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Abstract

Autonomous driving vehicles are classified by researchers into six levels, ranging from

0 to 5. The level of autonomy increases with the level number, with vehicles at levels 4 or

5 possessing the capability for full self-driving without human intervention. In high-level

autonomous driving, user control model can be adapted to meet user demands since drivers

are not required to focus on the road. Thus, measuring the metrics and trade-offs of control

modalities under this new driving paradigm is crucial. This study proposes an evaluation

framework for control modalities in level 4 and 5 autonomous vehicles, particularly in

distraction scenarios.

The research comprises two parts. The first part is a user requirement study. A

questionnaire, which surveyed 150 participants, investigated potential control modali-

ties and features in self-driving vehicles. Following this, a user study that incorporated

both between-participant and within-participant designs was conducted. The between-

participant design aimed to compare three control modalities: physical buttons, voice, and

hand gesture. Additionally, a within-participant design tested each participant’s perfor-

mance while being distracted. The study collected both objective and subjective data,

including user error rates, physiological data, the NASA TLX rating scale, and interview

feedback.

The evaluation revealed that the hand gesture control modality yielded the lowest user

performance without distractions and was least affected by distractions compared to the

other models. Users who engaged with the voice control modality experienced a lower error

rate and workload but were also more susceptible to distractions.
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Chapter 1

Introduction

1.1 Motivation

The vehicle industry is growing rapidly. More and more advanced features such as Lane

Keeping Assist Systems (LKAS), Head-up display (HUD) are added into people’s daily

driving vehicles [1]. With these features as early prototype of self-driving features, self-

driving started to be a popular topic in both industry and academia. The new capacities of

self-driving cars lead to profound impacts of society. It is important to address autonomous

driving technology related concerns with more research.

The classification and categorization of different autonomous driving styles is crucial for

a better understanding of autonomous vehicles. In 2016, the SAE International committee

(SAE J2016) published a new taxonomy and definitions for Driving Automation Systems,

which established six levels of vehicle driving systems [2]. These levels range from 0 to

5, with Level 0 indicating the absence of driving automation and Level 5 representing

full automation. The automation in the driving systems between levels 1 to 3 is defined
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as requiring varying degrees of human involvement for self-driving. Conversely, driving

automation systems with levels greater than 3 (levels 4 and 5) are deemed autonomous

systems that do not necessitate human involvement. In the instance of full autonomy,

drivers are not required to participate in any driving functions, although they can still

communicate with other features of the vehicle [2].

With driving, the methods of interaction are traditionally limited due to the need for

drivers to concentrate on the road and avoid distractions. However, in the context of

fully autonomous driving, drivers are relieved of this burden and can interact with the

self-driving vehicle in a different manner than in conditional autonomous driving vehicles.

Currently, the predominant forms of interaction in vehicles on the market are physical

buttons and touch screen controls [3]. Despite some companies exploring alternative control

modalities such as mid-air hand gesture control and voice control, these are still restricted

to a limited number of features [3]. Despite the current standard of vehicle automation

being at autonomy level 2, the advancement towards levels 3, 4, and eventually level 5

continues to progress steadily. Hence, the examination of potential control modalities in

fully autonomous driving vehicles is both important and necessary.

In the field of driving research, two commonly utilized research methods include real-

road experiment, and Simulation [4]. Due to the limitations of real-world testing, such as

safety and cost, simulation has become a preferred choice for researchers to test their work

[4]. There are various types of driving research simulation methods, including Hardware-

in-the-loop, Software-in-the-loop, and Human-in-the-Loop [5]. Hardware-in-the-Loop sim-

ulation involves the use of real-world hardware components, such as sensors and actuators,

connected to a computer simulation of the vehicle and environment. This type of simulation

is useful for evaluating the real-world performance of control algorithms and sensor systems

[5]. Software-in-the-Loop simulation, on the other hand, employs a computer simulation
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of the vehicle and environment, with both the control algorithms and sensor systems being

simulated. It is useful for testing the software components of a driving system without

the need for real-world hardware [6]. Human-in-the-Loop simulation, on the other hand,

is focusing on Human’s performance in the simulation task. Human-in-the-loop simulation

represents an integral part of developing and testing driving automation systems, providing

a controlled environment in which various driving scenarios can be systematically studied

and evaluated. In the realm of driving simulations, the human (typically a driver) interacts

with the simulation environment, providing crucial inputs to the system and responding

to the system outputs as they would in a real-world driving scenario.

This study conducted an user study for researching fully self-driving control modalities

with Virtual Reality simulation. As a method of Human-in-the-Loop design, it utilizes

virtual reality technology to create a realistic simulation of the vehicle and environment,

and is useful for examining human factors, such as driver behavior and perception, in a

simulated driving scenario [7].

In the field of driving research simulation, the scenario customization and data collection

capabilities provided by driving simulators could offer researchers significant flexibility for

conducting research. Over the past decade, there has been a rapid progression in the field of

Virtual Reality, which has proven to be a valuable tool for various academic research fields.

The utility of a Virtual Reality driving simulator has been demonstrated in the literature

[8]. The immersive experience and multiple interaction methods offered by Virtual Reality

provide great advantages for driving research. In this study, the researcher is using Virtual

Reality driving simulator to provider better simulation environment. It is further discussed

in other sections.
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1.2 Research Questions

In this study, the main research questions are:

1. What are the features that users want in a fully self-driving vehicle?

2. Which control modalities are possible to appear in fully autonomous driving vehicles?

3. How is users’ performance and preference of each tasks with different interaction

methods and why they perform well or bad with certain tasks?

1.3 Contributions

The findings in this paper are applicable to future research in autonomous driving, input

control modalities, Virtual Reality driving simulators. This paper could provide an insight

of a general understanding of combination of these fields to future researcher. And also,

data collected and analyzed could help future application development in industry. The

more specified contributions are listed below.

1. This study built a evaluation system of input control modalities in self-driving

vehicle.

2. This study have built a Virtual Reality self-driving interaction simulator

3. This study found control models are easily affected by distraction, especially with

the same modality.
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1.4 Thesis Organization

In this thesis, the content is organized into five chapters in accordance with the following

structure.

Chapter 2 presents a comprehensive literature review that encompasses relevant liter-

ature in the fields of autonomous driving, control modalities, and driving simulators. The

first four sections of this chapter provide an elaboration of terms that were introduced in

the introduction, including Driving Automation Systems Levels, categorization of control

modalities, driving research simulators, driving tasks, and distractions. The fifth section

of the chapter conducts a general review of the literature based on the conjunction of these

topics, examining the relationship between them and presenting the research questions

posed by previous authors. A detailed discussion of the literature review is provided in

both this chapter and Chapter 5: Discussion, with a final conclusion and guidance for the

reader to the next chapter.

Chapter 3 outlines the study methodologies and procedures of the experiment. The

design of the entire research is explained in detail in this chapter, with a section devoted

to the hypothesis of the study, the expected outcome, and a thorough examination of the

considerations taken in each step of the experiment. Upon completion of this chapter, the

reader should have a thorough understanding of the author’s research design. A conclusion

and summary of the chapter are also included.

Chapter 4 presents the results of the study. The author reports on multiple datasets

collected from in-lab user tests, utilizing methods such as interviews, questionnaires, rating

scales, heart rate (HR), blood volume pulse (BVP), and electrodermal activity (EDA).

These datasets are analyzed through both subjective and objective methods, and the author

reflects on the lessons learned from the data analysis.
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Chapter 5 engages in a discussion of the implications of the results for control modalities

in level-4 autonomous driving vehicle simulations within a virtual reality driving simulator.

The author compares the hypothesis with the insights gained from the data analysis.

Chapter 6 concludes the thesis and the research as a whole, providing a general conclu-

sion and discussing limitations and future work. This chapter serves as the main conclusion

of the thesis.
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Chapter 2

Background

To provide a general insight for readers of this thesis, this report provided readers with

an overview of previous work related to self-driving vehicles, driving simulators, control

modalities in driving, self-driving vehicle features, and user performance with different

interactions in autonomous driving. All of these topics are essential for the study of this

thesis. And also, it is important to review the past work of other researchers. Thus,

we could better understand the general context of each topic and identify the need for

additional research and justify our research. By reading through these chapters, readers

could gain a better understanding of the research questions.

This chapter was divided into five main sections, with multiple subsections. These

sections will further discuss each topic. In section 2.1, this report discussed the definition

of automation driving systems and also review the current self-driving technologies that

appear in both industry and academia. In section 2.2, this report discussed the common

control modalities in both people’s real life and also in the ergonomics research field. And

especially, how they perform and are evaluated in the driving section. In section 2.3, this
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report discussed tasks in self-driving, which include existing self-driving interaction tasks

and potential tasks in the future. In section 2.4, this report discussed the mental workload

(or cognitive workload) of different control modalities while doing different types of tasks.

In section 2.5, this report discussed the previous study which related to the combination of

some of these topics and how other researchers did their study. At the last, in the section.

And, A general conclusion of this chapter is provided.

2.1 Levels of Driving Automation

The application of AI (Artificial Intelligence) in the Automotive industry has led to a huge

technological evolution [9]. More and more advanced features are adapted to automotive

products which helps people a lot in their daily driving. To regularize the trend of automa-

tion in the vehicle industry, the major factor that helps people determine the automation

level of AV is the percentage of human involvement in the driving task. The International

Society of Automotive Engineers has published six levels of vehicle automation (from 0 to

5) [2]. This scale is the most widely accepted scale in both academia and industry. Fol-

lowing the improvement of Advanced driver-assistance system (ADAS), the level of vehicle

automation increases from no automation (Level 0) to full automation (level 5). Between

level 0 and level 5 five, level 2∼4 is defined as conditional autonomous driving. The hu-

man driver is responsible to monitor the driving environment along with ADAS’s support

in level 2. In level 3, the driving is called conditional driving which the human driver is

responsible to take over the vehicle in certain circumstances. And, in level 4, the vehicle

is capable to drive fully automatically. But the driving system (gas pedal, steering wheel,

etc.) is still built in this level’s vehicle. Compared with level 4, which is also defined as

”fully self-driving”, level 5 autonomous driving is a vehicle that can be fully automated

8



with no human driving system. The chart with more specified details is attached below

[2].

Figure 2.1: SAE Levels of driving automation: The SAE Levels 0 to 5 describe driving
automation, with 0 being no automation and 5 being full automation without human
intervention. As levels increase, vehicles assume more driving responsibilities.

Despite the introduction of numerous technological advancements in the automotive

industry, the development of fully autonomous vehicles remains an elusive goal, facing

numerous technological and ethical challenges. These challenges encompass technological

difficulties, ethical and moral considerations, political and legal obstacles, and safety haz-
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ards [10]. Nonetheless, the significance of these challenges has made the pursuit of level

5 autonomous driving a highly-researched topic, attracting the attention of numerous re-

search labs, scientists, and scholars who are working towards resolving the aforementioned

challenges. For instance, researchers are addressing technological challenges through the

implementation of faster data transmission technologies, such as 5G, and the training of

more sophisticated machine learning models to enhance the decision-making processes [10].

2.2 Human-Vehicle Interaction

With new generation of automotive vehicles being released with more and more complex

technologies, the functionalities of a vehicle are also changing. The vehicle has become

a place for communications, media consumption, and infotainment center, as driving is

already a complicated task that requires a varying level of cognitive and physical load.

Correspondingly, the user interaction inside the vehicle has become overcrowded. As a hu-

man, how to interact with these features is an important factor to achieving a comfortable,

satisfying ride. For the driver to use the complicated features in a vehicle in the most com-

fortable, intuitive way, HVI should be considered as the most important key in ergonomics

study [11]. There are a lot of previous studies conducted to categorize HVI models and

its related subjects. For example, brain vehicle interface [12], personalized touch inter-

face [13], etc. When considering the design of Driver-vehicle interfaces, the main goal of

engineers is to manage different interactions between the driver and in-vehicle systems in

the following disciplines refer to: avoid interference between different information, avoid

negative impact from information sources such as information overload, distraction [11].

And also, to manage the functions, these factors should be considered: decision on which

type of information should be delivered, driver’s adaptation, and personalization for the
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individual driver.

More particularly, some researchers divided human-Vehicle Interaction into three groups:

Driver-centric HVI, User-centric HVI, and Customer-centric HVI [14]. For each kind of

focus group, researchers studied different kinds of features. For instance: they mainly

studied Mobility, Safety, and control of Driver-centric HVI, since these are the factors that

most important from a driver perspective. For the User-centric HVI, the three factors are:

control interaction method, feedback, and Customization. And for the Customer-Centric

HVI, these are: infotainment, Telematics, and connectivity [14].

In the realm of fully autonomous vehicles (Level 4/5), User-centric Human-Vehicle In-

teraction (HVI) models are of utmost importance. In such a scenario, drivers are relieved

of the responsibility of driving tasks and can instead be considered as users or passengers.

Consequently, this study will primarily focus on examining the impact of various individual

interaction methods on users. The field of in-vehicle interactions encompasses a diverse

range of methods, including physical buttons, gestures, auditory cues, tactile/haptic feed-

back, and wearable sensors [15]. While these interaction methods have been previously

evaluated by researchers, their performance in the context of fully autonomous vehicles

remains an under-explored area.

2.3 Distraction and Mental workload in HVI

Task distraction in ergonomics refers to the interruption or deviation from an individual’s

primary task, which can lead to decreased productivity and increased risk of injury or

discomfort. Task distraction can occur due to external factors such as noise, movement,

or visual stimuli, or internal factors such as fatigue or boredom [16]. In Driving tasks,

distraction refers to any activity or behavior that diverts the driver’s attention from the
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task of driving. This can include activities such as using a mobile phone, eating, drinking,

grooming, or adjusting the car’s controls. Driving distraction is a serious issue, as it can

significantly reduce a driver’s ability to react to road conditions and increases the risk of

crashes, injury or death [16].

In other words, when designing a user interface in a vehicle, engineers have always

to consider that driving likely involves the processing of various external cues including

visual and auditory. Besides that, User performance and safety are critically dependent on

internal and external environmental factors, such as visibility, wind speed, crowd density,

and precipitation [17, 18]. It is no doubly that environmental factors can greatly impact

driver in a manual driving vehicle or partial self-driving vehicle. For example, poor visibility

in outside environment caused by fog, rainfall may impair driver’s hazard avoidance ability,

which could lead to more sudden braking and increased accident rate [17].

However, when scenarios transfer to fully self-driving, the explanation is different. Since

the driver (or passenger) do not have to deal with driving distraction and interruption, they

are more tend to focus on their tasks. Their task distractions, in this case, is the interaction

with the self-driving vehicle. Different control modalities in a self-driving vehicle could

bring different level of Mental Workload (MWL) to driver/passengers on their own ongoing

tasks.

It is common that human has a limitation in the ability of processing information.

Usually, information overload could lead to poor performance. The workload is defined

as a mental construct that could reflect the interaction of mental demands imposed on

users by tasks they are doing. Specifically, MWL refers to the mental effort (or amount of

mental resources) needed by the user to perform a set of tasks.

The examination of MWL is very important for Ergonomics, Human factors research.
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One way researcher study it is by objectively investigating the task itself, which is also

referred as task load. For instance, driving in a automatic transmission demands a lower

taskload than driving in a vehicle with manual transmission [19]. Because user have to pay

attention to more features (clutch, shifting gears) which increases user’s mental workload

[19]. On the other hand, another way to study MWL is by investigating workload through

subjective experience of users, typically through interviews, surveys, or questionnaires. It

is well established that different people may have different capabilities to handle tasks. So

subjective measurement of mental workload can effectively calculate workload efficiency of

single user as well [20].

In Human-Vehicle Interaction (HVI), Productive interaction between humans and ve-

hicles needs that a user must effectively manage his/her attention of the features that are

competing for it. An improper interaction method may reduce a user’s performance, and

emotional state, and increase mental workload [21]. In the driving tasks, driver’s MWL is

affected my multiple factors, for example, complex driving tasks, interaction with infotain-

ment systems, surrounding environment, and distractions, etc. Paizié in 2008, has build

MWL in driving evaluation framework, The driving activity load Index (DALI), to help

researchers to evaluate driver’s tasks. It shows that the evolving advanced in-vehicle as-

sistant systems has greatly enhanced in-road safety, mobility, and reduced driver’s mental

workload, such as Information and Communication Systems (IVIS), ADAS [22]. However,

in fully self-driving vehicle, the mental workload is still an important factor when consider-

ing design interactions, research user preference. Since user in autonomous driving vehicle,

even released from complex driving tasks, still need to spend mental resources on different

tasks.
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2.4 Wizard-of-Oz Experiment

The Wizard-of-Oz (WoZ) method is a research technique used in the field of Human Fac-

tors, Human-Computer Interaction, and other disciplines, that involves simulating an au-

tomated system with a human ’wizard’ controlling its operations behind the scenes. This

method enables researchers to examine how users interact with systems that are perceived

to be autonomous, even when the autonomous capabilities of these systems are under

development or non-existent [23].

In a typical WoZ study, participants interact with a system they believe to be fully

autonomous. However, their interactions are actually facilitated by a hidden human oper-

ator, the ’wizard’, who responds to user controls in real-time. In the realm of autonomous

driving study, Woz often represent a human driver driving an ”autonomous car”, to mimic

a real self-driving scenario [24].

The advantage of the WoZ method is that it allows for the collection of authentic user

data and reactions to a proposed system or feature before fully developing it. This can

offer invaluable insights for the design and development process.

2.5 Driving Simulators

To study driving ergonomics topics, driving simulator is a very important tool. Driving

simulators allow researchers to investigate complex driver/user behaviours in an environ-

ment that easy to control and safe for users [25]. In 1930s, driving simulators firstly

appeared in research. The early function of a driving simulators are: technology effects,

road infrastructure, in-vehicle systems [26].
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However, the driving simulators also has its side effect. For example, an issue with a

laboratory-based simulator is the reliability and validity when it is comparing with real road

driving research. Reliability is the ability of a simulator to deliver consistent data/results.

In the driving research, to boost the reliability of a simulator, researchers always ask

participants to compete the driving task multiple times, with analyses comparing machine

performance across time [27]. On the other hand, validity means the ability of a simulator

that representing real world driving. A low validity refers to a certain kind of driving

simulator perform poorly in represent real world driving. And also, validity could be in

different forms, such as absolute validity and relative validity [28].

In last 40 years, graphics technology, advanced computer processing, and more accurate

controlled equipment have boosted the both the validity and reliability of driving simu-

lators greatly [29]. Most simulators are dynamic and the driving environments is more

adaptive which lead to better drivers preference. The key point in a driving simulator is

the visual quality of its display. A poor visual quality could lead to high rate of Simula-

tor Sickness, higher mental and physical workload, and fatigue. On the other hand, the

physical equipment improvement also lead to a more realistic environment for driving. For

example, in the past, most basic simulator are on a fixed seating with a limited movement

steering wheel and gas pedal. Recently, driving simulator with incorporating with partial

vehicle body or flexible movement seating, steering wheel, or gas pedal [30].

Moreover, simulator fidelity is another essential factor when considering driving sim-

ulators. Fidelity means the ability of equipment (simulators) to appear real world scene.

Technological advances have lead to increase of different types of driving simulator. how-

ever, the fidelity performance of each simulators could be greatly different [30]. Based on

research by Kaptein [30], a simulator with good performance should has a large field of

view, full-feedback interaction, and flexibility in control. A high-level driving simulator
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should be able to provide matching physical realism.

With the development of Virtual Reality in the past 20 years, researchers has started

using Virtual Reality headset as the driving simulator, to provide high fidelity, high im-

mersion driving simulation. Vitual Reality, on the other hand, could be called as 3D

multi-sensory highly interactive artificial environment [31]. For example, the evaluation of

a new ADAS could be benefited by using Virtual Reality as it providing highly immer-

sive driving simulation. It is very common that most of the automotive manufacturers

are using VR in different phases in their product development [32]. VR Driving simula-

tion with a Head-Mounted Display (HMD), for example HTC Vive or Oculus Rift/Quest,

could provide another perspective to conventional simulation in the design of automotive

products. Moreover, Virtual Reality driving simulator also have another advantage, which

is fast prototyping, could help researchers/manufacturers to develop their driving model.

Fast prototyping means the low time-consumption on prototyping and adjustment of the

driving model, once researchers found that they need new virtual prototype or adjustment

on the driving model, or driving scenario, they could make the change or deploy the imple-

mentation with the lowest cost in time. To use VR as driving simulator, a control loop with

programmed applications need to be integrated in the device. Generally, just like other

driving simulators, input hardware should always be integrated as well, such as steering

wheel, gas pedal.

In other words, Virtual Reality also has a lot of limitations when conducting driv-

ing simulation. Some typical limitations related with Virtual Reality Driving Simulation

(VRDS) are: inconsistency of speed in virtual environment and the real world, lack of hap-

tic feedback on other part of user’s body, and shorter duration that people can comfortably

play it [33]. Just like advantages of VRDS, all of these limitations are also needed to be

considered in implementation of driving models.
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2.6 Previous Works

There are several previous works did by other researchers. In 2016, Debernard et al. have

investigated in HVI Cognitive work analysis, and also cooperation and transparency in

Autonomous vehicle [34]. The authors presented a novel methodology for evaluate the

transparency of an interface system [34]. However, in this research, only display and visual

control models were evaluated. Multi-model evaluations in Autonomous vehicle HVI is

still being unexplored by this work. Another work, by Udara, et al, investigated how could

Hand-gesture interface help driver in autonomous Vehicle feeling a more realistic interaction

with a semi-autonomous vehicle [35]. Udara used several Hand-gesture patterns to control

certain features of a self-driving vehicle. They have concluded that hand-gesture could

bring higher flexibility in interaction with a semi-autonomous Vehicle [35]. However, there

is still a gap since control modalities were not fully investigated in a full autonomous

driving condition. And also, comparison of different interaction modilities should also

be evaluated. In 2019, Seul et al have studied three different driving support agents in

Autonomous driving vehicles [36]. The driving support agents are robotics based with

different interaction modalities included. However, the driving support agents are mainly

voice based (informative agent, conversational agent) [36]. More study on different control

modalities could be investigated based on this work.
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Chapter 3

Methodology

This study constructed an experimental design that was based on the research questions.

To ensure comprehensive consideration of all aspects, two studies were conducted: User

Requirement Study and User performance and Preference Study. In the User Requirement

Study, a User Requirement Questionnaire following with data analysis was conducted to set

the scope for the second study. For the User performance and preference study, multiple

experiment models were employed. The experiment methodologies included: Wizard of

Oz design, mixed factorial design with within subject design and between subject design.

This chapter provides a thorough explanation of the design of the user experiment, along

with the logical steps involved. Furthermore, this report addressed potential problems or

limitations of the user experiment and delve into the environment in which the experiment

was conducted, which encompasses the laboratory setup and the selection of equipment.

In addition, this report discussed participant recruitment, both in terms of the pre-study

questionnaire and the in-lab user study.
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3.1 User requirement study

Prior to the initiation of the user experiment, a user requirements survey was conducted.

The goal of this research was to investigate the real and potential features, along with

control models, that may occur in a high-level (4/5) autonomous vehicle, as most people

lack insight into full autonomy. The requirement analysis assisted in defining the research

questions and limiting the scope of the study. The user requirements survey provided an

understanding of the features that individuals most desire in a fully self-driving vehicle.

With the analysis of the user requirements, the simulator experiment scenario and tasks

related to self-driving were developed. The objectives of collecting user requirement data

in this research were twofold: firstly, to determine which control models users find most

intuitive or appealing in a self-driving vehicle, and secondly, to identify the tasks or features

that individuals expect a self-driving car to possess in the future.

The participants (N = 150) for the user requirement survey were recruited from an

online platform. The survey consisted of three open-ended questions, namely: “What

features do you think will be present in a self-driving vehicle?”, “Which type of control

method do you think is the most intuitive in a self-driving vehicle?” and “Do you think

different control models have different performance for different features in a self-driving

vehicle? If so, please rate the performance of the control models in conjunction with each

feature.” To familiarize the participants with the concept of self-driving, brief introductions

of each controls models are provided to participants. The descriptions aimed to provide

an understanding of what self-driving is and the various control models and features that

are present in a fully self-driving vehicle. The survey took approximately 5 minutes to

complete.
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3.2 User Performance Study Design

Following along with the research questions, we have to develop the experiment by these

rules:

• The experiment should based on user’s needs

• The experiment should minimize learning effect

• The experiment should minimize user’s fatigue

• Reduce the random noise as much as possible when comparing control groups

In this study, the between-subject approach was selected as the primary framework for

the user experiment. Three groups of participants were divided to evaluate three control

models, which included physical buttons, voice control, and hand-gesture control. In this

experiment, each group of participants was only exposed to one condition. The utiliza-

tion of a between-subject experiment presents several advantages. Firstly, it minimizes

the learning effect among participants, as participants would be able to apply their prior

knowledge of one control model to another if they are involved into multiple control mod-

els. For instance, a participant who has completed tasks with voice control control may

perform better with other control models due to an increased level of knowledge. Secondly,

the between-subject design reduces the impact of fatigue. In the user experiment, each

participant would interact with each task multiple times, which could cause fatigue and

potentially affect the outcome of the experiment.

In addition to the primary process of the experiment, a within-subject design was also

incorporated into the research. For each group of participants participating in the between-

subject comparisons, they would also be subjected to an additional task aimed at measuring
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the effect of distraction from other tasks. The utilization of a within-subject design in the

main study serves to minimize random noise from participants. This is because individual

participants bring their own background knowledge, context, and physical and mental

reaction speeds to the experiment, and may also have different emotional or physical states

prior to participating.

Figure 3.1: Design Pattern of User experiment, three groups of participants (each 12) using
three types of control models
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3.2.1 Control Models

Based on the results of the user requirement survey, three control models deemed most

intuitive for a fully self-driving vehicle by participants were physical buttons (on the steer-

ing wheel), voice control, and hand gesture control. The survey also revealed that touch

screen and mind control (brain-vehicle interaction) are other potential control methods for

a self-driving vehicle in the future, but due to a low rate of selection by the participants,

they were not included in this study. This result would be further analyzed in the following

chapter.

The driving simulation study was developed using the Unity platform and integrated

with Oculus Integration.[37] The initial implementation of the scenario involved a city driv-

ing scenario. Subsequently, the results from the user requirements survey were incorporated

to implement each of the selected control models.

The first control model employed traditional physical buttons. Utilizing the Logitech

G29 steering wheel’s connection API, users could interact with the vehicle through these

buttons. In the virtual simulation environment, the steering wheel was mirrored to align

the user’s hand position with that of the physical steering wheel.

The second control model was a voice control interface, which was implemented using

the Wizard-of-Oz design method due to the potential lag and uncertainty associated with

machine errors in voice recognition. The Wizard-of-Oz design reduced random noise in

voice recognition, allowing participants to simply utter commands and operate the inter-

face.

The third control model was hand gesture control, for which we also employed the

Wizard-of-Oz design method after testing the built-in hand control API in Oculus Integra-

tion. The use of the Wizard-of-Oz method for hand gesture control provided the advantage
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of obtaining real-time reaction times in conjunction with heart rate, as the built-in function

experienced a lag of 0.5 to 1 second.

3.2.2 User’s tasks

Following the collection of data from the user requirement survey, we selected the five most

frequently requested features for a self-driving vehicle, they are: open/close the window,

turn on/off the music, adjust the passenger seat, open/close the map, and turn on/off

the ambient light. Other tasks that appeared in the survey responses, such as adjusting

vehicle speed, air conditioning, answering phone calls, and activating massage functions,

were not included in this research due to their limited popularity and technical difficulty

of implementation.

Figure 3.2: Physical button model: each yellow block represents one type of feature
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Figure 3.3: Steering wheel in Virtual environment (white blocks for better participants’
button recognition). The position is aligned with the real steering wheel

Figure 3.4: Voice command model: first command as the opening command and second
command as the closing command, Adjust seat feature use only one command
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Figure 3.5: Hand-gesture control model: two stages (start and end), users performance
one operation by waving/shaping their hand from start stage and end stage. Opening
command and closing command using the same set of movement

3.2.3 Task Distraction

The design of distraction from tasks follows the pattern of tasks in a self-driving vehicle.

The experiment includes auditory distraction from the task. In a fully self-driving vehicle,

distraction from the driving task is not a factor to be considered. However, when the

user interacts with in-vehicle interfaces, distraction can also affect the user’s reaction and

control method. It is well established that most relevant stimuli in driving are visual, and

research has shown that visual distractors have a greater impact on driving performance

than auditory distractors [38]. Thus, studying auditory distraction remains relevant to our

research question.
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During the user study, a recording of a series of English characters was played before

each control with the simulation interface. The signal was played before the user accepted

the visual command. After completing the task, participants were asked to repeat the

previous English characters, and researchers recorded any errors made. It was expected

that the error rate was higher in tasks with distraction than in tasks without distraction.

3.2.4 Equipment Setup

The following equipment was used in this study.

• Oculus(Meta) Quest 2: The Meta Quest 2 is a commonly used virtual reality head-

set in the market. The headset supports 6 degree pf freedom head and hand tracking.

The display is a Fast-switch LCD with a display resolution 1832x1920 per eye. The

refresh rate is 72Hz. This headset is integrated with speakers and microphones, and a

6GB RAM. This headset is portable which means it can operate without connection

with external computing devices, or connection with both Bluetooth or Lightning 3

cable. The advantage of using Quest 2 in this research is its handtracking feature

and its good support of Unity development (Oculus Integration).
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Figure 3.6: Oculus(Meta) Quest 2

• E4 Empatica wristband: E4 wristband is an unobtrusive physiological monitoring

band. It can collect PPG (photoplethysmography), EDA (Electrodermal activity)

data at 4Hz frequency, 3-axis accelerators at 32Hz, and skin temperature at 4Hz.

This wristband can connect to most of popular computing devices such as computer,

mobile phone, or tablet by using Bluetooth. The data could be transferred to external

device in real-time.

Figure 3.7: E4 Empatica wristband
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• Logitech G29 steering wheel: Logitech G29 is a 10.24 inch racing steering wheel

with hand-stitched leather. The maximum rotation degree is 900 degree. The wheel

has dual-motor force feedback which can generate real driving experience. Buttons

on the wheel can have different functions, directed by its implement. In this research,

the buttons on the wheel are acting as different features.

Figure 3.8: Logitech G29 Steering wheel

• GTR driving simulation seat: Driving simulator seat to create real driving ex-

perience.

3.2.5 Experiment Environment

Although the virtual reality headset already offers an optimal environment for conducting

Wizard-of-Oz experiments, an additional secure room setup was constructed. A barrier

was erected between the participant and the researcher to prevent the participant from
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seeing the researcher’s actions. The screen in front of the participant was used to provide

instruction on the proper use of various features. Prior to the actual experiment (train-

ing stage), the participant was able to review the instructions at any time. During the

experiment, the monitor was turned off.

Figure 3.9: Wizard-of-Oz experiment room setup, the researcher sits on the left side of the
board to operate the features, while the user sits on the right side of the board

3.2.6 Simulation Environment

The simulation application was made by researcher from scratch to met the requirement

of this research. The simulation environment is build by Unity with Oculus Integration.
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Figure 3.10: Bird view of the city environment, the route is straight along the main road
in the mid of his figure

In the simulation environment, the participants are seated in the driver’s seat of a self-

driving vehicle. The vehicle is driving in a certain route in a big city environment. The

speed of the vehicle is 50 km/h to simulate the driving speed in city roads.

3.3 User Performance Study Procedure

In this section, the authors present the procedure of the in-lab user experiment, along

with an examination of the considerations and details of each step. The study comprised

of 30 participants who were recruited through email (University of Waterloo Engineering

Department mailing list) and posters in the main buildings on the University of Waterloo
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campus. Participants were selected from the age group of 18 to 55 years (young adults

and adults) who held a valid full Canadian driver’s license (G2). To participate in the

study, participants were required to have good or corrected vision with the use of glasses

or contact lenses. There are 15 females and 21 males participated in this study, with an

average age 26.72 (SD = 4.05).

The participants’ consent was obtained prior to participating in the main user study,

which followed a training session. Participants who had a tendency towards motion sickness

or vertigo were excluded from the study. If participants were unable to complete the

study, they would be thanked and excused. The main user study was then initiated with a

workflow shown in Figure 3.5. Upon completion, participants were compensated with $15

CAD and received an appreciation letter sent to their email. The details of the main user

test procedures are discussed below.

Figure 3.11: Experiment procedure

31



3.3.1 Preparation

Prior to the initiation of the main user experiment, five sessions of a pilot study were

conducted to evaluate the experiment procedure. Based on feedback from the pilot par-

ticipants, the experiment environment was adjusted and improved to suit for individual

participants. After that, participants sat on a driving simulation chair equipped with a

steering wheel, while wearing an Oculus Quest 2 virtual reality headset. The researcher,

who performed the Wizard-of-Oz methodology, was seated on the left side of the partici-

pant and was obscured from view due to the participant’s use of the headset. Distraction

audio sounds was played by native headset built-in speaker.

3.3.2 User Experiment

Demographic Questionnaire

Before participants started training, they need to do a demographic survey. The demo-

graphic information allows researchers know better of participants’ background (age, race,

driving experience). In the demographic questionnaire, these participants’ backgrounds

were asked:

• Age

• Gender

• Driving experience

• Driving frequency

• Knowledge of self-driving vehicle
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Participant Training

The first step of the user test is the participant training phase. Its aim is to educate

participants on the use of the driving simulation system and to screen their suitability.

Participants receive instructions from the researcher on the use of the Oculus Quest 2

virtual reality headset and the simulation application. They have the opportunity to

practice using the application.

During the screening process, participants are asked to fill out a screening questionnaire.

If they are deemed suitable for the study, they are required to sign a consent form. After

obtaining the necessary consent, participants undergo a training session on the research

equipment.

Upon becoming familiar with the basic functions of the driving simulation system,

participants undertake a test experiment. This test uses the same software as the main

experiment but takes place in a different virtual environment, specifically a rural setting.

Participants are asked to complete five tasks, which are different from the tasks in the

main experiment and are prompted by audio commands. A comparison chart with further

information is provided in the appendix.
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Figure 3.12: Training scenario

Figure 3.13: Experiment scenario
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Figure 3.14: Comparison chart

User Test

In the primary user study, the E4 GSR wristband was worn by participants on their

wrist. The wristband was then connected to the researchers’ mobile phone via Bluetooth,

enabling the recording of the participants’ real-time Heart Rate (HR), Electrodermal Ac-

tivity (EDA), Blood Volume Pulse (BVP) data. Subsequently, visual information in the

form of red text was presented in the virtual world to provide instructions to the partic-

ipants. They were instructed to perform the assigned task. The researcher concurrently

recorded the participants’ error rate on a computer throughout the experiment.

In order to reduce random noise, the previous mentioned operations were repeated

three times. After completion of the three task sets, the experiment transitioned to an

examination of countermeasures for distractions, utilizing a within-subject design. During

these experimental sets, participants were required to recall a series of numbers (played

by headset in English) prior to receiving instructions. Upon completion of the task, they

were prompted to recite the numbers. The error rate of the participants was recorded

during this period. To minimize random noise, the order of the six task sets are different

for different participants.
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Figure 3.15: Main user test workflow

During each series of tasks, the participants are asked to take a break for half minute.

They are asked to take off the VR headset. The purpose of this is to reduce potential

fatigue. And, to reduce the learning effect, each series of tasks have a different order,

which means participants cannot predict next task. The expected experiment time for one

series of tasks is two minutes. And the expected time for the whole user test is 25 minutes,

preparation time not included. During the break time, the participants are asked to do

a self-rating of three dimensions from NASA Task Load Index (TLX), which are Mental

Demand, Temporal Demand, and Effort.

Interview and Questionnaire

After the user study, a user preference questionnaire was conducted. There are two parts

of the questionnaire: user experience questionnaire and NASA TLX rating scale. The

questions in the user experience questionnaire are:
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• Rating scale on intuitiveness of each control models

• Rating scale on complexity of performing each tasks

• General experience of the experiment

• Performance difference on distracted task and non-distracted task

• Fatigue level during experiment

• Nervousness & anxiety during each experiment sets

In the second part of questionnaire, the rating scales in NASA TLX is attached below.

NASA TLX is a framework of measuring participants’ subjective mental workload. It is

a multi-dimensional rating scale with six elements [39]. It is further discussed in Data

Collection and Analysis section.
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Figure 3.16: NASA Task Load Index chart
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After participants finished the questionnaire, an interview was conducted. The re-

searcher was investigated more details in the experiment. The goal of this interview is to

obtain subjective data of participants’ experience of the whole experiment, and, relate the

experiment to the real driving scenario to gain insight of the future self-driving vehicle

control models.

3.4 Hypothesis

The prediction of the experiment is made based on the previous study and also the result

from the user requirement survey.

Research Question 1: Is there a significant difference of users’ mental workload and

performance after using different control models?

Null Hypothesis:

H0: There is no significant difference in the three control models.

Alternative Hypothesis:

HA1: There is a significant difference in the users’ mental workload of control models that

the physical button control model is more user-friendly and intuitive.

HA2: There is a significant difference in the users’ mental workload of control models that

the voice interface control model is more user-friendly and intuitive.

HA3: There is a significant difference in the users’ mental workload of control models that

the mid-air hand gesture control model is more user-friendly and intuitive.

Research Question 2: Is there a significant difference on users’ performance with differ-

ent control models while being distracted?
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Null Hypothesis:

H0: There is no significant difference while being distracted.

Alternative Hypothesis:

HA1: There is a significant difference in the task distraction by control models that the

physical button is more easily to be distracted.

HA2: There is a significant difference in the task distraction by control models that the

voice command is more easily to be distracted.

HA3: There is a significant difference in the task distraction by control models that the

mid-air hand gesture is more easily to be distracted.
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Chapter 4

Data Collection and Analysis

In this section, we present a comprehensive analysis of the data collected during our ex-

periment. We begin by describing the types and features of the data that were collected,

including both quantitative and qualitative data. This section provides a detailed overview

of the various forms of data involved in the research, as well as the context and background

of the data collection methods and processes. Our analysis of this data enables us to draw

meaningful conclusions regarding the research questions posed in this study, and to provide

valuable insights into the relevant research domain.

In the second section of the discussion, the data is analyzed using various statistical

methods to gain deeper insights into the findings of the research. The statistical methods

used and descriptive data will be discussed in detail. The comprehensive data analysis

presented in this section will provide a solid foundation for the findings and conclusions

presented in the next chapter.
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4.1 Participants

For the study of user requirements, a sample of 150 participants was recruited. This

sample comprised 71 females and 75 males, with 4 participants preferring not to disclose

their gender. In terms of age distribution, 76 participants were aged between 18 and 30

years, 54 were between 30 and 45 years, 20 were between 45 and 60 years, and 4 were aged

above 60 years.

For the user study, the sample comprised of 17 females (20-37 years; M = 22.14, SD =

3.96), and 19 males (20-45 years; M = 27.7, SD = 6.46). 29 out of 36 participants

possessed a Valid G driver’s license and 7 participants had a valid G2 driver’s license.

5 participants driving 30 mins per week (2 females and 3 males), 4 participants driving

one hours per week (4 males), 14 participants driving two hours per week (9 females

and 6 males), 7 participants driving four hours per week (4 females and 3 males), and 4

participants driving eight hours per week (2 females and 2 males).

4.2 Data Collection

In this section, the various types of data are presented in chronological order, starting from

the earliest data collected to the latest data obtained. The order is: User Requirement

Questionnaire (two months before user study), User Error Rate (during the user study),

Physiological data collected by Galvanic skin response sensor (GSR) (during the study),

User Survey and Interview (after the user study), and NASA-TLX (after the survey).
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4.2.1 User Requirement Questionnaire

Each participant was compensated with 4 CAD for completing the online survey, which

took an average of 5 minutes to complete. The survey aimed to investigate participants’

preferences for various control methods and presented descriptions of five control methods:

physical buttons, touch screen, mid-air hand gesture control, voice control, and a separate

controller. According to the survey data, 88 participants considered physical button con-

trol to be intuitive and requiring minimal effort, while 86 participants viewed voice control

as intuitive and requiring limited mental resources. The popularity of mid-air hand ges-

ture control was comparable to that of touch screen control, with 41 and 36 participants,

respectively. And lastly, the separate controller was selected by only 6 participants as an

intuitive control method.

Figure 4.1: Two questions asked in Survey: “which control model is most intuitive and
most distracted?” Most of people think Physical button (88) and Voice control (87) are
the most two intuitive ones. Most of people think Hand gesture control (63) is the most
distracted one.
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4.2.2 User Error Rate

User Error Rate (UER), also know as human error rate, is the rate of the times of a

participant makes a wrong entry (control interaction in this research) divided by the total

interaction times. The UER is usually used to evaluate the usability and utility of a system

or product. The lower the user error rate, the system is more intuitive.

In this experiment, the UER is recorded by researcher by direct observation of the

user test. There are two types of UER being recorded in this study: UER of participant

successfully interacting with the features, and the UER of participants remembering the

numbers when it is in the distraction task sets. The reason of recording two-way User

Error rate is to understand user’s performance when they interacting with self-driving

vehicle in distraction, and additionally, understanding each control models’ performance,

as a distraction from user’s current task.

When participants make a wrong entry (control interaction), the researcher will record

a score 0 for the current task. If the participants made a correct interaction input of current

task, the score is recorded as 1. Each task sets have ten different control tasks. And there

are totally six task sets for each one participants. In the six task sets, there are three task

sets with distraction and three tasks sets without distraction. Totally, each participants

are asked to perform sixty interaction tasks.

In the task sets which distraction is added, wrong repeat of the previous numbers are

also recorded by researcher. The default score of all task distractions is one, which assume

participants will repeat the number correctly. However, if the repeat is wrong, researcher

will record a zero of the current task.
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4.2.3 Physiological Data

The physiological data is collected by E4 Empatica Wristband. The data collected by E4

Empatica Wristband sensors is in multiple form, they are: HR, EDA, BVP, Temperature

(TEMP), Acceleration (ACC). Since temperature data is limited in this experiment as

the participants are not doing high amount of exercise, the temperature data is dropped

out from this experiment. And, the acceleration data is irrelavant to this research, it was

dropped out as well. In this sub-chapter, I will discuss:

1. Data types and features

2. Data-cleaning pipeline

In this section, we discussed all the pre-processing tasks of physiological data gathered

from E4 Empatica Wristband. The processing pipeline is same for all kinds of data since

they are in a same format. The format of data is: .csv files with one column of data. The

first row is the initial time of the session and the second row is the sample rate in Hz.

Data types and features

EDA: Electrodermal Activity refers to electrical changes of a part of human body. It is

usually measure at the surface of skin. The mechanics of EDA measurement is: when

the skin receive signals from the brain, then the level of sweating is higher and the EDA

activity arise. For the E4 Empatica wristband is using a method that could capture

electrical conductance on the skin. The EDA activity score is usually affected by human’s

emotional activity, physical activity, cognition workload.
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In EDA measurement, there are two types of measurement - tonic skin conductance

level and phasic skin conductance response. Skin Conductance Response (SCR) is the

increases in the conductance of the skin. And Skin Conductance Level (SCL) is the level

of conductance of the skin.

BVP: The Blood Volume Pulse is also measured by E4 wristband sensor. The data is

collected by a PPG sensor with an algorithm that can combine light signal of both green

and red exposure. The sample size of BVP is 64 Hz(64 times per second).

HR: The heart rate recorded by the wristband is the average heart rate values of ten

seconds. The frequency of recording the heart rate is one second. Since the value recorded

is not the current heart rate value, the data is not in real time. The wristband started

recording after ten seconds of initialization. The unit is expressed as Beats per minute

(BPM).

Data-cleaning Pipeline

First step: Generating time stamps. The time stamps of each interaction tasks are

auto-generated by a Python Script while the participants doing user test. The time stamps

are in Unix time stamp to match the E4 data.

Second step: Data synchronization. In this step the data collected from E4 Empatica

wristband is synchronized with the time stamps generated before.

Third step: Data cleaning. In this step, each data file (csv file) is separated into six

files to represent six task sets of each participants. And also, each time stamps-related

data is extracted from each file. After these operations, the cleaned data from each task

sets are further combined to better represent the performance of one participant.
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4.2.4 Post-study User Interview

The post-study interview was conducted after the user test. These questions were asked:

• ”Did you feel tried or dizziness during the experiment?”

• ”How do you think about the control method in general?”

• ”Do you think the control method you used is intuitive? How intuitive is it.”

• ”Are you willing to use this control method in your day-to-day driving?”

• ”Do you think this control method will be used in the fully self-driving vehicle?”

4.2.5 NASA Task Load Index

NASA Task Load Index (NASA TLX) is a subjective, multidimensional rating scale de-

signed to obtain the overall level of perceived task workload. It was developed by the

National Aeronautics and Space Administration (NASA) in the mid-1980s as a tool for

evaluating the usability and workload of various systems [39].

NASA-TLX consists of six dimensions of workload: mental demand, physical demand,

temporal demand, performance, effort, and frustration [39]. Participants are asked to rate

each dimension on a scale form 0 to 100, where a higher score indicates a higher level of

perceived workload. The scores for each dimension are then averaged to produce an overall

task workload rating. The interpretation of each dimensions are: [39]

• Mental Demand: The mental demand needed for accomplishing the task

• Physical Demand: The physical demand needed for accomplishing the task
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• Temporal Demand: The time consuming of accomplishing the task, how hurry is

it

• Performance: The success rating of accomplishing the task

• Effort: The level of hard-working when accomplishing the task

• Frustration: The frustration level while doing the task [39]

NASA TLX has been widely used in a variety of fields, including human-computer

interaction, ergonomics, and psychology, and has been found to be a reliable and valid

measure of perceived workload. The tool is considered particularly useful for evaluating

complex, multitasking environments, such as those encountered in aviation, space flight,

and other high-stakes industries [40, 39].

NASA TLX rating scales are conducted two times in the user study: one time after par-

ticipants finished all the tasks without distraction and one time after participants finished

tasks with distraction.

4.3 Data Analysis

This section of the chapter presents a detailed discussion of our findings, with a focus on

objective and subjective data analysis. We begin by examining the objective data collected

during our study, specifically the physiological data, and use statistical methods such as

t-test and ANOVA to better illustrate our statistical findings. We then move on to analyze

subjective data from various sources such as interviews, questionnaires, to validate our

statistical findings.
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In this study, we are using factorial design to conduct the data analysis and findings.

A factorial design is an experimental strategy that allows researchers to simultaneously

examine the effects of multiple independent variables (or factors) and their interactions

on a dependent variable. The key advantage of a factorial design is its efficiency, as

it provides a comprehensive view of multiple factors and their interactions within the

same experiment. We aligned factorial design with multiple forms of data to illustrated

our findings. In this study, we are using two-way (2X3) ANOVA as factorial design to

analyze the data and test the result. There are two category of independent vaiables:

control models and distraction. For control models, there are three independent variables:

Hand-gesture, button, voice. For distraction factor, there are two independent variables:

distraction and non distraction. Two-way ANOVA is a statistical test that allows for the

simultaneous evaluation of the influence of two different categorical independent variables

on one dependent variable. It is an extension of the one-way ANOVA. One-way ANOVA is

a commonly used methodology that used when the experiment has a quantitative outcome

and a single categorical explanatory variable with more than two levels. As an extension of

one-way ANOVA, two-way ANOVA fit this study better since for every data types, there

are two independent variables: control model and distraction.

4.3.1 Physiological Data Exploration

After data processing by the cleaning pipeline mentioned in last chapter, the data was

divided to small portion to represent each task sets (10 tasks). For each data sets, it cur-

rently contains six different types of data: BVP data with/without distraction, EDA data

with/without distraction, and HR data with/without distraction. After outlier filtering

by using Z-score (Z=2), the data set is distilled and calculated into mean and standard
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deviation.

When Evaluating the control model factor, Mid-air hand Gesture has a relatively low

performance with distraction based on physiological data, with average heart rate 2.48

(highest) and BVP 37.19 (highest). And for voice and button control model, their physi-

ological data are cross balanced. Further more, when evaluating distraction factor among

three control models, hand gesture control model have a higher difference between distrac-

tion data and non-distraction data.

(a) BVP (b) EDA (c) HR

Figure 4.2: Average std values

(a) no dis STD (b) no dis Mean (c) dis STD (d) dis Mean

Figure 4.3: BVP data
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(a) no dis STD (b) no dis Mean (c) dis STD (d) dis Mean

Figure 4.4: EDA data

(a) no dis STD (b) no dis mean (c) dis STD (d) dis Mean

Figure 4.5: HR data

Three two-way ANOVA tests are applied to measure the Physiological data. From the

observation of the data, it is concluded that data groups acquired from GSR wristband are

not significantly different, except the comparison of distraction factor in Heart Rate data.

Figure 4.6: BVP data ANOVA test. Factor A: Distraction, Factor B: Control models
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Figure 4.7: Hypothesis test result of BVP data

For Factor A (distraction), the null hypothesis could not be rejected as the p-value was

greater than the chosen alpha level (p = .5323, F(1, df) = .3942, η2 = .0061). This suggests

that the difference between group averages is not statistically significant. The small effect

size (η2 = .0061) indicates that the magnitude of the difference between averages is minimal.

For Factor B (control model), the null hypothesis could not be rejected, with a p-value

greater than the alpha level (p = .7066, F(1, df) = .3492, η2 = .011). The difference

between group averages was not statistically significant. The effect size was small (η2 =

.011), indicating a minor difference between group averages.

The interaction between Factors A and B was also not significant (p = .5736, F(1, df)

= .5606, η2 = .017), supporting the null hypothesis that the averages of all groups are

equal. The observed effect size was small (η2 = .017), suggesting a minor interaction effect

on the dependent variable.

Therefore, from BVP data ANOVA test, either main effect and interaction effect are

not significant. No major conclusion could be conducted by just observing BVP data.
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Figure 4.8: EDA data ANOVA test. Factor A: Distraction, Factor B: Control model

Figure 4.9: Hypothesis test result of EDA data

For Factor A, the null hypothesis could not be rejected as the p-value was greater than

the chosen alpha level (p = .4352, F(1, df) = .6166, η2 = .0095). This suggests that the

difference between group averages is not statistically significant. The small effect size (η2

= .0095) indicates that the magnitude of the difference between averages is minimal.

For Factor B, the null hypothesis could not be rejected, with a p-value greater than

the alpha level (p = .1788, F(1, df) = 1.7688, η2 = .052). The difference between group

averages was not statistically significant. The effect size was small (η2 = .052), indicating

a minor difference between group averages.
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The interaction between Factors A and B was also not significant (p = .5945, F(1, df)

= .5242, η2 = .016), supporting the null hypothesis that the averages of all groups are

equal. The observed effect size was small (η2 = .016), suggesting a minor interaction effect

on the dependent variable.

Same as BVP data ANOVA test, from EDA data ANOVA test, either main effect and

interaction effect are not significant. No major conclusion could be conducted by just

observing EDA data.

Figure 4.10: HR data ANOVA test. Factor A: Distraction, Factor B: Control model

Figure 4.11: Hypothesis test result of HR data

In this test, The p-value equals 0.02822, ( P (x ≤ 5.041) = 0.9718 ). It means that the
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chance of type I error (rejecting a correct H0) is small: 0.02822 (2.82%). For distraction

factor (p = .4352, F(1, df) = .6166, η2 = .0095), pairwise comparisons are made. The

results of a post hoc Tukey HSD test revealed no significant differences between Button

group under study. The mean value for no-dis scenario group (M = 1.69, SD = 0.518) was

not significantly higher than dis scenario (M = 3.20, SD = 2.37), with a mean difference

of 1.51, and p = 0.05223. The P value is very close to 0.05 which may indicate there is a

weak relationship between two datasets.

For Factor B (control model), the null hypothesis could not be rejected, with a p-value

greater than the alpha level (p = .1788, F(1, df) = 1.7688, η2 = .052). The difference

between group averages was not statistically significant. The effect size was small (η2 =

.052), indicating a minor difference between group averages.

The interaction between Factors A and B was also not significant (p = .5945, F(1, df)

= .5242, η2 = .016), supporting the null hypothesis that the averages of all groups are

equal. The observed effect size was small (η2 = .016), suggesting a minor interaction effect

on the dependent variable.

Aso, the results of a post hoc Tukey HSD test revealed no significant differences between

Voice group under study. The mean value for no-dis scenario group (M = 2.47, SD = 1.4)

was not significantly higher than dis scenario (M = 2.76, SD = 2.65), with a mean difference

of 0.291, and p = 0.074.

However, significant difference was found of Heart rate value of Gesture group under

study. The mean value for no-dis scenario group (M = 2.16, SD = 0.68) was not significantly

higher than dis scenario (M = 3.15, SD = 1.56), with a mean difference of 0.998, and

p = 0.0433.
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4.3.2 User Error Rate

It is found that participants with Voice control model has the lowest average error rate, and

the participants with Hand Gesture control model has the highest average error rate. When

investigating distraction factors, all three control models shows that the error rate with

distraction are higher than that without distraction. Physical Button group’s participants

has the lowest average error rate with distraction and the Hand gesture group’s participants

has the highest average error rate.

- no dis dis
Button 0.0444 0.0583
Voice 0.0389 0.05836

Gesture 0.0611 0.07778

Table 4.1: Error rate Mean values of each group

Error rate under distraction

(a) Error distribution (b) Average Error rate
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Figure 4.13: Interaction ANOVA test. Factor A: distraction, Factor B: Control models

Figure 4.14: Error Rate hypothesis test result

For Factor A (distraction), the null hypothesis was rejected, indicating a p-value smaller

than the chosen alpha level (p = .03649, F(1, df) = 4.5575, η2 = .065). This suggests that

the differences between some group averages are statistically significant. The medium effect

size (η2 = .065) further indicates that the magnitude of difference between the averages is

moderate.

Factor B (control models), on the other hand, did not reject the null hypothesis, as the

p-value was greater than the alpha level (p = .0681, F(1, df) = 2.7992, η2 = .078). This

implies that the difference between group averages was not statistically significant. Despite
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this, the effect size was medium (η2 = .078), indicating a moderate difference between the

group averages.

As for the interaction between Factors A and B, it was not significant (p = .9587, F(1,

df) = .0422, η2 = .0013), which supports the null hypothesis that the averages across all

groups are equal. The very small effect size (η2 = .0013) suggests a minimal interaction

effect on the dependent variable.

Two main effects both have significant difference but the interaction effect does not

have significant difference. And the interaction effect of two factors is also not significant.

We further performed a Tukey HSD test to evaluate pairwise difference of three groups in

distraction factor.

There is no significant difference found of Button group’s error rate with distraction

factor. The mean value for no-dis scenario group (M = 0.0444, SD = 0.0328) was not

significantly higher than dis scenario (M = 0.0583, SD = 0.03516), with a mean difference

of 0.014, and p = 0.328.

Also, there is no significant difference found of Voice group’s error rate with distraction

factor. The mean value for no-dis scenario group (M = 0.0389, SD = 0.0192) was not

significantly higher than dis scenario (M = 0.0583, SD = 0.03516), with a mean difference

of 0.019, and p = 0.107.

There is no significant difference found of Gesture group’s error rate with distraction

factor. The mean value for no-dis scenario group (M = 0.0611, SD = 0.0371) was not

significantly higher than dis scenario (M = 00778, SD = 0.03516), with a mean difference

of 0.017, and p = 0.275.
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4.3.3 Participants’ Workload from NASA TLX

It is observed that most participants, except five, give a lower TLX score in tasks with

distraction. This indicated that the average task workload is higher with the distraction,

to compare that of the data groups without distraction. For non-distraction scenario, hand

Gesture control has the lowest score and the physical button have the highest score. For

distraction scenario, however, the voice control model has the lowest score and the physical

button model still have the highest score.

- no dis dis
Button 79.81943 73.47224
Voice 75.40278 67.69445

Gesture 73.2361 71.70834

Table 4.2: Mean values of each group

(a) Average Score (b) Difference of distraction factor

The results for Factor A(distraction) indicated a statistically significant difference

among group means, F(1, df) = 26.0358, p < 0.00001, partial η2 = .28. This suggests

a large effect size.
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Similarly, the results for Factor B(control model) also suggested a statistically signif-

icant difference among group means, F(1, df) = 9.4893, p < 0.0003, partial η2 = .22,

indicating a large effect size.

Lastly, the interaction effect between Factors A and B also reached statistical signifi-

cance, F(1, df) = 3.3922, p < 0.05, partial η2 = .093, indicating a medium effect size.

Figure 4.16: NASA TLX ANOVA test. Factor A: Distraction, Factor B: control models

Figure 4.17: NASA TLX Hypothesis test result

It is observed that both main effects and interaction effects have significant difference.

The following tukey HSD post hoc analysis results is below.
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In the Tukey HSD test of Button group, significant difference was found with distrac-

tion factor. The mean value for no-dis scenario group (M = 79.82, SD = 4.08) was not

significantly higher than dis scenario (M = 73.47, SD = 3.81), with a mean difference of

6.347, and p = 0.0007.

Significant difference was also found with distraction factor for Voice group. The mean

value for no-dis scenario group (M = 75.4, SD = 4.17) was not significantly higher than

dis scenario (M = 67.7, SD = 4.77), with a mean difference of 7.708, and p = 0.00036.

However, significant difference was not found with distraction factor for Gesture group.

The mean value for no-dis scenario group (M = 73.24, SD = 4.74) was not significantly

higher than dis scenario (M = 71.7, SD = 4.24), with a mean difference of 1.52, and

p = 0.415. This suggest the gesture control model is not easy to affected user’s work load

score, comparing to other two factors.

Post hoc analysis of control-model-wise comparison was also conducted (Figure 2.24,

2.25). It is found that when comparing physical button and Voice control model, they

have different effect on user’s workload for both with/without distraction scenario. And

comparing Button and Gesture control model, only scenario without distraction model has

a significant difference. And when comparing button and voice control model, both two

scenarios are not significant. This suggested Hand gesture control has a general higher

workload for users (M=73.24 without distraction and M=71.7 with distraction).

Figure 4.18: Tukey HSD test for control model factor without distraction. X1, X2, X3 are
Button, Voice, and Gesture
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Figure 4.19: Tukey HSD test for control model factor with distraction. X1, X2, X3 are
Button, Voice, and Gesture
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Chapter 5

Discussion

5.1 User Workload

The findings of this study showed that different control models may have different effect of

driver’s workload (both mentally and physically). Basically all the participants had higher

mental and physical workload while being distracted. From the post-study survey, most

of people stated that the tasks with distraction caused more workload compared to tasks

without distraction. And, it is found, from NASA-TLX rating scale, hand-gesture has a

lower workload score comparing that of Voice control and Physical button control. It is

explained by Udara, in 2016, that hand-gesture can provide certain level of flexibility of

interactions with vehicle, however, it have higher wordload for a long time driving task

[35].

From NASA-TLX scores, we found that different control models have significant dif-

ference on workload score. And, null hypothesis of distraction have no effect on workload

score was also rejected. It is well explained the participants’ statement in post-study inter-
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view that, users of Voice and physical button groups didn’t obviously reflect their workload

increasing. When observing the score difference caused by distraction, participants from

hand-gesture group have the lowest average difference score (figure 4.29). The possible

reason of this might be the body movement have a lower impact by distraction from other

perceptions [41].

However, from the Hypothesis test of physiological data, two out of three data types’

(BVP and EDA) results are not significant as that of NASA-TLX score. This situation

was not expected by researchers. The potential reason of this is the interaction tasks is not

intensive. So, it is not obvious to show high fluctuation and significant difference on data

acquired by GSR wristband. Since there is a time gap between each single task (4 seconds).

And, a break (30 secs) between each task sets are applied, which could also be a reason that

the tasks are not intensive. In the future research, a more detailed methodology design and

more intensive time and workload setup is necessary. On the other hand, from the heart

rate hypothesis test, we found that distraction do have significant impact on heart rate

score. It is found that the physical button have a greater impact on heart rate, comparing

to voice control and hand-gesture control. On the other hand, there is not significant

difference found of control models’ effect on heart rate. However, the hand gesture control

model has a higher average heart rate than physical button group and voice group. And,

from the observation of data, the voice control model do have the lowest average value

of heart rate, and significant lower standard deviation data point compare that to hand-

gesture interaction, which can support the conclusion from NASA-TLX observation and

post-study survey observation.
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5.2 User Performance

User performance was mainly evaluated from the Error rate and post-study survey. From

the hypothesis test, we can find that the different control model have significant effect on

the error rate. Draper’s study in 2002 also have revealed the similar result [42]. With the

voice control interaction have the lowest average error rate. [42] And, the hand-gesture

control have the most highest error rate. It is also a reflection from the post-study survey

that, five out of twelve participants think it is easy to make a mistake while using hand-

gesture control. To compare with that, only one participant think it is easy to make mistake

while using physical button, and zero participant think it is easy to make mistake while

using voice control interaction. And, from the hypothesis test, it is proved that distraction

have a significant effect of user’s error rate (p = 0.0.0365). It is expected that each control

models are affected by distraction. The distraction affect ratio are 1.313, 1.5, and 1.273

for Button, Voice, and Gesture groups. The equation for calculating the difference ratio is:

r =
e(distraction)

e(non− distraction)
(5.1)

It is observed that, even the voice group doesn’t have the highest average error rate, it

have the highest error rate difference ratio. It is caused by the effect of same modality. In

1993, a study by D.N Card found that control methods are easier to have higher error rate

when encounter distractions with same modality [43]. The voice control model and the

distraction modality are both in audio modality. And the hand-gesture interaction have

the lowest difference ratio, which was proved by Ma in 2017, that gesture based control

model as a secondary task is good at avoiding distraction while doing primary task [44].
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5.3 User Preference

Usability of Vehicle Interfaces. People generally think that the control model tasks is

easy to accomplish, when the task doesn’t contain audio distraction. In all three control

model participant groups, participants has stated that they feel the task is not very chal-

lenge. For example, one participant in hand-gesture interface group said: “I feel easy to

interact with the features with such a novel control method (hand-gesture interface), even

though I never used it before.” And one participant in Voice command interface stated

that: “it is easy to use, I expect this feature could be added in my car.” However, there

are two participants in Hand-gesture control group, and voice control group, stated that

they are not used to interact with vehicle by using hand gestures. One participant said:

“When I was given a task to do (interact with a feature in vehicle), I always tend to do

it in the original way (the interface in the existing vehicle).” And, one participant from

Voice control group stated that: “When I was speaking to the car, I was a little bit shy. I

don’t know the reason behind it but I think I am not used to speak to a machine.”

Distraction by audio tasks. While distraction is added into the task sets, a part

of participant feel stressful to perform. The effect is most obvious with the Hand-gesture

control group. And, the effect is not significant for Voice-control group. For example, one

participant stated that: “When I was told that I have to do the task while remembering

the number, I thought it will be hard since both control method and distraction are sounds.

But it’s actually easier than I think.”

Distraction by control models. All three groups of participants are affected by

the distraction caused by control models. Most of participants mentioned their short-term

memorization was affected by interacting with the vehicle. One participant in Voice control

group stated: “Memorizing the numbers is easy by itself, but repeating it after I do these
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tasks is not too easy.” And a participant in Hand-gesture control group said: “I have to

stay focus on the number in order to not forgetting it.” However, by our observation, the

effect by control models in Physical button group is not as great as other two groups. One

participant stated that: “It could effect my memorization, but not too much. There is no

big difference.”

User’s mental workload, fatigue. After explaining the definition of mental work-

load, and fatigue, participants illustrated their feeling. Most of people in all three groups

didn’t have strong feeling of fatigue. With a few people (3 in voice command, 3 in hand-

gesture, 3 in physical button) illustrated that they have low level of fatigue. For example:

one participant stated that: “After these task sets, I am little tired.” And most of people

didn’t express their tiredness or fatigue in the interview. In study by Detjen, authors also

found in-vehicle interaction have different effect on user’s workload and tiredness [45].

Certain Task findings. From Participant interview and questionnaire, there is no

strong evidence from participants believe a certain interaction task (in-vehicle feature)

is easier to perform comparing to other tasks. However, three participants, from Hand-

gesture interaction group, do stated that the the ‘Open the map’ task operated by hand

gesture is ‘intuitive’ and ‘easy’.
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Chapter 6

Conclusion

To answer the two research questions raised in this study, we have build an VR simulator to

Evaluate three Control Modalities with distraction factor. We have found that distraction

is a major factor when evaluating Control Modalities. However, for different modalites,

there is no significant difference in Physical aspect, even though our data and analysis

show significant difference on Error Rate and Workload.

Based on this study, we found that mid-air Hand-gesture based control method has

the lowest performance score and highest workload in autonomous driving comparing to

that of physical button and voice control interaction group. However, from the study, it

is also found that Hand-gesture control perform well one certain task (”Open the map”).

It is a possible conclusion because in some scenarios, hand-gesture has been proved to

be well-performed. Micah Alpern, in 2003 has proved that hand-gesture control is good

with some secondary tasks in driving and made even fewer mistakes, compared to physical

buttons (radio button in the study) [46]. And, for tasks that requires a quick glance,

gesture interaction have also shown better performance [46]. However, the study scenario
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in this study is not in a fully self-driving vehicle, which can be explained the difference of

the study result of this study and Micah’s work result. Furthermore, It is found that the

Hand gesture interaction have a higher error rate in this study, which can lead to a future

research of the different on Hand-gesture interaction in both manual driving vehicle and

self-driving vehicle.

One the other hand, the study result has show very close performance and error rate

of Voice control interface and Physical button interface. The error rate of voice control

interface is slightly lower that that of physical button interface, but no significant differ-

ence was found in ANOVA test. When evaluation workload, voice control interface and

physical button interface also have very close result, with the physical button interface

lower workload. This also proved a study Murali in 2021 [15]

In the present investigation, the assessment of error rates in the distraction task has

yielded inconclusive results. The obtained data does not exhibit a significant deviation,

and the mean values remain notably similar. Possible contributing factors to these findings

include a limited sample size (with the distraction task error rate data comprising only half

of the total error rate data) and an insufficient range of evaluation parameters (such as

interaction accuracy and human processing time, which were not recorded in this study).

[47]

6.1 Limitations

The limitation of this study could be divided into two parts: Experimental limitation and

System limitation.
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6.1.1 Experimental Limitation

Firstly, Due to limitations of in lab user testing and time constraints, the control methods

have not been tested with more complex features such as text input, adjusting AC, or

switching to next music. The results may vary if the complexity of the features increases.

And, the sample size for the in-lab user tests is likely not large enough to produce mean-

ingful findings. Furthermore, the in-lab experiment duration could also be a limitation as

it could be longer to better collect the mental demand, or physical demand data. And in

this study, distraction was not counterbalanced as the participants are following the same

procedure. This may also cause small bias of the test result. And for the physical button

control method, seat manual control is usually not placed near the seat as in real cars. In

this study, all buttons are on the steering wheel due to experiment lab setup. This may

cause difference with actual daily scenario.

Secondly, the use of Virtual Reality simulations may also affect participants, as some

may experience motion sickness. In this experiment, most participants did not report

any symptoms of motion sickness in interviews and surveys, but one participant expressed

feeling slight dizziness. However, compared to real-world driving experiments, simulation-

based studies still have limitations and the physiological data may be impacted. Addition-

ally, wearing Virtual Reality headset put weight on participants head, which may lead to

discomfort which can affect participants’ mental workload.

Finally, the simulation software was built from scratch using the Unity Engine by

researchers. It is possible that the vehicle dynamics were not fully integrated into the

simulator. For instance, the four wheels of the simulator vehicle were not separated but

represented as a single game object with the body of the vehicle, which may hinder the

vehicle’s ability to drive under realistic dynamics constraints. Additionally, during turning,
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the rotation of the simulator vehicle may not be as accurate as in the real world due to

limitations in wheel representation.

6.1.2 System Limitation

Apart from the experimental limitation, the experiment system design could also contains

limitations.

Firstly, machine and computing system latency and error is not considered in this

research. For mid-air hand gesture control and voice control, both control methods are

heavily relied on sensor accuracy and computing system respond time. Since computer

vision and Deep learning algorithms and models are highly involved in to the application,

model performance may also affect input respond time and machine latency. All of those

factors could affect user’s performance and preference.

Secondly, in this study, the distraction was made by a pre-recorded audio, this distrac-

tion methods might be limited. Visual, haptic distraction could have different affect with

participants’ interaction, and may further affect the result of the research question.

6.2 Future Work

This research focuses on examining the different control methods in fully autonomous vehi-

cles, leaving room for a multitude of future works to be conducted from various engineering

perspectives. One area of future research could be to examine the impact of machine errors

in the Human-Computer Interaction system. By combining the findings of this study with

an analysis of machine performance, a more comprehensive understanding of the overall

research question can be achieved. To more accurately simulate real-world use cases, future
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research could utilize more advanced technologies such as computer vision gesture recogni-

tion and natural language processing frameworks, rather than relying on the Wizard-of-Oz

methodology employed in this study. Additionally, to address the limitations of considering

only single-form distractions, future research could incorporate other forms of distractions

such as visual, cognitive, and fatigue into the evaluation. Especially, when considering

voice control interface, studying a multi-model distraction pattern is necessary. Further-

more, the focus of this research is on the evaluation of in-vehicle interface distractions and

their impact on the user’s current task. Trust is a crucial factor that must be taken into

account in future studies. While trust in self-driving scenarios has been widely researched

in the real world, this study does not consider it, as the participants were informed that the

vehicle was driving in a safe condition. However, it is important to note that if participants

were involved in a complex, uncertain situation, their mental and physical workload could

be different from the findings of this study. Future studies should therefore consider incor-

porating a trust factor in their evaluations to more accurately reflect real-world scenarios

and to enhance the reliability of the findings.

Furthermore, despite the possible future works mentioned above, more human factors

details should be added to future work. For driver with mental disorder symptoms, such

as Attention Deficit Hyperactivity Disorder (ADHD), their driving behavior is different

from that of neurotypical person [48]. ADHD patient is characterized as person who has

symptoms of hyperactivity, inattention, or impulsivity [48]. All of these characters could

affect driver’s behavior. In self-driving scenario, driving risks are significantly reduced for

driver with ADHD. However, their prefered control method could be different due to the

symptom mentioned above.
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Appendix

Figure 1: NASA-TLX Questionnaire
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