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Abstract

Calibration is an important process in developing Earth system models to reduce the

deviations between model and observations and improve model performance. Current

calibration process is quite resource demanding, requiring enormous computing resources

to explore model responses to different parameter choices. In this study, we explored a

method using short-term simulations for training emulators to predict model responses

given parameter changes in calibration to potentially improve its efficiency. We gener-

ated two Perturbed Parameter Ensembles (PPEs) using the same model configuration and

perturbed parameters values, but differ in the length of simulation. A significant linear

relationship between short and long-term simulations in model response to parameters

was found through EOF analysis. The contributions of each ensemble member in respond

to parameter values were very similar between PPEs ran for short and long-term, which

provided a support for using short-term simulations for emulator in calibration. The eval-

uation of Gaussian Process emulator trained with short-term simulations showed that the

emulator trained with short-term simulations could capture major spatial variability in

long-term simulations and generally has a good performance in predicting model responses

to parameters. Nevertheless, there are more fragmented and chaotic components in model

responses in short-term simulations, which may be caused by the larger internal variabil-

ity in a shorter length of simulation. Such characteristics in short-term simulations may

lead to regional biases when assess model responses in regional scales or related to natu-

ral variations using emulators trained with short-term simulations. Given that short-term

simulations require much less computational time to run, these results implied that it is

possible to use short-term simulations to improve the efficiency of calibration in the Earth

system modelling, while the potential regional biases should be aware of when assessing

model responses on regional bases.
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Chapter 1

Introduction

1.1 Background

Earth system modelling refers to quantitative methods that use numerical models to de-

scribe and simulate the behaviour of the Earth’s climate system. These models emerged

from the mathematical efforts on numerical weather prediction by Richardson (Lynch,

2006) in the early 20th century, and became popular as computer resources advanced. The

general circulation models (GCMs) employed a similar technique as numerical weather

prediction but extended to global scales to fully capture large-scale atmospheric motions.

To better represent the climate system and capture the complex interactions within, mod-

els gradually became more comprehensive over time by coupling atmosphere-ocean GCMs

with other important systems such as land, hydrology and cryosphere(Edwards, 2011).

Earth system models (ESMs) are global climate models with biogeochemical processes,

which have been applied in performing climate predictions for future variability of impor-

tant climate variables such as precipitation and temperature, and assessing climate change

under different scenarios to assist decision-making for adaptation and mitigation (Collins

et al., 2020).

In an ESM, the Earth system is divided into discrete grid cells, the physical processes

represented in ESM are discretized, and a system of partial differential equations represent-

ing each process with be solved on the grid at each timestep(Figure 1.1). Because of the
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limited computational resource, the resolution of the grid cells must be constrained within

a feasible range, and could not be sufficient enough to represent the processes which hap-

pen within the grid cells fully (Prodhomme et al., 2016). The limitation of computational

resources and resolution is the first challenge of Earth system modelling, and the physical

processes in the Earth system were then divided into resolved processes (e.g. large-scale

air movements that can be described under current resolution) and unresolved processes

(the physical processes that happened within the grid cell and cannot be resolved under

given resolution) (Balaji et al., 2022). As a compromise, using parameterization schemes

to represent the unresolved processes on sub-grid scales became a common structure of

Earth system models.

Figure 1.1: Schematic representation of the Cartesian grid structure used in models (Ed-

wards, 2011)

Parameterization often included a set of parameters determined through empirical

knowledge to help describe the unresolved processes (McFarlane, 2011). The improvement

of parameterization and finding appropriate parameters is of great importance in Earth
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system modelling to enhance our understanding of physical processes and their interac-

tions in climate timescale (Krishnamurthy, 2019; Mariotti et al., 2018), which eventually

will add to the predictability of climate and advance climate predictions (Alizadeh, 2022).

Figure 1.2: Survey results of in which parameterizations you apply changes for calibration

among 23 modelling groups (Hourdin et al., 2017)

In the development of Earth system models, the process of determining uncertain pa-

rameters in parameterizations in order to minimize the deviations between observations and

model outputs is known as calibration or tuning (Hourdin et al., 2017). Calibration would

optimize the approximated parameters in many parameterizations, of which cloud and

convection were most important and frequently targeted in calibration for Earth System

Models (Figure 1.2). The calibration of ESMs generally first focused on achieving radia-

tion equilibrium at the top of the atmosphere. Cloud and convections are processes that

have sufficient effects on radiations at the top of the atmosphere (Ogura et al., 2017). In
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ESMs, the cloud feedbacks on radiations mainly showed through 1) rising free-tropospheric

clouds; 2) tropical low cloud amount and 3) high-latitude low cloud optical depth (Ceppi

et al., 2017; Ceppi & Hartmann, 2015). Yet such processes happen in subgrid-scale so

that needed to be parameterized. The representation of cloud feedback (cloud-induced

radiation anomalies) in ESMs was found to have important effects on ESMs performance

(Zelinka et al., 2020), and calibration on cloud and convection parameters were proven

to help improve ESMs performance by reducing uncertainties in climate sensitivity and

responses (Tett et al., 2022).

Previous approaches to calibration are rather resources demanding, requiring long-term

simulations to make sure the parameters’ effects are fully developed (generally at least after

10 years of simulations) and to explore model responses to parameterization choices and

make sure the ad-hoc tuned parameters fulfill physical senses (Ogura et al., 2017; Schmidt

et al., 2017). For the IPSL-CM6A-LR model alone, the calibration process took more

than three years with 15 model versions developed, and thousands of years simulated

by hand tuning (Mignot et al., 2021). The computational demands for calibration come

from the complexity of the ESMs themselves in terms of getting model responses to a

combination of parameter values. In order to simulate the Earth system, ESMs include

many parameterized processes (Figure 1.3) with complex (often nonlinear) interactions

(Ladyman et al., 2013), which will take a large number of parameters as input (Marrel

et al., 2011) and model responses will be time-varying and take a long simulating time to

reach stable stages (Zappa et al., 2020). Therefore, when performing calibration for ESMs,

one would need to consider a variety of parameter combinations which heavily depend on

judgements (Schmidt & Sherwood, 2015), with the expectation that longer runs will be

better in optimizing model responses to parameter changes.

The demand for calibration in ESMs, for assessing parameter uncertainty and long-term

model responses to parameters values would still remain important as ESMs developed, as

there will still be many physical processes (e.g. shallow convection, 3D radiation effects in

cloud physics) that must be parameterized even as model resolution increasing (Hourdin et

al., 2023). Given this context, there are at least 23 different groups (from survey attendance

in Hourdin et al. (2017)) focusing on calibration in different modelling centres across the

globe. Reducing computing resources needed to acquire model responses to parameters
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Figure 1.3: Major fast physics processes that are parameterized in ESMs (Liu, 2019).

choices would potentially help improve calibration to a more efficient and effective stage

and possibly lead to less uncertainty in climate projections using ESMs. In this study, we

attempted to assess current approaches in accelerating calibration in ESMs and seek to

potentially improve the efficiency of calibration.
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1.2 Accelerating Calibration Process in ESMs Devel-

opments

There are generally two kinds of approaches applied in order to help explore parameter

space and accelerate the calibration process in the development of ESMs, and they both

attempt to replace the resource-demanding long-term model simulations with something

faster to get model responses given a combination of parameter values. One way to do this

is by replacing long-term model simulations with statistical emulators (Figure 1.4), while

the other focusing on acquiring the model responses using short-term simulations (Figure

1.5).

The first approach (Figure 1.4) uses an emulator, i.e. a statistical surrogate model,

to predict the model output given input parameter values, and use the emulator to fully

explore parameter space and potentially help identify better parameter values (Williamson

et al., 2017). By using an emulator, the process of getting model responses to parameter

choices has become faster than running large number of long-term simulations using ESMs.

This approach has been widely applied in recent calibration efforts (Baker et al., 2022;

Dagon et al., 2020; Hourdin et al., 2021; Sexton et al., 2021). In this approach, firstly,

there would be a subset of sample parameters being perturbed in the ESM and generating

a Perturbed Parameter Ensemble (PPE). This PPE contains information on the ESM

responses to a sample of parameters values, which would be used to train an emulator to

predict model responses to unseen parameters values. As such, the researcher could use

the predicted model responses from the emulator to help make decisions in calibration and

potentially make the calibration process more efficient.

The method to construct the emulator was preferred to be nonlinear, in order to help

capture the nonlinear responses in the model, of which the Gaussian Process (GP) is the

most widely used method in constructing an emulator for calibration in this approach.

The reason for favouring GP in constructing emulators in the calibration community are

1) as a nonlinear method, it performed better in capturing potential nonlinear responses

in ESMs compared with methods like multi-linear regression (Fletcher et al., 2018). The

multi-linear regression method could have good overall performance predicting processes
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Figure 1.4: Diagram of calibration using surrogate model, credit to Dr. Gavin Schmit

from presentation in AI for Good: Climate Informatics: Machine Learning for the study

of Climate Change, Sep 21st, 2021.

in the Earth system, but worse than nonlinear methods in validation (Sachindra et al.,

2013); and 2) it could not only predict model responses (variables) as the mean but also

provide variance value as information to help quantify the plausibility of the prediction

which could be useful in selecting parameter values through history matching framework

(Salter & Williamson, 2016; Salter et al., 2019). The mean and associated variance values

from GP emulator could help quantify the implausibility (I) of model responses given

parameters:

I =
∥ E[mem]−mobs ∥√

εm + V ar[mem]
(1.1)

where mobs represents relevant observational data, εm is an empirical value decided by the

researcher to represent deviation between the model and observations that come from model

structural errors, E[mem] stands for the model responses (mean) predicted by GP and

V ar[mem] represents the associate variance value (Hourdin et al., 2023). The quantitative

term of implausibility could make the information from emulator more useful as a metric to

exclude parameter values that caused large mismatches with observations in a systematic
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and effective way.

By replacing long-term model simulations with an emulator, we are able to assess a

larger parameter vector and their induced responses in ESM much faster, given that emula-

tors should require much less computational time and resources than ESMs, and eventually

make the calibration of ESMs more efficient. That being said, there are still challenges

applying this approach in calibration, which fundamentally affect the performance of the

emulator and how large the sample size of PPE is required to train an emulator that could

substantially predict model responses to parameter values. The sample PPE used to train

emulator are long-term simulations, which ideally, the larger size of sample PPE provided

more information and potentially help improve emulator performance. However, the com-

putational resources required for the sample PPE (long-term simulations) were still large.

The demanded size of sample PPE could easily increase given a typical calibration process

of one parameterization could perturb about 20 parameters (P.-L. Ma et al., 2022) and

potentially ask hundreds of ensembles in PPE to make sure parameters space is fully sam-

pled. The demands in sample PPE for training emulators to achieve good performance

become one of the challenges in model calibration.

The other approach (Figure 1.5) to accelerate the calibration process focuses on the fast

responses in cloud parameterization and uses short simulations to first evaluate and rule

out inappropriate parameters. The physics processes whose responses could developed

in a few days (instead of years) are called ”fast physics”, and are often occurred in a

relatively small scale which is hard to resolved by coarse resolutions in ESMs (Figure

1.3). This approach took advantage of fast physical processes like cloud and convection

which could react to parameter changes in a short timescales (a few days), and the errors

developed in the short timescale are related to long-term mean errors climate models

(Phillips et al., 2004; Rodwell & Palmer, 2007). These characteristics of fast responses in

cloud physics had been used in previous projects to help investigate long-term cloud bias

using short-term simulations (H.-Y. Ma et al., 2015; Williams et al., 2013). Recently, the

fast responses of cloud and convection in the model had been employed by model centres to

filter parameter values in the calibration process (P.-L. Ma et al., 2022; Sexton et al., 2021).

In this approach, instead of running long-term model simulations to assess parameter-

induced changes, short-term simulations had been used to replace the original long-term
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simulations and were compared with observations to select appropriate parameters values.

The advantages of using short-term simulations to assess model responses to parameter

changes help accelerate calibration massively, since short-term simulations are much faster

to run and required fewer computing resources.

Figure 1.5: Workflow of automatic calibration of parameters using the short-term simula-

tions (T. Zhang et al., 2018), where hindcast represents short-term simulations on the past

observational time periods and could be compared with existing observational datasets.

However, apart from that short-term simulations cannot indicate model errors related

to long-term climate variability, one of the remaining concerns about using short-term

9



simulations to replace long-term ones is the relationship between short and long-term re-

sponses in the model has not yet been fully investigated. Previous studies proposed the

relationship between short and long-term were mostly based on comparing mean values

or errors (deviations from observations) in model simulations. Xie et al. (2012) showed

the model errors in short and long-term simulations shared similar structure and values,

H.-Y. Ma et al. (2014) established the relationship between short and long based on spatial

pattern correlations of the model bias and the parameter sensitivity in short and long-term

simulations were found quite similar (Wan et al., 2014). Later, in the parameter sensitivity

test, the changes in variables values induced by one perturbed parameter is roughly similar

in both short and long-term simulations (Qian et al., 2018), and Sexton et al. (2019) found

that parameters that were important in long-term simulations were very likely remained

important in short-term simulations, thus short-term simulations have great potential to

help calibration. Yet, although short-term simulations had been employed in recent cali-

bration efforts to help select parameters, this idea is only supported by similarities in mean

values, errors and general parameter sensitivity. Besides, short and long-term simulations

are not identical everywhere, especially not in the model errors related to large-scale cir-

culations as showed in H.-Y. Ma et al. (2021) while using short-term simulations to help

evaluate cloud and convection processes. Yet there remains no clear explanation of where

such difference comes from.

1.3 Motivation

Given the ongoing demand for calibration in order to help improve ESMs performance, and

the consistently resources-demanding nature of current calibration processes, we intended

to look for methods that could potentially help increase the efficiency of calibration in Earth

system modelling development by finding efficient ways to achieve model responses given

parameters values. The two main methods used to estimate model responses to parameter

changes efficiently in the community both have some shortcomings, either having limited

efficiency in getting required PPEs for training emulators or lack of clear understanding

of similarities of model responses in short and long timescales. Therefore, in this study,

we tried to help improve current approaches to estimate model responses to parameters
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in a more efficient way, and help provide further investigation on the relationship between

short and long-term simulations.

1.4 Research Objectives

In this study, we use short-term simulations to replace long-term simulations as training

data for an emulator in order to predict model responses given unseen parameters values.

Since short-term simulations are faster to run compared with long-term simulations, this

approach partially solves the time-consuming process to get the required PPE for con-

structing an emulator. We will also further investigate the relationship between short and

long-term simulations and whether the model responses to parameter changes in the short

and long term were similar.

The following research objectives will be investigated in this study:

1. Quantify the relationship between short- and long-term simulations and compare

model responses to parameter changes in short and long-term timescales

2. Evaluate the performance of the emulators trained with short- and long-term simu-

lations

1.5 Structure

The next chapter will document the details in model simulations and applied methods

in this study. The attempts and findings when trying to use short-term simulations to

train emulators to predict long-term model responses will be illustrated in Chapter 3.

The investigation of the relationship of model responses to parameter changes between

short and long-term simulations will be described in Section 3.3.1, and the evaluation of

emulators trained with short and long-term simulations will be included in Section 3.3.2.

Finally, the research findings and limitations will be discussed in Chapter 4.

11



Chapter 2

Data and Methods

2.1 Model Simulations

2.1.1 Model Configurations

The model perturbed in this research is the atmospheric component of Community Earth

SystemModel Version 1.2.2 (CESM1) and the Community Climate SystemModel Version 4

(CCSM4), known as the National Center for Atmospheric Research (NCAR) Community

Atmosphere Model Version 4 (CAM4), documented in Gent et al. (2011). The model

ensembles were constructed as the Atmospheric Model Intercomparison Project (AMIP,

Gates et al. (1999)) runs for CMIP5 protocol. The AMIP run is a standard experimental

protocol for the global atmospheric model (Gates et al., 1999). In this model setting, the

atmospheric is constrained by a prescribed realistic sea surface temperature and sea ice data

from 1979 to the near present, which allowed users to focus on the atmospheric component

without the complexity of ocean-atmosphere feedbacks and are widely used in calibrating

cloud and convection processes in ESMs. In the calibration of ESMs, model centres would

generally focus on achieving global energy equilibrium at the top of the atmosphere, with

particular interests in cloud processes and its radiative forcing (Hourdin et al., 2017), and

relevant interesting parameters could be deep convection for clouds, humidity threshold

for clouds and consumption rate of convective available potential energy (T. Zhang et al.,
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2018). All those parameters are related to the formation of clouds at different levels,

the stability in the atmosphere and the possibility of convection. As such, the favourite

variables for calibration could be shortwave and longwave cloud forcing (directly showed the

cloud radiative effects), precipitation and cloud fraction (related to cloud and convection

processes) in the calibration of CESM (Danabasoglu et al., 2020; Hannay, n.d.).

In this study, we generated our PPEs following AMIP protocols and perturbed 5 pa-

rameters related to cloud and convection in CESM (Table 2.1). The perturbed values of

parameters were sampled using Latin Hypercube Sampling to get a near random sam-

pling on multivariate dimensions where values of parameter is evenly distributed across

the space. The two PPEs used in this study (long and short-term) have the same model

configuration (i.e. same model version, following AMIP protocols and same perturbed pa-

rameters values), and only differed in their simulation time (15 years or 5 days) and the

initial conditions.

No. Parameter Name Min Default Max Description

x1 cldfrc rhminl 0.80 0.91 0.99 RH threshold for low cloud formation

x2 cldopt rliqocean 8.4 14.0 19.6 Radius of liquid cloud droplets over ocean

x3 hkconv cmftau 900 1800 14 440 Timescale of shallow CAPE consumption

x4 cldfrc rhminh 0.70 0.80 0.90 RH threshold for high cloud formation

x5 zmconv tau 1800 3600 28 800 Timescale of deep CAPE consumption

Table 2.1: List of parameters that are perturbed, including parameter name, default and

range of perturbed values. RH stands for relative humidity; CAPE stands for Convective

Available Potential Energy

2.1.2 Initial Conditions

The idea of using short-term simulations comes from Phillips et al. (2004) and Rodwell

and Palmer (2007) where using numerical weather prediction to assess climate model pa-

rameterizations. The essence of this approach is that if the large-scale state in short-term

simulations remains close to the state of which we need to compare (in their case ob-

servations, in this study the state in long-term simulations), the main departures from
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the large-scale state are mainly due to effects of parameterizations (Sexton et al., 2019).

Since the responses of fast physics (Figure 1.3) can develop in a few days and the long-

term responses from climate variability have not yet developed, under this design, if initial

conditions are close to the large-scale state, the main departures should mostly credit to

responses from fast physics. Therefore, a lot of discussions of how to construct appropriate

short-term simulations so that the forcing from parameters contributes to the main differ-

ences were focused on how to acquire the initial conditions that are close to the large-scale

state to be compared with.

Previously, studies focused on assessing model errors compared with observational data,

and the initial conditions were generated to be close to observations. At first, people used

full numerical weather predictions, with data assimilation so that the initial conditions are

close to observations (Phillips et al., 2004; Rodwell & Palmer, 2007). Then Klocke and

Rodwell (2014) found that if a data assimilation system is not available, using Transpose-

AMIP method (Williams et al., 2013) for initial conditions could also diagnose the model

errors in short-term simulations. In the Transpose-AMIP project, the initial conditions for

each field in model simulations were either initialized from a climatology state (model’s

AMIP run) or initialized using a nudge simulation (nudge to observations and reanalysis

data) (Boyle et al., 2005). This approach of generating initial conditions was then employed

in Cloud-Associated Parameterizations Testbed (H.-Y. Ma et al., 2015) to assess errors in

cloud parameterizations using short-term simulations. The detailed protocols and relevant

code in the CAPT project could be found in the Program for Climate Model Diagnosis

and Intercomparison funded by Lawrence Livermore National Laboratory.

In this study, we do not intend to compare with observations to assess model errors,

instead, we would like to focus on the relationship between short and long-term responses in

model simulations. Therefore, we have an advantage in that we can actually get the large-

scale state in long-term simulations through AMIP run, and use it as initial conditions

for short-term simulations. The nudge simulations which are intended to make initial

conditions closer to observations are not necessary in this case. The initial conditions for

long-term simulations are the default mean climate state (Neale et al., 2013) and the initial

conditions for short-term simulations are obtained from corresponding previous one year

AMIP run using the same model configurations. The initial conditions for this one year
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AMIP run are also default, the one year lead simulation time could be referred to H.-Y.

Ma et al. (2021) where their initial conditions for multi-year short-term simulations also

obtained from simulations with one-year lead time. The short-term simulations used in

this study are not multi-year but with four start dates in the first date of January, April,

July and October. So for each start date, its initial conditions were obtained from the

AMIP run after at least one year simulation. The goal to generate initial conditions like

this for short-term simulations is to make its initial conditions as close to the large-scale

state in long-term simulations (the ground truth in this study, the one we compare short-

term simulations with) as possible. Under this design, the long-term simulations, long

PPE, represent the model responses to parameter values. And short-term simulations,

with initial conditions obtained from corresponding AMIP run, similar to the large-scale

state in long-term simulations. The main departures from its initial state, would be largely

attributed to parameters effects.

The short and long-term simulations were run on the high-performance supercomputer

’Niagara’ owned by the University of Toronto and operated by SciNet, and were run in

large parallel jobs on multiple CPUs. One node per simulation for short-term simulations,

four nodes for long-term simulations, and each node has 40 CPU cores. On Niagara, each

physical core becomes two virtual cores, so each node has 80 cores to be run in one job.

The computing resources for running long-term simulations took about 7 core years, which

was more than 6000 CPU hours. The computing resources for short-term simulations and

their initial conditions took only 0.2 core years (less than 2000 CPU hours).

2.2 Empirical Orthogonal Function

We employ Empirical Orthogonal Function (EOF, or principal component) analysis to

assess the model responses to parameter changes. EOF analysis is commonly used in

climate science research, to assess spatial patterns related to climate variability and how

they vary across time (Z. Zhang & Moore, 2015). However, in this study, instead of

performing EOF on the time dimension, we perform on the dimension where indexing

different model ensemble members in a given PPE. In a PPE, each PPE member only
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differs in the perturbed parameter values, and the model outputs from each PPE member

represent model responses to given parameters values. Consider a dataset from one of

our PPE: Y , as a matrix with the size of m× n, where m represent the dimension where

indexing different model ensemble members and m = 50, while n represents the stack of

every else dimension (i.e. variables, time, latitude and longitude dimensions) in the PPE.

First standardized the data and obtained a standardized matrix A. The covariance matrix

will then be R = ATA. Solving eigenvalue problem for covariance matrix R:

R− ΛI = 0 (2.1)

RV = V Λ (2.2)

where the eigenvalues are on the diagonal of Λ, each eigenvalue divided by its sum represents

the explained variance of the corresponding EOF pattern, and the EOF patterns are the

eigenvectors on each column of V . Therefore, by performing EOF on the PPE member

dimension, each EOF pattern in our EOF analysis represents the spatial patterns related

to the general model responses to parameter changes. Correspondingly, for each EOF

pattern, the Principal Component (PC) timeseries, P = AV , in this case, represent the

contributions of the given EOF pattern in each model ensemble member.

2.3 Internal Variability

In this study, we assess the internal variability in our short and long-term simulations.

The internal variability is related to natural fluctuations in the Earth system and was

found to be relatively important in shorter timescales (Hawkins & Sutton, 2009). The

uncertainty from internal variability is calculated as the mean of the standard deviation

across ensemble runs. We calculate the fractional uncertainty represented as the coefficient

of variance, i.e. the predicted uncertainty divided by the expected mean change:

σtime(y)

µ(y)
(2.3)

where y represents model output variables. Since we don’t have multi-year short-term simu-

lations, when calculating internal variability in short-term simulations, the time dimension
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consists of the daily mean of the four start dates in January, April, July and October. Cor-

respondingly, for long-term simulations, the monthly mean values for the above months

were selected, and its time dimension consist of the monthly mean of the above months

in the last 5 years of long-term simulations. In this case, although inevitably consist of

seasonal variations in this calculation, the internal variability is still comparable between

short and long-term simulations since the seasonal variations in long-term simulations are

also included.

2.4 The Gaussian Process Emulator

We used the Gaussian Process Emulator as a statistical model to predict model outputs

given parameters values. The emulator was built using previously ran PPEs as training

data with the assumption that the ESM responses to parameters were smooth and that each

ensemble in the PPE gave some information about model responses to different parameters

values.

Consider we have input x as a vector of five, containing perturbed values for the five

selected parameters, and y represents the values of model output variables. We first stan-

dardized the model outputs and consider y = f(x) where f stands for the function repre-

senting our model. Since we intend to focus on model responses given parameters values,

the model outputs from our PPEs represent the model responses to parameter values with-

out noise, so y = f(x) without noise term. f(x) could be specified by a mean function

matrix m(x) and a covariance function matrix k(x, x′) following:

m(X) = E[f(X)] (2.4)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (2.5)

where X is a matrix of parameters values used for our PPE, and f(X) is the matrix of

model outputs from the PPE, corresponding with a vector of parameter values x in X.

Here x and x′ are both a vector in X. This is a representation of a Gaussian Process, and

could also be expressed as:

f ∽ GP(m(x), k(x, x′)) (2.6)
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We called f ∽ GP the prior. The model PPE paired with corresponding parameters values

consisted of our training dataset: Dn, where Dn = (Xn, Yn) consisting of n samples paired

with parameters values and model outputs: (x1, y1), (x2, y2), . . . , (xn, yn).

By using the GP emulator to predict model responses given unseen parameter values,

what we would like to calculate is f(x∗)|Dn, i.e. the posterior, where x∗ represents unseen

parameters values and f(x∗) is the model outputs using x∗ as parameter values. The

posterior f(x∗)|Dn is a conditional distribution of f(x∗) given data Dn. We considered

f(x∗) and f(X) have a joint multivariate normal distribution, with zero means (since we

standardized our data in prepossessing):[
f(x∗)
f(X)

]
∽ N

([
0

0

]
,

[
k(x∗, x∗) k(x∗, X)

k(X, x∗) k(X,X)

])
(2.7)

following basic properties of multivariate Gaussian distributions (Gramacy, 2020) we have:

p(f(x∗)|x∗, X, f(X)) ∽ N (k(x∗, X)k(X,X)−1f(X), k(x∗, x∗)−k(x∗, X)k(X,X)−1k(X, x∗))
(2.8)

which could also be interpreted as:

p(f(x∗)|Dn) ∽ N (m(x∗), σ2(x∗)) (2.9)

m(x∗) = k(x∗, X)k(X,X)−1f(X) (2.10)

σ2(x∗) = k(x∗, x∗)− k(x∗, X)k(X,X)−1k(X, x∗) (2.11)

where m(x∗) is the mean value predicted by the GP emulator using Dn as the training

dataset, and σ2(x∗) is the variance function representing the uncertainty, the smaller σ2(x∗)
indicating less uncertainty for the predicted point. And noticing that σ2(x∗) < k(x∗, x∗)
so we do learn something from the training dataset Dn and the variance decreased and

uncertainty decreased from the original.

Particularly, in this study, we use Squared Exponential Kernel (also known as the

Radial Basis Function kernel, RBF) for the covariance function k(x, x′). This ”kernel trick”

means we replace the reoccurring inner products in the covariance matrix with a simple

kernel function, corresponding to a large or infinite set of basis functions and makes the
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actual computation more convenient than working on the covariance matrix (Rasmussen

& Williams, 2006). The RBF kernel is expressed as:

k(x, x′) = α2exp(−(x− x′)2

2l2
) (2.12)

where α is a scale factor, representing the range of the data variance away from its mean;

and l is lengthscale, representing the scale of correlation between two data points (how far

away to data points need to be uncorrelated) in the training dataset.

Therefore, we have in total of four hyperparameters in our GP emulator: mean function

m, variance σ2, and the scale factor α and lengthscale l in RBF kernel. And we optimize

these hyperparameters by maximizing log marginal likelihood:

log p(f(X)|X) = −1

2
f(X)Tk(X,X)−1f(X)− 1

2
log |k(X,X)| − n

2
log 2π (2.13)

By maximizing log marginal likelihood, we made sure the final hyperparameters in our GP

emulator lead to a GP that could best represent the probability distribution of our training

dataset (fit to training data).

The above was the statistical explanation of the Gaussian Process emulator used in this

study. We assume the predicted model outputs f(x∗) and the existed outputs obtained

from PPE runs f(X) sharing a joint multivariate distribution and use Gaussian Process

to estimate the model outputs given unseen parameter values x∗. The results includes a

posterior mean function (2.10) which represents the estimation of model outputs using GP

emulator, and a posterior covariance function (2.11) which represents emulator uncertainty.

The 95% confidence integrals for the emulator prediction could be quantified following:

m(x∗)± 1.96× σ(x∗) (2.14)

We note that Gaussian Process is not the only statistical methods used for emulator in

calibration. There are general three types of methods employed in emulation: Gaussian

Process, Neural Network and random forest. Gaussian Process was found to have excep-

tional predictive power in emulation, compared with random forest (Watson-Parris et al.,

2022); yet Gaussian Process and Neural Network seemed to have similar accuracy, and

both being applied to construct emulator in calibration. The Gaussian Process, in general,
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is more popular for building emulator in calibration. Apart from the history heritage from

the Bayesian calibration framework in Kennedy and O’Hagan (2001), the Gaussian Process

provides a variance function to help quantify the uncertainty (1.1) and select parameter

values. Besides, when testing methods for emulator in calibration cosmology simulations,

researcher found that although Gaussian Process and Neural Network both processed sim-

ilar accuracy, the uncertainty for prediction using Neural Network is substantially large

(Figure 2.1). The Gaussian Process emulator produces narrower posteriors, indicating

more confidence in its predictions.

Figure 2.1: Two examples from the Leave-One-Out cross-validation results for the cos-

mology data set (Myren & Lawrence, 2021). The light gray lines are the sample of the

simulated cosmology data containing all 36 samples from the training set. The blue and

red shaded areas indicate the 95% confidence intervals for each emulator. The 95% confi-

dence intervals for GP were calculated using its mean and variance function (2.14), while

for NN the 95% confidence intervals were calculated following Gal et al. (2017). ”Hold-

out” stands for the selected sample from the training dataset for testing in Leave-One-Out

cross-validation, here referred to the ”ground truth”.
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Chapter 3

Using Short Simulations for

Calibration in Earth System Models

3.1 Overview

Calibration about parameter values is the key step in the development of Earth System

Models (ESMs) and could potentially help quantify parameter uncertainty, improve ESMs

performance and eventually better climate projections for human beings (Tett et al., 2022).

Recently there is an advocate for the need to quantify parameter uncertainty and reduce the

number of scenarios and protocols in CMIP practice (Hourdin et al., 2023) and assessment

of Perturbed Parameter Ensembles (PPEs) along with careful calibration processes could

potentially help quantify model responses to different parameter values, quantify parameter

uncertainty and further to improve the performance of ESMs. Although calibration is and

will still be an important process when developing ESMs, this process was often left on

hand-tuning parameters in an ad-hoc manner, requiring numerous computing and human

resources to find appropriate parameter values to minimize deviations between model and

observations (Schmidt et al., 2017).

Previous studies sought to find a more systematic and efficient way to better calibrate

the parameters, they either tried to use a statistical emulator to predict model responses
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given parameter values (Dagon et al., 2020; Hourdin et al., 2022) or select parameters

based on model responses developed within a few days (Sexton et al., 2021; T. Zhang

et al., 2018) to help make the process more efficient. The first approach relied on whether

the statistical emulator could successfully reproduce model responses given unseen param-

eter values, which were proven possible and using mean and variance values generated by

Gaussian Process could further help quantify and uncertainty that came from the emula-

tor and help researchers make better decisions in filtering parameters (Williamson et al.,

2017). The second approach was based on the relationship parameter-induced responses

in model simulations between short and long-term timescales (Phillips et al., 2004; Rod-

well & Palmer, 2007). The theory is that if using the to-be-compared mean large state as

initial conditions, in a rather short simulating timescale, the large-scale state of the model

remained very close to the large-scale state, and any departures from it would be resulted

from different parameter values (Sexton et al., 2019). For ’fast’ physical processes like

cloud and convictions, previous studies found that their responses to parameters in a short

timescale were similar to the model response in the long-term (Qian et al., 2018; Wan et

al., 2014; Xie et al., 2012). Given short-term simulations seemed to have similar responses

to parameters as the long-term simulations, and it generally took much less time to run

short-term simulations, modelling centres also used this characteristic to filter parameter

value in calibration (H.-Y. Ma et al., 2021; Sexton et al., 2021).

Yet there are still remain challenges for these two methods in accelerating the calibration

process for ESMs. To achieve emulator that could successfully predict model responses to

parameters, there should already be a large size of Perturbed Parameter Ensemble (PPE)

which included the information of model responses given different sample parameters values

as training dataset. And the computational resource to get such a size of PPE could be

a lot, which potentially slowed down the calibration using emulator. On the other hand,

although short and long-term simulations were similar given the same parameters to some

degree, there remained no direct evidence showing that model responses to parameters in

short-term simulations could be a good indicator for that in long-term timescale (Sexton

et al., 2019). And when applying short-term simulations to help assess cloud processes in

a climate model, there are some differences regarding large-scale circulations found (H.-Y.

Ma et al., 2021), yet there was no further explanation of where such differences came from.
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Given the need to accelerate the calibration process for the development of ESMs, and

current methods to do this either lack of computational efficiency in acquiring model re-

sponses to parameters or lack of detailed investigations of whether those applied responses

are valid. We would like to further investigate the relationship between short and long-

term simulations in model responses to parameters and find a new way to acquire model

responses to parameters efficiently by using short-term simulations for training emulators.

Our hypotheses in this study are that 1) short-term simulations could be used as a rel-

atively cheaper surrogate in training emulators for calibration; 2) the emulator trained

by the short-term simulations could predict the long-term model responses to parameter

changes with high fidelity; 3) this method substantially increases the efficiency of training

an emulator to be used for calibrating an ESM. The model configurations, the construction

of the emulator and evaluation metrics will be described in Section 3.2. The mean state

of the short and long-term simulations, spread and responses to parameter changes will

be compared in Section 3.3.1, and the potential relationship and differences between short

and long-term simulations will also be explored. Section 3.3.2 will evaluate the emulator’s

performance and assess whether short-term simulations could be helpful in training emu-

lators for calibration. Finally, we will provide a summary and conclusion for our purposed

hypothesis in Section 4.

3.2 Method

3.2.1 Perturbed Parameter Ensembles (PPEs)

The model perturbed in this research is the atmospheric component of Community Earth

SystemModel Version 1.2.2 (CESM1) and the Community Climate SystemModel Version 4

(CCSM4), known as the National Center for Atmospheric Research (NCAR) Community

Atmosphere Model Version 4 (CAM4), documented in Gent et al. (2011). The model

ensembles were constructed as the Atmospheric Model Intercomparison Project (AMIP,

Gates et al. (1999)) runs for CMIP5 protocol, which included atmosphere model CAM4

and the Community Land Model Version 4.0 (CLM4) with a biogeochemistry model that

simulates the carbon and nitrogen cycling (Thornton et al., 2007). All model simulations
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were performed at 1.9× 2.5 degree resolution with 26 vertical levels, which result in a grid

size of 96× 144 grid cells across the globe in each time step.

There are five perturbed parameters in the long-term simulation. These five parameters

are parameters related to clouds and convection in CAM4 (Table 3.1). These parameters

were found highly important in sensitivity analysis (Covey et al., 2013) and have been used

in previous study to construct PPEs for training emulators (Fletcher et al., 2022) and were

found to explain a large fraction of total variance for multivariate skill score for quantifying

climate model performance (Fletcher et al., 2018). In long-term simulations, there are 50

combinations of parameter values (x1-x5) selected by Latin Hypercube Sampling (Stein,

1987) to ensure a good distribution of sampling values and potentially help improve the

trained emulator performance (Urban & Fricker, 2010). The long-term simulation has a

15-year length of simulation time and the last five years of model outputs (long PPE) will

be employed to analyze long-term model responses to parameters.

No. Parameter Name Min Default Max Description

x1 cldfrc rhminl 0.80 0.91 0.99 RH threshold for low cloud formation

x2 cldopt rliqocean 8.4 14.0 19.6 Radius of liquid cloud droplets over ocean

x3 hkconv cmftau 900 1800 14 440 Timescale of shallow CAPE consumption

x4 cldfrc rhminh 0.70 0.80 0.90 RH threshold for high cloud formation

x5 zmconv tau 1800 3600 28 800 Timescale of deep CAPE consumption

Table 3.1: List of parameters that are perturbed, including parameter name, default and

range of perturbed values in CAM4. RH stands for relative humidity; CAPE stands for

Convective Available Potential Energy

The short-term simulations were generated using the same model configuration and

perturbed parameters values as the long-term simulations above. The short-term simu-

lations only differ from long-term simulations in simulation length (5 days for short-term

simulations) and initial conditions. The initial conditions for short-term simulations were

created following the workflow in the Cloud-Associated Parameterizations Testbed (CAPT)

project (H.-Y. Ma et al., 2013) to generate initial conditions for hindcasts experiments.

We noted that in the CAPT documentation, there were two methods for obtaining the

necessary variables for generating initial conditions: 1) performing a nudge simulation;
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2) obtaining from a previous AMIP run. We used the second method to generate initial

conditions for short PPE, obtaining all necessary variables from previous AMIP runs. The

reason is that we do not intend to perform a full calibration process in this study and our

short-term simulations will only be used to assess the model responses in a short timescale,

but not compared with observation. Therefore, making initial conditions for short-term

simulations from previous AMIP runs would make sure the initial state of the model re-

mains close to the large-scale state in the long-term simulations, and the main departures

in short-term simulations can be taken as responses given different parameter values, which

helps compare the model responses in short-term simulations with long-term. Without us-

ing nudged simulation to generate initial conditions, we acknowledge that our short-term

simulations are technically not hindcast experiments. By obtaining the necessary variables

from previous AMIP runs, the initial conditions could be easier generated and potentially

save computational resources for additional nudge simulations. There are four start dates

in short-term simulations, the first date of January, April, July and October. The short

PPE is an average of short-term simulations with four start dates. The average approach

is employed to eliminate the potential seasonal differences resulting from different start

dates.

We selected four variables from model simulations outputs to assess model responses

to parameter changes: shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF),

precipitation (PRECT) and total cloud fraction (CLDTOT). These variables were selected

to reflect changes related to cloud and convictions and potential impacts on radiation

balance due to clouds. SWCF and LWCF are related to the radiation impact of cloud

changes. These two variables had been linked with opaque cloud cover and effective cloud

albedo to quantify the cloud’s impact on atmospheric cycle (Betts et al., 2015; Betts et

al., 2013) and are important variables that described cloud effects on Top-of-Atmosphere

radiation, both are key values in tunning practices of Earth system model (Schmidt et al.,

2017). Precipitation and total cloud fraction were chosen to represent general changes in

clouds and convections.
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3.2.2 Empirical Orthogonal Function Decomposition

To assess major variance across different model responses to parameter changes, we em-

ployed Empirical Orthogonal Function (EOF, or principal component) analysis. In this

study, instead of performing EOF analysis on the time dimension, we performed EOF on

the dimension which indexing different model ensemble members in the given PPE. There-

fore, the EOF patterns obtained could represent the spatial patterns related to the general

model responses to parameter changes. Consider a dataset from one of our PPEs as:

X =


x11 x12 . . . x1n

x21 x22 . . . x2n

...
...

. . .
...

xm1 xm2 . . . xmn

 (3.1)

where m stands for the dimension of PPE members, in our case m = 50; and n has the size

of multiplication every other dimension from the PPE, n = len(var)×len(time)×len(lat)×
len(lon), len(∗) represent the dimension size of each selected dimension. len(var) = 4,

len(lat) = 96, len(lon) = 144 and len(time) is 121 for short PPE (hourly data for five

days), 60 for long PPE (monthly data for the last five years). We first standardized

the original matrix and got a standardized matrix A so that all four variables contribute

equally to the analysis. To perform EOF on PPE member dimension (m), we computed

the covariance matrix R = ATA and solve eigenvalue problem:

RV = V Λ (3.2)

where each column in V , with a size of n, is an eigenvector (EOF patterns), representing the

corresponding variance for all four variables in the PPE across different ensemble members;

and the diagonal of Λ are the eigenvalues (indicating EOFs explained variances after divided

by the sum of all eigenvalues). The PCs were computed by projecting standardized matrix

A onto EOFs: P = AV .

By performing EOF on PPE member dimension, the EOF patterns we obtained would

then describe the common variability across model ensemble members shared by the four

selected variables and the first EOF pattern will be the major model response to parameter
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changes in a given PPE. The relevant PC would represent how each model ensemble mem-

ber varied to each EOF pattern, and the first PC, in a way, represents the degree to which

each ensemble member contributed or varied in responses to major parameter-induced

changes.

3.2.3 Emulation

We used Gaussian Processes (GP) emulator in this study to emulate the model response

given parameters changes. Gaussian Processes are probabilistic models (Rasmussen &

Williams, 2006) which have been widely employed in geoscience to capture the nonlinear

relationships among data. In machine learning terms, the process of emulation in this study

is a supervised learning where GP will take any finite collection of model outputs given

different parameters values as a multivariate normal distribution. The training dataset was

set up using the perturbed values of parameters and the selected model outputs variables

described in Section 3.2.1. The perturbed values of parameters in Table 3.1 will be consid-

ered the input, connected with the selected model outputs variables filed from each model

ensemble member respectively. Together, these are constructed into our training dataset

for the GP emulator. All the input values and selected output variables were standardized

using the mean and standard deviation of training data before feeding into GP emulators.

We used open open-source Python library GPFlow (Matthews et al., 2017) for setting the

GP emulator used in this research. Fitting a GP includes fitting a mean function and a

covariance function. In this study, the GP emulator was set with a constant zero mean

prior, and the radial basis function kernel (RBF kernel) was employed for the input. The

RBF kernel is universal and commonly used for smooth and continuous responses. There

were 4 hyperparameters in our GP emulator: mean value, variance the lengthscale and

the scale factor for the RBF kernel. These 4 hyperparameters for the GP emulator were

jointly tuned against the training dataset through marginal likelihood maximization using

the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization algorithm,

employed through the SciPy package (Virtanen et al., 2020).

To investigate whether short-term simulations could help make the calibration process

more efficient, two GP emulators were trained in this study using short-term and long-term
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responses as training datasets, extracted from short PPE and long PPs correspondingly.

The short-term responses are determined as the selected model output variables from short

PPEs, averaged across the 5 days of simulation time, while the long-term responses are

determined as the selected model output variables averaged across the last 5 years of model

simulation time. The short-term and long-term responses, paired with the perturbed pa-

rameters’ values act as the training dataset for each GP emulator correspondingly. If

short-term simulations have a strong relationship with long-term simulations, short-term

simulations carry similar model responses to parameters changes as that in long-term sim-

ulations. Then in hypothesis, the GP emulator trained with short PPEs should have a

similar performance as the emulator trained with long PPEs, thus making short-term sim-

ulations good substitutes for long-term simulations, help save computational time running

long-term simulations and eventually improve the efficiency of calibration on Earth system

models.

The Leave-One-Out method was used to validate our GP emulators, following McNeall

et al. (2020). When training each emulator, remove one of the ensemble members from

the training PPE successively, and use the rest of the PPE to train the GP emulator.

The trained emulator would be employed to predict the model output variables from the

removed ensemble member and thus lead to an emulated PPE the same size as the training

PPE.

The GP emulator will be first examined by calculating the spatial skill metric (SS):

SS = 1− MSE(X, Y )

MSE(X,Y )
(3.3)

MSE(X, Y ) =
1

C ×M ×N

C∑
c=1

M∑
i=1

N∑
j=1

(Xcij − Ycij)
2 (3.4)

where C,M,N represent the number of ensemble members, the number of grid points in

latitude and longitude correspondingly. ThusMSE(X, Y ) stands for mean-square-error for

each selected variable. After normalization, if the prediction by an emulator is identical

to model outputs, then SS = 1, and if the emulator captures no spatial variability of

the model outputs SS = 0. In addition, we also employed the Taylor diagram to assess
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emulator performance (Taylor, 2001) showing the quantification of correlation, root-mean-

square-error and standard deviation between prediction from emulators and model outputs.

3.3 Results

3.3.1 Relationship between short- and long-term simulations

To first investigate the relationship between short and long-term simulations, we compared

the global mean values of selected model output variables from short and long PPE (Figure

3.1). Similar to previous studies (H.-Y. Ma et al., 2014; Sexton et al., 2019), all selected

variables shared similar global mean values and spread between short and long-term sim-

ulations. The global mean values of each variable in each ensemble member showed a

clear positive linear relationship. Particularly, for SWCF, short and long-term simula-

tions showed a significant one-to-one linear relationship (with a correlation coefficient of

0.9990), while for other variables, although a significant linear relationship was found, their

correlation was less strong compared with SWCF.

In order to assess the model responses given parameters changes in each PPE, we

employed an EOF analysis on the PPE member dimension for model simulation data.

Given that all variables showed a linear relationship in Figure 3.1, a linear transformation

for model simulations data to new coordination (EOF) where its variance across different

model ensemble members shall be shown. Figure 3.2 indicating the first EOF pattern

for long-term simulations (Figure 3.2 left column (a,c,e,g)) and the first EOF pattern for

short-term simulations (Figure 3.2 right column (b,d,f,h)), which have a very similar spatial

pattern. The similarity in EOF patterns showed that the perturbed parameters values

caused roughly similar spatial variance in both short and long-term simulations. Both

EOF patterns indicated a clear similarity over tropical, especially along South America,

Atlantic and Africa. However, it is noticeable that the first EOF pattern from short-

term simulations shows more fragmented components over high-latitude areas and over

the Pacific, indicating the model responses in short-term simulations had large differences

compared with long-term simulations in the above-mentioned area. We also compared the
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Figure 3.1: Scatter plot of global-mean values of each variable (SWCF, LWCF, PRECT

and CLDTOT) in short and long PPEs. Each blue dot denotes the value from each

model ensemble member, and the red triangle represents the variable value from the model

simulation using the default values of the perturbed parameters. The r value represents

the correlation coefficient between variable values from long and short PPEs. The black

linear lines are the one-to-one diagonal lines that data would follow if they have a complete

one-to-one relationship.
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Figure 3.2: The first EOF pattern for model simulations data. The column on the left

represents the first EOF pattern for long-term simulations, while the column on the right

indicates the first EOF pattern for the short-term simulation. Each EOF pattern was

the eigenvector obtained from solving the eigenvalue problem for the covariance matrix

of model data, which could be expressed as the covariance between the first principal

component (PC1) and the PPE members of the model data for each variable at each grid

point.
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PCs for the first three EOF patterns in short and long-term simulation, shown as a scatter-

plot in Figure 3.3. Given that our EOF analysis was performed on the PPE members’

dimension, therefore, unlike EOF on the time dimension, our PC values do not have an

order like time. Therefore, the PC values were shown as individual points, not following

any pre-defined order. Figure 3.3 (a) is a scatterplot showing the relationship between

the first PCs from short (y-axis) and long-term (x-axis) simulations. The PC values for

each ensemble member had a highly correlated linear relationship between short and long

simulations (r=0.9877), indicating that the contributions of each ensemble member toward

the major parameter-induced variance are similar, or the model responses given parameters

in each ensemble member are similar in short and long-term timescales. However, the

explained variance of the first EOF patterns were quite largely different in short and long-

term simulations. The first EOF pattern explained 45.48% of the total variance in long

PPE, while it only explained 15.82% of the total variance in short PPE. The difference in

explained variance indicates that short-term simulations are less aligned along a common

pattern/mode of response to parameter variations than the long-term simulations are. The

second and third EOF patterns from short and long-term simulations were also calculated

and correlations between second EOF patterns from short and long-term simulations were

found (Figure 3.3 (b)). A significant correlation (r=0.8766) between PC2 from long and

short-term simulations was found, supporting strong similarities of model responses to

parameters in the second EOF patterns, while the PC3 did not show a clear relationship.

However, the second EOF pattern from short-term simulations explained 3.8% of total

variance while the third EOF pattern explained 3.4% and are not uniquely separated based

on North’s Rule of Thumb for EOF significance (North et al., 1982), which indicated a

potential of mixture in signals for lower order PCs from short-term simulations. Viewing

these results together with the more fragmented first EOF pattern in short PPE, it seems

that short-term simulations have another large source of variances that made the ensembles

in short PPE change, and the responses in short-term simulations seem to be chaotic and

fragmented.

There should be two different sources of uncertainty in our simulations, one is model

uncertainty, caused by parameterization, in our case induced by different parameter values;

another is internal variability, caused by natural variations in the Earth system. The
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Figure 3.3: Scatter plot of PCs for the EOF patterns from long simulations and short

simulations The R-value is the correlation coefficient between the two PCs. The black

lines indicate lines following one-to-one linear relationships.

contribution of model responses to parameters in different ensemble members was found to

be significantly correlated between short and long-term simulations (Figure 3.3). Therefore,

to better assess the source of variance and uncertainty in short and long-term simulations,

we calculated the internal variability uncertainty following Hawkins and Sutton (2009).

Figure 3.4 showed the uncertainty from internal variability and from the model in short

and long-term simulation for each targeted variable. As shown in Figure 3.4 for all four

targeted variables, the internal variability in short PPE is much larger than that in the

long PPE, with around 10-40% more uncertainty in short PPE compared with long. We

noted that our internal variability has included the seasonal variability, since short PPE

only had four start dates in one year, we cannot exclude the seasonal variability from

our internal variability as we don’t have multi-years short-term simulations. However,

the calculation of internal variability from short and long-term simulations used the same

equation and both included seasonal variability, so the values are still comparable. Similar

to previous studies (Hawkins & Sutton, 2011; Schwarzwald & Lenssen, 2022), simulations

in shorter timescales, in our case, 5 days, do have larger internal variability compared with

our long-term simulations.

When looking at the difference of uncertainty from internal variability in each variable
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Figure 3.4: Uncertainty from internal variability from short (blue) and long-term (orange)

simulations for each targeted variable. The internal variability is calculated as the mean

of the standard deviation in each ensemble run. The uncertainty is represented by the

coefficient of variance, i.e. the above-mentioned standard deviations divided by the mean

values across all ensemble runs.

in Figure 3.4, it can be found that precipitation (PRECT) has the largest deviation of frac-

tional uncertainty (40%) among all four targeted variables, followed by LWCF, CLDTOT

and finally SWCF, with only about 10% difference in uncertainty. This order ranked by

the difference in internal variability is exactly the same order if we rank the relationship

in each variable by its correlation in the scatterplot of global mean values (Figure 3.1).

Similarly, in Figure 3.2, the variable whose EOF pattern showed more fragmented features

in short PPE and less similar to the EOF pattern from Long PPE, had a larger difference

in internal variability here in Figure 3.4. The internal variability in the model is related

to the natural climate variations (Schwarzwald & Lenssen, 2022), it can be caused by pre-

dictable variations in circulations or caused by natural chaotic noise in the Earth system.

The difference in model output variables between short and long-term simulations may

be related to different internal variability in short and long timescales. The large internal

variability in short-term simulations may be the reason why short-term simulations differ
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from the long-term, and the model responses to parameters in the short term have more

fragmented features.

To further investigate the difference between short and long-term simulations and their

difference related to climate variations (caused by internal variability), we showed the dif-

ference maps between short and long-term simulations (Figure 3.5) with a focus on the

area with the largest difference value, the tropical Pacific. The short-term simulations

modelled larger precipitation over the western Pacific warm pool (Figure 3.5 (a)), which

corresponding showed stronger convection regionally, causing more high cloud (Figure 3.5

(d)) and stronger longwave cloud forcing (Figure 3.5 (e)) induced by high clouds. Corre-

sponding, this linked to stronger Walker circulations in the wind fields, where there were

stronger eastern trade winds in the lower atmosphere, converged in the western Pacific

warm pool (Figure 3.5 (b)), and correspondingly, diverged in the higher atmosphere, led to

strong western winds toward west Southern America (Figure 3.5 (c)). The large difference

between short and long-term simulations regionally, is related to large-scale circulations,

in this case, Walker circulations which are caused by stronger natural climate variations,

or larger internal variability (Figure 3.4 (a)).

In conclusion, the relationship between short and long-term simulations: the short

and long-term simulations showed a close relationship, the mean values of targeted vari-

ables were highly linear correlated, and shared a similar spread among ensemble mem-

bers. The major spatial patterns of model responses given parameter changes showed as

first EOF patterns, were also similar, and its relevant PC had a significant one-to-one

linear relationship. Thus, the model responses given parameter changes in short and long-

term simulations shared similar patterns and the parameter-induced model changes in each

model ensemble were very similar. However, the model responses in short-term simulations

had more fragmented features and short-term simulations were relatively more chaotic and

seemed to have other sources of variance across model ensemble members. Such differences

in short-term simulations were related to the fact that it has larger internal variability given

it only simulated for a very short timescale. This additional internal variability would re-

sult in the difference in climate variations in PPE, and short-term simulations potentially

have other variations across model ensembles, which may affect its representation of model

responses given parameters in longer timescales.
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Figure 3.5: Regional difference between short and long-term simulations over tropical

Pacific
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3.3.2 Comparing emulators trained with short and long ensem-

bles

To investigate the potential usage of short-term simulations in improving the efficiency of

calibration using emulators, and whether short-term simulations could replace long-term

simulations in representing model responses given parameter changes, we trained two GP

emulators in this study using short PPE and long PPE correspondingly.

We first evaluated the overall emulator performance using SS metric (Table 3.2) on the

emulated results obtained through the Leave-One-Out validation method. The SS metric

was calculated by comparing the predicted results generated by each emulator with the

model output from long-term simulations as ground truth. For all four targeted variables,

the SS metric for emulators trained with short or long PPE both have a relatively good

performance, compared with the multi-linear regression method. The SS metrics for all

variables were close to 0.9, indicating the emulators were able to capture major proportions

of the spatial variability from long-term simulations. The GP emulator trained with long

PPE showed a small advantage in its performance compared with the other GP emulator

trained with short PPE. This difference in performance may relate to their training dataset,

as short PPE although found to have similar model responses given parameter changes,

also has large internal variability across different ensembles, which may potentially affect

the emulator performance as the training dataset has more variances that were non linked

to parameters changes.

SS SWCF LWCF PRECT CLDTOT

Linear Regression 0.955 0.924 0.833 0.908

emulator short 0.955 0.934 0.855 0.915

emulator long 0.993 0.989 0.979 0.984

Table 3.2: Spatial skill metric (SS) of each variable emulated by emulators trained with

short and long ensembles, with multi-linear regression trained with short-term simulations

as benchmark comparison.

We also looked into the spatial distribution of selected variables predicted by emulators.

Figure 3.6 showed the spatial distribution of selected variables in original long-term model
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simulations results averaged over the last 5 years which worked as ground truth. The figure

indicated the emulators’ performance in reproducing spatial patterns of long-term simula-

tions, and both emulators have successfully captured a majority of the spatial patterns in

long-term simulations, as the predicted patterns looked very similar to the original model

simulation data (when comparing middle and rightmost sub-figures with the sub-figure in

the same row). Nevertheless, there are some large regional differences in results predicted

by emulators trained with short PPE compared with long-term simulations, especially in

the west tropical Pacific area. The spatial difference between predicted values and long-

term simulations maps (Figure 3.7) could illustrate such difference more clearly. In Figure

3.7, when looking at the predicted differences using a GP emulator trained with long PPE

(Figure 3.7 (a,c,e,g)), the value of differences were quite small, areas with relatively large

differences were the same area with large absolute values and higher variance, so it’s per-

haps not surprising that those areas have larger differences. On the other hand, when

looking at the predicted differences using a GP emulator trained with short PPE (Fig-

ure 3.7 (b,d,f,h)), the predicted results showed larger differences globally, and for LWCF,

PRECT (Figure 3.7 (d,f)) there was an area with extremely larger differences compared

with the rest of the globe. Such an area is the western Pacific warm pool, which also

showed large differences when comparing short-term simulations with long-term in Figure

3.5. This indicated that the GP emulator trained with short PPE suffered its perfor-

mance from its training data, as short-term simulations have larger internal variability,

with stronger Walker circulations compared with long-term simulations, the GP emulator

trained with short PPE also differs a lot when trying to reproduce the model responses

relevant to climate variations or large scale circulations.

To help quantify the performance of emulators through pattern statistics, we employed

the Taylor diagram (Taylor, 2001), shown as Figure 3.8. In the Taylor diagram, the data

used as a reference was from long-term simulations (REF). In general, the closer each

point is to REF, the better the performance of the emulator or the more similar spatial

variability in test data. The short-term simulations are very different spatially compared

with long-term simulations. Although the correlation coefficients of all four targeted vari-

ables, were not too small, most larger than 0.8, showing significant correlations, it suffered

from much larger standard deviations within the dataset, potentially related to its larger
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Figure 3.6: One example of the spatial distribution of the emulated results from emulators

trained with long and short simulations. The leftmost column shows the spatial patterns

in one PPE member for each variable, which worked as ground truth in assessing emulator

performance. The middle column is the predicted results using the GP emulator trained

with long PPE, and the rightmost column are same but predicted results with the GP

emulator trained with short PPE.
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Figure 3.7: Spatial differences of the emulated results from emulators trained with long

and short PPE correspondingly. The left column indicated predicted results using GP

emulator trained with long PPE, while the right column was the same except using GP

emulator trained with short PPE.

40



internal variability due to a much shorter simulation time. The predicted results using the

multi-linear regression method have much better pattern similarity compared with long-

term simulations, as it showed a much stronger correlation. Since the majority of model

responses given parameters were found to have a kind of linear relationship (Figure 3.1)

and could be expressed as EOF patterns on PPE member dimension (Figure 3.2). The

multi-linear regression possibly captured the linear responses proportion, which was found

to have a strong connection between short and long-term simulation in Figure 3.3. How-

ever, it still suffered from a larger standard deviation with predicted data, possibly coming

from its training dataset, where short-term simulations have a larger internal variability

which potentially affects emulator performance. Similarly, predicted results from the GP

emulator trained with short PPE were also found to have larger standard deviations com-

pared with long-term simulations. As a nonlinear method, the GP emulator could slightly

outperform multi-linear regression and potentially exclude some misinformation from large

internal variability in short PPE. Although it is promising to use short-term simulations to

represent model responses for the emulator, the GP emulator trained with long PPE was

still the best-performed emulator in reproducing model responses. The predicted results

from it are not perfect, with some deviation from long-term simulations, yet remained to

be most similar to long-term simulations among all emulators. Therefore, replacing long-

term simulations with short when training emulators for calibration could get an emulator

that captures the majority of the model responses given parameters, both in the mean

state and in global spatial patterns. Therefore, short-term simulations are very promising

to use in calibration with emulators and potentially help improve the overall efficiency

of this process. However, for assessing regional responses, especially in areas highly rele-

vant to climate variations, short simulations and emulators trained with them are not the

best indicators for regional model responses related to climate variability, since short-term

simulations have larger internal variability.

3.4 Discussion and Conclusion

In this study, we use short-term simulations as a relatively cheaper substitute for training

emulators in the calibration process for Earth system modelling. There were two PPEs

41



Figure 3.8: Taylor diagram showing pattern statistics metric between short and long PPE,

predicted results using multi-linear regression, GP trained with short and long PPE corre-

spondingly. The reference data in this diagram is the long PPE, i.e. long-term simulations

data. Each dot represents pattern statistics for each targeted variable in short PPE (black),

predicted by multi-linear regression (Yellow), predicted by GP emulator trained with short

PPE (red) and predicted by GP emulator trained with long PPE (blue). The number

associated with each dot referred to each targeted variable correspondingly, in order from

1 to 4, the targeted variables are SWCF, LWCF, PRECT and CLDTOT.

42



generated using one of the Earth system models (CESM) with five cloud-related parameters

being perturbed. Following previous studies where short-term responses to cloud-related

parameter changes were found to be linked with long-term model changes (Qian et al.,

2018; Xie et al., 2012), and potentially be used to understand model parameterization

errors (H.-Y. Ma et al., 2021) and help first filtering parameter values in calibration (Sexton

et al., 2021). We raised the hypotheses that 1) short-term simulations could be used as a

surrogate in training emulators for calibration; 2) the emulator trained by the short-term

simulations could predict the long-term model responses to parameter changes with high

fidelity; 3) this method substantially increases the efficiency of training an emulator to be

used for calibrating an ESM.

For the first hypothesis, we investigated the relationship between short and long-term

simulations in model responses to parameters changes. We selected four model variables

(shortwave cloud forcing, longwave cloud forcing, total cloud fraction and precipitation)

that are helpful in calibrating and identifying parameters’ impact on clouds and the con-

vection process. The short and long-term simulations were found to have similar mean

values and spread across model ensembles for each of our targeted variables, and there was

a significant one-to-one linear relationship between global mean values in short and long-

term simulations. By performing EOF analysis on PPE member dimension, we acquired

the first EOF pattern from short and long-term simulations correspondingly. Such EOF

patterns indicated the major spatial patterns of model responses to parameter changes in

each ensemble, and they were very similar. Moreover, their PC values showed a significant

one-to-one linear relationship (r=0.9877), indicating the contributions or changes in each

ensemble member’s response to the same parameter values were similar relatively. This

provided a piece of good evidence and strong support for us to use short-term simulation

as a surrogate to represent long-term model responses and to use as the training dataset

for the emulator, given that the model responses to parameters extracted from the data

were found to be highly correlated and showed strong linkages.

Although short-term simulations shared similar model responses to parameters, there

are certain regional differences between short and long-term simulations which were shown

in EOF pattern where EOF pattern obtained from short-term simulations has more frag-

mented features, especially over the tropical Pacific. Such difference came from the fact
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that short-term simulations have a larger internal variability compared with long-term,

given its simulation time was much less. The larger internal variability led to stronger

climate variations like Walker circulations over the western Pacific warm pool, and could

potentially affect its ability to represent model responses for training emulators.

For the second hypothesis, we compared two GP emulators trained on short and long-

term simulations correspondingly, to assess whether short-term simulations could replace

long-term simulations for emulators to predict model responses to parameter changes.

Both emulators have a certain ability to reproduce model responses, capturing the spatial

variability in long-term simulation ensembles well. Therefore, it is possible to use short-

term simulations for the emulator. Nevertheless, the emulator trained with short PPE

suffered from larger internal variability from short-term simulations, its predicted results

also processed similar large variance related to climate variability, leading to slightly poorer

overall performance and larger standard deviation within the predicted dataset.

For the last hypothesis, given that short-term simulations take much less computa-

tional resources to run but have highly similar responses to parameters compared with

long-term simulations, and the emulator trained with short-term simulations still has good

performance in predicting model responses to parameters, we concluded that it is possible

the accelerate the calibration process using short-term simulations for training emulators.

The long-term simulations in this study took more than 60,000 CPU hours of computing

resources on a high-performance computer platform, while short-term simulations took

less than 2,000 CPU hours. Therefore, using short-term simulations to represent model

responses to parameters could potentially save 95% of original computing resources and

time in calibration. However, given the larger internal variability in short-term simula-

tions, short-term simulations and emulators trained with it both have noticeable regional

bias over the tropical Pacific. Using an emulator trained with short-term simulations to

help select parameters could potentially be more trustworthy compared with using short-

term simulations directly, yet there are still considerable deviations in regional biases and

potential users of this method should be cautious when calibrating to minimize regional

biases and when assessing natural variations.
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Chapter 4

Summary

4.1 Conclusion

In this study, we tried to improve the efficiency of the current calibration process for ESMs.

In the calibration for ESMs, the most resources demanded are to explore model responses

to parameter values using long-term simulations. The two main methods to accelerate

the calibration process either focus on predicting model responses given parameters using

emulators or using short-term simulations exploring model responses to parameters. In-

spired by those efforts, we use short-term simulations as a relatively cheaper surrogate for

training emulators to predict model responses given parameters changes. Since short-term

simulations take much fewer resources to run, using them as surrogates to train emula-

tors will help improve the efficiency in calibration. We investigated two objectives in this

study: 1) quantify the relationship between short and long-term simulations; 2) evaluate

the performance of emulators trained with short-term simulations.

In addition to the similar mean and spread found in previous research, we identified a

strong relationship between model responses to parameters between short and long-term

simulations by using EOF analysis to decompose the major variance across ensemble mem-

bers. The first EOF patterns from short and long-term simulations are spatially similar and

their PC values have a significant one-to-one linear relationship. These results suggested
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that the contributions of changes in each ensemble member give the same parameter values

are very similar in short and long-term simulations, and supported methods using short-

term simulations as a surrogate for long-term simulations in representing model responses

to parameter changes.

The emulator trained with short-term simulations was evaluated against long-term

simulations using spatial skill metrics and the Taylor diagram. The results suggested that

the emulator trained with short-term simulations can capture the main spatial variability

in long-term simulations and show a relatively good performance overall. Given that short-

term simulations need much less computing time and resources to run, it is promising to

use short-term simulations for the emulator in calibration to improve its efficiency, and

using an emulator instead of short-term simulations directly is found to be more robust in

estimating model responses in the long-term simulations.

Nevertheless, there are certain differences between short and long-term simulations

which are mainly expressed as more fragmented and chaotic features in the short term.

Such differences may be related to the larger internal variability in shorter timescales which

is related to natural variations in the Earth system. The uncertainty and variance caused

by internal variability are inevitable and potentially result in large regional biases when

using short-term simulations and the emulator trained with them for calibration.

4.2 Limitations and Future Work

In this study, we did not process a full calibration and did not identify better parameter

values by comparing them with observations. Instead, we only focused on whether short-

term simulations could be used to represent model responses in long-term simulations, and

whether the emulator trained with it has good performance. Therefore we do not have

the opportunity to test our method in selecting parameter values and improving model

performance.

The short-term simulations used in this study, only have four start dates throughout

a year to sample the seasonal variability. This is a much smaller sample size compared
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with the previous study (H.-Y. Ma et al., 2021) in evaluating parameterization using short-

term simulations. Given that short-term simulations are much faster and cheaper to run,

having multi-year short-term simulations with a variety of start dates throughout could

potentially be a better sample for model responses in the long-term timescales.

There are certain differences between short and long-term simulations regionally, which

may related to the large internal variability in shorter timescales, and potentially cause

regional biases when using emulators trained with short-term simulations for calibration.

Perhaps a better way to use short-term simulations and an emulator trained with them is

as a piece of evidence for exclusion: instead of using the emulator trained with short-term

simulations to identify parameters that lead to good model performance, using it to ex-

clude parameters that definitely lead to large deviations between model and observations.

By using it as a piece of evidence for exclusion, we can exploit the efficiency of running

short-term simulations for the emulator to fast-filtering parameter space while less affected

by the potential regional biases from the emulator. Given the large difference in internal

variability in short and long-term simulations, I would like to further discuss the poten-

tial to distinguish internal variability from model errors in calibration for ESMs. Using

short-term simulations to replace the long came from previous calibration efforts assessing

short-term simulations’ mean and spread. Although there is potential to use short-term

simulations for calibration, it also showed another feature in calibration that the evalua-

tion of internal variability in model assessment in calibration is not popular. The targets

that were commonly calibrated onto are non-time-varying: energy equilibrium at top-of-

atmosphere or observational records. Therefore, using simulations with similar means to

replace long-term simulations is possible when only considering non-time-varying errors.

However, internal variability is also an important source of uncertainty in assessing model

performance (Schwarzwald & Lenssen, 2022), and the mismatch between model and ob-

servations, inability to capture regional or extreme events in the model may be due to the

chaotic internal variability (Jain et al., 2023). It may be helpful to quantify the potential

range of internal variability with an ensemble constructed like Kay et al. (2015) before

using PPEs to assess parameter uncertainty in calibration, and potentially distinguish in-

ternal variability using statistical method (Barnes et al., 2019) from parameter uncertainty

in calibration.
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