
Control and Readout of
High-Dimensional Trapped Ion

Qudits

by

Pei Jiang Low

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Physics

Waterloo, Ontario, Canada, 2023

© Pei Jiang Low 2023



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Boris Blinov
Professor, Dept. of Physics, University of Washington

Supervisor(s): Crystal Senko
Associate Professor, Dept. of Physics, University of Waterloo

Internal Member: Alan Jamison
Assistant Professor, Dept. of Physics, University of Waterloo

Internal Member: Michal Bajcsy
Associate Professor, Dept. of Electrical and Computer Engineering,
University of Waterloo

Internal-External Member: Jon Yard
Associate Professor, Dept. of Combinatorics and Optimization,
Perimeter Institute for Theoretical Physics

ii



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Abstract

The trapped ion platform is one of the quantum computing platforms that is at the
forefront for realizing large-scale quantum information processing, which is crucial for prac-
tically actualizing the advantages of quantum algorithms. Scaling up the trapped ion
quantum computing architecture remains a challenge. We explore an alternative avenue in
a trapped ion system for increasing the computational Hilbert space other than trapping
more ions, which is by increasing the qudit dimension of an ion. Our ion of choice is 137Ba+,
which has a rich energy level structure for high-dimensional qudit encoding. Utilizing the
additional energy states found in 137Ba+ also comes with non-trivial complexities that re-
quire careful considerations, which we have solved and report in this thesis. We report on
a single-shot state measurement protocol which allows qudit encoding in 137Ba+ of up to
25 levels, and demonstrate state preparation and measurement of up to 13 levels, which is
unprecedented in a trapped ion system.

This thesis is written with hopes that it is complete enough as a guide for readers
who wants to work with trapped barium ions. The bring up and calibration methods of
equipment parameters are reported in this thesis, along with detailed studies of some ex-
perimental observations that may not be intuitively clear. Ion loading via laser ablation
is also explored in this work, which is a less commonly used ion loading method. To more
effectively load the less abundant 137Ba isotope from a natural abundance source, we em-
ployed the resonance enhanced multiphoton ionization process and report on the improved
isotope selectivity. Although not directly related to trapped ion quantum information
processing, a cost-effective beam pointing stabilization solution that we have developed is
presented, which we hope to be helpful to any laboratories with free-space laser beams.
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Chapter 1

Introduction

The utilities of quantum nature of things have been theoretically studied and quantum
algorithms have been developed that are shown to be more efficient compared to classical
algorithms at solving certain problems, a well known example being Shor’s algorithm [1].
These algorithms tackle searching problems by exploiting the ability of a quantum system
to be in a superposition of states, and with clever control, they can be made to speed up
computational time. The theoretical speed up in quantum algorithms comes in the form
of a much lower number of increase in computational gates required for an increase in the
computational space compared to classical computing. Therefore, to actualize the practi-
cal advantages of quantum algorithms over classical ones, it is imperative for a quantum
computer to be able to process information in a large computational space.

Physical systems with controllable quantum states are potential candidates to be used
as a quantum computer. Examples include atomic energy states, quantized states of su-
perconducting circuits and polarization states of photons [2]. In order to decide whether
a physical platform is a good candidate, in layman’s terms, it has to be reliable, fast and
as alluded earlier, able to process large scale information. Reliability means that a quan-
tum computer has to be able to produce correct answers consistently, which translates to
requiring high fidelities of the quantum operations. The speed of the quantum computer
discussed here is not the algorithmic speed, as they run the same quantum algorithms,
but the physical speed the computational gates can be performed. In the trapped ion
platform, individual ions are trapped in a vacuum with a generated electric field pseu-
dopotential well, typically in a linear chain, and a basic unit of quantum information is
encoded in the electronic energy states of an ion [3, 4]. The trapped ion platform is at the
forefront of quantum computing performance in terms of the fidelity of computing oper-
ations [5, 4, 6], which exceeds the requirement for fault tolerant quantum computing [7].
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Another appealing feature of the trapped ion platform is the guarantee that each quantum
information carrier is exactly the same to another by nature. This mitigates the problem
of error from non-homogeneity of each quantum carrier or the increasing complexities of
hardware calibrations required when scaling up the system [8]. However, trapped ion sys-
tems face other challenges for scaling up the computational space. An additional quantum
information carrier has to be able to have some controllable quantum entanglement with
the original system in order to increase the computational space [9]. In a trapped ion
system, entanglement between ions is conventionally achieved via shared motional modes
due to Coulomb interactions in an ion chain [10, 11], typically driven via laser-ion inter-
actions [5, 12]. A straightforward way to increase the computational space of a trapped
ion quantum computer is to add more ions into the chain. As more ions are added into a
chain, the total mass of the chain is heavier and lengthens the time required to complete
the entangling operations due to limits on laser powers, putting a speed limit on the entan-
gling gates as the computational space scales up [4]. A proposed idea is to split the total
number of ions into multiple localized trapped ion chains, and entanglements between ions
at different trap regions are done by physically transporting them between trap regions
[13]. Another idea which allows entanglement between ions in separate ion traps is via
photonic interconnects [14]. Recent developments with laser-free entanglement of trapped
ions [15] may also help with the issue of the entanglement gate speed limit for larger ion
chains.

A less explored but emerging method for scaling up the computational space of a
trapped ion system is to increase the amount of information encoded per ion. Typically,
two quantum states are encoded in a quantum information carrier, called a qubit. In a
trapped ion, it is not uncommon to find more than two electronic states with long coherence
times. The reason for the choice of using only two of the electronic states for encoding
are typically to work with electronic states with magnetically insensitive transitions for
minimizing errors, called the clock states [5, 16, 17, 18]. Methods to minimize magnetic
field noise have been demonstrated [19, 20], and the error from this source is predicted
to be made negligible compared to other error sources [21]. Thus, we anticipate that
magnetic field noise is not a limiting factor for encoding quantum computational states
in more electronic energy levels. By choosing to encode more than two levels in a single
information carrier, it is called a qudit, where the d in qudit stands for a general dimension.
The progress towards making use of additional atomic energy states has been ongoing
[22, 23, 24, 25], and is gaining traction in recent years [12, 26, 27, 28]. Among them is a
demonstration of a 5-level qudit-based universal quantum computer, which can be scaled
up to 7 levels with 40Ca+ [12]. Our work focuses on actualizing high-dimensional qudit
quantum computers, and we choose an ion species that is rich in the number of energy levels
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available for quantum computational state encoding, which is 137Ba+ [29, 21]. In this work,
we show that a 25-level qudit can be encoded in a 137Ba+ ion, with fully distinguishable
single-shot readout, which is a significant increase in the qudit dimension from the previous
record [12]. Experimentally, we actualize state preparation and measurement (SPAM) of
a 13-level qudit with 137Ba+. Given a limited number of trapped ions, there is still a
limit to the increase in computational space once we use up all the available energy states
for encoding for a single ion. However, the qudit encoding approach is not mutually
exclusive with efforts to increase more controllable trapped ions, and we anticipate that
qudit work can be combined with the aforementioned efforts [13, 14] to massively scale up
the computational space. Other than being an avenue for scaling up the computational
space, a qudit architecture also provides other benefits such as a more relaxed quantum
error correction threshold [30, 31, 32, 33, 34], straightforward quantum simulations for
higher spin systems [23, 35], and more efficient qubit gates [36, 37], which serve as additional
motivations to pursue this research direction.

The first step to doing any quantum computation with trapped ion is of course, to trap
an ion. A common way of loading an ion into an ion trap is via Joule heating of a target in
its elemental form using an oven [29, 38, 39, 40, 41, 42, 43, 44, 45]. Here, we explore a less
common method for loading barium ions, which is via laser ablation of a target source of
the ion to be trapped in its compound form [18, 46, 47]. This method comes with several
advantages over the oven heating method, which will be discussed in this thesis. Our main
barium isotope of interest, 137Ba+, has a natural isotopic abundance of 11.2% [48]. In order
to have improved isotopic selectivity for barium ion loading, we employ a method known
to be useful, which is the two-photon resonance enhanced multiphoton ionization method
(REMPI) [38]. The performance of the ion loading selectivity is also characterized in this
work, with a robust testing method that we have developed.

This thesis is written in hopes of it being complete enough to be a useful reading
material for readers intending to work with or is working with trapped barium ions. I detail
the process of bringing up a trapped ion setup for trapping barium ions, starting from the
point where the equipment parameters are not calibrated. Any experimental observations
that are not intuitively clear or counter-intuitive are also studied and documented in this
thesis. Chapter 2 gives a summarized description of the ion trap setup, with the details
being published in my previous MSc. thesis [49]. Chapter 3 details the barium ion loading
bring up techniques, characterizations of ion loading via laser ablation and performance of
isotope-selectivity. Parts of this work in Chapter 3 are published in Ref. [50]. Chapter 4
details the work in actualizing a 13-level qudit control and readout with 137Ba+, and parts
of the work are in preparation to be published as an article [51]. Over the course of my
graduate research work in this laboratory, we have engineered many solutions to tackle a
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number of issues that surfaced. One of the solutions that we have come up with deals with
beam pointing drifts of lasers in a cost-effective manner compared to commercial solutions.
We detail the technicalities of this solution in Chapter 5, which we believe would be useful
for any laboratory using lasers in free space.
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Chapter 2

Paul Trap Setup

The first step to any trapped ion experiments is obviously the ability to trap and detect
an ion. Assuming that a way to generate ions at the desired trap location has been figured
out (which will be discussed in Chapter 3), the following criteria are needed for an ion trap
setup. First, a method to generate an electric field (pseudo)potential is needed to keep an
ion trapped in place. Second, the trap has to be in a vacuum environment to minimize
collisions of particles with a trapped ion. Third, we need a way to detect or “see” an ion
that we have trapped. Most of the work to satisfy these criteria were done during my
Master’s course in the same laboratory. In this chapter for this thesis, I give a sufficiently
complete and updated description of the setup for the reader’s general comprehension of
the system. For further details of the buildup, I refer the reader to my MSc. thesis [49].

2.1 Four-rod Trap and Vacuum Chamber Setup

We use a four-rod trap with dimensions and voltage setup as shown in Fig. 2.1a. Oscillating
voltages at a radio-frequency (RF) of ΩRF and an amplitude of VRF are sent to the four rod
electrodes, where one diagonal pair is at a phase π-shifted from the other pair, to generate
confining electric pseudopotential in the radial direction. A static (or DC for direct current)
voltage of VS is applied to one pair of the rod electrodes in order to break the ion secular
motion degeneracy in the radial plane. For axial confinement, static voltages of VN1 and
VN2 are applied to the two needle electrodes. This generates an electric field that traps
ions in a linear chain, commonly called a Paul trap in honor of the inventor of this trapping
mechanism, Wolfgang Paul [52]. The ion trapping theory in a Paul trap is described in my
MSc. thesis [49].
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Figure 2.1: (a) An illustration of the four-rod trap used in this work. The units of the di-
mensions are in millimeters. The lengths of the electrodes in this illustration are truncated
to show the critical dimensions close to the trap centre with clarity. A total of six tungsten
electrodes are used in the setup, four rods and two needles. The actual lengths of the four
rod electrodes are 50mm. (b) An illustration of the side view of the vacuum chamber setup
for our four-rod trap. The four-rod trap is placed at the centre of a 4.5-inch cylindrical
vacuum chamber with eight 0.75-inch ports on the sides arranged in a regular octagonal
arrangement, with two 3-inch ports at the top and bottom. The electrodes of the trap
are visible through the centre viewport in this illustration. (b) An illustration of the top
view of the full vacuum chamber setup for our four-rod trap. The top viewport is made
invisible to show the internals of the vacuum chamber. Red arrows indicate viewports for
laser access.

6



The trap is housed in an octogonal vacuum chamber, which is pumped down and kept at
an air pressure of ∼ 10−10mbar as shown in Figs. 2.1b and 2.1c. The top viewport is used
for collecting fluorescent light from ions to the imaging system, which is discussed in more
detail in Section 2.2. The left port of the cylindrical vacuum chamber is used for electrical
connections of the RF and DC voltage sources to the trap electrodes using a flexible printed
circuit (FPC). A helical resonator is built to have a resonance at ΩRF = 20.772MHz. For
more details on the construction of the helical resonator, the DC voltages sources for
the trap electrodes, and how they are connected to the trap electrodes, please see my
MSc. thesis at Ref. [49]. The right port is connected to vacuum pump(s) and an ion
gauge. Magnetic field coil holders are attached to the diagonal side viewports and also
the large vertical viewports of the vacuum chamber. Copper coils are wound around this
holders, functioning as electromagnets when currents are passed through them, allowing full
directional control of a static magnetic field at the ion position. A non-zero magnetic field
strength is required at the ion position in order to break the degeneracy of the atomic states,
which is crucial for suppressing coherent dark states [53] so that the ions are visible when
driven with lasers (laser fluorescence protocol discussed in Chapter 3) and for quantum
computing applications in general (see Chapter 4).

2.2 Imaging System

With an ion trapped, and fluorescing (fluorescence protocol discussed in Chapter 3), we
need a setup to collect the fluorescence to image the ion, which is discussed in this sec-
tion. Figure 2.2 shows the updated setup of the imaging system since the first buildup as
detailed in Ref. [49]. The imaging objective is updated to a custom built 1-inch objective
with a numerical aperture (NA) of 0.2623. Everything else are still the same as the version
in Ref. [49]. The imaging objective is mounted on a three-dimensional translation stage
and can freely move unrestricted by the other optical components. The color filter can be
freely switched out to select the wavelengths to be imaged. During normal operations, a
color filter that allows wavelengths of 493 nm and 554 nm to pass through is put in place.
A motorized flip mirror allows us to direct the fluorescent light to a photomultiplier tube
(PMT) detector for more sensitive detection of photon counts without spatial resolution,
or to a charge-coupled device (CCD) camera which spatially resolves the image. To fur-
ther optimize the setup, the positions of the CCD camera and the PMT detector can be
switched, which I recommend to any reader intending to replicate this setup. This is be-
cause we have seen that the position of the ion that is imaged on the CCD camera shifts in
the order of pixels as the motorized flip mirror is toggled off and on, which indicates that
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Figure 2.2: An illustration of the imaging system. The dimensions are not drawn to scale.

there is significant enough angular imprecision whenever the flip mirror is toggled. This
issue should be resolved with the CCD camera placed in the beam path that is independent
of the flip mirror.
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Chapter 3

Laser Ablation Barium Ion Loading

In this chapter, I discuss the methods we employed to produce Ba+ ions from a BaCl2
salt source, and subsequently trap them. Our protocols also come with the advantage
of having improved isotope-selectivity for ion loading, which is useful for trapping less
abundant isotopes from natural samples.

First, we need to understand the relevant energy levels of Ba and Ba+ for our protocols,
which leads to knowing the laser controls that we need for this work. I describe the details
of the laser control setup, and systematic methods to narrow down laser parameters and
alignments, starting from a point where all laser parameters and alignments are uncali-
brated. This is in hopes that the details are helpful to any readers intending to replicate
our work or work with trapped barium ions in general. With our protocols, we demonstrate
and characterize improved isotoped-selectivity with a robust testing method that we have
developed. An alternative loading method, using direct-ion loading, is also presented in
this thesis, which is not isotope-selective, but has a higher loading rate and can be useful
for troubleshooting the setup. Parts of this chapter are adapted from Ref. [50].

3.1 Ba and Ba+ Energy Level Structures

With high-enough pulse fluence, a laser pulse sent to a source target can produce neutral
atoms and ejects them from the target [18, 47, 54]. As the atoms reach the centre of
the ion trap, they need to be ionized in order to “see” and respond to the electric field
pseudopotential well produced by the electrodes in order to be trapped. We ionize the
barium atoms via laser excitations. A 6S ground-state Ba atom can be driven to the 6P
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Figure 3.1: (a) Relevant energy levels and laser frequencies for the REMPI protocol used
in this work. (b) and (c) Relevant energy levels and laser frequencies of 138Ba+ and 137Ba+

used in this work. The 614 nm, 1762 nm lasers and their connected energy levels are not
relevant to the discussion in this chapter and will be discussed in Chapter 4.
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excited state with a 554 nm laser. This 6P excited state is at an energy deficit correspond-
ing to a wavelength of 417 nm from the ionization continuum [55]. Thus, by sending a
554 nm laser and another laser with wavelength < 417 nm (which is 405 nm in this work)
simultaneously, a ground-state Ba atom can be ionized via a two-step resonance-enhanced
multiphoton ionization (REMPI) process (see Fig. 3.1a). If the ionized barium has a lower
kinetic energy than the pseudopotential barrier of the Paul trap, it is trapped.

To be able to detect an ion being in the trap, we need the ion to be giving out light.
We make use of the 6P1/2 excited state of a Ba+ ion as shown in Figs. 3.1b and 3.1c for
this purpose. A Ba+ ion in the 6P1/2 state spontaneously decays to the 6S1/2 ground state
75% of the time, emitting a 493 nm wavelength photon in a random direction. To keep
a steady population in the 6P1/2 level, a 493 nm laser is used to drive the 6S1/2 ↔ 6P1/2

transition. Since the spontaneous decay rate from the 6P1/2 level to the 6S1/2 level is fast,
at 95.3 µs−1 [56], it produces sufficient fluorescence for practical experimental detection,
where the fluorescence rate is given by

R = ρPγS, (3.1)

where ρP is the time-averaged population in the 6P1/2 level and γS is the spontaneous
decay rate into the 6S1/2 level. We have thus far ignored another decay path from the
6P1/2 level, which is to the 5D3/2 level at a probability of 25%. The 5D3/2 level has a long
decay time of ∼ 82 s [57, 29]. Thus, the ion would stop fluorescing once this event occurs.
To actually keep a sufficiently-large time-averaged steady state in the 6P1/2 level, a 650 nm
laser which drives the population in the 5D3/2 level back to the 6P1/2 level is required.

Freshly trapped ions typically have high kinetic energies, and require cooling down in
order to crystallize to an ion chain lattice. The 493 nm and 650 nm transitions also function
as Doppler cooling lasers for this purpose. This is done by slightly red-detuning (in the
order of 10MHz) the 493 nm and 650 nm laser frequencies from the transition resonance
and sending the lasers to the ions from an angle which addresses all three principal axes
of motion.

138Ba+ does not have hyperfine splitting within each J electron angular momentum
level as it has zero nuclear spin. Zeeman splittings from typical values of magnetic field
strength, which is in the order of 1G [6, 12, 16, 18], are in the order of 1MHz. Compared
to the transition linewidth of the 6P1/2 level of ∼ 20MHz, Zeeman energy splittings are
small enough such that the 6S1/2 ↔ 6P1/2 and 5D3/2 ↔ 6P1/2 transitions each only need a
single laser frequency to be able to drive all the states. In contrast, 137Ba+ has a nuclear
spin of I = 3

2
, which leads to large enough (> 20MHz) hyperfine energy level splittings

to necessitate multiple 493 nm and 650 nm laser frequencies, as shown in Fig. 3.1c. The
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choice of 137Ba+ transitions to drive in order to have fluorescence is not unique, as long
as all 6S1/2 and 5D3/2 hyperfine levels are driven to any of the 6P1/2 levels. Our choice of
the 493 nm frequencies is to enable optical pumping with a σ+-polarized light of this laser,
which will be relevant in Chapter 4 and discussed further in that chapter. Our choice of
the 650 nm frequencies will be elaborated in the next section.

3.2 Lasers and Optical Setup for Ion Loading

Fig. 3.2 shows the setup of the apparatus relevant to laser controls required for ion trapping.
The resonant transitions between energy levels of barium atoms/ions have finite linewidths
and the lasers driving them require precise frequency control. Thus, these lasers, which
are the 493 nm, 554 nm and 650 nm, have 1% light picked off to a wavemeter calibrated to
the wavelengths of a helium-neon (HeNe) laser, which reads out the laser frequencies using
a Fizeau interferometer and feeds back to the piezoelectric actuators of the diffraction
gratings inside the laser heads to lock the laser frequencies to our desired set points.
Acousto-optic modulators (AOMs) are used for fast switching (in the order of tens of
nanoseconds) of the 493 nm and 650 nm lasers, which is required for quantum computing
experiments (see Chapter 4 for example). The on/off controls of the 405 nm, 554 nm lasers
and the 532 nm pulsed laser do not require precise timings, and motorized mechanical
shutters are used. Electro-optic modulators (EOMs) are used in the 493 nm and 650 nm
laser setups to generate the additional frequencies required for working with 137Ba+, as
discussed in Chapter 3.1. The half waveplate (HWP) and polarizing beam splitter (PBS)
setup for the 493 nm laser allows control of laser powers sent to the combined beam path
(used for fluorescence readout and laser cooling) and the optical pump beam path. The
optical pump beam path is irrelevant in this chapter and will be discussed in Chapter 4.
A HWP and a linear polarizer combinations allow tuning of the 554 nm laser power and
532 nm pulse energy sent to the trap by rotating the HWP. A neutral density (ND) filter
is placed in the beam path of the 532 nm pulsed laser going to the BaCl2 target to match
the actual sent pulse energy to the sampled pulse energy.

Fig. 3.3 shows how the laser beams are delivered to the ions. The 493 nm optical
pump beam path, the 614 nm laser and the 1762 nm laser are irrelevant to this chapter
and will only be discussed in Chapter 4. Reflective optics are used to direct and focus the
laser beams onto the ion position. This prevents any chromatic shifts of the beams due to
refraction, which is useful to us as we are combining lasers of a range of wavelengths to
single beams. The absence of chromatic shifts also helps with precise alignments of beam
paths by switching a laser for driving ion fluorescence to that beam path for alignments
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Figure 3.2: Illustration of the setup of lasers relevant for loading ions. Some plane mirrors
for geometrical control of laser beams are omitted from this illustration for simplicity.
ECDL denotes external cavity diode laser. LD denotes laser diode. DMLP N denotes
dichroic mirror (long pass), which allows wavelengths longer than the specified number, N ,
in nanometers to transmit through. (a) Setups of the continuous wave (CW) lasers. (b)
Setup of a free-space beam combiner for combining the 493 nm, 554 nm, and 650 nm lasers
to a single beam before being sent to the trap. (c) Setup of the high-power 532 nm pulsed
laser with a pulse width of 3 ns to 5 ns for ablating the BaCl2 target.
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Figure 3.3: Optical setup of the beam paths at the ion trap. The central octogon represents
the vacuum chamber, with the four-rod trap in the middle. M.M. denotes a mirror with
micrometer actuators for the mount. QWP denotes a quarter waveplate. The spherical
concave mirrors focusing the laser beams to the ion are mounted on translation stages to
enable fine distance tuning (not shown). An aluminium cup holding BaCl2 is placed in the
vacuum chamber acting as a target for laser ablation. The BaCl2 target points towards
the ion trap center and is at a distance 14.6mm from the trap center. The inset shows a
sideview of the vacuum chamber to illustrate how the ablation laser beam is sent to the
BaCl2 target. A camera is set up to enable viewing of the BaCl2 target. B⃗e,C3 and B⃗e,C4

denote the magnetic field directions used in Chapters 3 and 4, unless stated otherwise.
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(discussed in Section 3.2.1). The beams are designed to be incident to the spherical concave
mirrors at small angles, which is important to minimize aberrations at the beam focus as a
spherical surface is only a good approximation of a parabolic surface (which gives a perfect
focus from reflection) at small incident angles. Our typical CW laser powers relevant for
ion loading at the trap are as follows:

1. 405 nm: in the order of 1mW, the laser diode power degrades over time.

2. 493 nm (combined beam path): ∼ 35 µW

3. 554 nm: 1 µW to 40 µW (tunable with HWP)

4. 650 nm: ∼ 200 µW

3.2.1 Ion Loading Beam Alignments

Starting from a point where the optical components are roughly set up according to the
geometry in Figs. 3.2 and 3.3, I describe how we precisely and systematically narrow down
the beam alignments for ion trapping in this section.

The laser alignment for the ablation laser is the simplest, as the laser only needs to hit
any spot on the target (with a normal area of around π × (2mm)2) in order to generate
atom flux. A camera is set up to monitor the salt target as shown in Fig. 3.3. The ablation
laser is set to low power and the beam pointing is adjusted using plane mirrors until we
see on the camera that it is hitting the target. The size of the beam at the BaCl2 target
is estimated by measuring the beam profile focused with an optic with a focal length of
f = 200mm beforehand on a separate setup, which turns out to be 196µm in diameter.

The requirements on the precision and accuracy of the alignments of the combined
beam and 405/614 beam are much stricter, as the two beams have to overlap at the Paul
trap pseudopotential minimum. The diameters of the beams at the focus, which dictate
the length scale of the precision requirement, are estimated to be

Dfocus =
fCM

fFC

Dfiber =
200mm

10mm
× 3.3 µm ≈ 70 µm, (3.2)

where fCM is the focal length of the spherical concave mirror, fFC is the focal length of the
fiber collimator, Dfiber is the mode field diameter of the fiber. The alignment procedure
for the combined beam and the 405/614 beam is as follows:
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1. Move the imaging objective of the imaging system to look at one of the needle
electrodes, and imaging the needle onto the CCD camera as shown in Fig. 2.2.

2. Tune the horizontal actuator of the micrometer mirror mount (M.M.) until light
scattering off the needle is observed.

3. Tune the vertical actuator of the M.M. to maximize light scattering on the needle.

4. Tune the horizontal actuator of the M.M. until light scattering on the needle is barely
visible.

5. Repeat Steps 3 and 4 until light scattering on Step 3 can no longer be increased.

6. Record the readings of the micrometer scales on the actuators of the M.M.

7. Repeat Steps 1 to 6 for the other needle electrode.

8. Compute the average of the two recorded micrometer scale readings for each actuator.
Set the actuators to these readings.

We find that with these procedures, the beam alignments are precise enough to trap ions
when the laser frequencies are calibrated, and I would like to thank Matthew Day for
coming up with this alignment procedure.

Assuming that other experimental parameters are already calibrated for trapping ions,
we can further optimize the beam alignments using the trapped ion fluorescence rate as a
metric. For the combined beam path, it is as follows:

1. Set the 493 nm and 650 nm laser frequencies to be further red-detuned (by tens of
MHz) from the optimal frequencies for maximizing fluorescence rates (we will see
why this is necessary later in Section 3.3).

2. Tune the M.M. actuators to maximize ion fluorescence.

For the 405/614 beam path, since we have no chromatic shifts of the beam pointings in
the setup, it can be done as follows:

1. Set the 493 nm and 650 nm laser frequencies to be further red-detuned (by tens of
MHz) from the optimal frequencies for maximizing fluorescence rates.
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2. Route the 493 nm cooling beam to the 405/614 beam path by unplugging the fiber
in Fig. 3.2a labelled “To ion trap (405 nm beam path)” and plugging it into the fiber
coupler labelled “To beam combiner” for the 493 nm laser in Fig. 3.2a.

3. Attach a 3D-printed piece with a center hole to the magnetic field holder of the exit
viewport.

4. Tune the beam pointing to maximize ion fluorescence, while having the beam pass
through the center hole of the 3D-printed piece, so that the beam is exiting through
the center of the viewport.

5. Reroute the 405 nm light back to the 405/614 beam path by undoing the change in
Step 2.

Although unnecessary for ion loading, the 405 nm light is aligned to be parallel to the
direction of the entry and exit viewports of the 405 nm beam as best possible. We will
see that this is important for the alignment of the 493 nm optical pump laser for coherent
controls of the ion energy states later in Chapter 4.

3.2.2 Ablation Pulse Fluence Calibration

With the laser beams aligned from the previous section, what we need next is barium atom
flux for trapping ions. The ablation laser pulse fluence has to be above some threshold
for the BaCl2 target to be emitting material from the ablation pulse. Before the laser
frequencies are calibrated to enable fluorescence detection of barium atoms or ions, a
metric to observe to roughly determine if the laser pulse fluence is high enough is the rise
in pressure in the vacuum chamber. We also caution that there may be an upper limit
to the ablation pulse fluence for practical uses on a natural BaCl2 target. At 3.84 J cm−2,
a seemingly indented spot is visible after some pulses on the BaCl2 target as shown in
Fig. 3.4. Thus, one should start with small pulse fluences and increase it gradually until
noticeable pressure reading increased is observed.
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Figure 3.4: BaCl2 target with a seemingly indented spot highlighted by the red circle.

When the 554 nm laser frequency is calibrated (discussed in the next section), we find
that the PMT detector of the imaging system is able to detect barium atom fluorescence
from the flux produced by ablation. Using the neutral barium fluorescence from the emitted
atom flux, we can determine the ablation pulse fluence threshold when the atom flux is
produced more accurately, which we find to be about 0.1 J cm−2, as shown in Fig. 3.5.
With calibrated 493 nm and 650 nm laser frequencies, by turning off the trap voltages to
allow charged particles to pass through the trap region, we are also able to pick up barium
ion fluorescence from the ablated flux on the PMT when the laser pulse fluence is high
enough. The threshold to generate barium ions directly from laser ablation is estimated to
be approximately 0.25 J cm−2 from the data collected in Fig. 3.5, which is also the pulse
fluence threshold to be able to detect pressure increase in our vacuum system.
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Figure 3.5: (a) Detected fluorescence photon counts from the flux of neutral barium atoms
produced by laser ablation. Each pulse fluence data point has a sample size of 120. Neu-
tral max. and ave. denote the maximum and average of the detected photon counts from
neutral barium fluorescence from the total sample size. (b) Similar to (a), with the exper-
imental configurations modified to detect fluorescence from barium ions. Also plotted are
the pressure readings detected on the ion gauge when the ablation laser is pulsed.

An interesting observation that we see is that for a fresh spot on the BaCl2 target that
was never ablated, the pulse fluence threshold to see neutral barium fluorescence is higher,
which we have found to be around 0.3 J cm−2. After ablating the same spot at this higher
pulse fluence for tens or up to a hundred of pulses, the spot may then be producing barium
atom flux at a lower pulse fluence. Since this phenomenon appears to be a fresh spot
having to be conditioned by higher energy pulses before it can start producing atom flux
at lower pulse energies, we call it a conditioning process, although we are not clear on the
exact physical dynamics of this observation.
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3.2.3 Laser Frequency Calibrations for Ion Loading

With the atom/ion flux and laser beams in place, the laser frequencies can be calibrated.
The lasers with strict frequency requirements for ion loading are the 493 nm, 554 nm, and
650 nm lasers. We start by setting the laser frequencies to the reported transition fre-
quencies of 138Ba in past literature [55], taking into account the frequency shift introduced
by the AOMs. The 493 nm and 650 nm laser frequencies are set slightly redder then the
reported values (by tens of MHz), in order to be able to Doppler cool and trap 138Ba+ ions.
With these values of laser frequencies, we were able to observe noticeable 554 nm fluores-
cence from barium atom flux. The 554 nm laser frequency is then fine tuned to maximize
neutral barium fluorescence from the flux, which should correspond to the transition peak
of the barium isotope with the highest abundance, which is 138Ba. We were also able to
trap a 138Ba+ ion using the 493 nm and 650 nm frequency values found from past literature,
albeit only with weak fluorescence rate in the order of 10 counts per 100ms, and we fine
tuned the laser frequencies to maximize the ion fluorescence.

Chronologically in the laboratory, the laser frequencies were first calibrated using atom
flux produced from a barium oven source, where barium atoms are emitted via resistive
heating, when we had a working barium oven. I speculate that it should also be possible to
calibrate the laser frequencies with a ablation target source, since we were able to observe
atom/ion fluorescence from the flux from laser ablation in Fig. 3.5. An alternative method
to calibrate the 493 nm and 650 nm laser frequencies may also be enabled by laser ablation,
which is by observing ion fluorescence from the barium ion flux as a metric, which is not
available from an oven source.

To calibrate the 554 nm laser frequency for 137Ba, we do a fine spectroscopy of the
554 nm transition in steps of 10MHz. This is to determine the 138Ba 554 nm fluorescence
peak frequency to a precision of 10MHz. The 554 nm laser frequency is then set to a
shift corresponding to the driving a ground state 137Ba to the 6P excited state with a total
angular momentum of F = 3/2, which is known from past literature to be blue of the 138Ba
peak by 274.6MHz [58]. To calibrate the 493 nm and 650 nm laser frequencies for 137Ba+,
from known energy level shifts and hyperfine splittings from past literature [59, 60, 61],
we first calculate the EOM frequencies required to drive the desired transitions as shown
in Fig. 3.1c based on the scheme we employ. In this work, the 493 nm transitions, which
are the |6S1/2, F = 1⟩ ↔ |6P1/2, F = 2⟩ and |6S1/2, F = 2⟩ ↔ |6P1/2, F = 2⟩ transitions,
are driven by the first red and blue-sidebands generated by the EOM at ±4012MHz,
and the 493 nm carrier frequency is off-resonant. The |5D3/2, F = 2⟩ ↔ |6P1/2, F = 1⟩
transition is driven by the carrier frequency of the 650 nm laser, and the other 5D3/2 to
6P1/2 transitions are driven by the blue sidebands generated by the EOM. Specifically, the
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EOM is used to generate sidebands at 318MHz, 473MHz, and 877MHz, where the blue
sidebands drive the |5D3/2, F = 1⟩ ↔ |6P1/2, F = 1⟩, |5D3/2, F = 0⟩ ↔ |6P1/2, F = 1⟩, and
|5D3/2, F = 3⟩ ↔ |6P1/2, F = 2⟩ transitions respectively. This EOM setup for the 650 nm
is so that the unused sidebands are red of the resonant transitions to prevent heating the
ion. Note that the EOM modulation frequencies for the 650 nm laser are slightly off from
the reported values [60, 61]. This is set on purpose and the rationale will be discussed in
Section 3.3. We then trap a 138Ba+ ion. The carrier frequency of the 493 nm is the shifted
red by the sideband frequency to be generated by the EOM, and then the EOM is turned
on to fluoresce the trapped 138Ba+ ion with the laser sideband frequency to calibrate the
laser sideband intensity. The electrical power sent to the 493 nm EOM is set to maximize
the 138Ba+ fluorescence rate. The sideband intensities calibration of the 650 nm laser follow
similar steps, except that it is not possible to maximize the 138Ba+ fluorescence rate when
driving it with sideband frequencies for all the sidebands at the same time. The electrical
power sent to the 650 nm EOM for each of the sideband is set to be able to fluoresce 138Ba+

with at least 10% of the fluorescence rate compared to the original laser frequency settings
for fluorescing 138Ba+.

3.3 Higher Laser Intensities Do Not (Necessarily) Lead

to Higher Barium Ion Fluorescence Rates

For a simple two-level energy level structure, one ground state and one fast-decaying excited
state, the fluorescence rate is expected to monotonically increase with increasing driving
laser intensity, until the time-averaged excited state population saturates at 1/2 (see Ap-
pendix A). At laser intensities much higher than the saturation intensity, the fluorescence
rate will be stable and insensitive to laser frequency changes. In our fluorescence scheme
for Ba+ ions, we will see that this is not the case, due to an additional energy level being
involved, which is the 5D3/2 level. This leads to nuances such as what is alluded in the
title of this section. We explore these complexities with theoretical models in this section,
in order to gain some insights to what we see or expect to see regarding the characteristics
of barium ion fluorescence rates in a laboratory.

21



3.3.1 Three-level Theoretical Toy Model for Studying Barium
Ion Fluorescence Rates

We start by studying a simple model case, which is a three-level system, with the states
labelled as |S⟩, |P ⟩, and |D⟩. The |P ⟩ state has a decay rates of γS and γD to the |S⟩
and |D⟩ states respectively. The |S⟩ and |D⟩ states are treated as stable states and do not
decay. The unperturbed Hamiltonian can be written as

Ĥ0 = ES|S⟩⟨S|+ EP |P ⟩⟨P |+ ED|D⟩⟨D|, (3.3)

where Ej is the energy of state |j⟩, j ∈ {S, P,D}. Let two lasers be incident on the system,
with Rabi frequencies of ΩL, and laser angular frequencies of ωk, where the subscript
L ∈ {S,D} indicates laser frequencies that are close to the |L⟩ ↔ |P ⟩ transition. We write
the laser frequencies as

ωS = ω0,S +∆S

ωD = ω0,D +∆D,
(3.4)

where ω0,L = (EP −EL)/ℏ is the resonant frequency of the |L⟩ ↔ |P ⟩ transition. With the
assumptions ΩL ≪ |ω0,S − ω0,D| and ∆L ≪ |ω0,S − ω0,D|, the resultant Hamiltonian driven
by these two lasers can be approximated as

Ĥ = Ĥ0 + ĤLaser (3.5)

where the Hamiltonian introduced by the lasers is

ĤLaser = ΩS cos (ωSt) (|S⟩⟨P |+ |P ⟩⟨S|) + ΩD cos (ωDt) (|D⟩⟨P |+ |P ⟩⟨D|) . (3.6)

By going to the interaction picture with respect to the Hamiltonian

Ĥ ′
0 = (ES − ℏ∆S)|S⟩⟨S|+ EP |P ⟩⟨P |+ (ED − ℏ∆D)|D⟩⟨D|, (3.7)

and applying the rotating wave approximation (Ωk ≪ ωk), the resultant Hamiltonian in
the interaction picture is

ĤI = ∆S|S⟩⟨S|+∆D|D⟩⟨D|+ ΩS

2
(|S⟩⟨P |+ |P ⟩⟨S|) + ΩD

2
(|D⟩⟨P |+ |P ⟩⟨D|) (3.8)

Now we write a general state in the three-level system as

|ψI⟩ = cS|S⟩+ cD|D⟩+ cP |P ⟩. (3.9)

22



Solving the Schrödinger equation, iℏ d
dt
|ψI⟩ = ĤI |ψI⟩, gives

d

dt
cS = −i∆ScS − i

ΩS

2
cP

d

dt
cD = −i∆DcD − i

ΩD

2
cP

d

dt
cP = −iΩS

2
cS − i

ΩD

2
cD.

(3.10)

Writing the density matrix elements as ρjj′ = cjc
∗
j′ , from Eq. 3.10, we get

d

dt
ρSS = i

ΩS

2
(ρSP − ρPS)

d

dt
ρDD = i

ΩD

2
(ρDP − ρPD)

d

dt
ρPP = −iΩS

2
(ρSP − ρPS)− i

ΩD

2
(ρDP − ρPD)

d

dt
ρSD = i

ΩD

2
ρSP − i

ΩS

2
ρPD + i (∆D −∆S) ρSD

d

dt
ρSP = i

ΩS

2
(ρSS − ρPP ) + i

ΩD

2
ρSD − i∆SρSP

d

dt
ρDP = i

ΩD

2
(ρDD − ρPP ) + i

ΩS

2
ρDS − i∆DρDP .

(3.11)

Taking into account spontaneous decay from the |P ⟩ state, Eq. 3.11 is modified to

d

dt
ρSS = i

ΩS

2
(ρSP − ρPS) + γSρPP

d

dt
ρDD = i

ΩD

2
(ρDP − ρPD) + γDρPP

d

dt
ρPP = −iΩS

2
(ρSP − ρPS)− i

ΩD

2
(ρDP − ρPD)− (γS + γD) ρPP

d

dt
ρSD = i

ΩD

2
ρSP − i

ΩS

2
ρPD + i (∆D −∆S) ρSD

d

dt
ρSP = i

ΩS

2
(ρSS − ρPP ) + i

ΩD

2
ρSD − i∆SρSP − γS + γD

2
ρSP

d

dt
ρDP = i

ΩD

2
(ρDD − ρPP ) + i

ΩS

2
ρDS − i∆DρDP − γS + γD

2
ρDP ,

(3.12)

which are the optical Bloch equations that allow us to solve for the steady state populations.
At equilibrium, the derivatives on the LHS of Eq. 3.12 are zero. Solving Eq. 3.12 for the
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state populations in equilibrium, with the equation for normalizing the state population,
1 = ρSS + ρDD + ρPP , gives the |P ⟩ state population of

ρPP =

[
2 +

4∆2
SγS

Ω2
S (γS + γD)

+
4∆2

DγD
Ω2

D (γS + γD)

+
(γS + γD) γS

Ω2
S

+
(γS + γD) γD

Ω2
D

+
2

(γS + γD) (∆S −∆D)

(
Ω2

S

Ω2
D

γD∆D − Ω2
D

Ω2
S

γS∆S

)
+

Ω2
S + Ω2

D

4 (∆S −∆D)
2 (γS + γD)

(
γD + γS +

Ω2
S

Ω2
D

γD +
Ω2

D

Ω2
S

γS

)]−1

(3.13)

From Eq. 3.13, the larger the value is in the square bracket, the lower the |P ⟩ state pop-
ulation. If we ignore the last two terms inside the square bracket with the (∆S −∆D)
denominators, large Rabi frequencies (large ΩS and ΩD) saturates ρPP , and ρPP is insen-
sitive to laser frequencies (∆S and ∆D). This is because we have effectively ignored the
S to D state coherence by ignoring terms that are dependent on (∆S −∆D). Considering
all the terms in the square bracket, an immediate implication can be observed, which is
when the laser detunings are exact, ∆S = ∆D, we see that ρPP is zero. This is the elec-
tromagnetically induced transparency (EIT) phenomenon. When (∆S −∆D) is small, the

last term in the square bracket of Eq. 3.13,
Ω2

S+Ω2
D

4(∆S−∆D)2(γS+γD)

(
γD + γS +

Ω2
S

Ω2
D
γD +

Ω2
D

Ω2
S
γS

)
,

dominates over other terms. This term also generally increases with larger laser intensities,
which leads to smaller ρPP . Thus, when the laser frequency detunings are very close to
each other, higher laser intensities do not lead to higher fluorescence rates. Eq. 3.13 also
implies that the optimal laser frequencies to maximize fluorescence rates are not clear, and
are dependent on the laser intensities (see Fig. 3.6).

24



Figure 3.6: Color maps of P state population against laser detunings, ∆S and ∆D, simu-
lated using Eq. 3.13 at different laser Rabi frequencies, ΩS and ΩD. Barium ion sponta-
neous decay rates of γS = 95.3 µs−1 and γD = 31.0 µs−1 are used for these simulations. ∆S

is limited to negative values, which is a requirement for Doppler cooling a trapped ion.

3.3.2 Theoretical Simulations of P State Populations of 138Ba+

and 137Ba+

As discused in Section 3.3.1, our approach to modelling and calculating the excited state
population is as follows.

1. Construct the Hamiltonian of the system.

2. Go to the interaction picture in the laser frequencies’ reference frame, in order to
work with a time-independent Hamiltonian.

3. Construct time derivatives of the energy state density matrix elements using Schrödinger
equation.

4. Add spontaneous decay terms to the time derivative equations.
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5. Set the time derivatives to zero for the equilibrium condition and together with the
requirement that the trace of the density matrix has to be unity, we have a complete
set of linear equations to solve for P state population.

To model 138Ba+ and 137Ba+ more realistically, I will discuss the additional complexities
to be taken into account in each step listed above.

There are not just three energy levels to consider in actual 138Ba+ and 137Ba+ ions. In
a static magnetic field, 138Ba+ has two 6S1/2 states, two 6P1/2 states and four 5D3/2 states
that are non-degenerate, a total of eight states to be included. Similarly, for 137Ba+, there
are eight 6S1/2 states, eight 6P1/2 states, and sixteen 5D3/2 states, a total of thirty-two
states. In the linear Zeeman splitting regime, the angular frequency corresponding to the
energy level splittings within each electronic/hyperfine level can be estimated to be

∆Zeeman = gKµBBem/ℏ (3.14)

where gK is the Landé g-factor, the subscript K ∈ {J, F}, where J denotes electronic level,
F denotes hyperfine level, µB is the Bohr magneton, Be is the magnetic field strength, m is
the magnetic quantum number, and ℏ is the reduced Planck constant. The Landé g-factor
is given as

gJ = 1 +
J (J + 1) + S (S + 1)− L (L+ 1)

2J (J + 1)

gF = gJ
F (F + 1) + J (J + 1)− I (I + 1)

2F (F + 1)

(3.15)

where J is the total electronic angular momentum number, S is the electron spin number,
L is the orbital angular momentum number, F is the total hyperfine angular momentum
number, and I is the nuclear spin number. With Eqs. 3.14 and 3.15, we have enough
information to determine the frequency detunings of each level to the driving lasers, and
we can get to Step 2 in the list of steps to complete the calculations presented above.

The effective Rabi frequencies for the transitions of each energy state also have to be
treated carefully for realistic simulations. The relative dipole transition strength for each
transition can be derived using Wigner-Eckart theorem.

⟨jm|D(k)
q |j′m′⟩ = ⟨j′m′kq|jm⟩⟨j||D(k)||j′⟩, (3.16)

where j is the total angular momentum number, D
(k)
q is the qth component of the electric

dipole tensor operator, k = 1 is the rank of the dipole operator, ⟨j′m′kq|jm⟩ is a Clebsch-
Gordan coefficient (see Appendix B), and ⟨j||D(k)||j′⟩ is the reduced transition matrix
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element. Taking into account the laser polarization that is driving the qth component, the
actual Rabi frequency for a transition between two states is

Ωjmj′m′,L = σq⟨j′m′kq|jm⟩ΩL, (3.17)

where σq is the q
th component of the laser polarization and the subscript L ∈ {S,D} denotes

the electron orbital. In this work, the 493 nm and 650 nm beams are linearly polarized and
pointing perpendicularly to the magnetic axis. Let θL = 0◦ be the polarization angle that
minimizes the q = 0 component, we have

σ±,L = cos (θL)/
√
2

σ0,L = sin (θL).
(3.18)

With the Rabi frequency for each transition known, we can get to Step 3 in the list above.
To get to Step 4, the branching ratios of the spontaneous decays to each Zeeman state need
to be computed, which is straightforward as it is just a factor of Clebsch-Gordan coefficient
squared, |⟨j′m′kq|jm⟩|2, for 138Ba+ and a factor of Wigner-Eckart coefficient squared for
137Ba+ (See Appendix A of Ref. [49] for derivations of the Wigner-Eckart coefficients).

With all these complexities taken into account, we can get to Step 5. With a total
of eight energy levels with 138Ba+ and thirty-two energy levels with 137Ba+, it is difficult
to get an analytical expression for the P state population. So, I use a linear equations
solver package in MATLAB, linsolve(), to solve the list of simultaneous linear equations
in Step 5 numerically. Keen readers who are curious about how the equations are exactly
constructed and the coding approach in this section can study the simulation scripts on
the repository at [62].
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(a) 138Ba+ (b) 138Ba+

(c) 137Ba+ (d) 137Ba+

Figure 3.7: Color maps of P state population against laser frequency detunings at different
laser Rabi frequencies for 138Ba+ ((a) & (b)) and 137Ba+ ((c) & (d)). The laser polarization
angle is set to θS = θD = π/4. For (c) & (d), the |D,F = 2⟩ hyperfine level is driven
to the |P, F = 2⟩ level instead of the |P, F = 1⟩ level as shown in Fig. 3.1c, as this
is what is empirically performed at the time this study is done. The laser frequencies
for the |S, F = 1⟩ ↔ |P, F = 2⟩ and |S, F = 2⟩ ↔ |P, F = 2⟩ are also have a set
10MHz detuning from each other, in anticipation to reduce EIT effect (if any) from the
ground states. Similarly, the laser frequencies for the |D,F = 0⟩ ↔ |P, F = 1⟩ and
|D,F = 1⟩ ↔ |P, F = 1⟩ transitions have a set 10MHz detuning, same for the laser
frequencies for the |D,F = 2⟩ ↔ |P, F = 2⟩ and |D,F = 3⟩ ↔ |P, F = 2⟩ transition. The
Rabi frequencies for the S ↔ P transition laser frequencies are set to be equal, as is the
case for the D ↔ P transition laser frequencies.

Fig. 3.7 shows the simulation results for 138Ba+ and 137Ba+. From the results, it can
be seen that the effect from EIT is suppressed for 138Ba+, from the observation that the P
state population is not zero when ∆S = ∆D. This is because for one S state with the same
laser detunings with anotherD state, you can find another ZeemanD state that this S state
does not share the same laser detunings with. For 137Ba+, the EIT effect is not suppressed
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for the F = 0 hyperfine state in the D level, as there is only a single Zeeman state in
this hyperfine level. Empirically measured fluorescence rates dependence of 138Ba+ and
137Ba+ ions also have the same qualitative dependence on the laser frequencies predicted
by the simulations, as shown in Fig. 3.8. The fluorescence rate suppression due to the EIT
effect when ∆S = ∆D is obvious from the empirical data. From the data, we can also see
that there are upper limits for the 493 nm and 650 nm laser frequencies where the ion stay
crystalized and fluorescing. This is due to Doppler heating by the lasers when they are too
far blue-detuned. This upper limit for one of the 493 nm and 650 nm lasers is lower if the
other laser frequency is bluer, forming fluorescence rate drop-off lines going from top left
to bottom right in the color maps.

(a) (b)

Figure 3.8: Color maps of empirically collected fluorescence rates against 493 nm and
650 nm carrier laser frequencies of (a) 138Ba+ and (b) 137Ba+

Another interesting observation from Fig. 3.7 is that the maximum possible P state
population does not increase when the laser Rabi frequencies are increased from ΩS =
ΩD = 2π × 10MHz to ΩS = ΩD = 2π × 30MHz, which is contrary to the simple three-
level case as shown in Fig. 3.6. To investigate the P state population dependence on
laser intensities, we performed numerical simulations where we scan over a range of 493 nm
and 650 nm transition Rabi frequencies. For each combination of 493 nm and 650 nm
transition Rabi frequencies, the laser frequencies are scanned in the range from ∆S/2π =
−100MHz to 0MHz and ∆D/2π = −100MHz to 100MHz in steps of 10MHz, and then
the frequency combination with the highest P state population is selected.
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(a) (b)

Figure 3.9: Color maps of the laser intensity scan simulation results for (a) 138Ba+ and (b)
137Ba+. The polarization angle is chosen to be θS = θD = π/4.

From Fig. 3.9, we see that there is an optimal point for laser intensities to maximize
ion fluorescence, and further increasing any of the laser intensities would lower the P state
population. The maximum P state populations also appear to be ∼ 6% and ∼ 3% for
138Ba+ and 137Ba+ respectively. To compare the simulation results with what we observe
empirically, we look at the PMT count rate during ion fluorescence. The count rate (C.R.)
of 493 nm light detected on the PMT, collected with our imaging system of N.A. = 0.2623,
from a Ba+ ion is

C.R. =

(
1−

√
1−N.A.2

)
× γS × (Q.E.)× ρP

2
(3.19)

The PMT that we are using to collect ion fluorescence is Hamamatsu H10682-210, which is
specified to have a count sensitivity of 4.6× 105 s−1 pW−1, which translates to a detection
efficiency of Q.E. = 18.5%. In our laboratory, the best 138Ba+ and 137Ba+ fluorescence
rates that we have observed are C.R. ≃ 20ms−1 and C.R. ≃ 10ms−1 respectively. Using
Eq. 3.19, this translates to P state populations of 6.5% and 3.2% for 138Ba+ and 137Ba+

respectively, which match well with the simulation results.
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Figure 3.10: Color maps of P state population against laser polarizations for (a) 138Ba+ and
(b) 137Ba+. (a) The Rabi frequencies are set to ΩS = 2π×15MHz and ΩD = 2π×25MHz.
(b) The Rabi frequencies are set to ΩS = 2π × 20MHz and ΩD = 2π × 15MHz.

We also studied the fluorescence rate dependence on laser polarizations, by performing
similar simulations with the intensity scan simulation, but with the laser intensities fixed
and varying laser polarizations instead. From Fig. 3.10, the P state population are largely
insensitive to laser polarizations, and have sharp drop off at θD = π/2. At θD = π/2,
the 650 nm light is π-polarized and can only drive ∆m = 0 transitions. For the D3/2

states with mJ = ±3/2 and mF = ±3 in 138Ba+ and 137Ba+ respectively, there is no
available 6P1/2 state to drive it to, and thus the state population is stuck in the D3/2

level. At θS = π/2, there is P -state population drop-off for 137Ba+. This is because the
493 nm light is π-polarized, which would lead to the state population being stuck in the
|6S1/2, F = 2,mF = 0⟩ state as the |6S1/2, F = 2,mF = 0⟩ ↔ |6P1/2, F = 2,mF = 0⟩
transition is forbidden.

To summarize this section, we have studied Ba+ fluorescence rates of our ion fluores-
cence protocol with numerical simulations constructed from optical Bloch equations. From
the results, we conclude some important pointers for anyone working with or plans to work
with trapped Ba+ ions as follows:

1. The optimal laser frequencies for maximizing ion fluorescence are dependent on laser
intensities. If you find that the optimal laser frequencies have been drifting, it may
not be a fault with your laser frequency locking systems.

2. Higher laser intensities are not always better. There is an optimal point for the laser
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intensities for maximal fluorescence, and further increasing them would lower the
fluorescence rate.

3. The P state populations are an order of magnitude smaller than the simple two-level
case, at ∼ 8% and ∼ 6% for 138Ba+ and 137Ba+ respectively. There may be nothing
wrong with your imaging system when you have lower photon counts than what you
might have intuitively expected.

Technically, we have not done a full parameter scan to search for the true optimal P state
population achievable. We did not do a full scan with varying laser polarizations and Rabi
frequencies concurrently. For 137Ba+, we have also fixed the laser frequencies in the same
laser (493 nm and 650 nm) to have equal intensities and fixed the frequency modulations for
each laser. Thus, we have not done a complete parameter search to definitively conclude
points number 2 and 3. However, our empirical observations have been matching the
conclusions from the simulations, and we are confident with the implications from the
simulation study so far.
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3.4 Improved Isotope Selectivity for Ba+ Ion Loading

Isotope Abundance 6S ↔ 6P Transition Frequency Shift / MHz

132 0.1% 167.9

133 0%
−23.3(F = 1/2)
373.8(F = 3/2)

134 2.4% 142.8

135 6.6%
547.3(F = 5/2)
326.7(F = 3/2)
121.6(F = 1/2)

136 7.9% 128.02

137 11.2%
549.5(F = 5/2)
274.6(F = 3/2)
63.4(F = 1/2)

138 71.7% 0

Table 3.1: Natural abundance of barium isotopes and the first dipole excitation transition
frequency shifts [48, 58]. The 6S ↔ 6P transition frequency shifts are relative to 138Ba.
Odd isotopes have nonzero nuclear spin, leading to energy level splittings for different F
numbers.

Table 3.1 shows the composition of naturally occurring barium isotopes. 137Ba, which is one
of our isotopes of interest, has a lower abundance at 11.2%. To facilitate trapping a desired
barium isotope from a natural barium source target, the frequency dependence of the
6S ↔ 6P transitions on the isotopes can be exploited. The 554 nm laser beam path is set up
to be perpendicular to the direction of the atom flux from the BaCl2 target as shown in Fig.
3.3, in order to minimize Doppler effects on the spectroscopy of the 554 nm laser on the atom
flux. The effect of Doppler broadening on ion loading is speculated to be further suppressed,
as only the atoms falling within the crossing overlap of the 554 nm and 405 nm laser beams
can be ionized, which is in a length scale of 70 µm. With the BaCl2 salt target being
relatively far away from the ion trap center at 14.6mm, the angular spread of the atom
flux that is available for to be ionized is very restricted, to approximately 0.27◦, and thus
minimizing Doppler broadening effects. By doing a 554 nm laser spectroscopy on ablated
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barium atom flux, we obtain resolvable barium isotope fluorescence peaks as shown in Fig.
3.11. To selectively load 138Ba+ or 137Ba+, we set the 554 nm laser frequencies to their
transition peak frequencies respectively. For 137Ba+, there are three possible transitions
due to hyperfine splittings. We choose the transition to the F = 3/2 state as this peak is
the best isolated from the transition peaks of other isotopes out of the three transitions.

Figure 3.11: Spectroscopy of neutral barium fluorescence from the ablated flux. s = 10
denotes the theoretical curve is calculated at 10 times the 554 nm saturation intensity. The
photon counts are collected after a time delay of t > 18 µs to minimize Doppler broadening
effects. Data analysis performed by Brendan White, see Ref. [63] for details.

To characterize and quantify the ion loading isotope selectivity, we developed a test
method as described in the procedure as follows:

1. Set the 493 nm, 554 nm, and 650 nm laser frequencies for the desired isotope to be
trapped.

2. Ablate the salt target until at least three bright ions are detected on the CCD camera
(see Appendix C for an algorithm to automate the detection of the number of ions).
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3. Turn the 650 nm laser off for 1 s and turn it back on.

4. Take a picture on the CCD camera.

5. Repeat Steps 3 and 4 one hundred times.

6. Sum across all the images taken in Step 5. Count the number of bright lattice sites,
which is the total number of trapped ions.

Step 3 in the procedure pauses the laser cooling of the ions, which we find to help with
scrambling the ion positions. By repeating Step 3 a lot of times, the bright ions have
high probabilities of hopping onto all the lattice sites, which were occupied by other dark
ions. This method has the benefit of being robust to any other dark ions, be they other
elemental ions or molecular ions. Specifically for the experiments for 138Ba+, 134Ba+ or
136Ba+ could be among the bright ions, as we have found that these isotopes will still
be fluorescing dimly with the laser frequencies set for fluorescing 138Ba+. Thus, for each
138Ba+ experiment, we manually check the images to count the number of ions that are
fluorescing brightly at the 138Ba+ fluorescence rate as the number of trapped 138Ba+.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3.12: 138Ba+ ion chain images from summing across all images from toggling the
repump laser. Each image is a separate experiment. The first excitation laser (554 nm
laser) intensity is set to 0.104W cm−2. The total number of ions (bright and dark) are
manually counted to be (a) 3, (b) 3, (c) 3, (d) 3, (e) 6, (f) 3, (g) 3, (h) 3, (i) 3, and (j) 3.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3.13: 137Ba+ ion chain images from summing across all images from toggling the
repump laser. Each image is a separate experiment. The first excitation laser (554 nm
laser) intensity is set to 0.104W cm−2. The total number of ions (bright and dark) are
manually counted to be (a) 3, (b) 7, (c) 7, (d) 8, (e) 5, (f) 14, (g) 12, (h) 8, (i) 13, and (j)
4.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 3.14: 137Ba+ ion chain images from summing across all images from toggling the
repump laser. Each image is a separate experiment. The first excitation laser (554 nm
laser) intensity is set to 0.935W cm−2. The total number of ions (bright and dark) are
manually counted to be (a) 7, (b) 14, (c) 11, (d) 12, (e) 4, (f) 12, (g) 8, (h) 7, (i) 10, and
(j) 8.

For the ion loading isotope selectivity experiments, the ablation pulse fluence was set to
0.25 J cm−2, the trap RF voltage amplitude is estimated to be VRF = 66V (see Appendix
D for the estimation method), the diagonal rods squeezing voltage is VS = 2V, the needle
voltages at VN1 = VN1 = 10V, and a static magnetic field is generated which points in the
direction vertical to the vacuum chamber. Fig. 3.12 shows the total lattice sites images of
the first ten out of fifty-three isotope selectivity experiments for 138Ba+ (not all data sets
are displayed for brevity, full data sets can be accessed at [64]). Figs. 3.13 and 3.14 show
the total lattice sites images for 137Ba+ at different 554 nm laser powers. We do human
manual counting for the total number of lattice sites in Step 6, which may be subject to
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uncertainties due to subjectivity of human interpretation, especially for longer ion chains.
However, the extent of error from this human uncertainty is not expected to be large, as
only about three out of ten experiments for 137Ba+ have long chains, and is unlikely to lead
to a contrary conclusion that the isotope-selectivity is not significantly improved from the
natural 137Ba abundance of 11.2%. The selectivity probability is computed by summing
over the total number of trapped desired isotope across all the experiments, divided by
the total number of counted lattice sites across all experiments. At 554 nm fluence of
0.104W cm−2, out of fifty-three 138Ba+ experiments, a total of 185 ions were trapped, with
157 being 138Ba+, which gives a selectivity of 85±3%. At 554 nm fluence of 0.104W cm−2,
out of ten 137Ba+ experiments, a total of 81 ions were trapped, with 30 being 137Ba+,
which gives a selectivity of 37± 5%. At 554 nm fluence of 0.935W cm−2, out of ten 137Ba+

experiments, a total of 93 ions were trapped, with 30 being 137Ba+, which gives a selectivity
of 32± 5%. From these results, the ion loading isotope selectivity is conclusively improved
from their natural abundance as shown in Table 3.1.

3.5 Direct-Ion Loading of Barium Ions

In this section, I describe an alternative ion loading method by exploiting the ability of
laser ablation to directly generate barium ions, which is a method adopted from Ref. [18].
As shown in Fig. 3.5, at high enough ablation pulse fluence, barium ions are directly
released from the BaCl2 target without the need for photoionization. By keeping the ion
trap RF voltages off when the ablation event happens, the emitted ions are able to enter
the trapping region without being obstructed by the electric pseudopotential barrier of the
trap. After some time has passed to allow the emitted ions to arrive at the trapping region,
the RF voltages are turned on, and ions with kinetic energies lower than the Paul trap
pseudopotential barrier will be trapped. To determine the optimal delay time to turn on
the trap RF voltages for direct-ion trapping, we performed a time-resolved scan of trapping
probability against the trap RF turn-on time.
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Figure 3.15: Trapping probability of 138Ba+ using the direct-ion loading method. The
horizontal axis denotes the time delay of the trap RF voltage turn-on time from the moment
the ablation laser pulse reaches the target. The sample size for each data point is 270. The
ablation fluence used is 0.32 J cm−2. The trap electrode voltage parameters are the same
as what is described in Section 3.4.

From Fig. 3.15, the optimal trap RF turn-on time is 26µs after the laser ablation
event. The optimal trap turn-on time is expected to shift with different trap parameters as
it would change the pseudopotential barrier and thus maximum trappable kinetic energy
of the ions.

We also investigated the loading efficiency of the direct-ion loading method compared
to the REMPI method. A pulse fluence of 0.32 J cm−2 is used to ablate on a single spot on
the BaCl2 target. The 493 nm, 554 nm and 650 nm laser frequencies are set for trapping
and cooling 138Ba+ ions. First, 300 loading attempts (one ablation pulse per attempt) are
performed using the REMPI method. Then, another 300 loading attempts are performed
using the direct-ion loading method. The trap RF voltage is turned on 27 µs after the
ablation laser hits the target. Lastly, another 300 loading attempts are performed without
the REMPI lasers and keeping the trap RF voltages on all the time. This last set of
loading attempts serve as a control experiment. We make the assumption that the flux
density produced by ablation is consistent throughout these experiments in order to make
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direct comparisons of the loading efficiencies of the different loading methods. The loading
efficiencies are found to be 15.7%, 39.0% and 1.7% respectively for the REMPI method,
the direct-ion loading method and the control experiment respectively. It is interesting
that the trapping probability is not zero for the control experiment (which is also observed
in non-zero probabilities at negative turn-on times in Fig. 3.15), which I speculate to be
due to an ion arriving close to the trapping region during some phase of the oscillating
voltage such that the electric field allows the ion to enter the trap region, and then as the
ion is going pass the trapping region, the oscillating voltage is in a phase which decelerates
the ion, i.e. it is some dynamics that is not predicted by approximating the trap RF
voltage as a static pseudopotential. From these results, the direct-ion loading method has
an obviously improved trapping efficiency compared to the REMPI method by more then
two times. However, direct-ion loading is not isotope selective and is therefore not our
main method for loading ions. It is however, useful for troubleshooting the setup as it does
not depend on the 405 nm laser beam alignment.

3.6 Discussion and Concluding Remarks

In this chapter, I have described the protocols for trapping barium isotopes using laser
ablation. This laser ablation ion loading method comes with a number of remarkable
practical benefits compared to a more conventional way of using an oven to drive emission
from a metal barium source, especially for barium, which I list as follows:

1. It allows us to prepare the source in a salt form, BaCl2, which is stable in atmospheric
environment, as compared to barium metal, which oxidizes rapidly in atmosphere.

2. The atom flux is generated instantaneously upon laser ablation, which leads to po-
tentially quicker trapping of ions.

3. There is practically no heat load on the setup, which may cause drifts in the align-
ments of the setup due to thermal expansions.

4. Smaller amounts of the source is used up for each ion loading event.

5. No electrical connections and thus access of vacuum electrical feedthroughs are
needed for the source.

6. Ions can be generated directly from laser ablation if needed by using high-enough
laser pulse fluences, which has some useful applications. Although, some may view
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this as a downside as the ion flux may charge up the trap electrodes and push ions
away from the RF null, introducing micromotions. However, we do not see this effect
from our four-rod trap setup.

Benefit number 4, where small amounts of the source material is used for each loading
event is particularly important for ion species that can only be prepared in small amounts.
This is the case for 133Ba+ as it is radioactive and only small amounts can be installed in a
vacuum chamber for health and safety concerns [18]. Loading 133Ba+ was our original main
motivation for exploring ion loading with laser ablation, but we have yet to successfully
trap 133Ba+ so far. Details of the loading attempts of 133Ba+ can be found in Appendix E.

The loading efficiency depends on a number of experimental parameters, which include
the ablation pulse fluence, the 554 nm laser intensity and frequency, and the trap electrode
voltages. Using the REMPI process, we find that we can typically reach a loading efficiency
of 0.1 to 1 trapped 138Ba+ per ablation pulse, and subsequently 0.01 to 0.1 trapped 137Ba+

per ablation pulse. The REMPI process also allows improved isotope selective loading of
barium isotopes compared to their natural abundances, measured at 85 ± 3% for 138Ba+

and around 35% for 137Ba+ in this study. This study lets us answer the question of if
relying on isotope selectivity of this current REMPI protocol is sufficient for loading long
chains of a single isotope from a natural abundance target, which is not. For loading
long chains of isotopes with lower natural abundance, an enriched target with the desired
may be required. Alternatively, an isotope-selective laser heating method can be used to
expel the unwanted trapped ion isotopes [18], and this improved isotope selectivity loading
protocol can be an aid to the overall process of loading a long ion chain of the only desired
isotopes.
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Chapter 4

Trapped Ba+ Ions As Qudits

A singly-ionized Ba+ ion has a metastable 5D5/2 level, with a spontaneous decay time of
35 s [65]. This decay time is at a time scale much longer than typical trapped ion quantum
computing operations [5, 12, 16, 17, 18, 26, 27, 28]. Thus, it is intuitive to think that
these metastable states can effectively act as additional coherent ground states, as long
as the time scale involving the controls of these states remain negligible compared to the
spontaneous decay time. If there is some state measurement protocol that can distinguish
quantum information encoded in these stable 6S1/2 and metastable 5D5/2 states, then they
fulfil a crucial requirement to be used to encode additional computational states. Assuming
that there is sufficient control of these states to perform universal single qudit gates and
some form of an entangling gate, they can be used for encoding qudits at higher dimensions,
effectively increasing the computational Hilbert space. We will see in this chapter that this
is indeed the case, and naturally a Ba+ isotope that has more energy eigenstates in the
6S1/2 and 5D5/2 levels can be used for higher dimensional encodings. 137Ba+ is a prime
candidate for high-dimensional qudit encoding, as there are a total of thirty-two energy
eigenstates in the 6S1/2 and 5D5/2 levels, which is a reason why this isotope is of interest
to us as alluded in Chapter 3.

In this chapter, I describe the work that we have done to actualize coherent controls
of the 6S1/2 and 5D5/2 states to enable qudit encoding, starting from a point where the
experimental parameters are not calibrated. Since the 5D5/2 states have a long spontaneous
decay time, the 6S1/2 ↔ 5D5/2 transitions have narrow linewidths that are limited only by
power broadening. The narrow transition linewidths enable other helpful utilities from the
laser control of these transitions, such as resolved sideband cooling and excess micromotion
detection, which are also discussed in this chapter. There are also additional complexities
with working with the many 137Ba+ 6S1/2 and 5D5/2 levels, where some commonly applied
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approximation methods are no longer valid, which are studied and presented here. Finally,
we show that a 137Ba+ ion can be used to encode up to 25 levels, and we demonstrate
control and readout of a 13-level qudit with 137Ba+. Parts of the work in this chapter are
adapted from our article in preparation to be published [51].

4.1 Conceptual Control of Ba+ 6S1/2 and 5D5/2 Energy

Levels

To ensure that a Ba+ is in the ground level at the start of an experiment, and not in
any of the metastable states, we can wait in the order of minutes in principle to ensure
any population in the 5D3/2 (82 s decay time) or 5D5/2 (35 s decay time) states decay to
the ground state. This is however, not practical for realistic applications, especially when
repeat experiments are to be done. To speed this process up, we pump the populations out
of the metastable states with dipole transitions. For the 5D3/2 level, the 650 nm laser is
used, as seen before in Chapter 3.1. For the 5D5/2 level, a 614 nm laser is used, which drives
the state population to the 6P3/2 level (as shown in Figs. 3.1b and 3.1c) and undergoes
fast decay to the 6S1/2 or the 5D3/2 levels. With both the 614 nm and the 650 nm lasers
sent to a Ba+ ion, the energy state of the ion can be prepared in the ground level quickly.

A Ba+ ion has multiple states in the 6S1/2 ground level (two for 138Ba+, eight for
137Ba+). Without control, a Ba+ ion in the 6S1/2 ground energy level can be in any of
the states, with equal probabilities. To have control over this randomness of the starting
ground state, we choose to optically pump the ground level with a σ+-polarized 493 nm
laser, along with a 650 nm laser to repump the ion out of the 5D3/2 level. The σ+-polarized
493 nm laser perpetually drives ∆m = +1 |6S1/2⟩ → |6P1/2⟩ transitions, until the ion is in
the highest magnetic quantum number state in the 6S1/2 ground level, where there is no
available ∆m = +1 to be driven to in the 6P1/2 level. This prepares the ion in the 6P1/2

state with the highest magnetic quantum number, giving us control of the starting point
of the ion energy state.

As shown in Figs. 3.1b and 3.1c, the 5D5/2 level can be accessed from the 6S1/2 ground
state with a quadrupole transition corresponding to a wavelength of 1762 nm. By sending
a 1762 nm laser with its frequency tuned to the resonant frequency of a transition between
the starting 6S1/2 state and a 5D5/2 state allowed by selection rule, a coherent transition is
being driven. If we have full control of the pulse timing and the phase of the 1762 nm laser
being sent to the ion, then we have full control of the quantum states between the two
levels. If we have calibrated the resonant transition frequencies for the other 6S1/2 ↔ 5D5/2
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transitions, then we have full control of the quantum states in the 6S1/2 and 5D5/2 levels.

4.1.1 The Hyperfine |F,mF ⟩ States are Bad Assumptions of 137Ba+

5D5/2 Energy Eigenstates

Taking into account the fine structure splitting, hyperfine structure splitting and Zeeman
splitting, the Hamiltonian of an electron orbital (with reference to the electron orbital
energy as zero) can be written as

Ĥ = ĤFS + ĤHF + ĤZ , (4.1)

where ĤFS, ĤHF , and ĤZ are the fine structure, hyperfine structure, and Zeeman effect
Hamiltonian respectively. We first look at 138Ba+, we consider the energy levels that we
want coherent controls for, which are the 6S1/2 and 5D5/2 levels. For 138Ba+, there is no

nuclear spin and thus ĤHF = 0, and only the Zeeman splitting Hamiltonian needs to be
considered. In the regime where the Zeeman splittings are much smaller than the fine
structure splittings, the energy eigenstates can be approximated to be the fine structure
eigenstates of |J,mJ⟩ and ĤZ is approximated to be

ĤZ = gJµBBeĴz/ℏ, (4.2)

where Ĵz is the projection of the electron total angular momentum onto the magnetic
field axis. The fine structure splitting between the 5D5/2 and the 5D3/2 is around 24THz
[55], and there is no fine structure splitting in the 6S level. The Landé g-factors are in
the order of 1 (for the 6S1/2 and the 5D5/2 levels, they are approximately gJ = 2 [66]
and gJ = 6/5 [67] respectively), and Jz is in the order of ℏ. Thus, the Zeeman energy
level splittings is in the order of µBBe, which corresponds to a frequencies in the order
of µB

h
Be ≈ (1.4MHz/G) × Be, where h is the Planck constant. For typical magnetic field

strengths in a trapped ion experiment, which is in the order of 1G, the Zeeman splittings
is in the order of 1MHz, which is much lower than the fine structure splitting in the 5D
level of 24THz. Therefore, we can accurately approximate the energy eigenstates of the
6S1/2 and 5D5/2 levels to be the fine structure eigenstates |J,mJ⟩, and the energy level
splittings to be linear with magnetic field strength.

We now consider 137Ba+, which has a nuclear spin of I = 3/2 and thus a non-zero ĤHF

term. The hyperfine splittings ĤHF of the 5D levels are in an order of less than 1GHz
[60], which are much lower than the fine splitting of 24THz. Thus, we can obtain accurate
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estimates of the energy level splittings of each fine structure (J) level by considering only
the reduced Hamiltonian sub-space.

ĤR = ĤHF + ĤZ . (4.3)

Taking into account the magnetic dipole and electric quadrupole coupling of the nuclear
spin and the electron angular momentum, ĤR can be expressed as

ĤR =
2πAD

ℏ
I⃗ · J⃗ + hBQ

3
ℏ4

(
I⃗ · J⃗

)2
+ 3

2ℏ2 I⃗ · J⃗ − I (I + 1) J (J + 1)

2I (2I − 1) J (2J − 1)

+
BeµB

ℏ

(
gJ Ĵz + gI Îz

)
,

(4.4)

where AD is the magnetic dipole hyperfine structure constant, BQ is the electric quadrupole

hyperfine structure constant, I⃗ and J⃗ are the nuclear and electron angular momentum
vectors respectively, I and J are the nuclear and electron angular momentum numbers
respectively, mI and mJ are the nuclear and electron angular momenta along the magnetic
field axis respectively, and gI and gJ denote the nuclear and electron g-factor respectively.
For the 6S1/2 level, AD = 4018.871MHz and BQ = 0 [59]. This leads to a hyperfine splitting
of the F = 1 and F = 2 level to be around 8GHz, where F is the hyperfine total angular
momentum number, F⃗ = J⃗ + I⃗. This is much larger than the Zeeman effect Hamiltonian
in the order of µB

h
Be ≈ (1.4MHz/G) × Be for Be in the order of 1G. Thus, the 6S1/2

energy eigenstates can be approximated with the hyperfine structure eigenstates |F,mF ⟩,
with energy level splittings that are linear with Be for each hyperfine level. For the 5D5/2

level, AD = −12.028MHz and BQ = 59.533MHz [60] (more precise values of the hyperfine
constants, including the octupole moment is available at Ref. [68] should simulations with
high precision are desired). This leads to a hyperfine energy level splitting in the F = 3
and F = 4 levels of ∼ 486 kHz [60], which is smaller than the Zeeman effect Hamiltonian,
which is in the order of 1MHz. Therefore, we cannot approximate the energy eigenstates
as the hyperfine |F,mF ⟩ states, and we need to solve 4.4 to find the energy eigenvalues.

We solve Eq. 4.4 for the 5D5/2 level in the |I,mI ; J,mJ⟩ = |I,mI⟩ ⊗ |J,mJ⟩ basis
numerically. The |I,mI⟩ and |J,mJ⟩ states are expressed in vector forms of dimensions
2I + 1 and 2J + 1 respectively, resulting in a vector space dimension for |I,mI⟩ ⊗ |J,mJ⟩
of (2I + 1)(2J + 1) = 24. The I⃗ · J⃗ operator is expressed in the matrix form as

I⃗ · J⃗ = Îx ⊗ Ĵx + Îy ⊗ Ĵy + Îz ⊗ Ĵz, (4.5)
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where

K̂x =
1

2

(
K̂+ + K̂−

)
K̂y = − i

2

(
K̂+ − K̂−

)
K̂z =

∑
mK

ℏmK |K,mK⟩⟨K,mK |

K̂+ =
∑
mK

ℏ
√
K(K + 1)−mK(mK + 1)|K,mK + 1⟩⟨K,mK |

K̂− =
∑
mK

ℏ
√
K(K + 1)−mK(mK − 1)|K,mK − 1⟩⟨K,mK |,

(4.6)

and K ∈ {I, J}. Having constructed the Hamiltonian in its matrix representation, the
matrix is then diagonalized and the eigenvalues and eigenvectors extracted, which is done
using MATLAB’s eig() function in this work.
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Figure 4.1: (a) Simulated transition energy levels to the 5D5/2 states from the |F̃ =

2,mF̃ = 2⟩ state in the 6S1/2 level. The colored lines denote the F̃ = 1 (green), F̃ = 2

(blue), F̃ = 3 (red), and F̃ = 4 (black) states. f0 is the transition frequency to the F = 4
level at zero magnetic field strength. (b) A representative plot of the simulated energy
eigenstates, illustrating the mixing of the zero-field eigenstates. The |F̃ = 4,mF̃ = 1⟩
energy eigenstate is expressed in the |F,mF ⟩ basis for magnetic field strengths from 0 to
10G. Components with zero amplitudes are not plotted.
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We define |J, F̃ ,mF̃ ⟩, J ∈ {S1/2, 5D5/2} to be the energy eigenstates that approach

the hyperfine |J, F,mF ⟩ states at low magnetic field strengths, i.e. |F̃ ,mF̃ ⟩ ≈ |F,mF ⟩ as
Be → 0. From Figure 4.1, it can be seen that the |5D5/2, F̃ ,mF̃ ⟩ state evolves quickly as Be

increases from 0G to 0.2G. The state does not change significantly upon further increase
of Be beyond 1G. This trend applies to other states with F̃ = 3 and F̃ = 4 except for
states with mF̃ = ±4 (see Appendix F). If one wishes to work with 137Ba+ with its 5D5/2

energy eigenstates being in the low-magnetic-field |F,mF ⟩ states, the magnetic field has
to be lower than 0.2G. This is however, not practical, as having weak Zeeman splittings
disables the ability to perform fluorescence readout and Doppler cooling of the ion (with
493 nm and 650 nm lasers) due to the emergence coherent dark states [53]. Thus, if one
wishes to use the 5D5/2 states in 137Ba+ for quantum computing, it may be inevitable
to work in the regime where the energy eigenstates of the 5D5/2 level being significantly
different from the hyperfine |F,mF ⟩ states.

4.1.2 Quadrupole Transitions

Starting from a classical picture, the potential energy of a charge distribution, ρ(r⃗), in an
external electric potential energy V (r⃗) is

HE =

∫
r⃗

ρ (r⃗)V (r⃗) dr⃗ (4.7)

Assuming that the charge distribution is centralized and spatial variation in V (r⃗) is much
smaller over the volume of the charge distribution, we can approximate V (r⃗) with its
Taylor expansion about r = 0 for the calculation of HE.

HE =

∫
r⃗

ρ (r⃗)

V (0) +
∑
rα

rα
∂V

∂rα

∣∣∣∣
r=0

+
1

2

∑
rα

∑
rβ

rαrβ
∂2V

∂rβ∂rα

∣∣∣∣
r=0

+ . . .

 dr⃗, (4.8)

where α, β ∈ {x, y, z} indicate the three-dimensional Cartesian axes. Keeping only the
terms up to the second derivatives, we have

HE ≈
∫
r⃗

ρ (r⃗)

V (0) +
∑
rα

rα
∂V

∂rα

∣∣∣∣
r=0

+
1

2

∑
rα

∑
rβ

rαrβ
∂2V

∂rβ∂rα

∣∣∣∣
r=0

 dr⃗
= V (0)

∫
r⃗

ρ (r⃗) dr⃗ +
∑
rα

∂V

∂rα

∣∣∣∣
r=0

∫
r⃗

ρ (r⃗) rαdr⃗ +
1

2

∑
rα

∑
rβ

∂2V

∂rβ∂rα

∣∣∣∣
r=0

∫
r⃗

ρ (r⃗) rαrβdr⃗.

(4.9)
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In Eq. 4.9, the first term is a constant shift of the energy, the second term is the electric
dipole energy, and the third term is the electric quadrupole energy. As alluded in the title of
this section, we will focus on the quadrupole energy term in this discussion. Now, consider
a quantum system of electron orbital states with a finite Hilbert space. Without loss of
generality, let the dimension of the Hilbert space be N , we can define an orthonormal basis
set {|bj⟩}, j ∈ {1, 2, . . . , N}, the electric quadrupole energy term can be expressed in an
operator form as

ĤQ =
1

2

∑
rα

∑
rβ

∂2V

∂rβ∂rα

∣∣∣∣
r=0

∫
r⃗

ρ (r⃗) rαrβdr⃗

=
e

2

∑
rα

∑
rβ

N∑
j=1

N∑
k=1

∂2V

∂rβ∂rα

∣∣∣∣
r=0

⟨bj|r̂αr̂β|bk⟩|bj⟩⟨bk|,
(4.10)

where e is the electron charge. Let the external field be a linearly polarized laser field with
an electric field amplitude of E0, represented by

E (r⃗, t) = E0 cos
(
k⃗ · r⃗ − ωt

)
(ϵxn⃗x + ϵyn⃗y + ϵzn⃗z), (4.11)

where n⃗j is the unit vector along the j-axis, and ϵj is the polarization component along

the j-axis,
∑

j |ϵj|2 = 1, k⃗ is the laser wave vector, ω is the laser frequency, and t is time.

The ∂2V
∂rβ∂rα

∣∣∣
r=0

factor in the quadrupole energy term is then

∂2V

∂rβ∂rα

∣∣∣∣
r=0

= E0ϵαkβ cos (ωt). (4.12)

Suppose the basis states {|bj⟩} are also the energy eigenstates of the unperturbed Hamil-
tonian of the system, with energy eigenvalues of {ℏωj}, and that the dipole energy is zero
(⟨bj|r̂α|bk⟩ = 0). With Eqs. 4.10 and 4.12, the Hamiltonian in the interaction picture with
respect to the unperturbed Hamiltonian is

ĤI =
eE0

2

∑
rα

∑
rβ

N∑
j=1

N∑
k=1

ϵαkβ⟨bj|r̂αr̂β|bk⟩ cos (ωt)eiωjkt|bj⟩⟨bk|, (4.13)

where ωjk = ωj − ωk. Suppose that the laser frequency is resonant with one of the transi-
tions, let it be |b1⟩ ↔ |b2⟩, applying the rotating-wave approximation, the Hamiltonian is
then

ĤI ≈
eE0

4

∣∣∣∣∣∣
∑
rα

∑
rβ

ϵαkβ⟨b1|r̂αr̂β|b2⟩

∣∣∣∣∣∣ (eiθQ|b1⟩⟨b2|+ e−iθQ|b2⟩⟨b1|
)
, (4.14)
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where we have defined
∑

rα

∑
rβ
ϵαkβ⟨b1|r̂αr̂β|b2⟩ =

∣∣∣∑rα

∑
rβ
ϵαkβ⟨b1|r̂αr̂β|b2⟩

∣∣∣ eiθQ . With

Eq. 4.14, we have arrived at a familiar form of a Hamiltonian, where transition |b1⟩ ↔ |b2⟩
is being driven coherently with a Rabi frequency of Ω = eE0

2ℏ

∣∣∣∑rα

∑
rβ
ϵαkβ⟨b1|r̂αr̂β|b2⟩

∣∣∣. In
a system with spherical symmetry, which is true for electron orbitals, it is more convenient
to work in the spherical coordinates, and thus converting the Cartesian tensor operators to
spherical tensor operators. Converting r̂αr̂β from a Cartesian rank-2 tensor to a spherical
rank-2 tensor gives

r̂xr̂x =
1

2
T̂

(2)
2 − 1√

6
T̂

(2)
0 +

1

2
T̂

(2)
−2 − 1√

3
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(0)
0

r̂yr̂y = −1

2
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(2)
2 − 1√

6
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(2)
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2
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(2)
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3
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(0)
0
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2√
6
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(2)
0 − 1√

3
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(0)
0
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2
T̂

(2)
2 +

i

2
T̂

(2)
−2

r̂xr̂z = r̂z r̂x = −1

2
T̂

(2)
1 +

1

2
T̂

(2)
−1

r̂yr̂z = r̂z r̂y =
i

2
T̂

(2)
1 +

i

2
T̂

(2)
−1 ,

(4.15)

where the spherical rank-2 tensor operators, T
(k)
q , are [69]

T̂
(0)
0 = − 1√

3

(
r̂2x + r̂2y + r̂2z

)
T̂

(2)
0 = − 1√

6

(
−r̂2x − r̂2y + 2r̂2z

)
T̂

(2)
±1 = ∓r̂z r̂x ± ir̂z r̂y

T̂
(2)
±2 =

r̂2x + r̂2y
2

± ir̂xr̂y.

(4.16)

Plugging Eq. 4.15 into Eq. 4.14 gives

ĤI ≈
eE0

4

∣∣∣∣∣∣
∑
q

∑
rα

∑
rβ

ϵαkβcα,β,q⟨b1|T̂ (2)
q |b2⟩

∣∣∣∣∣∣ (eiθQ|b1⟩⟨b2|+ e−iθQ|b2⟩⟨b1|
)
, (4.17)

where cα,β,q are the coefficients for the corresponding T̂
(2)
q operator found in Eq. 4.16, and

we have omitted the T̂
(0)
0 operator as it does not drive transitions between two angular

momentum states.
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For a quadrupole transition driven only by the qth component, the Hamiltonian is

ĤI ≈
ekE0

4

∣∣∣⟨b1|T̂ (2)
q |b2⟩

∣∣∣
∣∣∣∣∣∣
∑
rα

∑
rβ

ϵαkβ
k

cα,β,q

∣∣∣∣∣∣ (eiθQ|b1⟩⟨b2|+ e−iθQ|b2⟩⟨b1|
)
. (4.18)

The factor
∣∣∣∑rα

∑
rβ

ϵαkβ
k
cα,β,q

∣∣∣ is dependent on the geometry of the laser beam pointing

and polarization. Evaluating this factor gives us the insight of which qth transition can be
driven and how strong, which we will do now. Without loss of generality, let k⃗ be in the
xz-plane, and the angle θk to be the angle from the z-axis. This gives

k⃗

k
= sin (θk)n̂x + cos (θk)n̂z (4.19)

Using the property k⃗ · E⃗ = 0, we have

ϵz cos (θk) = −ϵx sin (θk). (4.20)

Let θp be the polarization angle from the xy-plane. We then have

ϵ⃗ = cos (θp) cos (θk)n̂x + sin (θp)n̂y − cos (θp) sin (θk)n̂z (4.21)

Using Eqs. 4.15, 4.19 and 4.21, the geometric factor for each q can be derived to be

g(q=0) (θp, θk) =

√
6

4
|cos (θp) sin (2θk)|

g(q=±1) (θp, θk) =
1

2
|∓ cos (θp) cos (2θk) + i sin (θp) cos (θk)|

g(q=±2) (θp, θk) =
1

4
|cos (θp) sin (2θk)∓ 2i sin (θp) sin (θk)|

(4.22)

Thus, Eq. 4.18 can be simplified to

ĤI ≈ E0

∣∣∣⟨b1|Q̂q|b2⟩
∣∣∣ g(q) (θp, θk) (eiθQ|b1⟩⟨b2|+ e−iθQ|b2⟩⟨b1|

)
, (4.23)

where I have defined Q̂q = ek
4
T̂

(2)
q . From Fig. 3.3, we can see that our wavevector angle

of interest is θk = 45◦. At this wavevector angle, the laser polarization can be tuned to
completely suppress q = 0 or q = ±1 transitions at θp = 90◦ and θp = 0◦ respectively.
I note that the cα,β,q factors derived in this work differ from Ref. [3], which I used as a

study reference, by a constant factor of
√

3
2
, which may be due to using a different scaled

forms of the spherical tensor operators in Eq. 4.16. The difference in the cα,β,q factors also
lead to a constant factor difference of the geometric factors g(q (θp, θk) compared to Refs.
[70, 71]. Nevertheless, the difference of a constant factor does not change any qualitative
analysis in this work.
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4.1.3 Relative Transition Strengths in the Intermediate-Field Zee-
man Effect

We have seen in Section 4.1.1 that it may be practically inevitable to work with 137Ba+

in at the the intermediate-field Zeeman effect regime. In this section, we will study how
that affects the transition strengths of the 6S1/2 ↔ 5D5/2 transitions, which we will see

to be non-trivial. Substituting an energy eigenstate in the 6S1/2 level, |6S1/2, F̃ ,mF̃ ⟩, and
an energy eigenstate in the 5D5/2 level, |5D5/2, F̃ ,mF̃ ⟩, into |b1⟩ and |b2⟩ of Eq. 4.23, we
obtain

ĤI ≈ E0

∣∣∣⟨5D5/2, F̃
′,m′

F̃
|Q̂q|6S1/2, F̃ ,mF̃ ⟩

∣∣∣ g(q) (θp, θk)
×
(
eiθQ |5D5/2, F̃

′,m′
F̃
⟩⟨6S1/2, F̃ ,mF̃ |+ e−iθQ|6S1/2, F̃ ,mF̃ ⟩⟨5D5/2, F̃

′,m′
F̃
|
)
.

(4.24)

Using Wigner-Eckart theorem, the ⟨5D1/2, F̃
′,m′

F̃
|Q̂q|6S1/2, F̃ ,mF̃ ⟩ factor can be de-

composed into a reduced matrix element independent of q, and a factor that we can com-
pute. To show that, we start by expressing an energy eigenstate |J, F̃ ,mF̃ ⟩ in the |mI ,mJ⟩
basis. Rewriting |F̃L,mF̃ ,L⟩ = |L, F̃ ,mF̃ ⟩ for brevity, where L ∈ {S,D} denote the 6S1/2

and 5D5/2 levels, we have

|F̃L,mF̃ ,L⟩ =
∑

mI,L,mJ,L

cmI,L,mJ,L
|mI,L,mJ,L⟩. (4.25)

Plugging in 4.25 into the factor ⟨F̃D,mF̃ ,D|Q̂q=mF̃ ,D−mF̃ ,S
|F̃S,mF̃ ,S⟩ gives

⟨F̃D,mF̃ ,D|Q̂q=mF̃ ,D−mF̃ ,S
|F̃S,mF̃ ,S⟩

=
∑

mI,D,mJ,D

∑
mI,S ,mJ,S

c∗mI,D,mJ,D
cmI,S ,mJ,S

⟨mI,D,mJ,D|Q̂q=mF̃ ,D−mF̃ ,S
|mI,S,mJ,S⟩. (4.26)

Since the electric quadrupole operator Q̂q only acts on the electron angular momentum,
and thus only the |mJ⟩ sub-space, Eq. 4.26 can be rewritten as

⟨F̃D,mF̃ ,D|Q̂q=mF̃ ,D−mF̃ ,S
|F̃S,mF̃ ,S⟩

=
∑

mI,D,mJ,D

∑
mI,S ,mJ,S

c∗mI,D,mJ,D
cmI,S ,mJ,S

⟨mJ,D|Q̂q=mJ,D−mJ,S
|mJ,S⟩δmI,SmI,D

. (4.27)
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From Wigner-Eckart theorem, we have

⟨mJ,D|Q̂q=mJ,D−mJ,S
|mJ,S⟩

= ⟨JD = 5/2,mJ,D|Q̂q=mJ,D−mJ,S
|JS = 1/2,mJ,S⟩

= ⟨JS = 1/2,mJ,S; k = 2, q = mJ,D −mJ,S|JD = 5/2,mJ,D⟩⟨JD||Q̂||JS⟩.
(4.28)

The ⟨JS = 1/2,mJ,S = 1/2; k = 2, q = mJ,D −mJ,S|JD = 5/2,mJ,D⟩ term is the Clebsch-
Gordan coeffcient for coupling angular momenta JS and k to get JD, which we can compute
(see Appendix B). With Eqs. 4.27 and 4.28, we have

⟨F̃D,mF̃ ,D|Q̂q=mF̃ ,D−mF̃ ,S
|F̃S,mF̃ ,S⟩

= ⟨JD||Q̂||JS⟩
∑

mI,D,mJ,D

∑
mI,S ,mJ,S

c∗mI,D,mJ,D
cmI,S ,mJ,S

δmI,SmI,D

× ⟨JS = 1/2,mJ,S; k = 2, q = mJ,D −mJ,S|JD = 5/2,mJ,D⟩
= ⟨JD||Q̂||JS⟩⟨F̃S,mF̃ ,S; k = 2, q = mF̃ ,D −mF̃ ,S|F̃D,mF̃ ,D⟩,

(4.29)

where we have defined

⟨F̃S,mF̃ ,S; k = 2, q = mF̃ ,D −mF̃ ,S|F̃D,mF̃ ,D⟩

=
∑

mI,D,mJ,D

∑
mI,S ,mJ,S

c∗mI,D,mJ,D
cmI,S ,mJ,S

δmI,SmI,D

× ⟨JS = 1/2,mJ,S; k = 2, q = mJ,D −mJ,S|JD = 5/2,mJ,D⟩.

(4.30)

Since the cmI,L,mJ,L
coefficients can be computed numerically as described in Section 4.1.1,

the ⟨F̃S,mF̃ ,S; k = 2, q = mF̃ ,D −mF̃ ,S|F̃D,mF̃ ,D⟩ factor can be computed.

Finally, with Eqs. 4.24 and 4.29, the quadrupole transition Hamiltonian can be ex-
pressed as

ĤI ≈ E0

∣∣∣⟨JD||Q̂||JS⟩⟨F̃S,mF̃ ,S; k = 2, q = mF̃ ,D −mF̃ ,S|F̃D,mF̃ ,D⟩
∣∣∣ g(q) (θp, θk)

×
(
eiθQ |F̃D,mF̃ ,D⟩⟨F̃S,mF̃ ,S|+ e−iθQ|F̃S,mF̃S

⟩⟨F̃D,mF̃ ,D|
)
.

(4.31)

Between any two 6S1/2 ↔ 5D5/2 transitions, the relative transition strengths (ignoring the

common factors E0 and
∣∣∣⟨JD||Q̂||JS⟩∣∣∣ in Eq. 4.31) is

g(q) (θp, θk) ⟨F̃S,mF̃ ,S; k = 2, q = mF̃ ,D −mF̃ ,S|F̃D,mF̃ ,D⟩. (4.32)
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As discussed in Section 4.1.2, the 1762 nm laser polarization can be tuned to fully suppress
the ∆m = 0 or ∆m = ±1 transitions, which is undesirable for us. We set the laser
polarization angle to θp = 58◦ so that all q transitions can be driven. Using Eq. 4.32,
at θk = 45◦, θp = 58◦ and a magnetic field strength of Be = 8.35G (see Section 4.4 for
magnetic field strength estimation in our setup), the relative transition strengths from any
6S1/2 state to any 5D5/2 state are calculated and summarized in Table 4.1. The relative

transition strengths from the |6S1/2, F̃ = 2,mF̃ = 2⟩ are plotted in Fig. 4.2 and compared
to empirically collected data (see Section 4.6.4), which shows good agreement with the
theoretical model.
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5D5/2 state
6S1/2 state

F̃ = 1 F̃ = 2
mF̃ = −1 mF̃ = 0 mF̃ = 1 mF̃ = −2 mF̃ = −1 mF̃ = 0 mF̃ = 1 mF̃ = 2

F̃ = 1,mF̃ = 1 0.262 0.137 0.070 0 0.065 0.057 0.048 0.028
F̃ = 1,mF̃ = 0 0.189 0.188 0.120 0.084 0.018 0.018 0.035 0.047*
F̃ = 1,mF̃ = −1 0.136 0.170 0.206 0.066 0.062 0.040 0.024 0
F̃ = 2,mF̃ = 2 0 0.239 0.121 0 0 0.124 0.103 0.071*
F̃ = 2,mF̃ = 1 0.128 0.148 0.176 0 0.136 0.010 0.070 0.089*
F̃ = 2,mF̃ = 0 0.158 0.071 0.182 0.097 0.084 0.083 0.010 0.089*
F̃ = 2,mF̃ = −1 0.191 0.038 0.189 0.124 0.003 0.067 0.096 0
F̃ = 2,mF̃ = −2 0.169 0.200 0 0.128 0.100 0.067 0 0
F̃ = 3,mF̃ = 3 0 0 0.166 0 0 0 0.283 0.004
F̃ = 3,mF̃ = 2 0 0.060 0.129 0 0 0.222 0.166 0.038*
F̃ = 3,mF̃ = 1 0.016 0.076 0.118 0 0.140 0.218 0.085 0.045*
F̃ = 3,mF̃ = 0 0.028 0.099 0.087 0.067 0.194 0.189 0.005 0.040*
F̃ = 3,mF̃ = −1 0.052 0.100 0.063 0.124 0.239 0.093 0.040 0
F̃ = 3,mF̃ = −2 0.077 0.103 0 0.214 0.189 0.006 0 0
F̃ = 3,mF̃ = −3 0.130 0 0 0.268 0.069 0 0 0
F̃ = 4,mF̃ = 4 0 0 0 0 0 0 0 0.328*
F̃ = 4,mF̃ = 3 0 0 0.124 0 0 0 0.078 0.268*
F̃ = 4,mF̃ = 2 0 0.062 0.117 0 0 0.001 0.157 0.238*
F̃ = 4,mF̃ = 1 0.022 0.085 0.116 0 0.024 0.058 0.221 0.159*
F̃ = 4,mF̃ = 0 0.040 0.114 0.088 0.021 0.006 0.142 0.209 0.099*
F̃ = 4,mF̃ = −1 0.073 0.116 0.065 0.030 0.047 0.198 0.178 0
F̃ = 4,mF̃ = −2 0.102 0.118 0 0.030 0.131 0.244 0 0
F̃ = 4,mF̃ = −3 0.162 0 0 0.005 0.285 0 0 0
F̃ = 4,mF̃ = −4 0 0 0 0.328 0 0 0 0

Table 4.1: Relative transition strength factors g(q) (θp, θk) ⟨F̃S,mF̃ ,S; k = 2, q = mF̃ ,D −
mF̃ ,S|F̃D,mF̃ ,D⟩ for 6S1/2 ↔ 5D5/2 transitions with θk = 45◦ and θp = 58◦ at a magnetic

field strength of Be = 8.35G of 137Ba+. Non-zero values lower than 0.03 are in bold
texts. The value of 0.03 is determined by empirically observing that the transitions weaker
than this have large errors due to decoherence from the SPAM experiments in this work,
which is also a value that is approximately an order of magnitude lower than the strongest
transitions. *Transitions used in this work.
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Figure 4.2: Theoretically estimated non-zero transition strengths to the 5D5/2 states from

the |6S1/2, F̃ = 2,mF̃ = 2⟩ state, relative to the reduced transition matrix element. The
empirical data are scaled values of the measured Rabi frequencies. The error bars of the
empirical data are smaller than the plot markers and are not plotted. The |F̃ = 3,mF̃ = 3⟩
relative transition strength is too weak to be clearly visible on the plot or accurately
estimated experimentally due to coherence time limitations. The red marker is an upper
bound of the empirically measured Rabi frequency for this transition.

4.1.4 Resolved Sideband Cooling

Consider a system with 2 internal electronic states and moving in a one-dimensional simple
harmonic oscillator, which is a simplified model for a trapped ion. The static Hamiltonian
can be expressed as

Ĥ = Ĥ0,E + Ĥ0,M

Ĥ0,E = ℏω0|0⟩⟨0|+ ℏω1|1⟩⟨1|

Ĥ0,M = ℏωM

(
â†â+

1

2

) (4.33)

where Ĥ0,E is the Hamiltonian of the internal energy states, Ĥ0,M is the Hamiltonian of the
motional states, ℏωl is the internal energy of state |l⟩, l ∈ {0, 1}, ωM is the motional fre-
quency, â† and â are the raising and lowering operators respectively of a quantum harmonic
oscillator. Suppose that a laser field introducing a perturbation with the Hamiltonian of

Ĥint = ℏΩcos (kx̂− ωt) (|0⟩⟨1|+ |1⟩⟨0|) . (4.34)
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This modifies the total Hamiltonian to

Ĥ = Ĥ0,E + Ĥ0,M + Ĥint. (4.35)

In the interaction picture with respect to the static Hamiltonian, Ĥ0,E + Ĥ0,M , the Hamil-
tonian is

ĤI =
ℏΩ
2

(
e−iωteikx̂I + eiωte−ikx̂I

) (
e−iω10t|0⟩⟨1|+ eiω10t|1⟩⟨0|

)
, (4.36)

where ω10 = ω1 − ω0 and x̂I is the position operator in the interaction picture. For small
kx ≪ 1, we can perform Taylor expansion on eikx̂I and keeping only the first order term
as an approximation, giving

ĤI ≈
ℏΩ
2

(
e−iωt + eiωt

) (
e−iω10t|0⟩⟨1|+ eiω10t|1⟩⟨0|

)
+ i

ℏkΩ
2

(
e−iωtx̂I − eiωtx̂I

) (
e−iω10t|0⟩⟨1|+ eiω10t|1⟩⟨0|

) (4.37)

Expressing the position operator in terms of the raising and lowering operator gives

x̂I =

√
ℏ

2mωM

(
eiωM tâ† + e−iωM tâ

)
(4.38)

where m is the mass of the particle, which in our case is an ion. With Eq. 4.38, Eq. 4.36
can be expressed as

ĤI ≈
ℏΩ
2

(
e−iωt + eiωt

) (
e−iω10t|0⟩⟨1|+ eiω10t|1⟩⟨0|

)
+ i

ℏηΩ
2

(
e−iωt − eiωt

) (
eiωM tâ† + e−iωM tâ

) (
e−iω10t|0⟩⟨1|+ eiω10t|1⟩⟨0|

)
,

(4.39)

where we have introduced the Lamb-Dicke parameter

η = k

√
ℏ

2mωM

. (4.40)

From, Eq. 4.39, there are three interesting values for the laser frequencies. With rotating
wave approximation, which is valid when Ω ≪ ωM and Ω ≪ ω10, we have

ĤI ≈
ℏΩ
2

(|0⟩⟨1|+ |1⟩⟨0|) , ω = ω10

ĤI ≈ i
ℏηΩ
2

(
−â|0⟩⟨1|+ â†|1⟩⟨0|

)
, ω = ω10 + ωM

ĤI ≈ i
ℏηΩ
2

(
−â†|0⟩⟨1|+ â|1⟩⟨0|

)
, ω = ω10 − ωM

(4.41)
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When ω = ω10, it is the usual Hamiltonian for driving a resonant transition between the
two internal levels with a Rabi frequency of Ω. When ω = ω10 − ωM , it is driving the
state from |0⟩ to |1⟩ with a reduction of one quantum of phonon, called a motional red
sideband transition. If the motional state is in a pure Fock state |n⟩, then the red sideband
Rabi frequency is ηΩ

√
n. Conversely, when ω = ω10 + ωM , it is a motional blue sideband

transition.

For the barium ion energy level structure shown in Fig. 3.1b and 3.1c, the 6S1/2 ↔
5D5/2 transitions are expected to have narrow transition linewidths limited only by power
broadening. The transition linewidth is expected to be much lower than 1MHz, which
is the order of secular motional frequency of our trapped ion. With resolvable sideband,
the motional red sideband can be driven from the 6S1/2 level to the 5D5/2 to remove one
motional quantum. The ion internal state can then be reset to the 6S1/2 level by pumping
with 614 nm and 650 nm light as described in Section 4.1. A 6S1/2 ↔ 5D5/2 red sideband
transition can be driven again to remove another motional quantum. Assuming that the
614 nm and 650 nm light pumping process has minimal heating effects, this process can
be continuously repeated to perpetually remove motional state quanta until it reaches the
|n = 0⟩ motional Fock state. We will later see how this is actualized in this work in Section
4.5.1.

4.1.5 Modulation of Transition Frequencies From Trapped Ion
Excess Micromotion

When there is some imperfection in the trapped ion voltages or electrode geometry, the
ion can be moving at the electrode RF frequency ΩRF , called the excess micromotion.
A common cause of this effect is the offset of the electric pseudopotential minimum to
the point with zero electric field from the oscillating saddle potential generated by the
RF voltage, called the RF null. To study the effect of excess micromotion on a two-level
transition, we model the Hamiltonian as follows. The interaction Hamiltonian introduced
by a laser field is as shown in Eq. 4.34. A trapped ion excess micromotion moves at a
constant amplitude [49], and we can model the motion as

x(t) = x0 cos (ΩRF t), (4.42)

The interaction Hamiltonian is then

Ĥint = ℏΩcos (kx0 cos (ΩRF t)− ωt) (|0⟩⟨1|+ |1⟩⟨0|)

=
ℏΩ
2

(
e−iωteikx0 cos (ΩRF t) + eiωte−ikx0 cos (ΩRF t)

)
(|0⟩⟨1|+ |1⟩⟨0|)

(4.43)
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Using the Jacobi-Anger expansion, we can expand eikx0 cos (ΩRF t) as

eikx0 cos (ΩRF t) =
∞∑

n=−∞

inJn (kx0) e
inΩRF t, (4.44)

where Jn (kx0) is the n
th Bessel function of the first kind. Going to the interaction picture,

the Hamiltonian can now be expressed as

ĤI =
∞∑

n=−∞

in
ℏΩ
2
Jn (kx0)

(
e−iωteinΩRF t + (−1)n eiωteinΩRF t

)
×
(
e−iω10t|0⟩⟨1|+ eiω10t|1⟩⟨0|

)
.

(4.45)

When the laser frequency is ω = ω10 +mΩRF ,m ∈ Z, with rotating wave approximation,
the Hamiltonian is then

ĤI ≈ im
ℏΩ
2
Jm (kx0) (|1⟩⟨0|+ (−1)m |0⟩⟨1|) (4.46)

From Eq. 4.46, we can coherently drive the |0⟩ ↔ |1⟩ transition at some integer mul-
tiples of the RF drive frequency from the carrier resonance, with Rabi frequencies of
ΩJm (kx0). With larger excess micromotion, x0, and subsequently larger Jm (kx0), leads
to larger Rabi frequencies at the transition frequencies modulated by excess Hamiltonian.
Since our trap RF voltage frequency is at ∼ 20MHz, we expect to be able to resolve the
excess-micromotion-modulated transitions with the 6S1/2 ↔ 5D5/2 transitions in a Ba+

ion. Therefore, by measuring the excess-micromotion-modulated Rabi frequencies, it is a
useful metric to detect imperfections in the ion trap or the minimum pseudopotential shift
from the RF null. The realization of this utility will be discussed in Section 4.5.2.

4.2 Trap Setup for Qudit Experiments

This is a brief section that only describes the trap parameters that are used in this chapter,
which has some changes from Chapter 3. The vacuum chamber has an air pressure of
1× 10−10mbar. RF voltages with an estimated amplitude of VRF = 230V and a frequency
of ΩRF = 20.772MHz are sent to the 4-rod electrodes. Static voltages of VS = 3V are
sent to one pair of the diagonal rods to break the degeneracy of the ion radial secular
motional frequencies. 10V of static voltage is applied to the needle electrodes for axial
confinement. The magnetic field direction is set to B⃗e,C4 in Fig. 3.3. This setup results
in a trapped 137Ba+ with radial secular motional frequencies of 1.2MHz and 1.4MHz, and
an axial motional frequency of 10 kHz.
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4.3 Lasers and Optical Setup for Control of Ba+ 5D5/2

States

1762 nm ECDL
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EOM

Cavity and
Frequency

Locking Setup
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RF2

To ion trap (1762 nm
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To ion trap (614
nm beam path)

To wavemeter
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Figure 4.3: An illustration of the setup for the 1762 nm and 614 nm lasers. Optics for geo-
metrical control of the laser beams are omitted. Thicker lines denote electrical connections
instead of optical fibers. PDH EOM denotes the EOM for generating frequency sidebands
for the Pound-Drever-Hall (PDH) frequency locking technique. AWG denotes an arbitrary
waveform generator, which is the frequency source for the EOM of the 1762 nm light going
to the ion trap during normal operations. The 1762 nm main beam EOM frequency source
can be switched to other RF frequency synthesizers (labelled RF1 and RF2) using fast RF
switchs.

Fig. 4.3 shows a simplified illustration of the setups of the 1762 nm and 614 nm lasers
before they are sent to the ion trap in Fig. 3.3. The 1762 nm laser has 2% light picked
off to be used for frequency locking with a setup built by Stable Laser Systems (SLS). In
this frequency locking setup, the picked off laser is referenced and locked to a temperature-
controlled Fabry–Pérot cavity in vacuum using the Pound-Drever-Hall (PDH) method.
The PDH modulation signal sent to the PDH EOM for extracting the PDH readout func-
tion is hard-coded to be 5MHz. An additional variable RF frequency (labelled as offset
frequency by SLS, indicating offset to the Fabry–Pérot cavity mode) can be sent to the
PDH EOM on top of the 5MHz signal to generate a laser frequency sideband to be locked
to a Fabry–Pérot cavity mode frequency, ωcavity, instead of the carrier frequency. This
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enables the 1762 nm laser carrier frequency, ωcarrier, sent to the ion trap to be stabilized
to any desired frequencies by choosing any offset frequency, ∆PDH , to be sent to the PDH
EOM, i.e. ωcarrier = ωcavity +∆PDH , where the sign of ∆PDH dictates whether the blue or
red-sideband of the PDH EOM offset frequency is chosen to be locked to the cavity mode.
For normal operations, the 1762 nm laser carrier frequency is set to be off resonant to any
6S1/2 ↔ 5D5/2 transition frequencies, ωtransition, and the EOM in the main power path of
the 1762 nm laser generates a first-order frequency sideband resonant to the transition to
be driven. The carrier frequency to be locked to is chosen such that the sideband modula-
tion frequency to be generated for the main power EOM, ∆EOM , is within the bandwidth
allowed by hardware and the higher order sidebands from the EOM are not close to any
6S1/2 ↔ 5D5/2 transitions. Fig. 4.4 summarizes an example of 1762 nm EOMs frequency
modulation setup for normal operations as described earlier. Driving the transitions with
an EOM sideband allows fast switching of the sideband frequencies and thus the transitions
to be driven, as opposed to driving them with the carrier frequency. The 614 nm laser has
50% light picked off to a wavemeter for readout of the laser frequency and feedback for
frequency locking. The main power beam paths of both 1762 nm and 614 nm lasers pass
through AOMs, which allow fast on/off switch of the laser beams at the ion trap.

Laser frequency
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∆𝐸𝑂𝑀
∆𝑃𝐷𝐻

Figure 4.4: An illustration of an example of the 1762 nm laser frequencies sent to the ion
trap (red lines) and the PDH locking system (blue lines). In this example, the red sideband
of the PDH EOM frequency is locked to a Fabry–Pérot cavity mode, and the red sideband
of the main laser power EOM is used to drive an energy level transition.

At the ion trap, as shown in Fig. 3.3, the 1762 nm and 614 nm laser output powers
are 2.0mW and 15 µW respectively. The 1762 nm laser is collimated with a reflective
collimator, to allow light of other wavelengths to be collimated through the same beam
path as well, which helps with beam alignments (discussed in Section 4.3.1). The 1762 nm
laser beam is sent to the ion at an angle perpendicular to the four-rod trap axial axis to
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minimize coupling of the transitions to the axial motional mode. At the ion position, the
beam diameter is estimated to be focused to a size of

Dfocus =
fCM

fFC

|fT1|
|fT2|

Dfiber =
150mm

33mm

100mm

200mm
10.1 µm ≈ 23 µm, (4.47)

where fT1 and fT2 are the focal lengths of the first and second optics in the telescope setup.
The 1762 nm beam direction as shown in Fig. 3.3 is chosen to minimize coupling to the
axial motional mode of the ion. The 614 nm beam is combined with the 405 nm laser beam
path with a dichroic mirror and focused to an estimated beam diameter of 53 µm at the
ion.

To be able to send a σ+-polarized 493 nm light to the ion for optical pumping (as
described in Section 4.1), a static magnetic field is generated parallel to the optical pumping
beam in Fig. 3.3. A Glan-Thompson polarizer is used to ensure the beam is highly linearly
polarized before reaching the QWP. The QWP is set to an angle which converts a linearly
polarized light to a circularly polarized light. The beam is then focused at the ion at a
beam diameter estimated to be 70µm.

4.3.1 Initial Laser Beam Alignments for Ba+ Control of 5D5/2

States

In this section, I describe the methods we employed to align the laser beams relevant to
the coherent controls of the 6S1/2 and 5D5/2 states, up to the point where we can detect
the beams are reaching the ions, but not necessarily fully fine-tuned to match the centre
of the beam profile to the ion position. The methods to further optimize the laser beam
pointings are discussed in Section 4.6.2.

First, a 138Ba+ ion is trapped. To align the 493 nm optical pump beam, the following
procedure is done:

1. The magnetic field direction is switched to being vertical to the vacuum chamber to
ensure the magnetic field axis perpendicular to the 493 nm optical pump beam, so
that the beam will fluoresce the ion with any polarization.

2. The 493 nm optical pump beam pointing is then tuned to completely overlap with
the 405 nm light beam path without the Glan-Thompson polarizer and the QWP in
place.
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3. The 493 nm light in the combined beam path is then turned off, but keeping the
650 nm light on, so that the ion would fluoresce if the 493 nm optical pump beam is
aligned to the ion. We find that it is always sufficiently aligned to see ion fluorescence
driven by the 493 nm optical pump beam after Step 2 is done.

4. Tune the 493 nm optical pump beam pointing to maximize fluorescence on the ion.

5. Set up the Glan-Thompson polarizer and the QWP in place, ensuring the back re-
flected 405 nm and 493 nm beams go back to the themselves to ensure the 493 nm
beam is perfectly perpendicular on the QWP.

Since the 405 nm beam is already aligned to be parallel to the magnetic field coils along
its direction of propagation (see Chapter 3.2.1), the 493 nm optical pump beam will be
parallel to the magnetic field during optical pumping operations. To generate a circularly
polarized 493 nm, the vertical magnetic field coils are turned off and the coils parallel to
the optical pumping beam are turned on. The QWP is then rotated until fluorescence on
the ion is minimized.

To align the 614 nm beam to the ion, the following procedure is done:

1. The 614 nm beam path collimator and the redirecting plane mirror for it are mounted
on tunable mirror mounts. These two mirror mounts are used to independently tune
the 614 nm path without affecting the 405 nm beam path. The 614 nm laser beam is
tuned to perfectly overlap with the 405 nm beam.

2. The 650 nm laser for the combined beam path is rerouted to the 614 nm beam path.

3. The 493 nm laser in the combined beam path is turned on, together with the 650 nm
laser, so that the trapped ion will fluoresce when the 614 nm beam path is aligned.
We find that fluorescence is always visible after Step 1 is done.

4. Further optimize the beam pointing by tuning the mirror mounts used in Step 1 by
maximizing ion fluorescence.

5. Reroute the 650 nm light to the combined beam path and the 614 nm laser to the
614 nm beam path.

To align the 1762 nm beam to the ion, the following procedure is done:

1. The 650 nm laser for the combined beam path is rerouted to the 1762 nm beam path.
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2. The method for aligning the beam to the approximate trap center using the M.M.
scale readings by observing the scattering of light on the trap needle electrodes as
discussed in Chapter 3.2.1 is done.

3. The 493 nm laser in the combined beam path is turned on, together with the 650 nm
laser, so that the trapped ion will fluoresce when the 1762 nm beam path is aligned.

4. Further optimize the beam pointing by maximizing ion fluorescence while making
sure the beam exits through the center of the exit viewport.

5. Reroute the 650 nm light to the combined beam path and the 1762 nm laser to the
1762 nm beam path.

4.3.2 Initial Frequency Calibration for 1762 nm and 614 nm Lasers

Due to the long spontaneous decay time of the 5D5/2 level, the transition linewidth from
the 6S1/2 level is extremely narrow at sub-Hz and only broadened by power broadening.
Therefore, one might intuitively think that the search for the range of 1762 nm frequencies
that is close to the 6P1/2 ↔ 5D5/2 will be a long and arduous process. This is, fortunately,
not the case as there is a method to allow us to see fluorescence response from the ion even
when the 1762 nm is off-resonant by hundreds of megahertz. This is done by turning the
493 nm, 650 nm, and 1762 nm lasers on at the same time. When the 1762 nm laser frequency
is within a resonant transition frequency in the order of∼ 100MHz, we observe flip-flopping
of the ion fluorescence between bright and dark as shown in Fig. 4.5. The flip-flopping
rate of the ion fluorescence increases as the 1762 nm laser frequency is closer to a resonant
transition, which helps narrowing down the range of 1762 nm to within ∼ 100MHz of the
resonant transitions. An inconclusive attempt to study this phenomenon by modelling it
with optical Bloch equations is presented in Appendix G.
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Figure 4.5: Fluorescence flip-flopping of a 138Ba+ ion when the 493 nm, 650 nm, and
1762 nm lasers are turned on, with the 1762 nm laser frequency detuning at (a) ∼ 200MHz
and (b) < 50MHz.

With the wide frequency response of the bright/dark states flip-flopping, starting from
a point where the 1762 nm laser resonant frequencies are not known, we can calibrate the
1762 nm laser frequency to within ∼ 50MHz of the transition lines systemically with the
following procedure:

1. The 1762 nm laser main power output is sent to a wavemeter instead of the trap. The
1762 nm laser head parameters (piezoelectric voltage for the grating actuator, laser
current and laser temperatures) are tuned to obtain a frequency reading reported by
past literature for the 6S1/2 ↔ 5D5/2 transition [55].

2. Reroute the 1762 nm laser back to the ion trap. The EOM for the 1762 nm laser
main beam path is turned off, so that there is only one laser frequency going to the
ion trap.

3. A Ba+ ion of the desired isotope is trapped.

4. Tune the piezoelectric offset voltage of the 1762 nm laser head with the 493 nm,
650 nm, and 1762 nm lasers turned on, until the bright/dark state flip-flopping of the
ion is observed.

5. Tune the piezoelectric offset voltage to maximize the bright/dark state flip-flopping
rate. Note this piezoelectric offset voltage value.

6. Using the laser controller for the 1762 nm laser, set the piezoelectric voltage to be
scanning periodically at some small amplitudes, which we typically set to 0.4V, to do
a periodic scanning of the laser frequency. A spike in the transmitted signal through
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the PDH Fabry–Pérot cavity can be observed when the periodic frequency scanning
scans through a laser frequency corresponding to a cavity mode.

7. Turn the PDH EOM off and tune the piezoelectric offset voltage, with the periodic
scan running, tune the piezoelectric offset voltage until the cavity mode frequency,
ωcavity, closest to the laser frequency that drives the bright/dark state flip-flopping
is found. The bright/dark state flip-flopping may go away at this step as the cavity
mode frequency is not guaranteed to be close to the transition frequencies.

8. Starting from a low modulation frequency for the PDH EOM such that the blue/red
sideband is within the piezoelectric periodic scan range to transmit through the cav-
ity, which we typically use 20MHz, increase the modulation frequency in small steps
and tune the piezoelectric offset voltage in the direction towards the transition fre-
quency found in Step 5 while keeping the PDH EOM blue/red sideband transmitting
through the cavity.

9. Note the modulation frequency for the PDH EOM when the bright/dark state flip-
flopping phenomenon returns. This is the difference between the transition frequency
and the closest cavity mode frequency, ∆TC = ωtransition − ωcavity.

10. Choose a desired modulation frequency for the 1762 nm main power EOM for driving
the transitions, compute the corresponding value for ∆PDH = ∆TC−∆EOM . Lock the
laser frequency to this PDH EOM sideband, which would turn off the piezoelectric
periodic scanning.

11. Send the modulation frequency ∆EOM to the main laser power EOM, verify that the
bright/dark state flip-flopping phenomenon is observed.

To calibrate the 614 nm laser frequency, we first set the frequency to the 5D5/2 ↔ 6P3/2

transition reported from past literature [55]. We find that with this, it is enough to stop
the bright/dark state flip-flopping phenomenon (always bright) when the 614 nm laser
is turned on together with the 493 nm, 650 nm, and 1762 nm lasers. While the exact
1762 nm transition lines are not found, for finer calibration of the 614 nm laser frequency,
the following procedure is done:

1. The 493 nm and 650 nm lasers are kept on through the whole sequence in this proce-
dure.

2. Pulse the 1762 nm light for a time similar to the time scale of the bright/dark state
flip-flopping rate, which we find 200ms to be appropriate for our setup.

66



3. Collect and record the photon counts on the PMT detector.

4. Pulse the 614 nm laser for a set repump time.

5. Collect and record the photon counts on the PMT detector.

6. Repeat Steps 1 to 5 to obtain a statistically significant number of data points.

7. Repeat Steps 1 to 6 for other 614 nm laser frequencies.

8. From the data set collected, we perform post selection of the data by selecting only
the data points where the ion is dark in Step 3, as these are the cases where the state
population is measured to be in 5D5/2 before the 614 nm pulse.

9. With the post-selected data, the probability where the ion is detected to be bright
at Step 5 is computed. The 614 nm laser frequencies with the highest probabilities
are close to the resonant 5D5/2 ↔ 6P3/2 transition frequencies.

To differentiate between bright and dark states in Steps 8 and 9, a threshold photon count
needs to be determined. As discussed in Chapter 3.3, Ba+ ion fluorescence rate is sensitive
to 493 nm and 650 nm laser intensities and frequencies. Depending on the stability of the
apparatus, Ba+ ion fluorescence rate may not be consistent, which we find to be the case
for our setup, and the fluorescence rates can vary from day to day. Therefore, we have
developed a dynamic method of determining a photon count threshold for differentiating
bright and dark states, which is presented in Appendix H.
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Figure 4.6: Repump probability against 614 nm laser frequencies at 614 nm pulse times of
(a) 500 µs and (b) 20 µs.

Fig. 4.6 shows the result of frequency scans 614 nm laser on a 138Ba+ ion. 200 repeat
experiments were done for each data point. Post-selected data (low counts on first PMT
reading, before repump) averages to be about 120 samples. An obvious repump probability
peak is observed in the frequency domain, with the peak narrowing at shorter 614 nm pulse
times.
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4.4 Spectroscopy of 6S1/2 ↔ 5D5/2 Transitions

Cooling
493 nm

O.P. 493 nm

614 nm

650 nm

1762 nm

Repump Optical pump
Transition to
5D5/2 state

Fluorescence 
measurement

Figure 4.7: Pulse sequence for preparing a Ba+ ion in the 6S1/2 ground state with the
highest magnetic quantum number, and then driving a 6S1/2 ↔ 5D5/2 transition. O.P.
denotes optical pump. The pulse times are not drawn to scale.

With the 614 nm laser frequency calibrated to repump the 5D5/2 state quickly and the
493 nm optical pump beam circularly polarized, the following pulse sequence as shown
in Fig. 4.7 can be done to find the 6S1/2 ↔ 5D5/2 transition lines. The 1762 nm laser
pulse time is set to some value from an initial guess to be much longer than the resonant
Rabi periods of the transitions, which we chose to be 1ms. If the 1762 nm laser frequency
falls within the linewidth due to power broadening of a resonant frequency, there will be
a significant probability of the state population being in the 5D5/2 level after the pulse
sequence and is measured to be dark.
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Figure 4.8: Dark state probability of (a) a 138Ba+ and (b) a 137Ba+ ion against the 1762 nm
driving laser frequency, which is generated with an EOM modulation at ∆EOM from the
laser carrier frequency.

Fig. 4.8a shows the dark state probabilities against ∆EOM in steps of 20 kHz for 138Ba+,
where the pulse sequence in Fig. 4.7 is repeated 100 times for each value of ∆EOM . Five
equally spaced dark state probability peaks can be observed, corresponding to the five
∆m = −2 to 2 of quadrupole transitions. From Section 4.3.1, we only know that the 493 nm
repump beam is circularly polarized, which means it could be σ− or σ+-polarized. To check
that, we compare the change in the transition with the highest transition frequency when we
flip the magnetic field direction of the chamber. The transition with the highest transition
frequency is

ωSD,max = ωSD,0 +
µBBe

ℏ
(gJ,D (mS + 2)− gJ,SmS) , (4.48)

where ωSD,0 is the transition frequency without Zeeman splitting. For the energy levels at
hand, gJ,D = 6/5 and gJ,S = 2, giving

ωSD,max = ωSD,0 +
µBBe

ℏ

(
−4

5
mS +

12

5

)
, (4.49)

Thus, we choose the direction of the magnetic field with a lower highest 1762 nm transition
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frequency to prepare the state in the 6S1/2 state with the highest magnetic quantum
number.

The same procedure was done for 137Ba+ and the results are shown in Fig. 4.8b. The
assignments of the 6S1/2 ↔ 5D5/2 transitions to the dark state probability peaks are not as
clear in this case. To be able to assign 6S1/2 ↔ 5D5/2 transitions to these peaks, we match
the measured resonant peak with the highest frequency to the transition to the highest
energy level in 5D5/2 allowed by the selection rule, which is the |6S1/2, F̃ = 2,mF̃ = 2⟩ ↔
|5D5/2, F̃ = 1,mF̃ = 1⟩ transition. Then, we numerically compute the 5D5/2 energy levels
for a range of magnetic field strengths, and pick out the magnetic field strength where
all the other measured resonant peaks are intersecting with some numerically computed
energy levels, as shown in Fig. 4.9. This lets us determine assign the measured resonant
frequencies to the corresponding 6S1/2 ↔ 5D5/2 transitions and the magnetic field strength
at the same time.
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Figure 4.9: Solid lines: numerically simulated 137Ba+ transition frequencies, shifted to
match the |6S1/2, F̃ = 2,mF̃ = 2⟩ ↔ |5D5/2, F̃ = 1,mF̃ = 1⟩ transition to the highest
measured transition frequency for a range of magnetic field strengths. The colors denote
the F̃ = 1 (green), F̃ = 2 (blue), F̃ = 3 (red) and F̃ = 4 (black) levels. Dashed lines:
Empirically measured 137Ba+ transition frequencies. Dotted line: The magnetic field where
all the measured transition frequencies intersect the numerically simulated energy levels,
which is Be = 8.35G.

With the 6S1/2 ↔ 5D5/2 transitions found, we can drive coherent transitions between a
6S1/2 state and a 5D5/2 by choosing ∆EOM corresponding to the transition frequency. By
varying the pulse time of the 1762 nm laser in the pulse sequense as shown in Fig. 4.7, we
observe Rabi cycling of the states as shown in Fig. 4.10 below for 138Ba+, which lets us
determine the Rabi frequencies of each transition.
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Figure 4.10: Rabi cycling of transitions to the 5D5/2 states from the |6S1/2,m = 1/2⟩ state
in 138Ba+.
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4.5 Actualization of Utilities of Ba+ 6S1/2 ↔ 5D5/2 Tran-

sitions

As discussed in Sections 4.1.4 and 4.1.5, we expect to be able to resolve the 1762 nm transi-
tions modulated by ion motions, and extract useful functions from them. We demonstrate
the actualization of these utilities in this section.

4.5.1 Actualization of 1762 nm Resolved Motional Sideband Cool-
ing

By doing a spectroscopy of the 1762 nm transitions at around a carrier peak at finer fre-
quency steps, we can resolve the secular motional sidebands clearly as shown in Fig. 4.11
below.

Figure 4.11: The dark state probability of 138Ba+ against the laser frequency shift from a
∆m = 0 carrier transition frequency. The sample size for each data point is 100. Frequency
step size is 1 kHz.
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The carrier frequency has the highest transition Rabi frequency and is thus power
broadened the most in the spectrum. The red and blue sidebands of the two secular
motional frequencies are clearly resolved in Fig. 4.11, at 1.2MHz and 1.4MHz. The higher
motional frequency at 1.4MHz corresponds to the axis of static voltage squeezing by the
rod electrodes, VS, as shown in Fig. 2.1a, and vice versa. To cool the desired motion of
the ion along the desired axis, the corresponding red sideband frequency is driven. The
following pulse sequence as shown in Fig. 4.12 below shows the actualization of the resolved
sideband cooling protocol as described in Section 4.1.4.

RF1
RF2

AWG

Cooling
493 nm Laser

Optical Pump
493 nm Laser

614 nm Laser

650 nm Laser

1762 nm Laser

RF Source

Repump
RSB1 

transition to
5D5/2 state

Optical pumpRepump
Desired 
coherent
transition

RSB2
transition to 
5D5/2 state

Fluorescence 
measurement

Optical pump Optical pump Repump

Cool sideband 1

Repeat cooling cycles

Cool sideband 2 Measure state

Figure 4.12: Pulse sequence for resolved sideband cooling using 1762 nm laser transitions,
followed by a coherent 1762 nm transition experiment and a fluorescence readout.

The pulse sequence in Fig. 4.12 is separated into three sections by thick dashed lines.
The first section of the pulse sequence reduces the motional quantum of the first radial
axis by one for a successful transition to the 5D5/2 state, and the second section is for
the second radial axis. The cooling sequence of the first and second sections are repeated
for perpetual cooling of the ion. The third section of the pulse sequence does a coherent
transition on the desired transition of the experiment after cooling and then perform a
measurement readout. To be able to change the 1762 nm laser frequency quickly during
the pulse sequence, the RF source for the main 1762 nm power EOM is switched using

75



a fast RF switch between the AWG, RF1 and RF2 as shown in Fig. 4.3, with RF1 and
RF2 being used for driving the cooling sideband transitions and the AWG for the desired
transition.
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Figure 4.13: Dark state probability against 1762 nm pulse times with and without cooling
sequence on a 1.2MHz red sideband of a 138Ba+ ∆m = 0 transition. (a) Constant 1762 nm
pulse time at 100 µs is used for the cooling cycle, cooling cycles repeated 100 times. (b)
Varying 1762 nm pulse times from 0 µs to 200µs, at increments of 0.2 µs, totalling 1000
cooling cycles.

Figure 4.13 shows the 1762 nm laser pulse time scans of a 138Ba+, ∆m = 0, 1.2MHz
red sideband transition, with and without the cooling sequence cycles as discussed earlier.
At the time these experiments were carried out, the 1762 nm laser main power EOM was
not set up and the transition was driven by the laser carrier frequency, by locking to the
first sideband of the PDH EOM at ∆PDH = ωtransition − ωcarrier at the cavity (see Section
4.3). Since the transition to be driven after the cooling cycles is the same, at the 1.2MHz
red sideband of a 138Ba+ ∆m = 0 transition, and we are cooling only one of the axes in
these experiments, the frequency switching protocol as described in Fig. 4.12 is not needed.
Without cooling, assuming that the ion motional state is in a thermal mixed state, the red
sideband transition probability follows the function

P (Dark) =
∞∑
n

Tn̄ (n) sin
2
(
ηΩ

√
nt
)
, (4.50)
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where Tn̄ (n) is the thermal mixed state probability distribution with an average phonon
number n̄.

Tn̄ (n) =
n̄n

(n̄+ 1)n+1 . (4.51)

From Eq. 4.50, the 5D5/2 state transition probability as a function of laser pulse time
is a combination of many different Rabi cycles at different Rabi frequencies, weighted by
the motional Fock state distribution. This eliminates the oscillatory feature of the 5D5/2

state transition probability, as seen in Figs. 4.13a and 4.13b when no cooling cycles are
performed. Eq. 4.50 is used to fit the data points without cooling cycles in Fig. 4.13b. The
carrier transition Rabi frequency is measured to be Ω = 2π × 111 kHz for this transition
(not shown). The Lamb-Dicke parameter is calculated using Eq. 4.40, taking into account
that the wavevector direction is at an angle of 45◦ to the motional axis, to be η = 0.014.
With these values, the functional fit of Eq. 4.50 to the data points give an average phonon
number of n̄ = 140±20 when no resolved sideband cooling is performed. The high average
phonon number of n̄ = 140 ± 20 indicates that our Doppler laser cooling is probably
not optimized and further cooling (enabled by resolved sideband cooling) is required for
quantum operations that are sensitive to the motional states.

In Figs. 4.13a, the 1762 nm pulse time is fixed to 100 µs during the cooling cycles.
This results in an oscillatory feature with transition probability troughs at pulse times
in multiples of 100 µs. This is likely because a phonon Fock state with negligible or zero
transition probabilities at t = 100 µs is stuck in that state and cannot be cooled further.
This converges the distribution of the phonon to be accumulated in Fock states with Rabi
frequencies ηΩ

√
n × 100 µs = 2mπ,m ∈ Z. If ηΩ

√
n × 100 µs = 2mπ for a phonon Fock

state, then ηΩ
√
n × 200 µs = 2mπ is also automatically satisfied, which manifests as a

second transition probability trough at t = 200 µs, and troughs at further laser pulse times
in multiples of 100 µs are expected. Therefore, the laser pulse times in the cooling cycles
should be varied in this cooling protocol, in order to prevent any stuck phonon Fock states
and cool the ion as close as possible to the zero phonon Fock state. Fig. 4.13b shows the
results with cooling pulses varying from 0 µs to 200µs in steps of 0.2 µs for each cycle, and
it is obvious that the red sideband transition probability is significantly suppressed. Since
there are indications that the phonon Fock state distribution is no longer in a thermal state
distribution after resolved sideband cooling from Fig. 4.13a, I do not assume a thermal
mixed state for the results in Fig. 4.13b after the cooling process. I quantify the cooling
performance by computing the probability that the ion is in the zero phonon Fock state,
which is calculated as follows. First, I compute the average of the dark state probability
over the range of pulse times after the initial rise time from t = 0, which I estimate to be
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t > 200 µs. The zero phonon Fock state probability is then computed using

P (|n = 0⟩) = 1− 2 ⟨Pt>200µs(Dark)⟩ , (4.52)

where ⟨·⟩ denote average across laser pulse times. From the calculations, we have P (|n =
0⟩) = 4.6± 0.2%, which is significantly cooler than the temperature of the ion pre-cooling.

4.5.2 1762 nm Transitions for Excess Micromotion Detection and
Compensation
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Figure 4.14: Dark state probability against 1762 nm laser pulse times, driven at a laser fre-
quency of ω∆m=−1−ΩRF , where ω∆m=−1 is a resonant ∆m = −1 6S1/2 ↔ 5D5/2 transition
of 138Ba+. E.M.M. denotes excess micromotion.
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The derivations in Section 4.1.5 predicts that we can observe Rabi cycling of a 6S1/2 ↔
5D5/2 transition at laser frequencies detuned from the carrier resonance in integer multiples
of ΩRF if the ion is moving with a sufficiently large excess micromotion amplitude. This
is indeed the case, as seen from Fig. 4.14 for the E.M.M. uncompensated case, where the
laser frequency is set to ΩRF red of a ∆m = −1 6S1/2 ↔ 5D5/2 transition in 138Ba+. A
common cause for this excess micromotion is a mismatch of the pseudopotential minimum
to the RF null, which can be compensated with DC voltages sent to the rod electrodes.

𝑉𝑅𝐹 𝑡 + 𝑉𝑆 + 𝑉𝐻,𝐿 + 𝑉𝑉,𝑇

−𝑉𝑅𝐹 𝑡 + 𝑉𝐻,𝐿 + 𝑉𝑉,𝐵

−𝑉𝑅𝐹 𝑡 + 𝑉𝐻,𝑅 + 𝑉𝑉,𝑇

𝑉𝑅𝐹 𝑡 + 𝑉𝑆 + 𝑉𝐻,𝑅 + 𝑉𝑉,𝐵

Figure 4.15: Illustration of voltages sent to the four-rod electrodes, including voltages for
excess micromotion compensation.

Fig. 4.15 shows an illustration of voltages sent to the four-rod trap electrodes. VV,T
and VV,B displaces the ion in the vertical direction, where the subscripts T and B denote
top and bottom electrodes respectively. VH,L and VH,R displaces the ion in the horizontal
direction, where the subscripts L and R denote left and right electrodes respectively. Our
voltage sources are set up such that the DC voltages on the electrodes can only have
positive values, i.e. VV,T , VV,B, VH,L, VH,R > 0V. Let us define

|VV | =

{
VV,T , VV < 0

VV,B, VV ≥ 0

|VH | =

{
VH,R, VH < 0

VV,L, VH ≥ 0
.

(4.53)

The procedure for excess micromotion compensation is performed as follows:

1. Set the 1762 nm laser frequency to be ΩRF detuned from a resonant 6S1/2 ↔ 5D5/2

transition.

2. Set VV to some starting voltage, VV = Vstart, run a laser pulse time scan of the
experiment as shown in Fig. 4.7, starting from t = 0 over some long enough range
of pulse times, at least one order of magnitude larger than the Rabi cycle period of
the resonant carrier transition. We typically set it to be a few milliseconds.
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3. Compute the average of the photon counts collected by the PMT detector across all
1762 nm laser pulse times for the data collected in Step 2.

4. Increase VV by some voltage step, VV → VV +∆V .

5. Repeat Steps 1 to 4, until some end point of the voltage scan range VV = Vend.

6. Set VV to the voltage value which gives the highest average PMT count computed in
Step 3.

7. Repeat Steps 1 to 6 for the horizontal voltage, replacing VV with VH in the procedure.

When the ion is shifted to be close enough to the RF null, the excess micromotion amplitude
is minimal and the Rabi frequency is low. With a sufficiently low Rabi frequency, the ion
stays mostly in the ground 6S1/2 state over the range of scanned laser pulse times in Step 2,
resulting in high averaged PMT counts in Step 3. Otherwise, the averaged PMT counts are
approximately half of the bright state PMT count. This lets us pinpoint the compensation
DC voltages to push the ion to the RF null in Step 6. It is also important to compensate for
the vertical displacement first, as the excess micromotion moves mostly in the horizontal
direction, parallel to the 1762 nm laser wavevector and thus stronger motional coupling to
the laser, when it is displaced vertically from the RF null. With the excess micromotion
compensated, the transition modulated by excess micromotion is significantly suppressed
as shown in the E.M.M. compensated data from Fig. 4.14.

4.6 State Preparation and Measurement (SPAM) of

Trapped Ba+ Ion Qudits

Up until this point in this chapter, we have explored how the 6S1/2 and 5D5/2 states can
be coherently manipulated with laser controls. In this section, we construct a protocol
for performing state preparation and measurement (SPAM) of a qudit system using these
controls, which are necessary functions for a quantum computer. The same protocol applies
to both 138Ba+ and 137Ba+ isotopes, and SPAM can be performed in the same manner. We
will focus the discussion on 137Ba+ in this section, which is the isotope with more stable
and metastable energy states for high-dimensional qudit encodings, and a brief summary
of the 138Ba+ results are relegated to Appendix I.
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4.6.1 Qudit Encoding and SPAM Protocol

We have seen that a σ+-polarized 493 nm light optically pumps a Ba+ ion to the 6S1/2

state with the highest magnetic quantum number. Thus, it is natural to encode the
computational |0⟩ state in the |6S1/2, F̃ = 2,mF̃ = 2⟩ state of 137Ba+ in our scheme.
The ability to perform universal single qudit gates is enabled by any two of the encoded
states being connected by a series of two-level transitions that we can control [72, 73, 74].
Thus, it is natural to encode the states in the 5D5/2 level that are directly accessible with

a quadrupole transition from the |6S1/2, F̃ = 2,mF̃ = 2⟩ state as the next computational
states, and any two computational states are connected via two two-level transitions via
the |0⟩ state. These 5D5/2 states directly accessible from the |6S1/2, F̃ = 2,mF̃ = 2⟩ state
are also connected to the other states in the 6S1/2 level, and so on, giving us access to
any states in the 6S1/2 and 5D5/2 levels in at most three transitions as implied by Table
4.1. This gives us the ability to perform universal single qudit gates on a 32-level qudit.
However, we will see later, during the qudit measurement protocol in this work, not all 32
states are fully distinguishable, and the number of levels that can be encoded is limited by
the number of states that are distinguishable in a single-shot by the measurement process.

The general state preparation process is straightforward. First, the 137Ba+ ion is opti-
cally pumped to the |6S1/2, F̃ = 2,mF̃ = 2⟩ state. Then, at most three sequential 1762 nm

laser π-pulses with the corresponding frequencies that connect the |6S1/2, F̃ = 2,mF̃ = 2⟩
state to the desired state to be prepared are sent to the ion. This completes the state
preparation process.

Now, we describe a protocol we use to perform qudit state measurements. 137Ba+ emits
fluorescence when it is driven by 493 nm and 650 nm lasers if the ion is in the 6S1/2 state.
It does not fluoresce if the ion is in any of the encoded 5D5/2 states. We make use of this
property to construct a single-shot qudit measurement process, which is described in the
sequence below. The process consists of multiple steps, but we characterize it as single-shot
in the sense that the projected quantum state can be determined definitively in a single
run of the measurement protocol.

1. Without loss of generality, the |0⟩ state is assigned as one of the 6S1/2 states. Any
population of the encoded states in the 6S1/2 level other than state |0⟩ is brought up
to a corresponding unencoded 5D5/2 state by sending π-pulses of 1762 nm laser with
frequencies resonant to the desired transitions in sequence. This is commonly called
a shelving process.

2. The 493 nm and 650 nm lasers are turned on to check for fluorescence. The ion is
measured to be in the qudit state |0⟩ if fluorescence is observed at this step.
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3. The population corresponding to the next computational state |n⟩ in 5D5/2 is brought
down to one of the 6S1/2 states by sending a π-pulse of 1762 nm laser with the
corresponding transition frequency. We call this a de-shelving process.

4. Step 2 is repeated to check for fluorescence. The ion is measured to be in the qudit
state |n⟩ if fluorescence is observed for the first time at this step, as exemplified in
Table 4.2.

5. Steps 3 and 4 are repeated until all states are de-shelved and checked for fluorescence.

Experiment
Measurement step

|0⟩ |1⟩ |2⟩ |3⟩ |4⟩ |5⟩ |6⟩ |7⟩ |8⟩ |9⟩ |10⟩ |11⟩ |12⟩
1 D D D B D D D D D D D D D
2 D D D B B B B B B B B B B
3 D D D D D D D D D D D D D

Table 4.2: Examples of measurement outcomes. B and D denote that the ion is detected
as bright and dark respectively. The de-shelving process in the measurement sequence as
described in the main text is performed in ascending order of the encoded states. Experi-
ments 1 and 2 are interpreted as measuring the system to be in state |3⟩. Experiment 3 is
regarded as a measurement failure and is removed from the data set for the post-selected
SPAM results. In this experiment, the deshelving process is simultaneously a reshelving
process (see Fig. 4.18). An alternative interpretation that treats Experiment 2 as a mea-
surement failure rather than a measurement of the state |3⟩ is discussed in Appendix J.

From this measurement sequence, it can be seen that at least dS − 1 levels in the
5D5/2 level has to be left unencoded in Step 1 of the measurement process to have full
distinguishability, where dS is the number of computational states encoded in the 6S1/2

level. Let ND be the total number of states in the shelve (5D5/2 in this case) level, the
maximum number of shelve states that can be encoded is dD = ND − (dS − 1), giving the
maximum possible qudit dimension of dS + dD = ND + 1. For 137Ba+, ND = 24 and thus
a maximum number of 25 levels can be encoded with this scheme.

Table 4.2 shows representative examples of possible measurement outcomes. Experi-
ment 3 in Table 4.2 is a directly detectable failure of the measurement procedure. This is
arguably a less critical error than misdiagnosing the quantum state, as the user directly
knows an error has occurred and can rerun the computation. In this thesis, we will present
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both the raw SPAM results and the post-selected SPAM results, where measurement out-
comes such as Experiment 3 are excluded from the data sample, but further data analysis
will only be performed on the post-selected SPAM results.

Figure 4.16: Qudit encoding schemes for 137Ba+. Black texts indicate the encoding scheme
employed in this work for 137Ba+. All states with sufficiently strong (resulting in π-pulse
transition fidelity of ≥ 75%, discussed later in main text) allowed transitions to the 5D5/2

level from |0⟩ are encoded. Gray texts indicate a possible extension of the encoding scheme
to up to 25 levels, where the additional states are chosen arbitrarily.

In this work, we encode the |6S1/2, F̃ = 2,mF̃ = 2⟩ state as the |0⟩ state and any
5D5/2 states directly accessible from the |0⟩ state with a single quadrupole transition as
computational states. We exclude the states that have transition strengths that are too
weak or with bad π-pulse transition fidelity (< 75%, see Section 4.6.4), which are the
|5D5/2, F̃ = 3,mF̃ = 3⟩ and |5D5/2, F̃ = 1,mF̃ = 1⟩ states. This totals 13 encoded
states as shown in Fig. 4.16. For this encoding, at most one quadrupole transition in the
state preparation step is required and the shelving process in Step 1 of the measurement
procedure is unnecessary. The 6S1/2 ground state chosen for the de-shelving process is also
fixed to be |6S1/2, F = 2,mF = 2⟩ for convenience. The pulse sequence to perform SPAM
on this 13-level qudit is summarized in Fig. 4.17 below.
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Cooling
493 nm

O.P. 493 nm

614 nm

650 nm

1762 nm

Repump Optical pump
Transition to
5D5/2 state

Fluorescence 
measurement

Fluorescence 
measurement

Repeated d-1 times

Prepare state Measure state Measure state

Deshelving

Prepare state

Figure 4.17: Simplified pulse sequence for one SPAM experiment for a prepared state |n⟩ of
a d-dimensional qudit, demonstrated in this work for d = 13. O.P. denotes optical pumping.
The time axis is not drawn to scale. The pulse sequences to the left and right of the bold
dashed line are the state preparation and state measurement processes respectively. The
1762 nm laser pulse for the state preparation step is only needed if the prepared state is not
|0⟩. For a detailed pulse sequence relevant to the experimental apparatus, see Fig. 4.18.

4.6.2 Hardware and Laser Setup for SPAM

To be able to carry out the pulse sequence as shown in Fig. 4.17, the ability to quickly
switch the 1762 nm driving laser frequency for twelve different transitions is required. This
is accomplished by a function in our AWG, where it can store a table of different periodic
waveforms in its memory. The output waveform can be cycled in the waveform table
from one waveform to the next by sending an external DC voltage trigger to the AWG,
which allows easy control of the timings in the pulse sequence. We configure 13 waveforms
to be saved in the AWG waveform table, each generating an EOM modulated sideband
frequency ∆EOM corresponding to a |0⟩ ↔ |n⟩ resonant transition of our 13-level qudit.
For the waveform corresponding to the |0⟩ state, some ∆EOM value that is far off-resonant
to any 6S1/2 ↔ 5D5/2 transitions is set. To save 13 periodic waveforms with a constant
AWG clock rate in the limited memory of the AWG, our frequency resolution is limited
to 1 kHz (see Appendix K). With this AWG setup, the detailed pulse sequence to perform
our 13-level qudit SPAM is presented in Fig. 4.18 below.
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Cooling
493 nm Laser

Optical Pump
493 nm Laser

614 nm Laser

650 nm Laser

1762 nm Laser

AWG
Trigger Signal

Repump
5 ms

Optical pump
0.5 ms

Optical pump
0.5 ms

Transition to
5D5/2 state

Deshelving
Fluorescence 
measurement

5 ms

Fluorescence 
measurement

5 ms

Change
AWG frequency

4 ms

Repeated 
n times

Repeated 
d-n times

Repeated 
d-1 times

Change
AWG frequency

4 ms

Change
AWG frequency

4 ms

Prepare state Measure state Measure state

Figure 4.18: Pulse sequence for one SPAM experiment for a prepared |n⟩ state of a d-
dimensional qudit demonstrated in this work. The time axis is not drawn to scale. The
pulse sequences to the left and right of the bold dashed line are the state preparation and
state measurement processes respectively. A list of d individual frequencies corresponding
to the transitions for each encoded state in a d-dimensional qudit is set in the AWG, and
frequency switching is achieved by the AWG trigger signal. The optical pumping step in the
measurement process is technically unnecessary for the measurement procedure described
in the main text. It is present in this work for investigating another method of determining
a measured state, which we have found to be less robust than what is described in the main
text (see Appendix J).

Having a short 1762 nm π-pulse transition is important to minimize decoherence effects
during state preparation of |n ̸= 0⟩ states. Therefore, it is important to ensure high 1762 nm
laser intensity at the ion. We do this by optimizing the laser beam pointing as follows.
∆EOM is set to correspond to a resonant |6S1/2, F̃ = 2,mF̃ = 2⟩ ↔ |5D5/2⟩ transition and
the Rabi cycling pulse sequence in Fig. 4.7 is run repeatedly with 1762 nm laser pulse time
set lower than the current π-pulse time. The 1762 nm laser beam pointing is then tuned to
minimize the photon count detected by the PMT detector. The lower photon count at the
PMT detector is due to the dark state probability being increased at the probe pulse time
due to the shortening of a Rabi cycle period when the incident laser intensity is increased.

It is also important to ensure that the optical pump 493 nm laser beam is parallel to the
magnetic field axis, as it being off-axis would introduce other polarization components of
the laser (σ− and π polarizations, which is also referred to as σ0 polarization in an earlier
chapter). This error reduces the population in the |6S1/2, F̃ = 2,mF̃ = 2⟩ state after
the optical pump process. One might think that we can perform the protocol to prepare
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the state in |n ̸= 0⟩ and measure the dark state probability as a metric to systematically
optimize the optical pump beam pointing, but we find this to be difficult due to the optical
pump fidelity being dependent on laser intensity as well (see Section 4.6.3). Thus, we
optimize the optical pump beam pointing geometrically as described in Section 4.3.1, and
find that it is sufficient for demonstrating qudit SPAM.

We only have a single 614 nm frequency in our setup, and we set it to be resonant
to the |5D5/2, F̃ = 4,mF̃ = 2⟩ ↔ |6P3/2, F̃ = 2⟩ transition. This frequency is chosen

so that all the other encoded 5D5/2 states except |5D5/2, F̃ = 4,mF̃ = 4⟩ can be driven

to the |6P3/2, F̃ = 2⟩ level at relatively small frequency detunings, and a repump time

of 500µs is sufficient for these states. The |5D5/2, F̃ = 4,mF̃ = 4⟩ ↔ |6P3/2, F̃ = 2⟩
transition is forbidden and the |5D5/2, F̃ = 4,mF̃ = 4⟩ state can only be driven to the

|6P3/2, F̃ = 3⟩ level. For the experiments which involve the |5D5/2, F̃ = 4,mF̃ = 4⟩
state, the repump time is increased to 5ms. To calibrate the 614 nm laser to the desired
|5D5/2, F̃ = 4,mF̃ = 2⟩ ↔ |6P3/2, F̃ = 2⟩ transition, the experiments with the pulse

sequence in Fig. 4.7 is done with the 1762 nm laser frequency set to drive the |6P1/2, F̃ =

2,mF̃ = 2⟩ ↔ |5D5/2, F̃ = 4,mF̃ = 2⟩ transition and with a π-pulse time. The repump
time is set to some value lower than the saturation time for repumping the state in order
to be able to resolve the transition peaks, which we chose to be 100 µs. The results of this
614 nm frequency scan experiment is shown in Fig. 4.19 below.
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Figure 4.19: Dark state probability against the 614 nm repump laser frequency. The
1762 nm laser frequency and pulse times are set to perform a π-pulse transition from the
|6S1/2, F̃ = 2,mF̃ = 2⟩ state to the |5D5/2, F̃ = 4,mF̃ = 2⟩ state. The repump time is set
to 100 µs.

The central peak in Fig. 4.19 corresponds to the 614 nm frequency resonant to the
|5D5/2, F̃ = 4,mF̃ = 2⟩ ↔ |6P3/2, F̃ = 2⟩ transition and the peak that is around 470MHz

blue of it is the transition to the |6P3/2, F̃ = 3⟩ level. It is interesting to note that although

|F = 4⟩ ↔ |F = 2⟩ is dipole forbidden, |F̃ = 4⟩ ↔ |F = 2⟩ is not in general, as |F̃ = 4⟩
states are superposition states of hyperfine F states.
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4.6.3 Optical Pump Fidelity is Dependent on Laser Intensity and
Frequency

In this section, we explore how sensitive is an optical pumping performance to other laser
parameters, which are the frequency detuning and intensity, given that the optical pumping
light is not perfectly polarized (it is trivial for the perfectly polarized case). We model the
problem using optical Bloch equations as we did in Chapter 3.3. In this case, I construct
a toy model of four states as shown in Fig. 4.20a, where I have ignored the D states.

The time derivatives of the state amplitudes are then constructed as follows.

d

dt
cS1 = −i∆cS1 − i

σ0Ω

2
cP1 − i

σ+Ω

2
cP2

d

dt
cS2 = −i∆cS2 − i

σ−Ω

2
cP1 − i

σ0Ω

2
cP2

d

dt
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2
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d
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σ0ΩS

2
cS2,

(4.54)

and the time derivatives of the density matrix elements are
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where we have assumed a spontaneous decay branching ratio of 1
2
for each P state to an S

state.

𝑆1 𝑆2

𝑃2𝑃1

𝜎+

∆

(a) (b)

Figure 4.20: (a) An illustration of the four-level toy model. (b) Color map of S2 state
probability against laser frequency and intensity.

For the simulations, we set γ = 95.3 µs−1, and 2% in the σ− and σ0 polarization each.
From the simulations as shown in Fig. 4.20b, it shows that the S2 steady state population
decreases with increasing laser intensity and also lower laser frequency detunings, which
are the main takeaways of this toy model study. These have important implications in
terms of how we should approach laser alignments as described in the earlier section for
example.

4.6.4 Estimation of 6S1/2 ↔ 5D5/2 Single π-pulse Transition Errors

With the hardware and lasers set up for driving 137Ba+ |6S1/2, F̃ = 2,mF̃ = 2⟩ state to
the 5D5/2 states, we perform Rabi cycling experiments for each transition to the encoded
states to investigate 1762 nm π-pulse transition fidelities. The Rabi cycling experimental
procedure is as follows:
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1. The waveform frequency from the AWG for the 1762 nm laser EOM sideband is set
to the resonant frequency of a chosen 2-state transition.

2. The pulse sequence to prepare 137Ba+ in the |6S1/2, F̃ = 2,mF̃ = 2⟩ state is sent to
the ion.

3. Once the |6S1/2, F̃ = 2,mF̃ = 2⟩ state is prepared, the 1762 nm laser is turned on for
some time t.

4. The fluorescence lasers are turned on and the ion fluorescence is collected in the PMT
for some time, which we set to be 5ms.

5. Steps 2-4 are repeated to obtain a large enough sample size to determine the proba-
bility of the ion being dark, which we chose to be 100 times.

6. Step 5 is repeated for a range of pulse times that cover at least half a Rabi cycle for
all transitions, which is t = 0 µs to t = 500 µs in our case, in sufficiently fine time
steps, which we set to be 1µs.

The data points around the first transition probability peak of the Rabi flopping data are
used to fit to the function as shown in Equation 4.56,

p (t) = A cos2
(
π (t− tpeak)

2tscale

)
+ C (4.56)

where A, C, tpeak and tscale are scalar parameters that are allowed to vary to fit the function
to the data points. Specifically, data points from t = tpeak,r/2 to t = 3tpeak,r/2, where tpeak,r
is the time where the data point has the highest measured transition probability in the
first Rabi flopping peak, are selected for functional fitting. From the functional fit, the
single π-pulse transition error is estimated to be ϵπ = 1−A−C. This functional fit is also
used to determine and calibrate the π-pulse times, which we set to tpeak.
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Figure 4.21: A representative plot of a Rabi flopping experiment for estimating the singple
π-pulse transition error. The data shown is the transition to the |5D5/2, F̃ = 4,mF̃ = 1⟩
state. Circles denote the experimental data points, and the red solid line is the functional
fit using Equation 4.56.
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Figure 4.22: Rabi cycles of the transition from the |6S1/2, F̃ = 2,mF̃ = 2⟩ state to the

F̃ = 1 and F̃ = 2 states in the 5D5/2 level.
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(b) F̃ = 3,mF̃ = 1
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(c) F̃ = 3,mF̃ = 2
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Figure 4.23: Rabi cycles of the transition from the |6S1/2, F̃ = 2,mF̃ = 2⟩ state to the

F̃ = 3 and F̃ = 4 states in the 5D5/2 level.

From Fig. 4.22, we can immediately see that the transition fidelity to the |5D5/2, F̃ =
1,mF̃ = 1⟩ state is low and is not included for the SPAM experiments. The estimations of
the transition errors are summarized in a later section in Section 4.6.6, where they will be
discussed together with the SPAM results.
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4.6.5 Efficient Calibration Protocols for 1762 nm Laser Frequen-
cies and Pulse Times

The 1762 nm laser main power EOM frequencies for driving resonant 6S1/2 ↔ 5D5/2 tran-
sitions may drift due to drifts in the PDH Fabry–Pérot cavity dimensions from thermal
effects or drifts in the magnetic field strengths. The 1762 nm laser pulse times to drive a
π-pulse transition for each of the transition may also drift due to drifts in the laser power.
Thus, to ensure optimal state preparation fidelities, the 1762 nm laser frequencies and pulse
times need to be calibrated before experiments. We developed calibration processes which
do not scale with qudit dimensions for d ≥ 6, and thus show that this is not a practical
concern for scaling up to higher-dimensional qudits.

The frequency calibration process employed in this work requires empirically deter-
mining 6S1/2 ↔ 5D5/2 transition frequencies for only 3 of the encoded states, regardless
of the dimension of the qudit. The first transition frequency is the transition with the
lowest magnetic field strength sensitivity, foffset, which is to the |5D5/2, F̃ = 2,mF̃ = 1⟩
state in this work. The other 2 transition frequencies are transitions with the largest mag-
netic fields strength sensitivity with respect to each other, flow and fhigh, which are to the
|5D5/2, F̃ = 4,mF̃ = 0⟩ and |5D5/2, F̃ = 4,mF̃ = 4⟩ states in this work. The transition
frequencies for some other state |n⟩ encoded in the 5D5/2 level, fn, are determined via Eq.
4.57,

fn = h (an,∆f, foffset) (4.57)

where an = (an,1, an,2, . . . an,N) is a list of parameters for the function h (an,∆f, foffset)
and ∆f = fhigh − flow. We find that setting h (an,∆f, foffset) as a linear function is
sufficient for calibrating the transition frequencies for the drifts that we experience. So, we
use

h (an,∆f, foffset) = an,1∆f + foffset + an,2. (4.58)

To determine the parameters an,1 and an,2, the transition frequency of each transition
to the encoded 5D5/2 states are determined empirically. The experimental procedure to
determine a transition frequency for the 1762 nm laser is as follows:

1. The waveform amplitude from the AWG for the 1762 nm laser EOM sideband is
lowered to the point where the magnitude of power broadening is in the order of
1 kHz, so that we can resolve the resonant frequencies to a resolution of 1 kHz.

2. The pulse sequence to prepare 137Ba+ in the |6S1/2, F̃ = 2,mF̃ = 2⟩ state is sent to
the ion.
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3. Once the |6S1/2, F̃ = 2,mF̃ = 2⟩ state is prepared, the 1762 nm laser is turned on for
a time that is longer than the coherence time in our system. We set it to 3ms in this
work.

4. The fluorescence lasers are turned on and the ion fluorescence is collected in the
PMT detector for a set time, which we set to 5ms. If the 1762 nm laser frequency is
resonant, there is around 0.5 probability of the ion not fluorescing.

5. Steps 2-4 are repeated to obtain a large enough sample size to determine the proba-
bility of the ion being dark, which we chose to be 400 in this work.

6. Steps 5 is repeated for the EOM frequencies from −50 kHz to 50 kHz from the previ-
ously determined resonant frequency in steps of 10 kHz, assuming that the frequencies
have not drifted more than ±50 kHz.

7. The AWG frequency where the average PMT count is the lowest from Step 6 is
determined. Fine frequency scan in steps of 1 kHz is scanned from −10 kHz to 10 kHz
of this frequency.

8. From the fine frequency scan, the transition probability against EOM frequency data
is fit with a Lorentzian function, and the centre of the Lorentzian function is set as
the resonant frequency (see Figure 4.24a).

We rely on natural drifts of our setup and collect sets of empirically determined 6S1/2 ↔
5D5/2 transitions on different days. With a large enough data sets, linear regression is
performed for each transition frequency, fn, to obtain the parameters an,1 and an,2 (see
Figure 4.24b).
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Figure 4.24: (a) A representative plot of transition probability against EOM frequency for
the transition to |5D5/2, F̃ = 4,mF̃ = 1⟩. The data points are fit to a Lorentzian function to
determine the resonant frequency of a 6S1/2 ↔ 5D5/2 transition. (b) A representative plot

of shifted transition frequencies against ∆f for the transition to |5D5/2, F̃ = 4,mF̃ = 1⟩.
Each data point is an empirically determined transition frequency on different days or
different times. Linear regression is performed to determine the parameters an,1 and an,2.

In principle, it is possible to empirically determine only 2 transition frequencies, flow
and fhigh, using this technique, and set foffset = flow. This leads to a different set of
parameters an that are still sufficient information to determine fn. However, since flow is
magnetically sensitive, it can drift during the calibration process and lead to offset errors
for other calibrated frequencies fn. Empirically, we observe that determining a transition
frequency that is insensitive to magnetic field as the offset frequency, foffset, is required
for optimal results.

To perform fast π-pulse time calibrations, we develop a protocol as follows. From Eq.
4.31, the ratio of the Rabi frequencies between two transitions, |j⟩ ↔ |i⟩ and |j′⟩ ↔ |i′⟩
with the same ∆m = q is a constant value of

Ri′j′,ij =
Ωi′j′

Ωij

=
⟨j′; k = 2, q|i′⟩
⟨j; k = 2, q|i⟩

(4.59)

which is independent of the laser parameters. The resonant Rabi frequencies and thus
the Ri′j′,ij ratios can be empirically measured in the laboratory. During the calibration
process to determine π-pulse times, for each initial state |j⟩ and each ∆m = q, only Rabi
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frequency measurement of one transition, let it be Ωij, needs to be performed. Then, the
Rabi frequencies of the rest of the transitions with the same ∆m = q can be computed
using

Ωi′j′ = Ri′j′,ijΩij (4.60)

For a quadrupole transition, q ∈ {−2,−1, 0, 1, 2}. Thus, at most Rabi frequencies of five
transitions, one for each q value, need to be measured empirically during the calibration
process, regardless of the qudit dimension d.

The scheme discussed here assumes that the actual Rabi frequencies are sufficiently close
to the resonant Rabi frequencies, which does not necessarily hold true in an experimental
setup. With some laser frequency detuning δ from resonance, the actual Rabi frequency is

Ω′ =
√
Ω2 + δ2 (4.61)

In this work, the resolution of the laser frequency is restricted to 1 kHz due to the limitation
of the AWGmemory size, and the weakest transition used in this work has a Rabi frequency
of 2.5 kHz. Thus, the assumption Ω′ ≈ Ω does not hold true consistently, and this π-pulse
calibration scheme is not used in this work.

The actual π-pulse times calibration protocol is similar to what is done in Section 4.6.4.
Instead of scanning a full range 500 µs of the 1762 nm pulse times, the laser pulse time is
scanned from 0.5 to 1.5 times the π-pulse times of the previously found values for each
transition. The functional form in Eq. 4.56 is then used to fit the data points to extract
tpeak as the calibrated π-pulse times. This Rabi cycling experiment is done for transitions
to all the encoded states during the calibration process.
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4.6.6 SPAM Results and Discussions
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Figure 4.25: Post-selected measurement probability of the 13-level qudit SPAM experiment.

Fig. 4.25 summarizes the post-selected SPAM experimental results, where the cases when
no bright state is detected throughout the measurement sequence are removed from the
data set. For the raw SPAM results, where the cases with no bright states detected are
counted as errors, see Table 4.4. The average raw and post-selected SPAM errors are
computed to be 13.1± 0.3% and 8.3± 0.3% respectively for a 13-level qudit. The raw data
sets and analysis scripts for this work can be found in the repository linked at Ref. [75].
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Prepared
state

Measured state
|0⟩ |1⟩ |2⟩ |3⟩ |4⟩ |5⟩ |6⟩ |7⟩ |8⟩ |9⟩ |10⟩ |11⟩ |12⟩

|0⟩ 0.999 0.001 0 0 0 0 0 0 0 0 0 0 0
|1⟩ 0.061 0.939 0 0 0 0 0 0 0 0 0 0 0
|2⟩ 0.038 0.001 0.958 0.001 0 0 0.002 0 0 0 0 0 0
|3⟩ 0.029 0.001 0 0.970 0 0 0 0 0 0 0 0 0
|4⟩ 0.045 0 0 0 0.953 0 0 0 0 0 0 0 0
|5⟩ 0.087 0.001 0 0 0 0.911 0 0 0.001 0 0 0 0
|6⟩ 0.318 0.001 0.003 0.003 0.003 0.001 0.662 0.003 0.001 0.001 0 0.004 0.001
|7⟩ 0.061 0 0.002 0 0 0.001 0.004 0.932 0 0 0 0 0
|8⟩ 0.076 0 0 0.001 0 0 0.002 0 0.920 0 0 0.001 0
|9⟩ 0.145 0.002 0 0.003 0.001 0.005 0.003 0.002 0.001 0.829 0.007 0 0.001
|10⟩ 0.029 0.003 0.002 0 0.001 0.003 0.003 0.002 0 0.002 0.952 0 0.002
|11⟩ 0.039 0.002 0.003 0.001 0.001 0.001 0.001 0.004 0 0.004 0 0.942 0.001
|12⟩ 0.044 0.001 0 0 0 0 0 0 0 0.001 0 0 0.954

Table 4.3: Post-selected measurement probability of each prepared state from SPAM ex-
periments used to plot Fig. 4.25. See Table 4.4 for the raw measurement probabilities.

Prepared
state

Measured state

|0⟩ |1⟩ |2⟩ |3⟩ |4⟩ |5⟩ |6⟩ |7⟩ |8⟩ |9⟩ |10⟩ |11⟩ |12⟩ Null

|0⟩ 0.999 0.001 0 0 0 0 0 0 0 0 0 0 0 0

|1⟩ 0.059 0.911 0 0 0 0 0 0 0 0 0 0 0 0.030

|2⟩ 0.037 0.001 0.941 0.001 0 0 0.002 0 0 0 0 0 0 0.018

|3⟩ 0.029 0.001 0 0.960 0 0 0 0 0 0 0 0 0 0.010

|4⟩ 0.044 0 0 0 0.926 0 0 0 0.002 0 0 0 0 0.028

|5⟩ 0.080 0.001 0 0 0 0.841 0 0 0 0.001 0 0 0 0.077

|6⟩ 0.252 0.001 0.002 0.002 0.002 0.001 0.525 0.002 0.001 0.001 0 0.003 0.001 0.207

|7⟩ 0.058 0 0.002 0 0 0.001 0.004 0.887 0 0 0 0 0 0.048

|8⟩ 0.071 0 0 0.001 0 0 0.002 0 0.861 0 0 0.001 0 0.064

|9⟩ 0.126 0.002 0 0.003 0.001 0.004 0.003 0.002 0.001 0.722 0.006 0 0.001 0.129

|10⟩ 0.027 0.003 0.002 0 0.001 0.003 0.003 0.002 0 0.002 0.897 0 0.002 0.058

|11⟩ 0.037 0.002 0.003 0.001 0.001 0.001 0.001 0.004 0 0.004 0 0.897 0.001 0.049

|12⟩ 0.043 0.001 0 0 0 0 0 0 0 0.001 0 0 0.929 0.026

Table 4.4: Raw measurement probability of each prepared state from SPAM experiments.
The sample size is 1000. Null indicates that all fluorescence readouts during the measure-
ment procedure are dark and no valid computational state output is obtained.

From Fig. 4.25 and Table 4.3, we observe that when an error occurs, where the measured
state is not the intended state to be prepared, the state is measured to be in the |0⟩ state
most of the time. This indicates that the error is mostly at the state preparation stage,
where the π-pulse transition fails to drive the ion to the intended 5D5/2 state. The large
variations in the SPAM errors for different transitions indicate the major source of error is
something that affects each transition to different extents, which led to the conjecture that
the magnetic field noise is the major source of error, since each transition has a different
magnetic field sensitivity, as summarized in Table 4.5.
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Computational
state Atomic State SPAM error

Relative magnetic field
sensitivity / MHz G−1 π-pulse time / µs Estimated single

transition error

|0⟩ |6S1/2, F̃ = 2,mF̃ = 2⟩ 0.001 NA NA NA

|1⟩ |5D5/2, F̃ = 4,mF̃ = 4⟩ 0.061 2.7992 37.2 0.075

|2⟩ |5D5/2, F̃ = 4,mF̃ = 3⟩ 0.042 1.1202 29.7 0.016

|3⟩ |5D5/2, F̃ = 4,mF̃ = 2⟩ 0.030 −0.3554 37.5 0.023

|4⟩ |5D5/2, F̃ = 4,mF̃ = 1⟩ 0.047 −1.7009 54.9 0.030

|5⟩ |5D5/2, F̃ = 4,mF̃ = 0⟩ 0.09 −2.9234 63.0 0.07

|6⟩ |5D5/2, F̃ = 3,mF̃ = 2⟩ 0.34 1.7050 204.8 0.23

|7⟩ |5D5/2, F̃ = 3,mF̃ = 1⟩ 0.068 0.5718 188.3 0.050

|8⟩ |5D5/2, F̃ = 3,mF̃ = 0⟩ 0.080 −0.5672 151.2 0.049

|9⟩ |5D5/2, F̃ = 2,mF̃ = 2⟩ 0.17 2.0094 104.5 0.11

|10⟩ |5D5/2, F̃ = 2,mF̃ = 1⟩ 0.047 0.3026 87.3 0.030

|11⟩ |5D5/2, F̃ = 2,mF̃ = 0⟩ 0.058 −1.3707 64.1 0.026

|12⟩ |5D5/2, F̃ = 1,mF̃ = 0⟩ 0.046 −0.7373 105.4 0.054

NA |5D5/2, F̃ = 1,mF̃ = 1⟩ NA 1.9462 215 0.31

NA |5D5/2, F̃ = 3,mF̃ = 3⟩ NA 2.7988 ∼ 2000* NA

Table 4.5: Table summarizing the encoded states and their corresponding physical atomic
states, parameters relevant to the SPAM experiments and post-selected SPAM errors.
The relative magnetic field sensitivities are the magnetic field sensitivities of the 5D5/2

states to the magnetic field sensitivity of the |6S1/2, F̃ ,mF = 2⟩ state. The magnetic field
sensitivities are computed by taking the numerical first order derivatives of the simulated
energy levels as shown in Section 4.1.1 at Be = 8.35G. The single transition errors are
estimated from the functional fits of Rabi cycles as described in Section 4.6.4. *This value is
estimated from relative transition strengths using Table 4.1, and not measured empirically.

We can see that there may be some correlation of the SPAM error to the transition
magnetic field strength sensitivities and π-pulse times from Table 4.5 at first glance. To
further investigate the possible relation of the SPAM error to magnetic field noise, we
construct an error model as follows. The post-selected SPAM error for a given prepared
state |n ̸= 0⟩ due to decoherence from magnetic field noise is

εSPAM =
επ

επ + (1− επ)
2 , (4.62)

where επ is the error for a single π-pulse transition. Using filter function theory [76, 77],
επ can be expressed as (see Appendix L)

επ ≈ 1

π

∫ ∞

0

1

ω2
S (ω)F (ω) dω (4.63)

which is a spectral overlap of the transition frequency noise power spectral density (PSD),
S (ω), with the filter function of the target operation, F (ω).

100



We model the PSD of the magnetic field noise, which we assume to be proportional
to the transition-frequency noise, to be a 1/f -noise with a prominent peak at the mains
electricity alternating current (AC) frequency and a baseline white noise,

S (ω) =


ha/ω0, ω < ω0

hpeak, ωAC −∆ωAC/2 < ω < ωAC +∆ωAC/2

ha/ω + hb, Otherwise

, (4.64)

where ha is the scaling coefficient of the 1/f -noise component, hb is the baseline white
noise, hpeak is the noise PSD peak at the mains electricity frequency, ω0 is some threshold
Fourier frequency such that noise PSD does not go to infinity at low Fourier frequencies
to keep the model physical, ωAC is the mains electricity frequency and ∆ωAC is the width
of the mains electricity noise peak. For a π-pulse transition, the filter function can be
approximated as (see Appendix L)

F (ω) =

{
4ω2

Ω2 , ω < Ω

2, ω ≥ Ω
(4.65)

Assuming that ωAC < Ω, evaluating Equation 4.63 with Equations 4.64 and 4.65 gives

επ =
4

π

(
5ha
4Ω2

+
ha
Ω2

ln

(
Ω

ω0

)
+
hb
Ω2

(Ω− ω0)−
ha
Ω2

ln

(
ωAC +∆ωAC/2

ωAC −∆ωAC/2

)
− hb
Ω2

∆ωAC +
hb
2Ω

+
hpeak
Ω2

∆ωAC

)
≈ 4

πΩ2

(
5ha
4

+ ha ln

(
Ω

ω0

)
+ hpeak∆ωAC

)
+

6hb
πΩ

,

(4.66)

where we have made the approximations ω0 ≪ Ω, ∆ωAC ≪ ωAC and hb ≪ Ω2∆ωAC . From
Equation 4.66, there are 2 asymptotic behavior. In the regime where Ω ≪ 2K

3hb
, where

K = 5ha

4
+ ha ln

(
Ω
ω0

)
+ hpeak∆ωAC , επ ∝ 1

Ω2 . In the regime where Ω ≫ 2K
3hb

, επ ∝ 1
Ω
. Since

it is commonly reported that the mains electricity AC noise is a dominant error source
[20, 29], it is reasonable to assume that we are in the Ω ≪ 2K

3hb
regime in this work as well.

In the time domain, assuming that the fluctuation in the magnetic field strength is
sufficiently small, the transition frequency shift of 2 energy states can be estimated to be
linear, i.e.

∆ν (t) ∝ κBe (t) , (4.67)
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where ∆ν (t) denotes the transition frequency shift, κ is the linear magnetic field sensitivity
and Be is the magnetic field strength. This implies that the PSD of the transition frequency
shift, which is the transition-frequency noise to be proportional to κ2, i.e.

S (ω) = |∆ν̂ (ω)|2 ∝ κ2. (4.68)

With the π-pulse time being inversely proportional to the Rabi frequency, τπ ∝ 1/Ω, Eqs.
4.66 and 4.68, in the Ω ≪ 2K

3hb
regime, we have

επ ∝ κ2τ 2π , (4.69)
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Figure 4.26: (a) Diagrammatic representation of the functional forms of the frequency
noise power spectral density, S(ω), and the filter function of a π-pulse transition, F (ω),
used for error analysis in this work. (b) Plot of the post-selected SPAM error for each
prepared state from Fig. 4.25 against κ2τ 2π , which we identify as the relevant figure of
merit for errors induced by magnetic field fluctuations. κ is the magnetic field sensitivity
and τπ is the π-pulse time. An obvious positive correlation of εSPAM with κ2τ 2π is observed,
indicating agreement with Eq. 4.69. Eqs. 4.62 and 4.69 with an additional freely varying
parameter for the vertical intercept are used to fit the data.

The scaling of ϵSPAM with κ2τ 2π as shown in Fig. 4.26b shows agreement with this error
model, which supports the notion that magnetic field noise is a major source of error in
this work. The vertical intercept of ϵSPAM = 0.041±0.006 in Fig. 4.26b may indicate that
around 4% of the error comes from other sources. From Eq. 4.62, for small ϵπ, ϵSPAM ≈ ϵπ.
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By comparing ϵSPAM with the empirically measured ϵπ in Table 4.5, for ϵπ < 0.1, ϵSPAM

is larger than ϵπ by 1.5 ± 2% on average. We suspect that this 1.5% error may come
from calibration drifts and 614 nm light leakage. We speculate that the majority of the
rest of the remaining error to be from unclean laser polarization from the optical pumping
step, but the available data in this work does not allow accurate quantitative estimations
of the remaining errors. A more advanced state preparation protocol, by pumping out
the unwanted 6S1/2 states with 1762 nm transitions [6], has been shown to reduce optical
pumping errors to below 10−4, and can be applied in the future extension of this work to
mitigate optical pumping errors.

The sources of error discussed above make up most of the SPAM error in this work.
The rest of the error sources are difficult to be analyzed empirically due to the large uncer-
tainties of the two estimated sources of errors. Other known error sources are theoretically
computed in this work and they are indeed relatively small. The longest time a state stays
shelved in 5D5/2 level during the SPAM process in this work is around 120ms. This leads
to an estimated upper bound error of around e0.12/35 ≈ 0.3% due to spontaneous emission
from the 5D5/2 level. The transitions with transition frequencies closest to each other are

the transitions to the |5D5/2, F̃ = 4,mF̃ = 2⟩ and |5D5/2, F̃ = 3,mF̃ = 0⟩ states, which
are separated by around ∆ = 475 kHz. With 6S1/2 ↔ 5D5/2 transition Rabi frequen-
cies of around Ω = 10 kHz, the estimated error due to off-resonant transition is around

Ω2

Ω2+∆2 = 0.04%. The photon count threshold to determine bright or dark ion states is set
to 11 counts for the SPAM data set in this work. The average photon count of the data
points below this threshold, which we estimate to be the dark state average photon count,
is 0.651± 0.002. The average photon count of the data points above this threshold, which
we estimate to be the bright state average photon count, is 27.87±0.05. Assuming Poisson
distributions for dark and bright state photon counts, we have an upper bound of 0.025%
for bright/dark state discrimination error.
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Figure 4.27: Scaling of average SPAM fidelity with qudit dimension with optimal choices
of the encoded states and with poor choices. For the optimal choice, the |6S1/2, F =
2,mF = 2⟩ state and d − 1 states with the best π-pulse transition fidelities are chosen as
the computational states. For the poor choice, the d − 1 states with the worst π-pulse
transition fidelities are chosen instead. This illustrates that the scaling of the fidelity is
largely dependent on the fidelity of the additional π-pulse transition and not inherent to
the qudit dimension.

It should be noted that the SPAM error only scales with the encoded qudit dimension
if the additional encoded state has worse π-pulse transition error. Qudit SPAM error does
not increase inherently with increasing qudit dimensions, as long as the decay time of the
metastable states remains negligible compared to the SPAM operation time. Figure 4.27
illustrates this point, where you can have the average SPAM fidelity increase with qudit
dimensions by making poor choices for qudit encoding.

The finding that the magnetic field noise error is our major source of error is a good
sign, as we have not put in any effort in addressing magnetic field noise in this work. Thus,
they are expected to be large. The fact that we do not see any other large sources of error
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indicates that we did not run into any unprecedented large errors related to scaling up the
qudit dimensions, and therefore we are not seeing any evidence that inherently prohibits
qudit scaling. As alluded in Chapter 1, methods to mitigate magnetic field noise are known.
Magnetic field noise can be reduced passively via setting up magnetic shielding around the
ion trap, and using permanent magnets as the source of magnetic field. This method has
been shown to to be able to reduce magnetic field noise to a level of ≤ 2.7 × 10−8G [19],
which is estimated to contribute to an error level lower than light scattering error from
hyperfine Raman transitions [21]. It is known that the alternating current (AC) of the
mains electricity contribute a significant level of magnetic field fluctuation. This magnetic
field fluctuation can be compensated actively by generating an oscillating magnetic field at
the mains electricity AC frequency with the appropriate amplitude and phase that counters
the fluctuation. Electromagnets can be used to generate this magnetic field and significant
improvements of the coherent times from 70µs to 2500µs in a 40Ca+ qubit have been
demonstrated [20].

The measurement time of around 100ms is relatively long for typical trapped ion quan-
tum operations [5, 12, 16, 17, 18]. The main contributors to the measurement time are
the AWG trigger and fluorescence steps. The AWG trigger time is an artificial limitation
from the method we employed in this work for switching the 1762 nm laser EOM frequency
from the AWG (see Section 4.6.2). To speed up this process, in principle, it is possible
to program and generate a single arbitrary waveform which changes in frequency accord-
ing to the timings of the deshelving steps. This bypasses the 4ms AWG external signal
trigger step in this work. The fluorescence time in this work is set to be comparable to
the AWG signal trigger times to maximize collected photon counts of bright ions without
significant compromise to the overall measurement time. If the 1762 nm laser frequency
switching time is reduced, the fluorescence time can be reduced as well, as long as it does
not significantly impact the error from distinguishing bright and dark states. From Ref.
[6], it is demonstrated that a fluorescence collection time of 350 µs is possible with 137Ba+.
Thus, with these efforts, it should be possible to reduce the overall measurement time sig-
nificantly, to d× 350 µs, and the measurement time scales linearly as the qudit dimension.
With the measurement time reduced, the main contributor to the SPAM experimental
time could be the state preparation procedure, which is dominated by the repump time.
The repump time is long due to the dipole transition from the |5D5/2, F̃ = 4,mF̃ = 4⟩
state to the |6P3/2, F = 2⟩ state being forbidden. Thus, to access the 6P3/2 level from the

|5D5/2, F̃ = 4,mF̃ = 4⟩ state, it has to go to the |6P3/2, F = 3⟩ state, which is roughly
400MHz detuned, and therefore requiring a long transition time. The transition frequen-
cies of the rest of the encoded states to the |6P3/2, F = 2⟩ state are only detuned in the
order of 10MHz, and a repump time in the order of 100 µs is sufficient. To reduce the
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repump time to the order of 100 µs, an EOM can be set up to generate an additional fre-
quency that is resonant to the |5D5/2, F̃ = 4,mF̃ = 4⟩ ↔ |6P3/2, F = 3⟩ transition, and
further reduction in repump time is possible with more effort towards increasing 614 nm
laser intensity at the ion.

4.6.7 Concluding Remarks and Outlook

In this work, we have demonstrated high-level qudit encoding and SPAM of up to 13 levels
using a 137Ba+ ion with average raw and post-selected SPAM errors of 13.1 ± 0.3% and
8.3 ± 0.3% respectively. Calibration protocols of the laser parameters for SPAM that do
not scale with qudit dimensions are also demonstrated, which have important practical
implications for scaling up qudit dimensions. The major source of SPAM error in this
work is the magnetic field noise. However, this should not be a major roadblock for this
qudit protocol, as the methods to rectify magnetic field noise are known. Implementing
these methods in our setup will be one of the main efforts in the future advancement of
this qudit work.

We have thus far demonstrated SPAM with 137Ba+ in this work. To build a functioning
quantum computer, the ability to perform single qudit gates and entangling gates are
required. The encoding scheme and the state manipulation presented in this work is
similar to the study in Ref. [12] using 40Ca+. Universal qudit quantum computing has been
demonstrated in that work. Therefore, it is reasonable to suggest that the implementation
of single qudit and entangling gates for 137Ba+ can be similar to 40Ca+ and straightforward.
Since any two states in the 6S1/2 and 5D5/2 levels of a Ba+ ion can be connected by a
sequence of two-level transitions, universal single qudit gates for states in the 137Ba+ 5D5/2

can be straightforwardly implemented with precise phase and timing control of the 1762 nm
laser [72, 73, 74]. Entangling gates can also be implemented directly with 1762 nm lasers,
provided that the state coherence time is long enough. For faster entangling gates, Raman
transitions between the 6S1/2 hyperfine states using high-power 532 nm lasers can be used.
These efforts towards actualizing high-dimensional universal qudit quantum computing
with 137Ba+ are our main objectives for the continuity of this work.

Another milestone for the continuity of this work, which I predict to be within reach
in the near future, is extending 137Ba+ qudit encoding to up to 25-levels. This can be
done by performing multiple 1762 nm π-pulse transitions for state preparation, but the
fidelity will be limited due to large error from magnetic field noise. An alternative method
is to be able to prepare the ion in some 6S1/2 state other than |6S1/2, F̃ = 2,mF̃ = 2⟩
via other means. One method is by driving hyperfine transitions in the 6S1/2 level using
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a microwave or via laser Raman transitions. Another method is to perpetually pump the
undesired 6S1/2 states to the 6P3/2 level and let it spontaneously decay until it reaches
the desired prepared state in the 6S1/2 state with 1762 nm, 614 nm, and 650 nm lasers. As
long as any 6S1/2 state can be prepared with high fidelity, we only need a single 1762 nm
transition to prepare it in any 5D5/2 states, which would let us achieve 25-level SPAM with
similar average fidelity as we have now, even without reducing magnetic field noise.
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Chapter 5

Cost Effective Beam Stabilizer

In this chapter, I discuss a solution that we have developed in the laboratory for solving
the problem point laser beam pointing drifts. It is somewhat disconnected from the main
trapped ion work, but beam pointing drifts are a common problem in any laboratory
using free-space laser beams and may be an of interest for any readers encountering this
problem. This invention allows the user to solve the problem of slow laser beam drifts
using cost-effective and commercially accessible components.
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5.1 Concept and Idea

(a) (b)

Figure 5.1: (a) Schematic of the cost-effective stabilizer. Two mirrors on mirror mounts,
each with a horizontal and a vertical actuators, provide full control of the laser beam
pointing. Each mirror mount is motorized with hobby-level motors for automation. Two
beam samplers pick off a small percentage of the laser power at two different points along
the laser beam path. The picked off beams are directed into their respective modified
webcams. The modified webcams detect the coordinates of the beams and provide feedback
to the mirror mounts for beam stabilization. (b) A photograph of the setup used to stabilize
the beam pointing from a laser head.

The beam pointing of a laser beam can be fully defined by being directed by 2 mirror
mounts, each with a horizontal and a vertical actuators (see Figure 5.1). The 4 actuators
provide the 4 degrees of freedom required to fully define a straight line in a 3-dimensional
space, thus giving full control of the laser beam pointing. To automate the process of
beam pointing control, the actuators on the mirror mounts have to be motorized. We
have invented a cost-effective method to achieve this. We custom-designed plastic parts
that enables the user to attach hobby-level stepper motors, which are cheap and easily
commercially accessible, to manual mirror mounts. This method allows the user to motorize
any typical manual mirror mounts (from Thorlabs, Newport, etc.) by only slightly changing
the design of the plastic parts. The stepper motors are driven and digitally controlled by
a Raspberry Pi.
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(a)

(b) (c)

Figure 5.2: Coupling of stepper motors to mirror mounts using custom designed parts.
(a) Plastic parts for motor-mount coupling. (b) A Newfocus mirror mount coupled with
stepper motors. (c) A Thorlabs mirror mount coupled with stepper motors.

To be able to do active beam stabilization, feedback to the stepper motors are required.
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To achieve this, small portions of power of the laser beams are picked-off at 2 different
points along the laser beam path with beam samplers. Each picked-off beam are sent to a
modified webcam. The webcams are modified by removing the their lenses and attaching
a neutral density filter to filter off background light. The 2 webcams provide the necessary
coordinates at 2 different points along the beam path required to fully define a straight
line. By using the coordinates of the laser beam on 2 different webcams as feedback for
the stepper motors, active stabilization of the laser beam is possible.

We have written the program to interface with the webcams and stepper motors, which
we consider to be our invention. Active beam stabilization is achieved using this program
and demonstrated in Section 5.2. With this method, any commercially available USB
webcams can be used, which lends to cost-effectiveness and ease of access.

Figure 5.3: Graphical user interface (GUI) of our custom written program. It runs on
Windows and is Python-based.

5.2 Stabilization Demonstration

We have demonstrated the performance of our cost-effective beam stabilizer in a fiber
coupler setup. In a fiber coupler setup, a laser beam is sent through a collimator, which
focuses the laser light into a optical fiber tip. The laser power output from the optical
fiber is largely dependent on the beam pointing of the laser in the fiber coupler setup.
This is because the fiber tip is small (in the order of microns) and slight displacements or
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angular deviations of the laser beam would cause the laser to miss the tip. Therefore, by
monitoring the laser power at the optical fiber output, the beam pointing stability can be
assessed.

We set up an artificial source of beam destabilization by moving the beam randomly
using a motorized mirror mount before the beam stabilizer setup. With the artificial
destabilization, the power output from the fiber is monitored with the beam stabilizer
turned on and off. As seen in Figure 5.4, the power output has greatly different trends
with and without the beam stabilizer turned on. With the beam stabilization turned on,
the output power is stable at around 11 µW. Without the beam stabilization, the output
power varies wildly.
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Figure 5.4: Power output from an optical fiber in a fiber coupler setup. An artificial source
of beam drift is introduced into the system. With the active beam stabilization turned
on, the output power is stable at around 11 µW. With the beam stabilizer turned off, the
power output varies wildly.
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5.3 Program Overview

The basic setup of our cost-effective beam stablizer (controlling only 1 mirror mount)
consists of 1 Windows machine, a Raspberry Pi, a webcam and 2 stepper motors. The
Raspberry Pi has to be on the same network as the Windows machine, so that they can
talk to each other. This can be done either via WiFi or ethernet connections. A webcam
and 2 stepper motors are connected to the Raspberry Pi. The webcam is connected via
USB and the stepper motors are connected through the Pi’s GPIO pins.

Figure 5.5: Schematic of the basic setup of beam stabilizer setup. The hardware consists
of a Windows machine, a Raspberry Pi, 2 stepper motors and 1 camera.

There are 2 running scripts for our cost-effective beam stabilizer - one running on a
Windows machine and another one running on a Raspberry Pi. The script on the Pi collects
images from the webcam and sends the images to the Windows machine. The Pi script
also controls the stepper motor voltages to move the motors. The script on the Windows
machine runs the GUI of the program. The Windows script runs the computations to
calculate the parameters of a 2D Gaussian function when it is used to fit the images
received from the Pi. This gives the coordinates of the laser beam on the webcam. The
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Windows script also decides the motors to move, at which directions, at what speed, and
sends the commands to the Pi.

5.4 Program Flow - Initialization

Figure 5.6: Program flow of when the beam stabilization software is first started. See text
for detailed descriptions.

The script on the Windows machine is run first. It launches a GUI using Python’s tk-
inter module. The script starts the main loop of processing the acquired images. However,
the loop does not do anything until the Windows machine’s connection to a Pi running the
beam-stabilizer script is established. On the GUI, there are entries for the “Video port”,
“Communication port”, “Camera” and “Set Pi Address”. The video port is the port that is
used for sending the webcam images from the Pi to the Windows machine. The video port
is chosen to be 8485 by default. The communication port is the port used for sending and
receiving the variables being used by both machines. This port is chosen to be 12345 by
default. The “Camera” entry chooses the webcam to be used. Since we only use 1 camera
per Pi, the “Camera” entry is usually set to 0. The “Set Pi Address” entry requires the
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IP address of the Raspberry Pi, as the name suggests. Once these 4 entries are set, the
“Connect” button is pressed.

Once the “Connect” button is pressed, the Windows machine sends the command
to run the beam-stabilizer script on the Pi specified by the address in the entry “Set
Pi Address” via SSH. At the same time, the “Array socket thread (Windows)” and the
“Image socket thread (Windows)” are run in parallel with the image-processing main loop
on the Windows machine. The “Array socket thread (Windows)” is a thread that runs
continuously to exchange variables that are shared by both the Windows machine and
the Pi using Python’s socket module. This is the communication thread that uses the
port 12345. The “Image socket thread (Windows)” is a thread that runs continuously
to receive camera images from the Pi. This is the communication thread that uses the
port 8485. On the Windows machine, both “Array socket thread (Windows)” and “Image
socket thread (Windows)” act as clients and seek to establish connections with the socket
servers at the Pi. Once the connections to the servers are established, the threads run their
continuous loops and functions accordingly. If a long enough time has passed (hard-coded
to be 10 seconds) after the “Array socket thread (Windows)” is started without being
able to establish a connection to the Pi server, both “Array socket thread (Windows)”
and “Image socket thread (Windows)” terminate and the script goes back to the state
when it is first started, where only the main loop for processing images is running. While
trying to connect to the Pi or when the connection has already established, the user has
the choice to terminate the threads, “Array socket thread (Windows)” and “Image socket
thread (Windows)”, manually from the GUI by pressing the “Stop Connection” button as
well, which will return the script the the initial state when it is first started.

On the Pi side, the Pi script runs 3 parallel threads continuously when it is started. The
“Pi main thread” controls the stepper motor voltages. The “Array socket thread (Pi)” is
the server sends and receives an array of variables shared by both the Pi and the Windows
machine. The “Image socket thread” is the server that captures images from the webcam
using Python’s OpenCV module and sends the images to the Windows machine.

When the connection is established, the Pi continuously sends the images acquired
from the camera to the Windows machine. The Windows machine receives the images and
perform 2D elliptical or circular (select-able by the user on the GUI) Gaussian function
fits on the images and display the images and the fit parameters on the GUI. The script
also draws an angled crosshair on top of the image that marks the maximum intensity
point from the fit parameters. The angle of the crosshair is dependent on the fitted angle
parameter of a 2D elliptical Gaussian fit, marking the major and minor axes of the ellipse.
It displays a normal straight crosshair if a circular Gaussian fit is chosen.
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5.5 Image Processing

For each image received from the Pi by the Windows machine, a 2D Gaussian function fit
is performed to find the fit parameters. The least squares function from Python’s scipy
module is used to do the function fit. Since the least squares function utilizes a non-linear
regression method, initial guess of the function parameters are required. In addition, the
initial guess cannot be too far off from the global optimal fit, as the parameters may
converge to some local optimum that is not the true global optimal parameters due to the
nature of non-linear regression.

Figure 5.7: Program flow for processing image obtained from the camera. See text for
detailed descriptions.

For the first image received from the Pi, the initial guess of the fit parameters are
grossly estimated. For the initial guess of the amplitude parameter, it is set to 100. This

116



is because the maximum count of a single pixel on a typical camera using integer format is
255, 100 is approximately half of that. For the beam width, which is the σ parameter, the
initial guess is set to 50. This is because the typical pixel size of a webcam is approximately
6 micron, 50 pixels correspond to roughly 0.3mm, which is close enough to a typical laser
beam radius. The beam angle initial guess is set to 0. The initial guess of the intensity
offset of the Gaussian function is set to 0 as the background counts are expected to be
low since the webcam is covered by a neutral-density filter. For the initial guesses of the
maximum x and y positions of the Gaussian function, they are taken from the median of
the indices of the pixels with the highest count in the image. By taking the median of the
indices, the guess of the beam position will still be accurate even when the laser intensity
is saturated on the camera.

In the least squares function, the maximum number of function evaluation is set to
a low number of 3. This is because we want this process to be fast for a smooth frame
rate on the GUI and fast response time of the beam-stabilizer. The downside of having
a low maximum number of function evaluation is that the non-linear regression may end
prematurely before the parameters converge to to accurate values. This is circumvented
by using the fitted parameters from the previous image for the subsequent image. For a
laser that is stable on the camera, all the images are nearly identical. Thus, by iterating
the process of using the fitted parameters of the previous image for the subsequent image,
the initial guess and resultant fitted parameters still converge to the accurate values over
time.

There is a problem that could arise from the iteration of using the resultant fit pa-
rameters from the previous image for the initial guess of the next image, which is when
the resultant fit parameters from the previous image are inaccurate initial guess of the
parameters for the next image. This could happen when the laser is not initially turned
on in the previous image and turned on in the subsequent image. Another case this could
be happening is when the laser beam is being moved quickly. Then, the initial guess of
the parameters are not accurate, the problem of converging to non-globally optimal values
arises again. In these cases, we want to revert the initial guess of the parameters to the
gross estimations as described by paragraph 2 of this section. To solve this problem, we
utilize the “xtol” option of the least squares function. The “xtol” parameter quantifies
the tolerance for termination by the change of the fit parameters. If the magnitude of
the change of the fit parameters are smaller than the threshold defined by “xtol” in the
non-linear regression iterations, the non-linear regression terminates as a “successful fit”.
The “xtol” value is initially set to 0.1. If a non-linear regression fit terminates due to the
fit parameters changing by magnitudes smaller than that defined by “xtol” (as opposed to
reaching the maximum number of function evaluation), the “xtol” value is reduced by a
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factor of 10. If non-linear regressions that terminate due to reaching the allowed maximum
number of function evaluation 100 times consecutively, “xtol” in increased by a factor of
10, to a maximum value of 0.1. If non-linear regressions that terminate due to reaching the
allowed maximum number of function evaluation 100 times consecutively while the “xtol”
value is 0.1, the initial guess of the parameters will be reverted to the gross estimations
as described by paragraph 2 in this section. These steps prevent the parameter fit to be
stuck in a non-global optimum when there are large changes in the images.

With these techniques in place, we find that the fit parameters are accurate every time
we send a laser to the camera when the setup is tested and being used in our lab.

5.6 Motor Movement

Each stepper motor that we use has 4 voltage pins that power the electromagnets in
the motor. The 4 pins are turned on in a sequence of patterns to move the rotor. The
GPIO pins of the Raspberry Pi is used to supply the voltages to the stepper motors. The
rotational speed of the rotor is controlled by the time delay between the patterns in the
pin voltage sequence. By default, the time delay is set to 1ms for fast movement.

For each stepper motor, there are 2 variables shared by the Windows and Pi machines
(through the “Array socket thread”) that dictate the motor movement. They are both
boolean variables, the first variable dictates whether to move or not to move the motor
clockwise - it moves when the variable is set to “True”, does not move when it is set to
“False”. Likewise, the second variable dictates whether to move the motor anticlockwise.
When both parameters are “True” or both are “False”, the motor does not move. The
motor movement control in the script is done this way so that it is responsive to changes
by the user. Since the “Array socket thread” runs independently in parallel with other
functions, the motor movement variables are updated in the speed of the loop. Thus,
the motors can be moved or stopped quickly by setting the motor movement variables to
“True” or “False”.

5.6.1 Manual Mode

By default, the script is set to “Manual Mode”, where the motor movements are not
controlled by any feedback, and are controlled by manual entries from the user. There
are 2 ways to move a motor manually from the GUI. The first is by setting an absolute
displacement to move the motor to. The script on the Windows machine reads the current
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Figure 5.8: Program flow for moving the motors using the software in “Manual Mode”.
See text for details.

positions of the motor from a text file when it is first started. If it is the first time
the program is being used and there is no text file for the motor positions, the program
will default the motor positions to 0 and create the text file. When the entry for the
absolute displacement is entered by the user and the “Absolute” button is pressed, 2 new
threads are started in the Windows script. A “Manual motor thread” starts the motor
movement and waits for the dedicated number of steps to finish. The “Update coordinates
thread (Windows)” updates the positions of the motors on the GUI in parallel with other
processes. In the “Manual motor thread”, the number of steps to move the motor by and
in which direction based on its current position. Then, the corresponding motor movement
variable is set to “True” (if the resultant number of steps to move by is non-zero), and the
number of steps to move by is shared as a variable with the Pi machine as well through the
“Array socket thread”. 2 parallel threads are then started on the Pi machine - the “Motor
movement thread” and the “Update coordinates thread (Pi)”. In the “Motor movement
thread”, the script cycles the PI GPIO pin voltage patterns to move the motor. The motor
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then moves with the default delay time between voltage pin patterns of 1ms. At the same
time, the motor positions are tracked and updated in “Update coordinates thread (Pi)”
while the motors are moving, and the values are shared with the Windows machine through
the “Array socket thread (Windows)”. The “Update coordinates thread (Windows)” on the
Windows machine then updates the GUI with the new values. After the number of steps to
move has reached, the Pi machine sets the corresponding motor movement boolean variable
from “True” back to “False”, and the motor stops moving. Then, the specific threads for
moving the motor are terminated - “Manual motor thread”, “Motor movement thread”,
“Update coordinates thread (Windows)” and “Update coordinates thread (Pi)”.

The second way for manual movement is to move the motor relative to its current
position. The user sets the relative displacement of the motor in the GUI and presses
either the “Left” or “Right” button (“Up” or “Down” button for the beam vertical steering
motor). The “Left” or “Right” (“Up” or “Down”) button dictates whether the motor moves
clockwise or anticlockwise, and the corresponding motor movement boolean variable is set
to “True”. The relative displacement is also shared with the Pi as a variable to dictate the
number of stepper motor steps. The rest of the procedure on how the motor moves is the
same as the first case (move by absolute displacement).

If the user wishes to stop the motors before the motors reach the set number of steps
to move, it can be done by pressing the “Stop Motor X” button on the GUI, where “X”
is either “1” or “2” depending on the motor to be stopped. If the user wants to stop both
motors, the “Stop Motors” button does that. By pressing the “Stop Motor X” button, the
Windows machine sets both the motor movement boolean variables of the corresponding
motor to False, which terminates the motor movement loop on the Pi machine.

5.6.2 Automatic Mode

On the GUI, the user can switch the program from “Manual Mode” to “Automatic Mode”.
“Automatic Mode” is the mode that is used for active beam stabilization. In this mode,
the motors move such that the maximum x and y positions of the Gaussian function fit on
the image matches the set point that is set by the user.

First, the user has to place the set point of the coordinates to move the beam to (in
units of camera pixels). This is done on the GUI entries in the “Move to Setpoint” frame.
Once the “Place” button is pressed, a parallel thread is started on the Windows machine
that assigns the x and y coordinates entries on the GUI to some variables in the Windows
machine. Then, a red crosshair is created as an overlay on top of the camera image that
marks the setpoint. Once the setpoint is created, the motors will start moving to match the
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Figure 5.9: Program flow of the software in “Automatic Mode”, which is the mode used
for active beam stabilization. The “Array socket threads” sharing the variables are not
shown. See text for further details.

beam coordinates from the image Gaussian fit to the setpoint coordinates. If the setpoint
crosshair is not created yet while in “Automatic Mode”, the motors do not move.

When the program is switched to “Automatic Mode”, 3 threads on the Windows ma-
chine are started that runs in parallel with the main loop, “Array socket thread (Windows)”
and “Image socket thread (Windows)”. The first thread is the “Update coordinates thread
(Windows)”, which is as described in Section 5.6.1. The second thread is the “Automatic
motor thread”, which sets the motor movement boolean variables to True or False depend-
ing on certain conditions from the feedback of the cameras. The third thread is the “PI
control thread”, which calculates the speeds of the motors using principles of a PI control
loop.
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In the “Automatic motor thread”, an infinite loop runs which checks the difference
between the setpoint coordinate and the beam position from the Gaussian fit constantly.
If the difference between the setpoint and the actual beam position along an axis (x or y)
is less than a certain threshold set by the user on the GUI (default value is 0.5 pixel), no
motors will be set to move. This is to prevent artificial jittering of the beam due to random
fluctuations of the parameters from the Gaussian fit. Other than the setpoint difference
threshold, if the motor speed is too slow (which is calculated in the “PI control thread”,
elaborated later in this section), which is currently hard-coded to be 1 second delay time
between the sequence of pin patterns, then the motors are not set to move as well. This
is to prevent the system from becoming too unresponsive when there’s a long wait time
for the motor movement to finish. If the setpoint difference is larger than the threshold
and the motor speed is fast enough, then the corresponding motors are set to move. The
motor(s) to be moved and the direction(s) of the motor movement depends on the value(s)
of the motor velocity calculated in the “PI control thread”.

In the “PI control thread”, the motor velocities for the motors controlling the x (hor-
izontal) and y (vertical) alignment of the beam are calculated. The speeds of the motors
are slower the closer the beam is to the setpoint. This is done so that the ability of the
system to actively stabilize slow beam drifts is largely independent of the processing speed
of the Windows machine running the program. If a Windows machine is unable to run the
main image processing loop as described in Section 5.5 at a faster refresh rate than the
(constant) step rate of the stepper motors, the beam will keep overshooting the setpoint
and not stabilize. Thus, by making the stepper motor step rates (i.e. motor speeds) vari-
able with the difference between the beam position and the setpoint, Windows machines
with slower processing speeds can stabilize a laser beam as well. The exact formula to
compute the motor velocity is

vx = KP (xset − xactual,n) +KI

n∑
i=n−499

(xset − xactual,i) /500 (5.1)

where vx is the motor velocity, xset is the setpoint coordinate, xactual,i is the actual co-
ordinate of the ith image frame, the subscript n denotes the current index, KP is the
proportional coefficient and KI is the integral coefficient. The KP and KI coefficients can
be set by the user in the GUI, they are defaulted to be 10 and 1 respectively. The delay
time between the patterns in the pin voltage sequence is then calculated by tdelay = 1/vx,
which will be in units of seconds.

On the Pi side, when the program is switched to “Automatic Mode”, the “Update coor-
dinates thread (Pi)” is started. Then, whenever a motor movement boolean variable is set
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to True from the Windows machine, a new thread is started that moves the corresponding
motor in the corresponding direction by cycling the stepper motor pins through a sequence
of voltage patterns. Between pin voltage patterns, the time delay is variable and is set by
tdelay as discussed earlier. In the script, the time delay is implemented by cycling through a
while loop with a counter, with a 1ms wait time in each loop, until the counter multiplied
by 1ms equals or exceeds tdelay. It is done this way instead of just programming the script
to wait a total of tdelay to keep the stabilization process responsive. tdelay is continuously
updated from the “PI control thread” on the Windows machine. Thus, if the program is
scripted to wait a total of tdelay in one go, it may not be using the most up-to-date tdelay
as more images are processed while the motor is waiting.

Figure 5.10: Program loop for moving a stepper motor. The loop continues indefinitely as
long as its corresponding motor movement Boolean is set to True.

5.7 Additional Details

Additional details for the program that are technical to programming and not fundamental
to the active beam stabilization framework are presented in this section.
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5.7.1 Updating Windows-Pi Shared Variables

There are some intricacies involved in updating variable values that are shared by the
Windows and Pi machines. If one were to simply have the “Array socket threads” send the
shared variables back and forth between the 2 machines and just updating the variables on
individual machines without any timing synchronization, there could be cases where the
updated variables are overwritten by the old variables received from the opposing machine.
Thus, dummy variables are used to declare when the individual machine is receiving data
from the opposing machine and when the individual machine is updating shared variables.
When shared variables need to be updated, a new thread is run to do the process. The
script in the thread declares that it is updating shared variables and checks to see if the
machine is receiving data. If it is, the machine will wait until it has finished receiving
data before updating the shared variables. After updating the shared variables, the script
removes the declaration that it is updating shared variables and exits the thread. In the
“Array socket thread”, it checks if the machine is updating shared variables and waits for
the update to be finished before sending the data and receiving new data. This way, the
timing is synchronized and the system will not drop shared variable updates.
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Figure 5.11: (Left) The program sequence of the thread that is launched every time a
shared variable has to be updated. (Right) Program sequence for sending and receiving
data in “Array socket threads”. These sequences prevent unintended overwrite of the
shared variables. See text for details.

5.7.2 Emergency Stop for Motors

In “Automatic Mode”, the motor movements are dictated by the Windows machine, in-
cluding the command to stop motor movements by using the motor movement boolean
variables shared between the 2 machines. If the connection from the Pi to the Windows
machine is somehow disconnected while the booleans are set such that a motor is moving,
the motor will continue moving without end, which is detrimental for laser beam alignment.
To prevent this, in “Array socket thread (Pi)”, it checks if data is received successfully from
the Windows machine in every loop. If the Pi fails to receive data, the Pi script does not
enter the loops that move motors.
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5.8 Other Perks and Potential Developments

With our setup, aside from using it for active beam stabilization, a laser beam can be
steered remotely using the GUI as long as the user has access to the computer that is
controlling the stepper motors. This makes remote optical alignment possible, which is a
perk especially in the recent pandemic situation.

A potential development for the future could be automating beam alignment processes
using the setup. An example would be the fiber coupling process. By using the output
power from the optical fiber as feedback, it is possible to design an automated script that
couples the light into a fiber optimally.
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Appendix A

Two-level Transition Equilibrium
State

The optical Bloch equations for a two-level system can be constructed in a same manner
as Section 3.3, which leads to

d

dt
ρSS = i

Ω

2
(ρSP − ρPS) + γρPP

d

dt
ρPP = −iΩ

2
(ρSP − ρPS)− γSρPP

d

dt
ρSP = i

Ω

2
(ρSS − ρPP )− i∆ρSP − γ

2
ρSP .

(A.1)

Solving for ρPP in Eq. A.1 gives

ρPP =
Ω2

2Ω2 + 4∆2 + γ2
(A.2)

From Eq. A.2, it can be seen that ρPP increases monotonically with increasing laser
intensity, Ω, and saturates at a value of 1

2
. At large enough laser intensities, Ω dominates

over laser frequency detunings ∆, and the P state population stays stable at 1
2
.
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Appendix B

Writing Your Own Clebsch-Gordan
Coefficients Generator

Clebsch-Gordan coefficients generators are not commonly found in built-in computational
packages (not in MATLAB, nor Python). Although custom scripts shared by other users
can be found online, it is best to understand how they are generated so that you can verify
that they are performing correctly. In this section, I describe an approach I employed
to write a custom code for generating Clebsch-Gordan coefficients. I do not claim the
approach to be the most efficient computationally, but the calculations are derived in a
straightforward manner from first principle derivations of Clebsch-Gordan coefficients that
you may find in textbooks, which makes it relatively easily understandable.

A quantum angular momentum system consisting of two sub-systems with angular
momentum numbers of J1 and J2 can be expressed in the total angular momentum basis
|J,mJ⟩ or the uncoupled basis |J1,m1; J2,m2⟩, where J⃗ = J⃗1 + J⃗2 and mi, i ∈ {1, 2, J} are
the projection of the angular momenta components onto the z-axis. The Clebsch-Gordan
coefficients are defined by the overlap between each of the states between the two different
bases, CJmm1m2 = ⟨J1,m1; J2,m2|J,mJ⟩. Thus, to generate a complete set of Clebsch-
Gordan coefficients, we prepare a (2J1 + 1)(2J2 + 1) × (2J1 + 1)(2J2 + 1) matrix. Each
row corresponds to an uncoupled basis state |J1,m1; J2,m2⟩ and each row a coupled basis
state |J,mJ⟩. The intersection of each row and column corresponds to a Clebsch-Gordan
coefficient CJmm1m2 . Table B.1 illustrates an example of the matrix with J1 = 1 and
J2 = 1/2.
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J = 3
2

J = 1
2

mJ = 3
2

mJ = 1
2

mJ = −1
2

mJ = −3
2

mJ = 1
2

mJ = −1
2

m1 = 1
m2 =

1
2

m2 = −1
2

m1 = 0
m2 =

1
2

m2 = −1
2

m1 = −1
m2 =

1
2

m2 = −1
2

Table B.1: An example of Clebsch-Gordan coefficients search table, with the coefficients
to be computed.

The state with maximal projection along the z-axis are one and the same, giving

|J,mJ = J⟩ = |J1,m1 = J1; J2,m2 = J2⟩ (B.1)

The subsequent |J,mJ⟩ states expressed in the |J1,m1; J2,m2⟩ basis with the same J
number can be generated with the Ĵ− operators,

Ĵ−|J,mJ⟩ =
(
Ĵ1− + Ĵ2−

) ∑
m1,m2

CJmm1m2|J1,m1; J2,m2⟩

|J,mJ − 1⟩ =
∑

m1,m2

CJmm1m2

√
J1(J1 + 1)−m1(m1 − 1)√

J(J + 1)−mJ(mJ − 1)
|J1,m1 − 1; J2,m2⟩

+
∑

m1,m2

CJmm1m2

√
J2(J2 + 1)−m2(m2 − 1)√

J(J + 1)−mJ(mJ − 1)
|J1,m1; J2,m2 − 1⟩,

(B.2)

By expressing the states |J1,m1⟩ and |J2,m2⟩ in their vector forms, and the operators Ĵ1−,
Ĵ2−, Î1, and Î2 in their matrix form, where Î1 and Î2 are the identity operators for the first
and second angular momentum subspace, we can perform Eq. B.2 straightforwardly using
matrix multiplications. This lets us fill up the J = 3

2
columns in Table B.1 from left to

right.

To compute the Clebsch-Gordan coefficient for the next lower J number, we use the
property that the {|J,mJ⟩} basis states are orthogonal,

⟨J,mJ = J ′|J ′,mJ = J ′⟩ = 0 (B.3)
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for J ̸= J ′. Expressing the state |J ′,mJ⟩ as a superposition of the |m1,m2⟩ states (with
the coefficients not known yet), we have

|J ′,mJ = J ′⟩ =
∑

m1,m2

am1,m2|m1,m2⟩. (B.4)

From selection rule, only the coefficients with mJ = m1 +m2 will be non-zero. Thus,

|J ′,mJ = J ′⟩ =
∑

m1+m2=mJ

am1,m2 |m1,m2⟩. (B.5)

Now, we multiply both sides of Eq. B.5 by some unknown factor K, and let bm1,m2 =
Kam1,m2 . By setting the non-zero bm1,m2 coefficient with the largest m1 value to 1 (ignor-
ing normalization condition for now), and computing Eq. B.3 for all J states with the
Clebsch-Gordan coefficients solved, we obtain the necessary number of independent linear
equations to solve for all the bm1,m2 unknowns. Linear equation solvers can then be used
to solve for bm1,m2 , which I use MATLAB’s linsolve() function. K can then be computed
by K =

∑
m1,m2

b2m1,m2
, and finally am1,m2 = bm1,m2/K. The rationale for this approach

is because the condition for the states being normalized results in a non-linear equation
1 =

∑
m1,m2

a2m1,m2
. By ignoring the normalization first, we can solve this using a linear

equation solver. This method also constrains the coefficient with the largest m1 value to be
positive, leading to coefficients that may have a global sign flip compared to other lookup
tables you find elsewhere. However, the relative signs of the coefficients are still the same
and thus the physical significance is still the same.

With the next lower J state known, we can then generate the Clebsch-Gordan coeffi-
cients for lower mJ states with Eq. B.2 again and fill the J = 1

2
column in Table B.1 and

so on. A script written in MATLAB can be found in the repository [62].
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Appendix C

Script For Detecting the Number of
Bright Ions in a 2D Image

We find that Ba+ ion fluorescence rates are sensitive to laser intensities and frequencies,
without saturation laser powers where the fluorescing P state population is stable. Thus,
the fluorescence rate per ion may easily drift with drifting laser parameters and using
detected photon counts may not be a reliable way of detecting the number of bright Ba+

ions in a linear chain. We developed an algorithm to determine the number of bright ions
from a 2D image of the ion captured on a CCD camera. The procedure is as follows:

1. Import the ion image as a 2D array of integers corresponding to the image brightness
on each pixel on the image.

2. Find the pixel with the highest brightness count.

3. Extract a 1D array of integers from the 2D image, at the pixel with the highest
brightness count, along the ion chain axis.

4. From this 1D array, for each pixel, compute the difference in brightness count with
the neighboring pixel after it, and then also compute the brightness difference with
the pixel before it. If both values are larger than or equal to zero, it is identified as
a local peak.

5. Compute the brightness threshold to determine if a local peak is “truly bright” from
an ion fluorescence using the formula Cth = C50 +M (C95 − C50), where Cth is the
threshold count, M is a user-defined multiplier factor, typically set to some value
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larger than 1, C50 and C95 are the 50th and 95th percentiles of the brightness counts
respectively of the whole 2D image.

6. Local peaks higher than Cth are picked out from the 1D array, and the pixel positions
of these local peaks are read out. If there are two pixels that are neighboring among
these local peaks that are higher than the threshold, they are combined together and
counted as one peak.

7. The number of remaining local peaks higher than Cth is then treated as the number
of bright ions.

The formula in Step 5,
Cth = C50 +M (C95 − C50) (C.1)

is a useful equation for picking out outliers from a quantity with a centralized random
distribution (normal distribution, Poisson distribution, etc.), it is the CCD camera back-
ground count in this case. The difference C95 −C50 computes the width of the probability
distribution, assuming that less than 5% of the data are outliers. By multiplying (C95−C50)
with a multiplierM > 1 and adding it to the median, we would reach a value where natural
manifestations will be extremely rare, and they are thus identified as outliers. The choice
of the upper percentile is not unique, and is only chosen as the 95th percentile for this
work. If one expects more than 5% of the pixels in the image to not be background counts,
a lower percentile can be chosen. The choice of the M multiplier is also typically robust
to a wide range of values, as long as the outlier values are much higher than the normal
(background) values. On top of having the advantage of being insensitive to fluorescence
rate drifts, this algorithm can also detect other dim ions, such as 134Ba+ or 136Ba+ when the
laser frequencies are set to fluoresce 138Ba+. Figs. C.1 shows an example of the algorithm
at work, and three bright ions are identified by the algorithm.
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Figure C.1: (a) A CCD image of three bright ions. The red lines intersect at the point
with the highest brightness count as described in Step 2 in the algorithm. (b) A 1D array
of brightness count extracted from the horizontal red line in (a), as described in Step 3 in
the algorithm. The local peaks are highlighted with circle markers, which are computed in
Step 4. The threshold value as shown as dashed line is calculated withM = 5, as described
in Step 5.

An example of the algorithm coded in the Python language is shown below:

import numpy as np
def GetNumberOfIons(A,multiplier):
[max_y_ind,max_x_ind]=np.where(A == np.amax(A))
B = A[max_y_ind,:]
B = B[0]
[peak_positions,local_peaks] = find_peaks(B)
threshold = np.percentile(A,50) + multiplier*(np.percentile(A,95)-np.percentile(A,50))
peak_positions_th = peak_positions[local_peaks > threshold]
peak_positions_th = peak_positions_th.astype(float)
if len(peak_positions_th) > 1:

peak_positions_th_diff = peak_positions_th[1:]-peak_positions_th[0:-1]
peak_positions_th_diff_end0 = np.append(peak_positions_th_diff,0)
peak_positions_th_diff_start0 = np.append(0,peak_positions_th_diff)
peak_positions_th[peak_positions_th_diff_end0 == 1] = peak_positions_th[peak_positions_th_diff_end0 == 1] + 0.5
index = np.asarray(range(0,len(peak_positions_th)))
peak_positions_th = np.delete(peak_positions_th,index[peak_positions_th_diff_start0 == 1])
number_of_ions = len(peak_positions_th)
return number_of_ions,peak_positions_th

def find_peaks(in_array):
in_array = in_array.astype(float)
a = in_array[1:-1] - in_array[0:-2]
b = in_array[1:-1] - in_array[2:]
index = (a>=0) & (b>=0)
index = np.append(np.insert(index,False,0),False)
local_peaks = in_array[index]
c = np.asarray(range(0,len(in_array)))
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peak_positions = c[index]
return [peak_positions,local_peaks]
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Appendix D

Estimation of Four-rod RF Voltage
Amplitude

The radial secular motional frequency of an ion in a Paul trap is related to the RF voltage
and amplitude and RF voltage frequency by [49]

ωs ∝
VRF

ΩRF

(D.1)

In my earlier work, the a barium ion secular motional frequency in our four-rod trap with
VRF = 200V and ΩRF = 20MHz is determined to be ωs = 1.18MHz with simulations using
the SIMION software. We have measured our secular frequency to be about ωs = 375 kHz
and we know the RF voltage frequency is ΩRF = 20.772MHz. Using the relation in Eq.
D.1, we get VRF ≈ 66V for the experiments in Chapter 3. For the experiments in Chapter
4, ωs = 1.3 kHz, which gives VRF ≈ 230V.

143



Appendix E

133Ba+ Loading Attempts

We had plans to trap 133Ba+ in our work originally. Another salt target that is not described
in the main text was also installed in the vacuum chamber as shown in Fig. E.1. The low-
volume target was made from a solution of hydrochloric acid (HCl), with approximately
0.4mCi of 133Ba. Because HCl corrodes aluminum, we fit a tantalum foil over the tube’s
end. To apply the solution to the target, we dropped 10 µL in the target cup (which is
sitting on a 250 ◦C hotplate), let it evaporate, leaving 200 ng of BaCl2 salt on the surface,
and repeated this process until we had ∼ 10 µg on the substrate. With such a low volume,
the deposited salt is imperceptible on the substrate tantalum foil (see Fig. E.1b).
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(a) (b)

Figure E.1: (a) An illustration of the vacuum chamber with a 133Ba enriched salt target,
labelled as “Low-volume target”, that was not shown in the main text. (b) A photograph
of the low-volume target.

E.1 Loading Attempts With the Low-volume Target

We attempted to trap barium ions using the two-step photoionization method at various
fluences from 0.6 to 3.8 J/cm2. For a fresh ablation spot, we trap 138Ba+ (which has an
abundance of 53.3% on the low-volume target) less than 10 times before being unable to
trap, with a loading rate of ∼ 0.05 ions/pulse (much lower than from our high-volume
target).

To investigate the reliability of an ablation spot on this target, we checked for neutral
barium fluorescence rate as we ablate the target. The ablation laser is swept along a line
on the low-volume target, ablating along that line. For each ablation pulse, the neutral
barium fluorescence from the 554 nm is collected on a PMT with an integration time of
100ms. The pulse fluence used is 0.59 J cm−2.

On the first sweep of the ablation laser along the line on the target, the peak fluorescence
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Figure E.2: Neutral barium fluorescence from the low-volume target, sweeping the ablation
laser along a line on the target. (a) Initial full-line sweeps at ablation pulse fluence of
0.59 J cm−2. (b) Half-line sweeps at ablation pulse fluence of 0.98 J cm−2. (c) Half-line
sweeps at ablation pulse fluence of 1.44 J cm−2. (d) A full-line sweep at ablation pulse
fluence of 0.59 J cm−2 after the half-line sweeps in (c) and (d).
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count detected is approximately 80. On repeat sweep of the ablation laser along the same
line, the fluorescence counts decrease rapidly. By the sixth sweep, the peak fluorescence
count has dropped to below 20. In an effort to try to condition the target, similar to the
procedure done for the high-volume target, the pulse fluence is increased to 0.98 J cm−2

and the ablation laser is swept for half of the line. The fluorescence counts are high for the
initial scan, at approximately 200 peak fluorescence count, but quickly dropped to below
20 counts on the fourth sweep. This is contrary to the high-volume target, where the
neutral barium fluorescence counts would gradually increase and stabilize at a consistent
count during the conditioning process. The pulse fluence is further increased to 1.44 J cm−2

for the half-line sweep. The peak fluorescence count is approximately 70 for the first scan,
but quickly drops to below 30 on the second scan. Going back to the lower pulse fluence
at 0.59 J cm−2 and performing the full-line scan, we observe that the half-line that went
through ablations at high pulse fluence no longer produce any neutral barium fluorescence.
In contrast to the high-volume target, instead of conditioning a spot, it shows signs of a
spot being depleted of the source material when high pulse fluence is used to ablate it.
Attempts to trap 138Ba+ (which has an abundance of 53.3% on the low-volume target)
using the two-step photoionization method follow the same trend, where trapping quickly
becomes impossible in the order of tens of pulses, indicating that the source material is
depleted.
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Figure E.3: Trapping probability of 138Ba+ from the low-volume target using the direct-ion
loading method. The horizontal axis denotes the pulse number that is sent to the same
spot on the target. The vertical axis shows the trapping success rate out of a sample size
of 100. The ablation fluence used is 3.84 J cm−2.

To test the low-volume target further, we employ the trapping procedure used by Refer-
ence [18]. The ablation laser fluence is increased to 3.84 J/cm2 to directly generate barium
ions. Using the direct ion-loading method, the ion trapping success rate of 138Ba+ is ini-
tially in the order of 10% initially (see Figure E.3). However, it quickly declines to the order
of 1% after a few thousand pulses. After about 10,000 pulses, the trapping probability is
below 1%. This indicates that a target spot is being depleted quickly with this trapping
procedure as well. Furthermore, we are only able to trap single ions and not ion chains
as described in [18]. Therefore, with this low-volume target and both loading methods,
it is impossible to establish an ion chain. Given the poor trapping performance, low spot
lifetimes, and overall expected target lifetime, this target is impractical for loading ions for
quantum computing experiments.
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E.2 Observation of other excited-state neutral species

By ablating the barium targets at high pulse fluences, on the order of 1 J/cm2, we also
note the presence of some fluorescence after ablation that is not driven by the 554 nm nor
the 493 nm lasers, indicating that they are not barium atoms/ions. In these experiments,
ablation pulses of pulse fluence 3.84 J/cm2 are sent to ablate the low-volume target. An
imaging system collects light from the trap center. The collected light is detected using a
PMT. The PMT is set to detect photons for a time window of 1 µs, starting at different
times relative to the arrival time of the ablation pulse to do time-resolved light detection.
Different spectral filters are installed in the imaging system to investigate the origin of
the detected light. The trap voltages are turned off to allow both charged and uncharged
particles to go through the trap.
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Figure E.4: Time-resolved light detection after ablating the low-volume target with a
pulse fluence of 3.84 J/cm2. (a) Comparison of signals between having 1 and 2 532 nm
notch filter in the imaging system. No qualitatively significant difference is found. (b)
Comparison of signals between having and not having a 550 nm longpass filter in the
imaging system as well as with and without the 554 nm laser turned on. The signal is
partially attenuated with the 550 nm longpass filter. No practical difference is observed
with or without the 554 nm laser turned on. (c) Comparison of signals with and without
the barium ion fluorescence lasers turned on. A 488 nm bandpass filter is installed in the
imaging system. No qualitatively significant difference is found. (d) Comparision of signals
with and without the trap voltages turned on. A 488 nm bandpass filter is installed in the
imaging system. No qualitatively significant difference is found.
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Figure E.5: Time-resolved light detection after ablating the high-volume target with a
pulse fluence of 3.84 J/cm2. Comparison of signals between having and not having a 550 nm
longpass filter in the imaging system as well as with and without the 554 nm laser turned
on. The signal is partially attenuated with the 550 nm longpass filter. With the 554 nm
laser turned on, the early time signal is attenuated while the late time signal is enhanced.

We first observe that there is a photon count peak right after the ablation laser reaches
the target, even when all the CW lasers are turned off. We verify that this peak is not
532 nm light by observing that the photon count does not change significantly whether
there are 1 or 2 532 nm notch filters (Thorlabs NF533-17) in the imaging system. We also
confirm that it is not residual 1064 nm light from the ablation laser by observing that the
peak disappears when a 1000 nm longpass filter (Thorlabs FEL1000) is introduced into the
imaging system. Our conjecture is that this could be due some up- or down-conversion of
the high energy 532 nm pulse, shifting it from the 532 nm frequency and thus getting pass
the 532 nm notch filter.

An interesting observation is that there are photon counts detected that last several
tens of microseconds after the arrival of the ablation pulse when no CW lasers are turned
on. All the experiments discussed from here on in this section are done with 532 nm notch
filter to filter off light from the ablation laser. First, we observe that the signal is partially
reduced upon the addition of a 550 nm longpass filter (Thorlabs FEL0550). To see if the
fluorescence is from barium ions, the experiments are repeated with and without the 493 nm
and 650 nm turned on. The imaging system is installed with a 488 nm narrow bandpass
filter (Brightline FF01-488/10-25), which allows wavelengths in the range from 481 nm to
495 nm to pass through. It is observed that the signals are not qualitatively different with
or without the lasers turned on, indicating that they are likely not barium ions. To further
verify if they are ions, the experiments are repeated with and without the trap voltages
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being turned on. The same 488 nm narrow bandpass filter is installed and the CW lasers
are turned off. No significant qualitative difference in the signals observed is found, whether
the trap voltages are turned on or not. This indicates that the fluorescing particles are
uncharged. We thus conclude that they are uncharged particles in some excited states,
releasing photons as they pass through the trap.

We also repeated the time-resolved experiments on the high-volume target. Three sets
of experiments are done, with the following combinations: without 550 nm longpass filter
and without 554 nm laser, with 550 nm longpass filter and without 554 nm laser, and with
550 nm longpass filter and with 554 nm laser. Similar to the low-volume target, the signal
observed is partially reduced with the 550 nm longpass filter on, without the 554 nm laser.
With the 554 nm laser turned on, the signals at earlier times (before 6 µs) are reduced and
the signals at later times (after 6 µs) are increased. Our conjecture is that the signals at
earlier times are from excited state species. With the 554 nm laser turned on, they are
further excited or ionized, leading to them fluorescing at a lower wavelength below 550 nm,
or are in an ionic ground state. In both cases, the signal at the PMT would be reduced.
The increased signal at later times are most likely coming from neutral barium ions. We
also find that it is not advisable to ablate the high-volume target at this high pulse fluence
of 3.84 J/cm2, as it left a visible char mark after these sets of experiments. This is also
the reason why no further time-resolved light detection experiments at this pulse fluence
is done on the high-volume target.
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Appendix F

Evolution of 137Ba+ Ion 5D5/2 Level
Energy Eigenstates with Magnetic
Field Strengths
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Figure F.1: Numerical estimations of the 137Ba+ F̃ = 1 and F̃ = 2 energy eigenstates in
the 5D5/2 level, expressed in the |F,mF ⟩ basis.
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Figure F.2: Numerical estimations of the 137Ba+ F̃ = 3 energy eigenstates in the 5D5/2

level, expressed in the |F,mF ⟩ basis.
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Figure F.3: Numerical estimations of the 137Ba+ F̃ = 4 energy eigenstates in the 5D5/2

level, expressed in the |F,mF ⟩ basis.
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Appendix G

Four-Level Simulations for Studying
Fluorescence Flip-Flopping

The same optical Bloch equations construction approach in Section 3.3 was used to study
the bright/dark state flip-flopping of a Ba+ ion when the 493 nm, 650 nm and 1762 nm laser
frequencies are turned on. On top of the three levels in Section 3.3.1, another D level is
added, simulating the 5D5/2 state. A Rabi frequency between the S and this new D state
drives the transition and this D state is set to decay to the S state with a long decay rate
of 0.0286 s−1. The simulated 493 nm and 650 nm Rabi frequencies are set to 2π × 10MHz
and the 1762 nm Rabi frequency set to 2π × 0.1MHz.
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Figure G.1: P state population against the simulated 1762 nm laser detuning in a 4-level
toy model.

From Fig. G.1, the average P state population is heavily suppressed when the 1762 nm
laser is turned on, when the 1762 nm laser frequency is detuned from resonance. The P
state population does not recover at farther detuning of the 1762 nm laser frequency, until
machine error is reached. Since this does not fully capture what is observed empirically,
I cannot draw any useful conclusions. Using optical Bloch equations to study this phe-
nomenon may be flawed to begin with as we are approximating a steady state dynamics
when we do this, which is not what is happening empirically in the time scale of seconds
or milliseconds. Perhaps integrating the ion fluorescence over a period much longer then
the D5/2 decay time at different 1762 nm frequencies may shed more insights to the issue,
but it is yet to be seen.
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Appendix H

A Dynamic Method for Determining
Bright/Dark State Photon Count
Threshold

Since Ba+ ion fluorescence rate is sensitive to both laser intensities and frequencies, it can
easily fluctuate with parameter drifts. Therefore, we adopt a method for determining the
threshold for differentiating bright/dark states dynamically for the data set that is collected
in an experiment, without a need for prior calibrations. The procedure is as follows:

1. Sort the photon count readings in ascending order.

2. Sample the sorted photon count readings in steps of one one-thousandth of the total
number of collected photon counts, totalling about one thousand sampled data points.

3. From the sampled data points, compute the difference in photon count of each data
point to the next data point.

4. The point where the difference in photon count is the largest is picked out, and the
average between these two points are computed and set as the threshold.

The data sampling that is done in Step 2 is necessary for large data sets, where the
rarer photon counts (of either bright or dark states) that fall farther along the random
distribution probability tails may have manifested, and bridge the gap between the bright
and dark states photon count distributions. This would obscure the point where a sudden
increase in photon counts is detected in Step 3. As long as the ratio of the bright and dark
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Figure H.1: (a) Sorted photon count data points of a Rabi cycling experiment. (b) Sampled
data points of (a), as described in Step 2 of the procedure. Dashed line marks the computed
photon count threshold.

states of the data collected in the experiment is not larger than 1000:1, at least one bright
and one dark state will be sampled in Step 2.
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Appendix I

6-Level Qudit SPAM with 138Ba+

The SPAM protocol as discussed in Chapter 4 can be directly applied to 138Ba+. The
encoding scheme and a 6-level qudit SPAM results are summarized in Fig. I.1.
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(a)

(b)

Figure I.1: 6-level qudit SPAM results. (a) The raw fidelities. (b) Post selected fidelities.
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Appendix J

Alternative Interpretation of SPAM
Error

In the SPAM experiment performed in Chapter 4, during the measurement process, after
checking for fluorescence of the |0⟩ state, each encoded state in the 5D5/2 level, |n⟩, is de-
shelved by sending a π-pulse corresponding to the |6S1/2, F̃ = 2,mF̃ = 2⟩ ↔ |n⟩ transition.
During the de-shelving π-pulse transition, what is effectively performed on the ion is a re-
shelving process that is happening simultaneously with the de-shelving process. Thus, there
is an alternative method to interpret the measurement fidelity that we initially employed,
that turns out to be less robust to ultimately what is used in the main text. In Chapter 4,
the measured state is set to be the first instance the ion is bright during the measurement
sequence, and disregarding whether the ion is bright or dark for the rest of the sequence in
the measurement process. The alternative interpretation treats the cases where the ion is
still detected to be bright after the first to be failures of the measurement process, as the
ion is supposed to be re-shelved after the first bright event and no other bright events are
supposed to be detected. This places an unnecessarily stricter condition, but has the benefit
of not having to know the de-shelving sequence to interpret the measured state. Table J.1
summarizes the SPAM fidelity for each prepared state with the same data set presented in
the main text, but with the alternative interpretation of a successful measurement event as
presented in this section. The overall fidelity is lower than the interpretation used in the
main text, as expected. Table J.2 is the post-selected fidelity of Table J.1. Qualitatively,
the post-selected fidelities do not differ from the interpretation employed in the main text.
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Prepared state
Measured state

|0⟩ |1⟩ |2⟩ |3⟩ |4⟩ |5⟩ |6⟩ |7⟩ |8⟩ |9⟩ |10⟩ |11⟩ |12⟩ Null
|0⟩ 0.951 0 0 0 0 0 0 0 0 0 0 0 0 0.049
|1⟩ 0.059 0.787 0 0 0 0 0 0 0 0 0 0 0 0.154
|2⟩ 0.042 0.002 0.922 0 0 0 0.001 0 0 0 0.001 0 0 0.032
|3⟩ 0.025 0.001 0 0.916 0.001 0 0 0.001 0 0.002 0 0 0 0.054
|4⟩ 0.031 0 0 0 0.852 0 0 0.001 0 0 0 0.001 0 0.115
|5⟩ 0.103 0 0 0 0 0.585 0 0 0 0 0 0 0 0.312
|6⟩ 0.220 0 0.001 0.002 0.002 0.002 0.537 0.001 0.002 0.001 0 0.001 0 0.231
|7⟩ 0.057 0.001 0 0.001 0.001 0.001 0 0.861 0 0 0.001 0 0 0.077
|8⟩ 0.040 0 0.002 0.002 0.001 0 0.003 0.002 0.803 0 0 0 0.001 0.146
|9⟩ 0.147 0.004 0.008 0.003 0 0.003 0.003 0.004 0.005 0.645 0.005 0.004 0.001 0.168
|10⟩ 0.027 0.001 0 0.002 0 0.002 0.002 0.003 0.001 0.002 0.870 0 0 0.090
|11⟩ 0.029 0.003 0.003 0.001 0.002 0.001 0.001 0.001 0 0.003 0.004 0.867 0.001 0.084
|12⟩ 0.030 0.001 0 0 0.001 0 0.001 0 0 0.001 0 0 0.938 0.028

Table J.1: Raw measurement probability of each prepared state from the SPAM data set
in the main text, but with the alternative interpretation of a successful measurement. The
sample size is 1000. Null indicates not only one bright fluorescence readout during the
measurement procedure is obtained.

Prepared state
Measured state

|0⟩ |1⟩ |2⟩ |3⟩ |4⟩ |5⟩ |6⟩ |7⟩ |8⟩ |9⟩ |10⟩ |11⟩ |12⟩
|0⟩ 1 0 0 0 0 0 0 0 0 0 0 0 0
|1⟩ 0.070 0.930 0 0 0 0 0 0 0 0 0 0 0
|2⟩ 0.043 0.002 0.952 0 0 0 0.001 0 0 0 0.001 0 0
|3⟩ 0.026 0.001 0 0.968 0.001 0 0 0.001 0 0.002 0 0 0
|4⟩ 0.035 0 0 0 0.963 0 0 0.001 0 0 0 0.001 0
|5⟩ 0.150 0 0 0 0 0.850 0 0 0 0 0 0 0
|6⟩ 0.286 0 0.001 0.003 0.003 0.003 0.698 0.001 0.003 0.001 0 0.001 0
|7⟩ 0.062 0.001 0 0.001 0.001 0.001 0 0.933 0 0 0.001 0 0
|8⟩ 0.047 0 0.002 0.002 0.001 0 0.004 0.002 0.940 0 0 0 0.001
|9⟩ 0.177 0.005 0.010 0.004 0 0.004 0.004 0.005 0.006 0.775 0.006 0.005 0.001
|10⟩ 0.030 0.001 0 0.002 0 0.002 0.002 0.003 0.001 0.002 0.956 0 0
|11⟩ 0.032 0.003 0.003 0.001 0.002 0.001 0.001 0.001 0 0.003 0.004 0.947 0.001
|12⟩ 0.031 0.001 0 0 0.001 0 0.001 0 0 0.001 0 0 0.965

Table J.2: Post-selected measurement probability of each prepared state from the SPAM
data set in the main text, but with the alternative interpretation of a successful measure-
ment.

164



Appendix K

Frequency Resolution Limitation
from Finite AWG Memory

As discussed in Chapter 4, 13 waveforms are stored in the AWG memory for 13-level qudit
SPAM experiments. The waveforms have to be periodic and all 13 of them have to share
the same clock rate. Let fR be the frequency resolution that we want to be able to be
sent to the 1762 nm laser EOM, i.e. the frequency of the waveform, fWF , that we want to
generate is integer multiples of fR,

fWF = nfR. (K.1)

This translates to integer multiples of the waveform period having to match the resolution
time period of TR = 1/fR from Fourier analysis. To be able to generate the desired
waveform with at most the number of sampling points within the resolution time period,
integer multiples of the clock/sampling period has to make up 1/fR as well

fCR = mfR, (K.2)

where fCR is the clock rate. From Eq. K.2, we immediately see that a better frequency
resolution (and thus lower fR) leads to a higher maximum number of sampling points m,
which translates to requiring more digital memory. Thus, this puts a limit on our frequency
resolution.

To make use of the limited memory as much as possible, there is a trick to choose some
clock rate value that tends to minimize the memory used per waveform. For a waveform
to be periodic at a specific clock rate, it has to satisfy

nWFTWF = nCRTCR (K.3)
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where TWF is the period of the waveform, nWF ∈ Z is the number of periods of the
waveform, TCR is the clock period, and nCR ∈ Z is the number of clock periods, which is
also the number of points on the waveform. Eq. K.3 can be rewritten as

nCRfWF = nWFfCR, (K.4)

where fCR = 1/TCR and fWR = 1/TCR. Substituting Eqs. K.1 and K.2 into K.4, we get

nCRn = nWFm. (K.5)

Eq. K.5 can be immediately satisfied by choosing nCR = m and nWF = n, which would be
the maximum number of sampled points for a waveform. However, if n and m share some
common factors, let it be n = Z × n′ and m = Z ×m′, then we have

nCRn
′ = nWFm

′, (K.6)

and the number of sampled points on a waveform is reduced by a factor of Z to nCR =
m′ = m/Z. To maximize the probability of m and n sharing some common factors, the
clock rate is set to be multiples of many prime numbers, which we chose to be m =
27 × 3× 5× 7× 11× 13 = 1921920. At fR = 1kHz, the clock rate is fCR = 1.921 92GHz.
We find that we are typically unable to save 13 waveforms at 1 kHz resolution onto the
AWG without this trick.
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Appendix L

Filter Function Construction for
Magnetic Field Noise

Consider a total Hamiltonian, Ĥ, comprising the gate Hamiltonian, ĤG, and an error
Hamiltonian, , Ĥe.

Ĥ = ĤG + Ĥe (L.1)

The error Hamiltonian for a two-level system in general can be modelled as

Ĥe = βx (t) σ̂x + βy (t) σ̂y + βz (t) σ̂z. (L.2)

The effect of magnetic field noise on two magnetically sensitive atomic energy levels is
shifting their relative energy levels, thus contributing to the σ̂z component. The other σ̂x
and σ̂y components come from fluctuations in the transition Rabi frequency, which can
come from laser intensity noise. We will only consider effects from magnetic field noise
here, i.e. Ĥe (t) = βz (t) σ̂z. The derivations of the general form can be found in Ref. [76].

Going to the interaction picture with respect to ĤG gives the interaction Hamiltonian

ĤI (t) = Û †
G (t) Ĥe (t) ÛG (t)

= βz (t) Û
†
G (t) σ̂zÛG (t)

(L.3)

where ÛG (t) is the time-evolution operator from the gate Hamiltonian. For a time-

independent ĤG, ÛG (t) = exp−i ĤG

ℏ t. Defining ÛI (t) to be the time-evolution operator of

ĤI (t), i.e. iℏ d
dt
ÛI (t) = ĤI (t) ÛI (t), the average fidelity of the gate operation with respect

to a state in the interaction picture, |ψI⟩, is then

F = ⟨|⟨ψI |ÛI (t) |ψI⟩|2⟩, (L.4)
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where ⟨·⟩ denotes ensemble averaging. We evaluate an approximate form of ÛI (t), assuming
that the noise level is small. The functional form of ÛI (t) from first order approximation
of the Magnus expansion is

ÛI (t) ≈ exp

(
−i
∫ t

0

ĤI (t
′)

ℏ
dt′

)
. (L.5)

It is now useful to decompose the
∫ t

0
ĤI(t

′)
ℏ dt′ factor in Eq. L.5 to the identity and Pauli

operator components∫ t

0

ĤI (t
′)

ℏ
dt′ =

1

ℏ

∫ t

0

β (t′) Û †
G (t′) σ̂zÛG (t′) dt′

= aI(t)Î + ax(t)σ̂x + ay(t)σ̂y + az(t)σ̂z,

(L.6)

where aj(t) =
∫ t

0
1
2
β (t′) Tr

(
Û †
G (t′) σ̂zÛG (t′) σ̂j

)
dt′, j ∈ {x, y, z}, and

aI =
∫ t

0
1
2
β (t′) Tr

(
Û †
G (t′) σ̂zÛG (t′)

)
dt′. It is immediately clear that aI(t) = 0 as Tr (σ̂z) =

0 and Û †
G (t) σ̂z (t) ÛG (t) is just a rotation of σ̂z. Eq. L.6 can be further simplified to∫ t

0

ĤI (t
′)

ℏ
dt′ = a (t) σ̂n, (L.7)

where a (t) =
√
a2x(t) + a2y(t) + a2z(t) and σ̂n = ax(t)

a(t)
σ̂x+

ay(t)

a(t)
σ̂y+

az(t)
a(t)

σ̂z. It can be straight-

forwardly verified that σ̂2
n = Î. Thus, Eq. L.5 can be decomposed to

ÛI (t) ≈ exp

(
−i
∫ t

0

ĤI (t
′)

ℏ
dt′

)
= exp (−ia (t) σ̂n)
= cos (a (t))Î + i sin (a (t))σ̂n.

(L.8)

The gate fidelity from Eq. L.4 can then be evaluated to be

F = ⟨cos2 (a (t))⟩+ ⟨sin2 (a (t))⟩|⟨ψI |σ̂n|ψI⟩|2. (L.9)

Technically, the empirical fidelity would depend on the initial state |ψI⟩ from the term
⟨ψI |σ̂n|ψI⟩. For a lower limit estimate of the fidelity, we assume ⟨ψI |σ̂n|ψI⟩ = 0, which
gives

F = ⟨cos2 (a (t))⟩

=
1

2
(1 + cos (2a (t)))

(L.10)
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For small noise error, i.e. a (t) ≪ 1, we have

F ≈ 1− ⟨a2 (t)⟩. (L.11)

This gives ε = ⟨a2 (t)⟩ as the estimated average gate error. Evaluating ⟨a2 (t)⟩ gives

⟨a2 (t)⟩ = ⟨a2x(t)⟩+ ⟨a2y(t)⟩+ ⟨a2z(t)⟩

=
∑
j

∫ t

t1=0

∫ t

t2=0

⟨β (t1) β∗ (t2)⟩Rzj (t1)R
∗
zj (t2) dt1dt2,

(L.12)

where Rzj (t) =
1
2
Tr
(
Û †
G (t) σ̂zÛG (t) σ̂j

)
, and j ∈ {x, y, z}. Using Wiener-Khinchin theo-

rem, the factor ⟨β (t1) β∗ (t2)⟩ can be expressed as

⟨β (t1) β∗ (t2)⟩ =
1

2π

∫ ∞

∞
S (ω) eiω(t1−t2)dω. (L.13)

Eqs. L.12 and L.13 give

⟨a2 (t)⟩ =
∑
j

1

2π

∫ ∞

−∞

1

ω2
S (ω)

(
−iω

∫ t

t1=0

⟩Rzj (t1) e
iωt1dt1

)(
iω

∫ t

t2=0

⟩R∗
zj (t2) e

−iωt2dt2

)
dω

=
∑
j

1

2π

∫ ∞

−∞

1

ω2
S (ω) R̃zj (ω) R̃

∗
zj (ω) dω

=
1

2π

∫ ∞

−∞

1

ω2
S (ω)Fzz (ω) dω,

(L.14)
where we have defined R̃zj (ω) = −iω

∫ t

0
⟩Rzj (t

′) eiωt
′
dt′ following the convention in Ref.

[76] and Fzz =
∑

j|R̃zj (ω)|2.

To evaluate the filter function Fzz (ω), we need to evaluate R̃zx (ω), R̃zy (ω), and R̃zz (ω).
Let the gate Hamiltonian be a simple 2-level transition Hamiltonian with and arbitrary
phase angle

ĤG =
Ω

2
σ̂ϕ, (L.15)

where σ̂ϕ = cos (ϕ) σ̂x + sin (ϕ) σ̂y. This gives

Û †
G (t) =

(
cos

(
Ω

2
t

)
Î + i sin

(
Ω

2
t

)
(cos (ϕ) σ̂x + sin (ϕ) σ̂y)

)
(L.16)

To evaluate R̃zj (ω), we need to first evaluate Rzj (t). To do that we use the following
useful identities:
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1. The trace of any of the Pauli operators is zero, i.e. Tr [σ̂i] = 0.

2. σ̂iσ̂i = Î.

3. σ̂aσ̂b = iϵabcσ̂c, where ϵabc is the Levi-Civita symbol.

With these identities, Rzx (t) can be evaluated to be

Rzx (t) =
1

2
Tr

[(
cos

(
Ω

2
t

)
Î + i sin

(
Ω

2
t

)
(cos (ϕ) σ̂x + sin (ϕ) σ̂y)

)
σ̂z(

cos

(
Ω

2
t

)
Î − i sin

(
Ω

2
t

)
(cos (ϕ) σ̂x + sin (ϕ) σ̂y)

)
σ̂x

]
= −1

2
Tr

[(
2 sin

(
Ω

2
t

)
cos

(
Ω

2
t

)
sin (ϕ)

)
Î

]
= −2 sin

(
Ω

2
t

)
cos

(
Ω

2
t

)
sin (ϕ)

= − sin (Ωt) sin (ϕ)

(L.17)

Evaluating the frequency-domain form gives

R̃zx (ω) = −iω
∫ t

0

Rxz (t
′) eiωt

′
dt′

= iω sin (ϕ)

∫ t

0

sin (Ωt′) eiωt
′
dt′

(L.18)

Using ∫ t

0

sin (Ωt′) eiωt
′
dt′ =

1

2i

∫ t

0

(
eiΩt′ − e−iΩt′

)
eiωt

′
dt′

=
1

2

[
1

ω + Ω

(
1− ei(ω+Ω)t

)
− 1

ω − Ω

(
1− ei(ω−Ω)t

)]
= − i

ω2 − Ω2

[
iΩeiωt cos (Ωt) + ωeiωt sin (Ωt)− iΩ

]
= − i

ω2 − Ω2
B (ω) ,

(L.19)

where B (ω) = iΩeiωt cos (Ωt) + ωeiωt sin (Ωt)− iΩ. Thus, Rzx (ω) simplifies to

R̃zx (ω) =
ω

ω2 − Ω2
sin (ϕ)B (ω) (L.20)
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Similarly, for Rzy (t), we have

Rzy (t) =
1

2
Tr

[(
cos

(
Ω

2
t

)
Î + i sin

(
Ω

2
t

)
(cos (ϕ) σ̂x + sin (ϕ) σ̂y)

)
σ̂z(

cos

(
Ω

2
t

)
Î − i sin

(
Ω

2
t

)
(cos (ϕ) σ̂x + sin (ϕ) σ̂y)

)
σ̂y

]
=

1

2
Tr

[(
2 sin

(
Ω

2
t

)
cos

(
Ω

2
t

)
cos (ϕ)

)
Î

]
= 2 sin

(
Ω

2
t

)
cos

(
Ω

2
t

)
cos (ϕ)

= sin (Ωt) sin (ϕ) .

(L.21)

Evaluating the frequency domain form gives

Rzy (ω) = −iω
∫ t

0

Rzy (t
′) eiωt

′
dt′

= −iω cos (ϕ)

∫ t

0

sin (Ωt′) eiωt
′
dt′

== − ω

ω2 − Ω2
cos (ϕ)B (ω) .

(L.22)

For Rzz (t), we have

Rzz (t) =
1

2
Tr

[(
cos

(
Ω

2
t

)
Î + i sin

(
Ω

2
t

)
(cos (ϕ) σ̂x + sin (ϕ) σ̂y)

)
σ̂z(

cos

(
Ω

2
t

)
Î − i sin

(
Ω

2
t

)
(cos (ϕ) σ̂x + sin (ϕ) σ̂y)

)
σ̂z

]
=

1

2
Tr

[(
cos2

(
Ω

2
t

)
− sin2 (ϕ) sin2

(
Ω

2
t

)
− cos2 (ϕ) sin2

(
Ω

2
t

))
Î

]
=

1

2
Tr

[(
cos2

(
Ω

2
t

)
− sin2

(
Ω

2
t

))
Î

]
= cos (Ωt)

(L.23)
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Using ∫ t

0

cos (Ωt′) eiωt
′
dt′ =

1

2

∫ t

0

(
eiΩt′ + e−iΩt′

)
eiωt

′
dt′

=
1

2

∫ t

0

ei(ω+Ω)t′ + ei(ω−Ω)t′dt′

=
i

2 (ω + Ω)

(
1− ei(ω+Ω)t

)
+

i

2 (ω − Ω)

(
1− ei(ω−Ω)t

)
=

i

ω2 − Ω2

[
iΩeiωt sin (Ωt)− ωeiωt cos (Ωt) + ω

]
=

i

ω2 − Ω2
V (ω) ,

(L.24)

where V (ω) = iΩeiωt sin (Ωt)− ωeiωt cos (Ωt) + ω, we have

R̃zz (ω) =
ω

ω2 − Ω2
V (ω) (L.25)

The filter function Fzz (ω) can then be evaluated to be

Fzz (ω) = |Rzx (ω)|2 + |Rzy (ω)|2 + |Rzz (ω)|2

=
ω2

(ω2 − Ω2)2
(
|B (ω)|2 + |V (ω)|2

)
=

ω2

(ω2 − Ω2)2
(
2ω2 + 2Ω2 − 4ωΩ sin(ωt) sin(Ωt)− 2

(
ω2 + Ω2

)
cos(ωt) cos(Ωt)

)
(L.26)

For a π-pulse gate, we have t = π
Ω
, which gives

Fzz (ω) =
ω2

(ω2 − Ω2)2

(
2ω2 + 2Ω2 + 2

(
ω2 + Ω2

)
cos
(ω
Ω
π
))

(L.27)

There are 2 asymptotic behaviour to Eq. L.27. When ω ≪ Ω, Fzz (ω) ≈ 4
Ω2ω

2. When
ω ≫ Ω, Fzz (ω) ≈ 2 + 2 cos

(
ω
Ω
π
)
. Thus, we approximate the filter function to be of a

simple form

F (ω) ≈

{
4ω2

Ω2 , ω < Ω

2, ω ≥ Ω
(L.28)

Eq. L.27 is also symmetric about ω = 0, which allows us to rewrite Eq. L.14 as

⟨a2 (t)⟩ = 1

π

∫ ∞

0

1

ω2
S (ω)Fzz (ω) dω. (L.29)
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