997) to specify the nor-
malizing constants as ct = {Γ(p/2)p/2(2λp)p/2}2/pt−2/p and then rearrange the components
of ct which are not a function of t into the distribution.

Corollary C.6. When the model parameter θ is a scalar, we have

t2mnt →d Weibull
(
π

2

{
1− 1

1 + F (θ0)

}
,
1

2

)
,

as n, t→ ∞ for almost all observed data samples and conditional on the sample.

Proof. This follows directly from Theorem C.5 by setting p = 1.

To aid the proof of Theorem 2, we provide a helpful definition and lemma.
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Definition C.1 (Symmetric Random Variable). We say that a random variable X is
symmetric, has a symmetric distribution, or is symmetric about x, if there exists x such
that pr(X > x+ y) = pr(X < x− y) for all y such that the probabilities are well-defined.

Lemma C.7. Let X be a random variable symmetric about the value µ. Then, the random
variable sgn

{
argminj=1,..,t(Xi − µ)2

}
is independent of minj=1,..,t(Xi − µ)2, where sgn {·}

the function defined on R such that sgn {x} = −1 for −∞ < x < 0, sgn {x} = 1 for
0 < x <∞, and sgn {0} = 0.

Proof. Without loss of generality, assume µ = 0. By the construction provided in the proof
of Lemma 5 in Egorov and Nevzorov (1975), if X is symmetric, there exists a random
variable G such that G is independent of |X| and,

X
d
= G|X|,

where pr(G = 1) = pr(G = −1) = 1/2. In particular, for an i.i.d. sample X1:t drawn from
X and an i.i.d. sample G1:t drawn from G we have,

argmin
j=1,...,t

X2
i

d
= argmin

j=1,...,t
(Gi|Xi|)2

and the result follows since the sign associated with the right-hand side is drawn from
G independently. That is, sgn

{
argminj=1,..,tX

2
i

}
is independent of |argminj=1,..,tX

2
i | =

(minj=1,..,tX
2
i )

1/2.

Theorem C.8. Suppose the parameter dimension p is 1, so that Corollary C.6 holds.
Then, as both n, t→ ∞ the normalized random variable tn1/2(θ̃n,min t − θ̂n) satifies,

tn1/2(θ̃n,min t − θ̂n) →d Laplace

(
0, Ix(θ0)

91/2 {2πF (θ0)}1/2

2{1 + F (θ0)}1/2

)
,

so that it is asymptotically Laplace distributed with location parameter 0 and scale parameter
(π/2)1/2[F (θ0)/{1 + F (θ0)}]1/2Ix(θ0)91/2.

Proof. Starting from the definition of mnt, a bit of algebra allows us to write,

(t2mnt)
1/2 = {t2nIx(θ0)(θ̃n,min t − θ̂n)

2 + op(1)}1/2

= tn1/2|θ̃n,min t − θ̂n|+ op(1),
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where we get the second line using the knowledge that t2mnt = Op(1) and the series
expansion (x/y + 1)1/2 = (1 + 1/2(x/y) + · · · ). We therefore have,

tn1/2Ix(θ0)
1/2(θ̃n,min t − θ̂n) = snt(t

2mnt)
1/2 + op(1),

where snt = sgn
{
n1/2(θ̃n,min t − θ̂n)

}
. Applying the continuous mapping theorem to Corol-

lary C.6 we have,

(t2mnt)
1/2 →d Weibull (σ, 1) , σ =

{2πF (θ0)}1/2

2{1 + F (θ0)}1/2
.

By similar arguments to the proof of Lemma C.7, we also have that,

snt →d Bernoulli(1/2).

Additionally, Lemma C.7 also gives us that snt and mnt are asymptotically independent,
hence,

snt(t
2mnt)

1/2 →d ZX,

where Z ∼ Bernoulli(1/2), X ∼ Weibull(σ, 1), and Z ⊥⊥ X. The characteristic function of
this random variable is,

E(eitZX) =

∫
R+

∑
z∈{91,1}

eitzx
1

2σ
e−x/σ dx

=
1

2σ

∫
R+

e−(σ
−1+it)x dx+

1

2σ

∫
R+

e(it−σ
−1)x dx

=
1

2(1 + itσ)
+

1

2(1− itσ)

= (1 + σ2t2)−1

which is the characteristic function of a Laplace(0, σ) distribution.

Proposition C.9. Let θ̃ni,kn be the ith component of θ̃n,kn, i = 1, . . . , p. Then, the marginal
chain

√
n(θ̃ni,kn:t − θ̂ni) converges in distribution to a sample of the same length from the

stationary marginal vector autoregressive process with autoregressive parameter F (θ0)Ti and
innovation variance {Iy(θ0)−1Iz(θ0)Iy(θ0)−1}ii. It follows that,
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(i) For all observed sample sequences and conditional on the sample,

√
n(θ̃ni,kn − θ̂ni) →d N(0, I−1x (θ0)ii − I−1x (θ0)

T

i·(I + F (θ0))
−1
·i ).

(ii) Unconditionally,

√
n(θ̃ni,kn − θ0i) →d N(0, 2I−1x (θ0)ii − I−1x (θ0)

T

i·(I + F (θ0))
−1
·i ).

Proof. This follows immediately from Proposition C.1.

Proposition C.10. Under the assumed regularity conditions on the observed data model,
for a parameter component value of the form θni = θ̂ni + n91/2h the profile log-likelihood
ratio exhibits the approximation,

Rp(θni) = nI−1x (θ0)ii(θni − θ̂ni)
2 + op(1),

for almost all observed data samples, and conditional on the sample.

Proof. Let θ = θ̂n + n91/2h with h ∈ Rp. Recall that regularity of the observed data model
gives us that,

Rx(θn) = hTIx(θ0)h+ rn(h), (C.7)

where, for any M > 0 and θ0 in the interior of Θ, we have that sup|h|≤M |rn(h)| converges to
0 as n→ ∞. The profile loglikelihood ratio follows by fixing the value θni = θ̂ni+n

91/2h and
maxmizing Equation C.7 with respect to the remaining parameters over their parameter
space, which we define as Θ−i.

Define cn = sup|h⋆|≤|h||rn(h⋆)|. Then,

min
θ∈Θ−i

hTIx(θ0)h− cn ≤ min
θ∈Θ−i

hTIx(θ0)h ≤ min
θ∈Θ−i

hTIx(θ0)h+ cn,

and since cn → 0 as n→ ∞ it follows that the contribution of rn(h) to the minimization is
asymptotically negigible, is the sense that minθ∈Θ−i

hTIx(θ0)h+rn(h) → minθ∈Θ−i
hTIx(θ0)h

as n→ ∞, so it can be ignored.
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Computation of the profile likelihood at θni = θ̂ni + n91/2h can therefore be written
asymptotically as the following quadratic programming problem,

minimize hTIx(θ0)h

subject to Ah = d,

where,

A = (0, . . . , 0, 1, 0, . . . , 0)T

d = n1/2(θi − θ̂ni).

Using Lagrange’s method, the solution is given by the system of equations,[
Ix(θ0) A

AT 0

][
h

λ

]
=

[
0

d

]
,

where λ is the Lagrange multipler. The solution for h is given by,

ĥ = I−1x (θ0)A
(
ATI−1x (θ0)A

)−1
d

=
d

I−1x (θ0)ii
I−1x (θ0)·i,

where I−1x (θ0)cdoti is the ith column of I−1x (θ0) and I−1x (θ0)ii is the ith diagonal element.
The value of the profile likelihood ratio is then,

Rp

(
ĥ
)
= ĥTIx(θ0)ĥ

=
d2

(I−1x (θ0)ii)
2 I
−1
x (θ0)

T

·iIx(θ0)I
−1
x (θ0)·i

=
I−1x (θ0)ii

(I−1x (θ0)ii)
2d

2

= nI−1x (θ0)ii(θi − θ̂ni)
2,

which gives the result.

Corollary C.11. Assume Proposition C.9 and Proposition C.10 hold. Then, for all i =
1, . . . , p,
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(i) The profile likelihood value associated with the randon variable θ̃ni,kn converges in
distribution,

Rp(θ̃ni,kn) →d Gamma
(
1

2
, 2[1− {I−1x (θ0)ii}−1I−1x (θ0)

T

i·{I + F (θ0)}−1·i ]

)
,

as n→ ∞;

(ii) the minimum profile loglikelihood associated with the chain θ̃ni,kn:t converges in
distribution,

t2mnit →d Weibull
(
π

2
[1− {I−1x (θ0)ii}−1I−1x (θ0)

T

i·{I + F (θ0)}−1·i ],
1

2

)
,

as n, t→ ∞.

Proof. For, (i), we use Proposition C.10 to write,

Rp(θ̃ni,kn) = nI−1x (θ0)ii(θ̃ni,kn − θ̂ni)
2 + op(1).

By Proposition C.9, we have,
√
n(I−1x (θ0)ii)

91/2(θ̃ni,kn − θ̂ni) →d N(0, (I−1x (θ0)ii)
−1(I−1x (θ0)ii − I−1x (θ0)

T

i·(I + F (θ0))
−1
·i )).

(C.8)

the result follows by squaring the sequence of random variables in Equation C.8 and ap-
plying the continuous mapping theorem.

The proof for (ii) then follows by applying the proof of Theorem C.5 to the random
variable mnit = mink=kn,...,kn+t−1Rp(θ̃ni,k).

Theorem C.12. For the estimator θ̃ni,p t, we have,

tn1/2(I−1x (θ0)ii)
91/2(θ̃ni,p t − θ̂n) →d Laplace

(
0,

(2π)1/2

2
[1− {I−1x (θ0)ii}−1I−1x (θ0)

T

i·{I + F (θ0)}−1·i ]1/2
)
,

as n, t→ ∞.

Proof. Starting with the identity minRp(θ̃ni,kn) = n(I−1x (θ0)ii)
−1(θ̃ni,p t − θ̂n)

2 + op(1), we
find after a few algebraic manipulations that,

tn1/2(I−1x (θ0)ii)
91/2(θ̃ni,p t − θ̂n)

d
= snt(t

2mnit)
1/2 + op(1). (C.9)

Now apply the proof of Theorem C.8 to the right-hand side of Equation C.9 to get the
result.
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