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Abstract

Outsourced computing has emerged as an efficient platform for data processing, but it
has raised security concerns due to potential exposure of sensitive data through runtime
and side-channel attacks. To address these concerns, the BliMe hardware extensions of-
fer a hardware-enforced taint tracking policy to prevent secret-dependent data exposure.
However, such strict policies can hinder software usability on BliMe hardware.

While existing solutions can transform software to make it constant-time and more
compatible with BliMe policies, they are not fully compatible with BliMe hardware. To
strengthen the usability of BliMe hardware, we propose a compiler-based tool to detect
and transform policy violations, ensuring constant-time compliance with BliMe. Our tool
employs static analysis for taint tracking and employs transformation techniques including
array access expansion, control-flow linearization and branchless select. We have imple-
mented the tool on LLVM-11 to automatically convert existing source code.

We then conducted experiments on WolfSSL and OISA to examine the accuracy of the
analysis and the effect of the transformations. Our evaluation indicates that our tool can
successfully transform multiple code patterns. However, we acknowledge that certain code
patterns are challenging to transform. Therefore, we also discuss manual approaches and
explore potential future work to expand the coverage of our automatic transformations.
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Chapter 1

Introduction

Outsourced computing provides efficient and stable platforms and services for individuals
and organizations to process data. A common setting is that clients of outsourced com-
puting send sensitive data to service providers and receive the processed results. However,
the underlying software of outsourced computing infrastructure can be malicious or vul-
nerable to external adversaries. Hence client data can be exposed by run-time attacks, or
even more covertly by side-channel attacks. Addressing clients’ concern on sensitive data
leakage is a major challenge in outsourced computing.

As a solution to this challenge, the BliMe [18] hardware extensions enforce a taint
tracking policy to track secret-dependent data and triggers a fault if there is an attempt to
expose secret-dependent data to external observers, via run-time attacks or side-channels
such as cache and timing side-channels. Unlike Fully Homomorphic Encryption (FHE)[20],
BliMe performs computations directly on decrypted data after the data import, bypassing
the high performance overhead caused by computing on encrypted data. Also, BliMe
ensures that decrypted data on server-side is always tagged as tainted and tracked by
the hardware, preventing the potential leakage from vulnerable or malicious server-side
software.

While BliMe hardware provides efficient and secured outsourced computation, its strict
policies pose obstacles for the usability. Most software is not designed to be constant-
time, i.e., avoiding secret-dependent branches and memory accesses. Directly deploying
most software on BliMe hardware incurs frequent faults and weakens the availability of the
software. Some of these faults are not caused by malicious attackers. Also, a portion of
them can be fixed by modifying the code positions that correspond to the faults. Fixing
such code positions can strongly enhance the usability of the BliMe hardware. As manually



finding potential leakages and writing constant-time code is difficult and error-prone, a
compiler-based tool that automatically generates constant-time binaries from the general
source code is required to improve the usability of BliMe hardware. The tool needs to meet
the following requirements:

e The analysis should be able to cover all the execution paths and find all the potential
violations.

e The transformation should transform both the secret-dependent branches and mem-
ory accesses into a constant-time version that is compatible with BliMe.

Prior work has developed tools to automatically transform programs into a functionally-
equivalent constant-time versions. Some of the previous solutions [13][14] cover only
the control-flow related side-channels, and are unable to fix the violations from secret-
dependent memory accesses. SC-Eliminator [53] use static analysis to track the secret-
derived data and fix the secret-dependent data-flow using data pre-loading techniques.
Each lookup table is preloaded before actual accesses so each memory access is a cache
hit. However, BliMe hardware still considers this access a violation. Constantine [9] uses
data-flow and control-flow linearization techniques to remove side-channels. However, it
tracks tainted data using dynamic profiling tools. As a result, it can fail to cover all the
execution paths and miss potential faults when running on the hardware. In addition,
all the existing works require specific hardware such as TSX [50][21]. Therefore, existing
works cannot fulfil all the requirements for compiler support for BliMe hardware. They
either cannot detect and transform some violations or generate executables incompatible
with BliMe hardware or the enforced policy.

As the limitations of prior work show, compiler support to strengthen the usability
of BliMe hardware should use analysis that covers all the execution paths and generates
the code compliant with the BliMe hardware policies. Accordingly, the taint-tracking
analysis should be an analysis that detects all code positions that potentially cause policy
violations when running on BliMe hardware. Also, the transformations should be able to
transform both the secret-dependent branches and memory accesses such that they remain
functionally-same but compatible with BliMe policy.

In this work, we aim to develop a compiler-based tool that fulfils all these requirements:
it utilizes sound static analysis to figure out all the potential violations, and uses control-
flow and data-flow linearization techniques to transform the secret-dependent branchings
and memory accesses to be compliant with the BliMe policy. We also classify programs



that we cannot transform and suggest manual changes and future compiler transformations
as discussion.

We implement the compiler-based tool on LLVM-11. We use SVF [11][2] value-flow
analysis for taint tracking, as it generates sound points-to analysis and inter-procedural
value-flow graph. We then implement our LLVM passes for array access linearizations. We
Also forward-port some Constantine passes for control-flow linearization. We then evaluate
the transformation and analysis by running the transformed results on BliMe hardware.
The tool requires user added annotations to indicate the sensitive data that represent the
sensitive client data while running on the BliMe hardware.

Our main contributions are as follows:

e The design and implementation of a compiler-based tool that detects potential vio-
lations to BliMe policy with static analysis and transforms the code positions with
potential violations into a constant-time/policy-compliant functional-equivalent ver-
sion (Chapter 4, Chapter 5). The tool expands array accesses and some branches, but
cannot transform all the code positions that potentially cause violations on hardware.

e For the code that our tool cannot transform, we propose the classification of the
violations we cannot transform automatically and suggest how to transform them
manually (Chapter 6).



Chapter 2

Backgrounds

2.1 Side Channels

Computer system security has long been threatened by determined and smart adversaries
whose aim is to hijack programs and perform unauthorized behaviors, such as modifying or
exposing sensitive data or disrupting system services. To achieve these goals, adversaries
identify program vulnerabilities such as buffer overflows or use-after-free and exploit them
to alter the normal program control-flow or data-flow. After breaking the normal program
behavior, adversaries can manipulate the program to perform malicious tasks, such as
exposing secret data. For instance, by finding a buffer overflow vulnerability, an adversary
can manipulate control flow to gain shell access using techniques, such as return-oriented
programming (ROP)[10][12]. Even with much more efforts on strengthening the defenses
against such attacks[15], adversaries aiming to leak secrets from a system are increasingly
turning to more covert methods, such as side-channel attacks.

Side-channel attack is a type of the attack in which adversaries observe the secret-
related observable states of a system i.e., side channels, rather than directly accessing
the secret, to leak the secret. For example, in a side-channel attack, the adversary can
measure the power consumption of a RSA decryption [20] to recover the secret key as
the power consumption for a modular exponentiation operation varies depending on the
value of each bit in the secret key. If the secret key bit is 0, then modular exponentiation
operation is only a shift; but if the bit is 1, then an extra multiplication is required. So
the power consumption on encryption on a 1 bit of secret key is more than a 0 bit. In
contrast, traditional run-time attacks tend to directly expose the secret key to peripherals.
While there are various side-channel attacks in modern computer systems, such as cache

4



[22], execution time [27], energy consumption [23] and other microarchitectural [33] side-
channels, we focus on cache and timing side-channels in this thesis. Specifically, we focus
on the timing and cache side-channels stemming from secret-dependent branchings and
mMemory accesses.

Secret-dependent Memory Access. Latency for memory access is a performance
bottleneck in modern CPUs. To mitigate this, a practical approach is to use a cache, a
smaller but faster buffer to store recently accessed data. Accessing the data in the cache
(cache hit) is much faster than fetching the data from memory (cache miss).

When secret-dependent memory accesses exist, attackers can exploit the difference in
memory access time to recover the secret data. For example, the implementation of AES
algorithm uses lookup tables for encryption; the attacker can measure the memory access
time to infer the pattern of secret key. Below is the AES encryption implementation from
WolfSSL [5]. In the code snippet, there are four lookup table (Te) accesses for each si.
Each access is dependent on a value (ti) dependent on the secret key. If ti remains the
same for si in each round of the iteration, the memory access time is much lower because
there are more cache hits. However, if the ti varies, there would be more cache misses,
thus higher memory access time.

for (;;) {
if (--r == 0) {
break;
}

// t0 - t3 are secret-key-dependent

// Memory access Te[i] [GETBYTE(ti, j)] is secret dependent.

s0 = Te[0] [GETBYTE(tO, 3)] ~ Tel[1][GETBYTE(t1, 2)] ~ Tel[2] [GETBYTE (t2
, 1)1 ~ Tel[3][GETBYTE(t3, 0)] -~ rk[0];

sl =

Listing 2.1: Secret-dependent memory access in WolfSSL

Adversaries can passively measure the memory access time [3] to infer the secret bits.
They can also launch active flush+reload[54], prime+probe[36], in which they manipulate
the cache by evicting the stored data and then monitor the memory access behavior.
Data preload is a defense to passive attackers. For the example above, the programmer
can carefully load all the data that can be accessed before actually accessing them for
encryption and decryption. wolfSSL [0] also preloads the Te table to make the memory
access cache side-channel resistant. However, this defense fails to protect the program
against active attackers as active attackers can evict the preloaded data.



Secret-dependent Branching. Branching is the process of selecting one execution
path among several paths that a program can follow based on a condition. In programming
languages, conditional branching is the basis of if-else statements, loops and switches. In
hardware level, branching is implemented as an instruction that takes in a condition and
a jump address. If the condition is true, then program counter (PC) will be updated and
the control-flow will be switched to the jump address. A branch is secret-dependent if its
result depends on a secret condition.

Secret-dependent branches can be exploited if they affect the computation time, branch
predictor [30] or caches. The attacker can use the timing or cache status differences as
a side channel to infer which sequence of branches have been taken, thus inferring the
value of the sensitive data. For example, the listing below is a code snippet of modular
exponentiation, a common component of cryptography algorithms. In this algorithm, exp
is often a sensitive value. However, in this implementation, an attacker can infer the value
of secret bits of exp because when the bit is 1, the program takes more execution time as
an extra multiplication is needed.
uint64_t expmod(uint64_t base, uint64_t exp, uint64_t modulus) {

uint64_t result = 1;
base %= modulus;
while (exp > 0) {
// if the last bit is 1, then multiply and mod needed
if (exp & 1) {
result = (result * base) % modulus;
}
base = (base * base) % modulus;
exp >>= 1;
}

return result;
Listing 2.2: Square and multiplication implementation of modular exponentiation.

Defenses. To prevent such side-channel attacks, one solution is for programmers
to write constant-time programs, of which control-flow and data-flow cannot be secret-
dependent. However, writing constant-time code is challenging and error-prone. Some
existing works employs compiler-based method to automatically transform the program to
be constant-time [9][56][13].



2.2 BliMe

As the demand for computing resources increases, individuals and companies resort to
cloud service providers and outsource data processing. However, outsourced computation
requires the client to send the data to the service provider, hence the confidentiality of
client data becomes a realistic concern. Two major solutions to protect the client data
confidentiality are FHE [20] and Trusted Execution Environment (TEE). FHE performs
computations on client-encrypted data and send back the result, client then decrypt the
received data to get the result. FHE secures the confidentiality but with a high performance
overhead. On the other hand, TEE guarantees data integrity and confidentiality policies on
a specific area of the CPU using hardware. This solution more efficient but still vulnerable
under run-time attacks against TEEs [11][39].

Blinded Memory (BliMe) [15] is an recently proposed architecture aiming to efficiently
prevent the leakage of client data in outsourced computation settings. BliMe enforces the
policy with hardware to prevent secret-dependent data from being observable in plaintext.
It protects the confidentiality even under run-time attacks and side channel attacks while
being not expensive as FHE, as it computes directly on data rather than encrypted data.

The workflow of BliMe hardware can be summarized as data import, safe computations
and data export. In the context of BliMe hardware, blinded means not observable. BliMe
hardware imports the encrypted data from the client, decrypts the data and blinds the
memory that contains the plaintext data. After data import, arbitrary safe operations
are allowed on blinded data. safe operations are defined as operations that do not expose
data to observable status, such as arithmetic operations. To guarantee the confidentiality
of data during computation, BliMe hardware uses taint-tracking and memory tagging to
track the blinded data. The rule of the BliMe taint-tracking policy is that, the outputs of
operations using blinded inputs are also tagged as blinded. Before blinded data flows to
an observable output, a hardware fault will be triggered to prevent the potential leakage.
Once the hardware completes all the operations, data can be exported with an encryption.
To securely support such functionality, a system using BliMe hardware consists of the
following components:

1. Hardware Security Module (HSM): a fixed-function hardware module that pro-
vides remote attestation and key agreement utilities. In remote attestation, HSM
verifies that the server is using BliMe hardware. Then HSM makes key agreement
with the client and stores the key into the encryption engine via a secure channel.

2. BliMe encryption engine: an encryption engine that provides atomic data import
and export operations for client data. Internally, each atomic import/export consists
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of two operations: 1) decryption/encryption using the key from HSM; 2) data blind-
ing/unblinding. Atomic operations ensures that plaintext data are guaranteed to be
blinded, while the unblinded data are encrypted thus confidential even if exposed to
malicious adversaries.

3. Application Software: BliMe provides environments for both TEE and Rich Execu-
tion Environment (REE) application software. With all the memory dependent on
client data tagged as blinded, the operations that potentially expose plaintext client
data always trigger faults. As a result, the computations are guaranteed to be safe
from data leakage.

The definition of observable state determines the categories of data leakage attacks that
the BliMe hardware can defend against. In BliMe, observable states are states that can be
inferred or observed by external observers such as the value of Program Counter (PC) and
cacheline status, peripherals, the addresses of memory operations sent to main memory,
etc. Since PC, cache status and other components cannot be marked as blinded during
the taint tracking, they are also defined as observable state. Any attempts to change the
PC and cache status based on blinded data will cause fault as a result. Therefore, BliMe
hardware is also resilient against timing and cache side-channel leakages.

2.3 LLVM

2.3.1 LLVM IR

LLVM[17][29] project is a collection of modular compiler components, toolchains and li-
braries. LLVM divides compilation into three phases: front-end, Intermediate Represen-
tation (IR) optimization and back-end. A compiler under LLVM infrastructure typically
follows the highly-modular three-phase design. The front-end takes the input source code
and outputs the LLVM IR. The optimizer analyzes and transforms the IR code with passes
to improve the performance or strengthen the security. The back-end code generator gen-
erates machine code for target architectures.

LLVM IR is the key to the three-phase modular design. A substantial number of
LLVM core libraries are designed to generate, process and translate the LLVM IR code.
It not only acts as the common language connecting the front-end and the back-end but
also serves as the interface for most optimizations. LLVM IR adopts the Static Single
Assignment (SSA) form in its representation. SSA form ensures each variable or value in



the program is assigned only once throughout its lifetime. In LLVM IR’s SSA form, every
register is defined exactly once. The adoption of SSA form makes the def-use relationship
clear and simplifies the analysis such as data flow analysism thus enhancing the efficiency
of code transformation and optimization. In addition, LLVM IR preserves some control-
flow structures and data structures information from source languages for analysis and
optimization. LLVM IR can be of three functionally equivalent representations: in-memory
compiler IR, human readable assembly language representation and bitcode representation
(more compact but not human-readable).

We explain three IR concepts to help understanding this thesis:

e GetElementPointer (GEP). GEP is an instruction that calculates the memory
access address in IR. It calculates a memory access address based on the base pointer
and indices.

e Phi. Since IR is of SSA form, it is impossible to assign one register twice. Phi is
the instruction that merges the control flow and allows different assignments to the
same register when coming from different control-flows.

e Metadata. Metadata refers to additional data attached to the IR code that indi-
cates the optimization hints, attribute, etc. For this thesis, metadata is a hint for
transformations.

2.3.2 LLVM Pass Manager

Same as the modular design of the whole compiler, the optimization phase consists of indi-
vidual passes that can be flexibly configured and combined to serve different optimization
purposes. LLVM introduces pass manager to orchestrate the passes. Pass managers sched-
ule the passes and manage the analysis results. LLVM opt command-line tool utilizes pass
manager to run customized optimizations on the IR files.

2.4 Constantine

Constantine[9] is a compiler-based tool that automatically transforms programs into constant-
time versions. Constantine hardens the programs using comprehensive control-flow and
data-flow linearizations.



To identify the secret values, i.e., the sensitive values that should be protected, Con-
stantine hooks the input functions and marks the input values as secret. It then employs
DataFlowSanitizer (DFSan), a generic dynamic data flow analysis tool for LLVM, to track
the dependencies of secret data by profiling the program. Through this process, Constan-
tine takes in an executable and a profiling suite consisting of well-crafted input data to
cover the execution paths, outputting a list of secret-dependent data locations.

With the secret-dependent data locations identified, Constantine linearizes the branches
and memory accesses dependent on these data. Prior to linearization, Constantine applies
normalization passes to normalize the IR of the program. These passes transform indirect
calls into branches, lower switches into if-else statements, and unify function entry- and
exit-points, resulting in a normalized code with single-entry and single-exit regions for
linearization. Normalization simplifies later control-flow linearizations.

For branches, Constantine removes conditional branches and forces the program to
execute both branches. To ensure that the original program functionality is maintained,
Constantine introduces a taken predicate to indicate whether the branch is taken. All
data accesses within the branch are altered based on the taken predicate. When taken
is false, memory accesses are executed as dummy operations, as their results will not be
selected and will have no effect on the program.

For variable-size loops, Constantine produces estimated loop-bounds with profiling.
The loop only exits when it has reached the condition to exit and reached the loop-bounds.
The constant-time guarantee is built on the coverage of the profiling suite and the profiling
result.

For memory accesses, Constantine accesses possible objects of a memory access and
stride the array cache lines. Constantine also maintains a list of live objects to reduce the
performance overhead.

2.5 SVF

SVF[2][11] is a scalable and well-maintained inter-procedural static analysis tool. SVF
provides comprehensive APIs to generate useful graphs for program analysis such as value-
flow graphs, call graphs and control-flow graphs and several pointer analysis.

SVF analysis takes LLVM bitcode as input. Before the graph generation, SVF builds
Program Assignment Graph (PAG) by converting the LLVM IR into PAG nodes. PAG
nodes represent the pointer or the object, while PAG edges represent the load, store, copy,
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addr, GEP, call and return instructions in LLVM. SVF solves the constraint of PAG edges
to build the points-to sets. The user can decide the analysis to use by implementing or
using different solvers.

SVEF then constructs the memory SSA based on the points-to information. SVF anno-
tates each load, store, callsite and the entry and exit points of functions with the def-use
of the address-taken variables. For example, a load p = *q is annotated with the use of all
the points-to objects of pointer . For inter-procedural def-use for address-taken variables,
SVF annotates the callsites, entry points and exit points with def-use of non-local variables
and parameters.

Finally, SVF constructs the value-flow graph called SVFG by connecting the def-use
chains of top-level and address-taken variables. The edges thus represent the value-flow.
Since LLVM IR is in SSA form, the def-use chains of top-level variables (IR registers) are
already available before the analysis. These top-level variables are connected with direct
edges by def-use chains from LLVM. Meanwhile, address-taken variables are connected
with indirect edges based on the def-use chain of the constructed memory SSA.

Except for the nodes representing the instructions in LLVM IR, SVFG has memory
region nodes such as Actualln (entry node of callsite), ActualOut (exit node of callsite),
Formalln (entry node of defined function) and FormalOut (exit node of defined function).
They not only represent the function parameters and return values of the top-level vari-
ables, but also the pointer parameters to the address-taken variables and other global
variables involved into the def-use chain in the function. For example, in the following
code snippet, SVF constructs the value flow from global arr to the Actualln node of
writeGlobal, and then to the ActualOut node of writeGlobal.

int global_arr [1024];
void writeGlobal (char* from_buffer) A{

for (int i = 0; i < 1024; i++)
global_arr[i] = from_buffer[i];

int main(int argc, char* argv[]) {

char buffer [1024];
/* write the local buffer */

/* write global buffer with local buffer x*/
writeGlobal (buffer) ;

11



/* use global buffer */
useGlobal () ;

return O;

Listing 2.3: Code example to explain SVFG ActualIn and ActualOut nodes.

i
|
|
\J
Actual OUTSVFGNode ID: 79 at callsite: call void @writeGlobal(i8* %arraydecay)]

Formal OUTSVFGNode ID: 71 {fun: main}RETMU(2V_2)

ActualINSVFGNode ID: 76 at callsite: call void @useGlobal() ptsi6 )
Wy

1
i
i
|

v

Figure 2.1: Part of the SVFG for Listing 2.3
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Chapter 3

Problem Description

3.1 Problem Statement

As discussed in 2.2, based on the designed security policy, BliMe triggers faults on secret-
dependent branching or memory access instructions, and end the execution. For a program
to run on BliMe, it must be side-channel resistant with respect to blinded input data.
However, writing constant-time code manually requires strong background knowledge on
side-channel attacks and careful consideration. Even mature cryptography libraries such
as OpenSSL [5], in which developers put considerable efforts to detect and eliminate side
channels, still suffer from cache side channels [3]. As a result, it is necessary to explore
compiler supports to automatically detect the potential violations and transform the code.

In this work, we aim to improve the usability of BliMe hardware with compiler support.
The compiler support should enumerate the potential code positions that cause unintended
violations on BliMe hardware and automatically transform the IR code to avoid violations
when running on BliMe hardware. The program analysis must cover all the execution
paths, while compiler transformations should strive to transform both secret-dependent
branchings and memory accesses to be constant-time. There have been several compiler-
based transformation tools to make the code constant-time. However, they either use an
analysis that is unable to cover all the execution paths, or attempt to fix only specific types
of side-channels.

Besides, existing solutions are incompatible with BliMe due to a common issue: pro-
grams that appear constant-time to software can still potentially violate the BliMe policy
and lead to faults. The root of this issue lies in the difference between the hardware and
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the program analysis tools in their perspectives on the software. Program analysis tools
have a more comprehensive understanding of the analyzed software, including cache access
patterns throughout the entire program, program semantics, etc. In contrast, the hardware
is limited to knowledge about the executed instructions. For example, one approach to
make the secret-dependent cache accesses constant-time is to preload the data that can be
potentially used in a memory access into the cache before accessing the secret-dependent
positions. This modification ensures constant-time memory access since the access will
always be a cache hit. However, BliMe is agnostic to the the overall memory access pat-
tern. Instead, it identifies the access as a violation since the access instruction itself is
secret-dependent, even if the memory access is constant-time from a software perspective.
Hence we need to consider the discrepancies of the observation of the hardware and soft-
ware analysis tools or programmers to ensure that the transformed code does not violate
the BliMe policy, i.e., compatible with the BliMe policy.

3.2 Requirements

Based on the investigation of existing tools that transform code to be constant-time, we
have proposed the following requirements to achieve the goal of enhancing BliMe’s usability:

3.2.1 Analysis Requirement

R-1 Soundness: code reported as safe for BliMe by the analysis should have no violations
during the run-time.

3.2.2 Transformation Requirements
R-2 Correctness: the functionality of the code after the transformation should remain the
same as before.

R-3 Minimal source code changes: the transformations should only require changes to
the source code for the purpose of identifying sensitive data and nothing else.

R-4 Coverage: the compiler transformation should be able to cover a wide range of pro-
gram patterns. If unable to transform some code patterns, manual approaches to transform
such code should be provided.
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3.2.3 Compatibility

R-5 Compatibility with RISC-V: the compiler in this work must generate RISC-V exe-
cutable that is compatible with BliMe hardware.

R-6 Compatibility with BliMe taint tracking policy: the generated executable should
run without unintended violations on BliMe hardware.
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Chapter 4

Design

In this chapter, the term user refers to the user of our compiler-based tool, i.e., the user
that uses our tool to enhance the compatibility of their software on BliMe.
trated in Figure 4.1, the workflow of our compiler-based tool begins by feeding in source
code from users, where blinded user input data are explicitly annotated as tainted. Our
taint tracking component then operates on the IR of the code, going through the data
flow and identify dependencies on user-marked tainted data. Subsequently, our tool uses
transformations including array access expansion, Control Flow Linearization (CFL) and
branchless select to modify the IR code to make programs constant-time. The bitcode

can then be compiled into executables for BliMe.

Source ( )
Code
+ 1 Value-f}ow

1 Tracking |
User : :
Annotations 1 |
1 1
1 1
Input W Taint Tracking |

Function

Cloning

Array
Access CFL
Expansion

select
Transformation

As illus-

M Executables

Transformations
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Figure 4.1: The overall workflow of our compiler-based tool.



4.1 Taint Tracking

The goal of our analysis is to identify any data- or control- dependencies on input data
that will be blinded at run-time in BliMe hardware. We use compile-time taint tracking
technique to achieve this goal.

Taint tracking/analysis is the technique that tracks dependencies of the sensitive or
untrusted data, i.e., taint, and their interactions with other components of the program,
such as variables, control-flow, etc. In the context of taint tracking, taint sources are the
starting points of taint propagation, which in our case, means the data expected to be
client input data to BliMe. Taint propagation refers to the process that taints spread in
the program. Tainted data are data expected to be blinded after taint propagations.

When describing the taint tracking we designed and implemented, we use terminologies
from taint analysis, such as taint source, taint propagation, etc. We require users to
annotate expected client input data, which should be blinded data on BliMe hardware.
Annotated blinded data are taint sources for taint tracking.

4.1.1 Value-Flow Tracking

As explained in Section 2.2, BliMe employs hardware taint-tracking at runtime to enforce
a policy that prevents blinded data (i.e., secret-dependent data) from influencing the PC,
cache status, or directly observable output. Our goal is to track secret-dependent data in
programs using our compiler-based tool to prevent violations caused by secret-dependent
memory accesses and branches. As a result, our compiler taint-tracking policy should
resemble the taint-tracking on the hardware level, i.e., the output of an instruction with
tainted input(s) is also tainted.

To achieve this, we utilize an inter-procedural value-flow graph, which is a directed
graph representing program entities such as variables, function calls, etc., with edges cap-
turing the def-use relationships between these entities. Figure 4.2 depicts an example pro-
gram with def-use relationships between variables and its corresponding inter-procedural
value-flow graph. In this graph, we can observe that the variable num is defined by the
value of secret through a function call to update.

The analysis on def-use relationships allows us to identify data dependent on the taint
sources. In our taint analysis, taint propagates through the edges on the value-flow graph
via a traversal of the value-flow graph.
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update(int* addr, int value) { secret

*addr = value ™ 2; l

}

Function update

int num = 10;
int secret; l
update(&num, secret);

num

Figure 4.2: An example of a program with def-use relationships between variables and its
corresponding value-flow graph.

4.1.2 Function Cloning

For programs with multiple calls to the same function, considering all these calls as the
same instance leads to a loss of context-sensitivity and reduces the analysis accuracy.

In Figure 4.3a, function updateBuf is called twice. The main function calls the taint
function to taint the taintBuf array, followed by a call to the updateBuf function, which
updates the buf array using arithmetic operations. In the context-insensitive analysis
scenario, the output of updateBuf, namely the elements in buf, becomes tainted. Con-
sequently, when another function (function A) calls updateBuf with an untainted array
(cleanBuf) as buf, cleanBuf becomes tainted as well, leading to a tainted return value
from A. This causes the taint propagation to continue excessively, resulting in over-tainting.

Also, transformations to secret-dependent memory accesses and branchings will in-
troduce performance impact, so reducing these transformations on unnecessary positions
improves the performance. In Figure 4.4, function main calls accessComp with different
combinations of tainted arguments. In the first call, both arguments are tainted; while in
the second call, only the second argument is tainted. Protecting both sensitive memory
accesses in both function calls is more costly than required to prevent data leakage, as the
first memory access in the second call doesn’t require protection.

Having different versions of the same function for different combinations of taint status
of arguments can help solve the problems above. We make use of function cloning for
this purpose. Function cloning is the technique that generates multiple copies of the same
function based on certain properties of the function, such as the context, properties of the
input/output, etc. Function cloning technique was used in program analysis to improve
the accuracy [9]. As for the problems above, function cloning improves both the analysis
accuracy and performance.
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int main() {

char taintedBuf[256]; int AQ) {
taint(taintedBuf); char cleanBuf[256];
updateBuf(taintedBuf); updateBuf (cleanBuf);

return 0; return cleanBuf[0];
¥ ¥

Void updateBuf(cm‘“M[) {
// arithmetic operations on buf

}

(a) Before the function cloning: taint propagates
from updateBuf function to A function.

main() {
char taintedBuf[256]; AQO) {
taint(taintedBuf); char cleanBuf[256];
—cloned_updateBuf (taintedBuf); updateBuf(cleanBufS‘
- H
) return @; return cleanBuf[@];
¥

1 I

updateBuf(char* buf) |

| __cloned_updateBuf(char* buf) |

(b) After the function cloning:

Figure 4.3: Function cloning can improve the accuracy of the analysis.
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int accessComp(int opl, int op2) {
return storeStruct[opl] + storeStruct[op2];

}

int storeStruct[256];

int main() {
int a = taintedA;
int b = taintedB;
int vall = accessComp(a, b);
int val2 = accessComp(l, b);
// Other operations

int _ cloned_accessComp.2(int opl, int op2) {
return storeStruct[opl] + storeStruct[op2];

}

S

int _ cloned_accessComp.1(int opl, int op2) {
return storeStruct[opl] + storeStruct[op2];
}

Figure 4.4: Function cloning can improve the performance of transformed program. Mul-
tiple versions of cloned functions adopt different transformations. Underlined function
arguments are tainted; underlined memory accesses are secret-dependent and require trans-
fomations.

As shown in Figure 4.3b, after the function cloning, only the __cloned updateBuf func-
tion continues the taint propagation. The output of updateBuf is no longer tainted, and
consequently, the return value of function A is also untainted. This prevents unnecessary
taint propagations and reduces over-tainting.

Also, for the example in Figure 4.4, two versions of cloned function corresponding to
two function calls in main function are generated after employing the function cloning.
Only one memory access in the function __cloned accessComp.1 should be transformed,
which reduces code positions that should be transformed and improves the performance.
Besides, if there is a call the accessComp without tainted argument, none of the memory
accesses needs to be transformed.

We combine function cloning with value-flow tracking for our analysis. Using a value-
flow graph, we propagate taint while identifying function calls containing tainted argu-
ments. These function calls should call cloned variants of the underlying functions. There-
fore, we clone the called functions of these calls. In other words, we only clone functions
that are called with tainted arguments. Tainted arguments of cloned functions are marked
as blinded and also serve as taint source for the next round of analysis. We clone these
functions until no further cloning is necessary. For library functions, we do not clone them
but identify output value as sensitive if they have sensitive inputs. Though cloned functions
expand the analyzed program, function cloning brings benefits in both analysis accuracy
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and performance.

Algorithm 1: The algorithm that collects taint sources from user annotations at
the beginning.

Input: A program module M with user-marked tainted data

Output: TaintedV alues: a set that contains tainted values. Tainted Pointers: a

set that contains tainted pointers. TaintSource: a set that contains
taint sources.

1 Function CollectTaint(M ):
2 TaintSource, TaintedPointers, TaintedValues = {};
3 foreach G'V : M.GlobalVariables do
4 if GV.isMarkedBlinded then
5 | TaintedPointers.add(GV);
6 foreach Func : M.Functions do
7 foreach Para : Func.Parameters do
8 if Para.isMarkedBlinded then
9 if Para.isPointer then
10 L TaintedPointers.add (Para);
11 else
12 | TaintedValues.add(Para);
13 | TaintSource = TaintedPointers U Tainted Values;

4.1.3 Taint Tracking Overall Design

We combine two parts in this section together to form the overall design of our taint-
tracking.

At the start of the taint tracking analysis, our analysis tool traverses through each

global variable and function parameter in the program module to gather all the blinded
data and pointers.

Blinded data refers to user-annotated non-pointer data that are expected to be blinded
on the hardware and serve as direct taint sources. Blinded pointers, on the other hand,
are user-annotated pointers whose underlying non-pointer data should be used as blinded

data. They are considered as TaintedData and TaintedPointers accordingly in the taint
tracking.
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We define the process above as GetTaintSources in Algorithm 1, which will be used in
other algorithms below. GetTaintSources accepts a program module as input, and outputs
TaintSource, which contains two sets of data: TaintedData and TaintedPointers.

After obtaining the output of the function in GetTaintSources, we do the taint tracking
with an inter-procedural value-flow graph, while generating a set of potential callsites that
should be considered during the function cloning. We only clone a function if it satisfies
both conditions below:

e The function is called with tainted pointers or data as actual arguments.

e The tainted argument is not the output of a function that should be cloned but not
cloned yet.

The first condition is set because as discussed in Section 4.1.2, we clone functions to
differentiate various combinations of taint status of arguments.

The second conditions is important for the accuracy of the analysis. For example,
we expect function cloning to work as Figure 4.3 to improve the accuracy. If the second
condition is not considered, since cleanBuf is tainted during the taint tracking, A uses
the cloned version of updateBuf after the function cloning. The result of function cloning
in this case is shown in Figure 4.5. Both functions call the cloned updateBuf. Function
cloning fails to differentiate different contexts, thus cannot bring the benefits described in
Section 4.1.2. However, if we consider the second condition (assuming taint function does
not need to be cloned), then the call in function A should not be considered as function
cloning candidates, since the argument is tainted by updateBuf, which should be cloned,
but not cloned during the taint tracking.

main() {
char taintedBuf[256];
taint(taintedBuf);
__cloned_updateBuf(taintedBuf);
return 0;

AQ) {
char cleanBuf[256];
__cloned_updateBuf(cleanBuf);
return cleanBuf[@];

}

}

__cloned_updateBuf(char* buf) I——

Figure 4.5: If the second condition is not considered, the call to updateBuf in function A
will call the cloned version.

Taking both taint tracking and function cloning preparation into consideration, we have
Algorithm 2.
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Algorithm 2: Taint tracking that propagates taint while collecting functions to
be cloned.

[N R R

10
11
12

13

14

15
16

17
18

19
20
21

Input: A program module M with user-marked tainted data
Output: TaintedCallBases: a set that contains function calls that should be

considered for function cloning. TaintedV alues: a set that contains
tainted values. T'ainted Pointers: a set that contains tainted pointers.

Function TaintTracking(M ):
VFGNodeWorkList = queue();
GenerateVFG(M);

Collect Taint(M);

foreach TaintNode : TaintSource do
L VFGNodeWorkList.push({nil, GetVFGNode(TaintNode), false});

while VFGNodeWorkList not empty do

PredNode, CurNode, ReachedFuncCall = VFGNodeWorkList.front();
VFGNodeWorkList.pop();

/* Add VFGNode into the TaintedFuncCall set if it should be
considered during the function cloning. */

if CurNode.isCallSiteNode() and ReachedFuncCall is false then
ReachedFuncCall = true;

L TaintedCallBases.insert(CurNode);

/* Collect tainted pointers and values. */
if CurNode is StoreNode and CurNode.StoredValue() in (Tainted Values or
TaintedCallBases) then

L TaintedPointers.add(CurNode.Stored Value() );

else if CurNode is Pointer and PredNode not in Tainted Values then
L TaintedPointers.add(CurNode);

else
L Tainted Values.add(CurNode);

/* Add successor nodes into the VFGNodeWorkList. *x/

foreach Successor: curNode.successors do
if {CurNode, Successor} not visited then
L VFGNodeWorkList.add({CurNode, Successor, ReachedFuncCall});
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At the beginning of each round of taint tracking, Algorithm 1 is called to generate a list
of taint sources. A queue consisting of tuples is then built for a breadth-first traversal. The
pushed-in tuples contain the information including the node that propagates taint to the
TaintNode and whether the taint tracking has reached a function call. At the beginning,
all the TaintNodes are taint sources, so the predecessor does not exist. Also, the taint
tracking has not reached any function calls, so the last value should be false.

Then the taint tracking traverses the value-flow graph. It checks whether the current
node (the node popped from the worklist queue) should be considered during the function
cloning. If a call should be considered for function cloning, then function calls that are
dependent on its output should not be the candidate for function cloning. So the algorithm
will set the ReachedFuncCall value to be true to stop adding successors of this function
into TaintedCallBases.

The taint tracking algorithm distinguishes between a tainted pointer and a tainted
value (data) to add nodes into different sets. There are two cases where nodes are added
into the TaintedPointers set:

e The current node is a store node, and the stored value is a tainted pointer or tainted
value, then the address of this node is added into tainted pointer set.

e The current node is load, arithmetic operations, assignment, etc., and the result is a
pointer, while the predecessor is not a tainted value.

Other nodes are added into the TaintedValue set.

Finally, each successor nodes of current node in the value-flow graph are added into the
VFGNodeWorkList if the combination of it and the current node is not visited before.

The function cloning pass iteratively calls TaintTracking, as illustrated in Figure 4.1,
and does function cloning until no function cloning can be made. As presented in Al-
gorithm 3, it checks arguments of callbases in TaintedCallBases to see if any tainted
arguments are not marked by the user or the function cloning. If there is, then it calls
CloneFunction with the callbase and a set of arguments that should be marked as blinded.
CloneFunction gets a copy of called function. In addition, it changes the name with a
numeric suffix and a prefix to indicate that this is a cloned function. Also, it marks the
formal parameters corresponding to ChangedArgs to be blinded, i.e., taint sources for the
next round of taint tracking.

24



Algorithm 3: Taint tracking with function cloning.

© o N O W A W N

10
11
12
13
14

15
16

Input: A program module M with user-marked tainted data. TaintedCall Bases:
a set that contains function calls that should be considered for function
cloning. T'aintedV alues: a set that contains tainted values.
TaintedPointers: a set that contains tainted pointers.

Output: A program module M with functions cloned.

Function TTFC(M ):
Changed = true; while Changed do

TaintTracking(M); Changed = false;
foreach Instr : TaintedCallBases do

ChangedArgs = {};
foreach Arg : Instr.Args do
if Arg in TaintedValues and Arg not marked blinded then
Changed = true;
ChangedArgs.add(Arg);

Ise if Arg.isPointer then
foreach Obj : Arg.pts do
if Obj in TaintedValues then
Changed = true;
L ChangedArgs.add(Arg);

@

if not ChangedArgs.empty() then
L CloneFunction(Instr.CalledFunction, ChangedArgs);

After the combined taint tracking and function cloning, TaintTracking can be called

again to generate a list of TaintedValues. Instructions using elements in the TaintedValues
for branching or as memory access addresses can be considered as potential violations.

4.2

Transformations

Our transformations include array access expansion, Constantine CFL and branchless se-
lect. We use array access expansion to reduce secret-dependent memory accesses and use
Constantine CFL to reduce secret-dependent branchings. As these two transformations
introduce select instructions that use secrets as conditions, which will be lowered to secret-
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dependent branchings in RISC-V assembly, we also need transformations to make these se-
lect instructions branchless. Our transformations does not cover all the code patterns, such
as secret-dependent memory accesses that are not on arrays, loops with secret-dependent
sizes, etc.

4.2.1 Array Access Expansion

As discussed in Section 2.1, using a secret as index to access array can expose the secret to
cache side channel. Our design expands each secret-dependent array accesses by accessing
each of the elements, but only writing the value when the correct index is accessed. Figure
4.6 shows the main idea of array access expansions for load and store when the index is a
secret. After the expansion, all the array accesses in the program are not secret-dependent.

For a secret-dependent load, we read each element in the array and select the value
only when the index is secret. For a secret-dependent store, we store the value only when
the index is secret. Otherwise, the original value is stored.

array[10]; for (idx = @; idx < 1@; idx++)

val = array[secret]; val = select(idx == secret, array[idx], val);
array[10]; - vals for (idx = @; idx < 1@; idx++)

array[secret] = val; array[idx] = select(idx==secret, val, array[idx]);

Figure 4.6: Array access expansion on secret-dependent load/store: read all the elements
in the array and load/store only the element in the correct index.

With information from taint tracking, our array access expansion pass walks through
memory access instructions in the program. If the address of memory access instruction
can be found in TaintedValues set and the memory access is an array access, then this
access is expanded.

There are also special cases where array accesses are on multi-dimensional arrays and
there are multiple secret-dependent indices. In this case, we iteratively expand each secret-
dependent addresses following the main idea described in Figure 4.7. We first expand the
access dependent on secretB, which generates a new secret-dependent access, but with
only one secret index secretA. We then expand the new memory access in the same manner
as before.
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array[10][20][5];
val = array[secretA][2][secretB];

for (idx = ©; idx < 5; idx++)
val = select(idx == secretB, array[secretA][2][idx], val);

for (idxB

= @; idxB < 5; idxB++) {
for (idxA =

9; idxA < 10; idxA++) {
tempVal = select(idxA == secretA, array[idxA][2][idxB], tempVal);
valB = select(idx == secretB, tempVal, val);
}
}

(a) Expansion for multi-dimensional array load.

array[10][20][5];
array[secretA][2][secretB] = val;

I

for (idx = ©; idx < 5; idx++)
array[secretA][2][idx], = select(idx == secretB,
val, array[secretA][2][idx]);

for (idxB = @; idxB < 5; idxB++) {
for (idxA = ©; idxA < 10; idxA++) {
tempVal = select(idxA == secretA, val, array[idxA][2][idxB]);
toStore = select(idxB == secretB, tempVal, array[idxA][2][idxB]);
array[idxA][2][idxB] = toStore;
}
1

(b) Expansion for multi-dimensional array store.

Figure 4.7: Multi-dimensional array secret-dependent access expansion.
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4.2.2 Control-flow Linearization

For control-flow linearization, we make use of Constantine CFL functionalities. As dis-
cussed in Section 2.4, Constantine linearizes the control flow to be branchless. An example
in Figure 4.8 describes the main idea of Constantine CFL.

When having a sensitive condition for branching, Constantine removes all the branches.
Transformed programs complete all the operations on both taken and non-taken branches.
To keep the functionality of the original program, all the operations only affect the virtual
registers of LLVM IR until exiting both branches.

At the exit point of branches, transformed programs select the result to be effective
with a constant-time select (ct_select). Effective results then flow to memory and virtual
registers that are used later.

Also, address calculations are replaced with a constant-time select based on the taken
condition. The path that is not taken get a dummy address in address calculations. Load-
/stores using these selected addresses will be wrapped to access the same objects on both
take /not-taken branches.

taken® = incoming taken;
takenl = condl && taken®;
int val; val_condl = a;
if (condl) {
val = a; taken2.1 = !condl && cond2 && taken®;
} else { val_cond2.1 = b;
if (cond2) {
val = b; taken2.2 = !condl && !cond2 && taken®;
} else { val_cond2.2 = c;
val = c;
} val cond2 = ct_select(taken2.1, val cond2.1,
} val_cond2.2);
arr[@] = val;
val

ct_select(takenl, val_condl, val_cond2);
ptr = ct_select(taken®, &arr[0], dummy_addr);
ct_store(ptr, val);

Figure 4.8: Control-flow linearization of Constantine.

We employ the control-flow linearization passes from Constantine. Constantine records
the control-flow instructions that should be tainted by dynamic profiling and marks these
instructions with metadata. To provide information to Constantine passes, we mark all
the branches with conditions in the TaintedValues in the same style as Constantine.
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4.2.3 Branchless Select

Though select can be lowered as branchless cmov in x86 architecture, it still generates
branch instructions in RISC-V architecture. We refer to the linearization in [51], which
transforms a select into branchless arithmetic operations.

A select(cond, valTrue, valFalse) outputs valTrue if cond is true, valFalse if
cond is false. Each select instruction in the program is transformed to be the branchless
select as shown in Listing 4.1.

neg = -cond;

/ *

Extend the negated boolean cond to be the same size of values.

1 -> 111....1

0 -> 000....0

*/

extend (cond, sizeof(valTrue) ;

/ *
If cond is true, neg & (valTrue ~ valFalse) ~ valTrue = valTrue.
If cond is false, neg & (valTrue ~ valFalse) ~ valTrue = valTrue ~

valFalse ~ valTrue = valFalse.

*/

return neg & (valTrue ~ valFalse) ~ valTrue;

Listing 4.1: Linearized branchless select.

The pass that generates branchless selects runs after other transformations to handle
select instructions generated by transformations.
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Chapter 5

Implementation

We implemented our compiler-based tool on LLVM-11. We extended Clang [10] front-
end with a new attribute to allow user annotations of blinded data and pointers. We
implemented taint tracking analysis, array access expansion and branchless select as
LLVM passes. For taint tracking, we utilize the SVF library [2] to generate inter-procedural
value-flow graph. Also, we forward-ported Constantine passes to LLVM-11 to utilize its
CFL passes.

The workflow for using our tool is described in Figure 5.1. The input to the compiler
should be the source code with user annotations on blinded data. All the source code
are then put into tools such as Whole-Program LLVM (WLLVM)[37] to build a whole-
program LLVM bitcode file, which allows using passes on the whole-program. We then
utilize LLVM opt tool to apply analysis and transformation passes on the bitcode. The
analysis will produce a list of code positions potential violations that cannot be eliminate
after all the code transformations, which can be used as a reference for manual changes.

The transformed code is then feed into clang to generate the executable compatible with
RISC-V.

5.1 Taint Tracking

5.1.1 Taint Source Annotation

As described in Section 4.1, we require users to annotate global variables and function
parameters to indicate taint sources. We add a Clang attribute __attribute__((blinded))
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Figure 5.1: Workflow of our compiler-based tool.

to the front-end so users can mark blinded data and pointers with this attribute. This new
attribute can be added to global variables and function formal parameters. Users can mark
both non-pointer data and pointers, as shown in Listing 5.1. In IR code, attributes can be
retrieved using LLVM hasAttribute() APIL

e Non-pointer blinded data: the marked data will be the taint sources, as shown

in Line 2 of Listing 5.1.

e Blinded pointers (also the nested pointers): the data pointed by the pointer
are taint sources. Intuitively, we assume that users do not intend to directly mark an
address as blinded, as blinded address cannot be referenced for load and store when
BliMe policy enforced. We always treat the first level of non-pointer data as blinded

data, as shown in Line 9 of Listing 5.1.

Cloning
Source Code ( )
+ Bitcode with » Constantine CFL Passes
Taint Tracking |—{ Transformation Pz.usses
User | Pass with SVF + Array Expansion
Annotations : + Branchless select
|
|—- WLLVM |
I opt
|
|
|

Analysis and Transformations

/* Global variable keyNum is blinded data. */

__attribute__((blinded)) keyNum;

/* Global variable blinded_ptr_2 is a blinded pointer.
__attribute__((blinded)) int** blinded_ptr_2 = ptr;

/* Both blinded_ptr_1 and blinded_ptr_2 are not blinded data,

pointer. */

int* Dblinded_ptr_1 = *blinded_ptr_2;
/* blinded_1 is regarded as blinded data,

analysis. */
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9

int blinded_1 = *blinded_ptr_1;

Listing 5.1: Example: user annotations on blinded data and pointers.

5.1.2 Taint Tracking

We rely on SVF to build points-to set and value-flow graph and added SVF' library into
LLVM-11 framework. Then, we implemented the BlindedTaintTracking pass using the
functionality from SVF library. BlindedTaintTracking pass is an analysis pass that
implements the Algorithm 2, which can be invoked by other passes to provide analysis
results.

Our implementation generates SVF analysis results including points-to analysis, PAG
and SVFG when running the analysis. Listing 5.2 shows the code that build SVFG and
uses of each analysis.

// Build SVFModule with the program module M.

SVF ::SVFModule* svfModule = SVF::LLVMModuleSet::getLLVMModuleSet ()->
buildSVFModule (M) ;

// Build PAG, which is used when converting between SVFG nodes and
LLVM values.

SVF::PAGBuilder pagBuilder.

pag = pagBuilder.build(svfModule) ;

// Build Andersen’s Analysis, which is used to generate SVFG.
Andersen’s analysis also helps in function cloning.

ander = new SVF::Andersen(pag);

ander ->analyze () ;

// Build value-flow graph.

SVF::SVFGBuilder svfBuilder (true) ;

svfg = svfBuilder.buildFullSVFGWithoutOPT (ander) ;

Listing 5.2: Code for building SVFG.

We implemented the algorithm described in Algorithm 2. At the start point of the
BlindedTaintTracking pass, all the analysis results, including taint information and
SVF analysis results are cleared. It then builds SVFG, as described in Listing 5.2 and
collects taint sources by checking the blinded attributes of function parameters and
global variables. It then goes through a breadth-first traversal to the SVFG to build
the TaintedValues, TaintedObjIDs and TaintedCallBases sets.

Though SVF handles value-flow in most LLVM IR instructions, the flow from the
condition to the result of select instructions is not reflected. However, it should be
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considered as our branchless select generates an output dependent on the condition. As
a result, we also add this dependency during the analysis with the method similar to Line
19-21 in Algorithm 2. As shown in Listing 5.3, since LLVM IR by design preserves def-use
relationship for registers, we check all the users of tainted data and propagate to a user if
it is a select instruction and uses tainted data as condition.

for (auto valUser : valNode->users()) {
Value* NValUserVal = dyn_cast<Value>(valUser);
if (isa<SelectInst>(NValUserVal)) {
// Convert a LLVM value to a VFGNode. This is done by finding the
corresponding node on PAG, and then on SVFG.
const SVF::VFGNodex userVFGNode = LLVMValue2VFGNode (NValUserVal) ;
// Check if the pair {vfgNode, userVFGNode} exists in the set. If not
, this pair is not visited and should be inserted into the
vigNodeWorkList.
if (NValUserVal != nullptr) {
if (!'handledNodes.count ({vigNode, userVFGNodel})) {
handledNodes.insert ({vfgNode, userVFGNodel}) ;
vigNodeWorkList .push({vfgNode, userVFGNodel) ;
}
}
}
}

Listing 5.3: Code for adding flow of select conditions into taint propagation, with some
irrelevant checks ommited.

After the taint tracking, the pass goes through all the instructions and check if they
are memory access instructions that use tainted values as addresses or conditional branch-
ings that use tainted values as conditions. If so, these instructions will be added into a
Violations set.

In summary, BlindedTaintTracking pass provides following information for further
analysis or transformation:

e TaintedValues: Tainted IR registers. These registers are collected during the taint
tracking described in Algorithm 2.
e TaintedObjIDs: SVFG node IDs of tainted objects.

e TaintedCallBases: Function calls that should be considered during the function
cloning.
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e Violations: conditional branching instructions using registers in TaintedValues as
condition and memory access instructions that use registers in TaintedValues as
address. These are the instructions that require transformation.

e SVF results: Though violations and taint tracking results are provided, we still
preserve points-to analysis and SVFG from SVF. These results help function cloning
to handle pointers, as will be described in Section 5.1.3.

5.1.3 Function Cloning

As described in Algorithm 3, at the start of the function cloning, BlindedTaintTracking
pass is called. Then function cloning needs to find functions that should be cloned and
clone these functions properly.

For the first step, we iterate through all the TaintedCallBases and check each argu-
ment. If at least one of the argument is tainted, but not with a blinded attribute, then the
called function of the callbase should be considered for cloning. We check the taint status
of arguments by checking if they are in the TaintedValues set or if their points-to set,
which can be queried with ander getpts(NodeID), contains objects in Tainted0bjIDs.

For the second step, we need to avoid name conflicts. We added a number suffix to the
function name to indicate the tainted argument of the function. For arguments from 1 to
n, we calculate the number with:

", [2=' if arg; is blinded
0 otherwise

i=1

E.g., a function call with the first and the third arguments tainted should call a cloned
function with suffix 5.

Since LLVM generates numeric suffix for functions with the same name in a module,
we also added a prefix _cloned_ at the beginning of the function name to avoid conflicts
from this.

With function name as a reference to which arguments are tainted, we are able to
check if a cloned function of a certain version exists already in the program module without
having to cache anything. Function calls with the same tainted arguments can be retrieved
without having to clone the function again.
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We use LLVM: :CloneFunctionInto() API to clone the function. After the function is
cloned with proper name, we add Blinded attribute to each parameter corresponding to
a tainted argument. Then we replace the called function of the current callbase with the
cloned function.

In the subsequent rounds of function cloning, these functions can be identified as exempt
from cloning. Also, taint tracking collects these parameters as taint sources.

5.2 Transformation

5.2.1 Array Access Expansion

We implemented array access expansion in a LLVM pass BlindedInstrConversion. This
pass uses the result from BlindedTaintTracking pass.

With all the violations collected as the output of BlindedTaintTracking pass, BlindedInstrConvers
is able to find all the memory access instructions that should be transformed. We collect
these instructions into worklist. Then the pass iterates through instructions in the worklist.

The arrays accesses we can transform use an address of GEP instruction or bitcast
instruction that casts GEP to the wanted type. GEP instruction is the instruction that
calculate the memory access address in [R. GEP instructions contain type information,
especially for structs and arrays, that we can use to expand the access.

For example, as shown in Listing 5.4, when accessing the element in the array in struct
MyStruct, we can retrieve the size of the array by analyzing the type of MyStruct when
we know which index of GEP is tainted:

1 %MyStruct = type { i32, [10 x i32], double }
2 4hmyStructPtr = alloca %MyStruct
. harrayElementPtr = getelementptr %MyStruct, %MyStruct* JmyStructPtr, 132
0, 132 1, i32 %secret
Listing 5.4: Example: GEP for array expansion.

When having an array access using tainted address, we get the specific tainted indices
on the GEP. Then we get the type of the address to be expanded and expand it if we can
get the size from the type information:

1 // Get the type of the original pointer or structure from which the GEP
is derived.
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Type* SourceType = GEP->getSourceElementType ();

// Get the corresponding type to tainted index.

// NewIndices is the tainted index.

Type* arrType = GetElementPtrInst::getIndexedType (GEP->
getSourceElementType (), NewIndices) ;

Listing 5.5: Example: GEP for array expansion.

With the size information, we expand the array access using the LLVM IRBuilder.
We show the load expansion in Listing 5.6. We use IRBuilder to build the loop (using
the array size as loop size) we described in Figure 4.6, which contains a constant-time
selection to choose the value on the tainted index. We then replace all the uses of the
loaded results with the result from our expanded loop. Bitcasts between GEP instructions
and load instructions should be added since the loaded type and the GEP type can be
different in this case. Array access with multiple tainted indices are supported by adding
new generated load/stores into the worklist, which means they will be examined to see
if any index is tainted and expanded recursively. Store was implemented in the similar
manner.

// Load first element of array for use in loop body PHI

// If there is a bitcast before load, then the GEP type will be
different from loaded value. So we need to add another bitcast for
memory access.

if (GEP->getResultElementType() != LIResultType) {
auto BitCastInst = Builder.CreateBitCast (LoadAddr, LI->
getPointerOperandType () ) ;
LoadAddr = BitCastInst;
+
auto GEPLoad = Builder.CreateLoad (LIResultType, LoadAddr);

// To handle the case that there are multiple tainted index in a
memory access.
LoadWorkList .push_back(static_cast<LoadInst*>(GEPLoad)) ;

// Similarly, create load to load elements in the rest of the loop
and add it to the worklist. Bitcasting omitted.

GEPLoad = Builder.CreatelLoad (LIResultType, LoadAddr);
LoadWorkList.push_back(static_cast<LoadInst*>(GEPLoad));

// Select the loaded value if the current load is accesing the
TaintedIdx.

auto SelectCmp = Builder.CreateCmp(CmpInst::ICMP_EQ, InducVar,
TaintedIdx) ;
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auto SelectRes = Builder.CreateSelect(SelectCmp, GEPLoad, ArrElement)
// increment induction variable

auto AddRes = Builder.CreateNSWAdd (InducVar, One);
InducVar->addIncoming (AddRes, LoopBodyBB);

// Branch to end after we iterate over all array elements

Value #*ArrSizeVal = ConstantInt::get(Context, ArrSizeAPInt);

auto LoopCondCmp = Builder.CreateCmp(CmpInst::ICMP_SLT, InducVar,
ArrSizeVal) ;

Builder.CreateCondBr (LoopCondCmp, LoopBodyBB, AfterLoopBB);

Listing 5.6: Array access expansion implementation with some code omitted.

However, our current implementation is unable to handle the variable-size array. If the
array is passed as a pointer, then we are unable to get the array size to expand the array.
We leave the discussion to possible solutions to Chapter 7.

5.2.2 Branchless Select

The transformation pass walks through each select instructions and converts them into
the branchless version. We implement the branchless select in Section 4.2.3 using the
IRBuilder. The core code is shown in Listing 5.7.

auto *NegCondVal = Builder.CreateNeg(CondVal) ;

auto *MaskVal = Builder.CreateSExtOrBitCast (NegCondVal ,h MaskType) ;

auto *TmpXor = Builder.CreateXor (TrueValue, FalseValue) ;

auto *TmpXorMasked = Builder.CreateAnd (MaskVal, TmpZXor);
auto *TmpResVal = Builder.CreateXor (TmpXorMasked, FalseValue) ;

Listing 5.7: Example: GEP for array expansion.

5.2.3 Control-flow Linearization

We forward-ported some passes in Constantine from LLVM-9 to LLVM-11 and SVF 2.6,
including normalization passes and CFL. Also, we modified scripts in Constantine to use
passes we need, including the normalization passes, CFL passes and other optimization
passes used by Constantine. For RISC-V compatibility, since CFL requires a compiled
CFL library to be linked with the bitcode, we added script to compile the Constantine
CFL library into bitcode compatible with RISC-V.
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To provide information to Constantine, we added !t metadata to conditional branches
using tainted data as the condition.

A compatibility issue arises between Constantine and our branchless select due to the
transformation performed by Constantine, which replaces many Phi and branch instruc-
tions with select instructions. However, this transformation can result in select instruc-
tions with undef inputs. When expanding these instructions using our transformation, it
leads to the generation of arithmetic operations involving undef values. To avoid poten-
tially unsafe optimizations on undef that disrupt the original functionality of the program,
we mitigate this issue by replacing undef values with 0.

38



Chapter 6

Evaluation

In this chapter, we evaluated the effectiveness of analysis and each transformation with
experiments. and summarized the extent to which our tool meets the requirements outlined
in Section 3.2 with results from the experiment.

We evaluated our tool using two benchmarks: the OISA benchmark [55] and the
WolfCrypt benchmark [6] provided by WolfSSL.

The OISA project is a RISC-V hardware design with data-oblivious ISA extension that
allows tracking user-marked sensitive data. OISA also includes extended instructions that
further enhance the data-oblivious computation in RISC-V, such as conditional move and
oblivious load/store. The OISA benchmark tests the applicability of OISA hardware on
data-processing programs that require constant-timeness. It consists of simple implemen-
tations of basic data processing algorithms, including binary search, matrix multiplication,
etc. We chose this benchmark because data processing represents a common use scenario
of outsourced computing. Also, OISA has similar user scenario as BliMe.

The WolfCrypt benchmark includes implementations of cryptographic algorithms. This
benchmark was chosen because cryptographic libraries are common attack targets of side-
channel attacks.We divided WolfCrypt benchmark into separate tests.

We compiled benchmarks into statically-linked RISC-V binaries. The compilation fol-
lows the steps in Figure 5.1. We compiled benchmarks into bitcode files. As our compiler
and Constantine were built in two separate docker containers, we ran our passes in our
container, then ran Constantine passes in Constantine container. As Constantine crashes
on all the WolfCrypt benchmark tests, we did not ran Constantine transformations on
WolfCrypt benchmarks. We added a function that printed out all the violations reported
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by the compiler to output files so we were able to analyze the analysis result. After the
analysis and transformations, we used Clang to compile the bitcode files into executables.

We ran the benchmarks on a special BliMe Spike implementation. This implementation
does not crash upon encountering a violation, but instead prints out all the violations so
we can check if our analysis reports all the violations on the hardware.

We evaluate the soundness of the analysis (R-1) in Section 6.1 by checking if our
analysis indicates all the warnings in the BliMe hardware. We then evaluated the rest of
the requirements in Section 6.3.

We did not measure the performance overhead of transformation since we did not get
Constantine to transform several tests in each benchmark. As an estimation, we expect
significant overhead on software with secret-dependent memory accesses to large arrays, as
the expanded array accesses will access all the elements in the array.

6.1 Soundness of the Analysis

To evaluate the soundness of the analysis, we ran the unmodified OISA code on BliMe
Spike, collected warnings from the hardware and found source code positions of these
warnings by manually examining the disassembled binaries. We then compared these code
positions with the result from the analysis pass.

Based on our analysis, the violations caused by pre-compiled libc cannot be caught
by our analysis, as our analysis runs on source code IR. The dnn uses an exponentiation
calculation in libe, which contains secret-dependent branchings (listed in Listing 6.1). The
output of this function is, as a result, secret-dependent. We replaced this function with
an approximation that contains no secret-dependent branches. Except this, our analysis
finds all the violation reported by the hardware. As a result, though we cannot formally
prove the soundness of our analysis, the evaluation results support the argument that our
analysis fulfills the soundness (R-1) requirement.

However, our analysis has certain limitations beyond the case of pre-compiled libraries.
Firstly, it may not identify all the code positions that require transformation, as will be
discussed in Section 6.3. Additionally, our analysis is an over-approximation, as shown in
Table 6.1. The table does not show the number of warnings in libc.

The over-tainting in the OISA benchmark is mostly caused by a lack of field-sensitivity
in our analysis. An example is shown in Listing 6.2. In this example, since our analysis
is not field-sensitive, though only the heap field of pq contains secret data, the whole
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Test Results from Analysis Results from Hardware
Memory Access | Branch | Memory Access | Branch
binary_search 1 3 0 2
dijkstra 6 5 6 0
dnn 0 0 0 0
find_max 0 1 0 1
int_sort 0 1 0 1
kmeans 0 2 0 2
matrix_mult 0 0 0 0
page_rank 6 0 2 0
PQ 3 7 0 3

Table 6.1: OISA benchmark analysis and hardware results show the over-approximation
of our analysis. This table shows number of warnings from our compiler analysis and the
hardware for each tests in OISA benchmark. Warnings from secret-dependent memory
accesses and secret-dependent branches are listed in two columns. A select instruction
that uses sensitive data as the condition is considered as a secret-dependent branching
since select can be lowered to branches in RISC-V binaries.

structure pq gets tainted. As a result, our analysis reports warnings when other fields of
pg, though not containing secret data, are used as branch conditions. Also, though not
shown in OISA benchmark, other design factors of our analysis can cause over-tainting,
such as the lack of flow-sensitivity, the over-approximation of points-to analysis from SVF,
etc.

if (__glibc_unlikely (abstop - topl2 (O0xlp-54)
>= topl2 (512.0) - topl2 (0x1p-54)))

if (abstop - topl2 (0x1p-54) >= 0x80000000)

if (__glibc_unlikely (abstop == 0))

Listing 6.1: A list of secret-dependent branches reported by the hardware in clib function.
abstop is a secret value.

// Store a secret value into pg->dp.
pq->heap[idx] = secret;

// pgq->block_size should not be tainted, but considered tainted in
our analysis.

// i < pg->block_size is considered as a secret-dependent branch.
for(int i = 0; i < pg->block_size; i++)
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last_item[i] = new_iteml[i];

Listing 6.2: Example: field-insensitivity causes over-tainting in OISA P(Q test.

6.2 Effectiveness of Function Cloning

Function cloning incurs multiple rounds of SVFG construction, which is costly for large
programs. Other than this, cloned functions also expand the size of the program.

Regardless of these drawbacks, to evaluate the effectiveness of function cloning, we focus
on two metrics: first, we aim to determine if fewer functions become tainted as a result
of the taint tracking process; and secondly, we want to check whether fewer violations are
detected within the same function after the cloning. The first metric can represent the
improvement of analysis accuracy through function cloning. This metric can show if less
functions are tainted due to over-tainting after the function cloning. The second metric,
on the other hand, can represent the improvement of performance: fewer violations in the
same function means fewer positions for the transformation, thus less performance impact.
More detailed explanation on the effect of function cloning can be found in Section 4.1.2.

For the OISA benchmark, we noticed that though some functions are cloned, function
cloning does not reduce the number of tainted functions or violations within the function.
Based on manual examination, the call graphs of OISA benchmark tests are simple, with
each function being called mostly just once. Consequently, function cloning does not prove
to be effective in enhancing the accuracy under such circumstance.

6.3 Transformation

We evaluated coverage (R-4) of the transformation by checking how many hardware-
reported violations are removed with transformations. Also, we examine the output of
tests to verify the correctness (R-2) of the transformation.

6.3.1 OISA Benchmark

We evaluated our tool on simpler OISA benchmark first. The results are shown below in
Table 6.2. For dijkstra and P(Q tests, Constantine crashed during the normalization phase.
In binary_search test, one of the branch is a lowered to a select instruction in LLVM
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IR, so it is transformed into branchless with our transformation. Constantine removes one
branch in find max and kmeans tests.

. Violations After

Test Selection | Array | CFL Memory Access | Control-flow
binary_search 1 0 0 1 2
dijkstra 0 0 - 6 0
dnn 0 0 0 0 0
find_max 0 0 1 0 0
int_sort 0 0 0 0 1
kmeans 0 0 1 0 1
matrix_mult 0 0 0 0 0
page_rank 0 0 0 0 2
PQ 0 0 - 0 3

Table 6.2: Result of transformations on OISA benchmark. Column 2-4 shows the number
of hardware violations removed by transformations (branchless select, array expansion and
Constantine CFL). The last two columns show the number of hardware violations after all
the transformations.

We summarize the types of the code that cannot be transformed with our tool:

e Though the OISA benchmark contains secret-dependent array accesses, the sizes
of arrays are unknown to our analysis. These arrays are dynamically allocated at
run-time. As a result, our transformation cannot expand these array accesses. An
example can be found in Listing 6.3.

1 int __attribute__((noinline)) BinarySearch(__attribute__((blinded))

int arr[], int 1, int r, int x) {

2 while (1 <= r) {

3 int m = 1 + (r-1) / 2;

1 if (arr[m] == x)

return m;

s F
Listing 6.3: Example: an array with unknown size. The size of arr is unknown to the
compiler at the compile-time, so the compiler cannot expand the array access in Line 4.

e Some of the secret-dependent branches are loops with secret-dependent sizes. Con-
stantine unrolls loops with the information of maximum size of loops from dynamic
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profiling. Also, based on our examination on Constantine loop unrolling, unrolled
loops in Constantine exits when the loop reaches both the estimated maximum size
of the loop and met the original exit condition. Checking the latter exit condition
is a secret-dependent branch. In other words, if the actual loop size is lower than
the estimated maximum size, then the run-time loop size of the unrolled loop is the
estimated maximum size. Otherwise, the loop size is still dependent on the secret-
dependent size. So Constantine transformed code can introduce secret-dependent
branches. Therefore, we did not add Constantine loop unrolling into our transforma-
tions.

e The transformations also introduced violations. For example, the chosen results of
secret-dependent branches and memory accesses are also secret-dependent. However,
our analysis does not take it into consideration during the initial analysis. These code
positions will not be transformed as they are not marked by our analysis.

We then manually modified the OISA benchmark code. The OISA project authors
also modified their code to achieve constant-timeness, though using extended instructions
in their hardware. We investigated their changes on the code and modified tests to be
constant-time without using OISA extended instructions. The changes made to the code
are listed as follows:

e Adding array expansion code with programmers’ knowledge. For example, in test
PQ, programmers know that the size of the array pg->heap is stored in pgq->size.
However, the compiler is not able to obtain this information during the analysis.

e Adding fixed loop sizes to variable-size loops. Loops with known maximum sizes are
replaced with for-loops of the known maximum sizes.

e Replacing algorithms. Modifying some of the algorithms into constant-time versions
is tricky and sometimes leads to much worse performance. int_sort test in OISA
benchmark is one of the example. This test implements a merge sort algorithm.
Unrolling all the loops in the merge sort can be tricky but the complexity is not
better than O(n?). The OISA code replaced this algorithm with bitonic sort.

We were unable to make all the changes following the methods of OISA paper because
the BliMe hardware does not contain all the instructions in OISA hardware. As shown
in Listing 6.4, hardware implemented cmov in OISA selects item_to_write to write into
pg->scan_oram only when the item to_write is not null. However, we cannot select
between the value in item to write and pg->scan_oram then write into pq->scan_oram
because item_to_write can be a null pointer.
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L for(int j = (1 << i); j < (1 << (i+1)); j++){

2

_cmovn(item_to_write != NULL, item_to_write, &pgq->scan_oram[pgq->
block_size * jl, pg->block_size);
3

Listing 6.4: Example: cmov instructions used in OISA benchmark.

6.3.2 WolfCrypt Benchmark

We then conducted evaluation on WolfCrypt benchmark. We tainted secret keys (for
encryption algorithms) or plaintext (for digest algorithms) and ran all the benchmarks
separately on the BliMe hardware. We tainted keys right before each encryption or de-
cryption, and removed all the taint after finishing each encryption or decryption. This can
represent the use cases where users send their keys, leaving the remote hardware to execute
the cryptographic algorithms, and receive the results.

As shown in Table 6.3, hardware results indicate that most benchmarks ran without any
warnings on hardware with only four exceptions: AES-CBC, AES-GCM, RSA and DH.
With our array expansion and branchless select passes, AES-CBC ran on the hardware
without warnings. AES-GCM requires removing the blindedness of authentication tag to
run without warning. However, DH and RSA still triggered hardware warnings after our
compiler transformations.

Tainted Value | w/o Transformations | with Transformations

AES-CBC Key n y
AES-GCM Key n y
RSA Private key n n
Chacha20 Key y -
HMAC Key y -
SHA Plaintext y -
DH Private key n n

Table 6.3: Result of transformations on WolfCrypt benchmark tests. The third column
shows whether the test runs without hardware warnings without any transformations. The
last column shows whether the test runs without hardware warnings after transformations
of our compiler.

Since forward-ported Constantine crashes on all the WolfCrypt tests. We are man-
ually transforming the WolfCrypt tests based on the methodology of Constantine. Due
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to complicated branches in DH and RSA implementation, we failed to got DH and RSA
tests correctly running on BliMe hardware, we summarized the main categories of manual
transformations we made below:

e Branches for error handling. WolfSSL contains branches that check for possible
errors during the computation, these error checks are checking the secret-data. Also,
after checking the errors, WolfSSL sometimes write the result based on the error.
These error handlings introduce multiple secret-dependent branches as a consequence.
Our manual transformation moved all the error checks to the end of the function.

e Secret-dependent loop size. Since the maximum size of the secret key can be
quite large, WolfSSL checks each byte to see if the byte contains data and generate the
actual size of the data. Then WolfCrypt only computes on the bytes that actually
contains data. This implementation introduces several secret-dependent loop size.
Since we have the knowledge of the maximum possible size, we can manually unroll
the loops that contains secret-dependent loop size. The main idea of this change is
further discussed in Section 7.2.1.

e Secret-dependent memcpy. There are memcpys of which the content depends on a
secret data. We replaced such memcpys with a constant-time version manually.

6.3.3 Summary

For the evaluations above, the generated executables are able to run on BliMe hardware,
which fulfills the compatibility with RISC-V (R-5). Also, the outputs of transformed
code remain the same as original outputs before the transformation, so our tool fulfills the
correctness requirement (R-2). Though our transformations only require users to identify
sensitive data, our tool cannot transform all the secret-dependent code and requires manual
changes to code. So minimal source code changes (R-3), coverage (R-4) and compatibility
with BliMe (R-6) are not fully fulfilled. We will discuss how relaxing R-3 helps improve
the transformations in Chapter 7.
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Chapter 7

Discussion

7.1 Limitations of the Analysis

7.1.1 Dependencies on Branch Conditions

As discussed in Section 6.1, though our analysis shows all the code positions that trigger
warnings, our analysis does not list all the code positions that require transformations.
For example, in Listing 7.1, if the values in arr are secret, our analysis can indicate that
Line 4 is a secret-dependent branching. However, it cannot figure out that 1 is dependent
on secret value arr[m]. As a result, our analysis cannot figure out that the while loop
condition, which is dependent on 1, is secret-dependent and requires transformations.

This is deemed acceptable when solely aiming to determine whether the source code
results in a crash on BliMe, as normal BliMe instances crashes when encountering secret-
dependent branches, i.e., they crash on Line 4 without reaching Line 1 and triggering
another fault. However, to point out all the code positions that require transformations,
our analysis needs to analyze the dependencies on branch conditions rather than only
following the value-flow.

while (1 <= r) {
int m =1 + (r-1) / 2;

if (arr[m] < x)
1l =m + 1;
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Listing 7.1: Binary search example from OISA benchmark. arr is considered as an array
filled with sensitive data.

7.1.2 Library Functions

As indicated OISA evaluation results, pre-compiled libraries such as 1ibc are not analyzed
and transformed. As a result, secret-dependent memory accesses and branches in the pre-
compiled libraries are not fixed. Also, the analysis cannot figure out if the return value of
pre-compiled library functions are sensitive or not.

Though our current tool can compile libraries, e.g., we compiled WolfCrypt library,
we still lack support on a common real-life situation: the library developers develop and
compile libraries to be with multiple constant-time instances of sensitive functions; the
users, on the other hand, use the pre-compiled library directly. For example, a library
exponentiation function has three cases of sensitivity of inputs: either the base or the
exponent is sensitive, both the base and the exponent are sensitive. Library developers in
this case need to provide three versions of constant-time exponentiation functions to users.
Excluding binary analysis and transformation tools, at the compiler level, two potential
approaches can address this issue.

Firstly, the compiler can replace common library functions, such as malloc, free, max,
etc, with a constant-time version. This approach requires manually creating a constant-
time version of the library and configuring all the replacements in compiler-level.

Secondly, an alternative approach is to develop tools that compile libraries to generate
multiple instances of functions based on the sensitivity of the input data. To achieve this,
the compiler must be extended to allow library developers to annotate the instances of
sensitive functions based on their expertise. Consequently, when library users compile
the source code that uses the library, the compiler can appropriately select the relevant
instances of functions.

However, both of the aforementioned approaches fail to address the issue of the analysis
being agnostic to the sensitivity of the return values of library functions. One approach is
to add special function suffices to indicate the sensitivity of library functions’ return values.
Alternatively, users may be required to annotate whether a library function call anticipates
a sensitive or non-sensitive return value, drawing from their knowledge and context.
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7.2 Limitations of the Transformation

We described some code that cannot be transformed by our tool in Section 6.3. Among
these code patterns, we discuss possible solutions to loop unrolling and variable size array
accesses.

7.2.1 Annotations for Loop Unrolling

Constantine implements loop unrolling with the maximum loop size obtained from dynamic
profiling. Despite not utilizing dynamic profiling, user annotations can be leveraged to
specify loop sizes, utilizing users’ knowledge of the loops.

Listing 7.2 describes the main idea on how user provided information help to unroll
the loop. With user-provided loop size, compiler transformation can safely transform the
variable-size loop into a fixed size loop with a secret-dependent if-else branch, of which
the condition is the original loop condition. Subsequently, Constantine’s Control-Flow
Linearization (CFL) can be employed to transform the branch and optimize the loop
unrolling process.

// Code before the transformation
// max_size is the maximum size of the while loop
int max_size = log(arr_size);
while (1 <= r) {
int m = 1 + (r-1) / 2;
if (arr[m] == x)

if (arr[m] < x)
1l =m + 1;

}

// Code after the transformation
int max_size log(arr_size) ;

for (int i = 0; i < max_size; i++) {
if (1 <= r) {
int m =1+ (r - 1) / 2;
+
}

Listing 7.2: Binary search example from OISA benchmark. arr is considered as an array
filled with sensitive data, arr_size is the size of the array, 1 is the start position of binary
search, r is the end position of binary search.
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7.2.2 Dynamically-allocated Array Access Expansion

To handle dynamically allocated variable-size array accesses, one approach is to build an
object management data structure at the program’s start.

The compiler needs to instrument all the memory allocations to store allocated pointers
and sizes into the object management data structure. Then, the compiler can instrument
secret-dependent array accesses to retrieve the array sizes for array access expansions.
This solution allows the compiler to retrieve array sizes at runtime, enabling handling of
variable-size arrays.

7.3 Back-end Issues

As discussed by existing works [11], when lowering the source code to assembly code,
compiler optimizations can remove programmers efforts that try to make the code constant-
time. Even though our tool operates on IR level, it still suffers from this problem if the
optimization level is higher than O1. For future work, we consider adding LLVM intrinsics
for important components, such as selection, so we can control the back-end behavior to
avoid the situation where the optimizations remove the constant-time property.
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Chapter 8

Related Work

8.1 Side-Channel Attacks

As discussed in Section 2.1, side-channel attacks covertly leak sensitive data. To the best
of our knowledge, [27] is the first work that discusses timing side-channels on cryptographic
algorithms to recover the secret key. Since then, there have been various power [38], cache
[54][36][32] and timing side-channel attacks introduced, mostly targeting the cryptographic
algorithm implementations. In this category, the vulnerabilities can be mitigated with
software engineering efforts such as constant-time programming. This thesis is aiming at
partially automating the software mitigations on these attacks.

There are also side-channels introduced by microarchitectural design, such as transient
execution attacks. Attackers exploit the transient execution to break the security bound-
aries set by operating systems and hardware. Transient execution vulnerabilities arise from
the speculative out-of-order execution of modern processors. These attacks aim to analyze
the timing or power effects caused by the speculative executions. Even though speculative
executions should leave no effect on processors, flaws in processor designs fail to guaran-
tee this. With design flaws on hardware, status of microarchitectures, such as L1 cache
[13][31], line fill buffer[50], etc, are observed by indirectly using precise timer and power
measurement. Attackers then use such status to infer the secret information. For example,
in a Spectre [13] attack, the attacker trains the branch predictor to access the secret data
and use this secret data as an address to access the memory. After accessing the memory,
the attacker can use flush and reload [36] techniques to recover the secret data. BliMe
[18] paper mitigates such attacks by preventing the memory tagged as blinded from being
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observable. As a tool aiming at enhancing the usability of BliMe, we leave the mitigation
to such attacks to BliMe.

General hardware countermeasures to side-channel attacks also include turning off pre-
cise timing and power measurements [13][31] [39], partitioning resources [57][25] or closing
certain optimizations [13][31] [39]. These countermeasures are well discussed in the papers
that propose the attack methods

8.2 Side-Channel Attack Defenses

Countermeasures to side-channels stemming from software design can be ad-hoc fixes. For
example, for AES s-box, people can use more compact boxes to reduce the information
attackers can obtain or use masks [13]. These are not the general defenses we aim to discuss
in this thesis. We will discuss general countermeasures to side-channel attacks in this
section, including hardware-level countermeasures, software-level side-channel detection
and repair.

8.2.1 Hardware-level Countermeasures

Hardware provides programmers with data-oblivious primitives that enhance the constant-
timeness of software. Transactional memory guarantees that the execution of critical parts,
such as memory accesses, are atomic, thus preventing the data leakage from transient
execution or concurrent execution. Existing works [21][56] also make use of this hardware
feature to protect data preload. Besides, hardware implementations of Oblivious RAM
(ORAM) [19][55] empower programmers with ability to access memory without exposing
the memory access pattern.

8.2.2 Software Level Countermeasures

Side-Channel Detection

Existing works on side-channel detection and quantification can be categorized into four
types: dynamic profiling [28], symbolic execution [15], static analysis [50][53] and formal

analysis [17]. Dynamic profiling methods [28] execute programs after marking sensitive
data and track the program points of branchings and memory accesses. Dynamic profiling
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captures actual run-time behaviors. Without proper inputs to programs, dynamic profil-
ing can fail to cover some execution paths. Symbolic execution [15] simulates program
execution using symbolic values and try to solve the constraint. Symbolic execution is
more accurate than the analysis in the thesis. However, symbolic execution may suffer
from paths explosion and take more than hours to run. Related work on formal analysis
[17] derives upper bounds of cache side channel leakages with formal proof. However, this
analysis does not detect secret-dependent branching. It also takes hours to finish analysis
on large programs. Program repair tools such as [53] and [50] use static analysis to track
the data dependencies and find code positions that use secret-dependent data for memory
access for branching. We also adopt this method in this thesis. More complete lists of such
tools can be found in [21]. For practicality, our tool employs static taint tracking to find
code positions, which is not accurate as formal and symbolic execution, but much faster
for complex inter-procedural analysis.

Code Transformation

Some of the code transformations add noise to performance counter [31] or balance the
secret-dependent branches with dummy executions [52]. Besides, we have discussed compiler-
assisted IR-level code transformations that generates constant-time code in Chapter 1 and
our conclusion is that, none of the existing tools use sound analysis to find all the potential
violations and transform programs to be compatible with the BliMe hardware.

Except the repairs on IR-level, as discussed in Section 7.3, back-end optimizations can
cause a loss of constant-time property. Some work [7] in the programming language field
discussed how to preserve the constant-time property with secure compilation method.
Secure compilation approaches can be considered when lowering from IR to assembly.

Others

Cauligi et al.. [10] developed domain specific languages FaCT. The corresponding compiler
ensures potentially timing-sensitive high-level code are converted into constant-time LLVM
bitcode. This method requires users to re-implement the codebase. As a result, it is not
ideal as a tool to enhance the usability of BliMe.
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Chapter 9

Conclusion

To strengthen the usability of BliMe hardware, we present the design and implementation
of a compiler-based tool to generate constant-time code. Our tool uses static analysis
to search for code positions that trigger faults on BliMe. Then, our tool employs code
transformation techniques including array expansion, CFL and branchless select to make
code positions constant-time.

Our evaluation demonstrates the tool’s capability in identifying secret-dependent mem-
ory accesses and branches and transforming a subset of the code patterns to enable code
execution on BliMe hardware. We analyzed and classified the code patterns that are chal-
lenging for automatic compiler transformations and proposed manual changes for each
category. In conclusion, our work delved into compiler-based approaches to strengthen the
practical usability of BliMe hardware. We pointed out the pitfalls in our current attempts
and explored future directions to enable the deployment of side-channel resistant BliMe
platform.
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