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Abstract

In this thesis, our focus is on the optimization of reinsurance design, accounting for the
influence of model uncertainty. The following chapters outline our approach:

In Chapter 2, we identify the worst-case distributions for both insurers and reinsurers
by assuming that insurers and reinsurers respectively have their own uncertainty sets.
These distributions are structured to maximize their respective shares of the total loss,
assessed by a distortion risk measure. We consider a reinsurance contract structured as
a stop-loss treaty with a deductible. Our uncertainty sets adopt traditional two-moment
characteristics, incorporated with distance constraints defined using Wasserstein distance.
We provide numerical solutions for the worst-case distributions in a general scenario, along
with analytical solutions for cases when uncertainty sets only have constraints on the first
two moments of the underlying loss random variable. Based on that, we find the optimal
stop-loss reinsurance policy from the perspective of the insurer taking model uncertainty
into account.

In Chapter 3, we assume that uncertainty sets of insurers and reinsurers are defined
only by Wasserstein distance. We consider the worst-case risk measures of limited stop-
loss functions and determine the worst-case distributions for both insurers and reinsurers
under limited stop-loss reinsurances. In addition, by conducting numerical experiments, we
explore how the limits and deductibles of limited stop-loss reinsurances impact worst-case
risk measures for both parties.

Moving into Chapter 4, we integrate the notion of distribution ambiguity into a negoti-
ation framework, specifically Pareto optimality. Through numerical experiments based on
results presented in Chapters 2 and 3, we investigate how the negotiation power between
parties influences the equilibrium point.

Concluding our study, the final chapter outlines potential directions for future research
and development, building upon the foundation laid out in this work.
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Chapter 1

Introduction

1.1 Optimal (re-)insurance problem

Reinsurance, a contractual arrangement offered by reinsurers to safeguard against an in-
surer’s potential claims, works as a substantial instrument for risk distribution, gaining
extensive attention in both academia and industry practice. Taking part in reinsurance
contracts, insurers can effectively transfer a portion of their risk to reinsurers. This strate-
gic move enables insurers to reduce their exposure and improve their capacity to withstand
unforeseen shocks. Hence, a reinsurance contract can help the insurers stabilize their bal-
ance sheets and improve their liquidity and solvency, comprehensively contributing to the
insurers’ resistance against risks.

Initially, insurers operated under the assumption of risk independence, believing that a
sufficient number of independent risks ensured help stabilize their cumulative claims. This
perception persisted until the recognition of systemic and catastrophic risks, exemplified by
events like financial crises, terrorism, and the merely past COVID-19 pandemic. In these
scenarios, predicting aggregate reimbursements becomes challenging, exposing insurers to
extraordinary losses that could jeopardize their financial stability.

Let us denote byX the underlying (aggregate) risk faced by the insurer. Conventionally,
X is assumed to be a non-negative random variable. With the specification of a reinsurance
contract, as the aggregate loss X occurs, the reinsurer agrees to pay indemnity I(X) to the
insurer and requires a premium P . The premium is usually decided either by a premium
principle, see e.g. [Tan et al., 2009], or by the negotiation between the two counterparts,
the insurer and the reinsurer, see [Jiang et al., 2019], in the literature. Thus, when a loss
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X = x occurs, I(x) is the ceded loss to the reinsurer and the insurer will only need to cover
the retained loss x − I(x). The function I(x) is commonly described as compensation
function, indemnification function, or ceded loss function, while R(x) , x− I(x) is known
as retained loss function. The total loss faced by the insurer with a reinsurance contract
now becomes X − I(X) + P . If we denote by W0 the initial wealth of the insurer, after
receiving indemnity from the reinsurer, the insurer’s terminal wealth is W0−X+I(X)−P .
In the literature, there are two most popular ways to quantify the effect brought by the
reinsurance contract. The first way is based on behavioral economics that assigns a utility
function u(·) to the terminal wealth. In this framework, the insurer would like to select
a reinsurance contract that maximizes its expected utility of terminal wealth, hence the
optimal reinsurance problem becomes:

max
I∈I

E [u (W0 −X + I(X)− P )] . (1.1)

Alternatively, we can assign a real number to each well defined retained loss, X−I(X)+P ,
of the insurer, with a risk functional ρ. Commonly used risk measures include Value-at-
Risk (VaR) and Tail Value-at-Risk (TVaR), which will be elaborated in Section 1.2. The
optimal reinsurance problem then is formulated as:

min
I∈I

ρ (X − I(X) + P ) . (1.2)

In the both formulations of the optimal reinsurance problem, I is the collection of all
feasible indemnity functions. Before giving more detailed explanations about the optimal
reinsurance problem, we will first define a “feasible” reinsurance by properly specifying the
feasible set I.

Moral hazard is an important issue that needs to be sufficiently addressed when design-
ing an reinsurance contract. An essential principle between the counterparts is that both
parties face larger respective risks as the total loss enlarges. Otherwise, the effect of moral
hazard will be brought into presence. In other word, if the ceded loss function I(x) is not
a non-decreasing function, there exists 0 6 x < y such that I(x) > I(y). Suppose, for
instance, the aggregate loss reaches the level y, then the insurer may report the partial loss
x to the reinsurer and get even more reimbursement than if she reports the entire loss as
much as y. This may seriously harm the interest of the reinsurance company. Conversely,
if the retained loss function R(x) = x− I(x) is not a non-decreasing function, the insurer
might exaggerate the reported loss and get “bonus” beyond the reimbursement. No mat-
ter which case it is, the incentive of the insurer to miss-report the loss on purpose could
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potentially impair the reinsurer’s interest. As a result, a commonly accepted indemnity
function usually satisfies the following two conditions:

1. I : [0,+∞)→ [0,+∞) such that I(0) = 0 and I is non-decreasing;

2. |I(y)− I(x)| 6 |y − x|, for any non-negative x and y.

The second condition is also known as 1-Lipschitz continuous condition or “no-sabotage”
condition. Obviously, all deductible contracts satisfy the above conditions and hence are
“feasible” contracts according to our definition.

Note that it could be quite challenging to completely avoid moral hazard issues in
a reinsurance contract, since there are many reasons that could trigger the occurrence of
moral hazard. The above two conditions can only help eliminate those in particular related
to intentional miss-reporting.

The “optimality” of a reinsurance contract can be either from the perspective of the
insurer, or reflecting the “mutual interest” of the both parties. A “mutual interest”-
oriented optimal reinsurance problem can be in the framework of game theory, which
normally reflects the “negotiation” between the two parties. More details can be found
in [Borch, 1960]. [Arrow, 1963] and [Arrow, 1996] provide the fundamental work on the
optimal insurance design problem from the insurer’s perspective. Arrow has shown that
stop-loss insurance treaty is the optimal solution to the following maximization problem
when utility function u is concave:

max
I∈I

E [u (W0 −X + I(X)− E[I(X)])] . (1.3)

This is a particular case of Problem (1.1) when the premium is calculated by the expected
premium principle and fixed to p. The utility function u(·) is commonly assumed to be
an increasing concave function. The concavity of u, on one hand, represents the marginal
diminishing property of wealth and on the other hand, represents the risk-averse bearing
of the insured who is seeking risk sharing. When the initial wealth is non-random, say
W0 = w0 for some constant w0, Problem (1.3) is equivalent to the following minimization
problem

min
I∈I

E[u(X − I(X) + E[I(X)])],

where u(·) is an increasing convex function.

Even though Arrow’s insurance model is rooted in the center among the studies of opti-
mal insurance, the work of [Allais, 1953] and [Ellsberg, 1961] put forward a challenge to the
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foundations of Expected-Utility-Theory (EUT). Those work have influenced decision theory
study significantly by promoting preferences for non-EUT models that explains the Allais’
paradox and captures other cognitive biases that are not illustrated by EUT. Substitutes to
EUT include Rank-Dependent Expected-Utility (RDEU) by [Quiggin, 1982], Dual Theory
by [Yaari, 1987] and Cumulative Prospect Theory (CPT) by [Kahneman and Tversky, 2013].
These modern decision making models have also made their way to the insurance studies.
Among the recent literature, [Sung et al., 2011] showed that the optimal insurance policy
is either an insurance layer or a stop-loss insurance, where an insured’s decision-making
behavior is modeled by Kahneman and Tversky’s CPT with convex probability distortions.
[Ghossoub, 2019] formulates an optimal insurance design problem under RDEU and char-
acterized the optimal retention. [Cai and Weng, 2016] shows a reinsurance layer is optimal
for the insurer whose risk exposure is quantified by the risk measure of expectile, which is
a distributional quantity, as is first proposed by [Newey and Powell, 1987].

A vital component of research in optimal reinsurance is in the framework of utility max-
imization or risk measure minimization, the latter one being the emphasis of this thesis.
[Cai and Tan, 2007] introduces the general risk measures V aR and Conditional Tail Ex-
pectation (CTE) into the reinsurance’s model and seeks for the optimal stop-loss contracts
and optimal quota-share contracts under various premium principle. [Cai et al., 2008] ex-
tends the previous work by investigating the optimal deductible and optimal quota-share
coefficient corresponding to several kinds of premium principles other than expectation.

In the literature, most of the optimal reinsurance solutions are derived from an insurer’s
perspective. According to [Borch, 1969], however, an optimal reinsurance treaty for the
insurer might not be optimal for its counter-part, or even unacceptable. As a result, it
is quite substantial in the study of optimal reinsurance to design a policy that is fair
enough and acceptable for the both parties. This framework that reflects such “fairness” is
usually from the Pareto-optimal point of view. [Cai et al., 2017] characterizes all Pareto-
optimal reinsurance contracts and gives explicit forms of them when both the insurer and
the insured use TVaR to account for their losses. [Jiang, 2022] formulates and solves the
Pareto-optimal insurance problem under the heterogeneous beliefs of the insurer and the
insured.

In this thesis, we will also be committed to finding an optimal reinsurance treaty that
is fair enough for the both parties. However, as varying from the traditional model, we will
make our optimal policy conservative enough by taking into consideration the worst-case
scenarios, with the uncertainty of the true distribution of the total loss. All risks will be
quantified using risk measures, whose general preliminary and literature review will be
found in the next section.
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1.2 Risk measure

It has been extensively discussed how to quantify the risk of a financial position. Before
the concept of general risk measures was introduced, researchers had started using the
moments to measure a random risk X, with its distribution available, including variance.
Variance, however, does not take into account the asymmetry of X, while it is always
the right-tail that matters the most. To this end, VaR was introduced to describe the
downside risk. Based upon this, other modern risk measures, such as TVaR, which is also
called Expected Shortfall (ES), were introduced to better capture the scale of the tail risk
beyond a quantile. These improvements also motivated the systematic investigation of the
desirable axioms that are supposed to be satisfied by risk measures.

Let Ω be a sample space. In finance, A financial risk is represented by a random variable
X : Ω 7→ R, where X(ω) is the realized financial result. In the framework of insurance and
risk sharing, in particular, X often represents the total risk born by the insurance players
altogether. Since this thesis is in the framework of reinsurance and risk sharing, we always
take X as a random variable of “loss”. In other word, a large realized value of X represents
an extreme loss. A profit is then associated with a negative X, in this sense. Denote X as
the collection of all the risks X that we would like to quantify. When a probability space
(Ω,Σ,P) is given, X is often chose as Lp(Ω,Σ,P), p > 0.

Definition 1.2.1 A mapping ρ : X 7→ R is a monetary risk measure if it satisfies the
following properties for X, Y ∈ X :

• (C1) Monotonicity: If X 6 Y , then ρ(X) 6 ρ(Y ).

• (C2) Translation invariance: For m ∈ R, ρ(X +m) = ρ(X) +m.

These two properties are desirable especially in regulatory capital calculation. (C1)
means when risk Y is larger than risk X in all scenarios, then it requires more capital to
be put aside. (C2) implies that if a risk is to increase by m in all circumstances, then its
capital requirement will increase by the same amount.

Without loss of generality, one would assume a monetary risk measure further satisfies
the following property:

• (C3) Normalization: ρ(0) = 0.

Definition 1.2.2 A monetary risk measure ρ : X 7→ R is called a convex risk measure if
it further satisfies the following property:
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• (C4) Convexity: ρ(λX + (1 − λ)Y ) 6 λρ(X) + (1 − λ)ρ(Y ), for λ ∈ [0, 1] and
X, Y ∈ X .

The property (C4) is desirable because it illustrates the effect of diversification in re-
ducing the portfolio risk. One allocating his/her resources between the financial positions
X and Y can reduce the overall risk, compared with his/her holding onto only one type of
them. If this property is satisfied, then it is implied that diversification will never increase
the risk.

The notion of convex risk measures was introduced in the works by [Follmer and Schied, 2002]
as generalization of coherent risk measures.

Definition 1.2.3 A convex risk measure ρ : X → R is called a coherent risk measure if it
further satisfies the following axioms:

• (C5) Positive homogeneity: ρ(λX) = λρ(X), for X ∈ X , λ > 0.

• (C6) Subadditivity: ρ(X + Y ) 6 ρ(X) + ρ(Y ), for X, Y ∈ X .

Note that with the assumption of positive homogeneity (C5), convexity (C4) is equiv-
alent to subadditivity (C6). Positive homogeneity describes the phenomenon that when
homogeneous financial positions are put into one portfolio, then typically the risk is not
diversified. Subadditivity, on the other hand, says when two positions are put together
into one portfolio, then the portfolio’s risk is bounded above by the sum of the individual
risks.

The notion of coherent risk measures was firstly introduced in [Artzner et al., 1997]
and further developed in [Artzner et al., 1999]. The authors discuss about ways to mea-
sure market and non-market risks and propose a set of four desirable properties. Those
properties were in response to the criticisms against VaR for not being subadditive and
not taking into account the severity of an incurred damage event.

Definition 1.2.4 (Comonotonicity) Two measurable functions X and Y on (Ω,Σ) are
called comonotone if

(X(ω)−X(ω′))(Y (ω)− Y (ω′)) > 0, for all ω, ω′ ∈ Ω.

Besides the above mentioned properties, other desirable properties of risk measures are
listed below:
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• (C7) Comonotonic additivity: ρ(X + Y ) = ρ(X) + ρ(Y ), whenever X, Y ∈ X are
comonotone.

• (C0) Law-invariance: ρ(X) = ρ(Y ) if X
d
= Y .

Law-invariance (C0) is a property assumed to be satisfied by all the risk measures
that we are interested in, because we do not discriminate between random variables with
identical distributions when quantifying their corresponding risks. Comonotonic additivity
(C7) corresponds to the case that when two financial positions always move along the same
direction, then including them in one portfolio is not a effective diversification in terms of
reducing the risk.

Among all the risk measures, the most popular are VaR and TVaR are extensively used
in regulatory capital calculation, decision making and risk management.

Definition 1.2.5 The Value-at-Risk (VaR) of a random variable X at level α ∈ (0, 1) is
defined as the lower α-quantile of X

VaRα(X) = inf{t ∈ R : P(X 6 t) > α}.

As a valid alternative to VaR, TVaR was proposed by [Acerbi and Tasche, 2002], with
the advantage of being a coherent risk measure. Its definition is as follows:

Definition 1.2.6 The Tail Value-at-Risk of random variable X at level α ∈ (0, 1) is de-
fined as

TVaRα(X) =
1

1− α

∫ 1

α

VaRp(X) dp.

There has been great arguments between VaR and TVaR as the standard tool in quanti-
fying financial risks. Among the extensive discussions, even though VaR is neither coherent,
nor sensitive to the tail, being elicitable is one of its advantage against its counterpart, see
[Gneiting, 2011]. Elicitability is another vital property for a risk measure since it pro-
vides a natural methodology to perform backtesting. TVaR replaces VaR and is taken as
the standard risk measure for market risk in banking sector, serving as the most popular
risk measure in financial regulation. [Wang and Zitikis, 2021] put forward an axiomatic
foundation for TVaR.

Arguing that TVaR has a historical estimator that is non-robust, [Cont et al., 2010]
initiates a new risk measure, as known as RVaR, by introducing another parameter that
generalizes TVaR.
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Definition 1.2.7 For 0 < α < β < 1, the Range Value-at-Risk (RVaR) at levels (α, β) of
random variable X is defined as

RVaR(X) =
1

β − α

∫ β

α

VaRp(X) dp.

As can be easily seen, RVaR is more flexible than TVaR in the sense that it is the
average of VaR levels across a certain range of probabilities, which is not necessarily the
tail event.

Among the above three popular risk measures, only TVaR is coherent, since VaR and
RVaR fail in satisfying (C4) Convexity and (C6) Sub-additivity. However, all of them
satisfy (C7) Comonotonicitic additivity, since they all belong to a more general class of
risk measures, distortion risk measure, as defined below:

Definition 1.2.8 (Distortion Risk Measure) Let g : [0, 1] 7→ [0, 1] be non-decreasing
such that g(0) = 0 and g(1) = 1. The distortion risk measure of a distribution G, with
notation ρg(G), is defined as

ρg(G) = −
∫ 0

−∞
1− g(1−G(x)) dx+

∫ +∞

0

g(1−G(x)) dx, (1.4)

whenever at least one of the two integrals in (1.4) is finite. In this case, g is a distortion
function.

Whenever the distortion function g is absolutely continuous, then the distortion risk mea-
sure ρg has the following representation

ρg(G) =

∫ 1

0

γ(u)G−1(u) du, (1.5)

where the weight function γ(u) = ∂−g(x)|x=1−u, 0 < u < 1, satisfies
∫ 1

0
γ(u) = 1 and ∂−

denotes the derivative from the left.

In this thesis, We may also apply the same notation to a random variable, for exam-
ple, ρg(X) =

∫ 1

0
γ(u)VaRu(X) du. Since distortion risk measure satisfies Law-invariance

property, one can easily see ρg(X) = ρg(G) whenever X
d∼ G.
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1.3 Distributional uncertainty and worst-case distri-

bution

In the classical literature in financial decision making , it is often assumed that the distribu-
tion of the crucial underlying random variable is perfectly known. For instance, among the
literature attributed to solve optimal investment problems, [Linsmeier and Pearson, 1996]
focuses on the probability of loss incurred by the investment portfolio. This chapter defines
the portfolio VaR as the minimal level γ such that the probability that the portfolio loss is
greater than γ is small enough. This requires complete information about the asset returns’
distributions. In comparison, [Markowitz, 1968] considers the following familiar problem
of minimizing the portfolio variance, subject to a minimal portfolio mean of return:

min
w∈W

wTΓw, s.t., x̂Tw > µ,

where w is a weight vector, x̂ is the vector of mean return of the assets, Γ is the convariance
matrix of the asset returns, and µ is a pre-specified lower bound for the portfolio return.
In this model, only the two moments instead of the entire distribution function of the asset
returns are required. Based on the results given in this chapter, we can derive a reliable
investment portfolio as long as the two moments, instead of the entire distribution, are
accurately estimated.

More examples in optimal insurance and reinsurance are based on the complete infor-
mation of the distribution of the total loss X. Apart from the examples in Section (1.1),
[Ghossoub, 2019] designs an optimal reinsurance problem under Rank-dependent Expected
Utility (RDEU) and characterizes the optimal retention functions in both cases whether the
insurer and the reinsurer’s distortion functions are identical. [Sung et al., 2011] analyzes
the optimal insurance policy from the perspective of an insurer, whose decision behavior
is described by Cumulative Prospect Theory introduced by Kahneman and Tversky, see
[Kahneman and Tversky, 2013], and shows the optimality of insurance layers as expected
value premium principle is selected. As another vital direction, optimal insurance contracts
that minimize certain risk measures are visited frequently. Among them, [Tan et al., 2009]
investigates the optimal quota-share and stop-loss reinsurance contracts under 17 types of
reinsurance premium principles, using both VaR and TVaR as the insurer’s adopted risk
measure.

In the above classical literature in financial decision making, no matter the risk, or
the investment gain, is quantified using utility function or risk functionals, it has been
commonly accepted that the underlying distribution of the total risk, or the asset return,
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is completely known to us. In reality, however, the true underlying distribution is in-
tractable and its estimation is always susceptible to errors. An insightful discussion in
[Black and Litterman, 1992] points out that inaccurate point estimates can substantially
compromise the efficiency of portfolio investment optimization, by making the real VaR
substantially worse than the theoretical value. The aforementioned modelling risk stimu-
lated the development of worst-case risk analysis, where the worst-possible risk level is paid
attention to over a set of candidate distributions that reflect the uncertainty or information
incompleteness about the underlying distribution.

Distributional uncertainty, also called “distributional ambiguity”, “model uncertainty”
and so on, describes the case where the true distribution of a certain random variable is
not completely known or not unique. Decision-making with the presence of distributional
uncertainty has been taken as a question of great interest in fields, such as Insurance,
Finance, Economics, Operation Management Science and Control System.

In the field of (re)insurance, the problem of evaluating a risk and making decisions with
model uncertainty has been frequently revisited following the work in [Ghaoui et al., 2003].
In this work, the authors define the worst-case VaR and show that the problem can be
converted into a semi-definite programming problem, where the distributions are partially
known, such that only bounds on the mean and covariance matrix are available. As a cor-
nerstone for the field of worst-case risk analysis, this chapter draws the following conclusion
of worst-case VaR:

sup
F∈S

VaRα(XF ) = µ+ σ

√
α

1− α
, (1.6)

where S := {F :

∫
x dF (x) = µ,

∫
x2 dF (x) = µ2 + σ2}, µ ∈ R, σ > 0, represents the col-

lection of all the distributions with fixed mean µ and fixed variance σ2. In addition, the
optimizer of Problem (1.6) is a two-point distribution. [Natarajan et al., 2010] revisits
Problem (1.6), and replaces VaR by TVaR in the objective. The authors show that the
worst-case TVaR is achieved by the same distribution as that maximizes VaR, and the
worst-case VaR and worst-case TVaR are identical over such an uncertainty set.

Motivated by the conclusions about worst-case VaR and TVaR, [Li, 2018] investigates
the worst-case convex distortion risk measures, also known as spectral risk measures, when
only the first two moments of the distribution are known. As a main conclusion of the
chapter,

sup
F∈S

ρg(XF ) = µ+ σ
√
||γ||22 − 1, (1.7)
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where γ : (0, 1) 7→ R satisfies γ(u) = ∂−g(x)|x=1−u and S, as previous, contains all the
distributions with mean µ and variance σ2. Note that this conclusion narrows down to the
results in [Natarajan et al., 2010] when ρg is in particular a TVaR.

However, [Bernard et al., 2018] argues that the bounds obtained above are too loose to
be relevant to practice and two-point distributions are not attractable enough to be applied
in risk management applications. They hence add a Wasserstein distance constraint on the
candidate distributions in [Bernard et al., 2020b], such that the uncertainty set excludes
the distributions too far away from a reference distribution, even though their mean and
variance meet the requirements. In addition, this work obtains the conclusions about all
distortion risk measures, including the non-convex ones, such as RVaR. According to this
work, the tighter the Wasserstein distance constraint is, the more worst-case distribution
looks like the reference distribution, and the more practical it becomes.

Other than specifying the two moments, researchers have been investigating worst-case
risk measures under probability distance constraints or other refined information. For
instance, [Glasserman and Xu, 2014] considers the worst-case value of a risk measure de-
fined through expectation, over all the distributions with a relative entropy small enough
to a reference distribution. [Blanchet and Murthy, 2019] focuses on quantifying the im-
pact brought by model misspecification by measuring a worst-case expected cost, over
probability measures that are close enough to a given probability measure µ, i.e.,

sup

∫
f dν : dc(µ, ν) 6 δ, (1.8)

for dc(µ, ν) := inf{
∫
c dπ : π ∈ Π(µ, ν)}, where c(x, y) specifies the cost of transporting a

unit mass from x to y. The work converts the above problem to a 2-dimensional optimiza-
tion problem. Note that as a special case of Problem (1.8), the problem

supP(A) : dc(µ,P) 6 δ

can also be converted into a 1-dimensional optimization problem, which provides us with
the insights into computing worst-case probabilities and worst-case VaR, simultaneously.
In addition, [Bernard et al., 2020a] derives the upper and lower bounds on RVaR of the
portfolio loss with the knowledge of mean, variance and unimodality feature.

Other than quantifying the worst-case risk, researchers have been working on making fi-
nancial decisions with the presence of model uncertainty. The paradigm of Distributionally
robust optimization (DRO) is well accepted within this field:

min−→w∈W
sup
F∈F

E[f(−→w ,
−→
X )], (1.9)
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where −→w denotes a feasible decision vector in W ,
−→
X represents a random vector with

distribution F ∈ F and f is a cost function of −→w and
−→
X . The literature then adopts the

expected utility to account for the risk non-neutrality of the decision maker and the DRO
problem becomes:

min−→w∈W
sup
F∈F

E[u(f(−→w ,
−→
X ))]. (1.10)

[Cai et al., 2020] then considers quantifying risks using distortion risk measures and intro-
duces the formulation of Distributionally Robust Risk Optimization (DRRO):

min−→w∈W
sup
F∈F

ρh(f(−→w ,
−→
X )). (1.11)

The authors characterize the worst-case distributions by discovering the hidden convexity
in DRRO for a general class of distortion functions.

Other mounts of examples of decision-making with distributional uncertainty are in the
field of optimal (re)insurance, which has seldom been visited until recently. In this field, the
decision maker contributes to find a robust optimal (re)insurance contract that is insensitive
to the underlying distribution of the risk. As instances, [Asimit et al., 2017] obtains the
closed-form solution of the optimal robust contract with respect to VaR and provides Linear
Programming formulations for TVaR when there are finitely many probability distribution
candidates in the uncertainty set. [Birghila and Pflug, 2019], instead, focuses on identifying
an optimal robust insurance contract that minimizes the distortion risk functional of the
retained loss with budget constraint. The uncertainty set here is the convex hull of a finite
set of distributions. The problem is formulated as below:

inf
I∈I

sup
F∈C

ρg1(XF − I(XF ) + πg,θ(I(X F̂ ))), (1.12)

s.t. πg,θ(I(X F̂ )) 6 B.

[Liu and Mao, 2021] investigates the optimal reinsurance deductible problem using VaR
and TVaR, respectively, to quantify the insurer’s risk. This work uses two-moment un-
certainty set and shows the worst-case VaR and TVaR are both achieved by three-point
distributions and the both cases induce the same optimal robust deductible.

In this thesis, we work with a common probability space (Ω,F ,P). Let Lp = Lp(Ω,F ,P)
be the set of random variables with finite p-th moment, p ∈ [1,∞], on that space. Denote by
M2 = {G(x) = P(X 6 x)|X ∈ L2} the space of distribution functions with finite second
moments. A positive (resp. negative) realized value of random variable X represents a
financial loss (resp. profit) in this chapter. For any random variable X, FX represents the
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distribution function of X and F−1
X (p) = inf{x ∈ R : FX(x) > p}, p ∈ (0, 1), is the right-

continuous version of the quantile function of FX . Let U be a uniform random variable on
(0, 1).

13



Chapter 2

The worst-case distributions for the
insurer and the reinsurer with
deductible insurance

In classic researches on reinsurance, the distribution of the risk X faced by the insurer
is often assumed to be precisely known. In reality, however, it can be hard to find the
true underlying distribution of the risk faced by the insurer. Typically, researchers use the
empirical distribution as the underlying distribution but the estimation to an unknown
distribution is prone to errors. To be conservative, the both counterparts should consider
about the worst-possible risk levels over their perspective sets of candidate distributions.
In this chapter, we seek the worst-case distributions from both the perspectives of the
insurer and the reinsurer.

2.1 Notations and model settings

In this chapter, we consider an atomless probability space (Ω,F ,P) and let Lp be the set
of all random variables having finite p-th moments. A risk measure ρ is a mapping from
the set of random variables to R. The class of well-known risk measures of our interest is
the class of distortion risk measures defined below.

According to Definition 1.2.8, the distortion risk measure of a random variable Y in-
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duced by the function g is defined as

ρg(Y ) =

∫ +∞

0

g(1−GY (x)) dx−
∫ 0

−∞
(1− g(1−GY (x))) dx,

where GY is the distribution of Y . In this case, g is called the distortion function of the
distortion risk measure ρg.

As a restatement of (1.5), if a distortion function g is absolutely continuous, then the
distortion risk measure ρg(Y ) has the following representation:

ρg(Y ) =

∫ 1

0

γg(u)G−1
Y (u) du =

∫ 1

0

γ(u)G−1(u) du, (2.1)

where the function γg(u) = γ(u) = ∂−g
∂x

∣∣
x=1−u, 0 < u < 1, is called the weight function of

the distortion risk measure ρg and satisfies
∫ 1

0
γg(u) du =

∫ 1

0
γ(u) du = 1, ∂−f

∂x
denotes the

left derivative of a function f , and G−1
Y (α) = G−1(α) = VaRα(Y ) , inf {y : P(Y 6 y) > α}

is the quantile function or the (left-continuous) value-at-risk (VaR) of the distribution GY .
A distortion risk measure with expression (1.5) is also called a spectral risk measure. To
simplify notations, in this chapter, we often omit the subscripts g and Y in γg and G−1

Y (u)
and use the second expression in (1.5) to denote the distortion risk measure ρg(Y ) when g
is absolutely continuous. In this chapter, we impose the following assumption.

Assumption 2.1.1 Assume that the weight function γ in (1.5) satisfies
∫ 1

0
|γ(u)|2 du <∞

and all the random variables considered in the chapter are contained in the L2 space.

In practice, if a decision maker has only partial information on the distribution of a
loss random variable X, the decision maker may use the empirical distribution F̂ of X as a
base estimation of the distribution of X. However, due to observation errors or insufficient
data, the decision maker would believe that the possible distributions of X lie within a
‘range’ of the empirical distribution. Such a range can be represented in different ways.
One of the commonly used ways is to use Wasserstein distance with order 2.

Definition 2.1.1 (Wasserstein Distance) Given two distributions F and G, Wasser-
stein distance between F and G with order 2 is defined as

dW (F, G) ,
(∫ 1

0

|F−1(y)−G−1(y)|2 dy
)1/2

=
(
E[(F−1(U)−G−1(U))2]

)1/2
,

where and throughout this thesis, H−1(α) = inf {x ∈ R : H(x) > α} for 0 < α < 1 is the
quantile function or the (left-continuous) value-at-risk (VaR) of a distribution H, and U
represents a uniform random variable on (0, 1).
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In addition, in this thesis, when we write an integral, we assume this integral is finite. Note
that the Wasserstein distance dW (F,G) is uniquely determined by the quantile functions
of F and G. Hence, we often write dW (F−1, G−1) instead of dW (F,G).

In the context of stop-loss reinsurances, X ∧ d and (X − d)+ are the loss covered by an
insurer and a reinsurer, respectively, where X is the underlying insurance loss faced by an
insurer and d is a (stop-loss) retention. The insurer and reinsurer may have different beliefs
in the distribution of X and may also have different observed data on X. Therefore, with
only partial information onX, both the insurer and reinsurer may use their own uncertainty
sets to describe the possible distributions for X. In this chapter, we define an uncertainty
set via

S(µ, σ, F̂ ; ε) ,
{
F : dW (F, F̂ ) 6 ε, E[XF ] = µ, var(XF ) = σ2

}
, (2.2)

and assume that uncertainty sets of the insurer and reinsurer are

S1 , S(µ1, σ1, F̂ ; ε1) and S2 , S(µ2, σ2, Ĝ; ε2),

respectively. We denote the mean and variance of F̂ (Ĝ) in S1 (S2) by µ̂1 (µ̂2) and σ̂2
1 (σ̂2

2).
In addition, we assume that the insurer and reinsure use distortion functions g1 and g2,
respectively, to measure their own risks.

We point out that the parameters and reference distribution in S(µ1, σ1, F̂ ; ε1) are not
necessarily equal to the corresponding parameters and reference distribution in S(µ2, σ2, Ĝ; ε2).
For instance, even if the insurer and reinsure use the empirical distribution of X as the
reference distributions F̂ and Ĝ, the two reference distributions may be still different since
the available observed data on the underlying insurance loss X to the insurer and reinsurer
may be different.

For any two distributions F and G with means µF and µG and variances σ2
F and σ2

G, it
is easy to see that

(dW (F,G))2 = E[(F−1(U)−G−1(U))2]

= E[(F−1(U))2] + E[(G−1(U))2]− 2E[F−1(U)G−1(U)]

= (µF − µG)2 + σ2
F + σ2

G − 2σF σG corr(F−1(U), G−1(U))

> (µF − µG)2 + (σF − σG)2.

Thus, for i = 1, 2, to guarantee Si to be non-empty, it must hold that
√

(µi − µ̂i)2 + (σi − σ̂i)2 6
εi. To avoid trivial cases, in this chapter, we impose the following assumption on the pa-
rameters in the sets S1 and S2.

Assumption 2.1.2 Assume that the parameters in the sets S1 = S(µ1, σ1, F̂ ; ε1) and S2 =
S(µ2, σ2, Ĝ; ε2) satisfy (µi − µ̂i)2 + (σi − σ̂i)2 6 ε2

i for i = 1, 2.
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We remark that under Assumption 2.1.2, S(µ1, σ1, F̂ ; 0) = {F̂} and S(µ2, σ2, Ĝ; 0) = {Ĝ}
since (µi − µ̂i)2 + (σi − σ̂i)2 6 0 implies that µi = µ̂i and σi = σ̂i for i = 1, 2. In the rest
of the chapter, we first solve the following optimization problems in Sections 2.2 and 2.3:

sup
F∈S1

ρg1
(
XF ∧ d

)
(2.3)

sup
G∈S2

ρg2
(
(XG − d)+

)
, (2.4)

and try to find distributions F ∗ ∈ S1 and distributions G∗ ∈ S2 such that supF∈S1 ρ
g1
(
XF ∧

d
)

= ρg1
(
XF ∗ ∧ d

)
and supG∈S2 ρ

g2
(
(XG − d)+

)
= ρg2

(
(XG∗ − d)+

)
. We then consider the

applications of these results in Section 2.4. To make solutions to these problems feasible, in
this chapter, we assume that the distortion functions g1 and g2 are absolutely continuous.
Thus, the expressions in (1.5) apply for ρg1 and ρg2 .

Other than that, selecting appropriate sizes of the uncertainty set, namely the values
of ε1 and ε2, is another substantial topic in this field. Just as [Blanchet et al., 2022] point
out, an uncertainty set that is too large can eliminate the significance of the reference
distribution at its center, while an excessively small uncertainty set can lack robustness in
terms of decision making. Also, the determination of εi, i = 1, 2, should be driven by data.
In this sense, we would recommend a tentative εi selecting criteria that follows:

ε1 6 C1 · ε̃1,

ε2 6 C2 · ε̃2,

where ε̃1 = dW (F̂ , F̃ ), F̃ being the empirical distribution of the true underlying risk in the
insurer’s opinion and the notations are similar for the reinsurer. This criteria should
be combined with Assumption 2.1.2 when specifying the parameters εi, i = 1, 2. We
recommend taking Ci ∈ [1, 2] for i = 1, 2, to accommodate for the principles given in
the previous paragraph. In particular, with Ci > 1, the empirical distributions for each
party will fall inside their individual uncertainty sets, in case the empirical distributions
are in fact accurate estimations to the true distribution. A suitable selection of Ci should
also tolerant errors brought by biased data, and that is why Ci should be larger than 1.
But Ci > 2 can substantially exaggerate the model risk by allowing too many irrelevant
distribution candidates into the decision makers’ account.

Due to the incompleteness of the information regarding the decision makers’ data ac-
curacy, estimation process and other factors that can affect their assumptions, we only
give such recommendations instead of specifications of the parameters εi. The decision
makers should adjust the size of their uncertainty sets to meet their own needs. Gener-
ally speaking, the uncertainty sets should be smaller when the decision makers have more

17



available data points and hence smoother empirical distributions, since the Wasserstein
distance between the empirical distribution and the true distribution converges to 0 at a
convergence rate of O(n−1), according to [Blanchet et al., 2022].

Since the choices of εi depend on the empirical distributions, F̃ and G̃, which are the
unbiased and consistent estimators of the distribution of the underlying loss random and
are random, the choices of εi will be a “random process”. Furthermore, with the empirical
distributions evolving with the accumulation of information, we will obtain empirical dis-
tribution series {F̃n} and {G̃n}. Hence the choices of εi’ will be a stochastic process. That
is another interesting topic that we will explore in the future research.

2.2 Worst-case risk measures of the limited loss ran-

dom variable

In this section, we focus on problem (2.3) with limited loss random variable. Throughout
this section, γg1 = γ1 is the weight function in expression (1.5) for ρg1 . Define Q1 to be the
set containing all the quantile functions whose corresponding distributions belong to S1.
That is,

Q1 =
{
F−1 : F ∈ S1

}
=
{
F−1 : dW (F−1, F̂−1) 6 ε1, E[XF ] = µ1, var(XF ) = σ2

1

}
.

Meanwhile, for any d > 0, define Qd1 to be the following set of quantile functions:

Qd1 =
{
G−1 : dW (G−1, F̂−1 − d) 6 ε1, E[XG] = µ1 − d, var(XG) = σ2

1

}
.

Lemma 2.2.1 For a given d > 0, it holds that

sup
F∈S1

ρg1(XF ∧ d) = d+ sup
G−1∈Qd1

ρg1(G−1(U) ∧ 0). (2.5)

Proof. First we recall a well-know result that for any quantile function F−1, the random
variable F−1(U) has the distribution F . Therefore, by using the law-invariance property
of distortion risk measures, we can write problem (2.3) as

sup
F∈S1

ρg1
(
XF ∧ d

)
= sup

F∈S1
ρg1
(
F−1(U) ∧ d

)
= sup

F−1∈Q1

ρg1
(
F−1(U) ∧ d

)
. (2.6)

Now, for any F−1 ∈ Q1, we can define quantile function G−1 as G−1(u) = F−1(u) − d,
u ∈ (0, 1). Note that for any distributions F and G and any constant a, dW (F−1+a,G−1) =
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dW (F−1, G−1−a). Thus, dW (G−1, F̂−1−d) = dW (G−1+d, F̂−1) = dW (F−1, F̂−1) 6 ε1. To-
gether with facts E[G−1(U)] = E[F−1(U)]− d = µ1− d and var(G−1(U)) = var(F−1(U)) =
σ2

1, we get G−1 ∈ Qd1. Furthermore, note that for any x, y ∈ R, x ∧ y = (x − y) ∧ 0 + y.
Thus, by the cash-invariant property of distortion risk measures, we have

ρg1
(
F−1(U) ∧ d

)
= ρg1((F−1(U)− d) ∧ 0) + d = ρg1

(
G−1(U) ∧ 0

)
+ d.

Conversely, for any G−1 ∈ Qd1, we define quantile F−1 as F−1(u) = G−1(u) + d, u ∈
(0, 1). Hence, dW (F−1, F̂−1) = dW (G−1 + d, F̂−1) = dW (G−1, F̂−1 − d) 6 ε1, E[XF ] =
E[F−1(U)] = E[G−1(U) + d] = µ1, and var(XF ) = var(G−1(U) + d) = σ2

1, which mean that
F ∈ Q1. Moreover, by using x ∧ y = (x − y) ∧ 0 + y and the cash-invariant property of
distortion risk measures again, we have ρg1 (G−1(U) ∧ 0)+d = ρg1 (F−1(U) ∧ d) . Therefore,

sup
F−1∈Q1

ρg1
(
F−1(U) ∧ d

)
= sup

F−1∈Qd1

(
ρg1
(
G−1(U) ∧ 0

)
+ d
)

= d+ sup
F−1∈Qd1

ρg1
(
G−1(U) ∧ 0

)
,

which, together with (2.6), implies that (2.5) holds.

As a consequence of Lemma 2.2.1, the problem (2.3) is reduced to the following problem

sup
G−1∈Qd1

ρg1
(
G−1(U) ∧ 0

)
, (2.7)

which means that F ∗ is a maximizer to the problem (2.3) over S1 if and only if F ∗−1 is a
maximizer to the problem (2.7) over Q1. To solve the problem (2.7) and simplify notations,
for any given β ∈ [0, 1], we define

γ1,β(u) , γ1(u) I[0,β](u), u ∈ (0, 1), (2.8)

where and throughout this chapter, IA is an indicator function, which means that IA(u) = 1
if u ∈ A and 0 otherwise. Furthermore, we define L0 as a function of β ∈ [0, 1] and a
quantile function F−1 with

L0(β, F−1) ,
∫ 1

0

γ1,β(u)F−1(u) du. (2.9)

In addition, for the weight function γ1 of the distortion risk measure ρg1 , we define constant
α1 as follows: If γ1(u) > 0 on an open interval (0, δ) for some 0 < δ < 1, define α1 , 0,
otherwise, define

α1 , sup
{

0 < u < 1 :

∫ u

0

γ1(t) dt = 0
}
. (2.10)
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Note that a distortion function is increasing. Thus, for an absolutely continuous distortion
function g1, we know that 0 6 α1 < 1, γ1(u) > 0 on (0, 1), and γ1(u) = 0 on (0, α1] almost
everywhere.

In addition, since for any distribution F , the distribution of the random variable F−1(U)
is equal to F , and x ∧ 0 is an increasing function in x, by the invariance property of the
VaR on an increasing transform, we have for any u ∈ (0, 1),

VaRu(F
−1(U) ∧ 0) = VaRu(F

−1(U)) ∧ 0 = F−1(u) ∧ 0, (2.11)

which means that the quantile function of the random variable F−1(U) ∧ 0 is F−1(u) ∧
0 for 0 < u < 1. By the monotonicity of a distortion risk measure, it holds that
ρg1 (G−1(U) ∧ 0) 6 0 for any quantile function G−1. Thus, for any absolutely continu-
ous distortion function g1, if a quantile function G−1 ∈ Qd1 satisfies G−1(u) > 0 for any
u ∈ (α1, 1), then by (1.5), (2.11), and the definition of α1, we have ρg1(G−1(U) ∧ 0) =∫ α1

0
γ1(u) (G−1(u) ∧ 0) du +

∫ 1

α1
γ1(u) (G−1(u) ∧ 0) du = 0. To avoid such trivial cases, we

impose the following assumption in this section.

Assumption 2.2.1 Assume that sup
G−1∈Qd1

ρg1 (G−1(U) ∧ 0) < 0 in (2.7) for a given d > 0.

Lemma 2.2.2 For any quantile function F−1, it holds that

ρg1(F−1(U) ∧ 0) = min
β∈[α1,1]

L0(β, F−1) = L0(F (0), F−1). (2.12)

In particular, if F (0) 6 α1, then ρg1(F−1(U) ∧ 0) = 0. Moreover, for any d > 0, if
Assumption 2.2.1 holds, then for all F−1 ∈ Qd1, it must hold that F (0) > α1.

Proof. Note that for a (left-continuous) quantile function F−1, it holds that for any
0 < u < 1, u 6 F (x)⇐⇒ F−1(u) 6 x, and F (x) < u⇐⇒ x < F−1(u). Therefore, we have{

F−1(u) 6 0, for 0 < u 6 F (0),

F−1(u) > 0, for F (0) < u < 1.
(2.13)

By (2.9) and (2.8), we have

L0(β, F−1) =

∫ 1

0

γ1,β(u)F−1(u) du =

∫ β

0

γ1(u)F−1(u) du. (2.14)
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Since γ1(u) is non-negative on (0, 1) and L0(β, F−1) is continuous in β ∈ [0, 1], we see
by (2.13) and (2.14) that L0(β, F−1) 6 0 and it decreases in β ∈ [0, F (0)]. Moreover,
L0(β, F−1) increases in β ∈ (F (0), 1]. Hence, min06β61 L0(β, F−1) is attainable at β =
F (0), which means that

min
06β61

L0(β, F−1) = L0(F (0), F−1) 6 0. (2.15)

By the definition of α1, we have γ1(u) = 0 on (0, α1] almost everywhere. Thus, by (2.14),
we have

L0(β, F−1) = L0(α1, F
−1) = 0, for any 0 6 β 6 α1. (2.16)

It follows from (2.15) and (2.16) that

min
06β61

L0(β, F−1) = min
α16β61

L0(β, F−1) = L0(F (0), F−1) 6 0,

which, together with (1.5), (2.11), and (2.13), implies that

ρg1(F−1(U) ∧ 0) =

∫ 1

0

γ1(u)
(
F−1(u) ∧ 0

)
du =

∫ F (0)

0

γ1(u)F−1(u) du

= L0(F (0), F−1) = min
β∈[α1,1]

L0(β, F−1) 6 0. (2.17)

Hence, (2.12) holds. In particular, if F (0) 6 α1, by (2.17) and (2.16), we have ρg1(F−1(U)∧
0) = 0. Moreover, for any d > 0, if there exists a quantile function F−1 ∈ Qd1 with
F (0) 6 α1, then by what we just proved, we have ρg1(F−1(U) ∧ 0) = 0, which yields
supF−1∈Qd1 ρ

g1(F−1(U) ∧ 0) > 0, a contradiction of Assumption 2.2.1. Thus, F (0) > α1.

By Lemma 2.2.2, for a given d > 0, we have

sup
F−1∈Qd1

ρg1(F−1(U) ∧ 0) = sup
F−1∈Qd1

min
β∈[α1,1]

L0(β, F−1) 6 inf
β∈[α1,1]

sup
F−1∈Qd1

L0(β, F−1), (2.18)

where the inequality holds since sup
F−1∈Qd1

min
β∈[α1,1]

L0(β, F−1) 6 sup
F−1∈Qd1

L0(β, F−1) for any β ∈

[α1, 1]. Throughout this section, for a given d > 0, we denote the inf-sup value in (2.18)
by B = B(d), namely

B = B(d) = inf
β∈[α1,1]

sup
F−1∈Qd1

L0(β, F−1). (2.19)
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The value B is an upper bound for supF−1∈Qd1 ρ
g1(F−1(U)∧ 0) in (2.18). We first solve the

inf-sup problem in (2.19) and obtain an expression for B and then show that the upper
bound B is equal to supF−1∈Qd1 ρ

g1(F−1(U) ∧ 0) in (2.18) under some conditions.

To solve the inf-sup problem in (2.19), we first consider the inner optimization problem
in (2.19), namely, consider the problem supF−1∈Qd1 L0(β, F−1) for a fixed β ∈ [α1, 1]. Note

that for β > α1 the L1-norm of γ1,β is positive, i.e., ‖γ1,β‖1 =
∫ 1

0
γ1,β(u) du > 0. Hence,

the following function is well-defined:

g̃1,β(t) = 1−
∫ 1−t

0

γ1,β(u)

‖γ1,β‖1

du, for t ∈ [0, 1]. (2.20)

It is easy to see that g̃1,β is absolutely continuous, non-decreasing, g̃1,β(0) = 0, and g̃1,β(1) =
1. Thus, g̃1,β is a well-defined distortion function and its corresponding distortion risk

measure is denoted by ρg̃1,β . By using (1.5) and noticing that
∂−g̃1,β(t)

∂t
=

γ1,β(1−t)
‖γ1,β‖1

almost

everywhere on t ∈ (0, 1), we have

ρg̃1,β(XF ) =

∫ 1

0

γ1,β(u)

‖γ1,β‖1

F−1(u) du =
1

‖γ1,β‖1

L0(β, F−1), (2.21)

where ‖γ1,β‖1 depends on β only. Therefore, for a fixed β ∈ [α1, 1], the problem supF−1∈Qd1 L0(β, F−1)

is reduced to the problem supF−1∈Qd1 ρ
g̃1,β(XF ), and maximizers to supF−1∈Qd1 L0(β, F−1) are

the same as those to supF−1∈Qd1 ρ
g̃1,β(XF ), which will be solved by applying Theorem 2 of

[Bernard et al., 2020b]. For a convenient reference, Theorem 2 of [Bernard et al., 2020b] is
restated as Lemma 2.6.1 in the appendix of our chapter. In doing so, we recall the concept
of isotonic projection. Let

K =
{
k : (0, 1) 7→ R

∣∣∣ ∫ 1

0

k(u)2 du <∞, k(u) is a non-decreasing function on (0, 1)
}

(2.22)
be the space of square-integrable and non-decreasing functions on (0, 1). Denote the iso-
tonic projection of a function γ ∈ L2(0, 1) onto K as k↑γ = arg mink∈K ||γ − k||2, where
|| · ||2 denotes the L2 norm. Note that K is a non-empty closed convex set and the isotonic
projection k↑γ uniquely exists for any k ∈ K. See, for example, [Németh, 2003] for detailed
discussions and properties of isotonic projections.

Before moving on, we introduce new notation. For λ > 0 and β ∈ [α1, 1], let `↑β,λ be

the isotonic projection of γ1,β + λF̂−1, i.e.,

`↑β,λ = arg min
`∈K

||`− γ1,β − λF̂−1||2. (2.23)
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Roughly speaking the isotonic projection `↑β,λ is the best approximation to the function

γ1,β + λF̂−1 among all the square-integrable and non-decreasing functions on (0, 1) under

the L2 norm, in the sense that it has the largest correlation with γ1,β + λF̂−1.

Assumption 2.2.2 Assume that the isotonic projection `↑β,λ defined in (2.23) is not con-
stant for any λ > 0 and any β ∈ (α1, 1].

Now, we are ready to present and prove the following Theorem 2.2.3, which is the first
main result in this section. To do so, we define constants c1,β as

c1,β , corr(F̂−1(U), `↑β,0(U)). (2.24)

In addition, for any β ∈ [α1, 1] and λ > 0, let aβ,λ = E
[
`↑β,λ(U)

]
and bβ,λ =

√
var(`↑β,λ(U)),

and let F−1
β,λ(u) for 0 < u < 1 be a quantile function defined as

F−1
β,λ(u) =

µ1 + σ1

(
`↑β,λ(u)−aβ,λ

bβ,λ

)
, if bβ,λ > 0,

µ1, if bβ,λ = 0.
(2.25)

Theorem 2.2.3 Suppose Assumptions 2.2.1 and 2.2.2 hold. Then, there exist β0 ∈ [α1, 1]
and λ0 > 0 satisfying

inf
β∈[α1,1]

sup
F−1∈Qd1

L0(β, F−1) = L0(β0, F
−1
β0,λ0
− d), (2.26)

where L0 is defined in (2.14) and F−1
β0,λ0

is defined by (2.25). Furthermore,

β0 = arg min
β∈[α1,1]

{
‖γ1,β‖1 ρ

g̃1,β(F−1
β,λβ

(U)− d)
}
, (2.27)

and λ0 = λβ0, where, for any β ∈ [α1, 1], the following statements hold:

(i) If

(µ̂1 − µ1)2 + (σ̂1 − σ1)2 < ε2
1 < (µ̂1 − µ1)2 + (σ̂1 − σ1)2 + 2σ1σ̂1(1− c1,β), (2.28)

then λβ > 0 is the unique solution to the equation dW (F̂−1, F−1
β,λ) = ε1 for λ ∈ (0,∞).
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(ii) If
(µ̂1 − µ1)2 + (σ̂1 − σ1)2 + 2σ1σ̂1(1− c1,β) 6 ε2

1, (2.29)

then λβ = 0. Moreover, if `↑β,0 is non-constant, then F−1
β,0−d ∈ Qd1; if `↑β,0 is constant,

then F−1
β,0 − d = µ1 − d /∈ Qd1.

Proof. We first show that the value B defined in (2.19) is achieved at some β0 ∈ [α1, 1].
Write L̄0(β) , supF−1∈Qd1 L0(β, F−1). Then, for any β1 ∈ [α1, 1] and any x < L̄0(β1),

there exists a quantile function F−1
1 ∈ Qd1 such that x < L0(β1, F

−1
1 ). Since L0(β, F−1

1 ) =∫ β
0
γ1(u)F−1

1 (u) du is continuous in β ∈ [α1, 1], there is an open neighbourhood I ⊂ [α1, 1]
with β1 ∈ I such that x < L0(β, F−1

1 ) for all β ∈ I. Therefore x < L0(β, F−1
1 ) 6

supF−1∈Qd1 L0(β, F−1) = L̄0(β) for all β ∈ I. Hence, L̄0(β) is lower semicontinuous.1

By (2.19), B = infβ∈[α1,1] L̄0(β). Thus, there is a sequence {βn} ⊂ [α1, 1] such that
L̄0(βn) ↓ B as n→∞. Without loss of generality, we assume βn → β0 for some β0 ∈ [α1, 1]
(indeed, there is a subsequence of {βn} such that the subsequence converges to some
β0 ∈ [α1, 1] since {βn} is a bounded sequence). Hence, B 6 L̄0(β0) 6 limn→∞ L̄0(βn) = B,
where the second inequality comes from the lower semicontinuity of L̄0. Thus, B = L̄0(β0),
i.e., the value B is achieved at β0. Therefore, we have

B = L̄0(β0) = sup
F−1∈Qd1

L0(β0, F
−1) = min

β∈[α1,1]
sup

F−1∈Qd1

L0(β, F−1). (2.30)

Note that the distortion function g̃1,β in (2.20) of the distortion risk measure ρg̃1,β is
undefined when β = α1 since ‖γ1,α1‖1 = 0. Now, in the following proof, we define ρg̃1,α1 as
a mapping such that ρg̃1,α1 (X) = 0 for any random variable X. Thus, (2.21) implies for
any F−1 ∈ Qd1,

L0(β, F−1) = ‖γ1,β‖1 ρ
g̃1,β(XF ) (2.31)

holds for any β ∈ [α1, 1] since L0(α1, F
−1) = 0 for F−1 ∈ Qd1 by (2.16). Hence, by (2.30),

we have

B = min
β∈[α1,1]

{
‖γ1,β‖1 sup

F−1∈Qd1

ρg̃1,β(XF )
}
. (2.32)

For any β ∈ (α1, 1] and λ > 0, denote

˜̀↑
β,λ,d = arg min

`∈K

∥∥∥`− γ1,β

‖γ1,β‖1

− λ(F̂−1 − d)
∥∥∥

2
, (2.33)

1A function f : [0,∞] 7→ [−∞,+∞] is lower semincontinuous at a point d ∈ [0,∞] if for every y < f(d)
there exists a neighborhood I of d such that f(x) > y for all x ∈ I. Equivalently, f is lower semincontinuous
at d if and only if lim infx→d f(x) > f(d).
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with ãβ,λ,d = E[˜̀↑β,λ,d(U)] and b̃β,λ,d =
√

var(˜̀↑
β,λ,d(U)). For a fixed β ∈ (α1, 1] and d > 0,

it is easy to verify that for any λ > 0,

˜̀↑
β,λ,d =

1

‖γ1,β‖1

(
arg min

`∈K

∥∥∥`− γ1,β − λ‖γ1,β‖1 F̂
−1
∥∥∥

2

)
− λd =

1

‖γ1,β‖1

`↑β,λ‖γ1,β‖1 − λd.

(2.34)

For any random variables X1 and X2 and any constants a1 > 0, b1, a2 > 0, b2, we
have corr(a1X1 + b1, a2X2 + b2) = corr(X1, X2). Hence, corr(F̂−1(U), `↑β,λ‖γ1,β‖1(U)) =

corr(F̂−1(U)−d, ˜̀↑
β,λ,d) for any β ∈ (α1, 1]. Thus, by (2.24), c1,β = corr(F̂−1(U), `↑β,0(U)) =

corr(F̂−1(U) − d, ˜̀↑
β,0,d(U)). Meanwhile, by (2.34), we see that ˜̀↑

β,λ,d is a constant if and

only if `↑β,λ‖γ1,β‖1 is a constant. When b̃β,λ,d > 0, we have (˜̀↑
β,λ,d(u) − ãβ,λ,d)/b̃β,λ,d =

(`↑β,λ‖γ1,β‖1(u)− aβ,λ‖γ1,β‖1)/bβ,λ‖γ1,β‖1 for 0 < u < 1. Therefore, under Assumption 2.2.2, we

conclude the following results by applying Lemma 2.6.1 to the problem supF−1∈Qd1 ρ
g̃1,β(XF )

in (2.32) for a given β ∈ (α1, 1]:

(i) Assume that (2.28) holds. Then the maximizer F ∗−1
β,λβ
∈ Qd1 to sup

F−1∈Qd1

ρg̃1,β(XF ) is

unique with F ∗−1
β,λβ

= F−1
β,λβ
− d, where F−1

β,λβ
is defined in (2.25) and λβ > 0 is the

unique positive solution to the equation dW (F̂−1, F−1
β,λ) = ε1 for λ ∈ (0,∞).

(ii) Assume that (2.29) holds. Then λβ = 0. Moreover, if ˜̀↑
β,0,d is not a constant, i.e., `↑β,0

is not a constant, then the maximizer F ∗−1
β,0 to supF−1∈Qd1 ρ

g̃1,β(XF ) is unique with

F ∗−1
β,0 = F−1

β,0 − d ∈ Qd1, where F−1
β,0 is defined in (2.25).

On the other hand, if ˜̀↑
β,0,d is a constant, i.e., `↑β,0 is a constant, then the maximizer

F ∗−1
β,0 to supF−1∈Qd1 ρ

g̃1,β(XF ) is F ∗−1
β,0 = F−1

β,0 − d = µ1 − d /∈ Qd1 and the supremum

supF−1∈Qd1 ρ
g̃1,β(XF ) is not attained in Qd1.

Consequently, by (2.30) and (2.32), we have

B = B(d) = min
β∈[α1,1]

L0(β, F−1
β,λβ
− d) = L0(β0, F

−1
β0,λβ0

− d) = ‖γ1,β0‖1 ρ
g̃1,β0 (F−1

β0,λβ0
(U)− d)

= min
β∈[α1,1]

{
‖γ1,β‖1 ρ

g̃1,β(F−1
β,λβ

(U)− d)
}

and L0(β0, F
−1
β0,λβ0

− d) = sup
F−1∈Qd1

L0(β0, F
−1). If (2.28) holds, then λ0 , λβ0 > 0 is the

unique positive solution to the equation dW (F̂−1, F−1
β0,λ

) = ε1 for λ ∈ (0,∞); if (2.29)
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holds, then λ0 , λβ0 = 0. Moreover, if (2.29) holds, λβ = 0 for any β ∈ [α1, 1] in (2.27)
and

B = B(d) = ‖γ1,β0‖1 ρ
g̃1,β0 (F−1

β0,0
(U)− d) = min

β∈[α1,1]

{
‖γ1,β‖1 ρ

g̃1,β(F−1
β,0(U)− d)

}
. (2.35)

Thus, we complete the proof.

Theorem 2.2.3 solves the inf-sup problem (2.19), gives the expression of the inf-sup
value B that is the upper bound of the worst-case risk measure in (2.18), and characterizes
the quantile function under which the upper bound can be attained. More importantly,
with Theorem 2.2.3, one reduces the infinite-dimensional optimization problem (2.19) to
the one-dimensional optimization problem (2.27). Especially, the parameters β0 and λ0 of
the worst-case quantile function F−1

β0,λ0
in Theorem 2.2.3 can be obtained by solving the

one-dimensional optimization problem (2.27). Now, we show in the following Theorem
2.2.4 that the inf-sup value B in (2.19) is indeed equal to the worst-case risk measure in
(2.18). The proof of Theorem 2.2.4 is given in Appendix 2.6.

Theorem 2.2.4 Suppose Assumptions 2.2.1 and 2.2.2 hold, and ‖γ‖∞ <∞. If ε2
1 < (µ̂1−

µ1)2 +(σ̂1−σ)2 +2σσ̂1(1−c1,β) for all σ 6 σ1 and β ∈ [α1, 1], then the worst-case risk mea-
sure supF−1∈Qd1 ρ

g1(F−1(U)∧0) in (2.18) and the inf-sup value infβ∈[α1,1] supF−1∈Qd1 L0(β, F−1)

in (2.18) are equal. Moreover, the distribution of the quantile function F−1
β0,λ0

given in The-
orem 2.2.3 is the maximizer to the problem (2.3).

In the following, we use the distortion risk measure TVaR as an example to illustrate
results of Theorem 2.2.4. Later, in Section 2.4 we provide more applications of these results
by using TVaR.

Example 1 (Worst-case values of TVaR of the limited loss random variable) In
Theorems 2.2.4, suppose ρg1 = TVaRp1 for some 0 < p1 < 1. That is, for a random variable
X,

TVaRp1(X) =
1

1− p1

∫ 1

p1

VaRq(X) dq =
1

1− p1

∫ 1

p1

F−1(q) dq.

The distortion function of the TVaRp1 is g1(u) = min{ u
1−p1 , 1}. Thus, γ1(u) = ∂−g1

∂x
|x=1−u =

1
1−p1 I(p1,1](u) and α1 = p1, where α1 is defined in (2.10). For any β ∈ (α1, 1], we have

γ1,β(u) = 1
1−α1

I(α1,β](u) = β−α1

1−α1
γ̃1,β(u) for 0 6 u 6 1, where γ̃1,β = 1

β−α1
I(α1,β]. Note that

β−α1

1−α1
= ‖γ1,β‖1 and

g̃1,β(t) = 1−
∫ 1−t

0

γ̃1,β(u) du = 1−
∫ 1−t

0

1

β − α1

I(α1,β](u) du
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is the distortion function of Range Value-at-Risk (RVaR) with levels α1 and β, denoted
by RVaRα1,β. In fact, for any random variable X with quantile function F−1, if β > α1,

RVaRα1,β(X) = 1
β−α1

∫ β
α1
F−1(q) dq. From Proposition 1 of [Bernard et al., 2020b], for any

β ∈ (α1, 1],

sup
F−1∈Qd1

RVaRα1,β(F−1(U)) =
1

β − α1

∫ β

α1

F−1
β,λβ

(u) du, (2.36)

where F−1
β,λβ

has the expression given in (2.25) with

`↑β,λβ(u) =


λβF̂

−1(u), 0 < u 6 α1,
1

β−α1
+ λβF̂

−1(u), α < u 6 wβ,0,

cβ, wβ,0 < u 6 wβ,1,

λβF̂
−1(u), wβ,1 < u < 1,

and wβ,0, wβ,1 and cβ with α1 6 wβ,0 6 β 6 wβ,1, cβ <∞, satisfy

λβF̂
−1(w0) =

{
cβ − 1

β−α1
, if 1

β−α1
6 cβ − λβF̂−1(α1),

λβF̂
−1(α1), otherwise,

λβF̂
−1(w1) =

{
λβF̂

−1(1), if cβ > λβF̂
−1(1),

cβ, otherwise,

cβ =
1

wβ,1 − wβ,0

(β − wβ,0
β − α1

)
+

λβ
wβ,1 − wβ,0

∫ wβ,1

wβ,0

F̂−1(u) du.

By (2.26), (2.32), and (2.36), we see that

L0(β0, F
−1
β0,λ0
− d) = min

α16β61

{ 1

1− α1

∫ β

α1

F−1
β,λβ

(u) du
}
, (2.37)

which means that β0 and λβ0 can be obtained by solving the minimization problem in (2.37).
To illustrate the application of expression (2.37) in determining β0 and λ0, we assume that
the sets Q1 and S1 have the following settings: F̂ (x) = 1 − ( 12

x+12
)4, x > 0; µ1 = µ̂1 = 4;

σ1 = σ̂1 = 4
√

2; ε1 = 2, i.e., the reference distribution F̂ is a Pareto distribution. In
addition, take TVaRp1 with p1 = 0.9. In Figure 2.1, we plot the worst-case quantile function
F−1
β0,λ0

of the limited loss X ∧ d under the settings. When d = 15, we obtained that β0 =

0.9967, λ0 = 0.7315, wβ0,0 = 0.9944, wβ0,1 = 0.9981, and supF−1∈Q1
TVaR0.9(XF ∧ 15) =
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Figure 2.1: Worst-case quantile of the limited loss with d = 15 and d = 20

TVaR0.9(XFβ0,λ0 ∧ 15) = 15. When d = 20, we obtained that β0 = 0.9270, λ0 = 0.3406,
wβ0,0 = 0.9000, wβ0,1 = 0.9858, and supF−1∈Q1

TVaR0.9(XF∧20) = TVaR0.9(XFβ0,λ0∧20) =
18.2269. In addition, for d = 15, the worst-case quantile function F−1

β0,λ0
(u) of the limited

loss X ∧ 15 jumps upward at p1(= 0.9) and across the value 15 that is the worst-case
value of the TVaR in this case, which means that the worst-case distribution Fβ0,λ0 is a
mixture distribution. For d = 20, the worst-case quantile function F−1

β0,λ0
(u) of the limited

loss X ∧ 20 jumps upward at p1(= 0.9) as well and across the value 18.2269 that is the
worst-case value of the TVaR in this case, and F−1

β0,λ0
(u) is flat from p1(= 0.9) to a value

close to 1, which means that the worst-case distribution Fβ0,λ0 is a mixture distribution and
is flat from p1(= 0.9) to a value close to 1. We point out that all the numerical results
in this example and in Sections 2.3 and 2.4 are produced by using “fminbnd”, a built-in
function within Matlab. �

2.3 Worst-case risk measures of the stop-loss random

variable

In this section, we solve problem (2.4) and find the worst-case distribution G∗ for the stop-
loss random variable (X − d)+ under the distortion risk measure ρg2 . For simplicity, write
γ2 = γg2 which is the weight function in the expression (1.5) for ρg2 . Similarly to Section
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2.2, we define:

Q2 =
{
G−1 : G ∈ S2

}
=
{
G−1 : dW (G, Ĝ) 6 ε2, E[XG] = µ2, var(XG) = σ2

2

}
,

Qd2 =
{
K−1 : dW (K−1, Ĝ−1 − d) 6 ε1, E[K−1(U)] = µ2 − d, var(K−1(U)) = σ2

2

}
, for any d > 0.

In addition, for the weight function γ2, define constant α2 as follows: α2 , 1 if γ2(u) > 0
in a neighbourhood of 1, i.e., γ2 > 0 holds on some interval (δ, 1), 0 < δ < 1, and

α2 , inf
{

0 < u < 1 :

∫ 1

u

γ2(t) dt = 0
}
, (2.38)

otherwise. Note that 0 < α2 6 1 for an absolutely continuous distortion function g2. For
any given β ∈ [0, α2], define γ2,β(u) , γ2(u) I(β,1](u) for u ∈ (0, 1). For any β ∈ [0, 1] and
quantile function G−1, define

H0(β, G−1) =

∫ 1

0

γ2,β(u)G−1(u) du. (2.39)

Lemma 2.3.1 For a given d > 0, the problem (2.4) has the following equivalent expression:

sup
G∈S2

ρg2
(
(XG − d)+

)
= sup

β∈[0,α2]

sup
K−1∈Qd2

H0(β,K−1). (2.40)

Proof. By (1.5) and the invariance property of the VaR on the increasing function (x−d)+,
we have for any G ∈ S2,

ρg2
(
(XG − d)+

)
=

∫ 1

0

γ2(u)(G−1(u)− d)+ du =

∫ 1

G(d)

γ2(u)(G−1(u)− d) du. (2.41)

Furthermore, takeK−1 = G−1−d ∈ Qd2 and get ρg2
(
(XG − d)+

)
=
∫ 1

0
γ2(u)(K−1(u))+ du =

ρg2 ((K−1(U))+). Reversely, for any K−1 ∈ Qd2, define G−1 = K−1 + d. Clearly, G ∈ S2

satisfies the above equation. Hence,

sup
G∈S2

ρg2
(
(XG − d)+

)
= sup

K−1∈Qd2

ρg2
(
(K−1(U))+

)
. (2.42)

For any K−1 ∈ Qd2, by (2.13), we have K−1(u) 6 0 for 0 < u 6 K(0), and K−1(u) > 0 for
K(0) < u < 1. Applying arguments similar to those for (2.17), we further have

ρg2
(
(K−1(U))+

)
=

∫ 1

0

γ2(u)(K−1(u))+ du = max
β∈[0,α2]

∫ 1

β

γ2(u)K−1(u) du = max
β∈[0,α2]

H0(β,K−1).
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By taking the supremum over the uncertainty set Qd2 on both sides of the above equation,
one can re-write problem (2.42) as

sup
K−1∈Qd2

ρg2
(
(K−1(U))+

)
= sup

K−1∈Qd2

max
β∈[0,α2]

H0(β,K−1). (2.43)

The equation (2.40) follows consequently.

Lemma 2.3.1 transfers the problem (2.4) to the double supremum problem (2.40), which
can be solved by using the same way as the inf-sup problem (2.19). In doing so, for λ > 0
and β ∈ [0, α2], let k↑β,λ be the isotonic projection of γ2,β + λĜ−1 onto K, i.e.,

k↑β,λ = arg min
`∈K

||k − γ2,β − λĜ−1||2. (2.44)

Assumption 2.3.1 Assume that the isotonic projection k↑β,λ defined in (2.44) is not con-
stant for any λ > 0 and any β ∈ [0, α2).

For any β ∈ [0, α2], denote c2,β by c2,β , corr(Ĝ−1(U), k↑β,0(U)). In addition, for any

β ∈ [0, α2] and λ > 0, let mβ,λ = E
[
k↑β,λ(U)

]
and vβ,λ =

√
var(k↑β,λ(U)). We define the

quantile function G−1
β,λ(u), 0 < u < 1, as

G−1
β,λ(u) =

µ2 + σ2

(
k↑β,λ(u)−mβ,λ

vβ,λ

)
, if vβ,λ > 0

µ2, if vβ,λ = 0.
(2.45)

Theorem 2.3.2 Suppose Assumption 2.3.1 holds. Then

sup
G∈S2

ρg2
(
(XG − d)+

)
= sup

β∈[0,α2]

H0(β,G−1
β,λβ
− d), (2.46)

where G−1
β,λβ

is defined in (2.45). Furthermore, the following statements hold:

(i) If (µ̂2−µ2)2 +(σ̂2−σ2)2 < ε2
2 < (µ̂2−µ2)2 +(σ̂2−σ2)2 +2σ2σ̂2(1−c2,β), then λβ is the

unique solution to the equation dW (Ĝ−1, G−1
β,λ) = ε2 for λ ∈ (0,∞) and G−1

β,λβ
∈ Q2.

(ii) If ε2
2 > (µ̂2−µ2)2 + (σ̂2−σ2)2 + 2σ2σ̂2(1− c2,β), then λβ = 0. If k↑β,0 is non-constant,

then G−1
β,0 ∈ Q2. If k↑β,0 is a constant, then G−1

β,0 = µ2 /∈ Q2.
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Proof. Note that for any K−1 ∈ Qd2, define G−1 = K−1 + d. Thus, G−1 ∈ Q2 and

H0(β,K−1) =
∫ 1

0
γ2,β(u)K−1(u) du =

∫ 1

0
γ2,β(u)(G−1(u) − d) du in (2.40) has the same

structure as L0(β, F−1) =
∫ 1

0
γ1,β(u)(F−1(u) − d) du in (2.26). By changing F−1 and γ1,β

to G−1 and γ2,β, respectively, in the proof of Theorem 2.3.2 for (2.31), we easily see that
for any K−1 ∈ Qd2,

H0(β,K−1) = ‖γ2,β‖1 ρ
g̃2,β(XK), (2.47)

where

g̃2,β(t) = 1−
∫ 1−t

0

γ2,β(u)

‖γ2,β‖1

du, for t ∈ [0, 1]. (2.48)

is a distortion function and ‖γ2,β‖1 =
∫ 1

0
γ2,β(u) du > 0 for any β ∈ [0, α2) and g̃2,α2(t) = 0

for any t ∈ [0, 1]. Therefore, by (2.40) and (2.47), we have

sup
G∈S2

ρg2
(
(XG − d)+

)
= sup

β∈[0,α2]

sup
K−1∈Qd2

H0(β,K−1) = sup
β∈[0,α2]

{
‖γ2,β‖1 sup

K−1∈Qd2

ρg̃2,β(XK)
}
.

(2.49)
Then, by applying Lemma 2.6.1 to the problem supK−1∈Qd2 ρ

g̃2,β(XK) and using the argu-

ments similar to those after (2.32) in Theorem 2.2.3, we see that ‖γ2,β‖1 supK−1∈Qd2 ρ
g̃2,β(XK) =

H0(β,G−1
β,λβ
− d) for any β ∈ [0, α2] and statements (i) and (ii) in Theorem 2.3.2 hold. It

completes the proof of Theorem 2.3.2.

Remark 2.3.1 From the proof for the lower-semicontinuity of L0(β, F−1
β,λβ
−d) in the proof

of Theorem 2.2.3, we see that H0(β,G−1
β,λβ
− d) is lower-semicontinuous in β ∈ [0, α2].

However, the lower-semicontinuity of H0(β,G−1
β,λβ
− d) is not sufficient to guarantee the

existence of a maximizer to supβ∈[0,α2] H0(β,G−1
β,λβ
− d) in (2.46). In fact, the optimiza-

tion problem in (2.26) for Theorem 2.2.3 is an inf-sup problem, while the optimization
problem (2.49) for Theorem 2.3.2 is a sup-sup problem. However, if H0(β,G−1

β,λβ
− d) is

continuous in β ∈ [0, α2], then there exists β∗ ∈ [0, α2] such that H0(β∗, G−1
β∗,λβ∗

− d) =

supG∈S2 ρ
g2
(
(XG − d)+

)
. In addition, like Theorems 2.2.3, with expression (2.46) in The-

orem 2.3.2, one reduces the infinite-dimensional optimization problem (2.4) to the feasible
one-dimensional optimization supβ∈[0,α2] H0(β,G−1

β,λβ
− d). �

Proposition 2.3.3 Suppose Assumption 2.3.1 holds. Then, for a given d > 0, the follow-
ing two statements hold:
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(i) If the problem (2.4) has a maximizer G∗ ∈ S2, then β∗ ∧ α2 is a maximizer to
sup

β∈[0,α2]

H0(β,G−1
β, λβ
− d) in (2.46), and G−1

β∗,λβ∗
= G∗−1 a.e., where β∗ , G∗(d) and

λβ∗ solves dW (Ĝ−1, G−1
β∗, λβ∗

) = ε2.

(ii) If the problem supβ∈[0,α2] H0(β,G−1
β, λβ
− d) in (2.46) has a maximizer β∗ = β∗(d) ∈

[0, α2] and Gβ∗,λβ∗ (d−) 6 β∗ 6 Gβ∗,λβ∗ (d), then Gβ∗,λβ∗ is a maximizer to the problem
(2.4).

The proof of Proposition 2.3.3 is given in Appendix 2.6. This proposition shows that a
quantile function with form (2.45) is necessary for the corresponding distribution of the
quantile function to be a maximizer of problem (2.4). We use the following example to
illustrate the applications of Theorem 2.3.2 and Proposition 2.3.3.

Example 2 (Worst case values of TVaR of the stop-loss random variable) To il-
lustrate the applications of Theorem 2.3.2 and Proposition 2.3.3, we assume that the refer-
ence distribution Ĝ in Qd2 and S2 is a Pareto distribution and the sets Qd2 and S2 have

the following settings: Ĝ(x) = 1 −
(

8
x+8

)3
, x > 0; µ2 = µ̂2 = 4; σ2 = σ̂2 = 4

√
3;

ε2 = 2. In addition, suppose ρg2 = TVaRp2 in Theorem 2.3.2 for some 0 < p2 < 1. Then,
γ2(u) = 1

1−p2 I(p2,1](u) with α2 = 1 and γ2,β(u) = 1
1−p2 I(p2∨β,1](u) for 0 6 u 6 1 and any β ∈

[0, 1]. Under the settings, we obtained β∗ and λβ∗ satisfying supβ∈[0,α2] H0(β,G−1
β,λβ
− d) =

H0(β∗, G−1
β∗,λβ∗

−d) by solving the one-dimensional optimization problem supβ∈[0,α2] H0(β,G−1
β,λβ
−

d) for d = 10 and d = 20.

In Figure 2.2, we plot the quantile function G−1
β∗,λβ∗

under the settings. When d = 10,

we obtained that β∗ = 0.9, λβ∗ = 0.7942, and supG∈S2 TVaR0.9

(
(XG − 10)+

)
= 1.1702.

When d = 20, we obtained that β∗ = 0.9669, λβ∗ = 0.4621, and supG∈S2 TVaR0.9

(
(XG −

20)+

)
= 0.5357. We observed from the numerical results that in both the cases d = 10

and d = 20, supG∈S2 TVaR0.9

(
(XG − d)+

)
= TVaR0.9

(
(X

Gβ∗,λβ∗ − d)+

)
, which means that

the supremum in (2.46) is attained at the distribution Gβ∗,λβ∗ . In addition, the worst-case

quantile functions G−1
β∗,λβ∗

(u) of the stop-loss (X − 10)+ and (X − 20)+ jump upward at

u = 0.9 and u = 0.97, respectively, and across the their own stop-loss retentions d = 10
and d = 20, which means that the worst-case distributions Gβ∗,λβ∗ are mixture distributions
in both the cases. Also, we found from the numerical results that Gβ∗,λβ∗ (d) = β∗ in both
the cases. These findings are consistent with the statements of Proposition 2.3.3. �
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Figure 2.2: Worst-case quantile of the stop-loss using TVaR

2.4 Worst-case TVaRs of the stop-loss and limited

loss random variables with applications in robust

stop-loss reinsurances

In this section, we illustrate the applications of Theorems 2.2.3 and 2.3.2 by using the dis-
tortion risk measure of TVaR and special cases of the uncertainty sets S1 = S(µ1, σ1, F̂ ; ε1)
and S2 = S(µ2, σ2, Ĝ; ε2). We adopted simplified notations for S1 = S(µ1, σ1, F̂ ; ε1) and
S2 = S(µ2, σ2, Ĝ; ε2) for special values of ε1 and ε2 as follows:

S∞1 = S(µ1, σ1, F̂ ;∞), S∞2 = S(µ2, σ2, Ĝ;∞), S0
1 = S(µ̂1, σ̂1, F̂ ; 0), S0

2 = S(µ̂2, σ̂2, Ĝ; 0).

In fact, S∞i is the set of all the distributions with mean µi and variance σi for i = 1, 2. In
addition, S0

i is reduced to a set of a single distribution that is the reference distribution
F̂ for i = 1 or Ĝ for i = 2, namely, S0

1 = {F̂} and S0
2 = {Ĝ}. In this cases, both of the

insurer and reinsurer use deterministic distribution functions to evaluate the underlying
insurance loss X. However, F̂ and Ĝ may be different. Such a model setting represents
that the insurer and reinsurer may have different beliefs in the distribution of X.

We first give the worst-case TVaRs of the limited loss and stop-loss random variables
and then find optimal retentions that minimize the worst-case TVaR of the insurer’s risk
exposure in a stop-loss reinsurance when both of the insurer and reinsurer face an uncertain
distribution on the underlying insurance loss X. Mathematically, we discuss the following
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three optimization problems:

sup
F∈S1

TVaRp1(X
F ∧ d), (2.50)

sup
G∈S2

TVaRp2

(
(XG − d)+

)
, (2.51)

min
d>0

sup
F∈S1

TVaRp1

(
XF ∧ d+ π(d)

)
, (2.52)

where 0 < p1 < 1, 0 < p2 < 1, and π(d) is a deterministic reinsurance premium under
a given retention d > 0. In problem (2.52), we assume that the random variable X is
the underlying loss faced by the insurer. A positive value (resp. a negative value) of X
represents a loss (resp. a profit). The idea of model (2.52) is to minimize the worst-case
TVaR of the insurer’s risk exposure in a stop-loss reinsurance and to find optimal retentions
d∗ under distribution uncertainty.

In a stop-loss reinsurance agreement, for a given retention d > 0, the reinsurer needs to
offer the insurer a deterministic premium π(d) even if the distribution of X is uncertain.
Normally, the calculation of π(d) depends on the distribution of X and d. For example,
π(d) = (1 + θ)E(X − d)+ is the expected value principle, π(d) = (1 + θ)ρg(X − d)+ is
the distortion principle, where θ > 0 is a loading factor, ρg is a distortion risk measure,
and E(X − d)+ is called the stop-loss premium. However, when the distribution of the
underlying insurance loss X is uncertain, these principles will not yield a deterministic
premium. In this section, we propose two methods for the reinsurer to determine the
reinsurance premium π(d) under distribution uncertainty. One method is to assume

π(d) = sup
G∈S2

(1 + θ)E
[
(XG − d)+

]
, (2.53)

which is the highest premium charged by the reinsurer or the worst-case premium for
the insurer under distribution uncertainty and the expected value principle. However,
in practice, it could be too conservative for the reinsurer to price the premium by using
the worst-case premium for the insurer. This may result in an unacceptably high pre-
mium for the insurer and consequently make the reinsurance contract less competitive in
reinsurance market. As a result, the reinsurer may determine the premium based on the
reference/pricing distribution Ĝ by using the expected value principle and calculate the
premium by

π(d) = (1 + θ)E
[
(XĜ − d)+

]
= sup

G∈S02
(1 + θ)E

[
(XG − d)+

]
. (2.54)

In this premium, the reinsurer uses the reference distribution Ĝ to evaluate the underlying
insurance loss X.
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Stop-loss reinsurances are not only optimal forms among many optimal reinsurance
design problems, but also one of the most popular forms of insurance/reinsurance used in
practice. In addition, that the settings of the optimal stop-loss reinsurance problem (2.52)
are different from those used in [Hu et al., 2015] and [Liu and Mao, 2021]. In fact, the
uncertainty sets used in problem (2.52) are different from those used in [Hu et al., 2015] and
[Liu and Mao, 2021]. More importantly, the reinsurance premium π(d) in problem (2.52) is
deterministic while the reinsurance premium in [Liu and Mao, 2021] is (1+θ)E [(X − d)+],
which involves model uncertainty of X and affects the process of looking for the overall
worst-case distribution.

2.4.1 Explicit and closed-form solutions under the uncertainty
sets S∞1 and S∞2

In this subsection, we assume that the insurer and reinsurer use uncertainty sets S∞1 and
S∞2 , respectively, to represent the sets of possible distributions for the underlying insurance
loss X. Under the uncertainty sets S∞1 and S∞2 , we obtain the explicit and closed-form
expressions for the solutions to problems (2.50)-(2.52) in the following Theorems 2.4.1 and
2.4.2. In this section, for any p1, p2 ∈ (0, 1), i = 1, 2, we define

di = µi + σi

√
pi

1− pi
and d3 = µ2 − σ2

1− 2p2

2
√
p2(1− p2)

. (2.55)

Theorem 2.4.1 For any d > 0 and p1, p2 ∈ (0, 1), one has

sup
F∈S∞1

TVaRp1(X
F ∧ d) = d1 ∧ d, (2.56)

and

sup
G∈S∞2

TVaRp2

(
(XG − d)+

)
=

{
d2 − d, d 6 d3,

1
2(1−p2)

(
µ2 − d+

√
(µ2 − d)2 + σ2

2

)
, d > d3.

(2.57)

Proof. We first prove (2.56). To do so, let ε1 →∞ or ε1 =∞ in Theorem 2.2.3. Under the
notations used in Theorem 2.2.3 and its proof, in this case ε1 =∞, we see that condition
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(2.29) holds and thus λ0 = 0 according to Theorem 2.2.3 (ii). In addition, in this case, it
is easy to verify that for any β ∈ [α1, 1] = [p1, 1], where α1 is defined in (2.10), we have

F−1
β,0(u) =

µ1 − σ1

√
1−p1
p1
, u 6 p1

µ1 + σ1

√
p1

1−p1 , u > p1,
(2.58)

and

‖γ1,β‖1 ρ
g̃1,β(F−1

β,0(U)−d) =
β − p1

1− p1

(
µ1+σ1

√
p1

1− p1

−d
)

=
β − p1

1− p1

(
d1−d

)
, f(β). (2.59)

Thus, by (2.5), (2.35), and Theorem 2.2.4, we have supF∈S∞1 TVaRp1(X
F ∧ d) = d +

minβ∈[p1,1] f(β). It is easy to see that β0 = arg minβ∈[p1,1] f(β) = p1 if d1 − d > 0 and 1 if
d1 − d 6 0. Hence, (2.56) holds.

Next, we use Theorem 2.3.2 to prove (2.57). Note that for TVaRp2 , p2 = 1, where p2 is
defined in (2.38). In this case ε2 =∞, the condition in Theorem 2.3.2 (ii) holds, and it is
easy to verify that

G−1
β,0(u) =

µ2 − σ2

√
1−(p2∨β)
p2∨β , u 6 p2 ∨ β,

µ2 + σ2

√
p2∨β

1−(p2∨β)
, u > p2 ∨ β,

(2.60)

and

H0(β,G−1
β,0 − d) =

∫ 1

β

1

1− p2

I[p2,1](u)(G−1
β,0(u)− d) du , h(β),

where

h(β) =

{
µ2 + σ2

√
p2

1−p2 − d = d2 − d, β 6 p2,

1
1−p2

(
σ2

√
β(1− β) + (µ2 − d)(1− β)

)
, β > p2.

(2.61)

By Theorem 2.3.2, supG∈S∞2 TVaRp2((X
G − d)+) = sup06β61 h(β). It is easy to see that

h(β) is continuous on [0, 1]. Hence, there exists β∗ ∈ [0, 1] such that sup06β61 h(β) = h(β∗).
If fact, it is easy to verify that if d 6 d3, then for any β∗ ∈ [0, p2], sup06β61 h(β) = h(β∗) =

d2 − d; and if d > d3, then β∗ = 1
2
(1 − µ2−d√

(µ2−d)2+σ2
2

) ∈ [0, 1] and sup06β61 h(β) = h(β∗) =

1
2(1−p2)

(
µ2 − d+

√
(µ2 − d)2 + σ2

2

)
. Therefore, (2.57) holds.

Remark 2.4.1 It is easy to versify that β∗(= β∗(d)) in the proof of Theorem 2.4.1 satisfies
Gβ∗,0(d−) < β∗ 6 Gβ∗,0(d), which means that the conditions in Proposition 2.3.3 (ii) holds.
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Hence, by Proposition 2.3.3(ii), the corresponding distribution Gβ∗,0 of the quantile function
G−1
β,0 given in (2.60) is the worst-case distribution to the problem supG∈S∞2 TVaRp2

(
(XG − d)+

)
.

In addition, by Theorem 2.2.4, the corresponding distribution Fβ0,0 of the quantile function
F−1
β,0 given in given in (2.58) is the worst-case distribution to the problem supF∈S∞1 TVaRp1(X

F∧
d).

Moreover, note that TVaR0 = E and limp2↓0 d3 = −∞. Thus, with p2 = 0 in (2.57),
the second case in (2.57) always applies because d > 0. Therefore, by (2.57), we obtain for
any d > 0,

sup
G∈S∞2

E[(XG − d)+] =
1

2

(
µ2 − d+

√
(µ2 − d)2 + σ2

2

)
, (2.62)

which recovers Corollary 1.1 of [Jagannathan, 1977]. Thus, under the uncertainty set S∞2 ,
the premium given in (2.53) is equal to

π(d) =
1 + θ

2

(
µ2 − d+

√
(µ2 − d)2 + σ2

2

)
. (2.63)

�

Now, by using Theorem 2.4.1, we obtain the explicit and closed-form solutions to problem
(2.52) in the following theorem.

Theorem 2.4.2 Assume that the reinsurance premium in problem (2.52) is calculated by
(2.53). Let d∗ be the optimal solution to problem (2.52) with S1 = S∞1 and S2 = S∞2 .

(i) Assume 0 < µ2 < d1. Then

d∗ =



0, if 0 6 θ < 1, µ2 + θ−1
2
√
θ
σ2 6 0, 1+θ

2

(
µ2 +

√
µ2

2 + σ2
2

)
< d1,

∞, if 0 6 θ < 1, µ2 + θ−1
2
√
θ
σ2 6 0, 1+θ

2

(
µ2 +

√
µ2

2 + σ2
2

)
> d1,

µ2 + θ−1
2
√
θ
σ2, if θ > 0, 0 < µ2 + θ−1

2
√
θ
σ2 < d1, µ2 +

√
θ σ2 < d1,

∞, if θ > 0, 0 < µ2 + θ−1
2
√
θ
σ2 < d1, µ2 +

√
θ σ2 > d1.

∞, if if θ > 1, µ2 + θ−1
2
√
θ
σ2 > d1,

(2.64)

(ii) Assume µ2 > d1 . Then, d∗ =∞.
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Proof. By (2.63) and (2.56), we see that problem (2.52) is reduced to problem mind>0 f(d),
where

f(d) = d1 ∧ d+
(1 + θ)

2

(
µ2 − d+

√
(d− µ2)2 + σ2

2

)
Obviously, f is positive and continuous on [0,∞) and differentiable on (0, d1) ∪ (d1,∞)
with f(∞) , limd→∞ f(d) = d1 and

f ′(d) =


1 + 1+θ

2

(
d−µ2√

(d−µ2)2+σ2
2

− 1
)
, 0 < d < d1,

1+θ
2

(
d−µ2√

(d−µ2)2+σ2
2

− 1
)
, d > d1.

Note that f ′(d) < 0 on (d1,∞). Hence, f strictly decreases on (d1, ∞) and mind∈(d1,∞] f(d) =
limd→∞ f(d) = f(∞) = d1. In addition, since f is continuous on the closed interval
[0, d1], there exists d∗1 ∈ [0, d1] such that mind∈[0,d1] f(d) = f(d∗1). Therefore, there ex-
ists d∗ ∈ [0,∞] satisfying mind∈[0,∞] f(d) = f(d∗) = min{f(d∗1), f(∞)}. Hence, d∗ = d∗1
if f(d∗1) < f(∞) = d1 and d∗ = ∞ if f(d∗1) > f(∞) = d1. Next, we obtain the explicit
expression for d∗1 by discussing the following cases:

(i) Assume 0 < µ2 < d1. Then for d ∈ (0, µ2), we see that d−µ2 < 0 and that f ′(d) 6 0
on (0, µ2) if and only if (

1 +
σ2

2

(d− µ2)2

)− 1
2
>

1− θ
1 + θ

. (2.65)

On the other hand, if 0 < µ2 < d1, for d ∈ (µ2, d1), we have d − µ2 > 0 and that
f ′(d) 6 0 on (µ2, d1) if and only if(

1 +
σ2

2

(d− µ2)2

)− 1
2
6
θ − 1

1 + θ
. (2.66)

Thus, by checking conditions (2.65) and (2.66), we have the following conclusions:

(a) If θ = 0, then f ′(d) > 0 on (0, µ2) and f ′(d) > 0 on (µ2, d1). In this case, d∗1 = 0.

(b) If 0 < θ < 1, then f ′(d) > 0 on (µ2, d1). On the other hand, if 0 < θ < 1, by
(2.65), it is easy to verify that f ′(d) 6 0 on (0, µ2) if and only if d 6 d0, where,
for any θ > 0, d0 = d0(θ) is given by

d0 = d0(θ) = µ2 +
θ − 1

2
√
θ
σ2, (2.67)

where, by convention, if θ = 0, d0 = d0(0) = −∞.
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(b1) If d0 6 0, then f ′(d) > 0 on (0, µ2). In this case, d∗1 = 0.

(b2) If d0 > 0, which is equivalent to 0 < d0 < µ2 as d0 < µ2 if 0 < θ < 1, then
f ′(d) 6 0 on (0, d0) and f ′(d) > 0 on (d0, µ2). In this case, d∗1 = d0 = d0(θ)
and

f(d0) = µ2 +
√
θ σ2. (2.68)

(c) If θ = 1, then f ′(d) 6 0 on (0, µ2) and f ′(d) > 0 on (µ2, d1). In this case,
d∗1 = µ2 = d0(1) and f(µ2) = µ2 + σ2 = f(d0(1)).

(d) If θ > 1, then f ′(d) 6 0 on (0, µ2). On the other hand, if θ > 1, by (2.66), we
see that f ′(d) 6 0 on (µ2, d1) if and only if d 6 d0.

(d1) If d0 ∈ (µ2, d1), then f ′(d) 6 0 on (µ2, d0) and f ′(d) > 0 on (d0, d1). In this
case, d∗1 = d0 and f(d0) is given in (2.68).

(d2) If d0 > d1, then f ′(d) 6 0 on (µ2, d1). In this case, d∗1 = d1.

Note that f(0) = 1+θ
2

(
µ2 +

√
µ2

2 + σ2
2

)
, f(∞) = d1, and f(d0) is given in (2.68) and

that if d∗1 = d1, then d∗ = ∞. Thus, by noticing d0(0) 6 0 and combining cases (a)
and (b1), we obtain the first two cases in (2.64). By combining cases (b2), (c), and
(d1), we obtain the third and fourth cases in (2.64). The last case (the fifth case) in
(2.64) corresponds to (d2).

(ii) Assume µ2 > d1. Then for d ∈ (0, d1), we see that d− µ2 < 0 and that f ′(d) 6 0 on
(0, d1) if and only if condition (2.65) holds. Thus, by checking condition (2.65), we
have the following conclusions:

(a) If θ = 0, then f ′(d) > 0 on (0, d1). In this case, d∗1 = 0. However, in this case,
f(0) = 1

2

(
µ2 +

√
µ2

2 + σ2
2

)
> µ2 > f(∞) = d1 as µ2 > d1, and thus d∗ =∞.

(b) If 0 < θ < 1, by (2.65), it is easy to verify that f ′(d) 6 0 on (0, d1) if and only
if d 6 d0.

(b1) If d0 6 0, then f ′(d) > 0 on (0, d1). In this case, d∗1 = 0 and thus d∗ = ∞
as f(0) = 1+θ

2

(
µ2 +

√
µ2

2 + σ2
2

)
> µ2 > f(∞) = d1.

(b2) If 0 < d0 < d1, then f ′(d) 6 0 on (0, d0) and f ′(d) > 0 on (d0, d1). In
this case, d∗1 = d0 and f(d0) is given in (2.68). However, in this case,
f(d∗1) = f(d0) = µ2 +

√
θ σ2 > f(∞) = d1 as µ2 > d1, and thus d∗ = ∞.

In addition, if d0 > d1, then f ′(d) 6 0 on (0, d1). In this case, d∗1 = d1 and
d∗ =∞.

(c) If θ > 1, then f ′(d) 6 0 on (0, d1). In this case, d∗1 = d1.

Thus, by combining cases (a)-(c), we see that d∗ =∞ if d1 6 µ2.
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Remark 2.4.2 In Theorem 2.4.2(i), note that 0 < µ2 < d and µ2 + θ−1
2
√
θ
σ2 is strictly

increases in θ ∈ (0,∞). Thus, conditions 0 6 θ < 1 and µ2 + θ−1
2
√
θ
σ2 6 0 imply that θ

must be in the interval [0, θ0] for a unique θ0 ∈ (0, 1). That means a larger loading factor
θ ∈ (θ0, θ1). Furthermore, conditions θ > 0 and 0 < µ2 + θ−1

2
√
θ
σ2 < d1 imply that θ must be

in the interval (θ0, θ1) for a unique θ1 > 1. That means a larger loading factor θ ∈ (θ0, θ1).

Hence, from (2.64) of Theorem 2.4.2, we see that if the worst-case value d1 of the in-
surer’s TVaR is not larger than the threshold value max{f(0), f(d0)} = max

{
1+θ

2

(
µ2 +√

µ2
2 + σ2

2

)
, µ2 +

√
θ σ2

}
, the insurer will not worry about its loss and will not buy a rein-

surance (d∗ =∞). If the worst-case value d1 exceeds the threshold value min{f(0), f(d0)} =
min

{
1+θ

2

(
µ2 +

√
µ2

2 + σ2
2

)
, µ2 +

√
θ σ2

}
, the insurers would like to buy a full reinsurance

with d∗ = 0 if d1 > f(0) and the premium is cheaper or a partial reinsurance with d∗ = d0

if d1 > f(d0) and the premium is more expensive. In addition, the results in Theorem
2.4.2 (ii) are also reasonable. If fact, if the worst-case value d1 of the insurer’s TVaR is
bounded by µ2, which is the expected underlying insurance loss evaluated by the reinsurer,
the insurers will not worry about its loss and would not buy a reinsurance. �

Theorem 2.4.3 Assume that the reinsurance premium in problem (2.52) is calculated by
(2.53). Let d∗ be the optimal solution to problem (2.52) with S1 = S∞1 and S2 = S0

2 . Then

d∗ =

Ĝ
−1( θ

1+θ
), if d1 > Ĝ−1( θ

1+θ
) + (1 + θ)

∫∞
Ĝ−1( θ

1+θ
)
(1− Ĝ(x)) dx,

∞, if d1 6 Ĝ−1( θ
1+θ

) + (1 + θ)
∫∞
Ĝ−1( θ

1+θ
)
(1− Ĝ(x)) dx.

(2.69)

where d1 is defined in (2.55).

Proof. According to Theorem 2.4.1 and (2.62), in this case, problem (2.52) is equivalent
to mind>0 g(d), where

g(d) = d1 ∧ d+ (1 + θ)

∫ ∞
d

(x− d) dĜ(x) = d1 ∧ d+ (1 + θ)

∫ ∞
d

(1− Ĝ(x)) dx.

Note that g(d) = d+(1+θ)
∫∞
d

(1−Ĝ(x))dx on [0, d1] and thus g(d) is a convex function on
[0, d1] by Lemma 2.2(i) of [Wang and Zitikis, 2021]. Therefore, g(d) has a minimum value
on [0, d1] and g(d) attains the minimum value on any d∗1 ∈ (0, d1) if and only in d∗1 ∈ {d ∈
(0, d1) : 0 ∈ ∂g}, where ∂g is the set of subgradients of g at d and 0 ∈ ∂g if and only if

0 ∈ [∂
−g
∂d
, ∂

+g
∂d

], which, together with the left derivative ∂−g
∂d

= 1+(1+θ)(Ĝ(d−)−1) and the
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right derivative ∂+g
∂d

= 1 + (1 + θ)(Ĝ(d)− 1), and Lemma 4.1(ii) of [Cai and Wang, 2021],

implies d∗1 ∈
[
Ĝ−1( θ

1+θ
), Ĝ−1+( θ

1+θ
)
]

and

min
06d6d1

g(d) = g(d∗1) = g
(
Ĝ−1

( θ

1 + θ

))
,

where, F−1+(p) = sup{t : F (t) 6 p} is the right-continuous quantile function of a dis-
tribution function F for p ∈ (0, 1). Moreover, g(d) = d1 + (1 + θ)

∫∞
d

(1 − Ĝ(x))dx on
[d1,∞) and g(d) is decreasing on [d1,∞) with g(∞) = limd→∞ g(d) = d1. Thus, d∗ = d∗1
if g(d∗1) < g(∞) and d∗ = ∞ if g(d∗1) > g(∞). If fact, if g(d∗1) < g(∞), d∗ can be any
point in the interval

[
Ĝ−1( θ

1+θ
), Ĝ−1+( θ

1+θ
)
]
. Without loss generality, we choose d∗ to

be Ĝ−1( θ
1+θ

). Hence, expression (2.69) holds. Note that if Ĝ is continuous at θ
1+θ

, then

Ĝ−1( θ
1+θ

) = Ĝ−1+( θ
1+θ

).

Remark 2.4.3 When S1 = S0
1 and S2 = S0

2 with F̂ = Ĝ, or when the distribution of the
underlying insurance loss X is known to both of the insurer and reinsurer, problem (2.52)
is solved in Theorem 3.1 of [Cai and Tan, 2007]. It is interesting to see that the non-
trivial optimal retention Ĝ−1( θ

1+θ
) in Theorem 2.4.3 is the same as that in Theorem 3.1 of

[Cai and Tan, 2007] and is determined by the pricing distribution Ĝ used by the reinsurer.

However, the optimal retentions in Theorem 2.4.3 depend on d1 = µ1 + σ1

√
p1

1−p1 that is

the worst case TVaRp1 of the underlying insurance loss X over the insurer’s uncertainty
set S∞1 . Theorem 2.4.3 shows that for a larger worst-case TVaR, the insurer would like to
buy a non-trivial stop-loss reinsurance, while for a smaller worst-case TVaR, the insurer
is willing to undertake all the underlying insurance loss X. �

2.4.2 Existence of solution and numerical solutions under the
general uncertainty sets S1 and S2

For the general uncertainty sets S1 = S(µ1, σ1, F̂ ; ε1) and S2 = S(µ2, σ2, Ĝ; ε2) with
0 < ε1, ε2 < ∞, the explicit and closed-form solutions to problems (2.50)-(2.52) are not
available. In this subsection, we show that optimal solution to Problem (2.52) exists under
certain conditions and then use examples to illustrate solutions to these problems. We can
consider a generalization of Problem (2.52) as

min
d>0

sup
F∈S1

ρg1
(
XF ∧ d+ π(d)

)
, (2.70)
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where π(d) is a deterministic reinsurance premium under a given retention d > 0 or a
deterministic function of d > 0, and S1 is an uncertainty set for X. We show in the
following theorem that optimal solutions to Problem (2.70) exist under certain conditions.

Theorem 2.4.4 Assume that the uncertainty set S1 in problem (2.70) is non-empty and
g1 is an absolutely continuous distortion function. If π(d) is lower-semicontinuous and
π(d) <∞ for any d ∈ [0,∞], then an optimal solution d∗ ∈ [0,∞] to problem (2.70) exists.

Proof. For simplicity, we write H(d, F ) = ρg1
(
XF ∧ d+ π(d)

)
for F ∈ S1 and d > 0. Due

to the cash invariance property and monotonicity of a distortion risk measure, we have for
all d ∈ [0,∞),

H(d, F ) = ρg1
(
XF ∧ d

)
+ π(d) 6 d+ π(d) <∞.

Hence, H(d, F ) is well-defined for all d ∈ [0,∞). Furthermore, from (1.5), (2.11), and

(2.13), it is easy to see thatH(d, F ) = π(d)+hF (d), where, hF (d) = d+
∫ F (d)

0
γ1(u)(F−1(u)−

d) du. We show that for any distribution F , hF (d) is continuous in d ∈ [0,∞). In fact, for
any δ > 0, it holds that

|hF (d+ δ)− hF (d)| =
∣∣∣δ − δ ∫ F (d+δ)

0

γ1(u) du+

∫ F (d+δ)

F (d)

γ1(u)(F−1(u)− d) du
∣∣∣

6 δ − δ
∫ F (d+δ)

0

γ1(u) du+ δ

∫ F (d+δ)

F (d)

γ1(u) du = δ g1(1− F (d)) 6 δ,

where the first inequality is because 1 −
∫ F (d+δ)

0
γ1(u) du = 1 − g1(F (d + δ)) > 0 and

0 6 F−1(u) − d 6 δ. Similarly, we have |hF (d) − hF (d − δ)| 6 δ. As a result, hF (d)
is continuous on [0,∞). Together with the lower semicontinuity of π(d), we know that
the function H(d, F ) is lower semicontinuous at d ∈ [0,∞) for any given distribution F .
Write H̄(d) , supF∈S1 H(d, F ), and note that problem (2.70) can also be expressed as
infd>0 H̄(d). By the similar argument in the proof of Theorem 2.2.3, we can conclude that
H̄(d) , supF∈S1 H(d, F ) is lower semicontinuous in d ∈ [0,∞), and there exists d∗ ∈ [0,∞]
such that H̄ achieves its minimual value at d∗, i.e., d∗ can serve as an optimal solution.
Note that supG∈S2(1 + θ)E

[
(XG − d)+

]
is a lower-semicontinuous function of d. Thus, by

Theorem 2.4.4, we see that an optimal solution d∗ ∈ [0,∞] to problem (2.52) always exists
if the premium is calculated by (2.53). To numerically illustrate the solutions obtained in
Sections 3-5, in this rest of this section, we assume that p1 = 0.90 in problem (2.52) and
π(d) is calculated by (2.53) with θ = 2. Further, for S1 = S(µ1, σ1, F̂ ; ε1), F̂ is the Pareto
distribution in Example 1 with ε1 = 0.05, 1, 2.5; and for S2 = S(µ2, σ2, Ĝ; ε2), Ĝ is the
Pareto distribution in Example 2 with ε2 = 0.5. Note that Assumption 2.1.2 holds under
these settings.
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Example 3 (Numerical solutions under S1 and S2) In this example, we consider the
effects of ε1 on the worst-case TVaR0.90 of the insurer’s risk exposure

V1(d) , sup
F∈S1

TVaR0.90(XF ∧ d+ π1(d))

and optimal retentions d∗, where

π1(d) = sup
G∈S2

(1 + θ)E[(XG − d)+].

We calculate and plot V1(d) for d ∈ [0, 30] under three values ε1 = 0.05, 1, 2.5 in Figure 2.3,
ε2 = 0.05 and obtain the optimal retention d∗ = 3.5522 that is the same for all the three
values of ε1. From the numerical results, we see that the larger the uncertainty set S1, the
larger the worst-case TVaR0.90 of the insurer’s risk exposure. This finding is reasonable
since more uncertainties will produce more risks. In addition, from Figure 2.3, we see
that for three values of ε1, the worst-case values V1(d) are identical on [0, 10], in which the
worst-case values V1(d) attain the same minimum value at the same minimizer d∗ = 3.5522;
and ε1 affects the worst-case value V1(d) only when d > 10. We only calculate and plot
the the worst-case value V1(d) on [0, 30]. However, we claim that d∗ = 3.5522 is the global
minimizer of V1(d) on [0,∞]. To see that, for any d > 30, we have

sup
F∈S1

TVaR0.90(XF ∧ d+ π(d)) > sup
F∈S1

TVaR0.90(XF ∧ d) > TVaR0.90(X F̂ ∧ d)

> TVaR0.90(X F̂ ∧ 30) = 15.52 > 9.37 = sup
F∈S1

TVaR0.90(XF ∧ d∗ + π(d∗)),

where the third inequality comes from the monotonicity of TVaR and the fact that X F̂ ∧d >
X F̂ ∧ 30 for d > 30. Therefore, d∗ = 3.5522 is the global minimizer of V1(d) on [0,∞]. �

Example 4 (Numerical solutions under S1 and S0
2 ) Under the uncertainty sets S1

and S0
2 , we calculate and plot

V2(d) , sup
F∈S1

TVaR0.90(XF ∧ d+ π2(d))

for d ∈ [0, 30] under three different values of ε1 = 0.05, 1, 2.5 in Figure 2.4. We obtain the
optimal retention d∗ = 3.5380 that is the same for all the three values of ε1 in this example,
where

π2(d) = sup
G∈S02

(1 + θ)E[(XG − d)+] = (1 + θ)E[(XĜ − d)+].
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Figure 2.3: Numerical Illustration for Ex-
ample 3
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Figure 2.4: Numerical Illustration for Ex-
ample 4
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Figure 2.5: Numerical Illustration for Ex-
ample 5
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Figure 2.6: Numerical Illustration for Ex-
ample 6
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The behaviour of the worst-case value V2(d) is similar to the worst-case value V1(d) dis-
cussed in Example 3. Also, we claim by the same arguments used in Example 3 that
d∗ = 3.5380 is the global minimizer of V2(d) on [0,∞] for all the three values of ε1. In
addition, we find the optimal retention d∗ = 3.5380 in this example is smaller than the
optimal retention d∗ = 3.5522 in Example 3. Note that the premium π2(d) in this example
is lower than the premium π1(d) in Example 3 while the worst-case value V2(d) in this
example is smaller than the worst-case value V2(d) in Example 3. These numerical results
suggest that with a lower premium and a smaller worst-case value, the optimal reinsurance
for the insurer is to retain less risks. �

At the end of this section, we also want to compare the numerical results obtained in
Examples 3 and 4 with those calculated by using Theorem 2.4.2 and Theorem 2.4.3.

Example 5 (Numerical solutions under S∞1 and S∞2 ) With the uncertainty sets S∞1
and S∞2 , the worst-case TVaR0.90 of the insurer’s risk exposure

V3(d) , sup
F∈S∞1

TVaR0.90(XF ∧ d+ π3(d)),

for d ∈ [0, 30] and under three different values of ε1 = 0.05, 1, 2.5, is plotted in Figure 2.5,
where

π3(d) = sup
G∈S∞2

(1 + θ)E[(XG − d)+] =
1 + θ

2

(
µ2 − d+

√
(µ2 − d)2 + σ2

2

)
by (2.63). In this example, by Theorem 2.4.2 (i), we find the optimal deductible is d∗ =
6.4495. Comparing with Examples 3 and 4, we notice that when the uncertainty set is
getting larger in the sense of Wasserstein distances (εi = ∞, i = 1, 2 in this example) or
when the insurer and reinsurer are facing more uncertainties, the premium π3(d) in this
example is higher than the premiums π1(d) and π2(d) in Examples 3 and 4; the worst-
case value V3(d) is larger than the worst-case values V2(d) and V3(d); and the optimal
retention d∗ = 6.4495 in this example is larger than those in Examples 3 and 4. This is
also a reasonable finding as with more uncertainties, the reinsurers need to charge a higher
premium and the insurer has to retain more risks. �

Example 6 (Numerical solutions under S∞1 and S0
2 ) With the uncertainty sets S∞1

and S0
2 , the worst-case TVaR0.90 of the insurer’s risk exposure

V4(d) , sup
F∈S∞1

TVaR0.90(XF ∧ d+ π4(d)),
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for d ∈ [0, 30] and under three different values of ε1 = 0.05, 1, 2.5, is plotted in Figure 2.6,
where

π4(d) = sup
G∈S02

(1 + θ)E[(XG − d)+] = (1 + θ)E[(XĜ − d)+].

The premium in this example is the same as in Example 4 while the insurer is facing more
uncertainties as ε1 =∞. Therefore, the worst-case value V4(d) is not less than the worst-
case value V3(d) for all d > 0 and all the three values of ε1 in Example 4. However, the
worst-case value V4(d) is equal to the worst-case value V3(d) on [0, 5], in which the worst-
case values V4(d) and V3(d) both attain the same minimum value at the same minimizer
d∗ = 3.5380. In this example, the minimizer d∗ = 3.5380 is obtained by using Theorem
2.4.3. �

2.5 Concluding remarks

In this chapter, we investigate the worst-case values of the distortion risk measures of
the stop-loss (X − d)+ and limited loss X ∧ d when the distribution of an underlying
loss random variable X is uncertain. We use the uncertainty set S(µ, σ, F̂ ; ε), defined in
(2.2) and introduced in [Bernard et al., 2020b], to represent all the possible distributions
of X. The uncertainty set S(µ, σ, F̂ ; ε) contains the information on the mean, variance,
and empirical/reference distribution of X available to a decision maker. The uncertainty
set S(µ, σ, F̂ ; ε) is reasonable and practical and it expresses the beliefs of a decision maker
in the possible distributions of X. We derive the expressions for the worst-case values of
the distortion risk measures of (X−d)+ and X∧d when distortion functions are absolutely
continuous. We also find the distributions in (2.2) under which the worst-case values are
attainable. These results are important in robust risk management for insurance, finance,
operations research, and many other fields. Our results can recover the classical results of
[Jagannathan, 1977] and [Lo, 1987] on the worst-case values of the expectations of (X−d)+

and X ∧ d when only the information of the mean and variance of X is available.

To illustrate the applications of the worst-case values of the distortion risk measures
of (X − d)+ and X ∧ d, in this chapter, we discuss the optimal stop-loss reinsurance that
minimizes the worst-case value of the TVaR of the insurer’s risk exposure in a stop-loss
reinsurance. We propose two methods for the reinsurer to determine reinsurance premiums
when the distribution of an underlying loss random variable X is uncertain. The model set-
tings and reinsurance premiums used in our chapter are different from [Hu et al., 2015] and
[Liu and Mao, 2021]. Especially, the reinsurance premiums used in [Liu and Mao, 2021]
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are uncertain while the reinsurance premiums in our model are deterministic. A determin-
istic premium charged by the reinsurer or offered to the insurer is a realistic requirement in
a reinsurance agreement even if the distribution of an underlying loss random variable X is
uncertain. In addition, another important difference between our model settings and those
used in [Hu et al., 2015] and [Liu and Mao, 2021] is the beliefs of the insurer and reinsurer
in the distribution of the underlying insurance loss random variable X. [Hu et al., 2015]
and [Liu and Mao, 2021] assume that the insurer and reinsurer have the same beliefs in
the distribution of the underlying insurance loss random variable X, while our model as-
sumes the beliefs of the insurer and reinsurer in the distribution may be different. Such
heterogeneous beliefs in the distribution of the underlying insurance loss random variable
X are more realistic assumptions, which have attracted a lot of interest in the recent
studies of insurance. See [Jiang et al., 2019] and the references therein for more examples
of heterogeneous beliefs. We will explore more applications of the results obtained under
the uncertainty set S(µ, σ, F̂ ; ε) to robust risk management problems in the future research.

2.6 Appendix

Lemma 2.6.1 (Theorem 2, [Bernard et al., 2020b]) Consider a distortion risk mea-
sure ρg with distortion function g and the corresponding weight function γ, and an uncer-
tainty set S(µ, σ, Ĝ; ε) defined in (2.2), where the distribution Ĝ has mean µ̂ and variance
σ̂2 and For λ > 0, define `↑λ = arg min`∈K ||`−γ−λĜ−1||2, where K is defined in (2.22). De-

note c0 = corr(Ĝ−1(U), l↑0(U)). Assume `↑λ is not constant for any λ > 0. Then, solutions
to the problem supG∈S(µ,σ,Ĝ;ε) ρ

g(XG) are given as below:

(i) If (µ̂− µ)2 + (σ̂ − σ)2 < ε2 < (µ̂− µ)2 + (σ̂ − σ)2 + 2σσ̂(1− c0), then the maximizer
G∗λ to supG∈S(µ,σ,Ĝ;ε) ρ

g(XG) is unique and the quantile function of G∗λ is given by

G∗−1
λ (u) = µ + σ

(
l↑λ(u)−aλ

bλ

)
, where aλ = E[l↑λ(U)], bλ =

√
var(l↑λ(U)), and λ > 0 is

the unique positive solution to the equation dW (Ĝ−1, G∗−1
λ ) = ε.

(ii) Let (µ̂ − µ)2 + (σ̂ − σ)2 + 2σσ̂(1 − c0) 6 ε2. If `↑0 is not constant, then the max-
imizer G∗0 to supG∈S(µ,σ,Ĝ;ε) ρ

g(XG) is unique and the quantile function of G∗0 is

given by G∗−1
0 (u) = µ + σ

(
l↑0(u)−a0

b0

)
. If `↑0 is constant, then the quantile function

of the maximizer G∗0 to supG∈S(µ,σ,Ĝ;ε) ρ
g(XG) is the constant µ and the supremum

supG∈S(µ,σ,Ĝ;ε) ρ
g(XG) is not attained on S(µ, σ, Ĝ; ε).
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Lemma 2.6.2 (Proposition 3, [Bernard et al., 2020b]) Let K = {(µ, σ) |µ 6 µ 6

µ̄, |µ| 6 |µ̄|, σ 6 σ 6 σ̄} and Sε(K) = {G ∈ S(µ, σ, Ĝ; ε) | (µ, σ) ∈ K}. If for all (µ, σ) ∈
K, it holds that (µ̂− µ)2 + (σ̂ − σ)2 < ε2 < (µ̂− µ)2 + (σ̂ − σ)2 + 2σσ̂(1− c0), then

sup
G∈Sε(K)

ρg(XG) = sup
G∈S(µKmax, σ

K
max, Ĝ; ε)

ρg(XG),

where (µKmax, σ
K
max) = (µ, σ̄) if µ̂ < −1/λ and (µKmax, σ

K
max) = (µ̄, σ̄), otherwise.

Lemma 2.6.3 The set S ′1 ,
{
F : dW (F, F̂ ) 6 ε1, E[XF ] = µ1, var(XF ) 6 σ2

1

}
is weakly

compact.

Proof. First note that Q′d1 ⊂ L2(0, 1), where the space L2(0, 1) with the metric induced
by the L2-norm is a complete metric space. For any F−1 ∈ Q′d1 , the L2-norm of F−1 is
bounded by the constant ‖F̂−1 − d‖2 + ε <∞ because

‖F−1‖2 6 ‖F̂−1−d‖2+‖F̂−1−d−F−1‖2 = ‖F̂−1−d‖2+dW (F̂−1−d, F−1) 6 ‖F̂−1−d‖2+ε1.

We first show that S ′1 is closed. Suppose F is a limit of S ′1 in the sense that there exists
a sequence {Fn, n = 1, 2, ...} ⊂ S ′1 such that F−1

n (U) converges to F−1(U) in distribution,
i.e., limn→∞ Fn(x) = F (x) for every continuous point x of F . Let Xn = F−1

n (U) for
n = 1, 2, ..., and X∞ = F−1(U). Since E[X2

n] = var(Xn) + E[Xn]2 6 µ2
1 + σ2

1 for all n,
by Theorem 4.6.2 of [Durrett, 2019], {Xn, n = 1, 2, ...} is uniformly integrable. Note that
Xn = F−1

n (U) also converges to X∞ = F−1(U) in probability. Also we have E[|Xn|] < ∞
for all n, then Theorem 4.6.3 of [Durrett, 2019] says that Xn also converges to X∞ in L1,

which means that E[|Xn−X∞|] =
∫ 1

0
|F−1
n (u)− F−1(u)| du→ 0 as n→∞, and E[X∞] =

limn→∞ E[Xn] = µ1. Furthermore, since the power function h(x) = x2 is continuous and
bounded below, Xn converges to X∞ in distribution implies E[X2

∞] 6 lim inf E[X2
n] =

µ2
1 + σ2

1. Together with E[X∞] = µ1, we have var(X∞) 6 σ2
1. Let Yn = F−1

n (U)− F̂−1(U)
and Y∞ = F−1(U) − F̂−1(U). Then E[Yn] = µ1 − µ̂1 and E[Y 2

n ] = dW (F, F̂ )2 6 ε2
1 for

all n = 1, 2, .... Using the similar argument for Xn, we can also verify that E[Y 2
∞] 6 ε2

1.
Therefore, F ∈ S ′1, i.e., S ′1 is closed.

Second, we show S ′1 is tight. For any δ > 0, define Kδ = (µ1 − d)/δ <∞. By Markov
inequality, we then have that for all F ∈ S ′1, the associated distribution F satisfies

F (Kδ) > 1− E[F−1(U)]

Kδ

= 1− µ1 − d
Kδ

> 1− δ
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which implies (uniform) tightness of S ′1.

Since S ′1 is closed and tight, by Theorem 6.2 of [Birghila and Pflug, 2019], we conclude
that S ′1 is weakly compact.

Proof of Theorem 2.2.4. To prove this theorem, we first expand sets Q1 and Qd1 to
larger sets Q′1 and Q′d1 , respectively, and consider the problem supF−1∈Q′1 ρ

g1(XF ∧d), which
has the following expression by using the arguments similar to those for Lemma 2.2.1: For
any d > 0,

sup
F−1∈Q′1

ρg1(XF ∧ d) = d+ sup
F−1∈Q′d1

ρg1(F−1(U) ∧ 0), (2.71)

where Q′1 ,
{
F−1 : dW (F, F̂ ) 6 ε1, E[XF ] = µ1, var(XF ) 6 σ2

1

}
and

Q′d1 ,
{
F−1 : F−1 + d ∈ Q′1

}
. (2.72)

It is easy to see that Q1 ⊂ Q′1 and Qd1 ⊂ Q′d1 .

We first show that the supremum supF−1∈Q′d1 ρ
g1(F−1(U) ∧ 0) can be attained at some

quantile function in Q′d1 . In doing so, note that equation (2.12) in Lemma 2.2.2 implies

sup
F−1∈Q′d1

ρg1(F−1(U) ∧ 0) = sup
F−1∈Q′d1

min
β∈[p1,1]

L0(β, F−1). (2.73)

There exists a sequence {G−1
n , n = 1, 2, ...} ⊂ Q′d1 s.t. sup

F−1∈Q′d1

ρg1(F−1(U)∧0) = lim
n→∞

ρg1(G−1
n (U)∧

0).

Write Q′d1 = {F−1 − d : F ∈ S ′1} where S ′1 defined in Lemma 2.6.3 is weakly compact.
Thus, the set {G−1

n , n = 1, 2, ...} has a limit in Q′d1 , denoted by G−1
∞ ∈ Q′d1 . Using the

similar argument in the proof of Lemma 2.6.3, G−1
n (U) converges to G−1

∞ (U) in L1. By
Proposition 4 of [Wang and Wang, 2020], if ‖γ‖∞ < ∞, then the risk measure ρg1 is
continuous with respect to the L1-convergences of random variables. Thus, ρg1(G−1

∞ (U) ∧
0) = lim

n→∞
ρg1(G−1

n (U) ∧ 0) = max
F−1∈Q′d1

ρg1(F−1(U) ∧ 0).

In the rest of the proof, we denote β∞ = G∞(0). By equations (2.12) and (2.73), we
see that

L0(β∞, G
−1
∞ ) = ρg1(G−1

∞ (U) ∧ 0) = max
F−1∈Q′d1

ρg1(F−1(U) ∧ 0) = max
F−1∈Q′d1

min
β∈[α1,1]

L0(β, F−1)

= min
β∈[α1,1]

max
F−1∈Q′d1

L0(β, F−1),

(2.74)
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where the last equality comes from the min-max theorem. The detailed proof of equality
(2.74) is given after this proof. Therefore, L0(β∞, G

−1
∞ ) is a saddle value for the above

min-max problem.

Next, we show that L0(β0, F
−1
β0,λ0

− d) is also a saddle value for the same min-max

problem in (2.74), where F−1
β0,λ0

is given in Theorem 2.2.3. We can write Q′d1 = {G−1 ∈
S(µ, σ, F̂−1 − d; ε1) | (µ, σ) ∈ K)}, where K = {(µ, σ) |µ = µ1 − d, 0 6 σ 6 σ1}. Under
the assumption that ε2

1 < (µ̂1 − µ1)2 + (σ̂1 − σ)2 + 2σσ̂1(1 − c1,β0) for all σ 6 σ1, where
β0 ∈ [α1, 1] is given in Theorem 2.2.3, we have

max
F−1∈Q′d1

L0(β0, F
−1) = ‖γ1,β0‖1 max

F−1∈Q′d1
ρg̃1,β0 (XF )

= ‖γ1,β0‖1 max
F−1∈Qd1

ρg̃1,β0 (XF ) = max
F−1∈Qd1

L0(β0, F
−1), (2.75)

where the first and third equalities come from (2.31) and the second equality comes from
Lemma 2.6.2. Since Qd1 ⊂ Q′d1 , we always have max

F−1∈Q′d1
L0(β, F−1) > sup

F−1∈Qd1

L0(β, F−1) for

any β ∈ [α1, 1]. Hence

L0(β∞, G
−1
∞ ) = min

β∈[α1,1]
max

F−1∈Q′d1
L0(β, F−1) > min

β∈[α1,1]
max

F−1∈Qd1
L0(β, F−1) = L0(β0, F

−1
β0,λ0
− d),

(2.76)

where the first equality is given by (2.74) and second equality is given by (2.26). In the
rest of the proof, we write G−1

0 = F−1
β0,λ0
− d for simplicity. Meanwhile, (2.12) and (2.75)

implies

L0(β∞, G
−1
∞ ) 6 L0(β0, G

−1
∞ ) 6 max

F−1∈Q′d1
L0(β0, F

−1) = max
F−1∈Qd1

L0(β0, F
−1) = L0(β0, G

−1
0 ).

(2.77)

Equations (2.76) and (2.77) together imply

L0(β∞, G
−1
∞ ) = L0(β0, G

−1
∞ ) = L0(β0, G

−1
0 ), (2.78)

i.e., L0(β0, G
−1
0 ) is also a saddle value for the same min-max problem in (2.74)

From the equation (2.76) and the proof of Theorem 2.2.3, both G−1
0 and G−1

∞ are
maximizers of the problem maxF−1∈Q′d1 L0(β0, F

−1), which has unique solution from the

proof of Proposition 3 of [Bernard et al., 2020b]. Therefore, it holds true that G−1
0 = G−1

∞
a.s. Since G−1

∞ ∈ Qd1 and Qd1 ⊂ Q′d1 , we finally conclude that

L0(β∞, G
−1
∞ ) 6 sup

F−1∈Qd1

ρg1(F−1(U) ∧ 0) 6 max
F−1∈Q′d1

ρg1(F−1(U) ∧ 0) = L0(β0, G
−1
0 ) = L0(β∞, G

−1
∞ ).
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Therefore, G−1
∞ + d = G−1

0 + d = F−1
β0,λ0

∈ Q1 is the solution to the problem (2.3), and the
worst case risk measure and the inf-sup value in (2.18) are equal.

Definition 2.6.1 (Quasi-convexity and quasi-concavity) (See [Di Guglielmo, 1977])
For a function f : T 7→ R is a real-valued function defined on a convex subset T of a real
vector space, if for all x, y ∈ T and λ ∈ [0, 1], we have

f(λx+ (1− λ)y) 6 max{f(x), f(y)},

then f is quasi-convex. If for all x, y ∈ T and λ ∈ [0, 1], we have

f(λx+ (1− λ)y) > min{f(x), f(y)},

we say f is quasi-concave.

With the help of the definition of quasi-convexity and quasi-concavity, we can step into
the following founding theorem:

Lemma 2.6.4 (Min-Max Theorem, [Sion, 1958]) Let X be a compact convex subset
of a linear topological space and Y a compact convex subset of a linear topological space. If
f is a real-valued function on X× Y with f(x, ·) upper semi-continuous and quasi-concave
on Y, ∀x ∈ X, and f(·, y) lower semi-continuous and quasi-convex on X,∀y ∈ Y, then
maxy∈Y minx∈X f(x, y) = minx∈X maxy∈Y f(x, y).

Proof of Equation (2.74). To apply Lemma 2.6.4, we need to verify that all the
conditions in Lemma 2.6.4 are fulfilled.

(i) It is easy to see that Q′d1 is convex and Q′d1 ⊂ K, where K is defined in (2.22) and is
a linear topological space. Also, Lemma 2.6.3 shows that Q′d1 is compact.

(ii) For any β ∈ [α1, 1], L0(β, F−1) =
∫ β

0
γ1(u)F−1(u) du is an affine transformation from

Q′d1 to R. Hence, L0(β, ·) is quasi-concave on Q′d1 for any given β ∈ [α1, 1].

(iii) We show that for any β ∈ [α1, 1], L0(β, ·) is continuous in Q′d1 . For any F−1
0 ∈ Q′d1

and every sequence of quantile functions {F−1
n } ⊂ Q′1 such that F−1

n
L2

−→ F−1
0 , one

has ∣∣∣L0(β, F−1
n )− L0(β, F−1

0 )
∣∣∣ =

∣∣∣ ∫ 1

0

γ1,β(u)
(
F−1
n (u)− F−1

0 (u)
)

du
∣∣∣

6
∥∥γ1,β

∥∥
2

∥∥F−1
n − F−1

0

∥∥
2
→ 0, as n→∞.

Therefore, L0(β, ·) is continuous in Q′d1 .
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(iv) We show that for any given F−1 ∈ Q′d1 , L0(·, F−1) is quasi-convex on [0, 1]. It is
easy to see that L0(·, F−1) is non-increasing on [0, F (d)), and is non-decreasing on
(F (d), 1]. Thus, with a given F−1 ∈ Q′d1 , for any α1 6 β1 < β2 6 1, it is easy to
check that, for any δ ∈ [0, 1],

L0(δβ1 + (1− δ)β2, F
−1) 6

{
L0(β1, F

−1), if β1 < δβ1 + (1− δ)β2 6 F (d),

L0(β2, F
−1), if F (d) 6 δβ1 + (1− δ)β2 < β2,

6 max
{
L0(β1, F

−1), L0(β2, F
−1)
}
,

which means that L0(·, F−1) is quasi-convex on [0, 1].

(v) The continuity of L0(·, F−1) on [α1, 1] is obvious since F−1, γ1 ∈ L2([0, 1]).

Hence, by (i)-(v), we obtain equation (2.74) by using Lemma 2.6.4.

Proof of Proposition 2.3.3.

(i) Assume that sup
G∈S2

ρg2
(
(XG − d)+

)
= ρg2

(
(XG∗ − d)+

)
, i.e., G∗ is a maximizer to

problem (2.4). By equation (2.41) with β∗ = G∗(d), we have

ρg2
(
(G∗−1(U)− d)+

)
=

∫ 1

β∗
γ2(u)

(
G∗−1(u)− d

)
du = H0(β∗, G∗−1 − d).

If β∗ = G∗(d) > α2, then by the definition of α2, we have ρg2 ((G∗−1(U)− d)+) = 0.
Together with the observation (G−1(U) − d)+ > 0 for all G ∈ S2, we see that
ρg2
(
(XG − d)+

)
= 0, i.e., G(d) > α2, for any G ∈ S2. Therefore, for any β ∈

[0, α2], sup
β∈[0,α2]

H0(β,G−1
β,λβ
− d) = 0 by (2.41). In particular, we can take α2 as the

maximizer. In the following, we consider the case β∗ = G∗(d) 6 α2. Like the
problem max

F−1∈Q′d1
L0(β0, F

−1) discussed in the proof of Theorem 2.2.4, by the proof

of Proposition 3 of [Bernard et al., 2020b], we see that the following optimization
problem

sup
K−1∈Qd2

H0(β∗, K−1) (2.79)

has a unique solution G−1
β∗,λβ∗

− d ∈ Qd2, where λβ∗ solves dW (Ĝ−1, G−1
β∗,λβ∗

) = ε2. For

simplicity, we write G̃−1 = G−1
β∗,λβ∗

− d.
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First, if G̃−1(β∗) < 0, then G̃(0) > β∗, and G̃−1(u) 6 0 for all β∗ 6 u < G̃(0) by
(2.13). Since G∗−1 − d ∈ Qd2, we have

H0(β∗, G∗−1 − d) 6 H0(β∗, G̃−1) =

∫ 1

G̃(0)

γ2(u)G̃−1(u) du+

∫ β∗

G̃(0)

γ2(u)G̃−1(u) du

6
∫ 1

G̃(0)

γ2(u)G̃−1(u) du = H0(G̃(0), G̃−1)

6 sup
β∈[0,1]

sup
K−1∈Qd2

H0(β,K−1) = H0(β∗, G∗−1 − d).

Therefore, all the inequalities above are equalities.

Second, if G̃−1(β∗) > 0. Then G̃(0) > β∗, and G̃−1(u) > 0 for all G̃(0) 6 u 6 β∗ by
(2.13). It follows that

H0(β∗, G∗−1 − d) = sup
β∈[0,1]

sup
K−1∈Qd2

H0(β,K−1)

> H0(G̃(0), G̃−1) =

∫ 1

G̃(0)

γ2(u)G̃−1(u) du

=

∫ β∗

G̃(0)

γ2(u)G̃−1(u) du+

∫ 1

β∗
γ2(u)G̃−1(u) du

>
∫ 1

β∗
γ2(u)G̃−1(u) du = H0(β∗, G̃−1)

> H0(β∗, G∗−1 − d).

Therefore, all inequalities above are equalities.

In both the cases β∗ > α2 and β∗ 6 α2, we have H0(β∗, G∗−1 − d) = H0(β∗, G̃−1).
Since G̃−1 is the unique solution to problem (2.79), it must hold that G∗−1−d = G̃−1

a.s., and equivalently, G∗−1 = G−1
β∗,λβ∗

. Furthermore,

sup
β∈[0,α2]

H0(β,G−1
β,λβ
− d) = ρg2

(
(G∗−1(U)− d)+

)
= H0(β,G−1

β∗,λβ∗
− d),

i.e., β∗ is a maximizer to the problem supβ∈[0,α2] H0(β,G−1
β,λβ
− d) in (2.46).

(ii) Assume that supβ∈[0,α2] H0(β,G−1
β,λβ
− d) in (2.46) has a maximizer β∗. Then, by

(2.46), we have

sup
G∈S2

ρg2
(
(XG − d)+

)
= max

β∈[0,α2]
H0(β,G−1

β,λβ
− d) = H0(β,G−1

β∗,λβ∗
− d).
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Thus, by (2.40), we have

sup
G∈S2

ρg2
(
(XG − d)+

)
= sup

β∈[0,1]

sup
K−1∈Qd2

H0(β,K−1)

= max
β∈[0,α2]

H0(β,G−1
β,λβ
− d)

= H0(β,G−1
β∗,λβ∗

− d).

It is easy to check that

ρg2((G−1
β∗,λβ∗

(U)− d)+) =

∫ 1

β∗
γ(u)(G−1

β∗,λβ∗
(u)− d) du+

∫ β∗

Gβ∗,λβ∗
(0)

γ(u)(G−1
β∗,λβ∗

(u)− d) du.

Under the condition Gβ∗,λβ∗ (d−) 6 β∗ 6 Gβ∗,λβ∗ (d), we know that G−1
β∗,λβ∗

(u)− d =

0 for any u between β∗ and Gβ∗,λβ∗ (d). Therefore, the second term in the above
equation becomes 0. It follows that

ρg2((G−1
β∗,λβ∗

(U)− d)+) = H0(β∗, G−1
β∗,λβ∗

− d)

= sup
β∈[0,1]

sup
K−1∈Qd2

H0(β,K−1)

= sup
G∈S2

ρg2
(
(XG − d)+

)
.

Thus, Gβ∗,λβ∗ is a maximizer to the problem supG∈S2 ρ
g2
(
(XG − d)+

)
.
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Chapter 3

The worst-case distributions for
limited stop-loss functions with
model uncertainty

In Chapter 2, we explored the worst-case distributions with respect to both a stop-loss
function and a limited loss function. However, a loss function that possesses the features
of both types of loss functions, i.e., a general limited stop-loss function, is of great interest
as well. Indeed, it corresponds to a reinsurance layer in the industry. As a result, we will
try to find the worst-case distribution with respect to a limited stop-loss function. Based
on that, we will look at how the change of limit and deductible will influence the worst-case
risk measure for both sides. To increase the simplicity and the tractability of the problem,
we will adjust the uncertainty set from Chapter 2 by removing the moment constraints on
the candidate distributions. Another major change in the assumption is that we consider
a convex distortion risk measure in Chapter 3.

3.1 Problem Formulation

Following the assumption in Chapter 1, we assume g is absolutely continuous and concave.
By (1.5), the distortion risk measure ρg has the following representation

ρg(Y G) =

∫ 1

0

γ(u)G−1(u) du, (3.1)
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where the weight function γ(u) = ∂−g(x)|x=1−u, 0 < u < 1, satisfies
∫ 1

0
γ(u) = 1 and ∂−

denotes the derivative from the left.

In an optimal strategy design problem, the agent is interested in finding the best strat-
egy which optimizes her personal objective function. Mathematically, when the agent’s
objective is given by a risk measure, the optimization problem can be formulated as
min` ρ(`(X)), where X is the random position faced by the agent, ` is the loss function
chosen by the agent to against X, and ρ is the risk measure used to quantify the risk
exposure. To solve such optimization problem, it is crucial to know the distribution of
X to calculate the value of the risk measure after the transformation of loss function `.
Nevertheless, in practice, one is not able to know the distribution of the loss X precisely
due to the limitation of knowledge. The agent may propose a reference distribution for
X according to her available information, while she is aware of uncertainty thanks to the
estimation errors. As a consequence, the agent can use an uncertainty set S to cover all
candidate distributions of X. From the agent’s concern about the risk management, her
has special interests in the worst-case when the risk measure value achieve the supremum
in the uncertainty set S. Then, the agent’s optimization problem with model uncertainty
can be formulated as min` supF∈S ρ

(
`(XF )

)
. The inner maximization problem represents

the agent’s conservative concern about the distribution of X in the worst-case scenario,
while the outer minimization problem is used to determine the best strategy for the agent.
Therefore, the optimal strategy `∗ := arg min` supF∈S ρ(`(XF )), if exists, can minimize the
agent’s risk exposure in the worst-case.

We should note that the worst-case distribution solved from the inner problem supF∈S ρ(`(XF ))
depends on the loss transform `. Indeed, the worst-case distributions associated with differ-
ent loss transforms are not necessary to be the same. Therefore, it is crucial to characterize
the worst-case distribution associated with a given loss function, i.e., solve the worst-case
problem

sup
F∈S

ρ(`(XF )) (3.2)

for a given `. Motivated by insurance markets, we consider the family of limited stop-loss
functions in the presenting chapter. Mathematically, define the set of all strategies by

L := {` : R→ R satisfying `(x) = min {d+ (x− d)+,M} , where−∞ 6 d < M 6∞} .
(3.3)

When d > −∞, and M =∞, the function `(x) = d+ (x−d)+ is determined by a stop-loss
function (x−d)+, in which the agent’s risk position is the loss above the deductible d only,
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i.e., the risk is truncated from below. On the other hand, when M <∞,

`(x) =


d, x 6 d

x, d < x < M

M, x >M

−→ x ∧M =

{
x, −∞ < x < M

M, x >M,
as d→ −∞.

In the limiting case of d = −∞, we define `(x) = x∧M which is called limited-loss function.
It means that the agent has limited responsibility up to the maximal amount M , i.e., the
risk is truncated from above. The stop-loss and limited loss functions are not only two
especial transforms but also building blocks of the set L. In section 3.2, we first consider
stop-loss and limited loss functions, and then extend results to an arbitrary transform in
L.

To characterize the worst-case distribution in the problem (3.2), it is also crucial to
identify the uncertainty set. In practice, the agent can use her information about the
risk to propose a reference distribution. A candidate distribution should be close to the
reference distribution in the sense of certain distance metric. In this chapter, we adopt
Wasserstein distance and its definition is given below.

Definition 3.1.1 (Wasserstein distance with order k) Let k > 1. For two distribu-
tions F and G, the Wasserstein metric of order k is given by

Wk(F,G) = Wk(F
−1, G−1) =

(∫ 1

0

∣∣F−1(x)−G−1(x)
∣∣k dx

)1/k

,

where F−1 and G−1 are the quantile functions of F and G respectively.

The above definition generalizes that of Wasserstein distance in Chapter 2 by allowing a
larger range of the order k. In the presenting chapter, we sometimes abuse the notation of
Wasserstein distance by applying it to quantile functions instead of distribution functions.
There is no difference in the meaning between the two presentations. We assume that
the agent has a reference distribution F̂ , and define the agent’s the uncertainty set of
distributions as

S =
{
F : Wk(F, F̂ ) 6 ε

}
for k > 1 and ε > 0. (3.4)

Symmetrically, we define the uncertainty set of quantile functions as

Q = {F−1 : F ∈ S} =
{
F−1 : Wk(F

−1, F̂−1) 6 ε
}

for k > 1 and ε > 0. (3.5)
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Assumption 3.1.1 Put k̄ = (1− 1/k)−1 for k > 1 and k̄ =∞ for k = 1. Note that k̄ = 1
when k =∞. Assume ‖γ‖k and ‖γ‖k̄ are well-defined whenever appear.

Now, we are ready to formulate the agent’s worst-case problem considered in this chap-
ter. We assume that the agent adopts a convex distortion risk measure ρ with a weight
function γ defined in (1.5), the uncertainty set S defined in (3.4), and a limited stop-loss
function ` ∈ L. Then the agent’s risk measure value in the worst-case scenario is

[ρ]kε(X
F̂ ; `) := sup

F∈S
ρ
(
`(XF )

)
= sup

F∈S

{
ρ
(
min

{
d+ (XF − d)+,M

})
: Wk(F̂ , F ) 6 ε

}
.

(3.6)

If `(x) = x, in which case we can set d = −∞ and M = ∞, then (3.6) is the robust
version of a coherent distortion risk measure ρ via the Wasserstein metric, which is solved
in [Liu et al., 2022]. For ` ∈ L with −∞ < d and/or M < ∞, it is a non-linear transfor-
mation, and moreover, it might not be neither concave nor convex. Therefore, results in
[Liu et al., 2022] cannot be applied directly.

3.2 Worst-case distribution

3.2.1 Stop-loss function

In this section, we first consider the worst-case distribution in the problem (3.6) with

respect to a transform d + (x − d)+ with d > ess-infX F̂ > −∞ given. Since ρ is cash-
invariant, solving the problem (3.6) is equivalent to solving the following problem

[ρ]kε(X
F̂ ; `1) = sup

{
ρ
(
(XF − d)+

)
: Wk(F̂ , F ) 6 ε

}
, d > ess-infX F̂ , (3.7)

where `1(x) , (x− d)+ is a stop-loss function.

For any given β ∈ [0, 1], define function

γ1,β(u) := γ(u) · I[β,1](u), 0 < u < 1.

Since the distortion function g is concave, its weight function γ is non-negative and non-
decreasing on (0, 1) with ‖γ‖1 = 1. Therefore, there exists δ ∈ (0, 1) such that γ > 0 holds
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on the interval (δ, 1). Consequently, ‖γ1,β‖1 >
∫ 1

β∨δ γ(u) du > 0 for all β < 1. By applying
the same argument in Lemma 2.3.1 in Chapter 2, we can write

[ρ]kε(X
F̂ ; `1) = sup

G∈S
ρ
(
(XG − d)+

)
= sup

G∈S
max
β∈[0,1]

∫ 1

β

γ(u)
(
G−1(u)− d

)
du

= sup
β∈[0,1]

sup
G∈S

∫ 1

β

γ(u)
(
G−1(u)− d

)
du (3.8)

= sup
β∈[0,1]

sup
G−1∈Q

∫ 1

0

γ1,β(u)
(
G−1(u)− d

)
du.

Intuitively, in the above expression, we can first fix a β ∈ [0, 1] and solve the inner

maximization problem, in which the integral
∫ 1

0
γ1,β(u) (G−1(u)− d) du can viewed as a

new distortion risk measure with a concave distortion function. Then Proposition 3 of
[Liu et al., 2022] can be applied to find a solution to the inner problem.

Theorem 3.2.1 Suppose Assumption 3.1.1 holds and `1(x) = (x−d)+ with d > ess-infX F̂ .
Then we have

[ρ]kε(X
F̂ ; `1) = max

β∈[0,1]

{∫ 1

0

γ1,β(u)F̂−1(u) du+ ε‖γ1,β‖k̄ − d‖γ1,β‖1

}
. (3.9)

Proof. To express the right hand side of (3.9) in a more simply way, we write

H(β) ,
∫ 1

0

γ1,β(u)F̂−1(u) du+ ε‖γ1,β‖k̄ − d‖γ1,β‖1, 0 6 β 6 1. (3.10)

First note that shifting two quantile functions by a same constant does not change their
Wasserstein distance. Therefore, define Qd , Q− d and write (3.8) as

[ρ]kε(X
F̂ ; `1) = sup

β∈[0,1]

sup
G−1∈Qd

∫ 1

0

γ1,β(u)G−1(u) du. (3.11)

If β = 1, then γ1,β = 0 and supG−1∈Qd

∫ 1

0
γ1,β(u)G−1(u) du = 0 = H(1) for all G−1. If

β ∈ [0, 1), γ1,β is not the constant zero, and γ1,β 6 γ implies ‖γ1,β‖1, ‖γ1,β‖k̄ and ‖γ1,β‖k are

well-defined, where k̄ = (1− 1/k)−1. Note that, the function
γ1,β(u)

‖γ1,β‖1
> 0 is non-decreasing

in u ∈ (0, 1) and
∫ 1

0

γ1,β(u)

‖γ1,β‖1
du = 1. Therefore, function defined via

g1,β(q) := 1−
∫ 1−q

0

γ1,β(u)

‖γ1,β‖1

du, q ∈ (0, 1), (3.12)
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is non-decreasing and concave with g1,β(0) = 0 and g1,β(1) = 1. That is, g1,β is a concave
distortion function, whose weight function is

γ1,β
||γ1,β ||1

. Denote ρ1,β to be the convex distortion

risk measure induced by g1,β. Then, for any β ∈ [0, 1) and G−1, we have∫ 1

0

γ1,β(u)G−1(u) du = ‖γ1,β‖1

∫ 1

0

γ1,β(u)

‖γ1,β‖1

G−1(u) du = ‖γ1,β‖1 · ρ1,β(XG).

For a fixed β ∈ [0, 1), we apply Proposition 4 in [Liu et al., 2022] to conclude that

sup
G−1∈Qd

ρ1,β(XG) = [ρ1,β]kε(X
F̂ − d) = ρ1,β(X F̂ )− d+ ε

∥∥∥∥ γ1,β

‖γ1,β‖1

∥∥∥∥
k̄

.

Furthermore we have

sup
G−1∈Qd

∫ 1

0

γ1,β(u)G−1(u) du = ‖γ1,β‖1 · sup
G−1∈Qd

ρ1,β(XG)

= ‖γ1,β‖1

(
ρ1,β(X F̂ )− d+ ε · ‖γ1,β‖k̄

‖γ1,β‖1

)
= ‖γ1,β‖1

(∫ 1

0

γ1,β(u)

‖γ1,β‖1

F̂−1(u) du− d+ ε · ‖γ1,β‖k̄
‖γ1,β‖1

)
= H(β).

In short, we verify that H(β) = supG−1∈Qd

∫ 1

0
γ1,β(u)G−1(u) du for all 0 6 β 6 1. Together

with (3.11), we have [ρ]kε(X
F̂ ; `1) = supβ∈[0,1]H(β). Since |γ(u)| < ∞ and |F̂ (u)| <

∞ for all u ∈ (0, 1), all integrals
∫ 1

0
γ1,β(u)F̂−1(u) du =

∫ 1

β
γ(u)F̂−1(u) du, ‖γ1,β‖k̄ =(∫ 1

β
γ(u)k̄ du

)1/k̄

and ‖γ1,β‖1 =
∫ 1

β
γ(u) du are continuous in β. Therefore, H(β) is a

continuous function. Hence, the supremum of H(β) can be achieved on the compact set
[0, 1]. The expression (3.9) holds as a consequence.

Given a distortion risk measure ρ with distortion function g and its derivative γ, we
can easily calculate all quantities in (3.9), and then determines the worst-case risk measure
value.

Remark 3.2.1 As d ↓ ess-infX F̂ , the function d+ (x− d)+ converges to x pointwisely for

all x > ess-infX F̂ . We consider a simpler case in detail when ess-infX F̂ > −∞. Take d =
ess-infX F̂ , `1(x) = (x− ess-infX F̂ )+ and `(x) = x. By Proposition 3 of [Liu et al., 2022],

we know [ρ]kε(X
F̂ ; `) = ρ(X F̂ ) + ε · ‖γ‖k̄.
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Meanwhile, we note that ess-infX F̂ + `1(X) = X. To determine [ρ]kε(X
F̂ ; `1), we obtain

from (3.10) that

H ′(β) = γ(β)
(

ess-infX F̂ − F̂−1(β)
)
− k̄‖γ1,β‖(k̄−1)/k̄

k̄
γ(β) 6 0

for all β > 0. It says that H(β) is decreasing in β, and therefore, the maximal value of

H(β) is achieved at β = 0. Consequently, [ρ]kε(X
F̂ ; `1) =

∫ 1

0
γ(u)F̂−1(u) du + ε · ‖γ‖k̄ −

ess-infX F̂ · ‖γ‖1 since ‖γ1,0‖1 = ‖γ‖1 = 1. Therefore,

[ρ]kε(X
F̂ ; ess-infX F̂ + `1) = ρ(X F̂ ) + ε · ‖γ‖k̄ = [ρ]kε(X

F̂ ; `),

i.e., Theorem 3.2.1 and Proposition 3 of [Liu et al., 2022] give the same result. For the

case when ess-infX F̂ = −∞, convergent argument can be applied to verify from (3.9) that

[ρ]kε(X
F̂ ; d+ (x− d)+)→ ρ(X F̂ ) + ε · ‖γ1,β‖k̄ as d→ −∞. The detail argument is omitted

here.

Example 7 (Worst-case Tail Value-at-Risk) In this example, we take ρ = TVaRα

with 0 < α < 1, i.e.,

ρ(XF ) = TVaRα(XF ) =
1

1− α

∫ 1

α

F−1(u) du.

The problem (3.7) becomes

[ρ]kε(X
F̂ ; `1) := sup

F∈S
TVaRα

(
(XF − d)+

)
= sup

{
TVaRα

(
(XF − d)+

)
: Wk(F̂ , F ) 6 ε

}
.

(3.13)

It is well know that TVaR has distortion function g(t) = min{ 1
1−αt, 1}, 0 < t < 1, and its

weight function is γ(t) = 1
1−αI[α,1](t), 0 < t < 1. Consequently, for any 0 < β < 1, we have

γ1,β(t) =
1

1− α
I[α∨β,1](t), 0 < t < 1, with ‖γ1,β‖1 =

1− α ∨ β
1− α

and ‖γ1,β‖k̄ =
(1− α ∨ β)1/k̄

1− α
.

61



Then (3.9) can be reduced to

[TVaRα]kε(X
F̂ ; `1) = max

β∈[0,1]

{
1

1− α

∫ 1

α∨β
F̂−1(u) du+ ε · (1− α ∨ β)1/k̄

1− α
− d · 1− α ∨ β

1− α

}

= max
β∈[0,1]

{
1

1− α

∫ 1

α∨β

(
F̂−1(u)− d

)
du+ ε · (1− α ∨ β)1/k̄

1− α

}

= max
β∈[0,1]

{
1− α ∨ β

1− α
1

1− α ∨ β

∫ 1

α∨β

(
F̂−1(u)− d

)
du+ ε · (1− α ∨ β)1/k̄

1− α

}
=

1

1− α
max
β∈[α,1]

{
(1− β)

(
TVaRβ(X F̂ )− d

)
+ ε(1− β)1/k̄

}
. (3.14)

In particular, if we take α = 0, then TVaR0 = E. The expression (3.14) implies that

[E]kε(X
F̂ ; `1) = max

β∈[0,1]

{
(1− β)

(
TVaRβ(X F̂ )− d

)
+ ε(1− β)1−1/k

}
, (3.15)

which covers the result of Proposition 2 in [Guan et al., 2022].

Example 8 (Wang’s premium in the worst-case scenario) In this example, we let
F̂ (x) = 1 − ( 12

x+12
)4, x > 0, ε = 2, k = 2 and look for the worst-case distribution with

respect to a stop-loss function `1(x) = (x − d)+. We adopt ρg, a Wang’s risk measure,
to quantify `1(X), with g(u) = Φ(Φ−1(u) + 0.5), 0 6 u 6 1. The definition of ρg follows
Definition 1.2.8. The worst-case quantiles with different deductible d are plotted in Figure
3.1:

3.2.2 Limited loss function

In this section, we consider the worst-case distribution in the problem (3.6) with a limited-

loss function `2(x) = x ∧M where M < ess-supX F̂ . We re-write the problem (3.6) as

[ρ]kε(X
F̂ ; `2) = sup

{
ρ
(
XF ∧M

)
: Wk(F̂ , F ) 6 ε

}
. (3.16)

To proceed, we first denote q1 := F̂ (M) and

qk0 := inf

{
q > 0 :

∫ q1

q

∣∣∣M − F̂−1(u)
∣∣∣k du 6 εk

}
(3.17)

= inf

{
q > 0 :

∫ 1

q

∣∣∣M − F̂−1(u) ∧M
∣∣∣k du 6 εk

}
.
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Figure 3.1: Worst-case distributions with stop-loss transformation.
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It worth pointing out that, if qk0 = 0, then we have(
Wk(M ∨ F̂−1, F̂−1

)k
=

∫ 1

0

∣∣∣M ∨ F̂−1(u)− F̂−1(u)
∣∣∣k du =

∫ q1

0

∣∣∣M − F̂−1(u)
∣∣∣k du 6 εk,

i.e., M ∨ F̂−1 ∈ Q. It is easy to see that ρ
(

(M ∨ F̂−1) ∧M
)

= ρ(M) = M . Meanwhile,

F−1 ∧M 6 M for any quantile function F−1. By the monotonicity of ρ, we know that
ρ(XF ∧M) 6M for any F ∈ S. Therefore, qk0 = 0 implies a trivial case in which the worst-
case risk measure value is M and is achieved at a worst-case distribution M ∨ F̂−1 ∈ S.
If qk0 > 0, then M ∨ F̂−1 /∈ S. In this case, since F̂−1(u) is finite for any 0 < u < 1, the

integral
∫ 1

q

∣∣∣M − F̂−1(u) ∧M
∣∣∣k du is continuous in q. Therefore, qk0 satisfies the equation

∫ q1

q

∣∣∣M − F̂−1(u)
∣∣∣k du =

∫ 1

q

∣∣∣M − F̂−1(u) ∧M
∣∣∣k du = εk. (3.18)

The non-trivial case of the problem (3.16) is more challenging compared to the problem
(3.7) because `2(x) = x ∧M is a concave function while the distortion risk measure ρ is
convex. To see this mathematically, we apply Lemma 2.2.1 and Lemma 2.2.2 in Chapter
2 to obtain

sup
F∈S

ρ(XF ∧M) = M + sup
F∈S

∫ F (d)

0

γ(u)
(
F−1(u)−M

)
du = M + sup

F∈S
min
β∈[0,1]

L(β, F−1),

(3.19)

where

L(β, F−1) ,
∫ 1

0

γ2,β(u)
(
F−1(u)−M

)
du

and
γ2,β , γ · I[0,β].

In (3.19), the problem (3.16) is expressed by a “sup-inf” problem, which is not necessarily
equivalent to its “inf-sup” problem. In other words, the step of exchanging the inner and
outer optimization problems in (3.8) may not hold true to (3.19). Furthermore, we should
note that the weight function γ2,β in (3.19) is not a non-decreasing function. Therefore,
the distortion risk measure induced by γ2,β is not coherent, and the argument for solving
the problem (3.7) cannot be applied to the problem (3.16).
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In this section, we solve the problem (3.16) for two cases when k = 1 and k = 2. Then
we provide a partial characterization of the worst-case distribution for other values of k.
To proceed, we introduce sets

A1 :=
{
F−1 : Wk(F

−1, F̂−1) 6 ε, F̂−1 ∧M 6 F−1
}

A2 :=
{
F−1 : Wk(F

−1, F̂−1 ∧M) 6 ε, F̂−1 ∧M 6 F−1 6M
}
.

Lemma 3.2.2 Let U be a uniform random variable on (0, 1). The following equations
hold:

[ρ]kε(X
F̂ ; `2) = sup

F−1∈Ai
ρ
(
F−1(U) ∧M

)
, i = 1, 2. (3.20)

Proof. For any quantile function F−1 and its distribution function F , we have XF d
=

F−1(U), XF ∧M d
= F−1(U) ∧M , and we can write

ρ(XF ∧M) =

∫ 1

0

γ(u)
(
F−1(u) ∧M

)
du. (3.21)

From the proof of Proposition 3 of [Liu et al., 2022], we have

[ρ]kε(X
F̂ ; `2) = sup

{
ρ(XF ∧M) : Wk(F, F̂ ) 6 ε and F̂−1 6 F−1

}
. (3.22)

For any F ∈ S satisfying F̂−1 6 F−1, we can check that F̂−1 ∧M 6 F−1 ∧M 6 M ,
and

∣∣∣F−1(u) ∧M − F̂−1(u) ∧M
∣∣∣ =


∣∣∣F−1(u)− F̂−1(u)

∣∣∣ ; if F̂−1(u) 6 F−1(u) 6M

|F−1(u)−M | ; if F̂−1(u) 6M 6 F−1(u)

0, o/w.

6
∣∣∣F−1(u)− F̂−1(u)

∣∣∣ , u ∈ (0, 1).

It follows that Wk(F
−1 ∧ M, F̂−1 ∧ M) 6 Wk(F

−1, F̂−1) 6 ε. Thus, F−1 ∧ M ∈ A2.
Together with (3.21) and (3.22), we have

[ρ]kε(X
F̂ ; `2) 6 sup

{∫ 1

0

γ(u)F−1(u) du : F ∈ A2

}
. (3.23)
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For any F−1 ∈ A2, we can define

F̃−1(u) = max{F−1(u), F̂−1(u)} =

{
F−1(u), for u 6 q1, i.e., F̂−1(u) 6M

F̂−1(u), for u > q1, i.e., M < F̂−1(u).

It is easy to see that F̃−1 > F̂−1 > F̂−1 ∧M , F̃−1 ∧M = F−1 ∧M = F−1, and(
Wk(F̃

−1, F̂−1)
)k

=

∫ q1

0

∣∣∣F̃−1(u)− F̂−1(u)
∣∣∣k du =

∫ q1

0

∣∣∣F−1(u)− F̂−1(u) ∧M
∣∣∣k du

6
∫ 1

0

∣∣∣F−1(u)− F̂−1(u) ∧M
∣∣∣k du 6 εk,

where the last inequality is because F−1 ∈ A2. Therefore F̃−1 ∈ A1 and ρ(X F̃ ∧M) =
ρ(XF ). It implies that

sup

{∫ 1

0

γ(u)F−1(u) du : F ∈ A2

}
6 sup

{∫ 1

0

γ(u)
(
F̃−1(u) ∧M

)
du : F̃ ∈ A1

}
.

(3.24)

Obviously, A1 ⊂ {F−1 : F ∈ S, F̂−1 6 F−1}. Together with (3.22), we have

[ρ]kε(X
F̂ ; `2) > sup

{∫ 1

0

γ(u)
(
F−1(u) ∧M

)
du : F−1 ∈ A1

}
.

The above inequality, together with (3.23) and (3.24), imply that (3.20) is achieved as
desired.

We first apply Lemma 3.2.2 to characterize the worst-case distribution when k = 1.
Later, Lemma 3.2.2 will help us to partially determine the worst-case distribution for
general cases.

Theorem 3.2.3 Assume k = 1 and `2(x) = x ∧ M with M < ess-supX F̂ . Then the
worst-case distribution to the problem (3.16) is

(F ∗)−1(u) =


F̂−1(u), 0 6 u 6 q1

0;

M, q1
0 < u 6 q1;

F̂−1(u), q1 < u 6 1,

(3.25)
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where q1 = F̂ (M) and q1
0 is defined in (3.17). Furthermore, the worst-case risk measure

value is

[ρ]1ε(X
F̂ ; `2) = min

{
ρ(X F̂ ) + ε,M

}
=

{
ρ(X F̂ ) + ε, if q1

0 > 0

M, if q1
0 = 0.

(3.26)

Proof. For k = 1, the Wasserstein metric becomes W1(F, F̂ ) =
∫ 1

0

∣∣∣F−1(u)− F̂−1(u)
∣∣∣ du.

Moreover, for any F ∈ S with F̂−1 6 F−1, we have W1(F, F̂ ) =
∫ 1

0
F−1(u)− F̂−1(u) du =

E[XF ]− E[X F̂ ].

Arbitrarily take F ∈ A2, i.e., F̂−1 ∧M 6 F−1 6M and

E[F−1(U)]− E[F̂−1(U) ∧M ] = W1(F−1, F̂−1 ∧M) 6 ε. (3.27)

Define h(p) ,
∫ p

0
F̂−1(u) du+M(1−p) as a function of p ∈ [0, 1]. Since F̂−1(u) is bounded

for all u ∈ (0, 1), the function h(p) is continuous in p. With q1 = F̂ (M), we have

h(q1) =

∫ q1

0

F̂−1(u) du+M(1− q1) = E[F̂−1 ∧M ] 6 E[F−1(U)], (3.28)

where the second equality is because, for any 0 < u < 1 and quantile function G−1,
u 6 G(x) if and only if G−1(u) 6 x. On the other hand, if q1

0 defined in (3.17) is zero, then
h(0) = M > E[F−1(U)]. If q1

0 > 0, then we have F̂−1(u) 6M for 0 < u 6 q1
0 6 q1, and

h(q1
0) =

∫ q10

0

F̂−1(u) du+M(1− q1
0)

=

∫ 1

q10

(
M − F̂−1(u) ∧M

)
du+

∫ q10

0

F̂−1(u) du+

∫ 1

q10

F̂−1(u) ∧M du

=

∫ 1

q10

(
M − F̂−1(u) ∧M

)
du+

∫ 1

0

F̂−1(u) ∧M du

= ε+ E[F̂−1(U) ∧M ],

where the third equality comes from (3.18) with k = 1. From (3.27), we have h(q1
0) >

E[F−1(U)]. Together with (3.28) and the continuity of h(p), there exists p0 ∈ [q1
0, q1] such

that E[F−1(U)] = h(p0) =
∫ p0

0
F̂−1(u) du+M(1− p0). Then define

G−1(u) =

{
F̂−1(u), 0 6 u 6 p0;

M, p0 < u 6 1
(3.29)

67



satisfying E[G−1(U)] = h(p0) = E[F−1(U)]. Since p0 6 q1, we have F̂−1(u) 6 M for
0 6 u 6 p0, and futhermore, F̂−1(u) = F̂−1(u) ∧ M 6 F−1(u) for all 0 < u < p0.
Therefore, G−1(u) = F̂−1(u) 6 F−1(u) for 0 6 u 6 p0, and G−1(u) = M > F−1(u)
for p0 < u 6 1. That is, the function G−1 up-crosses the function F−1. Together with
E[G−1(U)] = E[F−1(U)], by Lemma 3 of [Ohlin, 1969], G−1(U) is larger than F−1(U) in
the sense of convex order. Since ρ is a coherent distortion risk measure which preserves
the convex order, we have ρ(XF ) = ρ(F−1(U)) 6 ρ(G−1(U)) = ρ(XG). Also note that, by

the definition of q1
0 in (3.17), we have W1(G−1, F̂−1 ∧M) =

∫ 1

p0

∣∣∣M − F̂−1(u) ∧M
∣∣∣ du 6 ε,

i.e., G ∈ A2. Since F−1 is arbitrarily taken from A2, we can conclude that

sup
{
ρ(XF ) : F ∈ A2

}
= sup

{
ρ(XG) : G ∈ A3

}
,

where
A3 = {G : G−1 = F̂−1I[0,p] +MI(p,1] for some p ∈ [q1

0, q1]}.

Lemma 3.2.2 further implies

[ρ]1ε(X
F̂ ; `2) = sup

{
ρ(XG) : G ∈ A3

}
.

The set A3 can be viewed as a set indexed by a single parameter p ∈ [q1
0, q1]. As p

increases, the associated quantile function G = F̂−1I[0,p] +MI(p,1] decreases in the sense of
the first stochastic dominance order (FOD). Since ρ preserves FOD, ρ(XG) decreases as p
increases. As a consequence, we can conclude that

(G∗)−1(u) =

{
F̂−1(u), 0 6 u 6 q1

0;

M, q1
0 < u 6 1,

which is the largest quantile inA3 in the sense of FOD, maximizes the integral
∫ 1

0
γ(u)G−1(u) du

on A3. It is easy to see that F ∗ defined in (3.25) satisfies (G∗)−1(u) = (F ∗)−1(u) ∧M for

0 < u < 1 and F ∗ ∈ S. Therefore ρ(XF ∗ ∧M) = [ρ]1ε(X
F̂ ; `2), i.e., F ∗ is the worst-case

distribution to the problem (3.16) with k = 1. The equation (3.26) can be verified directly
by calculating ρ(XF ∗ ∧M) with (3.16).

It is interesting to point out two observations of Theorem 3.2.3. First the worst-case
distribution (3.25) only depends on the upper limit M and the uncertainty set S, but
does not depend on the choice of the coherent distortion risk measure ρ. For the cases
when k 6= 1, we normally expect that the weight function γ of ρ also plays an important
role in characterizing the worst-case distribution, see for example [Bernard et al., 2020b],
[Liu et al., 2022] and Chapter 2 of this thesis. When k = 1, the Wasserstein distance
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between two distributions ordered in FOD is simplified to the difference of their means. As
a consequence, if a law-invariant risk measure ρ preserves FOD and the convex order, then
similar argument in the proof of Theorem 3.2.3 can be applied to obtain the worst-case
distribution in (3.25). In this sense, the result in Theorem 3.2.3 can be generalized to
non-distortion coherent risk measures.

Second, from (3.26), we have [ρ]1ε(X
F̂ ; `2) − ρ(X F̂ ) = ε in the non-trivial case, i.e.,

q1
0 > 0. From Proposition 3 of [Liu et al., 2022], we also have sup{ρ(XF ) : W1(F, F̂ ) 6
ε} = ρ(X F̂ )+ε. Therefore, regardless the choice of ρ, when M > ρ(X F̂ )+ε, the worst-case
distribution should fully utilize the distance tolerance ε between the reference distribution
and a candidate distribution in the left tail (before hitting M) such that the difference

between the worst-case risk measure value and ρ(X F̂ ) remains to be ε. Mathematically,

[ρ]1ε(X
F̂ ; `2) = ρ(X F̂ ) + ε is a constant for all M ∈ [ρ(X F̂ ) + ε, ess-supX F̂ ].

Next we consider the case when k = 2. Before moving on, we need first to introduction
the concept of isotonic projection. Same as in Chapter 2, let

K =

{
k : (0, 1) 7→ R

∣∣∣∣∫ 1

0

k(u)2 du <∞, k non-decreasing

}
be the space of square-integrable non-decreasing functions on (0, 1). Denote the metric
projection of a function f ∈ L2(0, 1) onto the space K as

f ↑ = arg min
k∈K

||f − k||2.

Theorem 3.2.4 Let k = 2 and Assumption 3.1.1 hold. Assume q2
0 > 0. There exists a

worst-case distribution F ∗ ∈ S such that [ρ]2ε(X
F̂ ; `2) = ρ

(
XF ∗ ∧M

)
, and

(F ∗)−1(u) =


F̂−1(u) + λ∗γ(u), for 0 < u 6 θ∗;

M, for θ∗ < u 6 q1;

F̂−1(u), for q1 < u < 1,

(3.30)

where λ∗ > 0 and θ∗ ∈ (0, q1) satisfies W2(F ∗, F̂ ) = ε. Furthermore, the worst-case risk
measure value is

[ρ]2ε(X
F̂ ; `2) = ρ(X F̂ ) + λ∗

∫ θ∗

0

γ(u)2 du+

∫ q1

θ∗

(
M − F̂−1(u)

)
γ(u) du. (3.31)
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Proof. From Lemma 2.2.1 and Lemma 2.2.2 in Chapter 2, we have

ρ(XF ∧M) = M +

∫ F (M)

0

γ(u)
(
F−1(u)−M

)
du = M + min

β∈[0,1]
L(β, F−1), (3.32)

where L(β, F−1) =
∫ 1

0
γ2,β(u) (F−1(u)−M) du and γ2,β = γ · I[0,β]. Then we have

sup
F∈S

ρ(XF ∧M) = M + sup
F∈S

min
β∈[0,1]

L(β, F−1) = M + sup
F−1∈Q

min
β∈[0,1]

L(β, F−1). (3.33)

We first introduce auxiliary notation used in the rest of proof. Define

β0 =

{
0, if γ > 0 holds on some interval (0, δ), 0 < δ < 1,

sup{0 < u < 1 :
∫ u

0
γ(t) dt = 0}, otherwise.

(3.34)

Since γ is non-negative, it is easy to see γ(u) = 0 for 0 6 u 6 β0. For any β 6 β0, we have
γ1,β = 0 and L(β, F−1) = 0 for all F−1. For any β0 < β < 1, γ2,β is not the constant zero

and ‖γ2,β‖1 =
∫ β

0
γ(u) du > 0 is well-defined. Furthermore, we can define the following

function for any given β0 < β < 1

g2,β(x) = 1−
∫ 1−x

0

γ2,β(u)

‖γ2,β‖1

du, x ∈ [0, 1].

Note that g2,β is a non-decreasing function with g2,β(0) = 0 and g2,β(1) = 1. We can use
g2,β as a distortion function to induce a distortion risk measure ρ2,β. It should be pointed
out that ρ2,β is not coherent since g2,β is not a concave distortion function. For β ∈ (β0, 1),
the function L(β, F−1) can be expressed as

L(β, F−1) = ‖γ2,β‖1

∫ 1

0

γ2,β(u)

‖γ2,β‖1

(
F−1(u)−M

)
du = ‖γ2,β‖1 · ρ2,β(F−1(U)−M).

With the help of Theorem 2.6.4 and similarly argument in the proof of Theorem 2.2.3 in
Chapter 2, we can re-write the sup-min problem in (3.33) as

sup
F−1∈Q

min
β∈[0,1]

L(β, F−1) = min
β∈[0,1]

max
F−1∈Q

L(β, F−1). (3.35)

Therefore, the worst-case risk measure value can be expressed as

sup
F∈S

ρ(XF ∧M) = M + min
β∈[0,1]

max
F−1∈Q

L(β, F−1).
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For any β 6 β0, L(β, F−1) = 0 for all F−1 implies maxF−1∈Q L(β, F−1) = 0. For any
β0 < β < 1, we have

max
F−1∈Q

L(β, F−1) = ‖γ2,β‖1 ·max
F∈Q

ρ2,β(F−1(U)−M) = ‖γ2,β‖1

(
−M + max

F∈Q
ρ2,β(F−1(U))

)
.

For simplicity, write Mβ := maxF∈Q ρ2,β(F−1(U)) for a given β0 < β < 1. LetM be the
set of quantile functions with finite second moments. From Theorem 1 of [Pesenti, 2022],
the problem

min
F∈M

W2(F−1, F̂−1) s.t. ρ2,β(XF ) = Mβ

has a unique solution given by (F ∗β )−1 =
(
F̂−1 + λβγ2,β

)↑
with λβ > 0 such that ρ2,β((F ∗β )−1(U)) =

Mβ. Next, we are going to show W2((F ∗β )−1, F̂−1) = ε.

(i) SupposeW2((F ∗β )−1, F̂−1) > ε. Then there exists δ such that 0 < δ < W2((F ∗β )−1, F̂−1)−
ε. Take a sequence {F−1

n , n = 1, 2, ...} ⊂ Q such that Mβ = limn→∞ ρ2,β(F−1
n (U)).

For any n = 1, 2, ..., W2(F−1
n +δ, F̂−1) 6 δ+W2(F−1

n , F̂−1) 6 δ+ε < W2((F ∗β )−1, F̂−1).
Meanwhile, ρ2,β(F−1

n (U) + δ) = ρ2,β(F−1
n (U)) + δ → Mβ + δ as n → ∞. There ex-

ists N such that ρ2,β(F−1
n (U) + δ) > Mβ for all n > N . Meanwhile, we know

W2(F−1
n + δ, F̂−1) < W2((F ∗β )−1, F̂−1) for all n > N . In particular, we take N and

the problem

min
F∈M

W2(F−1, F̂−1) s.t. ρ2,β(XF ) = ρ2,β(F−1
N (U) + δ)

again has a unique solution given by F̃−1 =
(
F̂−1 + λ̃γ2,β

)↑
with λ̃ > 0 such that

ρ2,β(F̃−1(U)) = ρ2,β(F−1
N (U) + δ). Since ρ2,β(F̃−1(U)) = ρ2,β(F−1

N (U) + δ) > Mβ =

ρ2,β((F ∗β )−1(U)), we have λβ < λ̃. It implies W2((F ∗β )−1, F̂−1) < W2(F̃−1, F̂−1) 6

W2(F−1
N +δ, F̂−1), which contradicts with the factW2(F−1

n +δ, F̂−1) < W2((F ∗β )−1, F̂−1)
for all n > N .

(ii) If W2((F ∗β )−1, F̂−1) < ε, then take δ such that 0 < δ < ε −W2((F ∗β )−1, F̂−1). It is
easy to see that

W2((F ∗β )−1 + δ, F̂−1) 6 W2((F ∗β )−1 + δ, (F ∗β )−1) +W2((F ∗β )−1, F̂−1) < ε,

i.e., (F ∗β )−1 + δ ∈ Q. Meanwhile, ρ2,β((F ∗β )−1(U) + δ) = ρ2,β((F ∗β )−1(U) + δ >
ρ2,β((F ∗β )−1(U)) = Mβ. It contradicts with the definition thatMβ = maxF−1∈Q ρ2,β(F−1(U)).
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Therefore, (F ∗β )−1 satisfies W2((F ∗β )−1, F̂−1) = ε and ρβ(XF ∗β ) = Mβ. Consequently, for
any β ∈ (β0, 1),

max
F−1∈Q

L(β, F−1) = ‖γ2,β‖1 · ρ2,β(XF ∗β −M),

where

(F ∗β )−1 =
(
F̂−1 + λβγ2,β

)↑
(3.36)

with λβ > 0 satisfying W2((F ∗β )−1, F̂−1) = ε. Furthermore, we have

sup
F∈S

ρ(XF ∧M) = M + min
β∈[0,1]

max
F−1∈Q

L(β, F−1)

= M + min
β∈[0,1]

{
‖γ2,β‖1 · ρ2,β(XF ∗β −M)

}
= M + ‖γ2,β∗‖1 · ρ2,β∗(X

F ∗
β∗ −M),

where β∗ ∈ arg minβ∈[0,1]

{
‖γ2,β‖1 · ρ2,β(XF ∗β −M)

}
.

From its projection isotonic representation given in (3.36) and similar argument used
in the proof of Proposition 1 of [Bernard et al., 2020b], the quantile function F ∗β∗ can be
expressed as

(F ∗β∗)
−1(u) =


F̂−1(u) + λβ∗γ2,β∗(u), 0 < u 6 θβ∗

c, θβ∗ < u 6 p,

F̂−1(u), u > p

(3.37)

for some λβ∗ > 0, θβ∗ 6 β∗ 6 p 6 1 and constant c. Since θβ∗ 6 β∗, γ2,β∗(u) = γ(u) for

0 < u 6 θβ∗ . We can also write (F ∗β∗)
−1(u) = F̂−1(u) + λβ∗γ(u) for 0 < u 6 θβ∗ .

We first claim that F̂ (c−) 6 p 6 F̂ (p). Suppose F̂ (c−) > p, then there exists small
δ > 0 such that (F ∗β∗)

−1(u) = F̂−1(u) < c = (F ∗β∗)
−1(p) for u ∈ (p, p + δ). It implies that

(F ∗β∗)
−1 is not non-decreasing, which contradicts with the fact that (F ∗β∗)

−1 is a quantile

function. Suppose p > F̂ (p), then there exists small δ > 0 such that (F ∗β∗)
−1(u) = c <

F̂−1(u) for u ∈ (p − δ, p). Since F̂−1(u) + λβ∗γ2,β∗(u) > F̂−1(u) for al u ∈ (0, 1), we can

strictly decrease the Wasserstein distance between F̂−1 + λβ∗γ2,β∗ and (F ∗β∗)
−1 in (3.37)

by taking (F ∗β∗)
−1(u) = F̂−1(u) for u ∈ (p − δ, p). This is a contradiction with (F ∗β∗)

−1

in (3.37) is the isotonic projection of F̂−1 + λβ∗γ2,β∗ . Therefore, F̂ (c−) 6 p 6 F̂ (c). In

particular, we can take p = F̂ (c).
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Second we verify that c = M . Indeed, if c > M , we can take

G−1 = min{(F ∗β∗)−1,max{M, F̂−1}}.

Then G−1∧M = (F ∗β∗)
−1∧M and thus ρ(G−1(U)∧M) = ρ((F ∗β∗)

−1(U)∧M). Meanwhile,

F̂−1(u) 6 G−1(u) 6 (F ∗β∗)
−1(u) for all 0 < u < 1 with G−1(u) < (F ∗β∗)

−1(u) for some
u ∈ (θ, p]. Therefore, G−1(U) is strictly smaller than (F ∗β∗)

−1(U) in the sense of FOD, and

W2(G−1, F̂−1) < W2(F ∗β∗)
−1, F̂−1) 6 ε. Take 0 < δ < W2(F ∗β∗)

−1, F̂−1) −W2(G−1, F̂−1),

and construct G̃−1 = G−1 + δ. Then W2(G̃−1, F̂−1) 6 W2(G̃−1, G−1) +W2(G−1, F̂−1) 6 ε,
i.e., G̃−1 ∈ Q. Since it is assumed q2

0 > 0, (F ∗β∗)
−1(u) < M for some u, and so does G−1.

Then ρ(G̃−1(U)∧M) > ρ(G−1(U)∧M) = ρ((F ∗β∗)
−1(U)∧M), which contradicts with the

optimality of F ∗β∗ . On the other hand, if c < M , then we have β∗ 6 p < q1 := F̂ (M) because

(F ∗β∗)
−1 > F̂−1. Since (F ∗β∗)

−1(u) = F̂−1(u) for u > p, we also have q1 = F̂ (M) = F ∗β∗(M).
Then ρ((F ∗β∗)

−1 ∧M) = M + L(q1, (F
∗
β∗)
−1) > M + L(β∗, (F ∗β∗)

−1) = supF∈S ρ(XF ∧M)
which is a contradiction. Therefore, we proof that c = M , and furthermore, we can take
p = F̂ (M) = p1. In conclusion, we characterize the optimal quantile function as given in
(3.30) by taking λ∗ = λβ∗ and θ∗ = θβ∗ .

Obviously, the worst-case quantile in (3.30) when k = 2 depends on not only the
uncertainty set but also the risk measure ρ with weight function γ, which is a sharp
difference with the worst-case quantile in (3.25) when k = 1. Nevertheless, the worst-case
quantile in two cases present a common feature in the right tail part: there exists 0 < p 6 q1

such that (F ∗)−1(u) = M for p < u 6 q1 and (F ∗)−1(u) = F̂−1(u) for q1 < u 6 1. Indeed,
with the help of Lemma 3.2.2, we can show that the same feature in the right tail part of
a worst-case distribution holds true for all k > 1.

Proposition 3.2.5 Suppose k > 1 and Assumption 3.1.1 holds. If there exists

(F̃ ∗)−1 ∈ arg max
{
ρ(F−1(U)) : F−1 ∈ A2

}
,

then

(F ∗)−1(u) = max{(F̃ ∗)−1(u), F̂−1(u)} =


(F̃ ∗)−1(u), if 0 6 u 6 F̃ ∗(M−)

M, if F̃ ∗(M−) < u 6 q1

F̂−1(u); if q1 < u 6 1

(3.38)

is the worst-case quantile to the problem (3.16).
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Proof. Define (F ∗)−1(u) = max{(F̃ ∗)−1(u), F̂−1(u)}. Note that F̂−1(u) 6 (F̃ ∗)−1(u) < M
for u < F̃ ∗(M−) and (F̃ ∗)−1(u) = M for u > F̃ ∗(M−). Then we can further write (F ∗)−1

in (3.38). It is easy to check that Wk((F
∗)−1, F̂−1) = Wk((F̃

∗)−1, F̂−1 ∧M) 6 ε and

ρ(XF ∗ ∧ d) =

∫ 1

0

γ(u)
(
(F ∗)−1(u) ∧M

)
du =

∫ 1

0

γ(u)(F̃ ∗)−1(u) du

= sup

{∫ 1

0

γ(u)F−1(u) du : F ∈ A2

}
= sup

{
ρ(F−1(U)) : F ∈ A2

}
= [ρ]kε(X

F̂ ; `2).

By Lemma 3.2.2, F ∗ is a worst-case scenario to the problem (3.16) with the given `2(x) =
x ∧M .

Example 9 In this example, we let F̂ (x) = 1−( 12
x+12

)4, x > 0, ε = 2, k = 2 and look for the
worst-case distribution with respect to a limited loss function `2 such that `2(x) = x∧M . We
still adopt ρg, a Wang’s risk measure, to quantify `2(X), with g(u) = Φ(Φ−1(u) + 0.5), 0 6
u 6 1. The worst-case quantile functions with different limits M are plotted in Figure 3.2:

3.2.3 General limited stop-loss function

In a general case, we arbitrarily take a transform min{d+(x−d)+,M} ∈ L with ess-inf(X F̂ ) <

d < M < ess-sup(X F̂ ). Again, since ρ is cash-invariant, we take ` = min{(x − d)+,m}
where m = M − d > 0, and consider [ρ]kε(X

F̂ ; `) = supF∈S ρ
(
`(XF )

)
. Heuristically, `(x)

is a two-side truncated transform. We can apply results from sections 3.2.1 and 3.2.2 to
handle the lower and upper side truncation respectively. Because the limitation we have
for the values of k in Section 3.2.2, in the following theorem, we consider cases when k = 1
and k = 2. Recall in Section 3.2.1 we define Qd = Q− d and ρ1,β1 is a coherent distortion
risk measure induced by distortion function g1,β1 defined in (3.12).

Proposition 3.2.6 Let k = 1, 2 and Assumption 3.1.1 hold. For ` = min{(x − d)+,m}
with m > 0 and ess-inf(X F̂ ) < d < d+m < ess-sup(X F̂ ), we have

[ρ]kε(X
F̂ ; `) = sup

06β61

{
‖γ1,β‖1 · max

F−1∈Qd

{
ρ1,β(XF ∧m)

}}
. (3.39)
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Figure 3.2: Worst-case distributions with limited loss transformation.
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Proof. For any F ∈ S and `(x) = min{(x− d)+,m} ∈ L, we have

ρ(`(XF )) =

∫ F (d+m)

F (d)

γ(u)
(
F−1(u)− d

)
du+m

∫ 1

F (d+m)

γ(u) du

= max
06β6F (d+m)

{∫ F (d+m)

β

γ(u)
(
F−1(u)− d

)
du

}
+m

(
1−

∫ F (d+m)

0

γ(u) du

)

= max
06β6F (d+m)

{∫ F (d+m)

β

γ(u)
(
F−1(u)− d−m

)
du+m−m

∫ β

0

γ(u) du

}

= max
06β6F (d+m)

{∫ F (d+m)

0

γ1,β(u)
(
F−1(u)− d−m

)
du+m−m

∫ β

0

γ(u) du

}
,

where γ1,β = γ · I[β,1] with ‖γ1,β‖1 =
∫ 1

β
γ(u) du = 1−

∫ β
0
γ(u) du. Using the same argument

in Section 3.2.1, for any β < 1, we can define a coherent distortion risk measure ρ1,β

induced by distortion function g1,β defined in (3.12). Write F−1
−d = F−1 − d, and then

F (d+M) = F−d(M). It is easy to check that

ρ(`(XF )) = max
06β6F−d(m)

{∫ F−d(m)

0

γ1,β(u)
(
F−1
−d (u)−m

)
du+m−m

∫ β

0

γ(u) du

}

= max
06β6F−d(m)

{
‖γ1,β‖1

∫ F−d(m)

0

γ1,β(u)

‖γ1,β‖1

(
F−1
−d (u)−m

)
du+m‖γ1,β‖1

}
= max

06β6F−d(m)

{
‖γ1,β‖1 · ρ1,β(XF−d ∧m)

}
, (3.40)

where the first equality is from (3.32). If β > F−d(m), then γ1,β(u) = γ(u) · I[β,1](u) = 0

for all u < F−d(m) and the integral
∫ F−d(m)

0
γ1,β(u)

(
F−1
−d (u)−m

)
du = 0. Therefore, for

any β > F−d(m), we have

‖γ1,β‖1 · ρ1,β(XF−d ∧m) = m

∫ 1

β

γ(u) du

6 m

∫ 1

F (d+m)

γ(u) du = ‖γ1,F−d(m)‖1 · ρ1,F−d(m)(X
F−d ∧m).

It says that F−d(m) is sub-optimal to all larger probability levels for the maximization
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problem (3.40). As a consequence, we have

[ρ]kε(X
F̂ ; l) = sup

F∈S
ρ
(
l(XF )

)
= sup

F∈S

{
max

06β6F−d(M)
‖γ1,β‖1 · ρ1,β(XF−d ∧m)

}
= sup

F∈S

{
max
06β61

‖γ1,β‖1 · ρ1,β(XF−d ∧m)

}
= sup

F−1∈Qd

{
max
06β61

‖γ1,β‖1 · ρ1,β(XF ∧m)

}
= sup

06β61

{
‖γ1,β‖1 sup

F−1∈Qd
ρ1,β(XF ∧m)

}
.

For any β ∈ [0, 1], the function γ1,β = I{[β,1]} is increasing and thus the risk measure ρ1,β

is coherent. The problem supF−1∈Qd ρ1,β(XF ∧ m) can be solved by Theorem 3.2.3 and
Theorem 3.2.4 when k = 1 and k = 2, respectively. Therefore, the expression (3.39) is
obtained.

When k = 1, we can further simplify (3.39) in Proposition 3.2.6. We know from (3.25)
that for any β the maximum maxF−1∈Qd

{
ρ1,β(XF ∧m)

}
is achieved at

(F ∗)−1(u) =


F̂−1(u)− d, 0 6 u 6 q̃1

0;

m− d, q̃1
0 6 u 6 q̃1;

F̂−1(u)− d, q̃1 < u 6 1,

where q̃1 = F̂ (m+ d) and q̃1
0 = inf

{
q > 0 :

∫ q1
q

∣∣∣m− F̂−1(u) + d
∣∣∣ du 6 ε

}
. Therefore,

[ρ]1ε(X
F̂ ; `) = max

06β61

{
‖γ1,β‖1 · ρ1,β(XF ∗ ∧m)

}
.

When k = 2, (3.30) implies that maxF−1∈Qd
{
ρ1,β(XF ∧m)

}
is achieved at

(F ∗β )−1(u) =


F̂−1(u) + λ∗γ1,β(u)− d, for 0 < u < θ∗,

m− d, for θ∗ < u < q̃1,

F̂−1(u)− d, for q̃1 < u < 1

where λ∗ > 0 and θ∗ ∈ (0, 1) satisfies W2(F ∗β , F̂ − d) = ε. Therefore

[ρ]2ε(X
F̂ ; `) = max

06β61

{
‖γ1,β‖1 · ρ1,β(XF ∗β ∧m)

}
.

77



Example 10 In this example, we let F̂ (x) = 1 − ( 12
x+12

)4, x > 0, ε = 2, k = 2 and
look for the worst-case distribution with respect to a stop-loss function l such that `(x) =
(x − d)+ ∧ M . We adopt ρg, a Wang’s risk measure, to quantify `(X), with g(u) =
Φ(Φ−1(u) + 0.5), 0 6 u 6 1. The definition of ρg follows Definition 1.2.8. The worst-case
quantiles with different deductible d and M are plotted in Figure 3.2:

3.3 Application in reinsurance premium

3.3.1 Wang’s premium in the worst-case scenario

In practice, a limited stop-loss is commonly used in a reinsurance treaty. A reinsurer can
adopt a certain premium principle to calculate the reinsurance premium. Among popular
principles, Wang’s premium principle is introduced by [Wang et al., 1997]. Indeed, Wang’s
premium principle uses a coherent distortion risk measure to quantify the loss ceded to
the reinsurer. To apply Wang’s premium principle, the reinsurer may need to assume the
distribution of the underlying risk. Due to the limited information, the true distribution
can vary from the reference one used by the reinsurer. Therefore, the reinsurer can be
interested in the reinsurance premium in the worst case. Mathematically, for a limited
stop-loss reinsurance l ∈ L, Wang’s reinsurance premium induced by a distortion risk
measure ρw is defined as

π(`(X)) = (1 + θ)ρw(`(X)) (3.41)

where θ > 0 is a given risk loading and ρw is the distortion risk measure induced by the
distribution function

gw(u) = Φ(Φ−1(u) + α), 0 6 u 6 1 for a given α ∈ (0, 1).

Suppose the reinsurer has a reference distribution F̂ , and defines the uncertainty set S as
the one given in (3.4). The worst-case Wang’s premium can be formulated as

π↑(`(X)) := sup
F∈S

(1 + θ)ρw(`(XF )) = (1 + θ) · [ρw]kε(X
F̂ ; `), (3.42)

which can be solved by the results obtained in previous sections.
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Figure 3.3: Worst-case distributions with limited stop-loss transformation.
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Example 11 We first consider the changes of the worst-case Wang’s premium with respect
to ε and retention levels of the reinsurance policies. Mathematically, we fix k = 2, θ = 0
and two reference distributions

F̂1(x) = 1− e−x/4, x > 0, F̂2 = 1−
(

12

x+ 12

)4

, x > 0.

Note that we set the means of the two reference distributions to be equal for better com-
parison. Their variances, however, cannot be matched on that condition, with the Pareto
distribution’s variance always larger.

In the context of insurance, exponential distribution family and Pareto distribution fam-
ily are commonly used to fit a light-tail risk and a heavy-tail risk, respectively. Both ex-
ponential distributions and Pareto distributions are well-defined on the whole non-negative
part of the real line. We consider a general limited stop-loss reinsurance policy `(x) =
(x − d)+ ∧M with 0 < d,M < ∞, and take ε > 0. By default, we set ε = 2, M = 5
and d = 5. To show the effect of various parameters on the worst-case risk measure of
our interest, we change one parameter at a time and illustrate its effect on the objective
worst-case risk measure. The other two parameters maintain as the default setting at the
mean time.

Figure 3.4, Figure 3.5 and Figure 3.6 respectively show the worst-case Wang’s premium
when ε changes in the range (0.1, 1.9), limit M changes in the range (4, 13), and deductible
d changes in the range (0.5, 9.5). One can refer to Table 3.1 to track the corresponding
numerical results.

In Figure 3.4, Wang’s premium of the Pareto reference distribution is measured as
1.4748, while that of the exponential distribution is 1.5355, with ε changing.

3.3.2 Risk measure based loss ratio

In the P&C insurance market, the concept of Loss Elimination Ratio (LER) is commonly
used to calculate the portion of loss removed from the insurance seller’s payment liability
in the sense of the mean. Given the underlying risk X F̂ of the insurer and the reinsurance
policy `, the LER is defined as

LER = 1− E[`(X F̂ )]

E[X F̂ ]
.
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Furthermore, if the reinsurer uses the expected-value premium principle, LER also repre-
sent the portion of the premium amount removed from the full insurance premium due to
the policy adjustments d and M , while 1− LER is the portion of the premium earned by
the reinsurer. It worth pointing out that a reinsurance policy can be considered as a risk
sharing tool used between two participants, and the mean is one particular risk measure
chosen to quantify the risk exposure level for two participants. As a consequence, LER
and 1-LER represent the portion of liability of assigned to the buyer and sellers under a
given `, respectively.

In general, the reinsurer and the insurer may choose other risk measures to quantify
risk exposure levels. Inspired by the classical definition of LER, we propose the following
general definition for the loss ratio based on a distortion risk measure.

Definition 3.3.1 (ρ-based Loss Ratio) Given an underlying risk X F̂ , a distortion risk
measure ρg, and an indemnity function ` in a reinsurance policy, the ρ-based loss ratios
for the reinsurer and the insurer are defined as

LRρ
R =

ρ(`(X F̂ ))

ρ(X F̂ )
and LRρ

I =
ρ(X F̂ − `(X F̂ ))

ρ(X F̂ )
, (3.43)

respectively.

In (3.43), ρ(X F̂ ) is the total risk exposure, while ρ(`(X F̂ )) and ρ(X F̂ − `(X F̂ )) are risk
exposure levels taken by the reinsurer and the insurer, respectively. Note that a distortion
risk measure ρ is always comonotonic additive. For an admissible indemnity function
`, we have `(X F̂ ), X F̂ − `(X F̂ ) and X F̂ are comonotonic random variables. Therefore,

ρ(`(X F̂ )) + ρ(X F̂ − `(X F̂ )) = ρ(X F̂ ) and LRρ
I + LRρ

R = 1 hold true.

In particular, if we take ρ = ρw defined in (3.41), the ρw(X F̂ ) is Wang’s premium for

the full insurance, while ρ(`(X F̂ )) is the Wang’s premium of the insurance policy using the
indemnity function `. Then LRρw

I and LRρw
R show how the full premium is shared between

two participants. In the following, we use several examples to investigate the LERρw in
the worst-case scenarios.

Example 12 From (3.43), it is easy to see that the LRρw is law-invariant. In the worst-
case scenario, the worst-case distribution may be different from the reference distribution
F̂ , and therefore, the associated LRρw deviated from the value given in (3.43) using the
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reference distribution. Suppose the reinsurer adopts an uncertainty set SR, and then defined
the reinsurer’s worst-case LR as

LRρ↑
R =

ρ(`(XF ∗R))

ρ(XF ∗R)
, where F ∗R = arg max

F∈SR
ρ(`(XF )). (3.44)

Similarly, suppose the insurer adopts an uncertainty set SI , and defined the insurer’s worst-
case LR as

LRρ↑
I =

ρ(XF ∗I − `(XF ∗I ))

ρ(XF ∗I )
, where F ∗I = arg max

F∈SI
ρ(XF − `(XF )). (3.45)

The worst-case distributions F ∗I and F ∗R may be different even if we take same uncertainty
set SI = SR because the loss transformation function `(x) and x− `(x) are different.

In this example, we take `(x) = (x − d)+ for d > 0. Then x − `(x) = min{x, d}. In
other words, the reinsurer take the stop-loss part while the insurer take the limited-loss
part. Take ρ = ρw, where g(u) = Φ(Φ−1(u) + 0.5), 0 6 u 6 1. Meanwhile, assume two
uncertainty sets are the same and are given by SI = SR = {F : W2(F, F̂ ) 6 2} with the

Pareto reference distribution F̂ (x) = 1 −
(

12
x+12

)4
, x > 0. We first set a threshold for one

participant’s LR using the reference distribution, denoted by LRref . To meet this threshold,
this participant can determine the value of d required in the reinsurance policy. Then
the participant calculate the worst-case LR using d. Results for both the insurer and the
reinsurer are summarized in the Table 3.2. The plots of LR↑I VS LRref

I and LR↑R VS LRref
R

are in Figure 3.7 and Figure 3.8, respectively.

Example 13 Following the setup of Example 12, we are focused on the change of the
reinsurer’s worst-case LR against the change of ε, a parameter of the size of the uncertainty
set. Instead of a more general loss function l, we set: a) d = 5,M =∞, b) d = 0,M = 5
to look at the effect on stop-loss function and limited loss function, respectively. We keep
the assumption of reference distribution in the Example 11. The numerical illustrations are
given in Figure 3.9 and Figure 3.10 and the supporting data are in Table 3.3. In Figure
3.9, the reference LR’s for Pareto and exponential distributions are 0.4981 and 0.4042,
respectively. In Figure 3.10, the reference LR’s for Pareto and exponential distributions
are 0.5019 and 0.5958, respectively.

Example 14 Following the setup of Example 12, we are focused on the change of the
reinsurer’s worst-case LR against the change of deductible d, and limit M respectively, for
a limited stop-loss reinsurance. We set d = 5 while M changes and M = 5 while d changes.
We keep the settings in the previous examples and set ε = 2. The results are presented in
Figure 3.11 and Figure 3.12, and precise values are summarized below in Table 3.4.
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3.4 Concluding remarks

In this chapter, we focused on solving the worst-case problem supF∈S ρ(l(XF )), l being a
limited stop-loss function and S being the uncertainty set specified as a Wasserstein ball.
In comparison to Chapter 2, in this chapter, we allow the order k of Wasserstein distance
to be any real number no less than 1. We first looked at the special cases of the general
problem, i.e., stop-loss function and limited loss function, and gave analytical solutions to
the worst-case distribution and worst-case risk measure in both cases. For the stop-loss
function part, our result applies when k > 1, which covers the result in [Guan et al., 2022].
For the limited loss function part, we presented analytical results for k = 1 and k = 2. We
then provided several examples that illustrate our theoretical results for stop-loss, limited
loss and limited stop-loss functions.

We then applied our theoretical results to the scenario of robustly pricing reinsurance
treaties. We showed how each reinsurance contract parameter affects the reinsurance pre-
miums decided in the worst-case. We also generalized Loss Elimination Ratio to ρ-based
Loss Ratio that can help quantify the reinsurer’s risk exposure level. We also looked at
how this ratio is affected by the changes in deductible, limit and uncertainty level.
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Table 3.1: Example 4.1-Notation w refers to the worst case while r refers to reference case.
ε PARw EXPw M PARw EXPw PARr EXPr d PARw EXPw

0.10 1.5328 1.6176 4.00 2.2986 2.4463 1.2623 1.3478 0.50 4.4066 4.5603

0.20 1.5908 1.6814 4.50 2.4667 2.6223 1.3723 1.4556 1.00 4.1752 4.3560

0.30 1.6488 1.7450 5.00 2.6207 2.7814 1.4748 1.5535 1.50 3.9419 4.1418

0.40 1.7068 1.8084 5.50 2.7625 2.9255 1.5702 1.6423 2.00 3.7160 3.9269

0.50 1.7647 1.8715 6.00 2.8933 3.0562 1.6593 1.7228 2.50 3.5015 3.7158

0.60 1.8226 1.9343 6.50 3.0143 3.1750 1.7425 1.7958 3.00 3.2997 3.5114

0.70 1.8804 1.9968 7.00 3.1268 3.2829 1.8203 1.8619 3.50 3.1112 3.3150

0.80 1.9381 2.0591 7.50 3.2313 3.3811 1.8932 1.9217 4.00 2.9356 3.1277

0.90 1.9957 2.1211 8.00 3.3287 3.4705 1.9615 1.9758 4.50 2.7723 2.9498

1.00 2.0532 2.1827 8.50 3.4197 3.5517 2.0256 2.0248 5.00 2.6207 2.7814

1.10 2.1106 2.2442 9.00 3.5046 3.6257 2.0858 2.0691 5.50 2.4799 2.6224

1.20 2.1678 2.3052 9.50 3.5842 3.6932 2.1424 2.1091 6.00 2.3491 2.4728

1.30 2.2250 2.3659 10.00 3.6587 3.7545 2.1957 2.1452 6.50 2.2277 2.3320

1.40 2.2820 2.4263 10.50 3.7287 3.8105 2.2459 2.1778 7.00 2.1145 2.1999

1.50 2.3389 2.4864 11.00 3.7945 3.8614 2.2933 2.2073 7.50 2.0094 2.0760

1.60 2.3956 2.5461 11.50 3.8565 3.9077 2.3380 2.2338 8.00 1.9114 1.9598

1.70 2.4522 2.6055 12.00 3.9148 3.9500 2.3802 2.2578 8.50 1.8199 1.8510

1.80 2.5085 2.6645 12.50 3.9697 3.9884 2.4202 2.2794 9.00 1.7345 1.7489

1.90 2.5647 2.7231 13.00 4.0216 4.0236 2.4580 2.2989 9.50 1.6547 1.6536

3.5 Appendix

3.5.1 Tables
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Table 3.2: Example 4.2
LRref

I LRref
R d LR↑I LR↑R LRref

I LRref
R d LR↑I LR↑R

0.05 0.95 0.3471 0.0509 0.9620 0.5 0.5 4.9705 0.5746 0.6032
0.1 0.9 0.7121 0.1043 0.9236 0.55 0.45 5.8186 0.6235 0.5600
0.15 0.85 1.0998 0.1612 0.8851 0.6 0.4 6.8041 0.6705 0.5155
0.2 0.8 1.5149 0.2206 0.8463 0.65 0.35 7.9723 0.7158 0.4696
0.25 0.75 1.9628 0.2849 0.8072 0.7 0.3 9.3930 0.7597 0.4219
0.3 0.7 2.4495 0.3532 0.7676 0.75 0.25 11.1805 0.8023 0.3721
0.35 0.65 2.9826 0.4271 0.7276 0.8 0.2 13.5399 0.8438 0.3194
0.4 0.6 3.5716 0.5064 0.6869 0.85 0.15 16.8889 0.8842 0.2629
0.45 0.55 4.2289 0.5232 0.6455 0.9 0.1 22.2741 0.9236 0.2007

Table 3.3: Example 4.3
Fix d = 5, M =∞ Fix d = 0, M = 5
ε PAR EXP ε PAR EXP

0.10 0.5047 0.4131 0.10 0.5047 0.4131
0.20 0.5110 0.4217 0.20 0.5110 0.4217
0.30 0.5172 0.4301 0.30 0.5172 0.4301
0.40 0.5232 0.4382 0.40 0.5232 0.4382
0.50 0.5291 0.4462 0.50 0.5291 0.4462
0.60 0.5348 0.4539 0.60 0.5348 0.4539
0.70 0.5404 0.4614 0.70 0.5404 0.4614
0.80 0.5458 0.4687 0.80 0.5458 0.4687
0.90 0.5511 0.4758 0.90 0.5511 0.4758
1.00 0.5563 0.4827 1.00 0.5563 0.4827
1.10 0.5614 0.4894 1.10 0.5614 0.4894
1.20 0.5663 0.4959 1.20 0.5663 0.4959
1.30 0.5711 0.5023 1.30 0.5711 0.5023
1.40 0.5758 0.5085 1.40 0.5758 0.5085
1.50 0.5804 0.5145 1.50 0.5804 0.5145
1.60 0.5848 0.5204 1.60 0.5848 0.5204
1.70 0.5892 0.5262 1.70 0.5892 0.5262
1.80 0.5934 0.5317 1.80 0.5934 0.5317
1.90 0.5976 0.5372 1.90 0.5976 0.5372
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Table 3.4: Example 4.4
Fix d = 5, ε = 2 Fix M = 5, ε = 2

M PARw EXPw PARr EXPr d PARw EXPw PARr EXPr

4.00 0.2860 0.3545 0.1853 0.2202 0.50 0.5445 0.6812 0.4608 0.5530
4.50 0.3055 0.3827 0.2015 0.2378 1.00 0.5123 0.6531 0.4224 0.5112
5.00 0.3232 0.4080 0.2165 0.2538 1.50 0.4820 0.6206 0.3871 0.4713
5.50 0.3392 0.4308 0.2306 0.2683 2.00 0.4538 0.5869 0.3551 0.4334
6.00 0.3539 0.4512 0.2436 0.2815 2.50 0.4277 0.5536 0.3259 0.3979
6.50 0.3674 0.4697 0.2558 0.2934 3.00 0.4034 0.5214 0.2995 0.3646
7.00 0.3798 0.4863 0.2673 0.3042 3.50 0.3810 0.4906 0.2756 0.3337
7.50 0.3913 0.5014 0.2780 0.3140 4.00 0.3602 0.4614 0.2540 0.3049
8.00 0.4019 0.5150 0.2880 0.3228 4.50 0.3410 0.4339 0.2343 0.2784
8.50 0.4117 0.5273 0.2974 0.3308 5.00 0.3232 0.4080 0.2165 0.2538
9.00 0.4209 0.5385 0.3063 0.3381 5.50 0.3066 0.3838 0.2004 0.2312
9.50 0.4294 0.5486 0.3146 0.3446 6.00 0.2912 0.3611 0.1857 0.2105
10.00 0.4374 0.5578 0.3224 0.3505 6.50 0.2769 0.3398 0.1723 0.1914
10.50 0.4448 0.5661 0.3298 0.3558 7.00 0.2636 0.3200 0.1601 0.1739
11.00 0.4518 0.5737 0.3367 0.3606 7.50 0.2511 0.3014 0.1490 0.1580
11.50 0.4584 0.5805 0.3433 0.3650 8.00 0.2395 0.2840 0.1388 0.1433
12.00 0.4645 0.5868 0.3495 0.3689 8.50 0.2286 0.2678 0.1295 0.1300
12.50 0.4703 0.5924 0.3554 0.3724 9.00 0.2184 0.2526 0.1209 0.1178
13.00 0.4757 0.5976 0.3609 0.3756 9.50 0.2089 0.2384 0.1131 0.1068
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Chapter 4

The Pareto optimal deductible in the
worst case with different risk
measures

In Chapters 2 and 3, we solved the individual optimization problems (2.3), (2.4) and (3.2).
For a given stop loss reinsurance contract, we determined the worst-case distribution of
total loss X which leads to the largest risk measure values of the insurer’s and reinsurer’s
parts of the loss. Obviously, the worst-case distribution depends on the given deductible
d, and a change in the deductible may have reverse influences on the two parties’ objective
values. Motivated by this observation, in this chapter, we would like to further investigate
the optimal deductible for the insurer and reinsurer, respectively. In a reinsurance contract,
the choice of the deductible should be viewed as a result of the negotiation between the
insurer and the reinsurer. As a result, the determination of the optimal deductible should
take into consideration the joint perspectives from both parties, so that it can balance
the objectives from different sides. To this end, in this chapter, we will propose a Pareto
optimization problem incorporating both the insurer and the reinsurer’s objectives and
then determine the deductible d∗ that can help reach the equilibrium between them in the
sense of Pareto optimality.

4.1 Model setup and Pareto optimal solutions

To quantify the comprehensive losses for both the insurer and the reinsurer, in this chapter,
we will introduce reinsurance premium as part of the model. In this chapter, the premium
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is determined using the mean-value principle, as the most adopted and one of the most
tractable premium principles in the study of reinsurance. We assume that the reinsurer
uses a pre-specified pricing distribution F̃ for the loss X to calculate the premium. The
value of the reinsurance premium depends on the reinsurance deductible d > 0 chosen in
the reinsurance policy. For simplicity, we write

π(d) = (1 + θ)E[(X − d)+] = (1 + θ)

∫ ∞
d

S̃(x) dx, d > 0, (4.1)

where θ > 0 is the safety loading and S̃ is the survival function corresponding to F̃ .

From results given in Chapter 2, the worst-case distribution among the uncertainty sets
Si, i = 1, 2, may not have a close-form expression. The optimal deductible may not be
mathematically tractable. In this chapter, we remove the Wasserstein distance constraints
for both the insurer and the reinsurer. Equivalently, we consider a special case of Si with
εi =∞, i.e.,

S∞i ,
{
F :

∫
x dF (x) = µi,

∫
x2 dF (x) = µ2

i + σ2
i

}
, i = 1, 2. (4.2)

Given a stop-loss reinsurance contract I with deductible d > 0, the total retained loss
for the insurer is I(X) = X ∧ d+ π(d). If the insurer adopts the risk measure ρ1, then the
insurer’s optimization problem becomes

min
d>0

{
sup
F∈S∞1

ρ1

(
(XF ∧ d) + π(d)

)}
. (4.3)

Meanwhile, the reinsurer’s total loss is X − I(X)− π(d) = (X − d)+ − π(d), and thus the
reinsurer is interested in the following optimization problem

min
d>0

{
sup
G∈S∞2

ρ2

(
(XG − d)+ − π(d)

)}
. (4.4)

Since the insurer and the reinsurer have conflicting interests in a reinsurance contract,
intuitively the optimal deductibles for the both sides do not coincide. That means, an
optimal deductible for one side may not be optimal, and even unacceptable for the other.
It is important to find a “fair and acceptable” contract for two parties. To this end, we
consider reinsurance solutions from the Pareto-optimal point of view under distributional
uncertainty. We first define Pareto-optimal solutions under a general deductible reinsurance
setting with model uncertainty.
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Definition 4.1.1 Let (ρ1, ρ2, π,S∞1 ,S∞2 ) be a reinsurance setting with model uncertainty,
where ρ1 and ρ2 are risk measures adopted by the insurer and the reinsurer, respectively.
A deductible d∗ > 0 is called Pareto-optimal with respect to (ρ1, ρ2, π,S∞1 ,S∞2 ) if, for any
d > 0 such that

sup
F∈S∞1

ρ1(XF ∧ d+ π(d)) 6 sup
F∈S∞1

ρ1(XF ∧ d∗ + π(d∗))

sup
G∈S∞2

ρ2((XG − d)+ − π(d)) 6 sup
G∈S∞2

ρ2((XG − d∗)+ − π(d∗)),

the two inequalities must be equalities.

As can be found in literature, such as [Cai et al., 2017], a Pareto-optimal reinsurance
deductible exists if there exists a deductible d minimizing a convex combination of the
worst-case risk measures of the insurer and the reinsurer. The following proposition gives
a sufficient condition for a deductible d to be Pareto-optimal with respect to the reinsurance
setting (ρ1, ρ2, π,S∞1 ,S∞2 ).

Proposition 4.1.1 Given a reinsurance setting (ρ1, ρ2, π,S∞1 ,S∞2 ), if d∗ is an optimal
solution to the problem

min
d>0

{
δ · sup

F∈S∞1
ρ1

(
XF ∧ d+ π(d)

)
+ (1− δ) · sup

G∈S∞2
ρ2

(
(XG − d)+ − π(d)

)}
, (4.5)

for some δ ∈ (0, 1), then d∗ is a Pareto-optimal reinsurance deductible with respect to the
setting (ρ1, ρ2, π,S∞1 ,S∞2 ).

Proof. Assume d∗ is a minimizer to the problem (4.5) for δ ∈ (0, 1). If d∗ is not a
Pareto-optimal deductible, then there exists d̃ > 0, such that

sup
F∈S∞1

ρ1(XF ∧ d̃+ π(d̃)) 6 sup
F∈S∞1

ρ1(XF ∧ d∗ + π(d∗))

sup
G∈S∞2

ρ2((XG − d̃)+ − π(d̃)) 6 sup
G∈S∞2

ρ2((XG − d∗)+ − π(d∗))

with at least one of the inequalities being strict. This implies

δ sup
F∈S∞1

ρ1(XF ∧ d̃+ π(d̃)) + (1− δ) sup
G∈S∞2

ρ2((XG − d̃)+ − π(d̃))

<δ sup
F∈S∞1

ρ1(XF ∧ d∗ + π(d∗)) + (1− δ) sup
G∈S∞2

ρ2((XG − d∗)+ − π(d∗)
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which contradicts the assumption that d∗ is an optimal solution to the problem (4.5).

Optimization problems using uncertainty sets with fixed first two moments have been
intensively investigated in the literature for many popular risk measures, including VaR and
TVaR (see [Ghaoui et al., 2003], [Li, 2018]). In the context of insurance and reinsurance,
the discussions on Pareto optimization problems with reinsurance premium are missing. To
shed light on this area, we are going to determine Pareto optimal solutions to the problem
(4.5) with respect to VaR and TVaR which are the two most popular risk measures for
either party. In the following, we first present the VaR case in Section 4.2, then summarize
the TVaR case in Section 4.3. Numerical illustrations of optimal solutions will be provided
as well.

4.2 Optimal deductible with respect to worst-case VaR

In this section, we consider the Pareto optimization problem (4.5) with ρi = VaRαi for
αi ∈ (0, 1), i = 1, 2, i.e.,

min
d>0

{
δ · sup

F∈S∞1
VaRα1

(
(XF ∧ d) + π(d)

)
+ (1− δ) · sup

G∈S∞2
VaRα2

(
(XG − d)+ − π(d)

)}
.

(4.6)

We first solve two inner optimization problems for the insurer and the reinsurer. It is
well known that, given the first two moments, the value of VaRα in the worst-case can be
calculated by the closed-form

µ+ σ

√
α

1− α
= sup

E[XF ]=µ,var(XF )=σ2

VaRα

(
XF
)

which is obtained at the worst-case distribution

F−1(p) =

{
µ− σ

√
α

1−α , 0 < p 6 α

µ+ σ
√

α
1−α , α < p < 1.

(4.7)

We refer [Ghaoui et al., 2003] and references there in.

Lemma 4.2.1 Given d > 0, the following equations hold,

sup
F∈S∞1

VaRα1(X
F ∧ d) =

(
µ1 + σ1

√
α1

1− α1

)
∧ d

sup
G∈S∞2

VaRα2((X
G − d)+) =

(
µ2 + σ2

√
α2

1− α2

− d
)

+

.
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Furthermore, all equations hold at the worst-case distribution given by (4.7).

The proof to Proposition 4.2.1 can be found in Section 4.6. This result coincides with
Case 2 of Proposition 1 in [Hu et al., 2015], wherein the supremum of the retained loss’s
VaRα is found with respect to an identical uncertainty set to ours. Due to the fact that we
do not assume any bound for the total loss X, our result coincides only with the second
case of the proposition mentioned above, since they assume both an upper bound and a
lower bound on the total loss, and only in the second case the bounds become ineffective.
With this result, the optimization problem (4.3) now becomes

min
d>0

{(
µ1 + σ1

√
α1

1− α1

)
∧ d+ (1 + ρ)

∫ ∞
d

S̃(x) dx

}
, (4.8)

and the the optimization problem (4.4) becomes

min
d>0

{(
µ2 + σ2

√
α2

1− α2

− d
)

+

− (1 + ρ)

∫ ∞
d

S̃(x) dx

}
. (4.9)

Theorem 4.2.2 Denote

di = µi + σi

√
αi

1− αi
, i = 1, 2, and x̃1 = F̃−1

(
ρ

1 + ρ

)
.

The optimal deductible d∗1 to the insurer’s problem (4.8) is

d∗1 =

{
∞, if d1 6 x̃1 + (1 + ρ)

∫∞
x̃1
S̃(x) dx

x̃1, if d1 > x̃1 + (1 + ρ)
∫∞
x̃1
S̃(x) dx.

(4.10)

The optimal deductible d∗2 to the reinsurer’s problem (4.9) is

d∗2 =

{
0, if d2 < (1 + ρ)

∫ d2
0
S̃(x) dx

d2, if d2 > (1 + ρ)
∫ d2

0
S̃(x) dx.

(4.11)

Following Theorem 4.2.2, we can calculate the insurer’s and the reinsurer’s minimal
worst-case VaR.

1. For the insurer, the minimal worst-case VaR is min
{
d1, x̃1 + (1 + ρ)

∫∞
x̃1
S̃(x) dx

}
.

Precisely,
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• if d1 6 x̃1 + (1 + ρ)
∫∞
x̃1
S̃(x) dx, the insurer prefers no insurance (i.e., d∗1 = ∞)

and the corresponding minimal worst-case VaR is

d1 = µ1 + σ1

√
α1

1− α1

;

• if d1 > x̃1 + (1 + ρ)
∫∞
x̃1
S̃(x) dx, the insurer prefers the partial insurance with

deductible x̃1 = F̃−1
(

ρ
1+ρ

)
and the corresponding minimal worst-case VaR is

x̃1 + (1 + ρ)

∫ ∞
x̃1

S̃(x) dx.

2. For the reinsurer,

• if d2 < (1 + ρ)
∫ d2

0
S̃(x) dx, the reinsurer prefers the full insurance and the

corresponding minimal worst-case VaR is

d2 − (1 + ρ)µ̃ = µ2 + σ2

√
α2

1− α2

− (1 + ρ)E[X F̃ ],

• if d2 > (1 + ρ)
∫ d2

0
S̃(x) dx, the reinsurer prefers the partial insurance with

deductible d2 and the corresponding minimal worst-case VaR is

−(1 + ρ)

∫ ∞
d2

S̃(x) dx.

With the help of Theorem 4.2.2, we are ready to solve the Pareto optimal deductible d∗

to the problem (4.6). For simplicity, we write the objective function in the problem (4.6)
as follows, for d > 0 and δ ∈ [0, 1], let

hδ(d) = δ

(
d1 ∧ d+ (1 + ρ)

∫ ∞
d

S̃(x) dx

)
+ (1− δ)

(
(d2 − d)+ − (1 + ρ)

∫ ∞
d

S̃(x) dx

)
.

Obviously, hδ(d) is continuous and differentiable a.e with respect to d on [0,∞).

Theorem 4.2.3 Given a reinsurance setting (VaRα1 ,VaRα2 , π,S∞1 ,S∞2 ), the optimal de-
ductible d∗ to the problem (4.6) is given below.

(a) When 0 < δ < 1
2
,
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(i) if hδ(0) < hδ(d2), then d∗ = 0;

(ii) if hδ(0) > hδ(d2), then d∗ = d2;

(iii) if hδ(0) = hδ(d2), then d∗ can be either 0 or d2.

(b) When δ = 1
2
,

(i) if d1 < d2, then d∗ can be any value from the set [d2,∞).

(ii) if d1 > d2, then d∗ can be any value from the set [0, d2];

(iii) if d1 = d2, then d∗ can be any value from the set [0,∞).

(c) When 1
2
< δ < 1 and d1 < d2,

(i) if (1 + ρ)S̃(d1) > 1 or hδ(x̃1) > δd1, then d∗ =∞;

(ii) if (1 + ρ)S̃(d1) < 1 and hδ(x̃1) < δd1, then d∗ = x̃1.

(d) When 1
2
< δ < 1 and d1 > d2,

(i) if (1 + ρ)S̃(d2) < 1 and hδ(x̃1) 6 δd1, then d∗ = x̃1;

(ii) if 1 6 (1 + ρ)S̃(d2) 6 δ
2δ−1

and hδ(d2) 6 δd1, then d∗ = d2;

(iii) if (1 + ρ)S̃(d1) 6 δ
2δ−1

6 (1 + ρ)S̃(d2) and hδ(F̃
−1( δ−1+2ρδ−ρ

(2δ−1)(1+ρ)
)) 6 δd1, then

d∗ = F̃−1( δ−1+2ρδ−ρ
(2δ−1)(1+ρ)

);

(iv) in all other cases we have d∗ =∞.

From the previous results, we can observe that the optimal deductible d∗ depends on the
reinsurance setting, especially parameters including µ1, µ2, σ1, σ2, F̃ , α1, α2 and so on. It is
noteworthy that the weight parameter, δ, can be taken as the weight given to the insurer
in the negotiation process between the two parties. The larger δ is, the more negotiation
power the insurer possesses and the more likely it is that the Pareto-optimal deductible
will be closer to insurer’s optimal deductible, and vice versa. A numerical demonstration
of the above theorem is given below.

Example 15 Let µ1 = σ1 = 5, µ2 = 4, σ2 = 6, α1 = α2 = 0.95, ρ = 0.5, F̃ (x) = 1 −
( 4
x
)3, x > 4. The joint worst-case VaR of the both parties in three situations are plotted

below in Figure 4.1, where δ = 0, 0.25, 0.5, 0.75, 1, respectively.

δ 0 0.25 0.5 0.75 1
d∗ 30.1534 30.1534 ∞ 4.5789 4.5789
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However, one can easily observe the shortcoming of specifying a distribution, F̃ , for pre-
mium pricing, that is the lacking of robustness. Since the pricing distribution is selected by
the reinsurer to compensate for the component of risk it takes, it should take into account
the potential errors that may occur during model estimations. To be conservative, the
distribution for premium pricing should also be in worst-case. As a result, in the section,
the premium principle becomes

π(d) = (1 + ρ) sup
G∈S∞2

E[(XG − d)+], (4.12)

where ρ is the safety loading. The uncertainty set for the reinsurer, S∞2 , is adopted here
since the reinsurer decides the worst-case scenario in regard to deciding the premium.

After entering a stop-loss reinsurance contract with deductible d > 0, the insurer’s risk
exposure is VaRα1(X∧d+π(d)), and the reinsurer’s risk exposure is VaRα2((X−d)+−π(d)).

With the result of Corollary 2.62, the worst-case version of reinsurance premium, (2.63),
is equivalent to:

π(d) =
(1 + ρ)

2

(
µ2 − d+

√
(µ2 − d)2 + σ2

2

)
. (4.13)

Example 16 µ1 = σ1 = 5, µ2 = 4, σ2 = 6, α1 = α2 = 0.95, ρ = 0.5. The joint worst-
case VaR of the both parties in three situations are plotted below in Figure 4.2, where
δ = 0, 0.25, 0.5, 0.75, 1, respectively.

δ 0 0.25 0.5 0.75 1
d∗ 30.1534 30.1534 30.9018 1.8787 1.8787

4.3 The Pareto optimal deductible with respect to

worst-case TVaR

Owing to the increasing popularity of TVaR as a tool for measuring risk exposures adopted
by insurance institutions, we would like to investigate the Pareto optimal deductible under
worst-case TVaR with the same uncertainty sets. That is, the optimization problem is

min
d>0

{
δ · sup

F∈S∞1
TVaRα1

(
(XF ∧ d) + π(d)

)
+ (1− δ) · sup

G∈S∞2
TVaRα2

(
(XG − d)+ − π(d)

)}
,

(4.14)
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where S∞1 and S∞2 follow the same definitions as in (4.2), δ ∈ (0, 1), and π(d) is the
premium associated with deductible d. In this section, we again adopt the mean-value
premium principle.

Since we have investigated the optimal deductible from the perspectives of the insurer
and the reinsurer, respectively, we can now visit the Pareto-optimal deductible problem
where the risk exposures of both sides are measured using TVaR and worst-case premium
principle in 4.12. According to Proposition 4.1.1, d∗ > 0 is an optimal deductible in Pareto
sense if it minimizes the following objective function:

hδ(d) = δ( sup
F∈S∞1

TVaRα(XF ∧ d) + π(d)) + (1− δ)( sup
G∈S∞2

TVaRα(XG− d)+− π(d)), (4.15)

or equivalently,

hδ(d) =

{
δ(d ∧ d1) + 1+ρ

2
(2δ − 1)(µ2 − d+

√
(µ2 − d)2 + σ2

2) + (1− δ)(d2 − d), 0 6 d 6 d3,

δ(d ∧ d1) + (1+ρ
2

(2δ − 1) + (1− δ) 1
2(1−α2)

)(µ2 − d+
√

(µ2 − d)2 + σ2
2), d > d3,

(4.16)
where δ ∈ (0, 1) is the negotiation power of the insurer.

The Pareto-optimal deductible problem, however, is intractable analytically. Hence, we
would like to solve this kind of problems numerically and demonstrate it using an example.

Example 17 Let µ1 = σ1 = 5, µ2 = 4, σ2 = 6, α1 = α2 = 0.95, ρ = 0.5, three situations
of the joint worst-case TVaR of the both parties are plotted below in Figure 4.3 against
deductible d, with δ = 0, 0.25, 0.5, 0.75, 1, respectively.

δ 0 0.25 0.5 0.75 1
d∗ ∞ ∞ 10.3599 1.8787 1.8787

To this point, it would not bother too much to take a look at the Pareto optimality with
TVaR and traditional mean-value premium principle.

Example 18 Let µ1 = σ1 = 5, µ2 = 4, σ2 = 6, α1 = α2 = 0.95, ρ = 0.5, F̃ (x) = 1 −
( 4
x
)3, x > 4. Three situations of the joint worst-case TVaR of the both parties are plotted

below in Figure 4.4 against deductible d, with δ = 0, 0.25, 0.5, 0.75, 1, respectively.

δ 0 0.25 0.5 0.75 1
d∗ ∞ ∞ 11.8583 4.5789 4.5789
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4.4 The Pareto optimal deductible with respect to

worst-case Wang’s Premium

In this section, we investigate the Pareto optimality adopting the uncertainty sets and risk
measures in Chapter 3. The optimization problem is hence:

min
d>0

hδ(d),

where

hδ(d) =

{
δ · sup

F∈S1
ρg1
(
(XF ∧ d) + π(d)

)
+ (1− δ) · sup

G∈S2
ρg1
(
(XG − d)+ − π(d)

)}
. (4.17)

Herein, we take F̂ (x) = 1 − ( 12
x+12

)4 and Ĝ(x) = 1 − e−x/4, δ ∈ (0, 1), π(d) being the
premium associated with deductible d. Uncertainty sets for the insurer and reinsurer are

S1 = {F : W2(F, F̂ ) 6 0.5} and S2 = {G : W2(G, Ĝ) 6 1}.

Note that here we assume the reinsurer’s reference distribution, Ĝ, is an exponential dis-
tribution, even though typically a heavy-tailed distribution is more likely to be selected
by a insurance practitioner. Here we select different types of distributions for the both
sides to illustrate an extreme case where there is substantial discrepancy between the par-
ties concerning the reference distribution. This can happen in reality especially when the
information is not shared between them.

In this section, we adopt the following four different non-robust premium principles to
look at the differences they bring to the optimal deductible d∗.

π1(d) = (1 + θ)ρg2((XĜ − d)+), where g2(u) = Φ(Φ−1(u) + 0.1). (4.18)

π2(d) = (1 + θ)E[(XĜ − d)+]. (4.19)

π3(d) = (1 + θ)TVaR0.9((XĜ − d)+). (4.20)

π4(d) = (1 + θ)[0.75E[(XĜ − d)+] + 0.25TVaR0.9((XĜ − d)+)]. (4.21)

Note that in the above setting, we assume that the insurer and the reinsurer adopt the
same distortion risk measure, ρg1 , g1(u) = Φ(Φ−1(u) + 0.5), to quantify their individual
risks. As opposed to the general idea that the two counterparts can individually select
their own risk metric, the assumption may seem lacking generality. Indeed, it serves as a
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δ = 0 δ = 0.25 δ = 0.5 δ = 0.75 δ = 1
π1 ∞ ∞ 13.13 0 0
π2 ∞ ∞ 13.13 0 0
π3 0 0 13.13 20.30 21.05
π4 ∞ ∞ 13.13 12.88 12.84

Table 4.1: d∗ with different δ and π

simplification since we have already so many parameters and does not bring any speciality
to the numerical results, due to the complex calculation.

Among the above premium principles, π4, as a linear combination of Mean-value Princi-
ple and TVaR Principle, is in the form of λE+(1−λ)TVaR0.9 = E+(1−λ)(TVaR0.9−E), λ ∈
(0, 1). The term (1− λ)(TVaR0.9−E) can be viewed as a loading to the Expectation Pre-
mium Principle. The numerical example below sheds light on the optimal deductible in
this setting with weight δ = 0, 0.25, 0.5, 0.75, 1 and with the above four premium principles,
respectively.

Example 19 Let θ = 0.1. The change of hδ with respect to d is given in Figure 4.5.
The optimal deductible corresponding to different weights δ and premium principles π are
summarized in Table 4.1.

From the numerical results, we can see the dramatic effects the choice of premium principle
makes on the Pareto optimal deductible in the particular example. When we are using
Wang’s Premium (π1), Expectation Premium (π2) and Combined Premium (π4), Pareto
optimal deductible decreases with increasing weight put on the insurer. TVaR Premium
(π3), however, deviates from this phenomenon. The reason is when premium is too high,
the insurer tends not to buy and reinsurance and full coverage meets the reinsurer’s best
interest.

When δ = 0, the blue lines refer to the reinsurer’s risk against deductible. Among the
plots, Mean-value Premium and Wang’s premium do not differ significantly, commonly
returns ∞ as the reinsurer’s optimal deductible. In contrast, TVaR Premium principle
brings substantially different result as mentioned above. As a linear combination of Mean-
value Premium and TVaR Premium, π4 gives the reinsurer the same optimal deductible as
π2.
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Figure 4.5: Joint worst-case Wang’s Premium against d
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Similarly is when δ = 1. The high premium brought by TVaR principle restricts the
insurer from choosing a full coverage. However, the insurer’s optimal deductible moves
toward 0 when the premium puts more weight on the mean instead of TVaR, as depicted
by the fourth plot of Figure 4.5.

It is easy to notice that the Pareto optimal deductibles are the same for all four premium
principles when δ = 0.5. This is not coincident. When δ = 0.5, one can easily transform
(4.17) using the comonotonic-additivity property of distortion risk measures and find the
premium term is ruled out from the formula of joint worst-case Wang’s Premium.

In a bilateral cooperative negotiation model, Pareto-optimality is the state where no
action can be taken that makes are party better off, without hurting the other party’s
interest. Even though we adhere to five concrete values of the weight δ, we restate the
choice of δ can be arbitrarily from [0, 1]. With each choice giving us a Pareto-optimal
deductible, the two parties’ worst-case risk measures can form a Pareto frontier. To put
the result into application, however, we should find a suitable point on the frontier that
reflects the true bargaining power comparison between the two parties.

Broad researches have been carried out in the resource allocation problem of a bilateral
cooperative negotiation model. In [Jazayeriy et al., 2011] is presented a Pareto-optimal
algorithm in bilateral automated negotiation where the negotiation is modeled by “split
the pie” game and alternating-offer protocol. [Bagga et al., 2020] present a novel negoti-
ation model that allows an agent to learn how to negotiate during con- current bilateral
negotiations in unknown and dynamic e-markets.

Even though this work does not expand the discussion in game theory, we still seek a
reasonable weight allocation plan in our model, to facilitate the both parties in finding a
balance point in their negotiation. We regard 0.75 as a reasonable value for δ, by giving
more weights to the insurer, who is at the center of the insurance industry. One can refine
the weight allocation strategy using extra information including the market condition and
so on.

4.5 Concluding remarks

The process to reach a contract often accompanies negotiation. In this mainly numerically
established chapter, we investigated how the balance point is reached between the two
parties of a reinsurance contract, as well as how the balance moves according to the change
in both parties’ uncertainty recognition, risk metric, negotiation power, etc.. Generally,
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the movement of the balance point coincides with that when there is no model uncertainty,
but counter-intuitive results may occur if, e.g., the premium is set too high.

4.6 Proofs

Proof of Lemma 4.2.1. Since both functions x ∧ d and (x− d)+ are increasing in x, it
holds that

sup
F∈S1

VaRα(XF ∧ d) = sup
F∈S1

(VaRα(XF ) ∧ d) =

(
sup
F∈S1

VaRα(XF )

)
∧ d

sup
G∈S2

VaRα(XG − d)+ = sup
G∈S2

(VaRα(XG)− d)+ =

(
sup
G∈S2

VaRα(XG)− d
)

+

.

According to Theorem 1 of [Ghaoui et al., 2003],

sup
F∈S1

VaRα(XF ) = µ1 + σ1

√
α

1− α
, and sup

G∈S2
VaRα(XG) = µ2 + σ2

√
α

1− α

achieved at the two-point distributions

P

(
X = µ1 − σ1

√
1− α
α

)
= α = 1− P

(
X = µ1 + σ1

√
α

1− α

)
= 1− α

and

P

(
X = µ2 − σ2

√
1− α
α

)
= α = 1− P

(
X = µ2 + σ2

√
α

1− α

)
,

respectively.

Proof of Theorem 4.2.2.

• We first consider the insurer’s optimization problem.
Denote f(d) = (d∧d1)+(1+ρ)

∫∞
d
S̃(x) dx. f is continuous and differentiable almost

everywhere on [0,∞). Its left derivative is given by

f ′−(d) = I[0,d1](d)− (1 + ρ)S̃(d).

(i) If d1 6 F̃−1( ρ
1+ρ

), f ′−(d) 6 0 on [0,∞). Hence d∗ =∞ and limd−→∞ f(d) = d1.
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(ii) If F̃−1( ρ
1+ρ

) < d1 6 F̃−1( ρ
1+ρ

)+Π(F̃−1( ρ
1+ρ

)), f decreases on [0, F̃−1( ρ
1+ρ

)), (F̃−1( ρ
1+ρ

)+

Π(F̃−1( ρ
1+ρ

)),∞) and increases on (F̃−1( ρ
1+ρ

), F̃−1( ρ
1+ρ

) + Π(d)). However, since

f(F̃−1( ρ
1+ρ

)) > d1 = limd−→∞ f(d), d∗ =∞.

(iii) If d1 > F̃−1( ρ
1+ρ

) + Π(F̃−1( ρ
1+ρ

)), the monotonicity of f coincides with that in

Case (ii). In this case, however, f(F̃−1( ρ
1+ρ

)) < d1 = limd−→∞ f(d). Hence,

d∗ = F̃−1( ρ
1+ρ

).

• Next we consider the reinsurer’s optimization problem.
Denote g(d) = (d2 − d)+ − (1 + ρ)

∫∞
d
S̃(x) dx. g is continuous and differentiable

almost everywhere on [0,∞). Its left derivative is given by

g′−(d) = −I[0,d2](d) + (1 + ρ)S̃(d).

(i) If d2 6 F̃−1( ρ
1+ρ

), g′−(d) > 0 on [0,∞). Hence d∗ = 0 and g(0) = d2 − (1 + ρ)µ̃.

(ii) If d2 > F̃−1( ρ
1+ρ

) and d2−(1+ρ)
∫ d2

0
S̃(x) dx < 0, g increases on [0, F̃−1( ρ

1+ρ
)), (d2,∞)

and decreases on (F̃−1( ρ
1+ρ

), d2). Plus, since g(0)−g(d2) = d2−(1+ρ)
∫ d2

0
S̃(x) dx <

0, d∗ = 0. Since d2 6 F̃−1( ρ
1+ρ

) can imply d2 − (1 + ρ)
∫ d2

0
S̃(x) dx < 0, we can

combine the first two cases and remove the condition “d2 > F̃−1( ρ
1+ρ

)”.

(iii) If d2− (1+ρ)
∫ d2

0
S̃(x) dx > 0, the monotonicity of g coincides with that in Case

(ii). However, since g(0)− g(d2) = d2 − (1 + ρ)
∫ d2

0
S̃(x) dx > 0, d∗ = d2.

Proof of Theorem 4.2.3.

(a) The left derivative of hδ, h
′
δ(d) = (1−2δ)(1 +ρ)S̃(d) + (δ−1)I[0,d2](d) + δI[0,d1](d), for

d > 0. When δ < 1
2
,hδ is increasing at 0, and d2 is the only possible reflection point

where the h′ − δ changes from negative to positive. Hence, d2 is the only possible
local minimum for hδ on [0,∞).

(b) When δ = 1
2
, h′δ = 1

2
(I[0,d1](d)− I[0,d2](d)). The results hence follow.

(c) When δ > 1
2
, d1 < d2, if (1+ρ)S̃(d1) > 1, hδ is decreasing on [0,∞). If otherwise (1+

ρ)S̃(d1) < 1, hδ decreases on [0, F̃−1( ρ
1+ρ

)), (d1,∞) and increases on (F̃−1( ρ
1+ρ

), d1).

Hence d1 is the only local minimum for hδ on [0,∞). In this case, if h(F̃−1( ρ
1+ρ

)) <

δd1 = limd−→∞ h(d), d∗ = F̃−1( ρ
1+ρ

); otherwise, d∗ =∞.
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(d) When δ > 1
2
, d1 > d2, if (1 + ρ)S̃(d2) < 1, hδ decreases on [0, F̃−1( ρ

1+ρ
)), (d1,∞)

and increases on (F̃−1( ρ
1+ρ

), d1). Hence F̃−1( ρ
1+ρ

) is the only local minimum, d∗ =

F̃−1( ρ
1+ρ

) if hδ(F̃
−1( ρ

1+ρ
)) 6 δd1 = limd−→∞ hδ(d). The analysis in other cases is

similar and hence omitted.
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Chapter 5

Future works

In the future, we will be committed to improving our models in Chapters 2, 3 and 4 in the
following directions:

1. The results we achieve can solve optimal deductible problems with specific model
uncertainties. However, there are mounts of other types of reinsurance contracts in
the reinsurance industry. For example, studies including [Tan et al., 2009] investigate
optimal quota-share reinsurance with VaR and TVaR taken as criteria. Apart from
this, [Sung et al., 2011] shows that an optimal reinsurance contract in the framework
of Cumulative Prospect Theory can be one with upper and lower limits. Even though
the approaches used in this work varies from ours, since ours uses risk measures as
metrics, we can still see the significance of contracts with limits in the reinsurance
industry.

The above mentioned types of reinsurance contracts are relatively tractable in an
optimization problem since there are at most two parameters to determine. For
example, the upper and lower bounds for contracts with limits, the deductible for
stop-loss contracts and the quota-share coefficient for quota-share reinsurance. More
generally, an admissible reinsurance indemnity function I is assumed to satisfy the
non-sabotage conditions, which basically means I is a non-decreasing function that
is 1-Liptchiz. A typical way to deal with this kind of questions is to reduce the
dimension of the problem. [Xu et al., 2019] can be taken as a good example. In the
work, the authors prove the optimal insurance must be in a certain form, leaving
only one parameter unknown. The problem then is converted into a one-dimensional
optimization problem and becomes much more tractable. In the future, we would
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like to generalize our results by replacing the admissible set of reinsurance contracts
with a more general one.

2. Other than these, we are interested in finding the optimal deductible in the following
problem:

min
d>0

sup
F∈S(µ,σ)

ρg((XF − d)+ − (1 + θ)E[(XF − d)+]), (5.1)

where the uncertainty set

S(µ, σ) = {F : [0,∞) 7→ [0, 1] : is a distribution function ,∫ ∞
0

x dF (x) = µ,

∫ ∞
0

x2 dF (x) = µ2 + σ2},

ρg is a risk measure and d is deductible. In this framework, the ceded-loss dis-
tribution and the pricing distribution are in the identical worst-case. This means
the reinsurer decides its worst-case by considering the ceded loss and the premium
together, which is much more reasonable and practical. This problem is dual to
the problem considered in [Liu and Mao, 2021], which investigates a similar problem
from the perspective of the insurer. By analyzing the above problem, we can make
the optimal deductible problem with uncertainty more complete and general.

The above raise problem, however, can not be solved using our approach given in
this thesis, even if ρg is a distortion risk measure. The reason is that by letting
ρh = ρg − (1 + ρ)E, the new ”risk metric”, ρh, has a weight function, γh that is
not always non-negative. In this case, the results in this thesis can not be applied
directly. We will come up with another way to tackle this problem.

3. Just as [Markowitz, 1968] investigate the problem of minimizing portfolio variance,
we would like to shift our optimization problem into minimizing respective variances
of the insurer and the reinsurer. The insurer’s problem is formulated as below:

min
d>0

sup
F∈S1

var(XF ∧ d),

and the reinsurer’s optimization problem:

min
d>0

sup
F∈S2

var(XF − d)+.

In this problem, premium is not taken into account, since translation of random
variables do not affect their variances. Solving this problem will help the risk bearers
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minimize their variances in a more conservative way, hence reducing systematic risks
in the financial system.
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