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Abstract

Successfully implementing large-scale quantum computation has proven to be an excep-
tionally arduous task. Decoherence and imperfect control limit the coherent manipulation
of large ensembles of particles. While quantum error correction provides robust schemes
for executing quantum algorithms on error-prone systems, the methods usually assume
that the errors are well-behaved and lie below some threshold. The burden of QEC can be
substantial, and reaching error rates well below these thresholds can dramatically improve
the processing capabilities of a device.

A hierarchy of error processes exists with increasingly desirable properties at the cost
of realism and generality. For example, quantum circuits subject to Markovian errors
typically have higher error thresholds than those under general errors. We can further
divide Markovian errors into coherent and incoherent processes, with the former having
much lower thresholds.

This thesis examines crosstalk, a type of coherent error process, and mainly studies its
role in superconducting quantum computing devices.

The first part of our work details a systematic framework for modeling crosstalk that
occurs during the operation of a quantum computer, i.e., what happens on the device while
performing gates. We break this crosstalk down into local and nonlocal effects. We show
how to model local crosstalk on a digital computer without approximations efficiently. Un-
like local crosstalk, nonlocal crosstalk cannot be modeled efficiently on a digital computer
without approximations. Thus, we develop a framework for approximating the effect of
nonlocal crosstalk. We observed a negligible difference between our approximation and the
exact system dynamics in typical systems.

The second part of this thesis details our attempts to characterize and efficiently miti-
gate crosstalk on fixed-frequency superconducting qubits experimentally. The first obstacle
we encountered was learning the crosstalk affecting a system. When the crosstalk is weak,
existing methods prove difficult, so we developed a new approach to measure crosstalk.
The second problem we needed to address was verifying that our model was correct. Using
the results from our first measurements, we compare predicted evolutions with experimen-
tal data in a setting much different than the measurement procedure. We see excellent
agreement between experiment and theory, indicating the model is reasonable. The last
outstanding puzzle piece in this investigation is using this model to mitigate crosstalk, and
our research is ongoing.
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Chapter 1

Introduction

Over the past two decades, Quantum Information Processors (QIPs) have progressed from
two-qubit novelties [9] to finely-tuned complex systems consisting of more than one hun-
dred qubits [7]. Progress in processor fabrication and experimental techniques, as well as
theoretical developments improving both the control and understanding of quantum sys-
tems, has made this remarkable growth possible. Nevertheless, engineering such systems
have proven exceedingly difficult. Decoherence and imperfect control limit the coherent
manipulation of large ensembles of particles. While Quantum Error Correction (QEC)
[42, 16, 20] provides robust schemes for executing quantum algorithms on error-prone sys-
tems, the methods usually require that errors are well-behaved and lie below some threshold
[2, 43]. The burden of QEC can be substantial, and reaching error rates well below these
thresholds can dramatically improve the processing capabilities of a device.

A central part of the problem is the inherent dichotomy between the implementation
of simultaneous one-qubit and two-qubit gates. Fast, high-fidelity two-qubit gates require
qubits that are spatially and spectrally near one another. Such closeness reduces the
addressability of the constituent subsystems because a control pulse intended for one part
can interact with the other [15, 33]. Researchers have typically dealt with this crosstalk
by either maximizing the gap between qubits or executing local operations asynchronously
[40, 32, 4]. The former solution requires the ability to tune couplings or extra engineering.
However, the added complexity can dramatically impact coherence times and requires
additional control wires. As QIPs grow, the 2-3 times more wires needed for hundreds or
thousands of qubits will become an immense hurdle. In the latter approach, depending
on the degree to which the control fields affect neighboring subsystems, the time overhead
can be significant and is directly proportional to the size of the neighborhood.
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Crosstalk describes a broad range of effects that violate one of two assumptions: spatial
locality and independence of operations [37, 38, 1]. Gates and other operations are sup-
posed to act on disjoint subsets of qubits. However, unintended interactions can couple the
qubits, producing nonlocal correlated noise. Even if an operation has a well-defined action
on a particular subset of qubits, the effective noise might depend on its context—what
operations affect other qubits.

1.1 Modeling crosstalk

In the first part of this thesis, we introduce a scalable framework for accurately modeling
idle and operation crosstalk on experimental devices. Our technique exploits the tensor
product structure of local (classical) crosstalk to express its impact on gates efficiently.
Through a perturbative expansion, we extend our ideas to nonlocal (quantum) crosstalk
and capture its effects on elements of SU(2)⊗n on superconducting transmon qubits. De-
spite substantial local crosstalk, we show that error rates near the crosstalk-free limit
are possible with modern control hardware. We further show how to tuneup simultaneous
cross-resonance gates and, again, obtain dramatically lower error rates. Our results suggest
that contrary to prevailing opinions [10, 30, 35, 29], crosstalk need not be a prohibitive
limitation on noisy intermediate-scale quantum (NISQ) era devices [34]. Higher-quality
quantum information processors may be made possible by using our techniques to better
balance device fabrication and pulse design tradeoffs.

1.2 Measuring crosstalk

The second part of this thesis is dedicated to measuring crosstalk on experimental devices.
Our approach involves analyzing the Hamiltonian for simultaneously driven uncoupled
fixed-frequency transmons. Through careful analysis, we discover a new method called the
double field method, which is a generalization of the Rabi experiment and is better suited
for estimating crosstalk. With this new tool, we can determine the crosstalk parameters
of a device with greater accuracy and fewer measurements than with standard Rabi ex-
periments. We use the fit data from double field experiments to compare the theoretical
predictions and experimental results, and we observe that they are in close agreement,
validating our approach. Additionally, we determine the theoretical Hamiltonian corre-
sponding to three driving fields to ensure the accuracy of our model.
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Chapter 2

Background

This chapter briefly examines some of the background material necessary for describing
our results.

2.1 Quantum theory

A system in classical mechanics is always well-defined. There exists a collection of vari-
ables that completely describes its current and future states. In a quantum mechanical
setting, this is not the case. We must allow a superposition of possible states to describe
a quantum system fully. Formally, a Hilbert space vector describes a quantum state. In
quantum theory, we require that the Hilbert space is separable: the space has a countable
orthonormal basis. The separability property ensures we can express any state as a linear
combination of orthonormal basis elements. For example,

|ψ〉 =
∑
k

αk |ψk〉 , (2.1)

where αk are complex numbers and |ψk〉 are basis elements. The coefficients αk denote
probability amplitudes.

The Schrödinger equation is a linear partial differential equation that governs the evo-
lution of a quantum system. The appropriate form of the equation depends on the physical
situation. In our case, it is natural to consider the most general time-dependent formula-
tion. Concretely the equation reads

i~
d

dt
|ψ(t)〉 = H |ψ(t)〉 , (2.2)
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where H is the possibly time-dependent Hamiltonian of the system, and ~ is the reduced
Planck constant. By working in natural units, we set the constant equal to one.

2.1.1 Unitary evolution

Given the system’s initial state, we might want an operator that maps this state to the
system’s final state. This operator U is known as the time evolution operator,

|ψ〉 = U |ψ0〉 . (2.3)

It is unitary and, therefore, preserves the inner product between states. In other words,
unitarity ensures the conservation of probability. For example,

〈ψ|ψ〉 = 〈ψ0|U †U |ψ0〉 = 1 . (2.4)

2.1.2 Average Hamiltonian theory

A helpful technique for understanding Hamiltonians is the Magnus expansion. Applying
this expansion yields effective Hamiltonians, which we can analyze to understand the be-
havior of an analytically intractable problem. Given a time-dependent Hamiltonian H(t),
we look for a time-independent Hamiltonian H̄ such that U(t) ≈ exp

(
−itH̄

)
. We expand

the average Hamiltonian H̄ as

H̄ = H̄(1) + H̄(2) + H̄(3) + . . . , (2.5)

where the first two orders of the Magnus expansion are given by

H̄(1) =
1

t

∫ t

0

dt1H(t1) , (2.6)

H̄(2) =
1

2it

∫ t

0

dt1

∫ t1

0

dt2[H(t1), H(t2)] . (2.7)

2.2 Open quantum systems

It is impossible to completely isolate a quantum system that one might want to study from
its environment. Therefore, developing a theory for open quantum systems for treating
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these interactions is necessary to obtain an accurate description of a quantum system. We
describe a few of these ideas that relate to the latter chapters.

A density operator ρ describes the state of a subsystem that interacts with its environ-
ment. The scalar product

〈A〉 =
∑
k

akpk = Tr

(∑
k

ak |ak〉〈ak| ρ

)
= Tr(Aρ) , (2.8)

yields the expectation value of a measurement, or an observable. It’s impossible to deter-
mine if the entire system is pure based solely on the observables of the subsystem. This is
especially true when the combined system has quantum entanglement, as the subsystem’s
state cannot be considered pure.

In order to investigate the behavior of open quantum systems over time, it is neces-
sary to solve master equations that govern changes in the density matrix and associated
observables. However, accurately modeling the system’s environment as part of the larger
system can be challenging due to its size and complexity. Energy and quantum coherence
are two commonly studied observables, with particular attention paid to instances of quan-
tum dissipation when energy is lost to the environment, and quantum decoherence when
coherence is lost.

2.2.1 Decoherence & thermal relaxation

In this work we consider elementary, but quite reasonable models of decoherence and
dissipation that affects quantum computers. These models are often referred to by their
characteristic variables T1 and T2. They are critical concepts which refer to the duration it
takes for a qubit to return its equilibrium state after being disturbed (or operated on). T1,
also known as the longitudinal relaxation time, is a measurement of the time it takes for
a qubit to restore itself to its equilibrium state along the direction of the magnetic field.
Meanwhile, T2, or transverse relaxation time, refers to the length of time it takes for a
qubit to lose coherence with other qubits due to random fluctuations in the magnetic field.
We can express the effect on a qubit system in matrix form as

ρ(t) =

[
1− ρ11e

−Γ1t ρ01e
−(Γ1+Γ2)t/2

ρ10e
−(Γ1+Γ2)t/2 ρ11e

−Γ1t

]
, (2.9)

where we defined T1 = 1/Γ1, and T2 = 2/(Γ1 + Γ2) so that

T1

T2

≥ 1

2
. (2.10)
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In superconducting quantum computers one often has T2 < 2T1 which implies a combina-
tion of both effects.

2.3 Quantifying errors

A fundamental experimental and theoretical problem is to characterize the distance be-
tween an error-prone quantum process and an ideal target process. In this work, we use
the average process fidelity to quantify errors and it is defined by

Φ(ξ) =

∫
dψ 〈ψ|ξ(ψ)|ψ〉 , (2.11)

where the integral is over the Haar measure dψ on state space, and it is normalized so∫
dψ = 1. ξ is a process that acts on some d-dimensional quantum system. The value of

Φ quantifies how well ξ preserves quantum information. A value of one indicates perfect
preservation, while a value of zero indicates poor preservation.

We can naturally extend Φ to measure how well a process ξ approximates an ideal
process, U ,

Φ(ξ, U) =

∫
dψ 〈ψ|Uξ(ψ)U †|ψ〉 . (2.12)

The process fidelity Φ(ξ, U) = 1 if and only if ξ perfectly implements U . We can intuitively
understand this statement by noting that Φ(ξ, U) = Φ(U † ◦ ξ).

The process fidelity has several desirable properties that make it useful in this work.

1.
Φ(A1 ⊗ A2, B1 ⊗B2) = Φ(A1, B1)Φ(A2, B2) (2.13)

2. Φ is invariant under Pauli twirling.
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Chapter 3

Theory of Crosstalk

This chapter focuses on material we published in [47]. Our objective is to understand the
form of crosstalk affecting qubits during circuit execution. After defining its structure, we
develop a scalable framework for accurately modeling idle and operation crosstalk on ex-
perimental devices. Our technique exploits the tensor product structure of local (classical)
crosstalk to express its impact on gates efficiently. Through a perturbative expansion, we
extend our ideas to nonlocal (quantum) crosstalk and capture its effects on elements of
SU(2) on superconducting transmon qubits. Despite substantial local crosstalk, we show
that modern control hardware makes error rates near the crosstalk-free limit possible.
We further demonstrate how to tune up simultaneous cross-resonance gates and obtain
dramatically lower error rates. Our results suggest that contrary to prevailing opinions,
crosstalk need not be a prohibitive limitation on noisy intermediate-scale quantum NISQ
era devices. Using our techniques to balance device fabrication and pulse design tradeoffs
may make higher-quality quantum information processors possible.

3.1 What is crosstalk?

Crosstalk describes a broad range of effects that violate one of two assumptions: spatial
locality and independence of operations [37, 38, 1]. Gates and other operations are sup-
posed to act on disjoint subsets of qubits. However, unintended interactions can couple
the qubits, producing nonlocal correlated noise. Even if an operation has a well-defined
action on a particular subset of qubits, the effective noise might depend on its context –
what operations affect other qubits.
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Prior work has often approached the problem of implementing several operations on a
collection of qubits by breaking it into a temporally disjoint sequence of gates. In contrast,
Ref. [44] analyzed the problem of driving two spins with a homogenous field in the setting
of NMR. However, it is unclear how to apply the method to multilevel systems such as
transmons or trapped ions. Ref. [45] studied how to drive two transmons coupled to the
same cavity suffering from spectral crowding with simultaneous X or Y gates with rotation
angles π and π/2 (X, Y , Z denote Pauli matrices). In either case, these methods do not
directly apply to many-qubit systems or handle nonlocal correlations. We aim to develop
an efficient and systematic method for optimizing the implementation of nontrivial parallel
operations under general crosstalk.

What crosstalk acts on physical qubits during idling or the implementation of gates
(as opposed to preparation or measurement crosstalk), and how can we efficiently simulate
and, consequently, try to mitigate it? It is natural to classify crosstalk as either local or
nonlocal [38]. Local crosstalk can arise when a semiclassical drive field interacts with several
qubits, causing unitary errors on supposedly idle qubits, but not entangling independent
subsystems. Nonlocal crosstalk creates nonfactorizable correlations over system qubits
and may originate from, for example, the residual static coupling between two qubits or
miscalibration.

Quantifying and reducing crosstalk requires a figure of merit. Depending on the ap-
plication, evaluating the average fidelity of one-qubit or two-qubit gates rather than the
fidelity per clock cycle makes sense. Our ideas work in either case, but we focus on the
former. Local error measures relate directly to fault-tolerance thresholds, are easier to es-
timate experimentally, and are more common in the literature. We show that the average
local fidelity is especially simple to approximate.

3.1.1 Local crosstalk

Although local crosstalk (typically) produces correlated noise, it can be factorized and
simulated efficiently on a digital computer. The induced correlations are classical and do
not entangle the individual subsystems. We model local crosstalk via the Hamiltonian

H(t, ~x) =
∑
k

Hk(t, ~x) . (3.1)

Each term Hk acts exclusively on subsystem k, and ~x denotes shared classical parameters
that result in crosstalk. The vector ~x may, for example, contain the phases and ampli-
tudes that specify drive fields. The average process fidelity Φ [31, 5] between a target
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operation U = U1 ⊗ · · · ⊗ Un and the noisy implementation Ũ = Ũ1 ⊗ · · · ⊗ Ũn, where
Ũk = T exp

[
−i
∫
dτHk(τ, ~x)

]
, can be expressed as

Φ(U, Ũ) =
∏
k

Φ(Uk, Ũk) . (3.2)

The equation holds more generally when {Ũk} are completely positive trace-preserving
(CPTP) maps, for example, when a dissipative process also affects the system or the
control parameters fluctuate over time.

3.1.2 Nonlocal crosstalk

Unlike local crosstalk, a digital computer cannot usually exactly simulate a large system
affected by nonlocal crosstalk. Thus we develop a perturbative technique for simulating
nonlocal crosstalk. Our approximation scheme characterizes a noise channel E by esti-
mating some of the associated Pauli error rates {pP}. The Pauli-twirled noise channel
is

EP(ρ) =
1

|Pn|
∑
P∈Pn

P †E(PρP †)P (3.3)

=
∑
P∈Pn

pPPρP
† , (3.4)

where Pn is the Pauli group on n qubits. These error rates provide a partial description
of the noise affecting a quantum system. On large experimental devices, we can scalably
and estimate the parameters in a way that is robust to state preparation and measurement
errors (SPAM) [12]. We might also combine the quantities to calculate holistic measures
of device performance, such as the average two-qubit fidelity or global fidelity.

3.2 Graph theory model

It is helpful to sketch our approach using a graphical model of the noise (see, e.g., Ref. [11]
for basic graph theory definitions). We construct a graph G where each node is a strongly
interacting subsystem during an operation of interest, such as a qubit during a single-
qubit gate or a two-qubit pair entangled by a cross-resonance interaction. The entire
target operation is factorizable over the tensor product space partitioning defined by the
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nodes. Edges denote nonlocal crosstalk that couples subsystems, and we only allow two-
body coupling. We impose the constraint that the graph has limited connectivity (in a
spatial spectral sense) since our approach relies on simulating subsystems. The constraint
is satisfied in contemporary architectures where a majority of nodes have a degree of at
most four.

3.2.1 Approximation theory

A pair of positive integers (d, o) specifies the expansion order of the noise approximation; d
designates the ‘environment’ distance and o the maximum component order. We consider
the set Go of all components of all induced subgraphs of G such that the order of every
component is less than or equal to o, and any component with an order less than o has
the same edges as in G. I.e., we do not look at induced components with order less than
o. The idea of the simulation scheme is to calculate the Pauli errors that occur on each
component.

We approximate the behavior of a component C ∈ Go by evolving it along with all
vertices of distance at most d, generating a map EC,d. Next, we compute the diagonal fC,d
of the Pauli-Liouville representation of the channel. A Walsh-Hadamard transformation
W relates fc,d to the Pauli probability vector p̃C,d, with fC,d = Wp̃C,d [12]. The vector
p̃C,d is the error probability distribution for a Pauli twirled copy of EC,d. Marginalizing
the error distribution over the environment produces an estimate of the local error dis-
tribution p̃C on the target component. After calculating the marginal distributions for
all of the components in Go, we can use the theory of probabilistic graphical models [22]
to construct an estimate of the entire Pauli error distribution up to some specified error
weight. By truncating the distribution at some error weight, the size of the distribution
scales polynomially in the number of qubits.

In practice, including the nearest environmental nodes is sufficient to compute the local
error distribution with high relative precision.

3.3 Example perturbative approximations using our

framework

This section details tangible examples employing our framework and presents a less abstract
description of our perturbative technique for readers more interested in using our tech-
niques. We describe examples that illustrate how our methods handle nonlocal crosstalk.
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target

a)

b)

Figure 3.1: a) Connectivity graph of a ring of qubits, coupled through nearest-neighbor
interactions (grey). We consider the task of simulating a target qubit. Blue, green, and
red highlighting indicate the ‘environment’ qubits that we include in our simulation when
d = 1, d = 2 and d = 3, respectively.
b) Connectivity graph of IBM Melbourne, with qubit-qubit couplings represented by grey
lines between qubits. Note that we assume no other qubit-qubit coupling affects the device.
We simulate a target qubit. Blue and green highlighting indicate the ‘environment’ qubits
that we include in our simulation when d = 1, and d = 2, respectively.
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We also bound the spatial computational complexity of each example. Local crosstalk
factorizes over the tensor product of Hilbert spaces and is consequently compatible with
these models, and we do not consider it below.

We introduce the symbol C to quantify the spatial complexity. We define it as the
number of complex floating-point numbers in the matrix representation of the simulated
unitary. Without an approximation scheme, the spatial complexity is

C ≤ d2Ns
s , (3.5)

where ds is the maximal subsystem dimension, and Ns is the number of subsystems. The
coefficient 2 appears because we are interested in the size of a matrix rather than a vector.
Alternatively, under our perturbative approximation, the spatial cost Cd when modeling
neighbors of distance at most d is

Cd ≤ Ns(ds)
2[1+Nn

∑d−1
i=0 (Nn−1)i] (3.6)

where Nn is the maximum degree of the graphical representation of the noise (the maximum
number of neighbors of a subsystem). We also take o (the maximum component order) to
be the largest subsystem’s size. The target system has at most Nn neighbors, while each of
its neighboring subsystems has at most Nn− 1 neighbors not already in the model. Hence
the Nn − 1 in the equation.

For fixed ds, Nn, and d, Cd scales linearly with the number of subsystems Ns, while C
scales exponentially. For one or two qubits, the scaling differences are irrelevant. However,
for a system with 10-20 qubits where none of the constituent qubits have a high degree
(connected to many other qubits), our approach can be more than one million times more
efficient in terms of spatial complexity. For 25+ qubits, we can efficiently simulate our
perturbative approximation of a system’s unitary on a standard laptop, while a naive
simulation is typically beyond the largest supercomputers’ reach.

Nevertheless, there are potential situations where our methods would not help. For
example, if one qubit couples to many other (or most of the) qubits, then simulating it
and its neighbors could be too difficult. A universal quantum information processor should
probably not have this property, so it is not necessarily a realistic concern.

3.3.1 Single-qubit gates

We now look at concrete examples under our framework.
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a) b)

Figure 3.2: a) Connectivity graph of a ring of qubits, coupled through nearest-neighbor
interactions (grey). We consider 5 simultaneous entangling gates. Blue lines specify the
pairs of target qubits intentionally entangled by the gates.
b) Connectivity graph of the ring of qubits after abstracting away each pair of qubits
targetted by the parallel entangling operations. We simulate a target pair of entangled
qubits. Blue and green highlighting indicate the ‘environment’ subsystems that we include
in our simulation when d = 1, and d = 2, respectively.
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Ring of qubits

The first setup that we analyze is a ring of Ns = 11 qubits, where each qubit couples to
its neighboring qubits. Fig. 3.1. a) schematically illustrates this setup. We consider the
problem of implementing simultaneous single-qubit gates on every qubit and suppose that
each qubit is a multilevel transmon and therefore incorporate a third energy level to model
the effect of leakage (ds = 3).

Without our approximation, the spatial complexity is C = d
2(11)
s ≈ 3.14 × 1010. Per-

forming a perturbative expansion with d = 1 and d = 2, we calculate improved spatial
complexities, and the relative improvements are

C1/C = Nsd
2(1+2)
s /C ≈ 2.58× 10−7 , (3.7)

C2/C = Nsd
2(1+2+2)
s /C ≈ 2.07× 10−5 . (3.8)

IBM Melbourne

Next, we analyze the complexity of simulating single-qubit gates on IBM’s Melbourne chip.
We assume that IBM’s public device information accurately reports all significant qubit-
qubit coupling. Fig. 3.1. b) shows the device’s connectivity. Taking ds = 3 and Ns = 14

we compute a naive spatial complexity bound, C = d
2(14)
s ≈ 2.29 × 1013. Performing a

perturbative expansion with d = 1 and d = 2, we calculate improved spatial complexities,
and the relative improvements are

C1/C < Nsd
2(1+3)
s /C ≈ 4.02× 10−9 , (3.9)

C2/C < Nsd
2(1+3+4)
s /C ≈ 2.63× 10−5 . (3.10)

3.3.2 Two-qubit gates

Ring of qubits

We analyze the same ring of 11 qubits described above, but now under simultaneous two-
qubit gates. Fig 3.2. describes the setup and perturbative model. In this case, Ns = 5,
ds = 9. The bound on the complete simulation is the same with C = 3.14 × 1010. The
relative improvements are

C1/C < Ns(ds)
2(1+2)/C ≈ 1.02× 10−4 (3.11)

C2/C < Ns(ds)
2(1+2+2)/C ≈ 6.66× 10−1 (3.12)
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a)

b)

Figure 3.3: a) Connectivity graph of IBM Melbourne coupled through nearest-neighbor
interactions (grey). Note that we assume no other qubit-qubit coupling affects the device.
We consider 6 simultaneous entangling gates. Blue lines specify the pairs of target qubits
intentionally entangled by the gates.
b) Connectivity graph of IBM Melbourne after abstracting away each pair of qubits target-
ted by the parallel entangling operations. We simulate a target pair of entangled qubits.
Blue and green highlighting indicate the ‘environment’ subsystems that we include in our
simulation when d = 1, and d = 2, respectively.
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IBM Melbourne

Next, we model IBM’s Melbourne chip under simultaneous two-qubit gates. Fig. 3.3 de-
scribes the setup and perturbative model. In this case, Ns = 8, ds = 9. The bound on the
complete simulation is the same with C = 2.29× 1013.

C1/C < Nsd
2(1+3)
s /C ≈ 1.51× 10−5 (3.13)

C2/C = C/C = 1 (3.14)

The first-order (d = 1) perturbative approximation simulates at most eight qubits and
is, therefore, less costly to simulate than the entire device. Meanwhile, the second-order
(d = 2) scheme necessarily simulates the entire device and affords no improvement.

3.4 Higher-order perturbative models

In the main text, we stated that simulating only directly neighboring subsystems usually
yields a good approximation of a target system’s behavior. Here we elaborate more on when
this is true and focus on providing an intuitive explanation. It should also be possible to
formally bound these effects with Lieb-Robinson bounds [24].

We can conceptually understand the limited-depth requirement from the observation
that intermediate subsystems must mediate one subsystem’s influence on a nonadjacent
subsystem. In the high fidelity regime, which we are practically interested in, any significant
such effect would typically couple the underlying subsystems and deviate significantly from
the factorizable target operation.

For simplicity and clarity, we consider a time-independent Hamiltonian

H = Hs ⊗ I ⊗ I + I ⊗Hn ⊗ I + I ⊗ I ⊗Hnn + ε(Hs,n ⊗ I + I ⊗Hn,nn) , (3.15)

where Hs, Hn, and Hnn are the internal Hamiltonians governing the target system, its near-
est neighbors Hamiltonian, and the next-nearest neighbors, respectively. The interaction
term εHs,n couples the target with its neighbors and εHn,nn couples the neighbors with the
next-nearest neighbors. We define the unitaries

Us,n(t) = e−itHs ⊗ e−itHn ⊗ I , (3.16)

Un,nn(t) = I ⊗ e−itHn ⊗ e−itHnn . (3.17)
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In the frame rotating according to the internal Hamiltonians of each of the three subsys-
tems, the entire system evolves via the Hamiltonian

HI(t) = ε
[
U †s,n(t)Hs,nUs,n(t) + U †n,nn(t)Hn,nnUn,nn(t)

]
. (3.18)

In the rotating frame, it is apparent that nearest-neighbor coupling is a first-order effect,
while next-nearest neighbor coupling manifests as a second-order effect. Assuming that
the magnitude of Hs,n and Hn,nn is less than or on the order of unity, t is small, and ε� 1,
we can neglect the effect of the next-nearest neighbors on the target system of interest. For
example, if ε . 0.1, then ε2 . 0.01. On real devices, where experiments can only correctly
estimate the leading digit or two of a device parameter, the second-order contributions are
nearly irrelevant.

There is a situation where nonadjacent subsystems may influence target dynamics sig-
nificantly. Suppose a target qubit and nonadjacent qubit have similar frequencies. In that
case, a far-detuned intermediate system could mediate strong dispersive coupling that en-
tangles the two systems without itself appreciably coupling to either qubit. In all of our
numerics, we observed no such effect, but it is a consideration that researchers using our
techniques should keep in mind.

3.5 Single-qubit gate simulations

We review a typical implementation of single-qubit operations on transmons (see, e.g., [14,
23] for more details.) A local oscillator acts as a single tone microwave source outputting a
constant signal cos(ω′t) that is shaped by an arbitrary waveform generator via an in-phase
and quadrature (IQ) mixer. A good description of a transmon qubit is an anharmonic
oscillator driven by microwave pulses. In the lab frame, the relevant Hamiltonian is

H = ωn̂+
α

2
(n̂− 1)n̂+ Ω(t) cos(ω′t− γ)(â+ â†) , (3.19)

where â is the annihilation operator of the oscillator, n̂ = â†â, α is the anharmonicity, γ is
the drive phase, ω is the oscillator’s resonant frequency, Ω(t) specifies the drive envelope,
and we set ~ = 1.

The lowest two energy levels form the qubit subspace. After making a rotating wave
approximation (RWA) and moving into the rotating frame of the qubit, the Hamiltonian
projected into the qubit subspace is [17]

H =
1

2
Ω(t)e−i[γ+(ω′−ω)t] |0〉〈1|+ h.c. . (3.20)
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To see how the control induces single-qubit gates, consider a resonant pulse (ω = ω′).
We also set the relative strength of the 0-1 transition to the 1-2 transition to 0), which
corresponds to an ideal sufficiently long pulse. The control generates X and Y gates by
modulating the coupling between the zero and one states, while the drive phase fixes the
rotation axis in the XY -plane, and the pulse area sets the rotation angle. Rotations about
the remaining Z-axis correspond to a change in the relative phase between the states.
Rather than manipulating the transmon’s state, it is equivalent to rotate the control with
respect to the state, realizing a virtual-Z gate [18, 19, 27]. We accomplish this physically
by adding a phase offset to all subsequent gates. A pulse with an area

∫
dtΩ(t) = π/2

and a relative phase offset γ generates the unitary V (γ) = Z−γXπ/2Zγ with the notation
Aθ = exp(−iθA/2). Combining two of these phase-offset π/2 pulses and a final virtual-Z
realizes any element of SU(2) [27].

Consider the problem of implementing an arbitrary element of SU(2)⊗n concurrently on
an ensemble of qubits where their respective drive fields weakly interact with other qubits.
The semiclassical Hamiltonian governing transmon k with local drive crosstalk is

Hk = ωkn̂+
αk
2

(n̂− 1)n̂

+
∑
j

βjkΩj(t) cos
(
ω′jt+ φj + θjk

)
(â+ â†) .

(3.21)

The parameters β and θ characterize the crosstalk affecting the system. We focus on the
case where each transmon has a local drive. The crosstalk parameters are n× n matrices,
and we can set βkk = 1 and θkk = 0 without loss of generality by modifying Ωk and φk.
These constraints lead us to interpret β as the relative drive strength, and θ as the phase
lag. Experimental data supports the model [48, 26, 49], and one can efficiently estimate
the parameters with standard Rabi and Ramsey experiments.

For example, we simulate a system of n = 100 transmons that evolve under (3.21)
and include the first three energy levels. The qubits are on a square grid with βjk
nonzero only for neighboring qubits. Qubits have a random frequency with ωk/2π ∼
N (3 GHz, 500 MHz), where N (µ, σ) is a normal distribution centered at µ with a standard
deviation of σ. All qubits have random anharmonicities: αk/2π ∼ N (−330 MHz, 50 MHz).
In each iteration of the experiment, the target gate is chosen randomly from SU(2)⊗n. The
crosstalk phase lag parameter θjk are sampled randomly from the interval [0, 2π), and we
draw βjk from a normal distribution centered at zero. There are two discrete periods of
successive evolution, each taking time tπ/2. It is necessary to pick pulse shapes. On the one
hand, we want pulses that yield error rates near the decoherence limit for short gate times.
On the other hand, there are experimental realities, such as power-bandwidth constraints
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Figure 3.4: Plots illustrating a significant improvement in the average single-qubit process
infidelity as a function of the time for a π/2 gate (the total simulation time is 2tπ/2).
There are 100 qubits in a square 2D array, and each qubit implements a random element
of SU(2) via two π/2 pulses with intermediate phase offsets. The red diamonds denote the
infidelity of the qubits with half-derivative DRAG corrections and no crosstalk. The blue
points are infidelities obtained under the same control with crosstalk. Circles, squares, and
triangles denote several relative crosstalk strengths βij, that are sampled from a normal
distribution N (0, σ) with standard deviations σ = 0.05, σ = 0.1, and σ = 0.25 respectively.
The green markers have identical crosstalk as their blue counterpart, but with optimized
control parameters.
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Crosstalk Original Opt., tπ/2 = 2 ns Opt., tπ/2 = 5 ns
std βjk ravg ravg ravg

0.05 6.02e-4 1.00e-4 1.86e-4
0.1 7.13e-4 1.03e-4 1.91e-4
0.25 2.13e-3 1.15e-4 1.84e-4
0.5 1.77e-2 1.07e-4 1.81e-4

Table 3.1: Data highlighting a dramatic reduction in the average single-qubit process infi-
delity for a simulation with realistic decoherence on a square array of 100 qubits and various
levels of crosstalk (std βjk). We model the same system considered in Fig. 3.4, but with
T1 ∼ N (40 µs, 5 µs) for each qubit, and T2 = 3T1/2. Naturally, there is an optimal gate
time that minimizes the combined incoherent (increasing) and coherent (approximately
decreasing) effects. We optimize the controls for tπ/2 = 1, 2, . . . , 50 ns. The ‘Original’
column corresponds to the optimal tπ/2 without control tuneup. For all values of std βj,k,
ravg is minimized at tπ/2 = 2 ns. On contemporary experimental devices, tπ/2 = 2 ns may
exceed accesible bandwidths, so we also report ravg for tπ/2 = 5 ns.

and the degree of calibration needed to implement complicated pulses accurately. Balanc-
ing these constraints, we pick Gaussian pulses with std Ω(x) = tπ/2/4, and half-derivative

DRAG corrections Ω(y) = −Ω̇(x)/2α [28, 13, 6].

Fig. 3.4 shows the average single-qubit process infidelity ravg = 1− 〈Φk〉 as a function
of tπ/2. Green diamonds denote the raw infidelity for a crosstalk-free system (βjk = δjk,
where δjk is the Kronecker delta). The blue markers are infidelities obtained using the
crosstalk-free control scheme but with various strengths of drive crosstalk. The red mark-
ers are infidelities obtained with optimized control and the same drive crosstalk as the blue
markers. We optimize control pulses with the method of Ref. [25]. Applying the protocol
requires the selection of appropriate optimization parameters. Sticking to our simple con-
trol ansatz, we tune the overall magnitude of the resonant Ω(x) quadrature, off-resonant
Ω(y) quadrature and the carrier signal phase φ, for a total of 7n parameters. We observe
approximately two orders of magnitude improvement in the infidelity with our crosstalk
minimization technique.

In real experimental devices, decoherence significantly reduces the average error rates.
Moreover, decoherence errors grow with time, whereas control errors typically decrease.
These contrasting effects imply that there is an optimal gate time that minimizes their
combined errors. We repeat the simulation implementing SU(2)⊗n with decoherence added
to the model. Table 3.1 presents data showing the potential benefit of our methods.
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3.6 Two-qubit gate simulations

We continue our simulations using the ideal system of fixed-frequency transmons and the
parameter values specified above. Our aim is to implement parallel CR gates [36, 8, 41,
26, 3], which are equivalent to CNOTs up to single-qubit operations. Constant capac-
itive coupling provides a mechanism for implementing entangling operations. Assuming
equal coupling between all neighboring qubits in the system, the corresponding interaction
Hamiltonian is

Hint =
∑
〈j,k〉=1

Jjk(aja
†
k + a†jak) , (3.22)

where 〈j, k〉 = 1 denotes a sum over all adjacent qubit pairs. The entire system evolves
under Hint +

∑
kHk.

The basic idea of the CR effect is that if we define the qubits in a dressed basis, local
microwave drive fields drive both single and two-qubit gates. For two ideal coupled qubits,
in the dressed basis, a drive applied to qubit 1 at the frequency of qubit 2 yields the
effective Hamiltonian [8]

Hd = Ω(t)

(
X1 −

J

∆
Z1X2

)
, (3.23)

where ∆ = ω1 − ω2 is the difference of qubit frequencies and we made an RWA. The
subscripts on the Pauli gates specify the affected qubit. Although we can decouple the
direct qubit coupling, higher-levels of the transmon lead to additional terms in the effective
Hamiltonian [26]. We can use the Z1X2 term to generate a maximally entangling gate.

Again, we simulate a system of n = 100 transmons on a grid and include the first
three energy levels of each. We group adjacent qubits in pairs and try to implement 50
simultaneous maximally entangling gates using the CR effect. Our qubits have 8 distinct
frequencies 3.0, 3.1, . . . , 3.7 GHz to ensure each CR pair is addressable. We set the fre-
quencies so that no two neighbors of one qubit have the same frequency. Unlike in the
first example, if certain qubit frequencies overlap the pair becomes extremely hard to ma-
nipulate independently. The target CNOT equivalent is determined using Cartan’s KAK
decomposition [46] and is invariant to local operations. The qubit coupling strength ma-
trix J is symmetric and random with Jjk/2π ∼ N (3.8 MHz, 1 MHz). We realize qubit
control with the same drives as above but with variable drive detuning and phase offset.
We independently parameterize the resonant Ω(x) and off-resonant Ω(y) control envelopes
with the first three Hanning window functions

ΩH(t) =
3∑

k=1

ck

[
1− cos

(
2πkt

tCR

)]
. (3.24)
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Figure 3.5: Plots showing a massive improvement in the average two-qubit process infi-
delity for a square array of transmons implementing 50 simultaneous maximally entangling
gates via CR interactions. Each two-qubit pair approximates a CNOT-gate up to local
operations. The red diamonds correspond to CR gate infidelities obtained without drive
crosstalk or subsystem coupling. The blue squares are infidelities obtained with the same
controls as the green diamonds but with drive crosstalk as in the single-qubit example
(σ = 0.1) and constant nonlocal coupling between all adjacent qubits. The green triangles
have the same crosstalk as the above model, but with optimized control parameters.
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There are a total of 8n parameters that determine the n drive fields.

Fig. 3.5 shows the average two-qubit process infidelity of each entangling gate as a
function of the gate duration tCR. We compute all points with optimized pulse parameters
[25] but under different system models. Red diamonds denote the infidelity obtained using
a drive-crosstalk-free model and no undesirable J coupling. The blue squares are infidelities
calculated using the crosstalk-free optimal control but with added drive crosstalk (σ = 0.1)
and nonlocal coupling. The green triangles are infidelities obtained with controls tuned up
under the crosstalk model. We approximate the nonlocal crosstalk effects with d = 1. The
deviation caused by including additional neighbors is unresolvable on the plot.
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Chapter 4

Crosstalk Experiments with
Superconducting Qubits

This chapter focuses on the ongoing research that we are conducting with fixed-frequency
superconducting transmon qubit-based quantum computers [21, 39]. We aim to measure
crosstalk affecting experimental devices, with the ultimate objective of neutralizing it. In
the first part, we developed a theory for modeling crosstalk and showed how optimal control
could counteract it. We need to address experimental questions so that we can employ the
theory.

In particular, we must consider the following questions:

1. How do we estimate the crosstalk parameters corresponding to a device?

2. How can we validate that the model accurately describes the device?

We approach these questions by first analyzing the Hamiltonian for simultaneously
driven uncoupled fixed-frequency transmons. With careful analysis, we uncover a gen-
eralization of the Rabi experiment, the double field method, which is better suited for
estimating crosstalk. With this new tool, we learn the crosstalk parameters corresponding
to a device with greater precision and fewer measurements than could be achieved with
standard Rabi experiments. We determine the theoretical Hamiltonian corresponding to
three driving fields to validate the model. We compare experimental results and theoretical
predictions using the fit data from double field experiments. We observe close agreement
between theory and experiment that validates the correctness of our approach.
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4.1 Hamiltonian analysis

In the following subchapter, we develop the basic theoretical tools needed to construct the
double field method to estimate crosstalk parameters.

4.1.1 Deriving the rotating Hamiltonian

We begin by analyzing the Hamiltonian corresponding to a transmon subject to an ar-
bitrary collection of semiclassical driving fields [14, 23]. The semiclassical Hamiltonian
corresponding to transmon j with local drive crosstalk is

H(j) = H
(j)
0 +

∑
k

H
(jk)
1 , (4.1)

where the transmon’s Hamiltonian and drive Hamitonians are

H
(j)
0 = ωjn̂+

αj
2
n̂(n̂− 1) , (4.2)

H
(jk)
1 = βjkΩk(t− τjk) cos(ω′k(t− τjk)− θjk − φk)(â+ â†) . (4.3)

The Hamiltonian H
(j)
0 describes transmon k (a Duffing oscillator), and the variables ωj

and αj denote the transmon’s frequency and anharmonicity, respectively. The driving

Hamiltonian H
(jk)
1 is the effect induced by driving field k on qubit j. The variable β

specifies the relative drive strength (βjk ≥ 0), θ is the relative drive phase, and φk is a
phase shift set by software. By convention, when there is a one-to-one correspondence
between drives and transmons, we should have βjj ≈ 1 and θjj = 0. This imposes the
notion that we intend drive j to control transmon j. We are free to fix θjj = 0 since this
specifies the measurement basis. However, since perfect calibration is impossible, βjj is
not necessarily exactly equal to 1. The function Ωk is the pulse envelope, and ω′k is the
drive frequency. Since the time for a driving field to reach a qubit is not always constant,
i.e., the signal path lengths differ, we introduce τjk = τj − τk, which captures a relative
time delay. The matrix τ is always skew-symmetric. Moreover, any column or row of τ
completely specifies the rest of the matrix.

In the transmon’s rotating frame, the drive Hamiltonians are

H
(jk)
I = U

(j)†
0 H

(jk)
1 U

(j)
0 =

∞∑
m=0

ajk;m |m〉〈m+ 1|+ a∗jk;m |m+ 1〉〈m| , (4.4)
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where
ajk;m =

√
m+ 1βjkΩk(tjk)e

−itωje−itαjm cos(tjkω
′
k − θjk − φk) , (4.5)

and we defined tjk = t − τjk. We assume |ωj − ω′k| � ωj + ω′k and make a rotating wave
approximation to get

ajk;m =

√
m+ 1

2
βjkΩk(tjk) exp

[
−i(tjk∆ωjk + tαjm+ θ̃jk + φk)

]
, (4.6)

where we defined ∆ωjk = ωj−ω′k and the dressed phase shift θ̃jk = θjk +ωjτjk. We will see
throughout our analysis that formulating the problem in terms of the dressed phase shift
θ̃jk is more natural. In any setting where θjk is relevant, it appears alongside ωjτjk.

In our case, we only use the expressions for the two lowest transitions

ajk;0 =
1

2
βjkΩk(tjk) exp

[
−i(tjk∆ωjk + θ̃jk + φk)

]
, (4.7)

ajk;1 =
1√
2
βjkΩk(tjk) exp

[
−i(tjk∆ωjk + θ̃jk + φk + tαj)

]
. (4.8)

4.1.2 Cross-Rabi experiments

In a conventional Rabi experiment, we apply a single driving field to a qubit and measure.
We repeat the procedure for different pulse areas by varying the duration or peak amplitude
and fit a model to the resulting data. A cross-Rabi experiment is very similar. Instead
of applying a driving field with which we intend to control a qubit a, we apply another
field, b, resonantly. Such a setup allows us to measure the crosstalk strength and related
parameters. Let us suppose that the pulse is sufficiently long and smooth so that we can
neglect the effect of the third energy level. The Hamiltonian is then specified by

aab;0 =
1

2
βabΩk(tab) exp

(
−i(θ̃ab + φb)

)
. (4.9)

We can analytically solve this problem. The expectation values for the Pauli observables
and initial state |0〉 are

〈X〉 = sin(βab 〈Ωb〉 t) sin
(
θ̃ab + φb

)
, (4.10)

〈Y 〉 = − sin(βab 〈Ωb〉 t) cos
(
θ̃ab + φb

)
, (4.11)

〈Z〉 = cos(βab 〈Ωb〉 t) . (4.12)
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While the form of 〈Z〉 tells us that we can estimate β in a SPAM robust manner
(provided it is not too small), measuring θ̃ requires additional gates and is therefore not
robust to SPAM. Moreover, this experiment does not depend on τ and will not yield any
estimate.

4.1.3 Simultaneous Rabi experiments

A simultaneous Rabi experiment is a powerful generalization of the standard Rabi method.
It makes it possible to measure very small βab, measure θ̃ with only standard basis mea-
surements and measure τ .

The most basic generalization is the double field Rabi experiment, where we apply two
concurrent pulses. A reference Rabi pulse, which we generate by driving some qubit a
of interest resonantly with drive b (similar results hold when the drive is not a), and a
perturbing pulse we introduce by applying drive b. The perturbing pulse changes mea-
surement outcomes in such a way that parameter confidence intervals are typically better.
Moreover, variables that were previously unmeasurable matter. Because there are two
concurrent pulses, we break the symmetry of the Rabi method.

In the following, we analyze the dynamics of a double field experiment. Because we
are interested in estimating parameters and not maximizing gate fidelity, it is natural to
consider smooth pulses and somewhat long durations. In this regime, the effect of the
third energy level is small (provided we do not apply a pulse near the frequency of the 1-2
transition). The relevant Hamiltonian is entirely specified by

aaa;0 =
1

2
βaaΩj(taa) exp(−iφa) , (4.13)

aab;0 =
1

2
βabΩk(tab) exp

[
−i(tab∆ωab + θ̃ab + φb)

]
. (4.14)

Resonant perturbing pulse

We first examine the simplest case when both drives are applied resonantly, ∆ωab = 0. It
makes sense to split H̄(1) into two parts: the zeroth-order term H̄(0), which is the exact
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solution when aab0 = 0 and a first-order correction H̄(1). It is straightforward to show that

H̄(0) =
1

2
βaa 〈Ωa〉 cosφaX +

1

2
βaa 〈Ωa〉 sinφaY , (4.15)

H̄(1) =
1

2
βab 〈Ωb〉 cos

(
θ̃ab + φb

)
X +

1

2
βab 〈Ωb〉 sin

(
θ̃ab + φb

)
Y , (4.16)

H̄(2) =
1

4t
βaaβab sin

(
φa − φb − θ̃ab

)∫ t

0

dt1

∫ t1

0

dt2 [Ωa(t1)Ωb(t2 − τab)− Ωa(t2)Ωb(t1 − τab)]Z .

(4.17)

where X, Y , and Z are the standard Pauli operators.

We suppose that all driving envelopes are identical, Ω = Ωa = Ωb. Such an assumption
is reasonable and corresponds to an experiment where we apply, for example, Gaussian
or flat-top sine envelopes with the same properties to each driving line. Furthermore, we
consider an intial state |0〉.

τab = 0

It is clear that when τab = 0, H(2) and all higher order terms in the Magnus expansion
vanish. Moreover, H(1) does not depend on τab. Thus we can interpret H(2) as the leading
order correction accounting for the effect of relative delays between pulses. If τab = 0, we
can analytically solve the Schrödinger equation exactly and obtain

〈X〉 = 〈Ω〉
[
βaa sinφa + βab sin

(
θ̃ab + φb

)] sin ηabt

ηab
, (4.18)

〈Y 〉 = 〈Ω〉
[
βaa cosφa + βab cos

(
θ̃ab + φb

)] sin ηabt

ηab
, (4.19)

〈Z〉 = cos ηabt , (4.20)

where

ηab = 〈Ω〉
√
β2
aa + β2

ab + 2βaaβab cos
(

∆φab − θ̃ab
)
, (4.21)

and we defined ∆φab = φa− φb. The quantity under the square root changes the period of
a Rabi oscillation. If βab � 1, then

ηab ≈ 〈Ω〉
[
βaa + βab cos

(
∆φab − θ̃ab

)]
. (4.22)

When τab = 0, observe that varying the pulse area (total duration) and phase φa or φb and
measuring Z is sufficient to fit βaa, βab, and θ̃ab.
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τjk 6= 0

What should we do when τab is nonzero? Let us consider the case where βab � 1. We can
rewrite our Magnus expansion for the average Hamiltonian with terms up to second order
in the form

H =
α

2
(cos θX + sin θY + εZ) , (4.23)

where ε is close to zero. We can easily determine the expectations values for the Pauli ob-
servables under the evolution specified U = exp(−iH). Consider a Taylor series expansion
of the solution about ε = 0,

〈X〉 = sinα sin θ + (1− cosα) cos θε+
1

2
(α cosα− sinα) sin θε2 +O

(
ε3
)
, (4.24)

〈Y 〉 = − sinα cos θ + (1− cosα) sin θε− 1

2
(α cosα− sinα) cos θε2 +O

(
ε3
)
, (4.25)

〈Z〉 = cosα +

(
1− cosα− 1

2
α sinα

)
ε2 +O

(
ε4
)
. (4.26)

Observe that there is no first-order term in the series for 〈Z〉. Thus measuring Z is not
a practical experiment to learn τab when βab is small. The optimal measurement that is
maximally sensitive to ε and thus τab lies in the XY plane. Suppose we set φa = 0, then
θ is close to 0 and 〈X〉 is a good measurement choice for learning τab. Measuring Z is, of
course, the easiest measurement to perform.

4.2 Double field experiments

In the previous subchapter, we developed the essential tools needed to construct a new
approach to measuring crosstalk. Let us consider two qubits, Qa and Qb, and their separate
driving fields, Da and Db. The crosstalk effect of Db on Qa is small when βab � 1. We
assume Qa starts in the ground state, apply drives Da and Db at frequency ωa for some
time t, and measure Qa. Let us focus on the result of a 〈Z〉 measurement. If we neglect
the third energy level of Qa and truncate a Magnus expansion at second-order

〈Z〉 = cos 〈Ω〉 ηabt , (4.27)

where

ηab =

√
β2
aa + β2

ab + 2βaaβab cos
(

∆φab − θ̃ab
)

(4.28)

≈ βaa + βab cos
(

∆φab − θ̃ab
)
. (4.29)
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Qa Qb βaa βab θab χ2/v
0 1 1.00 ± 3.63e-4 1.43e-1 ± 5.25e-4 6.22 ± 3.47e-3 1.32
0 2 1.00 ± 3.37e-4 9.17e-3 ± 4.66e-4 6.18 ± 5.30e-2 1.34
1 0 1.00 ± 3.80e-4 9.65e-2 ± 5.57e-4 5.05 ± 5.34e-3 0.72
1 2 1.00 ± 4.31e-4 3.54e-1 ± 5.97e-4 4.03 ± 1.65e-3 1.04
1 3 1.00 ± 4.49e-4 1.66e-1 ± 6.83e-4 3.63 ± 3.31e-3 1.43
2 0 1.00 ± 3.28e-4 3.03e-2 ± 4.72e-4 1.26 ± 1.51e-2 1.26
2 1 1.00 ± 3.33e-4 8.91e-2 ± 4.80e-4 1.29 ± 5.16e-3 0.82
2 3 1.00 ± 4.03e-4 2.55e-1 ± 6.19e-4 4.07 ± 2.00e-3 1.99
3 1 1.00 ± 3.56e-4 2.21e-2 ± 5.01e-4 2.57 ± 2.29e-2 1.08
3 2 1.00 ± 3.68e-4 9.25e-2 ± 5.19e-4 6.22 ± 5.61e-3 0.85

Table 4.1: Data obtained from double field experiments for various pairs of qubits on a
chip. The values of χ2/v are very close to one and indicate an excellent goodness of fit.
The column Qa denotes the measured qubit and Qb denotes the perturbing drive. The
columns βaa, βab, and θab are fit parameters along with error estimates obtained during
least-squares fitting. The value of βaa are all close to one and indicate that the drive field
corresponding to a target qubit is correctly tuned. The crosstalk parameters βab and θab
span a wide range of values. We observe crosstalk strengths from 1% up to 35% on this
device.
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Figure 4.1: Plots showing the fit of our theoretical model and experimentally obtained
data for a double field experiment. The blue error bars on experimental data designate the
standard deviation of the error. The fit is close to theory across all values of ∆φ. Quanti-
tatively, we have a reduced chi-square value of 1.08, meaning the fit is essentially perfect.
We extract the values of crosstalk parameters from the fit: β31 ≈ 2.21e-2, θ31 ≈ 2.57, so
the crosstalk is quite weak with a relative strength of 2%.
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Figure 4.2: Plots showing the fit of our theoretical model and experimentally obtained
data for a double field experiment. The blue error bars on experimental data designate the
standard deviation of the error. The fit is close to theory across all values of ∆φ. Quanti-
tatively, we have a reduced chi-square value of 0.82, meaning the fit is essentially perfect.
We extract the values of crosstalk parameters from the fit: β21 ≈ 8.91e-2, θ21 ≈ 1.29, so
the crosstalk is quite strong.
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We aim to use this set of equations to devise an experimental procedure to estimate
the crosstalk parameters βab and θab. We want our procedure to be maximally sensitive
to the perturbing driving field Db. Therefore, we pick t and 〈Ω〉 so that 〈Ω〉 βaat = −π/2
mod 2π. Making this choice ensures that η = 0 if there is no crosstalk. We then obtain

〈Z〉 ≈ sin
(
βab 〈Ω〉 t cos

(
∆φab − θ̃ab

))
. (4.30)

By examining the structure of this new equation, we are naturally led to an experimental
procedure.

1. Set 〈Ω〉 t = π/2 +nπ and pick n so that it is as large as possible without decoherence
having a substantial effect.

2. Select a range of ∆φab values, a natural choice is a uniform set of points on the
interval [0, 2π).

3. Perform the double field experiment with all pairs of qubits that we suspect have
crosstalk between them.

4. Fit the theoretical model to experimental data using the method of least squares.

5. Compute reduced chi-squared values to assess the model’s goodness of fit.

With the procedure established, we are now ready to conduct experiments. For these
experiments, we consider four qubits from an eight-qubit chip. Three qubits, 0, 1, and 2,
are adjacent and directly connected in a line by two resonators. A third qubit, 3, is farther
away from 0, 1, and 2.

We performed the procedure between all possible pairs of these four qubits, and Ta-
ble 4.1 contains the resulting data. Note that qubits 0 and 3 share a control line that
is toggled between the two qubits with a switch. Consequently, we cannot perform the
experiment with the pair (0, 3). However, performing it makes no sense since they cannot
be simultaneously driven.

We observe excellent goodness of fit, which provides some validation that our model
is reasonable. We chose t = 160 ns, but longer times are possible. By factoring in deco-
herence, it is likely possible to obtain accurate estimates of crosstalk on the order of 1e-5
based on T1 and T2 times. Nevertheless, crosstalk on our device is on the order of 1e-2,
and such experiments provide little more value.
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Fig. 4.1 and Fig. 4.2 plot data corresponding to two different double field experiments.
We chose these figures because they showcase how our method looks in the case of weak
and strong crosstalk, respectively. Note that the overall amplitude of the weak case could
be made larger as it is proportional to the value of t.

4.3 Validating the model

The double field method shows promise for accurately learning the crosstalk parameters
that characterize a superconducting chip. However, how can we ensure the model is correct
for the entire chip with only pairwise experiments? We suppose crosstalk is linear, but
verifying that the assumption is correct would be beneficial.

The most straightforward validation procedure is to measure what happens when we
apply three concurrent driving fields. We can then compare the expected dynamics by com-
bining the fit data for two double field experiments and the experimental data. Concretely,
there is a natural generalization of (4.27) for three driving fields,

〈Z〉 = cos(〈Ω〉 ηabct) , (4.31)

where

ηabc =

√
1 + β2

ab + β2
ac + 2βab cos

(
∆φab − θ̃ab

)
+ 2βac cos

(
∆φac − θ̃ac

)
+ 2βabβac cos

(
∆φbc − θ̃bc

)
,

(4.32)

θ̃bc = θ̃ab − θ̃ac . (4.33)

This equation gives us all that we need. Let us attenuate βac by a factor of
√

2. The
attenuation is arbitrary but will provide more reassurance that linearity is correct. Fig. 4.3
and Fig. 4.4 plot data corresponding to two different validation experiments. We observe
that our predictions and the experimental measurements are very close. Thus, our model
appears to accurately describe crosstalk in a setting where no fitting is occurring.
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Figure 4.3: Plots comparing our theory for when three driving fields are simultaneously at
the resonant frequency of Qa = 3 versus experimentally obtained data. We attenuate the
strength of the field labeled Qc by a factor of

√
2. The blue error bars on experimental

data designate the standard deviation of the error. We compute the value of the reduced
chi-square as 1.15, which indicates that the theory and the observed data closely match.
Note that the dynamics deviate significantly from a double field experiment with Qa = 3,
Qb = 1 and an experiment with Qa = 3, Qb = 2. This observation provides strong evidence
that our crosstalk model is appropriate and accurately describes the device.
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Figure 4.4: Plots comparing our theory for when three driving fields are simultaneously at
the resonant frequency of Qa = 1 versus experimentally obtained data. We attenuate the
strength of the field labeled Qc by a factor of

√
2. The blue error bars on experimental

data designate the standard deviation of the error. We compute the value of the reduced
chi-square as 1.07, which indicates that the theory and the observed data closely match.
Note that the dynamics deviate significantly from a double field experiment with Qa = 1,
Qb = 2 and an experiment with Qa = 1, Qb = 3. This observation provides strong evidence
that our crosstalk model is appropriate and accurately describes the device.
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Chapter 5

Conclusion

We have developed a framework for modeling crosstalk on experimental devices that have
proven scalable and effective in capturing both local and nonlocal crosstalk. We achieved
these results by taking advantage of the tensor product structure of local crosstalk and ex-
tending our approach to nonlocal crosstalk. Specifically, we observed the effects of crosstalk
on superconducting transmon qubits. Despite significant local crosstalk, our experiments
showed that error rates close to the crosstalk-free limit could be achieved using modern con-
trol hardware. Additionally, we demonstrated how tuning up simultaneous cross-resonance
gates can yield significantly lower error rates.

Our findings have important implications for the development of quantum informa-
tion processors. We have shown that crosstalk need not be a major limitation on noisy
intermediate-scale quantum devices. Instead, our techniques can be used to balance device
fabrication and pulse design tradeoffs better, potentially leading to higher-quality quantum
information processors.

We have made considerable progress on the experimental side, but much more work
is needed. Through our analysis of the Hamiltonian for simultaneously driven uncou-
pled fixed-frequency transmons, we have discovered a new and highly effective method for
estimating crosstalk - the double field method. This innovative approach offers greater ac-
curacy in determining crosstalk parameters with fewer measurements than standard Rabi
experiments. Our use of fit data from double field experiments has validated our method,
demonstrating close agreement between theoretical predictions and experimental results.
Additionally, we have ensured the accuracy of our model by determining the theoretical
Hamiltonian corresponding to three driving fields. These findings have significant im-
plications for the development of more efficient and precise measurement techniques for
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quantum devices.

There are still several outstanding problems that we hope to address:

1. Mitigating crosstalk - We have made substantial progress on the experimental side,
but more technical work is needed to try and realize the theoretical improvements
we showed.

2. Crosstalk on other devices - driving field crosstalk is much smaller on trapped ion
quantum computers. Can our methods yield improvements with them? What other
platforms have crosstalk, and can we develop a universal theoretical model that works
on many different systems?
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