
Effective Math-Aware Ad-Hoc
Retrieval based on Structure Search

and Semantic Similarities

by

Wei Zhong

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Wei Zhong 2023

Examining Committee Membership

The following served on the Examining Committee for this thesis.

Supervisor(s): Jimmy Lin
Professor
David R. Cheriton School of CS, University of Waterloo

Internal Member: Frank Wm. Tompa
Distinguished Professor Emeritus
David R. Cheriton School of CS, University of Waterloo

Internal Member: Charles Clarke
Professor
David R. Cheriton School of CS, University of Waterloo

Internal Member: James Danckert
Professor and Cognitive Neuroscience Research Area Head
Department of Psychology, University of Waterloo

External Member: Wolfgang Lehner
Professor and Chair of the Database Technology Group
Technische Universität Dresden (TU Dresden)

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

The thesis includes contributions from three published and peer-reviewed papers. The
thesis author Wei Zhong is the sole first author of all three articles, and is responsible for
the most parts of idea, implementation, experimentation, and writing.

Other authors include:

• Chapter 3 (Zhong and Zanibbi [2019]): Richard Zanibbi;

• Chapter 4 (Zhong et al. [2020]): Shaurya Rohatgi, Jian Wu, C. Lee Giles, and Richard
Zanibbi;

• Chapter 5 (Zhong et al. [2023]): Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy
Lin.

They are mainly responsible for sending feedback, discussing experimental details, and
proof reading drafts.

iv

Abstract

Despite the prevalence of digital scientific and educational contents on the Internet, only
a few search engines are capable to retrieve them efficiently and effectively. The main
challenge in freely searching scientific literature arises from the presence of structured
math formulas and their heterogeneous and contextually important surrounding words.
This thesis introduces an effective math-aware, ad-hoc retrieval model that incorporates
structure search and semantic similarities. Transformer-based neural retrievers have been
adopted to capture additional semantics using domain-adapted supervised retrieval.

To enable structure search, I suggest an unsupervised retrieval model that can filter
potential mathematical formulas based on structure similarity. This similarity is deter-
mined by measuring the largest common substructure(s) in a formula tree representation,
known as the Operator Tree (OPT). The structure matching is approximated by employing
maximum matching of path-based structure features. The proposed structure similarity
measurement can be tailored based on the desired effectiveness and efficiency trade-offs. It
may consider various node types, such as operators and operands, and accommodate differ-
ent numbers of common subtrees with varying weights. In addition to structure similarity,
this unsupervised model also captures symbol substitutions through a greedy matching
algorithm applied to the matched substructure(s).

To achieve efficient structure search, I introduce a dynamic pruning algorithm to the
problem of structure retrieval. The proposed retrieval algorithm efficiently identifies the
maximum common subtree among formula candidates and safely eliminates potential struc-
ture matches that exceed a dynamic threshold. To accomplish this, three rank-safe pruning
strategies are suggested and compared against exhaustive search baselines. Additionally,
more aggressive thresholding policies are proposed to balance effectiveness with further
speed improvements. A novel hierarchical inverted index has been implemented. This in-
dex is designed to be compatible with traditional information retrieval (IR) infrastructure
and optimization techniques.

To capture other semantic similarities, I have incorporated neural retrievers into a
hybrid setting with structure search. This approach has achieved the state-of-the-art ef-
fectiveness in recent math information retrieval tasks. In comparison to strict and un-
supervised matching, I have found that supervised neural retrievers are able to capture
additional semantic similarities in a highly complementary manner. In order to learn effec-
tive representations in heterogeneous math contents, I have proposed a novel pretraining
architecture that can improve the contextual awareness between math and its surrounding
texts. This pretraining scheme generates effective downstream single-vector representa-
tions, eliminating the efficiency bottleneck from using multi-vector dense representations.

v

In the end, the thesis examines future directions, specifically the integration of recent
advancements in language modeling. This includes incorporating ongoing exciting devel-
opments of large language models for improved math information retrieval. A preliminary
evaluation has been conducted to assess the impact of these advancements.

vi

Acknowledgements

I have had the great honor of being supervised by both Prof. Jimmy Lin and Prof. Richard
Zanibbi during my Ph.D. program. While COVID-19 interrupted my Ph.D. journey mid-
way, I consider myself extremely fortunate to have received the best advice and guidance
possible from these two eminent figures in my field of study. I deeply appreciate their
generous support in fostering the growth and success of students. Simultaneously, I am
grateful for the freedom I had to explore the thesis topic of my choice.

I extend my heartfelt thanks to my thesis committee for their time, valuable comments,
and insightful suggestions.

To my family; they are the unsung heroes who have made my academic journey possible.
Their support provided me the peace of mind and perseverance needed to pursue my
degree. To my wife, Karmen, I offer my gratitude for her encouragement, sacrifice, and
companionship during my extended period of study abroad.

Working on this thesis topic has been an enlightening experience, and I am also grateful
to another Waterloo group, which includes Dr. Tompa, Kiki Ng, Dr. Andrew Kane, and
others, for their interests, feedback, and constructive critiques. Dr. Tompa, I appreciate
your meticulous and insightful comments on my thesis. Also, I would like to express my
gratitude to Professors Lee Giles and Douglas Oard, Dr. Jian Wu, Shaurya Rohatgi, Gavin
Nishizawa, Mahshad, Puneeth, Parag, and others with whom I met and collaborated on
the MathSeer project.

I am thankful to Dr. Pengcheng Shi, Prof. Linwei Wang, and others for the knowledge
and support I received from RIT. And I want to mention Prof. Hui Fang from the University
of Delaware, who introduced me to the field of information retrieval and encouraged me to
work on this topic during a course project, marking the start of my wonderful academic
journey.

I extend my thanks to everyone who contributed to the good memories and friendships
I made in the DSG lab, DPRL, and other places during my graduate life. Among the
many acts of kindness I received: Thank you, Yuqing Xie, for staying up together for the
ARQMath submission and your various kinds of help. Thank you, Xinyi Fan, for assisting
me in preparing for my interviews. Thank you, Mingxun Zhen, for hosting me and driving
me to an early morning flight. Thank you, Yuqi Liu, for actively sending me suggestions
for my new LinkedIn pages. Thank you, Xin Ji, Shi Peng, and Zhiying Jiang, for kindly
mentioning me in your theses. I am also thankful to my landlord, Xiaoge Ye, for his
warm-hearted kindness and offering me a low rent price in Waterloo.

vii

Dedication

Dedicated to my parents, Zhong Jie and Hua Jing, as well as my wife, Karmen, and
my entire family.

viii

Table of Contents

Examining Committee Membership ii

Author’s Declaration iii

Statement of Contributions iv

Abstract v

Acknowledgements vii

Dedication viii

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Challenges . 2

1.1.1 Effectiveness Challenges . 2

1.1.2 Efficiency and Complexity Issues 3

1.2 Math-Aware Retrieval and Formula Search 4

1.2.1 An Example . 4

1.3 Contributions and Outline . 6

ix

2 Background 8

2.1 Traditional Ad-Hoc Retrieval . 8

2.1.1 Ranking . 8

2.1.2 Efficiency . 9

2.2 Supervised Retrieval . 11

2.2.1 Transformer Encoder . 12

2.2.2 Neural Retriever . 14

2.3 Math Information Retrieval . 18

2.3.1 Early Work (2003 – 2013) . 18

2.3.2 Better Structure Search (2014 – 2019) 22

2.3.3 Data-Driven Retrieval (2017 – Now) 24

2.4 Experiment Datasets . 28

2.5 Evaluation Measurements . 30

3 Effective Structure Search 32

3.1 Structure Matching . 32

3.1.1 Structure Similarity . 34

3.1.2 Path Weighting . 36

3.1.3 Approximated Matching . 37

3.1.4 Multi-Tree Matching . 39

3.2 Other Unsupervised Similarities . 43

3.2.1 Symbol Similarity . 43

3.2.2 Context Lexical Similarity . 45

3.2.3 Overall Similarity . 47

3.3 Evaluation . 48

3.3.1 Experimental Setup . 48

3.3.2 Main Results . 49

3.3.3 Ablation Study . 51

x

4 Efficient Structure Search 58

4.1 Rank-Safe Dynamic Pruning . 58

4.1.1 Intuition and Background . 58

4.1.2 Definitions . 59

4.1.3 MaxRef Pruning Strategy . 61

4.1.4 GBP Pruning Strategies . 62

4.2 Implementation . 64

4.2.1 Structure Query Processing . 64

4.2.2 Heterogeneous Query Processing . 67

4.3 More Efficient Dynamic Pruning . 69

4.3.1 Initial Threshold . 69

4.3.2 Combining with Dynamic Thresholds 71

4.4 Evaluation . 72

4.4.1 Experimental Setup . 72

4.4.2 Main Results . 73

4.4.3 Analysis . 75

5 Supervised and Hybrid Search 80

5.1 Contextualized Pretraining . 81

5.1.1 Preliminaries . 81

5.1.2 Coco-MAE Pretraining . 83

5.2 Domain-optimized Hybrid Search . 84

5.2.1 Hybrid Components . 85

5.2.2 Fine-Tuning . 86

5.2.3 Combining Complementary Models 86

5.2.4 Fusing Different Relevance Signals 87

5.3 Evaluation . 88

5.3.1 Experimental Setup . 88

5.3.2 Main Results . 91

5.3.3 Analysis . 95

xi

6 Conclusion and Future Work 104

References 108

Glossary 134

xii

List of Figures

1.1 The search results of math formula query
∑

n=2

√
(n−1)!

(1+
√
1)...(1+

√
n)

returned from

conventional and math-aware search engines. Left: Google search results.
Right: Search results from https://approach0.xyz. (Screenshot taken on
Jan. 27, 2023) . 5

2.1 Dynamic pruning illustration. A dynamic threshold θ is the lowest score
in the top-k results. Items in the non-requirement set alone which cannot
produce a score higher than θ are safely skipped. 11

2.2 The architectures of a cross encoder (left) and a bi-encoder (right). The
bi-encoder architecture generates separate representations for different pas-
sages. This enables the indexing of these representations offline, reducing
the computational load during inference. Consequently, only a less expensive
late interaction needs to be computed online. 14

2.3 The textualization process employed by the MIaS system [Sojka and Ĺı̌ska,
2011b] involves multiple levels of decomposition and unification on a simple
mathematical expression. 19

2.4 From left to right: Example SLT (Symbol Layout Tree) and OPT (Operator
Tree) representations, respectively. Both represent the same math formula
ymi = m + xm. SLT focuses on the visual structure, while OPT emphasizes
operand relations and operations. 20

2.5 Structure search based on leaf-root paths. Matching substructures between
OPT representations of the query formula bc + xy + az and a candidate
formula (bc + a) + xy. 24

xiii

https://approach0.xyz

2.6 The ontology of our systems and related retriever families in chronological
order. Dark blue border for our work discussed in this thesis, and light blue
border for our work not discussed in this thesis. Light yellow nodes de-
note unsupervised or semi-supervised systems, and light green nodes denote
supervised systems. The arrow denotes a dependency or is inspired by. . . 26

3.1 Left: An example OPT representing a hypothetical formula ab+ c
d

+e21. Leaf
symbols are left untokenized for enhanced visibility. Right: Unique leaf root
paths for this example OPT (including prefixes). Note: A non-commutative
operator such as fraction (FRAC) will be attached by rank nodes [Zhong and
Fang, 2016] to differentiate its actual operands. And a sub- or super-scripted
symbol might be constructed in the above way so that it can be matched to
a non-sub-scripted operand for a better recall. 33

3.2 Matching multiple formula subtrees between the OPT representations of
formulas a + bc + xy + z and (a + bc) + xy as shown in the left and right of
the figure respectively. 33

3.3 An counterexample when the greedy widest match does not yield the defined
formula tree similarity. OPT in (a) is the matching subject, OPTs in (b)
and (c) show two different possible common formula subtrees highlighted in
bold colors. The non-optimal match in (b) has fewer nodes matched but is
found using the greedy widest matching by identifying the widest common
tree as the first tree. 38

3.4 OPT representations for formula a + bc shown in (a), and for formula a +
bc + xy shown in (b) and (c). Highlighted in bold grey are the same set of
leaf-root paths in each tree, only in (a) and (b) are they corresponding to
isomorphic substructures. 39

3.5 Matching multiple formula subtrees between the OPT representations of
formulas a + bc + xy + z and (a + bc) + xy as shown in the left and right of
the figure respectively. Path set consists of tokenized leaf-root paths with
all prefixes. 41

3.6 Evaluation results on the NTCIR-12 Wiki Formula Browsing Task from
different number of maximum matching subtrees and the α parameter (table
and bar graph). 52

3.7 Full relevance bpref scores for matching uniformly-weighted subtrees (1 to
5 trees) on the NTCIR-12 WMB dataset. 53

xiv

3.8 Example queries in Fig 3.7. 53

3.9 The effectiveness (in terms of NDCG’ and P@10 scores) using different sym-
bol base scores b1 and b2 where 0.1 ≤ b1 ≤ b2 ≤ 0.9. 55

3.10 The impact on effectiveness using different formula length penalty (η) and
math path weight (λm) parameters. Results are evaluated on the ARQMath-
3 Task 2 and Task 1 datasets, respectively. 56

4.1 Bipartite graph of the (partial) path set for formulas in Figure 3.2 (original
leaf symbol is used here to help identify paths). Edges are established if
paths from the two sides are the same after tokenization. Edges with shared
end points (i.e., same root-end nodes) in original OPTs are highlighted with
the same color. 60

4.2 Index architecture for formula search with dynamic pruning. The top post-
ing list is the only one in requirement set using strategy MaxRef, and the
bottom two are advanced by skipping to candidate ExpID. 65

4.3 The high-level architecture of our hierarchical and heterogeneous indices
taking in both math and text keywords. For math query keywords, we
employ a linearization process to convert structured formulas into leaf-root
paths, and subsequently to second-level inverted lists for formula search.
Unlike top-level text inverted lists, the second-level math inverted lists have
both document ID (dX) and expression ID (eY) indexed. 68

4.4 Our efficiency results evaluated on the NTCIR-12 dataset. Our non-pruning
versions and the Tangent-S system are compared, with Tangent-S outlier
queries excluded. At the time when the experiment is conducted, the
Tangent-S system stands as the most efficient structure search approach
evaluated on this dataset. 75

4.5 Query run times with dynamic pruning for different k values, evaluated on
the ARQMath-3 dataset using Task 1 topics. 76

4.6 Single formula query pruning logs for different topics sampled from and eval-
uated on the NTCIR-12 WFB dataset. Threshold value (θ), the number of
query OPT nodes, the size of requirement set, and the number of inverted
list iterators are plotted at different time steps, showcasing the evolving na-
ture of the thresholds and their corresponding changes across various topics.
. 77

xv

4.7 The query run times within one standard deviation using dynamic prun-
ing for different k values, evaluated on the NTCIR-12 WFB (top) and the
ARQMath-3 Task 1 (bottom). The corresponding effectiveness metrics at
each initial threshold sample point are also depicted. 79

5.1 Illustration of our contrastive pretraining. A decoder is placed on top of a
retriever backbone to train an auxiliary MLM objective at the same time
including the contrastive loss to create a good balance of passage- and token-
level information in the learned retrieval representation. 84

5.2 Illustration of the hybrid search using an example of Topic A.355 from the
ARQMath-3 collection. Different highlighting colors denote different types
of semantic matches (orange for passage-level semantics, light red for sparse
lexical matches over a threshold of importance, and blue for math formula
structure matches where an example of symbol substitution is shown in
cyan). 86

5.3 Example question from the ARQMath-3 dataset (Topic A.360) and the re-
trieved passages by SPLADE models using all and text-only representations,
respectively. Tokens wrapped in angle brackets are math tokens. 96

5.4 MAP’ and bpref score divided into two different topic dependency dimen-
sions. The upper points are better at formula search topics while the points
on the right are better at heterogeneous topics that depend on both text
and formula(s). 96

5.5 The pair-wise fusion test score matrices from 5-fold cross-validation in MAP’
and P’@10. The lower triangular and diagonal elements are scores evalu-
ated for topics that depend on formula and text, and the upper triangular
elements are evaluated for formula search topics. Score are shown in grids
where their background grey scale is min-max normalized in each measure-
ment. 97

5.6 Relevant and non-relevant hits returned by complementary systems. Inter-
sected hits with their ranking scores and histograms are in the scatters plot,
and hits returned by only one system is illustrated in a side histogram in
the corresponding axis. 99

5.7 Change of MAP’ and bpref scores for the DPR model fine-tuning on differ-
ent backbones and at different training stage on the ARQMath-2 dataset.
Scores are measured by topics that depend on both text and formula (i.e.,
heterogeneous topics). The dashed lines denote models without a decoder. 101

xvi

List of Tables

3.1 Illustration of the Mark and Cross scoring (Algorithm 2) for formulas x+y+
y2 and −y+x+x2. The set of leaf-root paths for x+y+y2 are x, y: VAR/ADD;
y: VAR/BASE/SUBSUP/ADD; 2: NUM/SUP/SUBSUP/ADD. And the set of leaf-
root paths for −y + x + x2 are y, x: VAR/ADD; x: VAR/BASE/SUBSUP/ADD;
2: NUM/SUP/SUBSUP/ADD. Bound variables (variables of the same symbol)
are separated by double borders. For better visualization, the box notation
is meant to give some structure context. Matching candidates in each cell
are marked by their associated partial similarity scores, and the committed
matches are crossed greedily top down, highlighted in grey. In this example,
b1 = 0.9 and b2 = 0.8. The (unnormalized) symbol similarity score is (0.8 +
0.8) + 0.8 + 1.0 = 3.4. 46

3.2 Effectiveness evaluation in the NTCIR-12 Wiki Formula Browsing Task. Our
unsupervised retriever is compared to the most effective existing systems.
The systems can be categorized into three groups: expensive, cost-effective,
and ensemble. 50

3.3 Effectiveness evaluation in the ARQMath-3 (2022) Formula Search Task
(Task 2). Our retriever is evaluated against the top-performing results from
other participant teams where the Tangent-CFTED system utilizes a super-
vised model with tree distance reranking. The Judged metrics measures the
percentage of judged hits. 50

3.4 Ablations on the symbol scoring and path idf, evaluated on the ARQMath-3
Task 2 data. Enabling both scoring is more effective compared to ablated
versions except for a minor drop in the precision score when path idf is
disabled. 53

xvii

4.1 Query run times (in milliseconds) for different pruning strategies compared
to exhaustive search baseline. k is the number of search results we keep
dynamically. 73

4.2 Post-hoc bpref scores for the dynamic pruning strategy GBP-LEN com-
pared against the baselines of other most-effective systems and our own
non-pruning methods. All scores are evaluated on the NTCIR-12 dataset. 74

5.1 Different backbones explored in our experiments. All backbones except
vanilla BERT are further pretrained to adapt to math domains. 89

5.2 Systems compared on the ARQMath-2 dataset using the official metrics.
Whether or not a run can be practically retrieved using a single CPU is
indicated in the last column. Hybrid search scores are reported using the
linear interpolation parameters tuned on 5-fold cross validations. 92

5.3 Systems compared on the ARQMath-3 dataset using the official metrics.
Whether or not a run can be practically retrieved using a single CPU is
indicated in the last column. Hybrid search scores are reported using the
linear interpolation parameters tuned on 5-fold cross validations. 93

5.4 Ablations on MABDOWDOR components and the standalone sparse re-
triever, evaluated on ARQMath-3. Linear interpolation is tuned using cross-
validation. Underlined (p < 0.01) and italic (p < 0.05) are considered sig-
nificantly different from the non-ablated case using the two-tailed pairwise
t-test. 95

5.5 Ablations on the MABDOWDOR-(base), sparse, multi- and single-dense
representations using different backbones. All hybrid scores are cross-validated
results. Underlined (p < 0.01) and italic (p < 0.05) are considered signifi-
cantly different from the non-ablated case using the two-tailed pairwise t-test.100

5.6 The effectiveness evaluated on the ARQMath-3 dataset by performing a grid
search for linear interpolation weights. The interpolation weights associated
with the scores from the dense retriever with a Coco-MAE backbone, the
structure search using math keywords only, and the text-only retrieval using
BM25+ are represented by D, M, and T respectively. Bold and underlined
are the first and second highest scores for each metric in each block. Results
are generated by merging top-1000 results individually. 103

xviii

6.1 Evaluation of the OpenAI reranked results on the ARQMath-3 (Task 1) us-
ing DPR (Coco-MAE, HNSM indexed) as base run. The up-to-date best
available embedding model Ada-002 and generative model GPT-4 are com-
pared. 107

6.2 Evaluation of the OpenAI reranked results on the ARQMath-3 (Task 1)
dataset using MABOWDOR-base (HNSM indexed) as base run. The up-to-
date best available embedding model Ada-002 and generative model GPT-4
are compared. 107

xix

Chapter 1

Introduction

The significant progress of humanity in recent centuries can be largely attributed to the
flourishing development of science and technology. Mathematical language plays a vital
role in expressing scientific discoveries, serving as the primary and concise means of con-
veying information in the realm of scientific exploration. As a result, the capability of
computer systems to comprehend mathematical language and retrieve information from
these valuable human assets is of considerable interest and importance.

While we are currently experiencing an exciting era of rapid advancements in deep learn-
ing, the computer’s understanding of mathematical language remains limited. Compared
to natural language understanding, the understanding and reasoning of math language [Lu
et al., 2022] from some of the most effective large language models is in fact lagging behind
the scaling law [Kaplan et al., 2020]. As concluded Rae et al. [2021],

“We find that scale has a reduced benefit for tasks in the Maths, Logical Rea-
soning, and Common Sense categories. Our results suggest that for certain
flavors of mathematical or logical reasoning tasks, it is unlikely that scale alone
will lead to performance breakthroughs.”

Despite the limitations of advanced deep learning models in effectively handling math
content, Information Retrieval (IR) can serve as a viable middle ground between fully
comprehending mathematics and completely disregarding the presence of math language
in documents. Information retrieval techniques, particularly through similarity search,
allow for the highly efficient retrieval of existing documented math knowledge without the
requirement for an in-depth understanding of the content.

1

In addition, utilizing IR systems for performing first-stage retrieval serves as an efficient
recall mechanism for effective reranking [Nogueira and Cho, 2019, Nogueira et al., 2019b]
and can also be employed as a Question-Answering (Q&A) reader in knowledge-intensive
tasks [Izacard and Grave, 2020]. With the assistance of IR, we can also generate a relevant
collection of factual and informative documents that can serve as valuable references or
evidences for other systems to utilize and consume. This is crucial for answering math
questions more effectively, as modern neural networks have shown greater power when
they can avoid hallucination and factual inconsistency by consulting external tools [Ji
et al., 2022, Schick et al., 2023, Shi et al., 2023].

1.1 Challenges

Unfortunately, conventional IR systems nowadays still lack many capabilities when it comes
to searching math language, and this limitation arises due to various challenges.

1.1.1 Effectiveness Challenges

Mathematical languages, typically presented in structured markup languages like LATEX,
possess inherent properties that make them challenging for existing IR models to address.
These properties include:

1. Math language often exhibits nested or structured patterns, and it is prone to permu-
tations within substructures, such as under commutative operators. For an effective
retrieval model, it becomes essential to capture the structure of mathematical expres-
sions rather than treating them as individual tokens, as traditional retrieval models
do. For instance, it is important to recognize that formulas a

a2+b
and a2

a+b
are different

despite having identical tokens. Simultaneously, the model should also be able to
identify that a

a2+b
and a

b+a2
are semantically equivalent, even if there is a permuted

substructure. Importantly, indexing every subexpression and its permutations is not
a practical solution.

2. In math formulas, most symbols can be freely substituted with another set of sym-
bols without changing their semantic meaning. However, traditional search engines
primarily relying on exact lexical matching are unable to capture such variations.

2

3. Lastly, the semantics of math content is highly abstract, contextual, and occasionally
obscure. Achieving efficient and effective retrieval of such content may require a
context-sensitive and powerful representation capable of capturing a wide range of
variations and nuances in math topics. Additionally, the heterogeneous nature of
math content presents another challenge in developing a generalized representation.

None of these challenges have been adequately addressed in traditional IR settings. In
fact, traditional retrieval models could be 3 to 5 times less effective, compared to specialized
math retrieval systems [Mansouri et al., 2022, Zhong et al., 2022b]. This gap is even larger
when considering formula-centered retrieval [Mansouri et al., 2020a].

1.1.2 Efficiency and Complexity Issues

It is important to emphasize the efficiency aspect of information retrieval, particularly
when dealing with real-world document collections comprising millions of entries. While
effective but computationally expensive methods exist, their widespread adoption is hin-
dered by impractical query run times. Considering the fundamental concern of balancing
effectiveness and efficiency in the IR domain, I believe that this trade-off becomes even
more crucial in the context of math retrieval. This is due to the existing systems for math
retrieval facing challenges of either being ineffective or suffering from excessive slowness.
These issues can be attributed to the following factors:

1. Inherently, the strict structure search problem is too complex to be considered by
a real-time search engine on any practical real-world corpus. Even if we consider
the math similarity search problem to be as simple as only matching substructures
in tree representations, it is known that the problems of determining the largest
common sub-tree and computing the edit distance between unordered trees are NP-
hard [Zhang and Jiang, 1994]. To effectively retrieve math formulas, a search engine
has to make hard trade-offs between efficiency and effectiveness.

2. Furthermore, incorporating an additional modality, such as math, into the retrieval
process often necessitates the development of distinct pipelines or software stacks.
The associated overheads and complexities can overshadow the commercial incentives
for integrating math search functionality into existing search infrastructures. With-
out a cost-effective math IR model in place, the benefits of handling math content
may struggle to outweigh the complexity and engineering overhead it entails.

Consequently, there is a significant interest in designing a math-aware retrieval model that
tackles the aforementioned effectiveness challenges in a cost-effective manner.

3

1.2 Math-Aware Retrieval and Formula Search

Math-aware retrieval typically pertains to information retrieval involving mathematical
formulas within the query. To assess the capability of formula retrieval more effectively,
datasets or benchmarks often establish formula search tasks (as described in Section 2.4)
where either an isolated formula or a particular formula extracted from a question is used
to query a search engine. In this thesis, we will adhere to the above-mentioned definitions
when describing a task and its corresponding query topics.

1.2.1 An Example

The field of Math Information Retrieval (MIR) [Zhao et al., 2008, Zanibbi and Blostein,
2012] is a relatively new sub-domain in the field of Information Retrieval (IR). One of the
key tasks in MIR is to effectively and efficiently retrieve math language within scientific
documents. In the context of retrieval, it refers to the ability to include mathematical
expressions in a search query. This allows the search engine to assist in finding similar
expressions and retrieve relevant documents or topics. In essence, it combines the func-
tionality of a typical search engine with math-specific search capabilities.

Unlike traditional search engines, a math-aware search engine permits users to incor-
porate math expressions as keywords to aid in the identification of similar expressions and
the retrieval of pertinent documents. A math-aware ad-hoc retrieval system goes beyond
filtering the results, it incorporates a ranking mechanism based on user preferences (see
Section 2.1 for a historical view of ad-hoc retrieval).

To provide a concrete example, let’s consider a real question posted on Math StackEx-
change,1 one of the most popular math Q&A websites:

“While I’m able to prove that the series un =

√
(n−1)!

(1+
√
1)...(1+

√
n)

converges, I don’t

see the trick to compute the value of its sum starting at n = 2. Any clue on
the way to compute the sum?”

To help users answer such questions, employing math-aware ad-hoc retrieval to find
existing solutions, particularly in cases heavily reliant on a specific formula, can be an
effective approach. A user has the option to use the math formula itself, along with
optional text keywords, as the query to search for relevant documents. The search engine

1https://math.stackexchange.com/questions/1433826

4

https://math.stackexchange.com/questions/1433826

Figure 1.1: The search results of math formula query
∑

n=2

√
(n−1)!

(1+
√
1)...(1+

√
n)

returned from

conventional and math-aware search engines. Left: Google search results. Right: Search
results from https://approach0.xyz. (Screenshot taken on Jan. 27, 2023)

takes into account both the formula and the keywords to retrieve ranked documents that
are most likely to contain the desired information.

Figure 1.1 illustrates a comparison between the user interface and search results of a
commonly used commercial search engine and a math-aware ad-hoc retrieval demo that
I have developed as the main contributor. For the former system, the input query and
the returned documents in LaTeX format are not rendered or displayed nicely. Moreover,
when compared to the math-aware search engine illustrated on the right side of the figure,
even top-regarded search engines like Google may struggle to provide relevant results for
math-related queries. On the other hand, to cater to math retrieval, a well-designed user
interface and a potential hand-written recognition tool can play a crucial role in providing
a positive user experience in a search engine [Labahn et al., 2008, Nishizawa et al., 2020].
Additionally, the query may include text keywords within the context of a question to
meet the user’s requirements [Mansouri et al., 2019b]. All of these specific needs within
a math-aware ad-hoc retrieval system necessitate a distinct search scheme to ensure its
usefulness and effectiveness.

5

https://approach0.xyz

1.3 Contributions and Outline

Here are some of the key contributions outlined by the chapters:

1. Chapter 2 presents background knowledge on general IR and a survey of the MIR
domain. It explores the historical systems in MIR and examines their relations to
our proposed systems. The chapter establishes the context for our proposed system
and provides a historical overview of the structure search in the landscape of MIR.

2. Chapter 3 introduces a novel structure search model designed to effectively retrieve
math formulas by matching their substructures in the Operator Tree (OPT) represen-
tation. The model adopts a search unit based on the prefixes of OPT leaf-root paths,
ensuring that the structure matching remains invariant to commutative operators
and symbol substitutions. It enables the model to differentiate between formulas like
E = mc2 and y = ax2, which have similar structures but distinct symbols. By lever-
aging common substructure search and scoring, the proposed structure search has
established a strong indication of formula relevance and achieved the state-of-the-art
effectiveness among unsupervised MIR systems.

3. Chapter 4 presents a novel dynamic pruning algorithm designed to accelerate the
structure search model, resulting in significantly faster query execution without com-
promising effectiveness. The algorithm utilizes query structure properties to estimate
upperbounds for structure matching, marking the initial incorporation of structure
matching into inverted index optimization. The chapter introduces three differ-
ent rank-safe pruning strategies, among which the GBP-LEN strategy emerges as
the most efficient overall by modeling top-k retrieval as a binary linear program-
ming problem. In addition, this chapter explores a more aggressive (unsafe) pruning
method that further advances efficiency through the use of initial thresholds.

4. Chapter 5 introduces the DPR and MAEs neural retrievers to the field of MIR.
These models represent a significant advancement in leveraging deep learning for
math retrieval tasks. In this chapter, a novel pretraining scheme is proposed, which
takes advantage of the rich formula-text context information in math documents.
Through extensive evaluation, it is discovered that deep neural retrievers complement
structure search models by effectively reducing the false positive rate in top search
results. Building upon this insight, two highly effective hybrid search combinations
are proposed under the name MABOWDOR. These hybrid search models integrate
efficient search components to achieve highly effective retrieval results. Notably, the
MABOWDOR-base hybrid search model stands out by maintaining a state-of-the-art

6

level of effectiveness while employing a minimal number of hybrid components, with
sub-second average query run times against a million-level corpus in a single CPU
environment.

5. Chapter 6 concludes the thesis and provides an outlook on the future of MIR. It
highlights the challenges that remain to be addressed in this field and discusses the
potential impact of using large language models to rerank high-quality first-stage
retrieval results.

7

Chapter 2

Background

2.1 Traditional Ad-Hoc Retrieval

The field of Information Retrieval (IR) commences with the exploration of unstructured
documents in order to meet an information need [Schütze et al., 2008]. In the early stages,
the main search options for vast amounts of data were predominantly boolean retrieval,
which only offers filtered results without any ranking. However, such systems generally ex-
hibit divergent extremes in the trade-off between precision and recall [Lee and Fox, 1988].
With the emergence of the WEB era in the early 1990s and the subsequent exponential
expansion of data collection, the field of information retrieval has undergone substantial
evolution. Rather than filtering documents based on specific conditions, information re-
trieval now utilizes scoring functions and various optimizations to effectively and efficiently
address user requirements by locating pertinent documents. This is accomplished by gen-
erating a prioritized list that ranks documents based on their similarities to the query,
a technique commonly employed in popular search engines today. This methodology is
commonly known as ad-hoc retrieval.

2.1.1 Ranking

In traditional ad-hoc retrieval, the evaluation of similarity often involves treating a docu-
ment and a query as bags of words. This approach entails assessing the similarity between
two texts by comparing their vocabulary vectors, disregarding the original word order
within the document. It is worth noting that in proximity search [Tao and Zhai, 2007],

8

where the closest matching keywords in the documents are utilized to measure proximity
similarity, there is a partial consideration of word sequence.

This search paradigm facilitates efficient query processing through the utilization of the
inverted index. The inverted index is constructed using inverted lists or posting lists, which
often include the positions of terms within the documents. This approach has been proven
effective and well-suited for retrieving a relevant document d based on a given query q,
employing the tf–idf scoring schemes [Jones, 1972, Zobel and Moffat, 1998]:

S(q, d) =
∑
t∈q,d

tf t,d · idft (2.1)

where tft,d is the term frequency of a term t occurring in document d, and idft is the
inverse document frequency which usually is inversely proportional to the log of the global
frequency of t.

This formulation of similarity can be viewed as a dot product in the query-document
term vector space, known as the vector space model. Alternatively, it can be interpreted as
the mutual information between a document and a query, where the idf factor represents
the conditional information entropy of the document given the query [Aizawa, 2003].

One of the most popular tf–idf scoring variance is derived from the Okapi-BM25 [Robert-
son et al., 1995, Kamphuis et al., 2020], formally,∑

t∈q

log

(
1 +

N − dft + 0.5

dft + 0.5

)
·

tf t,d
tf t,d + k1(1 − b + b(Ld/Lavg))

(2.2)

where k1 and b are hyperparameters, and N , dft, tft,d, Ld, Lavg refer to the total number
of documents, the document frequency of the term t, the term frequency of term t in the
document d, the length of document d, and the average document length respectively.
While the tf factor has designed heuristically from combining empirical BM11 and BM15
functions [Robertson et al., 1995], the weight from the idf factor has some theory interpre-
tations [Croft and Harper, 1979, Aizawa, 2003, Robertson, 2004, Lee, 2007, Croft et al.,
2010], e.g., it can be viewed as an approximated likelihood ratio of a seeing a document
given its relevance, P (D | relevance)/P (D | irrelevance).

2.1.2 Efficiency

One of the key challenges encountered by search engines is to ensure efficiency, particularly
in terms of query latencies. This is due to the fact that even a single-thread retrieval

9

system is commonly required to handle a substantial volume of documents, varying from
hundreds of thousands to millions. In order to improve space, inverted lists within the
inverted index are frequently heavily compressed. In fact, commercial search engines may
choose to cache the entire index in memory. However, compression techniques employed
in IR must strike a balance between achieving a high compression ratio for integers (e.g.,
document IDs) and enabling fast decompression during decoding [Mallia et al., 2019].

In addition to compression, another widely used and frequently combined optimization
technique is dynamic pruning. Dynamic pruning methods involve utilizing an estimated
upperbound of the score for each candidate during retrieval. This allows for the pruning
of a significant number of candidate documents that have a score lower than the lowest
score among a dynamically maintained set of top-k documents. Dynamic pruning is also
applied to skip reading index items or avoid computing full similarity scores whenever
possible. Pruning methods can be based on various query processing schemes [Shan et al.,
2012]. The Document-at-a-time (DAAT) scheme necessitates merging all relevant posting
lists simultaneously. On the other hand, the Term-at-a-time (TAAT) or Score-at-a-time
(SAAT) schemes process one posting list at a time for each term where additional memory
(referred to as accumulators) is required to store partial scores, and the posting lists are
usually sorted by document importance, with potentially promising documents positioned
at the front of the inverted lists. For instance, the impact score [Anh and Moffat, 2006] can
be used to determine the ordering of documents in the posting lists. Pruning strategies are
rank-safe (or safe up to rank k) if they guarantee that the final top-k documents are ranked
in the same order before and after pruning. The best approach at this time for SAAT is
JASS [Trotman and Crane, 2019], and the most well-known rank-safe pruning strategies
for DAAT are MaxScore [Turtle and Flood, 1995, Strohman et al., 2005, Jonassen and
Bratsberg, 2011] and WAND variants [Broder et al., 2003, Ding and Suel, 2011]. Shan et
al. [Shan et al., 2012] demonstrated that MaxScore variants, such as BMM (Block MaxS-
core) and LBMM (Late Block MaxScore), outperform other dynamic pruning strategies
when it comes to long queries. More recently, Mallia et al. [Antonio Mallia and Suel, 2019]
reported similar findings across various popular index encodings, further supporting the
superiority of MaxScore variants in long queries.

In MaxScore dynamic pruning (illustrated in Figure 2.1), the top-k scored candidate
hits are kept throughout the querying process dynamically and the lowest score in top-k
candidates is defined as threshold θ. Since at most k candidates will be returned as search
results, dynamic pruning strategies work by estimating a score upperbound early before
knowing the precise score of a hit. If it is less or equal to θ, the associated document
can be pruned safely because it can not appear in the final results. Moreover, if a subset
of hit posting lists alone cannot produce a top-k result from their upperbounds, they

10

θ = 30

18

15

10

20

13

14 27

32 40

30

Upperbound DocID Current Next

Requirement set

Non-requirement set

Figure 2.1: Dynamic pruning illustration. A dynamic threshold θ is the lowest score in the
top-k results. Items in the non-requirement set alone which cannot produce a score higher
than θ are safely skipped.

are called a non-requirement set, the opposite being the requirement set. Posting lists
in the non-requirement with IDs less than the current IDs in the requirement set can
be skipped safely, because posting lists in the former set alone will not produce a top-k
candidate. The threshold used for pruning can be rescaled artificially by a factor of F to
gain further efficiency, denoted as θ′ = F ·θ, which means the pruning strategy is no longer
guaranteed to be rank-safe. However, dynamically adjusting this factor F based on the
perceived difficulty or easiness of a query can further enhance retrieval speed with minimal
degradation in effectiveness, as demonstrated by Tonellotto et al. [2013].

2.2 Supervised Retrieval

Traditional IR methods commonly employ tf–idf variants for similarity scoring, which rely
on exact lexical matching to retrieve relevant documents. While tf–idf takes into account
corpus statistics, specifically in the idf factor, to determine the importance of terms within
the corpus, a drawback of conventional unsupervised lexical retrieval is its inability to iden-
tify documents that use synonyms to the query. This issue, known as the vocabulary mis-
match or lexical gap problem [Furnas et al., 1987], hinders the retrieval of documents that
contain equivalent meaning but different terminology. Traditionally, the Latent Semantic
Indexing (LSI) [Dumais, 2004, Hofmann, 1999] approach has attempted to address the vo-
cabulary mismatch issue by employing techniques such as Singular Value Decomposition
(SVD) compression or topic modeling to construct dense representations and index them

11

for retrieval. However, LSI has been found to exhibit only marginal improvements com-
pared to BM25 when using a sufficient number of orthonormal vector dimensions [Atreya
and Elkan, 2011]. Furthermore, LSI is prone to generating false positive results [Ai et al.,
2016] and has demonstrated limited relevance matching capability [Guo et al., 2016]. To
overcome these drawbacks, recent studies by Nalisnick et al. [2016] and Huang et al. [2013]
have shown the importance of including relevance signals during training, such as utilizing
large query logs, in order to achieve improved retrieval effectiveness. This highlights the
significance of incorporating relevance information during the training process to enhance
the retrieval performance using data-driven methods.

Prior to the rise of the Transformer architecture (see below), methods based on deep
learning attempted to infer relevance signals from large click-through data or query logs [Huang
et al., 2013, Xiong et al., 2017, Dai et al., 2018, Zamani et al., 2018], or through weak su-
pervision by strong unsupervised relevance model such as BM25 [Dehghani et al., 2017].
However, these studies do not show empirically stronger and more robust retrieval results
compared to traditional retrieval. The emergence of Transformer models has been a mile-
stone in information retrieval, as their capacity to capture higher-level semantics through
non-linear transformations has significantly enhanced in-domain effectiveness.

2.2.1 Transformer Encoder

The Transformer architectures [Vaswani et al., 2017, Devlin et al., 2019] have spurred the
development of deep encoder models for passage retrieval. A Transformer-based encoder
can be efficiently trained end to end, enabling it to capture contextual and higher-level
semantics, thereby naturally bridging the lexical gap. At the core of the architecture lies a
self-attention mechanism placed at each layer. This mechanism computes attention scores
for every pair of tokens at positions i and j:

oj =
1

Z

n∑
i

fs(qj, ki)g(vi), j = 1, 2...n (2.3)

where a similarity or alignment function fs is learned to generate a scaler score from an
input query qj ∈ Rd and each input key ki ∈ Rd, and it is then applied onto each input
value vi ∈ Rp to produce an output oj ∈ Rp using a normalization factor Z. The attention
mechanism introduced originally from machine translation [Bahdanau et al., 2014, Luong
et al., 2015] usually takes qj from hidden state generated from previous steps in an auto-
aggressive way, while in self-attention, or intra-attention [Lin et al., 2017], the query is
directly taken from input signals similar to query and key.

12

Transformer uses multi-head self attention where it computes multiple parallel heads of
dimension m = d/M indexed by h = 1, 2, ...,M . In this case, the key and value have the
same dimension as the input values X ∈ Rn×d (d = p). The query, key, and value vectors

are obtained through linear transformations W
(h)
v ,W

(h)
k ,W

(h)
q ∈ Rd×m for each head.

O(h) = softmax
((XW

(h)
q) · (XW

(h)
k)T√

d

)
·XW (h)

v (2.4)

Att(X) = [O(1)...O(M)] ·Wo (2.5)

where the softmax function is applied to the last dimension by defining the similarity
function as embedded Gaussian fs(qj, ki) = exp(θ(qj)

Tϕ(ki)) [Wang et al., 2018] with
scaled dot-product [Vaswani et al., 2017]. Functions θ, ϕ, g are all linear transformations,
and the output for this attention operation is also pooled from a linear transformation
Wo ∈ Rd×d of all heads. Furthermore, it can be shown that the self attention function is
permutation equivariant [Ji et al., 2019, Yun et al., 2019].

A Transformer block at layer l is further stacked with elements such as dropouts [Hin-
ton et al., 2012], residual connection [He et al., 2016], and fully-connected layers that are
applied to each position separately. If we denote fully-connected feed-forward layers as pa-
rameterized non-linear function F and ignore dropouts, we can write down the Transformer
layer T (l) at layer l as

Y (l) = LayerNorm(X(l−1) + Att(l)(X(l−1))) (2.6)

T (l)(X) = LayerNorm(Y (l) + F (l)(Y (l))). (2.7)

where the LayerNorm is a special variant of layer normalization [Ba et al., 2016] applied
to the hidden dimension for each token position independently. The abundant residual
connections used in the Transformer are potentially essential in gradient-based iterative
optimization for compressing input token sets [Ma et al., 2022b, Yu et al., 2023]. Also, with
more shortcut connections, the loss function landscape has more convex regions [Li et al.,
2018]. Unlike recurrent neural networks [Hochreiter and Schmidhuber, 1997, Cho et al.,
2014], which generate the query in an autoregressive manner, the Transformer encoder
enables more direct information propagation. This language modeling approach also miti-
gates the vanishing gradient problem by utilizing positional encodings instead of relying on
recurrence. On the other hand, the feed-forward layers are shown to store key-value mem-
ories [Geva et al., 2020, Dai et al., 2021], and the so-called Add & Norm operations shown
in Eq. 2.6 and 2.7 can be altered to a pre-normalization to gain training efficiency [Baevski
and Auli, 2018, Xiong et al., 2020b, Geiping and Goldstein, 2022].

13

Sentence A Sentence B

Transformer Encoder

pooling

regression

Passage A Passage B

Transformer Encoder Transformer Encoder

pooling (optional) pooling (optional)

late interaction

Figure 2.2: The architectures of a cross encoder (left) and a bi-encoder (right). The bi-
encoder architecture generates separate representations for different passages. This enables
the indexing of these representations offline, reducing the computational load during infer-
ence. Consequently, only a less expensive late interaction needs to be computed online.

Based on the encoder architecture of Transformer, the BERT model [Devlin et al.,
2019] proposed Masked Language Model (MLM) and Next Sentence Prediction (NSP)
self-supervising objectives, usually trained on large corpora of text datasets. The BERT
model and its descendants, e.g., RoBERTa [Liu et al., 2019] and DeBERTa [He et al., 2020],
have achieved the state-of-the-art effectiveness in numerous down-stream tasks.

2.2.2 Neural Retriever

The introduction of the MS-MARCO dataset [Nguyen et al., 2016] has established a stan-
dardized and user-friendly benchmark for deep neural retrievers that process large amounts
of data. Evaluations on MS-MARCO using large pretrained language models such as
BERT [Devlin et al., 2019] or T5 [Raffel et al., 2020, Ni et al., 2021] have showcased
unparalleled effectiveness by simply reranking the top-1000 candidates generated from tra-
ditional retrieval systems [Nogueira and Cho, 2019, Nogueira et al., 2019b]. Conventionally,
Transformer-based rerankers as such are called cross encoder or interaction-focused archi-
tectures [Guo et al., 2020, Lin, 2022], because they estimate similarity through full pair-wise
token interactions between both query and candidate passages. Another successful appli-
cation demonstrated on MS-MARCO is the expansion of document passages to incorporate
synonyms or semantically relevant words [Nogueira et al., 2019c,a], aiming to address the
vocabulary mismatch problem. These pivotal advancements have sparked extensive re-
search into leveraging the power of Transformer models to construct more effective neural
retrievers in the field of information retrieval.

14

However, performing direct inference with standard Transformers can be computation-
ally intensive, as it involves passing the input through the entire network with hundreds of
millions of parameters. Consequently, alternative two-stage inference approaches have been
proposed. In these approaches, the first stage generates similarity representations offline
for each query or document passage independently, which are then indexed using efficient
coding methods such as HNSW [Malkov and Yashunin, 2018]. This approach defers the
calculation of similarity to a later stage, significantly reducing online computational costs.
Encoders designed in this manner are referred to as bi-encoders or dual encoders [Humeau
et al., 2019]. Figure 2.2 showcases the distinctions between a cross encoder and a bi-
encoder. Bi-encoders are well-suited for first-stage retrieval as they can offload most of the
computation to the indexing stage, thereby accelerating query processing.

Over the past decade, the utilization of deep neural network bi-encoders to generate
more effective representations or to improve retrieval efficiency has given rise to various
techniques [Guo et al., 2020, Lin, 2022]. In the context of this thesis, I will summarize a
few relevant directions below.

Representations

The [CLS] token embedding trained from the NSP task [Devlin et al., 2019] is for cap-
turing sentence-level semantics, making it a natural choice of representation for passage
retrieval applications. Several approaches have utilized this embedding for retrieval pur-
poses. DPR [Karpukhin et al., 2020] employs the last-layer [CLS] embedding directly
for retrieval. CEDR [MacAvaney et al., 2019] employs multi-layer [CLS] token embed-
dings. Additionally, some other sentence encoders [Reimers and Gurevych, 2022, Zhan
et al., 2020b, Carlsson et al., 2020, Izacard et al., 2021] utilize an aggregated embeddings
from the last layer outputs of BERT. However, without fine-tuning or domain adaptation
with relevance labels, the [CLS] embedding has been shown to be weaker than traditional
embeddings [Reimers and Gurevych, 2022].

Moreover, the fixed dimension of [CLS] embedding cannot capture the semantics for
long documents well [Luan et al., 2021], and single-vector representation may suffer from
bad cross-domain generation [Santhanam et al., 2021, Formal et al., 2021a]. As a result,
multi-vector or token-level embeddings from all BERT contextual outputs are also ex-
plored. In this case, the late interaction will need to be computed in a more expensive
way. ColBERT models [Khattab and Zaharia, 2020, Santhanam et al., 2021] are notable
examples in this direction. However, their practical adoption has been hindered by either
the computational expenses related to indexing token-level dense representations or the
complexity of the accelerated query processing pipeline [Santhanam et al., 2022a].

15

To address the efficiency challenge of using multiple dense representations, sparse lexical
codes have been proposed and they allow for the utilization of inverted index structures
and potentially leverages existing optimizations [Mallia et al., 2022, Mackenzie et al., 2021].
Early work in this direction involved representing passage tokens by assigning learned
scale importance weights in the lexical space [Dai and Callan, 2020, Mallia et al., 2021,
Lin and Ma, 2021]. Later advancements expanded the sparse representation approach to
include semantically related words. Noteworthy models in this line of research include
SparTerm/SPARTA [Bai et al., 2020, Zhao et al., 2020], TILDE [Zhuang and Zuccon,
2021a,b], and SPLADE [Formal et al., 2021b,a, 2022]. These models leverage the MLM
outputs from the Transformer encoder to identify synonyms for expansion.

Contrastive learning and hard negatives

The use of contrastive learning has significantly enhanced the performance of neural re-
trievers [Karpukhin et al., 2020, Xiong et al., 2020a]. Within the domain of information
retrieval, encoders are commonly trained using both relevant (positive) and irrelevant (neg-
ative) samples to effectively acquire similarity representations. In general, gradient descent-
based contrastive learning exhibits advantages with larger batch sizes [Chen et al., 2020], as
employing smaller “mini-batches” can lead to increased learning variance [Qian and Klab-
jan, 2020] and smaller sample sizes compared to full batch gradient descent. Consequently,
by predominantly relying on large batch sizes, neural retrievers can significantly enhance
their effectiveness, as exemplified by approaches like RocketQA [Qu et al., 2020]. In the
case of fixed memory capacity, when training dense retrievers using contrastive learning,
including training samples within the same batch as in-batch negatives [Karpukhin et al.,
2020] can further augment negative samples during training. This widely adopted strategy
is employed by highly effective retrievers such as ColBERT-v2 [Santhanam et al., 2021]
and SimLM [Wang et al., 2022]. To overcome hardware limitations, a commonly employed
technique called gradient cache has been used to alleviate GPU memory consumption.
This technique involves performing an additional forward pass of the encoder and caching
the gradients of the representations computed from another forward pass without the need
for a computational graph [Chen et al., 2016, Gao et al., 2021b].

Xiong et al. [2020a] demonstrated that the convergence of retrieval model training de-
pends on the informativeness of constructed negatives. To enhance the informativeness,
they employ dynamic hard negative mining from top retrieved documents and periodically
update the model, requiring re-indexing. In contrast, Zhan et al. [2020a] employ top-ranked
results as hard negatives but adopt a different approach by only altering the query repre-
sentation, thereby eliminating the need for re-indexing. Gao et al. [2021a] investigated the

16

utilization of lower-ranked BM25 results as false positive samples, referred to as static hard
negatives, independently of the neural model. Zhan et al. [2021] examine both dynamic and
static hard negatives and provide an explanation for their superior effectiveness compared
to random negative sampling.

To further improve retrieval effectiveness, GPL [Wang et al., 2021b] uses a stronger
cross encoder to improve the quality in hard negative mining before training encoders.
And given good pretraining objectives, Ram et al. [2021] has demonstrated a small set of
128 hard negative samples can create sufficiently effective retrievers. Lastly, SimLM [Wang
et al., 2022], a recent dense retriever, has gained effectiveness by combining BM25 hard
negatives and self-mined hard negatives in a multi-stage distillation pipeline.

Further pretraining

Recently, there has been a rise in the adoption of newly proposed pretraining schemes that
mimic information retrieval (IR) tasks. These schemes are commonly referred to as further
pretraining [Gururangan et al., 2020]. For retrieval purposes, Chang et al. [2020] have
introduced the ICT pretraining objective. The ICT objective feeds passage-level inputs to
each of the bi-encoders directly, rather than separating them using a [SEP] delimiter as
seen in the NSP objective. Similarly, Ram et al. [2021] use an intersected span between
two sample passages as positive pairs.

Instead of changing pretraining objectives, Gao et al. [2021c], Carlsson et al. [2020] use
the siamese network with dropout applied to the same sentence inputs. An alternative
approach by changing the model architecture involves the use of auto-encoding techniques
where passages are encoded from the [CLS] embedding, serving as a bottleneck during
pretraining. These models are commonly referred to as Masked Auto Encoding (MAE)
models [Lu et al., 2021, Gao and Callan, 2021a, Wu et al., 2022, Xiao and Liu, 2022].

In the studies conducted by Ma et al. [2021a,b], words are sampled as pseudo queries
from the training passage, and the encoder-decoder architecture is trained to predict this
set of words. Gao and Callan [2021b] introduced an auxiliary Masked Language Modeling
(MLM) objective within the decoder. This objective, in addition to relying on the [CLS]

token, utilizes lower-layer token embeddings to recover masked words. In subsequent work,
Gao and Callan [2021a] further expanded on this approach by incorporating a contrastive
learning objective that incorporates co-occurring span pairs and in-batch negatives. Wang
et al. [2021a] instead model the pretraining using a de-noise autoencoder, injecting “noise”
to a sentence by deleting or swapping words. COSTA [Ma et al., 2022a] incorporates
a contrastive span prediction task where the [CLS]-generated projector is tasked with

17

recovering the index of randomly sampled spans from the encoder. In contrast, Wang
et al. [2022] use ELECTRA-style objectives on an MAE architecture by altering tokens
using a generator and predicting original tokens at all positions.

2.3 Math Information Retrieval

Math Information Retrieval (MIR) is a field of study that encompasses various research
interests. It includes areas such as math content detection, math-aware retrieval, hand-
written formula recognition, and more. Several surveys have been conducted to provide
overviews of the field, including works by Zhao et al. [2008], Zanibbi and Blostein [2012],
and Meadows and Freitas [2022]. At the core of Math Information Retrieval (MIR) lies
the fundamental component of information retrieval, which enables the effective and effi-
cient mining and searching of mathematical content. Unlike conventional IR, math-aware
retrieval specifically addresses the handling and consideration of structured math formulas
in both queries and documents.

While studies on handwritten formula recognition [Labahn et al., 2008, Nishizawa et al.,
2020] play a crucial role in facilitating user interfaces for the input of highly structured
math formulas, this thesis primarily emphasizes the information retrieval aspect of Math
Information Retrieval (MIR). Consequently, it provides a historical overview of related
work and the evolution of MIR from the perspective of retrieval systems, following the
approach outlined by Novotnỳ [2021].

2.3.1 Early Work (2003 – 2013)

The published research of MIR dates back to the DLMF project from NIST two decades
ago [Miller and Youssef, 2003]. This line of early explorations has touched on many impor-
tant and unique aspects of this domain, including problem definition [Youssef, 2005], de-
tecting equivalence in expressions [Shatnawi and Youssef, 2007], relevance ranking [Youssef,
2007], search highlighting [Miller and Youssef, 2008]. Some early and demonstrative re-
search systems are developed, including ActiveMath [Melis et al., 2006], MathFind [Mu-
navalli and Miner, 2006], Whelp [Asperti et al., 2006], MathDex [Miner and Munavalli,
2007], EgoMath [Mǐsutka and Galamboš, 2008], MathGO! [Adeel et al., 2008], etc.

In the early stages of Math Information Retrieval (MIR), many researchers employed
a technique known as “textualization” to convert structured mathematical formulas into
plain words. This textualization process facilitated the integration of mathematical content

18

Figure 2.3: The textualization process employed by the MIaS system [Sojka and Ĺı̌ska,
2011b] involves multiple levels of decomposition and unification on a simple mathematical
expression.

into traditional search engines by representing formulas as text. Studies such as Youssef
[2005] and Kim et al. [2012] explored this approach to enable the retrieval of mathematical
information using existing search engine infrastructure. However, to enable the recall of
sub-expressions or permuted versions of a mathematical formula, it is necessary to decom-
pose the formula into multiple “canonicalized” forms, to account for properties like com-
mutativity. The process of decomposing the formula into these variations is often referred
to as augmentation [Mǐsutka and Galamboš, 2008, Sojka and Ĺı̌ska, 2011b]. An example
system, MIaS [Sojka and Ĺı̌ska, 2011b,a], generates a large number of sub-expressions for
a simple query input (shown in Figure 2.3). In the case of formulas with a large number of
operands and levels, it becomes impractical to enumerate all possible augmentations due
to the exponential growth of potential variations. As a result, a common practice is to
limit the maximum number of augmentations that are indexed [Mǐsutka and Galamboš,
2008]. However, it is important to note that restricting the number of augmentations can
result in reduced recall during the retrieval process.

To evaluate formula similarity, systems often employ techniques beyond traditional text
search scoring. One approach is to assign empirical weights to each decomposed subtree
based on factors such as height and n-gram length, as demonstrated in studies like Miner

19

= m + x

i

m

y

m

=

+ subsup

subsup m

base superscript

x m

base superscript

y m

Figure 2.4: From left to right: Example SLT (Symbol Layout Tree) and OPT (Operator
Tree) representations, respectively. Both represent the same math formula ymi = m +
xm. SLT focuses on the visual structure, while OPT emphasizes operand relations and
operations.

and Munavalli [2007] or solely based on height as explored in Sojka and Ĺı̌ska [2011b].
However, using n-gram length alone may not effectively capture the similarity especially
when mathematical markup languages use multiple characters to represent a single variable.

Systems like Whelp [Asperti et al., 2006] and MWS [Normann and Kohlhase, 2007]
take a different approach by converting mathematical language into first-order clauses in
a formal proof language. Rather than evaluating similarity, these systems focus on filter-
ing results based on equivalence or provability relationships between expressions. While
this formal evaluation can provide rigorous results, it poses challenges when applied to
real-world datasets. Maintaining an index for such systems requires significant memory
resources, as highlighted in Kohlhase et al. [2012]. Additionally, user-generated math ex-
pressions often cannot be parsed correctly, which compromises the cost-effectiveness of
these systems compared to simpler alternatives [Aizawa et al., 2014].

As a result of previous explorations, a structure-based matching metric becomes nec-
essary. There are two major structure representations in early work, i.e., SLT [Stalnaker,
2013] and OPT [Shatnawi and Youssef, 2007, Hijikata et al., 2007]. Figure 2.4 provides a
visual representation of an instance tree for each representation. The Symbol Layout Tree
(SLT) captures the lower-level structural semantics of math formulas, resembling the layout
and topology of a formula in LATEX representation. SLT focuses on preserving the visual
layout and topology, offering the advantage of minimal ambiguity during parsing. On the
other hand, the Operator Tree (OPT) representation identifies operators and operands in

20

the math formula and constructs a recursive tree structure. Each internal node represents
an operator, while the children correspond to its operands.

OPT has been widely used in the early development of math information retrieval (MIR)
systems [Miner and Munavalli, 2007, Shatnawi and Youssef, 2007, Hijikata et al., 2007].
The initial application of the Operator Tree (OPT) representation for search purposes
involved manually constructing trees and detecting equivalence between math formulas
using context-free grammars [Shatnawi and Youssef, 2007]. However, subsequent works
[Miner and Munavalli, 2007, Hijikata et al., 2007, Mǐsutka and Galamboš, 2008, Adeel
et al., 2008] adopted OPT-like tree representations using existing MathML markups.

In the context of this thesis, there is a specific line of early work that focuses on using
leaf-root paths from the Operator Tree (OPT) representation for formula search. Several
studies, such as Hijikata et al. [2007, 2009], Yokoi and Aizawa [2009], have explored this
approach, leveraging paths from the leaves to the root of the tree to derive commutativity-
invariant features for retrieval purposes. These path-based features require O(N · I) space
to index a formula, where N represents the number of leaves or operands in the OPT and
I represents the number of internal nodes which is considered manageable (especially when
OPTs have a limited height in the math documents). The use of leaf-root paths for retrieval
was first proposed by Hijikata et al. [2007] as XPaths. However, this approach had a high
recall but lacked precision due to the absence of whole structure comparison. Hijikata
et al. [2009] improved precision by incorporating horizontal sibling nodes, but this led to
a lower recall. To address this, Yokoi and Aizawa [2009] and Hagino and Saito [2013]
expanded the leaf-root path set by extracting prefixes and suffixes, creating a subpath
set. This enhancement improved recall and allowed retrieval of both sub-expressions and
subtree-wildcards in formulas.

Early work in the field of MIR has explored various structure distances to measure
similarity. Kamali and Tompa [2009] introduced a similarity measurement called structural
n-similarity, which computes the ratio of matched nodes to all nodes being compared. In
subsequent work, Kamali and Tompa [2010] proposed a structural inverted index that treats
subtree hash signatures as words, enabling substructure matching through cached dynamic
programming. To further enhance efficiency, Kamali and Tompa [2013] introduced early
termination techniques for accelerated similarity computation. In a different approach,
Zanibbi and Yu [2011] utilized dynamic time warping (DTW) to identify similarity in pixel-
level columns from image inputs. These approaches aimed to address the computational
complexity of formula structure search by transforming the problem into more efficient
setups. However, their matching metrics may not be generally effective as they often
overlook holistic substructure matches or structural variations.

21

2.3.2 Better Structure Search (2014 – 2019)

Comparing the effectiveness of MIR systems in a standardized way was challenging until the
introduction of relevant tasks by two major evaluation platforms: NTCIR [Aizawa et al.,
2013, 2014, Zanibbi et al., 2016a] and ARQMath [Mansouri et al., 2020a, 2021c, 2022],
along with their datasets. Since the pilot MIR task in NTCIR-10 [Aizawa et al., 2013],
better structure search methods by matching substructure(s) on different intermediate
structure representations have gained popularity [Gao et al., 2016, Kristianto et al., 2016,
Zanibbi et al., 2016b, Fraser et al., 2018, Zhong and Zanibbi, 2019] due to their remarkable
effectiveness in these evaluations.

WikiMirs/ICST Hu et al. [2013] build conventions about basic similarity axiomatic
rules and generalized matching of wildcards. It proposes a primitive parser rule to con-
struct structure representation for LATEX markup, and extract normalized expression strings
at each level for indexing and modified tf–idf retrieval weighted by subexpression level offset
in tree representations. In WikiMirs v2 [Lin et al., 2014], an enhanced OPT is constructed
with semantic enrichment, e.g., lexicographically sorted children under a commutative op-
erator. The scoring of similarity is generalized to consider multiple relevant formulas in a
document by weighted sum. In WikiMirs v3 [Wang et al., 2015], a hybrid search approach
is introduced that combines formula search and text retrieval. Furthermore, formula im-
portance is incorporated, similar to idf, but also considering other factors such as whether
a formula occupies a whole line by itself. By applying learning to rank techniques on
Wikipedia data, the ICST team achieves the top-performing results for Wikipedia retrieval
in NTCIR-12 [Zanibbi et al., 2016a].

MCAT The MCAT system [Topić et al., 2013, Kristianto et al., 2014, 2016] leverages
path features generated from OPT, specifically focusing on content MathML leaf-root
paths. These path features include ordered paths, unordered paths, and additional sibling
patterns to enhance search precision. This combination allows the system to retrieve for-
mula subexpressions within both commutative and non-commutative operators. MCAT
employs an indexing approach that captures leaf-root paths from all subtrees, similar to
the approach described in Yokoi and Aizawa [2009]. Additionally, MCAT utilizes hashed
substructure using the SIGURE variable name hashing [Ohashi et al., 2016]. These tech-
niques contribute to MCAT achieving the highest precision scores in various formula search
tasks, as demonstrated in NTCIR-12 [Zanibbi et al., 2016a]. Despite its effectiveness, the
efficiency of MCAT is hindered by an extended scoring procedure required to unify struc-
ture wildcards in larger math formulas. Reportedly, MCAT has a median query execution
time of approximately 25 seconds when using a server machine and multi-threading [Kris-
tianto et al., 2016]. Furthermore, MCAT’s matching of formula structures relies on text

22

words and utilizes default scoring in Lucene/Solr. As a result, their system may not detect
partial structure matches with different variable names.

Tangent systems The original Tangent system [Stalnaker, 2013] is built upon symbol
pairs from SLT. It retrieves formulas using a “bag-of-pairs” boolean search model. The
first version named Tangent-1 [Pattaniyil and Zanibbi, 2014] is evaluated in NTCIR-11. It
supports the retrieval for math matrices by considering them as symbols separated by rows.
Additionally, Tangent-1 uses a standard tf–idf scoring model offered by Lucene. Tangent-
2 [Stalnaker and Zanibbi, 2015] follows the same approach, but it is rewritten in Python
and offers a more comprehensive search interface. It utilizes a de-coupled in-memory index
using Redis and implements a ranking function for improved performance and efficiency.
Tangent-3 [Zanibbi et al., 2015, Davila et al., 2016, Zanibbi et al., 2016b], proposed for the
NTCIR-12, employs a two-stage cascading ranking where a coarse but efficient core engine
based on an iterator tree index is used to recall formulas ranked by Dice’s coefficient; and
a second stage reranking is done with expensive maximum structure alignment (i.e., Maxi-
mum Subtree Similarity, or MSS) and variable unification. The first stage is more efficient
due to a constrained symbol pair window and a faster core engine written in C++. Both
stages incorporate the SLT representation and employ a weighted sum score for ranking.
In subsequent work, Davila and Zanibbi [2017] introduces Tangent-S, which significantly
improves effectiveness. Building upon these insights, Tangent-V [Davila et al., 2019] is pro-
posed, where the method is extended to handle visual representations such as PDFs and
images. Without requiring explicit parsing of the image content, Tangent-V leverages a
line-of-sight graph that simulates symbol pairs. This approach outperforms concurrent sys-
tems in terms of partial relevance score, demonstrating the general effectiveness of symbol
pairs in dealing with visual representations.

Tangent-L [Fraser et al., 2018, Dallas, 2018] deviates from Tangent-3 and introduces
math tuples, which are carefully curated orthogonal features1. The MathDowsers sys-
tem [Ng et al., 2021, Ng, 2021], and the more recent µTextSearch system [Kane et al.,
2022] employ ongoing improvements to the representation of math tuples, making contin-
uous progress in subsequent ARQMath tasks [Mansouri et al., 2021c, 2022].

Approach0 (Chapters 3 and 4) Drawing on prior works exploring the use of leaf-
root paths for formula search [Hijikata et al., 2007, 2009, Yokoi and Aizawa, 2009], an
early approach is introduced to identify substructures while simultaneously matching a
comprehensive set of paths [Zhong and Fang, 2016, Zhong, 2015]. By incorporating pseudo
rank nodes, this method can also distinguish non-commutative matches, akin to the ordered
path effects utilized by MCAT [Topić et al., 2013]. Subsequently, Zhong et al. [Zhong

1For examples, refer to the open-source parser package: https://github.com/fwtompa/mathtuples

23

https://github.com/fwtompa/mathtuples

Matching Leaf-Root PathsQuery OPT Candidate OPT

ADD

TIMES TIMES a z

b c x y

ADD

GROUP TIMES

ADD

TIMES a

b c

x y

b TIMES ADD

b TIMES ADD

c TIMES ADD

a ADD

x TIMES

y TIMES

Figure 2.5: Structure search based on leaf-root paths. Matching substructures between
OPT representations of the query formula bc+xy+az and a candidate formula (bc+a)+xy.

and Zanibbi, 2019] expand on the OPT leaf-path matching technique by including path
prefixes and proposing an approximate structure matching method that dynamically groups
the root-end nodes of leaf-root paths. As depicted in Figure 2.5, the proposed structure
matching metric identifies the maximum common subtree(s) between two mathematical
formula OPTs from their leaf-root path set. This can be viewed as an extension of the MSS
metric from Tangent-S [Davila and Zanibbi, 2017], but applied to only bottom-up subtrees
within the OPTs. By employing structure-based dynamic pruning techniques [Zhong et al.,
2020], structure search in OPT representations can be made efficiently enough to support
practical first-stage retrieval. More recently, evaluations [Mansouri et al., 2021c, 2022]
demonstrate that this approach achieves high precision in candidate selection without the
need for a subsequent fine-grained structure matching stage.

2.3.3 Data-Driven Retrieval (2017 – Now)

Data-driven methods can complement structure searches by revealing connections among
mathematical formulas with diverse structures. Previous MIR research in this area has ex-
plored self-supervised clustering algorithms and effective supervised methods that leverage
Transformer models. Below, I provide a summary of advancements in this direction.

Learning embeddings from linear math tokens Initially, data-driven methods have
been used for the clustering of math formulas [Samarasinghe and Hui, 2009, Ma et al.,
2010]. As highlighted by Gao et al. [2017], the straightforward linear clustering of formula
symbols has limited success. They emphasize that mathematical formulas exhibit struc-
tural properties where an operator is typically dissimilar to its local neighbors, for instance,

24

the addition operator and its operands are often incorrectly assigned to the same cluster.

Learning embeddings from structural representations To address the issue above,
structure representations are used to explicitly model the clustering of math semantics.
For example, Tangent-CFT learns word embeddings by treating operators, SLT, and OPT
features as words. Zhang et al. [2021] study operator embeddings based on the slant of
transformation between steps, while Dai et al. [2020] learn word embeddings from n-ary
tree SLT representations. More recently, Song and Chen [2021] and Pfahler and Morik
[2022] construct graph embeddings directly from OPT or MathML structures using Graph
Neural Networks (GNNs). Similarly, Wang et al. [2021c] generates tree embeddings for
OPT representations in an auto-encoding setting. However, employing GNNs to measure
structure similarity is considered less appropriate compared to solely determining graph
isomorphism, as regular GNNs do not possess more power than the Weisfeiler-Lehman
test [Xu et al., 2018], which is often regarded as overly restrictive in defining similari-
ties [Schulz et al., 2022]. So far, the effectiveness of GNNs is still relatively inferior to
(unsupervised) structure search [Song and Chen, 2021, Wang et al., 2021c].

Capturing contextualized semantics, including the surrounding text Krstovski
and Blei [2018] treat SLT features as words but additionally consider the surrounding text
in a topic modeling setting. Yasunaga and Lafferty [2019] use a variational autoencoder to
parameterize the topic distribution and explicitly model the sequence generation of formula
tokens using a topic-extended LSTM with context information. However, these work have
not been evaluated on common retrieval datasets. In a recent attempt [Ferreira and Freitas,
2021], math contextual embeddings are learned through unsupervised learning based on a
siamese network. However, the retrieval effectiveness (measured by F1-score) is similar to
a vanilla BERT model which is not explicitly trained for the math domain.

Tuning with relevance signals The problem with self-supervised clustering for retrieval
is that learned representation may not contain sufficient similarity signals for effective
retrieval [Greiner-Petter et al., 2020]. Without using a Transformer, Allamanis et al.
[2017], Gangwar and Kani [2022] have applied recursive neural network and seq-to-seq
model (with attention mechanism) to learn equivalent math expressions in a supervised
objective. To boost ranking effectiveness, the Tangent-CFTED system [Mansouri et al.,
2020b] – an upgraded version of Tangent-CFT – uses tree edit distance with carefully tuned
edit weights to rerank candidates retrieved from unsupervised embedding representations.

With the surge of the Transformer architecture [Vaswani et al., 2017], the use of a
Transformer encoder with supervised retrieval signals to capture contextualized and highly
abstract math semantics has become commonly practiced in the domain of MIR [Peng
et al., 2021, Reusch et al., 2021a, Mansouri et al., 2021c, Zhong et al., 2022a, Novotnỳ

25

2007

2009

2013

2014

2015

2016

2018

2019

2020

2021

2022

2023

Future

Tangent-CFT / TanAPP (Mansouri et al.)

Tangent-CFT/ED (Mansouri et al.)

NTFEM (Dai et al.)

MathBERT/MathAPP (Peng and Gao et al.) Tangent-CFT/ED v2 (Mansouri et al.)

Tangent-CFT/ED v2 + AMR (Mansouri et al.)Approach0 + ColBERT (Zhong et al.)

MABOWDOR (Zhong et al., Chapter 5)

FORTE-APP (Wang et al.)

Tangent v1 (Pattaniyil and Zanibbi)

Tangent v2 (Stalnaker and Zanibbi) Tangent v3 (Zanibbi and Tompa et al.)

Tangent-S (Davila et al.)

Tangent-L (Fraser et al.)

Tangent-V (Davila et al.)Approach0 multi. trees (Zhong et al., Chapter 3) MathDowsers (Ng, Fraser, Kane et al.)

XPath (Hijikata et al.)

XPath + Tree Search (Hijikata et al.)Subpath (Yokoi and Aizawa)

OPMES (Zhong et al.)

Suffix paths (Hiroya Hagino et al.)

Approach0 single tree (Zhong et al., Chapter 4)

Figure 2.6: The ontology of our systems and related retriever families in chronological
order. Dark blue border for our work discussed in this thesis, and light blue border for
our work not discussed in this thesis. Light yellow nodes denote unsupervised or semi-
supervised systems, and light green nodes denote supervised systems. The arrow denotes
a dependency or is inspired by.

26

and Štefánik, 2022, Geletka et al., 2022]. Indeed, recent research has demonstrated that
combining specialized structure search for scoring structure similarity with neural retrievers
for capturing other semantic aspects can lead to highly complementary results [Zhong et al.,
2022b,a, Kane et al., 2022].

The MathBERT model [Peng et al., 2021], evaluated on the NTCIR-12 collection [Zanibbi
et al., 2016a], represents the first successful neural math retriever based on a Transformer
encoder. It incorporates structure mask pretraining in addition to the pretraining objec-
tives employed in BERT. For reranking, MathBERT utilizes the feature vectors from the
last two layers and operates on a high-quality candidate pool generated by Tangent-CFT.

The creation of ARQMath datasets [Mansouri et al., 2020a, 2021c, 2022] has demon-
strated the success of Transformer-based models, leading to wider adoption of deep models
in MIR. One notable example is the work by Novotnỳ et al. [2020, 2021], which utilizes a
bi-encoder based on SentenceBERT [Reimers and Gurevych, 2022] to predict the percent-
age of upvotes for a question-answer pair within its original MSE thread. Rohatgi et al.
[2020, 2021] rerank conventional ad-hoc search results using the full token embeddings
averaged from a pretrained RoBERTa Transformer. The DPRL QASim method [Man-
souri et al., 2021b] employs two Transformers as similarity assessors. The first one is a
question-question SentenceBERT assessor, which is pretrained on the Quora website and
fine-tuned using related/duplicate links from the MSE website; the second assessor is a
question-answer model using TinyBERT [Jiao et al., 2019], pretrained on the MS-MARCO
dataset [Bajaj et al., 2016] and fine-tuned on the ARQMath-1 training data. The similarity
score generated by QASim is the product of the scores provided by these two assessors.
In the question-question model, the similarity is evaluated between the topic question and
the question associated with the document answer. The TU DBS systems [Reusch et al.,
2021b,a, 2022] has been the first to demonstrate that neural retrievers can achieve state-of-
the-art precision in math-aware retrieval on the ARQMath datasets. Their approach dur-
ing the ARQMath 2021 competition utilizes a cross encoder as the primary model [Reusch
et al., 2021b,a], while also exploring a less-effective ColBERT bi-encoder [Khattab and
Zaharia, 2020] for the initial retrieval stage. Notably, they were also pioneers in applying
deep models to formula search (Task 2). The backbone model of TU DBS is based on the
ALBERT Transformer [Lan et al., 2019], which is pretrained directly on the ARQMath
corpus, with a maximum token input length of 512.

In our recent work [Zhong et al., 2022b,a, 2023], I extensively explore the combination
of an efficient structure search method with other finely tuned bi-encoder Transformer
alternatives. Figure 2.6 provides an overview of the ontology related to our system, offering
insights into its historical development and various related systems.

27

However, hiding behind the great modeling power, issues like deployment complex-
ity, software pipeline cost, and efficiency are becoming more dominant considerations in
Transformer-based language modeling [Santhanam et al., 2022b]. Existing effective neural
retrievers in MIR, suffering from excessive input tokens and low budgets or resources, are
no exception in this regard – top effectiveness is often obtained from multi-vector represen-
tations [Zhong et al., 2022a], heavy ensembles [Geletka et al., 2022, Kane et al., 2022], or
running cross-encoder rerankers on a large set of candidates [Reusch et al., 2021b, 2022].

2.4 Experiment Datasets

Compared to the general information retrieval tasks, MIR dataset remains scarce. There
are two evaluation platforms that have hosted MIR tasks, namely NTCIR2 and more
recently, CLEF.3 In this thesis, the evaluation and comparison of systems and their ef-
fectiveness are conducted exclusively on these datasets. To evaluate the efficiency and to
pretrain the supervised retriever models, which require a larger dataset, I utilize a self-
hosted corpus obtained by crawling data from an additional data sources, i.e., the Art of
Problem Solving (AoPS) community WEB pages.4

NTCIR-12 Wiki Math Browsing

The NTCIR-12 Wiki Math Browsing (WMB) [Zanibbi et al., 2016a] is a formula search task
made from math-related pages in Wikipedia. It is widely compared by different systems
and it is also the most recent MIR dataset from the NTCIR series [Aizawa et al., 2013,
2014, Zanibbi et al., 2016a]. In contrast to earlier NTCIR MIR tasks [Aizawa et al., 2013,
2014], the WMB task focuses on evaluating similarity retrieval and employs more popular
query formulas [Mansouri et al., 2021a].

The documents contain around 591,000 isolated formulas, and the query can either
be a concrete formula or can contain wildcards specified by the special LATEX command
\qvar to match arbitrary subexpression or symbols, e.g., query \qvar{a}2 + \qvar{b}3
may match x2 + (y + 1)3. Judgment rating(s) are summed into a scale of 0 – 4, for each
judged formula, the ratings are mapped to fully relevant (if grade ≥ 3), partially relevant
(if grade ≥ 1), or irrelevant (if grade = 0). Top precisions are the official metrics, however,
bpref [Buckley and Voorhees, 2004] is often used in post-hoc evaluations.

2https://research.nii.ac.jp/ntcir/index-en.html
3https://www.clef-initiative.eu
4https://artofproblemsolving.com/community

28

https://research.nii.ac.jp/ntcir/index-en.html
https://www.clef-initiative.eu
https://artofproblemsolving.com/community

CLEF ARQMath

The Conference and Labs of the Evaluation Forum (CLEF) has hosted three MIR retrieval
tasks over consecutive years [Mansouri et al., 2020a, 2021c, 2022]. ARQMath datasets
offer a more comprehensive evaluation and contain five times more concrete math queries
compared to NTCIR. Given ARQMath-3 Task 1 for example, the judgment pool consists of
an average of 464 answer posts per topic, with a total of 80 assessed topics. All ARQMath
datasets share a common corpus, which comprises approximately 1 million questions and
28 million formulas extracted from the Math StackExchange (MSE) website5 between 2010
and 2018. Evaluation topics in each year are sampled from real-user questions posted after
year 2018. Relevance levels during judgment have High, Medium, Low, and Irrelevant
ordered from highest score 3 to lowest 0.

The initial two ARQMath collections (2020 and 2021, or ARQMath-1 and ARQMath-
2) encompass two tasks. Task 1 is about Community Question and Answer (CQA) and
entails retrieving relevant answer posts from the corpus using full-text queries sampled from
MSE user-generated questions. Task 2 focuses on formulas and aims to identify pertinent
formulas within the documents, considering their context, given a specific query formula
provided in a Task 1 topic. To ensure formula diversity, this task necessitates returning a
maximum of 5 visually distinct formulas; otherwise, the extra results will not be evaluated.
In the most recent ARQMath 2022 collection (ARQMath-3), an additional Task 3 has been
introduced. Task 3 is about Open Domain QA and requires participants to provide a single
answer for each topic in Task 1. The answer can be automatically generated or extracted
from existing data, potentially from outside the ARQMath collection.

ARQMath Task 2 and NTCIR-12 WMB share similarities as both are formula search
tasks. However, NTCIR-12 uses isolated formula for each query without considering its
context, while ARQMath Task 2 asks to retrieve a pertinent formula provided in math a
question. In addition, ARQMath-3 Task 2 encompasses 76 assessed topics, with an average
evaluation of 152.3 visually distinct formulas per topic. In contrast, the NTCIR-12 WMB
task consists of approximately 60 assessed topics per topic.

MSE and AoPS (self hosted)6

By extracting user-generated content from the MSE and AoPS math Q&A websites, two
math-content corpora were obtained. The size of these corpora ranges from 1 million to

5https://math.stackexchange.com
6Can be downloaded from https://www.cs.rit.edu/~dprl/data/mse-corpus.tar.gz

and from https://vault.cs.uwaterloo.ca/s/G36Mjt55HWRSNRR.

29

https://math.stackexchange.com
https://www.cs.rit.edu/~dprl/data/mse-corpus.tar.gz
https://vault.cs.uwaterloo.ca/s/G36Mjt55HWRSNRR

1.7 million documents. The larger corpus containing both MSE and AoPS data is intended
for data-consuming pretraining purposes, while the other corpus is adjusted to a smaller
size by only using MSE data. This adjustment ensures that the exhaustive search does not
take an excessive amount of time to run, additionally, it allows for noticeable differences
in query run times when comparing run times in Chapter 4.

2.5 Evaluation Measurements

The primary goal of information retrieval evaluation metrics is to measure the effectiveness
of a retrieval system in terms of how well it retrieves the most relevant documents in the top-
ranked results while minimizing the retrieval of non-relevant or irrelevant ones [Voorhees,
2019].

For ranked results at position i (default maximum m = 1000), a non-negative integer
score reli is the judged relevance level given by human expert(s). Due to limited resources,
usually only a small set of documents are judged, and selected documents are often con-
tributed by participant systems; this is called pooling. In a post-hoc evaluation, which
needs to consider those with unknown relevance (unjudged), the standard approach is to
assume them as irrelevant. ARQMath adopts the prime-version metrics as official mea-
surements which exclude unjudged search results, thus ensuring a fairer comparison for
systems evaluated in a post-hoc experiment.

NDCG NDCG (Normalized Discounted Cumulative Gain) is defined by

NDCG =
1

Z

m∑
i=1

2reli − 1

log2(i + 1)
(2.8)

where Z is the normalization factor computed from a perfect ranking. The prime version
NDCG’ is proposed by Sakai and Kando [2008].

Precision The P@k (precision at position k) [Schütze et al., 2008] is a binary metric
defined by the number of relevant items in top k results divided by k.

MAP MAP (Mean Average Precision) [Schütze et al., 2008] is a binary metric, calculated
from averaged query precision (AP) scores where

AP =
1

m

m∑
i=1

P@i. (2.9)

30

bpref bpref [Buckley and Voorhees, 2004] is a binary metric that naturally excludes
unjudged documents:

bpref =
1

|R|

|R|∑
i∈[R]

1 −

∣∣∣{n ∈ N : n < i}
∣∣∣

min(R,N)

 (2.10)

where R and N are the indices of judged relevant and irrelevant documents, respectively.

For binary metrics (Precision, MAP, and bpref), the H+M binarization is used in AR-
QMath collections by collapsing High and Medium relevance to 1, and Low and Irrelevant
to 0. For the NTCIR WMB collection, binarization is applied depending on the context,
evaluating either fully relevant or partially relevant results.

31

Chapter 3

Effective Structure Search

When evaluating semantic similarities in math documents, it is crucial to consider a broad
range of aspects. Among these aspects, structure similarity is relatively easier to define
compared to similarities in natural language, in addition, results show that the presence
of common (sub-)expressions is a strong indicator for the relevance of the formula or
the document in which it is contained. This observation provides an effective yet simple
approach to retrieving relevant math documents by comparing structure similarities in
formulas. In this thesis, I will adopt an axiomatic approach [Fang and Zhai, 2005] to capture
structure similarities in an unsupervised manner. This will involve explicitly designing a
set of rules that the scoring function should adhere to.

3.1 Structure Matching

The Operator Tree (OPT) representation captures the structure of a mathematical for-
mula by recursively constructing a tree that identifies operators and operands in each
sub-expression. In this representation, internal nodes correspond to operators and their
subtrees represent the operands (refer to Figure 3.2 for examples). I utilize this tree struc-
ture as an intermediate representation to assess similarity between formulas, as described
in our previous studies [Zhong and Fang, 2016, Zhong, 2015].

At a high level, the identification of the largest common substructures between two
OPT representations of formula pairs is accomplished by analyzing their leaf-root paths
(see Figure 3.1 for an illustration). These paths, intrinsic to the operator tree, remain
unaffected by the permutation of operand positions. Consequently, the path feature in

32

ADD

MUL FRAC SUBSUP

a b rank#1 rank#2

c d

BASE SUB SUP

e 1 2

Unique leaf-root paths
(after tokenization)

VAR/MUL/ADD

VAR/rank1/FRAC/ADD

VAR/rank2/FRAC/ADD

VAR/BASE/SUBSUP/ADD

VAR/SUB/SUBSUP/ADD

VAR/SUP/SUBSUP/ADD

VAR/MUL

VAR/rank1/FRAC

VAR/rank2/FRAC

...

Figure 3.1: Left: An example OPT representing a hypothetical formula ab + c
d

+ e21. Leaf
symbols are left untokenized for enhanced visibility. Right: Unique leaf root paths for this
example OPT (including prefixes). Note: A non-commutative operator such as fraction
(FRAC) will be attached by rank nodes [Zhong and Fang, 2016] to differentiate its actual
operands. And a sub- or super-scripted symbol might be constructed in the above way so
that it can be matched to a non-sub-scripted operand for a better recall.

ADD

MUL MUL a z

b c x y

ADD

GROUP MUL

ADD

MUL a

b c

x y

Figure 3.2: Matching multiple formula subtrees between the OPT representations of for-
mulas a+bc+xy+z and (a+bc)+xy as shown in the left and right of the figure respectively.

33

the OPT representation captures both the commutativity of operands and the existence of
common substructures, the latter is captured by matching the prefixes of leaf-root paths.
On the other hand, they can also provide an efficient approximation of structural overlaps.
These statements are further illustrated in this chapter.

3.1.1 Structure Similarity

To formally define the structure matching approach, I incorporate graph or subtree iso-
morphism definitions [Shamir and Tsur, 1999]. The notation for a tree T is denoted as
T = T (V,E, r) which implies a labeled rooted tree with root r and edges (v1, v2) ∈ E(T),
moreover, each vertex v ∈ V (T) (or v ∈ T) is associated with a label or symbol ℓ(v) which
is not necessarily unique in a tree. Here I further define formula subtree and common
formula subtree [Zhong and Zanibbi, 2019].

Definition 3.1.1. Given rooted trees S and T , we say S is a formula subtree of T , denoted
as S ⪯l T , if there exists an injective mapping ϕ : V (S) → V (T) satisfying:

1. ∀ (v1, v2) ∈ E(S), we have (ϕ(v1), ϕ(v2)) ∈ E(T);

2. ∀ v ∈ V (S), we have ℓ(v) = ℓ(ϕ(v));

3. If v ∈ V (S) is a leaf vertex in S, then ϕ(v) is also a leaf in T .

Definition 3.1.2. A common formula subtree of two trees Tq and Td consists of two

corresponding formula subtrees T̂q of Tq and T̂d of Td where they are isomorphic and also
subgraphs of Tq and Td respectively. Let CFS(Tq, Td) denote the set of all such common

formula subtrees of Tq, Td, i.e., CFS(Tq, Td) = {T̂q, T̂d : T̂q ⪯l Tq, T̂d ⪯l Td, T̂q
∼= T̂d, T̂q ⊆

Tq, T̂d ⊆ Td} where “∼=” and “⊆” indicate graph isomorphism and subgraph relations
respectively.

In addition to the regular common subtree isomorphism, a common formula subtree
requires leaves in a subtree to be mapped to the leaves in the counterpart. In other words,
formula subtrees are matched bottom up from the leaves (or operands).

Similar to the definition of a common forest [Valiente, 2002], I use disjoint common
subtrees to describe multiple subexpression matches. Figure 3.2 illustrates two matching
common subexpressions (a + bc and xy), with the matches highlighted in grey and bold.
We call these matches a common formula forest. It consists of common formula subtree(s)
identified by disjoint (T̂ i

q , T̂
i
d) pairs:

34

Definition 3.1.3. A set of common formula subtrees π is called a common formula forest
of two formula trees Tq and Td,

π = {(T̂ 1
q , T̂

1
d), (T̂ 2

q , T̂
2
d), ...(T̂ n

q , T̂
n
d)} ∈ Π(Tq, Td) (3.1)

if for i = 1, 2, ...n:

(1) T̂ i
q , T̂

i
d ∈ CFS(Tq, Td)

(2) T̂ 1
q , T̂

2
q , ...T̂

n
q are disjoint, and T̂ 1

d , T̂
2
d , ...T̂

n
d are disjoint.

where Π(Tq, Td) denote all possible common formula forests of Tq and Td.

For the structural similarity metric, I want to find the “largest” common formula forest
to represent the most similar parts of two math expressions. In order to define “large”
generally, the similarity function between two formula trees is parameterized by some
scoring function γ of π ∈ Π(Tq, Td):

Definition 3.1.4. The formula tree similarity of Tq and Td given scoring function γ is

Γγ(Tq, Td) = max
π∈Π(Tq ,Td)

γ(π) (3.2)

which converts the similarity assessment of a pair of formulas into a structure matching
problem. Obviously, this similarity only captures one aspect of math formula semantic sim-
ilarity, i.e., their structure similarity. Nevertheless, extensive studies [Davila and Zanibbi,
2017, Zhong and Zanibbi, 2019] have demonstrated that a strong structure match serves
as a reliable indicator and is highly effective in estimating the relevance of a match.

To measure the common structure “size”, intuitively, I choose the number of matched
tree nodes to define the scoring function. Since the similarity contribution of different
nodes (i.e. operands and operators) may be non-uniform, I propose the multi-tree matching
similarity scoring function γ:

γ(π) =
∑

i:(T̂ i
q ,T̂

i
d)∈π

βi ·
(
α · internals(T̂ i

d) + (1 − α) · leaves(T̂ i
d)
)

(3.3)

where internals(T) is the number of internal nodes or operators in T , leaves(T) is the
number of leaves or operands in T , and α ∈ [0, 1] adjusts the similarity contribution by
operators and operands. Lastly, βi ≥ 0 are the contribution weights for different common
formula subtrees.

35

For the convenience of later discussion, I assume the summation in Eq. (3.3) is per-
formed from the widest common formula tree in descending order, indexed by i, i.e.,
(T̂ i

q , T̂
i
d) is the i-th widest match (in terms of number of matched leaves) in π. And I

set β1 ≥ β2 ≥ ... ≥ βn heuristically to weight “wider” subexpressions higher.

In practice, it is wasteful to compute all terms in Eq. (3.3) if the largest M matched
subexpressions cover most of the total matched size, therefore, the scoring function in
Eq. (3.3) can be approximated by fixing βi = 0 for i > M . Essentially, it becomes
measuring top-n common formula subtrees with the greatest number of matched operands.

Considering multiple common subtrees and evaluating all types of nodes for all common
trees can still be a computationally expensive process. A simplified scoring function is
further introduced, it only measures the number of matched leaf nodes from the widest
common tree, i.e., when α = 0, β1 = 1,M = 1. Formally, the widest formula tree similarity

w∗ = max
(T̂q ,T̂d)∈π

leaves(T̂d), π ∈ Π(Tq, Td) (3.4)

Presumably, different parts of the structure contribute differently to the similarity. For
example, the left hand side of the equation “i2 = −1” is a better signature than the right
hand side not because it contains more symbols but because the squared power of i is a
more rarely seen substructure, and as such, its presence in a document results in a greater
reduction of the conditional information entropy [Robertson, 2004, Aizawa, 2003]. As a
result, I further introduce a path-weighted widest formula tree similarity, i.e., w̄∗, to make
a distinction among different paths associated to different operands:

w̄∗ = max
(T̂q ,T̂d)∈π

∑
i

idfi, π ∈ Π(Tq, Td) (3.5)

where idfi is the classic idf weight (see Section 3.1.2) associated with each leaf or operand
indexed by i = 1, 2, ..., leaves(T̂d).

3.1.2 Path Weighting

The rationale behind applying idf weighting to path-based structure matching is akin
to its use in text search methodologies. By incorporating this weighting scheme, path-
based structure search becomes highly compatible with existing retrieval models based on
inverted indexes [Croft et al., 2010]. However, unlike the idf weight in text search where
each token match is assigned an idf weight, in structure search, the summation of path

36

idf weights is associated with each structure match. In the following, I will present a few
initial assumptions that can help justify the assignment of path weights.

If we were going to rank a structure match by a reciprocal probability of a given matched
path set P being non-relevant (i.e., event R̄), then

1

P (R̄ | P)
=

P (P)

P (P | R̄) · P (R̄)
∝ 1

P (P | R̄)
(3.6)

where the posterior is estimated by a proportional likelihood without affecting the ranking.

Let ui be the probability of a path i occurring in a non-relevant maximum match R̄,
and assume ui is independent and non-uniform among paths, then

1

P (R̄ | P)
∝
∏
i∈P

1

ui

∏
i ̸∈P

1

1 − ui

(3.7)

=
∏
i∈P

1

ui

∏
i∈P

1 − ui

1

∏
i∈P

1

1 − ui

∏
i ̸∈P

1

1 − ui

(3.8)

=
∏
i∈P

1

ui

· 1 − ui

1

∏
i

1

1 − ui

(3.9)

⇒ log
1

P (R̄ | P)
∝
∑
i∈P

log
1 − ui

ui

(3.10)

Because most of the paths are likely to occur in a non-relevant maximum match, it is
reasonable to approximate ui = DFi/N where DFi is the document frequency of path i,
and N is the total number of paths in the index. As a result,

log
1

P (R̄ | P)
∝

∑
i∈P

log
N − DFi

DFi

≈
∑
i∈P

log
N

DFi

=
∑
i∈P

idfi (3.11)

Eq. 3.11 can be plugged into Eq. 3.5. Similar to text search, the idf weight of a path can
be pre-computed during the construction of a search index. As a result, Eq. 3.5 can be
viewed as a generalized form of the scoring function described in Eq. 3.4, while retaining
the efficiency of only needing to calculate matched leaves.

3.1.3 Approximated Matching

The problems of determining the largest common sub-tree and computing the edit distance
between unordered labelled trees are NP-hard [Zhang and Jiang, 1994]. There are other

37

MUL

a b

MUL

c d e

ADD

(a) Query OPT.

FRAC

ADD MUL

MUL MUL c d e

a b c d

(b) Greedy match.

FRAC

ADD MUL

MUL MUL c d e

a b c d

(c) Optimal match.

Figure 3.3: An counterexample when the greedy widest match does not yield the defined
formula tree similarity. OPT in (a) is the matching subject, OPTs in (b) and (c) show two
different possible common formula subtrees highlighted in bold colors. The non-optimal
match in (b) has fewer nodes matched but is found using the greedy widest matching by
identifying the widest common tree as the first tree.

tree matching algorithms that are linear-time [Valiente, 2002] but would require unlabeled
nodes and matching vertex out degree (i.e., matching the entire bottom-up subtree at some
node), which are too restrictive for retrieval purpose, e.g., x + y will not match x + y + z
due to out degree mismatch. To practically compute formula tree similarity, I propose a
few assumptions that approximate the equality of a match for substructures using only
leaf-root paths.

Assumption 1. If π∗ ∈ Π(Tq, Td) is the maximizer of defined formula tree similarity given
by Eq. 3.2 for α = 0 and β1 ≫ β2 ≫ ... ≫ βn, then π∗ is assumed to be also the maximizer
for any α > 0 and β1 ≥ β2 ≥ ... ≥ βn.

Under Assumption 1, it is hypothesized that finding multiple widest common formula
subtrees greedily will yield the defined formula tree similarity, while this may not be the
case in reality (see Figure 3.3).

On the other hand, I propose to use leaf-root paths from OPT as the basic search unit
for efficient retrieval. There are two reasons: (1) In the OPT representation, “vertical”
leaf-root paths are inherently immune to positional permutations in operands, this makes it
naturally a good set of features for math formula similarity assessment even if the operands
are under a commutative operator. (2) We can extract the prefixes of leaf-root paths to
find subexpressions. See Figure 3.3 for instance, the {c,d,e}/MUL paths in (a) are prefixes
of the leaf-root paths {c,d,e}/MUL/FRAC in (c), and they can be used for matching the
subtree structure they represent without matching the entire original tree.

To maximize recall, two paths can match if they are identical after applying tokenization
(or unification) on each of the symbols along the path (e.g., the OPTs representing a + b

38

ADD

MUL a

b c

(a)

ADD

MUL MUL a

b c x y

(b)

ADD

MUL MUL a

b c x y

(c)

Figure 3.4: OPT representations for formula a+bc shown in (a), and for formula a+bc+xy
shown in (b) and (c). Highlighted in bold grey are the same set of leaf-root paths in each
tree, only in (a) and (b) are they corresponding to isomorphic substructures.

and x + y have the same set of tokenized leaf-root path VAR/ADD, they can be matched
regardless of having different symbols), and the symbol match is left to be performed after
identifying a structure match (see Section 3.2.1).

To efficiently test for identical structures using only leaf-root paths, let P(T) denote
the set of all leaf-root paths from a rooted tree T . Another assumption is made:

Assumption 2. For rooted trees Tq and Td, let Sq = P(Tq), Sd = P(Td). If there exists
perfect matching M(Sq, Sd, E), then assume Tq

∼= Td,

where a matching between path sets S1, S2 is defined as bipartite graph M(S1, S2, E) where
E is the set of edges representing assigned matches. Assumption 2 hypothesizes that two
subtrees are structurally identical if their leaf-root paths match, however, this is also not
necessarily true (see Figure 3.4).

Under Assumptions 1 and 2, it can be shown that given a pair of OPTs Tq and Td, if we
can find Sm

q , Sm
d = arg max |E| for any perfect matching M(Sm

q ⊆ Sq, S
m
d ⊆ Sd, E) where

Sq = P(T̂q), Sd = P(T̂d) and T̂q ⪯l Tq, T̂q ⊆ Tq, T̂d ⪯l Td, T̂d ⊆ Td, then the widest match

of π∗ ∈ Π(Tq, Td) has leaves(T̂ 1
q) = leaves(T̂ 1

d) = |Sm
q | = |Sm

d |. In other words, matching
greedily the leaf-root paths from query and document OPT subtrees can be used to get
the number of leaves of the widest matched tree in a common formula forest π∗ to obtain
the defined formula tree similarity given by Eq. 3.2.

3.1.4 Multi-Tree Matching

In many cases we find multiple subtree matches are beneficial to assess formula struc-
ture similarity. As an example, consider the following two variations of the Vandermonde

39

identity that should be regarded as similar:∑
k=0

r−1

(
n

2k + 1

)(
n

2r − 2k − 1

)
and

∑
k=0

r

(
n

2k

)(
n

2r − 2k

)
(3.12)

It is easy to observe that the multiple subexpressions highlighted in different colors are
better capturing the similarity of these expressions than only considering the single largest
matched subexpression.

We can obtain multiple matches recursively. To find out the next maximally matched
subtree, assuming that leaves(T̂ 1

d) is obtained, we can exclude already matched paths and
similarly compute other leaves(T̂ i

d) for i = 2, 3, ..., n specified by multi-tree matching sim-
ilarity in Eq. 3.3. On the other hand, to get the number of operators associated with
matched leaves, assume we have greedily found the set of leaves that belongs to the max-
imizer π∗ for α = 0 and β1 ≫ β2 ≫ ... ≫ βn, then under assumption 1, we can obtain
the best multi-tree match in Eq. 3.2 by the following steps: first go through all subtree
pairs (T x

q , T
y
d) rooted at x ∈ Tq, y ∈ Td, and examine if it joins with any pair of already

matched trees in π∗ by looking at whether their leaves intersect. If true, we will count x, y
as additional matched operators.

Algorithm 1 proposed by Zhong and Zanibbi [2019] depicts in detail the multi-tree
matching procedure described above. The algorithm of multi-tree matching first does
greedy leaf matching in operandMatch, finding the k widest matched trees in terms of
the number of leaves. Then it discovers the matched operators in operatorMatch by
examining if an internal node shares any leaf with the already matched ones. Note that
only visible operators are counted, this is because some internal OPT nodes are abstract
and do not appear in the rendered math expression (e.g., the SUB or SUP nodes), counting
them will bias the similarity measurement in the model. Algorithm 1 avoids counting
those nodes by consulting a pre-built “visibility” mapping for operators (i.e., the visible
function).

Figure 3.5 illustrates an imaginary table that helps to understand Algorithm 1. Each
path decomposed from their OPT representation is inserted into a corresponding table
cell which groups a set of matching candidates. Each cell also represents an element of
input list L in Algorithm 1. The highlighted cells in dark colors (blue and green) represent
the widest matched trees. The highlighted cell in light color (light blue) represents the
matched operator belonging to some already matched tree.

40

.......

(a+bc) + xy

ADD

a

MUL

b

c

MUL

x y

Figure 3.5: Matching multiple formula subtrees between the OPT representations of for-
mulas a+bc+xy+z and (a+bc)+xy as shown in the left and right of the figure respectively.
Path set consists of tokenized leaf-root paths with all prefixes.

41

Algorithm 1 Multi-tree matching for formula trees

Let (Sm
q , Sm

d) be the maximum matching path set of given path set (Sq, Sd).
Define ℓ(S) to be all the leaf nodes (equivalently, path IDs) for path set S.
function operandMatch(Qm, Dm, L, k, leavesCounter)

QX := { }, DX := { } ▷ Excluded path set
for i = 0, 1, ..., k do

Qmax, Dmax, max := 0 ▷ Best matched tree records
for (Sq, Sd) from L do

if QX ∩ ℓ(Sq) = ∅ and DX ∩ ℓ(Sd) = ∅ then ▷ Disjoint tree pairs
if |Sm

q | > max then ▷ Greedily find widest matches
max := |Sm

q |
Qmax, Dmax := ℓ(Sm

q), ℓ(Sm
d)

if max > 0 then
QX , DX := QX ∪ Qmax, DX ∪ Dmax

Qm
i , Dm

i := Qmax, Dmax

leavesCounter[i] = max
else ▷ No more possible operand matchings

break
return Qm, Dm, leavesCounter

function operatorMatch(Qm, Dm, L, k, operatorsCounter)
Let Qmap, Dmap be maps of matched internal nodes, initially empty.
for (Sq, Sd) from L do

for i = 0, 1, ..., k do
if Qm

i ∩ ℓ(Sq) ̸= ∅ and Dm
i ∩ ℓ(Sd) ̸= ∅ then ▷ Joint tree pairs

Let nq, nd be the root-end nodes of Sq, Sd respectively.
if Qmap[nq], D

map[nd] are both empty then
Qmap[nq], D

map[nd] := nd, nq

if visible(nq) then
operatorsCounter[i] := operatorsCounter[i] + 1

break
return operatorsCounter

function formulaTreeMatch(Tq, Td, k)
for i = 0, 1, ..., k do

Qm
i := { }, Dm

i := { } ▷ Matched path set for i-th largest matched tree
leavesCounter[i] := 0
operatorsCounter[i] := 0

L := List of (Sq, Sd) where Sq, Sd ∈ P(T x
q),P(T y

d) for each node x ∈ Tq, y ∈ Td.
Qm, Dm, leavesCounter := operandMatch(Qm, Dm, L, k, leavesCounter)
operatorsCounter := operatorMatch(Qm, Dm, L, k, operatorsCounter)
return leavesCounter[i], operatorsCounter[i] for i = 1, 2, ...k

42

3.2 Other Unsupervised Similarities

3.2.1 Symbol Similarity

Aside from structure similarity, math formula similarity is also reflected in symbols. For
example, E = mc2 and y = ax2 have the same structure representation but they differ
greatly in semantics due to the symbol mismatch. Intuitively, an exact match of symbols
should be prioritized, however, we need to allow symbol substitution as well, e.g., formulas
x+ y+ y2 and y+x+x2 are considered “nearly identical” due to their symbol equivalence
after substitutions (this is also called α-equivalence, see Kohlhase and Sucan [2006]).

To address symbol similarity, I have defined a list of axiomatic rules to rank formu-
las heuristically. Let the unique instances of each symbol in a formula be named bound
variables, for example, there are 3 bound variables x, y and 2 in the example formula of
x + y + y2. Now, assume we have already obtained the structural matching results for all
bound variables, the axiomatic rules require:

1. Exact match exceeds non-exact match: Exact symbol match of bound variables
exceeds the match of different symbols if their number of matches are the same. For
example, the similarity between x and x exceeds that of y and x.

2. Uniform similarity for different symbols: The match of bound variables with
different symbols should have equal similarity if their number of matches are the
same. For example, the similarity between y and x is equally similar to a and b.

3. Bound variable greediness: If the number of matched variables are not the same,
the match with greater bound variable cardinality should exceed the match of a
smaller cardinality. For example, x + x and y + y are considered more similar than
x + x and x + z even if the latter one has an exact match for letter x.

4. Compositionality: The overall symbol similarity is composed of its optimal individ-
ual bound variable matches. For example, we can greedily accumulate the similarity
(sub)scores between the matches for different bound variables to obtain the overall
formula similarity.

Algorithm 2 is used to apply the rules listed above. These rules are heuristic because
the symbol similarity are inherently subjective; however, an axiomatic approach allows an
algorithm to assess similarity between math formulas in a more principled way.

43

Algorithm 2 Mark and Cross (Hashmap implementation)
Input: The established path match m.
Output: Symbol similarity score (allowing symbol substitutions).

1: function Mark(m)
2: bound scores := an empty hashmap with zero as default value.
3: for each query and document path pair (q, d) in m do
4: δ := 1 if q, d match completely, b1 if operands match, otherwise b2 where 0 < b2 < b1.
5: sq, sd := leaf symbol of q and d, respectively.
6: bound scores[sq][sd] := bound scores[sq][sd] + δ

7: return bound scores
8:

9: function Cross(bound scores)
10: score := 0 ▷ Symbol similarity score.
11: cross := an empty hashmap ▷ Excluded (already matched) document variables.
12: for each sq in bound scores do ▷ In desc. order of query bound variable sizes.
13: max subscore, max sd := 0, ∅
14: for each sd in bound scores[sq] do
15: if cross[sd] then
16: continue
17: if max subscore < bound scores[sq][sd] then
18: max subscore := bound scores[sq][sd]
19: max sd := sd
20: if max subscore = 0 and any path of sq requires exact match then
21: return 0 ▷ Abort early if specified exact match cannot be fulfilled.
22: else if max sd ̸= ∅ then
23: cross[max sd] := true
24: score := score + max subscore

25: return score
26:

27: function SymbolSimilarity(m)
28: bound scores := Mark(m)
29: return Cross(bound scores)

44

Aside from leaf symbols, the fingerprint of each path is also compared. We will assign
the highest path-match weight if both values agree, a medium weight if leaf symbols match
but the fingerprints do not, and a lower path-match score if otherwise. The fingerprint
captures a local symbol appearance for operators on a path, it can be used to differentiate
formulas of the same structure but with different math operator(s). The fingerprint is
generated for each path by computing the Fowler-Noll-Vo HASH [Noll, 2023] from the leaf
node up to a number of operator nodes above.

The process of Algorithm 2 is illustrated in Table 3.1. The algorithm has two phases,
a Mark phase that associates the match scores for individual path after their structurally
matched candidates have been obtained, and a Cross phase to greedily accumulate scores
from larger bound variable grids and to exclude them from being matched further. More
specifically, paths in the common structure are first paired by their symbols, then, the
operand symbol and other similarity features associated with each path will determine the
symbol score by summing the partial match scores δ from bound variable grids with the
highest scores to the lowest, excluding previously matched bound variables from the docu-
ment. Since the Mark phase can be accelerated by indexing bound variables, Algorithm 2
has a time complexity of O(Bq · Bd) where Bq and Bd are the number of bound variables
from query and candidate formulas respectively.

In Algorithm 2, if neither the leaf symbol nor any feature matches, a base score b is
assigned (i.e., b1 or b2, depending on their symbol match degree) to count for structure
match. The first heuristic rule implies b < 1; and due to the 3rd rule, we have k × b >
(k − 1) × 1 for k ∈ N+. Accordingly, the base scores are chosen to be non-zeros or closed
to 1. The base scores b1 and b2 are given as hyperparameters in Algorithm 2.

3.2.2 Context Lexical Similarity

Math document similarity, despite potentially relying on key formulas, cannot disregard
the presence of textual content. To incorporate context awareness into math document
retrieval, I propose to utilize unsupervised scoring functions from traditional IR.

Unsupervised lexical similarity has a long list of options,1 but traditional fulltext search
commonly adopts tf–idf or its variants [Kamphuis et al., 2020] because they incorporate
global word distribution and tend to perform robustly against many datasets. Among them,
the BM25+ scoring [Lv and Zhai, 2011] stands out in effectiveness for long documents. For

1See this Python package README for a list of well-summarized text similarity measurements:
https://pypi.org/project/textdistance

45

https://pypi.org/project/textdistance

Table 3.1: Illustration of the Mark and Cross scoring (Algorithm 2) for formulas x +
y + y2 and −y + x + x2. The set of leaf-root paths for x + y + y2 are x, y: VAR/ADD; y:
VAR/BASE/SUBSUP/ADD; 2: NUM/SUP/SUBSUP/ADD. And the set of leaf-root paths for −y+x+
x2 are y, x: VAR/ADD; x: VAR/BASE/SUBSUP/ADD; 2: NUM/SUP/SUBSUP/ADD. Bound variables
(variables of the same symbol) are separated by double borders. For better visualization,
the box notation is meant to give some structure context. Matching candidates in each
cell are marked by their associated partial similarity scores, and the committed matches
are crossed greedily top down, highlighted in grey. In this example, b1 = 0.9 and b2 = 0.8.
The (unnormalized) symbol similarity score is (0.8 + 0.8) + 0.8 + 1.0 = 3.4.

Bound Var.
x y 2

x x 2 −y x 2

y 2 0.8

y 0.8 0.9

x 1.0 0.8

y 2 1.0

46

BM25 variances (Section 2.1.1), BM25+ is often used for math formula context similarity
scoring. More specifically, the BM25+ scoring function is defined as:

BM25+(q, d) =
∑
t∈q

log

(
1 +

N − dft + 0.5

dft + 0.5

)
·

tf t,d
tf t,d + k1(1 − b + b(Ld/Lavg))

(3.13)

where k1 and b are hyperparameters, and N , dft, tft,d, Ld, Lavg refer to the total number
of documents, the document frequency of the term t, the term frequency of term t in the
document d, the length of document d, and the average document length respectively.

3.2.3 Overall Similarity

A scalar value representing the overall similarity score is needed to determine the priority
of a search result when returning it to a user in an ad-hoc retrieval. To combine different
similarities, relevant score factors are multiplied by the structure similarity score γ(π∗) (see
Section 3.1.1), after obtaining the best-matched substructure(s) π∗.

First, the symbol similarity (see Section 3.2.1) conditioned on the matched structure
π is normalized to S ′

sym. Then, for query formula Q and document formula D, the final
symbol score factor Ssym is a further rescaled version that contributes more distinctions
for formulas of similar S ′

sym scores:

Ssym(Q,D | π) =
1

1 + (1 − S ′
sym)2

(3.14)

Second, a penalty factor is introduced to penalise long formulas in a document. Assume
the original formula length is LD, how much the penalty P (D; η) will be assigned to an
inverted log rescaler is determined by a hyperparameter η ∈ [0, 1]:

P (D; η) = 1 − η + η · 1

log(1 + LD)
. (3.15)

Finally, the overall score for math formula similarity S(Q,D) is given by

S(Q,D) = γ(π∗) · Ssym(Q,D | π∗) · P (D; η) (3.16)

where π∗ = argmaxπ γ(π) is calculated by performing structure matching, as described in
Sections 3.1.3 and 3.1.4.

47

There is an old form used in Zhong and Zanibbi [2019] where we apply F-score – or
equivalently, harmonic mean – onto structure and symbol similarities:

SF (Q,D) = F-Score
(γ(π∗)

|leaves(Tq)|
, Ssym(Q,D | π∗)

)
· P (D; η). (3.17)

Compared to the F-score form, the product form is more efficient and similar to tf–idf –
if the structure similarity is represented by the path-weighted widest formula tree defined
in Eq 3.5, it resembles the tf–idf scoring except that the “term frequency” here counts for
common structure “width”, i.e., the number of matched leaves in the common subtrees.
Inspired by this insight, it is natural to combine tf–idf and structure search scores in a
single and uniform weighted summation.

As a result, the final score consists of the tf–idf score for text and scores for each math
formula similarity defined by Eq 3.16, weighted by a math path weight scaler λm [Zhong
et al., 2021], when using BM25+,

Sall(Q,D) = λm · S(Qmath, Dmath) + BM25+(Qtext, Dtext) (3.18)

where Qtext, Dtext are query and document text tokens extracted from query Q and doc-
ument D. Similar meaning applies to Qmath, Dmath except the math tokens are isolated
formulas (e.g., in LATEX representations). The above pipelines unleash an unsupervised
math-aware retrieval model that we name Approach Zero. 2

3.3 Evaluation

3.3.1 Experimental Setup

For formula search evaluation, I consider MIR tasks including the NTCIR-12 WMB [Zanibbi
et al., 2016a] and the ARQMath-3 Task 2 benchmark [Mansouri et al., 2022].

For the NTCIR-12 dataset, with approximately only 600,000 formulas available, it is
practical to perform a comprehensive evaluation of the multi-tree matching. We consider
all 20 concept queries in this dataset. Unless specified in Section 3.3.3, the formula length
penalty weight, denoted as η, is set to 0.05.

2Approach Zero or approach0 gets its name from the math vocabulary “asymptotics”, the core concept
to define a limit.

48

In the ARQMath dataset, with tens of millions of formulas, only the widest formula
tree is evaluated due to efficiency constraints. Additionally, to ensure proper parsing of
LATEX markup into the expected OPT, 20 of the query formulas are manually refined to
adhere to conventional mathematical expression notations. For example, we inserted a
comma in B.336 query formula to separate two conditions in a set expression (where the
original expression uses a long space for separation). Without manual corrections, it would
be challenging to automatically suggest these changes to ensure that every user-generated
formula can be converted into a clear OPT representation for effective retrieval. The
formula length penalty η is set to 0.3 in this dataset.

In Eq. 3.18, the math path weight λm is set to 2.5 and the default BM25+ hyper
parameters b = 0.75, k1 = 2.0. Unless specified otherwise, an optimal set of parameters
where β1 = 0.9, β2 = 0.06, β3 = 0.04, α = 0.4 is applied for Eq. 3.3 [Zhong and Zanibbi,
2019]. Additionally, the symbol score thresholds b1, b2 in Algorithm 2 are set to 0.94 and
0.9 (the choice of these parametric values are explained in Section 3.3.3). When evaluating
parameters independent of the number of matched trees, experiments were performed using
a single-tree matching setting.

3.3.2 Main Results

The formula search evaluation results on NTCIR-12 and ARQMath-3 are summarized in
Table 3.2 and 3.3 respectively (systems highlighted in bold font refer to the Approach Zero
system discussed in this thesis).

We can see the proposed unsupervised formula search is competitive on the NTCIR-
12 dataset; the evaluation scores are even comparable to those of learned deep models
(e.g., MathBERT [Peng et al., 2021] and ColBERT [Zhong et al., 2022b]). In addition,
the current state-of-the-art system, i.e., MathAPP, is an ensemble system combining our
run to generate search results. It is noteworthy that MathAPP, when incorporating our
structure search run into its baseline Transformer-based retriever MathBERT, achieves a
15% improvement in the effectiveness of fully relevant search results. This observation
suggests that the proposed structure search model is highly effective in identifying fully
relevant formulas. It also highlights the significance of structure similarity as a crucial
prior relevance signal when evaluating the semantic similarity of formulas.

On the larger-scale ARQMath dataset, where running expensive models efficiently is
impractical, our more efficient single-tree matching approach surpasses other state-of-the-
art models. Specifically, the proposed structure matching model achieves a 12% higher
precision in the top search results compared to another effective unsupervised retriever,

49

Table 3.2: Effectiveness evaluation in the NTCIR-12 Wiki Formula Browsing Task. Our
unsupervised retriever is compared to the most effective existing systems. The systems
can be categorized into three groups: expensive, cost-effective, and ensemble.

System Part. Rel. Fully Rel. Note

E
x
p
en

si
ve (1) MCAT (Kristianto et al. [2016]) 0.57 0.57 Avg run time ≥ 25 secs

(2) Tangent-S (Davila and Zanibbi [2017]) 0.59 0.64 High variance in run times

(3) Our ColBERT (Zhong et al. [2022b]) 0.48 0.55 High resource demand

C
os
t-
eff

ec
ti
ve

(4) Our DPR (Zhong et al. [2022b]) 0.43 0.52 Transformer bi-encoder

(5) GNN (Song and Chen [2021]) 0.54 0.63 Using GNN

(6) Tangent-CFT (Mansouri et al. [2019a]) 0.71 0.60 FastText Embedding

(7) Ours (Zhong et al. [2020]) 0.54 0.63 Using single-tree match

(8) Ours (Zhong and Zanibbi [2019]) 0.60 0.67 Using 3-tree match

E
n
se
m
b
le (9) TanAPP (Mansouri et al. [2019a]) 0.73 0.70 Tangent-CFT + Ours

(10) MathBERT (Peng et al. [2021]) 0.74 0.61 2-layer BERT embeddings

(11) MathAPP (Peng et al. [2021]) 0.76 0.72 M.BERT + T.-CFT + Ours

Table 3.3: Effectiveness evaluation in the ARQMath-3 (2022) Formula Search Task (Task
2). Our retriever is evaluated against the top-performing results from other participant
teams where the Tangent-CFTED system utilizes a supervised model with tree distance
reranking. The Judged metrics measures the percentage of judged hits.

Runs
ARQMath-3 Task 2

NDCG’ MAP’ P’@10 bpref Judged

Most effective systems

(1) Tangent-CFTED [Mansouri et al., 2020b] 0.694 0.480 0.611 0.471 61.7
(2) MathDowsers [Kane et al., 2022] † 0.640 0.451 0.549 0.443 60.3

Ours using single-tree matching

(3) Ours [Zhong et al., 2022a] † 0.639 0.501 0.615 0.505 45.9

“†”: using unsupervised method.

50

MathDowsers [Kane et al., 2022]. It is worth noting that while MathDowsers also employs a
structure matching approach, it extracts over five types of features from SLT paths. On the
other hand, Approach Zero explicitly models structure similarity from the matched OPT
leaf-root paths, requiring to index tokens only proportional to the number of operands.

Our proposed structure match is also on par with Tangent-CFTED [Mansouri et al.,
2020b], an upgraded version of Tangent-CFT [Mansouri et al., 2019a]. Tangent-CFTED
uses tree distance to rerank results retrieved from learned structure embeddings. The
evaluation on the ARQMath benchmark demonstrates that our single-tree matching alone
can obtain effective formula search results comparable to learned and more complex models.
The efficiency of a single-tree matching structure search model enables its application on
real-world scale datasets. Moreover, there is significant potential for further improvement
in efficiency in single-tree matching, as discussed in Chapter 4.

3.3.3 Ablation Study

Number of matched trees and types of matched nodes First, we have explored
the impact of matching different number of substructures. Figure 3.6 shows representative
parameter values that we have tried. We started with a single tree match (rows 1–4),
finding that weighting operator symbol matches slightly lower than operands (α = 0.4)
have produced the best results (we tried α in [0, 1] using an increment of 0.1). We then
fixed α = 0.4,

∑n
i βi = 1, and tried uniform weights (rows 5–7) and non-uniform weights

for two trees (rows 8–10) and three trees (rows 11–13). We examined uniform β weights
for multiple matches up to 3 trees. For non-uniform weights in two-trees, we consider β1

in [0.5, 0.99] using increments of 0.05 or 0.01; for three-tree matching, we considered β1 in
[0.5, 0.95] and β2 in [0.05, 0.45] using increments of 0.05.

Results in Figure 3.6 shows uniform weights generally yield worse results than non-
uniform ones. And two runs from non-uniform weights obtain the best partial and full
relevance scores respectively. This observation is intuitive because our setting of non-
uniform weights emphasizes larger subexpressions, which arguably have more visual impact.
However, even if multi-tree matching does improve effectiveness, the retrieval based on
single tree matching (even with only operand matching) can also generate competitive
fully relevance results with minimal computational overhead.

Second, to illustrate the effect of matching multiple subexpressions, Figure 3.7 shows
changes in fully relevant bpref scores for different queries, when changing the maximum
number of matched trees with uniform weights. For space, Figure 3.7 omits queries whose
score remains unchanged or differs negligibly across the maximum number of common trees

51

Run
Parameters

α β1 β2 β3
(1) opt-only 1.0 1.00
(2) opd-opt-a6 0.6 1.00
(3) opd-opt-a4 0.4 1.00
(4) opd-only 0.0 1.00

(5) uni-beta-1 0.4 1.00
(6) uni-beta-2 0.4 0.50 0.50
(7) uni-beta-3 0.4 0.34 0.33 0.33

(8) 2-beta-98 0.4 0.98 0.02
(9) 2-beta-80 0.4 0.80 0.20
(10) 2-beta-60 0.4 0.60 0.40

(11) 3-beta-90-4 0.4 0.90 0.06 0.04
(12) 3-beta-75-2 0.4 0.75 0.15 0.10
(13) 3-beta-60-3 0.4 0.60 0.25 0.15

0.40 0.45 0.50 0.55 0.60 0.65 0.70
bpref score

opt-only
opd-opt-a6
opd-opt-a4

opd-only
uni-beta-1
uni-beta-2
uni-beta-3
2-beta-98
2-beta-80
2-beta-60

3-beta-90-4
3-beta-75-2
3-beta-60-3

partial relevance
full relevance

Figure 3.6: Evaluation results on the NTCIR-12 Wiki Formula Browsing Task from dif-
ferent number of maximum matching subtrees and the α parameter (table and bar graph).

being considered. We observe that different queries have different behaviours as the number
of considered trees increases, e.g., introducing secondary matching into queries 4 and 6
improves results, while multi-tree matching hurts performance noticeably in queries 16,
18 and 20. To explain this, a further case study is conducted. Looking at the previously
mentioned query examples in Figure 3.8, we can observe that due to the differences in their
structural complexity, extracting partial components in queries 4 and 6 produces better
similarity than matching partial components in more complex queries (e.g query 16 and
18). In other words, being able to be decomposed into small parts without losing too
much informative structure will make queries (such as 4 and 6) benefit from multiple-tree
scoring. On the other hand, queries 16 and 18 perform better using a single tree because
their structure as a whole is essential to identify them.

Symbol similarity and path idf weighting In addition to evaluating structure sim-
ilarity through tree matching, I have also examined the effects of enabling or disabling
symbol similarity scoring and path idf weighting. These two enhancements can be viewed
as re-weighting factors applied to the structurally matching paths. It is important to note
that if these re-weightings are disabled, the retrieval process will revert to solely relying
on structure matching, where the maximum size of common structures is sought. The
ablations of these two enhancements for structure search are presented in Table 3.4.

52

4 6 8 9 14 16 18 20
Queries (NTCIR-12)

0.0

0.2

0.4

0.6

0.8

1.0

bp
re
f

k=1
k=2
k=3
k=4
k=5

Figure 3.7: Full relevance bpref scores for
matching uniformly-weighted subtrees (1 to
5 trees) on the NTCIR-12 WMB dataset.

No. Query Formula

4) ∇×B = µ0J+ µ0ϵ0
∂

∂t
E︸ ︷︷ ︸

Maxwell′s term

6) 238
92 U+ 64

28Ni → 302
120Ubn

∗ → ...

16) τrms =

√∫∞
0 (τ−τ)2Ac(τ)dτ∫∞

0 Ac(τ)dτ

18) P x
i = N !

nx!(N−nx)!
pnx
x (1− px)

N−nx

Figure 3.8: Example queries in Fig 3.7.

Table 3.4: Ablations on the symbol scoring and path idf, evaluated on the ARQMath-3
Task 2 data. Enabling both scoring is more effective compared to ablated versions except
for a minor drop in the precision score when path idf is disabled.

Run NDCG’ MAP’ P@10 bpref

Full scoring 0.6394 0.5007 0.6158 0.5052
Disabled symbol match 0.5335 0.4060 0.5667 0.4237
Disabled path idf 0.6260 0.4864 0.6197 0.4872
All disabled 0.4858 0.3571 0.5573 0.3787

53

We can see both symbol similarity scoring and path idf weighting have a notable boost
to the effectiveness of formula search. The greatest improvement is from enabling symbol
similarity awareness where around 18 % to 19 % advancements are observed in NDCG’
and MAP’. This observation is intuitive because math symbols, specifically leaf nodes or
operands, contribute to similarity in a distinct dimension compared to structure similarity.
The path idf weighting does not improve top precision but there are 5% gains on MAP’ and
bpref due to the ability to further distinguish path contributions to the structure matches.
Interestingly, when both re-weighting enhancements are disabled (only performing uniform
weight tree matching), we see more obvious effectiveness degradation which means only
using structure matching is suboptimal to capture formula semantic similarities.

Symbol similarity base scores Given the significance of symbol similarity scoring, I
proceeded to conduct further evaluations using a grid search of the base score weights b1
and b2 (b1 > b2). These weights represent the partial scores obtained from (1) matching
both the path fingerprint and operand symbol, or (2) matching only the operand symbol,
as outlined in Algorithm 2. The result is shown in Figure 3.9.

The NDCG’ metric captures the overall effectiveness, taking into account formulas with
partially matched symbols. On the other hand, P@10 (precision at 10) gives more weight
to highly relevant hits in the top results. It is worth noting that these two metrics exhibit
different trends in Figure 3.9, when the symbol score weights are varied. The overall
effectiveness reaches its peak when there is a large difference between the operand symbol
match score (b1) and the pure structure score (b2). This result emphasizes the importance
of symbol match over structure agreement. However, highly relevant results tend to peak
when both the structure and operand symbol are heavily weighted (with b1 and b2 both
close to 1). This observation is expected because a highly ranked result is likely to be a
perfect match.

In essence, a structure match without a symbol match is not an effective indicator of
relevance for lower-ranked results. This is likely due to the presence of more structural noise
in partially relevant results. For example, the query ”E = mc2” would not be considered
relevant to ”y = ax2 + bx+ c” unless there is symbol agreement. Such cases are more likely
to occur in partially matched candidates, typically ranked lower in the search results.

Formula length penalty and math path weight The formula length penalty in
Eq. 3.15 and math path weight in Eq. 3.18 are another set of hyperparameters to be
studied. Their impact on effectiveness is plotted separately in Figure 3.10.

Figure 3.10 demonstrates that both hyperparameters exhibit a saturated impact when
their values become large. The evaluation results, reported across four metrics, consis-
tently support this observation. The plot associated to formula length penalty (η) looks

54

b2 (structure only)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 b1 (
ope

rand
 sym

bol)

0.10.2
0.30.4

0.50.6
0.70.8

0.9
M
et
ric
s

0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68

NDCG'
P@10

Figure 3.9: The effectiveness (in terms of NDCG’ and P@10 scores) using different symbol
base scores b1 and b2 where 0.1 ≤ b1 ≤ b2 ≤ 0.9.

55

0.0 0.2 0.4 0.6 0.8
Formula length penalty (η)

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650
M
et
ric
s

NDCG'
MAP'
P@10
BPref

0 2 4 6 8
Math path weight (λm)

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M
et

ric
s

NDCG'
MAP'
P@10
BPref

Figure 3.10: The impact on effectiveness using different formula length penalty (η) and
math path weight (λm) parameters. Results are evaluated on the ARQMath-3 Task 2 and
Task 1 datasets, respectively.

56

more monotonically increasing which means a long formula in a document with a length
mismatch to the query should be penalised as much as possible, which creates very precise
and perfect matches. But this penalty does not affect further after η = 0.6.

On the other hand, the effectiveness of formula and text retrieval tops at a small math
path weight when λm ∈ [1, 2], meaning that the math keywords should be treated equally
or a little more importantly than text keywords. Note that when λm = 0, the retrieval
deteriorates to text-only retrieval without the ability to identify any similar formulas in a
document, therefore, the sharp increase from the effectiveness when λm = 0 to when λm

reaches its optima in the bottom plot of Figure 3.10 suggests that the math awareness
can boost math document retrieval effectiveness to a scale of more than 30% (as the
improvement shown in NDCG’). This is intuitive to understand because in many math
questions (e.g., questions looking for a proof of a calculus equation), the only informative
tokens are math formulas.

57

Chapter 4

Efficient Structure Search

Traditional information retrieval (IR) systems typically handle millions of documents per
thread efficiently. However, running a naive structure search using the methods described
in Chapter 3 against such a large number of documents would be time-consuming, taking
more than ten seconds per query even with single-tree matching [Zhong et al., 2020]. In this
Chapter, I will review our work proposed in Zhong et al. [2020] for accelerating structure
search query execution to sub-second latency, which can be integrated with traditional IR
models with little overhead.

4.1 Rank-Safe Dynamic Pruning

4.1.1 Intuition and Background

A matching algorithm for multiple common structures can be expensive for the purpose
of math similarity search. An intuitive first step to speed up retrieval is to consider only
scoring structure similarity for the widest common subtree and counting its operands.
As a result, the scoring function can be simplified – the resulting score between query
and document OPTs Tq, Td only depends on the widest common tree. Interestingly, in
Section 3.3.2, I have shown that using single-tree matching performs similarly to multi-
tree match in terms of effectiveness, with only a 6% drop in bpref score for full relevance
when compared to multi-tree matching, which achieves the best unsupervised scores on
the NTCIR-12 Wiki Formula Browsing Task.

58

The simplified scoring function further leads to the application of dynamic pruning
techniques (see Section 2.1.2) for search space reduction, because obtaining a tight upper-
bound for the scoring function in Eq. 3.4 is feasible. Obviously, the number of paths in a
OPT formula subtree can be conveniently converted to its structure similarity upperbound.
Using a tight upperbound, the dynamic pruning algorithm can avoid scoring unnecessary
candidates effectively as more candidates are likely to be pruned if their upperbound score
is less than the minimal score in the top-k candidates.

Dynamic pruning and index compression power modern search engines, enabling them
to achieve remarkable efficiency. Although applying index compression for structure re-
trieval remains straightforward and very similar to regular inverted list compression, dy-
namic pruning cannot be directly adapted for structure search. The modeling of structure
search differs from the MaxScore dynamic pruning algorithm in that the upperbound scores
are also derived from the query tree representation, rather than being naturally assigned
to the posting lists individually. Moreover, only a subset of matched paths that are part
of the widest common subtrees contribute to the overall score. In contrast, in typical tf-idf
scoring, all hit terms contribute to the ranking score.

This chapter proposes a dynamic pruning method for pruning unpromising candidates
for a structure query. As structure search typically involves longer queries [Zhong et al.,
2023], we adopt a MaxScore-like strategy as suggested by Shan et al. [2012], Antonio Mallia
and Suel [2019]. Unlike WAND variants, this strategy avoids the need to sort query terms
during merge iterations, which can be costly for long queries. Furthermore, I introduce
additional methods to perform unsafe pruning in structure search, boosting structure search
efficiency even further.

4.1.2 Definitions

During query processing, a series of query paths will match with paths from a document
expression one by one. At each step, a hit path set, which includes the matched query paths
and the corresponding paths from the document, is examined. We model this path set by
a bipartite graph G(Q,D,E) where Q = {q : q ∈ P(Tm

q),m ∈ Tq}1 and D = {d : d ∈
P(T n

d), n ∈ Td} are query and document path sets respectively, and edge sets are ordered
pairs E = {(q, d) : tokenized(q) = tokenized(d), q ∈ Q, d ∈ D} representing a potential
matching between a query path and a document path.

When paths share the same token sequence, an edge is formed. This allows us to par-
tition the graph into smaller disconnected bipartite graphs denoted as Gt = G(Qt, Dt, Et).

1Recall that Tm denotes subtree rooted at node m.

59

b MUL ADD

b MUL ADD

c MUL ADD

a ADD

x MUL

y MUL

 Query Candidate

......

Figure 4.1: Bipartite graph of the (partial) path set for formulas in Figure 3.2 (original leaf
symbol is used here to help identify paths). Edges are established if paths from the two
sides are the same after tokenization. Edges with shared end points (i.e., same root-end
nodes) in original OPTs are highlighted with the same color.

Each graph is fully connected and is identified by a tokenized query path t. Formally,
define a sub-bipartite graph that is filtered by path t:

Qt = {q : q ∈ Q, tokenized(q) = t} (4.1)

Dt = {d : d ∈ D, tokenized(d) = t} (4.2)

Et = {(q, d) : (q, d) ∈ E, tokenized(q) = tokenized(d) = t} (4.3)

Figure 4.1 shows an example bipartite graph for a hit path set, this example can
be partitioned into disconnected smaller bipartite graphs, associated with tokenized path
VAR/MUL/ADD, VAR/MUL and VAR/ADD respectively. Each partition is actually a complete
(fully connected) bipartite graph because ∀e ∈ (Qt, Dt), we have e ∈ Et. And for any
complete bipartite graph G(V1, V2, E), we can easily obtain their maximum matching by
computing min(|V1|, |V2|).

On the other hand, to calculate the widest formula tree similarity w∗
Q,D based on single-

tree matching (see Eq. 3.4 or 3.5), we need to find a pair of query and document nodes
at which the optima T̂ ∗

q , T̂
∗
d are rooted such that they represent the maximum possible

common formula subtree (see Definition 3.1.2). Therefore, we need to also define the
matching candidate relations filtered by nodes. Let G(m,n) = G(Q(m), D(n), E(m,n)) be the

60

subgraph that only considers matching between query node n and document node m:

Q(m) = {q : q ∈ Q, root end(q) = m} (4.4)

D(n) = {d : d ∈ D, root end(d) = n} (4.5)

E(m,n) = {(q, d) : (q, d) ∈ E, root end(q) = m, root end(d) = n} (4.6)

where the edges in each E(m,n) set correspond to a uniquely colored edge in Figure 4.1.

To find the maximum matched subtree, we can calculate the score of each pair of nodes
independently by summing its maximum matching value among partitions, the pair of
nodes with the greatest score is essentially our similarity score w∗

Q,D. Specifically, define
token paths of T n as set T(n) = {t : t = tokenized(p), p ∈ P(T n)}, it follows

w∗
Q,D = max

m∈Tq ,n∈Td

ν(G(m,n)) (4.7)

= max
m∈Tq ,n∈Td

∑
t∈T(m)

ν(G
(m,n)
t) (4.8)

= max
m∈Tq ,n∈Td

∑
t∈T(m)

min(|Q(m)
t |, |D(n)

t |) (4.9)

where ν(G) is the maximum matching size of bipartite graph G.

Denote wm,t = |Q(m)
t |, we call wm,t ≥ min(|Q(m)

t |, |D(n)
t |) as our (pre-computed) partial

score upperbound. It is analogous to text search where each posting list has a partial score
upperbound, the tf–idf score upperbound is merely their sum. However, in our case, the
sum for partial score upperbounds is only for one node or a subtree.

In the following, we propose three strategies to compute w∗
Q,D upperbound from partial

score upperbounds and to assign posting lists to the non-requirement set.

4.1.3 MaxRef Pruning Strategy

In MaxScore, each posting list can be mapped to a partial score upperbound directly,
however, our scoring function implies each posting list can be involved with multiple partial
score upperbounds. One simple way to select the non-requirement set in our case is to
provide an upperbound score MaxRef (for each posting list t) which is the maximum
partial score from the query nodes by which this posting list gets “referenced”, and if a set
of posting lists alone has a sum of MaxRef scores less or equal to θ, they can be safely put
into the non-requirement set.

61

The rank safeness can be justified, since each posting list corresponds to a unique
tokenized path t, define MaxReft = maxm wm,t, then ∀ m ∈ Tq, n ∈ Td,

max
m,n

∑
t∈Skip

min(|Q(m)
t |, |D(n)

t |) ≤ max
m

∑
t∈Skip

wm,t ≤
∑

t∈Skip

MaxReft (4.10)

which implies the selection of non-requirement set (named Skip set here for short) such
that

∑
t∈Skip MaxReft ≤ θ follows w∗

Q,D ≤ θ for all non-requirement set posting lists.

4.1.4 GBP Pruning Strategies

Inequality 4.10 is relaxed twice, so it spurs the motivation to get an tighter upperbound by
maximizing posting lists in the non-requirement set so that more posting lists are likely to
be skipped. Define partial upperbound matrix W = {wi,j}|Tq |×|T| where T = {T(m),m ∈
Tq} are all the token paths from query OPT, and a binary variable x|T|×1 indicating which
corresponding posting lists are assigned to the non-requirement set. One heuristic objective
is to maximize the number of posting lists in the non-requirement set (we call this strategy
GBP-NUM where GBP stands for Greedy Binary Programming):

maximize 1T · x (4.11)

s.t. Wx ≤ θ (4.12)

Maximizing the number of posting lists in the non-requirement set does not necessarily
result in a significant increase in skipped items, as these posting lists can be very short.
Thus, the potential for skipping items, represented by the number of posting list items in
the non-requirement set, may not be sufficiently large. Instead, we can maximize the total
length of the posting lists in the non-requirement set. In this case, the all-one vector in the

objective function 4.11 is replaced with a posting list length vector L =
[
L1, L2, . . . L|T|

]T
where Li is the length of posting list i. We call this strategy GBP-LEN.

The two GBP strategies are rank-safe because ∀ m ∈ Tq, n ∈ Td,∑
t

min(|Q(m)
t |, |D(n)

t |) ≤
∑
t

wm,t , (4.13)

and constraints in inequalities 4.12 demands
∑

t∈Skipwm,t ≤ θ.

Both binary programming strategies require solving a binary programming problem
which is known to be NP-complete thus too heavy to run for long queries. Therefore at
implementation we just greedily follow one branch of the binary programming sub-problems
to get a greedy solution running in O(|Tq||T|2). See detail steps in Algorithm 3. Note that
greedy solutions also meet the constraints in 4.12, thus they are still rank-safe.

62

Algorithm 3 Greedy solver for GBP strategies
Input: W,L, θ
Output: I, p indicating the assignment of posting lists
I[1 : p] are posting lists IDs in requirement set;
I[(p+ 1) : n] are posting list IDs in Skip.

1: function SolveRecur(W,L, θ, I, p)
2: n := len(L)
3: if p ≥ n then
4: return I, p ▷ All in requirement set.

5: x := {xi}n×1 where x[1 : p] are zeros, x[p + 1: n] are ones.
6: r := row in Wx that violates the constraints 4.12 the most.
7: if no row violates constraints then
8: return I, p ▷ This is a feasible solution.

9: c := a column such that (L · xT)c is minimal and Wr,c > 0
10: swap column c and p in W,L and I ▷ Take out c heuristically.
11: p := p + 1
12: return SolveRecur(W,L, x, θ, p)

13: function Solve(W,L, θ)
14: p := 0 ▷ An index pivot of requirement vs. non-requirement set.
15: I := index vector [1 : len(L)] ▷ Length of L is essentially |T|.
16: for each column j in W do ▷ Take out those obviously not in Skip.
17: m := maximum element of column j in W
18: if m > θ then
19: swap columns j and p in W,L and I
20: p := p + 1

21: return SolveRecur(W,L, θ, I, p)

63

4.2 Implementation

The implementation of the models outlined in Section 4.1 is generally straightforward.
However, to ensure efficiency, the index of a math-aware search engine requires special
modifications for implementing dynamic pruning in structure search, it also requires a
generalized inverted index to handle different modes of query keywords (e.g., text keywords
or structured formula keywords). We will see, this setup also facilitates support for boolean
specifiers (e.g., AND, OR, NOT) for both types of keywords.

The inverted index allows for the utilization of various optimization techniques such as
dynamic pruning, proximity search [Tao and Zhai, 2007], and the straightforward sharding
of index and parallelization of query processing using the document-at-a-time (DAAT)
paradigm [Schütze et al., 2008]. In this following, I describe in detail how a modified and
hierarchical inverted index is implemented to support fast query processing with dynamic
pruning and boolean query operator support for querying structure math formulas and
text keywords.

4.2.1 Structure Query Processing

Figure 4.2 illustrates structure query processing against the path inverted index for formula
search. For each internal node m of the query OPT, I store the number of leaves of m as
wm = |Q(m)|, the two numbers are denoted by m/wm. Each query node refers to one or

more tokenized path entries in a dictionary, where each reference is associated with Q
(m)
t

identified by query m and tokenized path t. For example, in Figure 4.2, node q1 from the
query has 6 leaves, which is also the upperbound number of path matches for q1, i.e, |Q(1)|.
Since q1 consists of 2 tokenized leaf-root paths VAR/MUL/ADD and VAR/ADD, q1 is linked to
two posting lists, each associated with a partial upperbound wm,t = |Q(m)

t |.
Each posting list corresponds to a token path t ∈ T and has one dynamic reference

counter associated, indicating the number of query nodes referring to it (initially |Qt|).
As a query node (representing a subexpression in the query math formula) can be pruned
when its width is no longer greater than the current dynamic pruning threshold θ, the
reference counter may decrease, and the posting list gets removed if its reference counter
is less than one. The greatest wm,t value by which a posting list corresponding to path t
gets referenced is the MaxRef value.

Each formula is identified by an expression ID, or ExpID. For ease of testing termination,
I append a very large ExpID MaxID at the end, this special ID is greater than any ExpID of
real document expression. Each posting list entry identified by an ExpID stores document

64

ADD

MUL MUL f

a b c d e

ADD

GROUP MUL

ADD e f g

MUL c d

a b

q1

q1 / 6

q3 / 2

q2 / 3

Query OPT Internal nodes Path dictionary Hit document OPT

5

1

2

3

Posting lists

ExpID

12

/ VAR / MUL / ADD5

/ VAR / ADD1

/ VAR / MUL3

MaxRef

Iters[0]

Candidate

Iters[1]

Iters[2]

ExpID

91

ExpID

13
ExpID

92

ExpID

15

ADD operator node

leave nodea

qryNode / leaves

(ExpID = 12)

d1/3, d4/2

d3/3, d5/2

d4/2

docNode/leaves, ...

ExpID

12

ExpID

90
ExpID

12

ExpID

90

ExpID

12Path

q3q2

d1

d2 d3

d4

d5

θ

(θ=5)

θ

θ

w1,1

w1,3

w3,2

w2,2

Figure 4.2: Index architecture for formula search with dynamic pruning. The top posting
list is the only one in requirement set using strategy MaxRef, and the bottom two are
advanced by skipping to candidate ExpID.

root-end node n, the number of paths under it (i.e., |D(n)
t |), and other information for

similarity scoring. As an example, in Figure 4.2, the hit OPT shown at right (of ExpID
12) has 5 paths tokenized as VAR/MUL/ADD, 2 on the left rooted by d4 and 3 on the right
rooted by d1. And the information (d1/3, d4/2) are stored with the corresponding posing
list of VAR/MUL/ADD. In our implementation, a posting list t is traversed by its iterator
iters[t] to allow reentrant reading, and its entry information (denoted as n/wn) are read
by iters[t].read() function from current position of the iterator.

The detailed query processing is described in Algorithm 4. The RequirementSet
returns selected iterators of the requirement set (complement of the non-requirement set)
depending on the specified pruning strategy. The assignment per strategy is described
previously in Section 4.1. For MaxRef strategy in particular, posting lists are sorted in de-
scending order of their MaxRef values, and posting lists are assigned into non-requirement
set from lowest MaxRef value.

At merging, a document formula of the current minimal expID among those referenced
by the iterators from the requirement set is selected as candidate. Iterators in the require-
ment set are only advanced one by one using the next() function, while iterators in the
non-requirement set are advancing directly to the ID equal to or greater than the current
candidate using the skipTo() function. Given Figure 4.2 for example, the posting list cor-
responding to VAR/MUL/ADD is the only posting list in the requirement set (assume it is
using the MaxRef strategy). As a result, document formula 13 and 15 will be skipped if
the next candidate is 90.

At each iteration, a set of hitNodes is inferred from the hit path set, containing query
nodes associated with iterators having their current ExpIDs equal to the candidate ID.

65

Algorithm 4 Formula search using MaxScore pruning.

1: function qryNodeMatch(iters, m, candidate, widest, θ)
2: nodeMatch[] := 0⃗; ℓ := | leaves(m)| ▷ ℓ is the leftover estimated upperbound.
3: for each m/wm of tokenized path t rooted at m do
4: Let i be the iterator index associated with t
5: if iters[i].docID < candidate then
6: iters[i].skipTo(candidate)

7: if iters[i].docID = candidate then
8: for each n/wn of t from iters[i].read() do
9: nodeMatch[n] := nodeMatch[n] + min(wm, wn)

10: ℓ := ℓ− wm; estimate := max(nodeMatch) + ℓ ▷ Update estimation.
11: if estimate ≤ widest or u(estimate) ≤ θ then
12: return 0
13: return max(nodeMatch)

14:

15: function FormulaSearch(iters, strategy, θ0 = 0)
16: θ := θ0; reqs := RequirementSet(θ, strategy)
17: heap := data structure to hold top-k results
18: while true do
19: candidate := minimal ID in current expIDs of reqs
20: if candidate equals MaxID then ▷ Search terminated, return results.
21: return top-k results

22: Let G(Q,D,E) be the path set bipartite graph.
23: widest := 0; hitNodes := {root end(q) : (q, d) ∈ E}
24: for m in hitNodes do ▷ Calculate maximum match for each hit query node.
25: if | leaves(m)| ≤ widest then
26: continue
27: maxMatch := qryNodeMatch(iters, m, candidate, widest, θ)
28: if maxMatch > widest then widest := maxMatch ▷ Find the widest width.

29: if widest > 0 then
30: score := calculate final score (including symbol similarity). ▷ See Section 3.2.3.
31: if heap is not full or score > θ then
32: Push candidate or replace the lowest scored hit in heap.
33: if heap is full then ▷ Update current threshold.
34: θ := minimal score in current top-k results
35: Drop small query nodes and unreferenced iterators.
36: reqs := RequirementSet(θ, strategy) ▷ Update requirement set.

37: for iters[i] in reqs do ▷ Advance posting list iterators.
38: if iters[i].docID = candidate then iters[i].next()

66

qryNodeMatch calculates the match of each hit node according to Eq. 3.4 (or Eq. 3.5
if we consider path weights),2 pruning those nodes whose maximum matching size will be
smaller than the matched size of any already calculated node. For example, given query
hit node q1 in Figure 4.2, qryNodeMatch returns

max
n∈Td

ν(G(1,n)) = max(min(5, 2) + min(1, 2), min(5, 3)) = 3. (4.14)

Then the algorithm selects the best matched query node, and its matched width w∗ (widest)
is our interested structure similarity as defined in Eq. 4.7.

After obtaining w∗, the overall similarity score (see Section 3.2.3) can be computed.
However, due to the additional layer involved in calculating the overall similarity, it be-
comes necessary to further relax the upperbound. For example, given the overall scoring
function specified by Eq. 3.16, the relaxed upperbound function u is

u(w∗) = w∗ · max
D

Ssym(Q,D) · P (D; η) = w∗ ·
[
(1 − η) + η

1

log(1 + w∗)

]
. (4.15)

Whenever threshold θ is updated, the algorithm will examine all the query nodes. If a
query node m has an upperbound less or equal to the threshold, then the corresponding
subtree of this node is too “small” to be considered as a candidate subexpression, and
these nodes are going to be dropped for the remaining query process.3 As a result, some
of the posting lists iterators may also be dropped due to zero reference.

4.2.2 Heterogeneous Query Processing

To handle text keywords simultaneously and leverage the well-established techniques of
inverted indexes, I propose a two-level inverted index architecture. The architecture of
this hierarchical inverted indexes is illustrated in Figure 4.3.

Keywords are mapped directly to their respective inverted lists, where each item in
the list may include the document ID, term frequency, and positional information for each
occurrence in the document.

In contrast, when a math query is present in the query, it is mapped to multiple
secondary inverted lists. These lists employ specialized structure to support dynamic

2Only minor modifications are required to adapt Algorithm 4 to account for path weights.
3Note that this pruning method enhancement is another novel addition, providing further improvement

to our existing structure dynamic pruning approach.

67

a2+b2=c2

pythagorean

Query Keywords

theorem

VAR/POWER/ADD/EQ

VAR/POWER/ADD

VAR/POWER/EQ

VAR/POWER

d1 d4 d7 d11 d18 d30 d31

d1 d2 d3 d10 d12 d18 d20

d1,e1 d1,e2 d3,e1 d3,e2

d3,e1 d4,e1 d4,e2 d4,e5

d2,e1 d3,e1 d3,e2 d8,e2

d1,e2 d3,e1 d4,e2 d4,e5

Leaf-Root Tokens

Documents

Inverted Lists
and

Dictionary Lookup

Evaluating Document

x2+y2

x2+y2=z2

Lexical Scoring

S re Scoring

linearization

theorem

Figure 4.3: The high-level architecture of our hierarchical and heterogeneous indices taking
in both math and text keywords. For math query keywords, we employ a linearization
process to convert structured formulas into leaf-root paths, and subsequently to second-
level inverted lists for formula search. Unlike top-level text inverted lists, the second-level
math inverted lists have both document ID (dX) and expression ID (eY) indexed.

pruning techniques elaborated in Section 4.2.1. For each formula, the leaf-root paths
and their prefixes are extracted from the query formula’s OPT representation. These
paths and prefixes serve as the vocabulary keys and are mapped to the corresponding
secondary posting lists, similar to the structure depicted in Figure 4.2. Unlike the text
inverted lists, the path inverted list stores additional index information specifically for
scoring math formulas. This includes the document ID, formula ID, root-end node IDs of
the corresponding path, formula length, frequencies of paths under each subtree, leaf-end
symbols (operand symbols), and path fingerprints (refer to Section 3.2.1 for details).

When merging the text inverted lists and path inverted lists within the hierarchical
indices, the math query processing can be conducted as a subroutine. This abstraction
proves advantageous for integrating heterogeneous retrieval models for both math and text.
It is worth noting that a document may contain multiple formula matches. Therefore,
during query processing, only the maximum score returned by the best-matched formula
in a document is returned to the upper-level query processing to facilitate document-level
retrieval for formulas. Accordingly, the path indices at the secondary level are abstracted
to present themselves solely through an identical text search inverted list interface to the
upper-level. In other words, the secondary posting lists for a math keyword behave as if the
keyword were a regular text keyword during the upper-level query processing. Specifically,
only document-level IDs are returned and merged with the text inverted lists. The formula

68

IDs of a document are exclusively utilized internally within the sub-level query processing,
as detailed in Section 4.2.1.

Algorithm 5 provides a in-detail description of heterogeneous retrieval using MaxScore
dynamic pruning as an example. The hierarchical inverted index offers the advantage of
being able to apply traditional inverted list optimization techniques with minimal modifi-
cations. In comparison to a regular MaxScore algorithm, only Lines 26–30 (highlighted in
red) have been introduced to handle math queries. The use of a heterogeneous inverted list
allows the formula search algorithm (Algorithm 4) to be executed as a subroutine (Line
28), ensuring consistency in the upper-level implementation with the text retrieval model.

The hierarchical inverted list also enables boolean filtering of queries at the keyword
level. A boolean clause can be associated with a keyword, regardless of its type. However,
there is a distinction for math queries in terms of boolean filtering: while text keyword
boolean specifier as a binary filter, the candidates of a query formula keyword Q are
filtered based on a formula partial score threshold. Line 29 illustrates this process. If a
formula keyword is specified with a NOT clause, a document formula can be excluded from
consideration if its score exceeds a certain threshold u(Q), and

u(Q) = λm ·
{

λn · l(Q) for NOT clause
maxD S(Q,D) otherwise

(4.16)

where l(Q) = γ(TQ) · minD Ssym(Q,D | TQ) · P (D; η) is the similarity lowerbound – any
formula scored lower than this is going to have a partial structure match. Hyperparameter
λn ∈ [0, 1] controls the threshold to ignore any formula scored above it if the formula is
specified with a NOT clause, and λm is the math path weight (see Section 3.2.3). Lastly,
S(Q,D) is the similarity score for query and document formula Q and D (see Eq. 3.16).

4.3 More Efficient Dynamic Pruning

4.3.1 Initial Threshold

In Algorithm 4, an initial threshold θ0 is defined as a parameter. The initial threshold
provides an effective method to trade off ranking safety for efficiency. By setting a non-zero
value for θ0, a minimum score is defined for any hit to qualify as a candidate, irrespective
of whether it exceeds the eventual minimum top-k score. Consequently, the guarantee
of ranking safeness cannot be ensured in this scenario. However, this small modification

69

Algorithm 5 Heterogeneous search using MaxScore pruning.
Input iters: inverted list iterators; u: corresponding upperbounds.

1: function heterogeneousMaxScore(iters, u)
2: heap := data structure to hold top-k results
3: iters := iters sorted by u in descending order
4: θ,N := 0, number of iterators in iters
5: u[i], op[i] := the associated upperbound and boolean clause for iters[i], i = 1, 2, ..., N
6: a[i] :=

∑N
j=i u[i] for i = 1, 2, ..., N or ∞ for i > N

7: pivot := argmaxi a[i] > θ
8: while true do
9: candidate := minimal docID in current reqs
10: if candidate equals MaxID then ▷ Search terminated, return results.
11: return top-k results

12: score := 0 ▷ Candidate document score.
13: for i := 1, 2, ..., N do
14: if score + a[i] < θ then ▷ Updated score estimation cannot make into top-k.
15: break
16: else if i > pivot then ▷ Skip items in non-requirement set.
17: iters[i].skipTo(candidate)

18: if iters[i].docID ̸= candidate then
19: if op[i] is AND then
20: break ▷ Handle AND clause.
21: else
22: continue
23: if iters[i] is associated to a text keyword then
24: if op[i] is NOT then break ▷ Handle text NOT clause.

25: score := score + tf–idfi
26: else if iters[i] is associated to a math query keyword then
27: θi := (θ− score −(a[i]− u[i]))/λm

28: m := highest score in formula(s) of candidate ▷ Applying Algorithm 4 w/ θi.
29: if op[i] is NOT and λm ·m > u[i] then break ▷ Handle math NOT clause.

30: score := score + λm ·m
31: if i = N and (heap is not full or score > θ) then
32: Push candidate or replace the lowest scored hit in heap.
33: if heap is full then
34: θ := minimal score in current top-k results ▷ Update current threshold.
35: pivot := argmaxi a[i] > θ ▷ Update the pivot.

36: for i ∈ 1, 2, ..., pivot do ▷ Advance iterators in requirement set.
37: if iters[i].docID = candidate then iters[i].next()

70

has significant practical implications: In real-world scenarios, query formulas often contain
tens if not hundreds of leaf-root paths. Even with a small non-zero initial threshold, a
large number of document formulas can be pruned effectively.

While the inclusion of a non-zero θ0 may compromise the ranking safeness of the al-
gorithm, it is important to note that math formula search inherently looks for candidates
with substantial overlapping common subexpression(s). Otherwise, if a candidate formula
exhibits a substantial difference in OPT size compared to the query formula, it indicates
a low likelihood of preference for that particular candidate. Therefore, this extra prun-
ing does not affect candidates that exhibit closer structure similarity to the query, while
boosting the efficiency further.

As a result, employing a small θ0 proportionally to the size of the query formula is
generally safe. To achieve this, we introduce a hyperparameter known as the initial thresh-
old factor λ0 ≥ 0. This factor allows us to automatically adjust θ0 to be equal to the
lowerbound score of small subset of query operands:

θ0 = l(λ0 · leaves(Q)) (4.17)

where the lowerbound function l is also used in Eq. 4.16.

4.3.2 Combining with Dynamic Thresholds

Each time the threshold is updated in the heterogeneous search, the threshold for each
math formula used in the formula search subroutine needs to be re-calculated. This is
done in two cases during query processing: (1) If precise scores for some query keywords
have already been obtained, the dynamic threshold is computed based on those scores, as
described in Line 27 of Algorithm 5. (2) Otherwise, independent of the document, the
dynamic threshold is estimated by assuming that other query keywords qj contribute their
upper-bound scores:

θi =
1

λm

[
θ −

∑
j ̸=i

u(qj)

]
(4.18)

where u(qj) is the upperbound score for a query keyword qj.

In both scenarios, the final effective threshold can be determined by combining the
dynamic threshold with the initial threshold. This is achieved by taking the maximum
value between θ0 (the static initial threshold) and θi (the dynamic threshold computed
for each math formula keyword). In other words, the final effective threshold takes into

71

account both the initial threshold and the dynamically estimated threshold based on the
specific query and available information. The threshold in case (1) provides a more accurate
estimate and a higher value for pruning more candidates, making it consistently utilized.
The threshold in case (2) remains relatively static and serves as the basis for determining
the pruning strategies described in Section 4.1.

4.4 Evaluation

4.4.1 Experimental Setup

Two formula-only datasets are considered: the NTCIR-12 WMB benchmark and our self-
hosted MSE corpus. The NTCIR-12 WMB benchmark is chosen for evaluating efficiency
due to its diversified queries, which cover math formulas with varying levels of complexity.
On average, these math queries are more complex compared to ARQMath topics [Mansouri
et al., 2021a]. There are 20 queries containing wildcards in this task, we add support for
the wildcards by simply treating internal nodes (representing a rooted subexpression) of
formulas as additional “leaves” (by ignoring their descendants), and the wildcard specifiers
in a query are treated as normal leaves to match those indexed wildcard paths. The
MSE corpus is created with a sufficient number of document formulas to ensure noticeable
efficiency differences when compared to the baselines. The evaluation of query efficiency
against this dataset is conducted using exactly the same NTCIR-12 WMB topics.

In the implementation, all relevant inverted lists are compressed if not specified other-
wise. The inverted list is implemented by a two-level skip list data structure running on
disk, and list items are integer values compressed using Patched Frame-of-reference encod-
ing, or PFOR [Zukowski et al., 2006] (the document IDs are further delta compressed, i.e.,
using delta encoding [Schütze et al., 2008]).

In the evaluation, queries are executed on the same hardware environment. Depending
on the experiment, two workstations are used: one with Intel Core at 3.6 GHz per core and
SSD drive, another is a personal workstation with Intel Core i5-8600K CPU and Toshiba
HDWD110 hard drive.

Queries for the same experiment are executed in the same environment using single
threads without index sharding. During evaluation, the run times solely focus on evaluating
the merging of inverted lists. This means that the search server is initialized only once for
the entire evaluation process. In addition, the first run is excluded because we find that

72

the first “warm-up” run has a high variance – after the first run, the index is implicitly
cached into memory (by the OS or filesystem).4

4.4.2 Main Results

Table 4.1: Query run times (in milliseconds) for different pruning strategies compared to
exhaustive search baseline. k is the number of search results we keep dynamically.

Runs Non-wildcards Wildcards
k Strategy µ σ median min max µ σ median min max

N
T
C
IR

-1
2
W

M
B

100 Baseline 540.12 569.44 360.50 7.00 2238.00 426.73 383.47 225.50 8.00 1338.00
100 MaxRef 90.29 74.14 79.00 3.00 312.00 145.50 121.19 136.00 7.00 573.00

GBP-NUM 84.90 80.44 52.50 3.00 321.00 138.82 102.55 135.00 9.00 428.00
GBP-LEN 67.49 61.40 45.00 2.00 218.00 125.27 97.28 103.50 9.00 404.00

200 MaxRef 107.71 82.64 102.00 5.00 322.00 160.10 121.40 149.00 9.00 583.00
GBP-NUM 105.34 99.51 71.50 5.00 357.00 155.52 110.61 153.00 8.00 479.00
GBP-LEN 89.63 83.20 62.00 5.00 330.00 142.78 103.11 143.50 9.00 446.00

1000 MaxRef 154.51 93.75 157.50 6.00 361.00 211.86 140.01 186.00 10.00 662.00
GBP-NUM 159.80 143.70 120.50 6.00 626.00 208.91 136.42 178.50 10.00 591.00
GBP-LEN 144.25 126.95 105.00 6.00 622.00 195.70 122.25 176.00 9.00 536.00

M
S
E

C
o
rp
u
s

100 Baseline 15134.10 15186.78 11161.00 157.00 55499.00 13450.57 12554.19 7075.50 304.00 47513.00
100 MaxRef 1083.23 1274.23 745.50 28.00 5922.00 3188.66 2458.91 2925.00 85.00 10412.00

GBP-NUM 1202.24 1240.21 815.00 37.00 4987.00 2943.79 2025.96 2987.00 84.00 8775.00
GBP-LEN 562.83 635.26 382.50 24.00 2313.00 2257.95 1491.59 2346.50 86.00 4494.00

200 MaxRef 1261.21 1368.93 1012.50 30.00 6439.00 3416.77 2753.09 3032.50 160.00 12412.00
GBP-NUM 1378.19 1398.08 998.50 39.00 5863.00 3174.93 2283.05 3125.00 159.00 10099.00
GBP-LEN 697.32 739.11 478.00 27.00 2925.00 2504.90 1683.16 2382.50 159.00 6049.00

1000 MaxRef 2030.05 1746.17 1796.50 53.00 7816.00 4123.26 3510.01 3473.00 287.00 16981.00
GBP-NUM 1952.52 1746.05 1530.50 60.00 7197.00 3786.89 2744.99 3493.50 281.00 11323.00
GBP-LEN 1217.16 1083.53 764.50 47.00 3756.00 3304.69 2403.09 2812.00 285.00 9895.00

Considering different dynamic pruning strategies (Section 4.1), Table 4.1 reports the run
time statistics. Non-pruning (exhaustive search) baselines with k = 100 are also compared.

Almost consistently, GBP-LEN achieves the best efficiency with smaller variance. This
is expected since GBP-LEN models the skipping possibility better than GBP-NUM. Al-
though GBP-NUM yields a tighter upperbound than MaxRef, it is optimized using a greedy
method and only maximizes the number of posting lists in the non-requirement set; the
latter may lead to bad performance when these posting lists are short. There are a few
times the best minimal run times are from other strategies, for those with meaningful

4To justify this, we use the Linux strace -cw command to track the wall clock times for the query
processing, first-time run spends 62.10% of the time on disk IOs, and after the first run, only 16.46% of
the time is spent on the read system calls.

73

Table 4.2: Post-hoc bpref scores for the dynamic pruning strategy GBP-LEN compared
against the baselines of other most-effective systems and our own non-pruning methods.
All scores are evaluated on the NTCIR-12 dataset.

System
Non-Wildcard Wildcard All queries
Full Partial Full Partial Full Partial

MCAT .5678 .5698 .4725 .5015 .5202 .5356
Tangent-S .6361 .5872 .4699 .5368 .5530 .5620
base-best .6726 .5950 - - - -
base-opd-only .6586 .5153 - - - -
Ours (pruning) .6586 .5173 .3678 .3973 .5132 .4573
Ours (exhaustive) .6586 .5173 .3678 .3973 .5132 .4573

gaps, i.e., in NTCIR-12 WMB non-wildcard queries when k = 1000, MaxRef outperforms
in standard deviation and maximum run time by a notable margin; however, it is likely due
to a small threshold and a large k, so that the efficiency on this smaller dataset is less af-
fected by pruning (small θ means less pruning potential) compared to the time complexity
added from assigning to the requirement set. The latter is more dominant in GBP runs.
In wildcard queries, however, many expressions can match the query thus the threshold
value is expected to be larger than that in the non-wildcard case.

In additional to theoretical justifications in Section 4.1, I empirically show the rank-
safeness of the proposed dynamic pruning strategies by comparing the effectiveness of
pruning and exhaustive versions for top-1000 results shown in Table 4.2. The post-hoc
bpref scores for the dynamic pruning methods are compared against the baselines of other
effective systems, including our own non-pruning versions. Among the systems evaluated
on this dataset, our previous version, specifically the base-best run, along with MCAT
and Tangent-S, are selected because they are most effective non-supervised retrievers.

Our pruning strategies are rank-safe (pruning and exhaustive version shows exactly the
same bpref scores) but there is a minor bpref difference between the newer versions and our
previous baseline (base-opd-only, evaluating only single-tree matched operands) due to
parser changes we have applied to support wildcards (e.g., to handle single left brace array
as seen in a wildcard query) and they happen to slightly improve accuracy in partially
relevant cases.

Compared to other systems, our pruning methods achieve the second best fully-relevant
results while being able to execute queries with a maximum of half-second run time on

74

base-o
pd-only

 (disk)

base-o
pd-only

 (memory)
0

1000
2000
3000
4000

Ru
nt
im

e
(m

se
c)

Tangen
t-S w/o

 outlier
s
GBP-LE

N (disk
)

GBP-LE
N (memory)

0
250
500
750

1000
1250
1500
1750

Ru
nt
im

e
(m

se
c)

Figure 4.4: Our efficiency results evaluated on the NTCIR-12 dataset. Our non-pruning
versions and the Tangent-S system are compared, with Tangent-S outlier queries excluded.
At the time when the experiment is conducted, the Tangent-S system stands as the most
efficient structure search approach evaluated on this dataset.

NTCIR 12 (see Table 4.1). It is worth noting that our efficiency surpasses that of the
base-opd-only system, even though the latter only considers less complex non-wildcard
queries. In contrast, MCAT reportedly has a median query execution time around 25
seconds, using a server machine and multi-threading [Kristianto et al., 2016]. On the
other hand, Tangent-S has a few significant outliers (with run times > 50 seconds) as a
result of its costly alignment algorithm to rerank structure and find the Maximum Subtree
Similarity [Davila and Zanibbi, 2017]; its non-linear complexity makes it expensive for some
long queries (especially in wildcard case). GBP-LEN outperforms Tangent-S in efficiency
even if we exclude their outlier queries (see Figure 4.4), with a higher bpref in non-wildcard
fully relevant results. However, our overall effectiveness is skewed by bad performance of
wildcard queries because a much more expensive phase is introduced to boost accuracy by
other systems to handle inherently difficult structrual wildcards.

4.4.3 Analysis

To comprehensively assess the effects of different parameters in the proposed structure
dynamic pruning, I employ the optimal GBP-LEN strategy using single-tree matching.

Impacts of k As dynamic pruning efficiency is largely affected by the threshold value, we
vary parameter k to get query execution performance under different threshold settings.
As depicted in Figure 4.5, the dynamic-pruning structure search method demonstrates

75

top1K top100 top50 top20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ru
nt
im

es
 (s

ec
on

ds
)

Figure 4.5: Query run times with dynamic pruning for different k values, evaluated on the
ARQMath-3 dataset using Task 1 topics.

practical efficiency by completing a query in under a second on average, even when con-
figured to retrieve 1000 results from the million-scale ARQMath corpus. Furthermore, the
method’s performance can be further enhanced, achieving an median query time of under
200 milliseconds for smaller values of k.

To the best of our knowledge, this is the first instance where a structure search retrieval
model, utilizing a traditional inverted index, has accomplished sub-second query run times
on a real-world scale of data. In typical online scenarios, it is common to have multiple
search nodes operating in parallel, each node typically returns only 100 results with 10
results per page. Consequently, the reported run times for k = 100 can be considered as
practical run times for real-world scenarios.

Impacts of threshold (θ) to pruning Compared to traditional dynamic pruning,
an additional number of factors are involved to cause pruning for structure search. This
includes deleted query nodes and the amount of removed (zero-referenced) inverted list
iterators as a result of deleted query nodes. Importantly, the reduction of the number
of inverted lists and of the size of the requirement set are directly responsible for query
speedup. We plot these important pruning factors at different time steps in Figure 4.6.

As illustrated in Figure 4.6, the thresholds exhibit a consistent monotonic increase
across various topics. Consequently, the number of query OPT nodes typically experiences
a significant decrease, particularly because multiple nodes within a single tree possess an
equal number of children. As a result, it leads to a notable reduction in the number of query

76

0 200 400 600 800
Time step

35

40

45

50

55

Nu
m
be
r

query OPT nodes
requirement set
inverted lists
threshold

12

14

16

18

20

Th
re
sh
ol
d
(θ
)

10

11

12

OP
T
no
de
s

NTCIR12-MathWiki-10

0 250 500 750 1000 1250 1500 1750
Time step

12

14

16

18

20

22

Nu
m
be
r

query OPT nodes
requirement set
inverted lists
threshold

8

10

12

14

16

18

20

22

Th
re
sh
ol
d
(θ
)

4

5

6

7

OP
T
no
de
s

NTCIR12-MathWiki-14

0 50 100 150 200 250 300 350
Time step

10

20

30

40

50

Nu
m
be
r

query OPT nodes
requirement set
inverted lists
threshold

20.0

20.5

21.0

21.5

22.0

Th
re
sh
ol
d
(θ
)

7.6

7.7

7.8

7.9

8.0

8.1

8.2

8.3

8.4

OP
T
no

de
s

NTCIR12-MathWiki-16

0 100 200 300 400 500
Time step

20

30

40

50

60

Nu
m
be

r

query OPT nodes
requirement set
inverted lists
threshold

13.5

14.0

14.5

15.0

15.5

16.0

Th
re
sh
ol
d
(θ
)

13

14

OP
T
no

de
s

NTCIR12-MathWiki-18

Figure 4.6: Single formula query pruning logs for different topics sampled from and eval-
uated on the NTCIR-12 WFB dataset. Threshold value (θ), the number of query OPT
nodes, the size of requirement set, and the number of inverted list iterators are plotted
at different time steps, showcasing the evolving nature of the thresholds and their corre-
sponding changes across various topics.

77

OPT nodes. In contrast, the size of the requirement set and the total number of inverted
lists decrease gradually until a sudden drop at the end of the query processing. This
phenomenon is most likely caused by the iterators reaching the end of the inverted lists.
Note that the size of the requirement set is always less than the total number of inverted
lists, but different queries demonstrate different ratios during the retrieval process.

In summary, the pruning characteristics are influenced by the specific query being
executed, and employing various pruning factors collectively leads to improved efficiency.

Initial thresholds As shown in Figure 4.7, additional acceleration can be obtained
by increasing the initial threshold. Across the two formula search datasets and different
evaluation metrics, we observe consistent patterns regarding the trade-off between effec-
tiveness and efficiency with respect to this parameter. Specifically, an initial threshold of
θ = 1.0 has minimal impact on effectiveness, followed by a rapid decline in effectiveness
after θ = 1.5. This confirms our hypothesis in Section 4.3 that employing a small threshold
is relatively safe. On the other hand, there is a slight recovery around θ = 2.5 when the
remaining candidates exhibit high similarity to the query structures. In this case, a slight
increase in the threshold may help maintain a high precision. However, as the thresh-
old further increases and begins to submerge the entire query structure, the effectiveness
deteriorates.

These patterns underscore the delicate balance between effectiveness and efficiency in
retrieval performance. To achieve a safer trade-off with minimal efficiency drops while still
maintaining a reasonable level of effectiveness, it is suggested to select an initial threshold
lower than 1.0.

78

Figure 4.7: The query run times within one standard deviation using dynamic pruning for
different k values, evaluated on the NTCIR-12 WFB (top) and the ARQMath-3 Task 1
(bottom). The corresponding effectiveness metrics at each initial threshold sample point
are also depicted.

79

Chapter 5

Supervised and Hybrid Search

Supervised retrieval aims to capture nuanced and diverse aspects of semantic similarities.
In recent developments [Izacard et al., 2021, Ram et al., 2021], leveraging powerful ar-
chitectures like Transformers and abundant large-scale data containing relevance signals,
supervised retrieval has surpassed highly effective unsupervised methods such as BM25 in
zero-shot settings.

Supervised methods are particularly valuable in conjunction with structure search when
scoring math documents. This is because math documents, having formulas surrounded by
highly contextualized natural language, require learning from data to capture similarity nu-
ances and contextual connections between a formula and surrounding texts. Additionally,
unlike structure search, manually defining context similarity in an unsupervised manner is
challenging. Lastly, recent work has successfully achieved good effectiveness using hybrid
search, i.e., combining supervised retrieval with unsupervised retrieval in both general in-
formation retrieval [Lin, 2022, Ram et al., 2021, Shen et al., 2022] and math information
retrieval [Zhong et al., 2022b,a, Kane et al., 2022].

In this Chapter, I will describe a novel training scheme for Transformer-based retrieval
models that improves the supervised representation for highly contextualized math doc-
uments. Furthermore, I propose to advance math-aware retrieval using hybrid search
with different effective learned representations tailored for complementary purposes. This
method has achieved the state-of-the-art effectiveness on the most recent full-text MIR
benchmarks, while employing efficient retrieval components that allow for sub-second query
execution times [Zhong et al., 2023].

80

5.1 Contextualized Pretraining

Formulas in math documents are highly contextual, often their semantics are defined by
surrounding words. A context-enhanced pretraining method is described to improve the
downstream math-aware retrieval effectiveness.

5.1.1 Preliminaries

A Transformer encoder Enc(l) at layer l = 1, 2, ...L encodes a sequence of hidden states
produced from the lower layer l− 1 and outputs hidden states h

(l)
i ∈ Rd for each token i of

this layer l:

h
(l)
0 , h

(l)
1 , ..., h(l)

n = Enc(l)
(
h
(l−1)
0 , h

(l−1)
1 , ..., h(l−1)

n

)
(5.1)

h
(0)
i = PosEmb

(
ti · ET , i

)
, i = 0, 1, ..., n. (5.2)

where each initial-layer hidden state h
(0)
i at position i is the positional embedding (PosEmb)

of an input token embedding and the corresponding position i. The input token embedding
of ti ∈ RV is mapped by the learnable embedding matrix E ∈ Rd×V where V is the
vocabulary size and d is the dimension of hidden state. Each hidden state from the outputs
of a Transformer encoder is contextual since it is dependent on all the hidden states from
the previous layer.

BERT pretraining

The pretraining of the BERT model requires stacking two heads on top of a Transformer
encoder, one for the MLM task and the other for the NSP task [Devlin et al., 2019]:

wi = HMLM(h
(L)
i) · E + b , i = 0, 1, ..., n; (5.3)

s = HNSP(h
(L)
0) (5.4)

where HMLM is a linear projection followed by a GELU activation layer [Hendrycks and
Gimpel, 2016] and layer normalization. Whereas HNSP is a projection to a binary-classification
distribution s ∈ R2.

In BERT, sentence pairs with the delimiter token [SEP] are used as inputs for pretrain-
ing: For the MLM task, some of the original tokens t̄i from random indices but excluding

81

indices of special tokens, i.e., i ∈ I = Irandom \Ispecial, are either replaced by a [MASK] token
or altered to another random token in the vocabulary before feeding to the Transformer;
for the NSP task, a one-hot label s̄ indicating whether a pair of sentences are continuous
is used for calculating the NSP loss:

LMLM =
1

|I|
∑
i∈I

CrossEntropy(wi, t̄i) (5.5)

LNSP = CrossEntropy(s, s̄). (5.6)

In actual inputs, the first token t̄0 is set to [CLS] so that its corresponding contextualized
embedding h

(L)
0 is free to be used for representing passage-level embedding.

MAE pretraining

Compared to the BERT pretraining, the Masked Auto-Encoding (MAE) pretraining for
retrievers [Gao and Callan, 2021b,a, Lu et al., 2021, Wu et al., 2022] further adds a decoder

Dec on top of the Transformer encoder. It relies on the hidden state h
(L)
0 as the information

bottleneck to auto encode relevant context signals from predicting an auxiliary MLM task
in the decoder. The decoder usually uses the same Transformer architecture, where the
number of layers M is generally smaller than L. Additionally, the decoder uses hidden
states from a lower layer k of the encoder as its inputs:

h̃
(l)
0 , h̃

(l)
1 , ..., h̃(l)

n = Dec(l)
(
h̃
(l−1)
0 , h̃

(l−1)
1 , ..., h̃(l−1)

n

)
(5.7)

h̃(0) =
[
h
(L)
0 , h

(k)
1 , h

(k)
2 , ..., h

(k)
n

]T
(5.8)

where h̃
(l)
i is the decoder hidden state at position i in decoder layer l = 1, 2, ...,M .

The aforementioned setting of using a smaller decoder and skipping from a lower layer
is to limit the power of the decoder so that the learned code at h

(L)
0 is encouraged to be

more informative to assist the decoding. Similarly, the decoder MLM loss is defined as

w̃i = H̃MLM(h̃
(M)
i) · E + b̃ , i = 0, 1, ..., n. (5.9)

Ldec
MLM =

1

|I|
∑
i∈I

CrossEntropy(w̃i, t̄i) (5.10)

where H̃MLM is the decoder MLM head, which can share the same parameters with the
encoder, i.e., HMLM.

82

Instead of using sentence pairs, MAE-based pretraining generally simulates the down-
stream retrieval tasks and encode a complete passage or span in a query-agnostic fashion.
Specifically, the Inverse Cloze Task (ICT) contrastive loss [Lee et al., 2019] applied on
in-context document span pairs si, s

∗
i in a batch B is often used to replace NSP:

LICT(s1, s
∗
1, ..., s|B|, s

∗
|B|) = − 1

|B|
∑
i∈B

log
exp (S(si, s

∗
i))∑

j∈B

exp
(
S(sj, s

∗
j)
) (5.11)

where function S computes the dot-product similarity between the two spans using their
passage-level embeddings. This document-as-query self-supervised training for retrieval
purposes has different variations [Chang et al., 2020, Gao and Callan, 2021a, Ram et al.,
2021, Ma et al., 2022a, Wu et al., 2022]. Although we specifically model formulas and their
surrounding text by creating contrastive span pairs here, we still use the name ICT to refer
to these pretraining tasks because they all share the same spirit.

5.1.2 Coco-MAE Pretraining

In our pretraining data, math documents are split into spans of random lengths consisting
of heterogeneous tokens. Given a span s, we pair it with an in-document excerpt s∗ that
does not intersect s.

A more challenging task is proposed to inject more information to the contexualized
representation of math documents. We use the MAE pretraining architecture, but the
encoded h

(L)
0 codes are swapped before feeding them to the decoder so that the decoder

has to rely on the in-context code for the MLM task. Presumably, this will encourage the
model to better encode higher-level context. More specifically,

h̃(0) = h
(L)∗
0 , h

(k)
1 , h

(k)
2 , ..., h(k)

n (5.12)

h̃(0)∗ = h
(L)
0 , h

(k)∗
1 , h

(k)∗
2 , ..., h(k)∗

n (5.13)

where the star notation on the superscripts is used to denote which spans the hidden states
are taking input from, given a span s and its in-context pair s∗. Note that this setting is
similar to the Cot-MAE pretraining in general text retrieval [Wu et al., 2022]. However,
we use the encoder layer at k > 0 to feed the decoder while Cot-MAE starts the skip links
from k = 0, where embeddings are non-contextual. Skipping from a higher layer prevents
the learned code in MAE from encoding too much lower-level syntactic information from
math tokens. Also different from Cot-MAE, we further include the ICT loss for the learned
code to better capture highly contextual math semantics during the pretraining stage.

83

in-context spans

swapped in-context
passage embeddings

encoder MLM

decoder MLM

Figure 5.1: Illustration of our contrastive pretraining. A decoder is placed on top of a
retriever backbone to train an auxiliary MLM objective at the same time including the
contrastive loss to create a good balance of passage- and token-level information in the
learned retrieval representation.

Our pretraining loss is a summation of encoder MLM, decoder MLM, and contrastive
ICT in a batch {si, s∗i }Bi :

L = LMLM + Ldec
MLM + LICT(s1, s

∗
1, ..., s|B|, s

∗
|B|) (5.14)

We name this pretraining method Coco-MAE due to its similarity to both CoCon-
denser [Gao and Callan, 2021a] and Cot-MAE [Wu et al., 2022]. Coco-MAE differs from
CoCondenser in that the in-context MAE code is swapped before feeding to the MLM de-
coder, leading to a more challenging decoder task. For heterogeneous math topics, we will
show in Section 5.3.3 that this change is important for learning efficiency. Our pretraining
scheme is illustrated in Figure 5.1.

5.2 Domain-optimized Hybrid Search

In Zhong et al. [2023], we also complement math structure search with efficient components
and hybrid representations of different strengths (see Section 5.2.3). We suggest a set

84

of complementary search components (under the name MABOWDOR) for effective and
efficient MIR.

5.2.1 Hybrid Components

DPR In the Dense Passage Retriever (DPR) architecture [Karpukhin et al., 2020], a
Transformer encoder E(·) is applied to the query or passage, and the output embedding

corresponding to the [CLS] token, i.e., h
(L)
0 , is used directly to calculate similarity scores.

Since the h
(L)
0 dense vector is trained to represent passage-level embedding even during

the pretraining stage, the DPR model can capture higher level semantics and bridge the
vocabulary gap where passages do not share relevant keywords.

To facilitate retrieval efficiency, the similarity is modeled using the dot product between
a query q and a passage p:

S(q, p) = E(q)T · E(p). (5.15)

SPLADE For sparse representations, the SPLADE models [Formal et al., 2021b,a]
serve as effective representatives. These models utilize the sparse output wi from the
pretrained MLM head to represent the (contextually) relevant words in the vocabulary
for an input token ti at position i. Subsequently, they fine-tune this representation for
similarity comparison. Similarly, SPLADE models the similarity of two inputs p and q by
computing the dot products from their sparse representations:

S(q, d) = ηq(q)T · ηd(d) (5.16)

where ηq(·) and ηd(·) refer to query and document encoders, respectively.

In particular, the SPLADE-max model extracts similarity features by aggregating from
max non-negative weights of relevant words among all input tokens:

η(t) =

{
max

i=0,1,...,n
log(1 + ReLU(wi,j))

}V

j

, (5.17)

and the loss in SPLADE models also includes a regularizer, weighted by hyperparameters
λq and λd, which encourages sparse representation by penalizing the query and document
encoder FLOPs (floating-point operations).

85

Query: [CLS] Find all functions f : R → R such that f(f(x)2+f(y)) = xf(x) + y for
all x, y ∈ R. ...

Relevant doc#1929693 returned by our hybrid search:

[CLS] The function defined by f(x) = 0 for all x ∈ R is a solution to the functional
equation. Suppose that f is some other solution. Then there is a real number ... gives
us that f(x2+xf(y)) =xf(x+ y) = xf(c) = r

f(c) · f(c) = r ...

Figure 5.2: Illustration of the hybrid search using an example of Topic A.355 from the
ARQMath-3 collection. Different highlighting colors denote different types of semantic
matches (orange for passage-level semantics, light red for sparse lexical matches over a
threshold of importance, and blue for math formula structure matches where an example
of symbol substitution is shown in cyan).

5.2.2 Fine-Tuning

During neural retriever finetuning, a pretrained model (i.e., a backbone) is used as the
initial encoder state, the retriever is optimized through contrastive triplets, each having a
query q and a pair of positive and negative samples, p+ and p−.

For all retrievers created in this chapter, a similar practice as Eq. 5.11 is used to fine-
tune the model via a contrastive loss Ltune using a batch of triplet inputs {qi, p+i , p−i }

|B|
i ,

and other instances from the batch are utilized as additional in-batch negatives:

Ltune = − 1

|B|

|B|∑
i=1

log
exp

(
S(qi, p

+
i)
)

|B|∑
j=1

exp
(
S(qi, p

+
j)
)

+

|B|∑
j=1

exp
(
S(qi, p

−
j)
) . (5.18)

5.2.3 Combining Complementary Models

As illustrated in Figure 5.2, the intuition of hybrid search is to combine different schemes of
representations which can be complementary. In particular, I have proposed employing a
hybrid search to better capture passage-level, lexical-level, and formula structure semantics,

86

acknowledging that not all methods are suitable for all modes of data in heterogeneous math
documents. This hybrid search is dubbed MABOWDOR – Math-Aware Best-of-Worlds
Domain Optimized Retriever.

The MABOWDOR hybrid search includes a structure search to handle math tokens, a
single-vector dense retriever to capture passage-level semantics, and a sparse retriever to
improve non-math token retrieval:

• For structure search, it aims to capture math formula structure similarity and sym-
bol substitutions efficiently. To make full-text search possible, structure search is
complemented with a text scoring scheme, such as BM25+ [Lv and Zhai, 2011], to
handle non-math tokens. Both methods are unsupervised.

• For context semantics, a DPR model is fine-tuned on the Coco-MAE backbone and
is used for capturing passage-level semantics, reducing the dependence on lexical
matches.

• To enhance text retrieval, a text-only SPLADE-max model is optionally added (only
in MABOWDOR-full). As the name suggests, we optimize the sparse model in the
MIR domain by selectively using dimensions associated to non-math tokens in the
representations.

Let Γ be the set of indices that associates with non-math tokens, our text-only SPLADE
is trained with the text-only encoder

η(t) =

{
1Γ(j) · max

i=0,1,...,n
log(1 + ReLU(wi,j))

}V

j

(5.19)

where 1Γ(j) is the indicator function that maps j to one if j ∈ Γ, and to zero otherwise.
Note that we do not mask out math tokens from the input t directly; instead, the masking
on the final representation allows the “text-only” SPLADE encoder to peek at math context
and use only relevant text words for retrieval.

5.2.4 Fusing Different Relevance Signals

Recent ARQMath tasks have demonstrated that no single-modal search method, whether
based on classic retrieval methods, approximate tree matching approaches, or even deep

87

models with cross encoders, is capable of surpassing others in all effectiveness metrics [Man-
souri et al., 2021c]. Therefore, it is an important question to learn how to combine different
signals for the best effectiveness.

In the work presented by Peng et al. [2021], a structure-aware Transformer model
is trained to rerank results obtained from clustering structure embeddings. However, a
supervised retriever is presumably most useful to enhance fuzziness and recall in math
retrieval without the constraint of requiring a structure match in candidates.

Indeed, the fusion between a learned score that does not explicitly model structure simi-
larity, and a specialized structure search system designed to particularly uncover structural
similarities, has more complementary strengths and achieves higher effectiveness compared
to reranking methods [Zhong et al., 2022a,b]. Consequently, our hybrid approach in Zhong
et al. [2023] trains supervised retrieval models end-to-end without explicitly filtering struc-
ture mismatches.

One way to combine scores from different systems is through a linear interpolation:

Sf =
∑
i

wi · Si (5.20)

where i corresponds to the i-th system, and Si is the document score generated by that
system and wi ∈ [0, 1] are the parameter weights with the constraint that they are summed
to one. Empirical evidence has demonstrated that this fusion scheme is more robust than
other alternatives for information retrieval purposes [Bruch et al., 2022, Zhong et al.,
2022b].

5.3 Evaluation

5.3.1 Experimental Setup

Benchmarks Our experiments are conducted on ARQMath-2 (2021) [Mansouri et al.,
2021c] and ARQMath-3 (2022) [Mansouri et al., 2022]. In the experiments, only the main
task (Task 1) topics of the ARQMath datasets are evaluated. This is because the supervised
retrievers proposed in this chapter are specifically designed to handle both text and math,
focusing on math-aware retrieval.

Evaluation metrics The official evaluation protocols in ARQMath are used (see Sec-
tion 2.4). In addition to the official effectiveness metrics NDCG’, MAP’, and P’@10, our

88

Table 5.1: Different backbones explored in our experiments. All backbones except vanilla
BERT are further pretrained to adapt to math domains.

Backbone Further
pretrained

MLM
decoder

Contrast.
loss

Swap
Psg.
Emb.

BERT (vanilla) [Devlin et al., 2019] No No Yes (NSP) -
BERTm [Zhong et al., 2022a] Yes No Yes (NSP) -
Math ALBERT [Reusch et al., 2022] Yes No Yes (SOP) -
ORQAm [Lee et al., 2019] Yes No Yes (ICT) -
CoCondenserm [Gao and Callan, 2021a] Yes Yes Yes (ICT) No
Cot-MAEm [Wu et al., 2022] Yes Yes No Yes
Coco-MAE (this chapter) Yes Yes Yes (ICT) Yes

(∗m): We use the same pretraining scheme; however, backbone weights are different from their
original checkpoints once domain adapted.

experiments also include bpref [Buckley and Voorhees, 2004] in our measurements as it
naturally excludes unjudged documents. Compared to NDCG′, we also find MAP′ and
bpref are less affected by lower-ranked hits.

Preprocessing Math formulas in LaTeX markup are pre-tokenized into symbols using
the PyA0 toolkit [Zhong and Lin, 2021]. The PyA0 lexer reduces input math tokens to
a smaller set where semantically identical math tokens (e.g., \emptyset, \varnothing,
or \empty) are unified. After pre-tokenization, math tokens are treated the same as text
tokens, i.e., each as a single word even for syntactic LATEX tokens and number digits.
Despite being quite simple, this tokenization scheme has been shown to be effective for
both math retrieval [Zhong et al., 2022a] and arithmetic calculation [Nogueira et al., 2021].

The input undergoes further tokenization using a word-piece tokenizer before being
fed into the models. However, math tokens are not converted to lower case as they likely
contain crucial math semantics. For example, an upper-case letter often denotes a matrix.
The resulting added math vocabulary size for the tokenizer is about 1,000.

Inputs are handled differently in the structure search and BM25 passes, specifically,
math tokens are parsed sequentially into OPT representations where syntactic literals are
dropped for structure search, and text words are preprocessed with Porter stemmer.

Further-pretraining As shown in Table 5.1, we consider a list of pretraining schemes
for retrievers in our experiments. Except for Math ALBERT [Reusch et al., 2022], they

89

are all initialized with the same vanilla BERT checkpoint (bert-base-uncased from Hug-
gingFace [Wolf et al., 2020]) and most of them are further pretrained for the math domain
with added math vocabularies (except vanilla BERT, which is set up to examine whether
further pretraining is helpful [Zhu et al., 2021]).

Our data for further pretraining are crawled from MSE and AoPS websites (the training
pairs are contained in one passage, no ground-truth pair will be used for supervising model
training). For MAE models, we follow Gao and Callan [2021a] and use a 2-layer decoder
(M = 2) and 6 early layers (fixed k = 6). Models further pretrained by us (excluding Math
ALBERT) use a batch size of 96 and are trained for a total of 6 epochs. We uniformly use
the AdamW [Loshchilov and Hutter, 2017] optimizer with one warm-up epoch from zero
to 10−4 learning rate linearly.

Fine-tuning We fine-tune retrievers using the ARQMath training data, consisting of
Q&A posts prior to the year 2018. Following Zhong et al. [2022b], the training triplets
are made of a question, a positive answer sampled from an accepted answer, duplicate
questions, or any answer posts to the query receiving more than 7 upvotes. A random
answer passage is sampled as a hard negative from a question with a shared tag. A total
of 594,000 triplets were sampled for fine-tuning. For comparison, we fix a unique backbone
for each type of pretraining architecture and use the same data for each model’s fine-
tuning process. We additionally trained a ColBERT model [Khattab and Zaharia, 2020]
for comparison purposes; it is trained in half-precision to avoid excessive index storage.
We used the vanilla ColBERT model due to its simplicity and straightforward integration
into our code framework for the purpose of fair comparison.

All dense retrievers are trained using a batch size of 54 using a learning rate 2×10−5 with
one epoch linear warmup, and all sparse retrievers are trained with a uniform regularizer
weight λq = λd = 10−4 using a batch size of 24 under the same learning rate schedule.
The DPR and SPLADE models are fine-tuned with 2.5 epochs by default. However, the
ColBERT model is trained for 7 epochs, which helps us to estimate the best neural retrieval
effectiveness potential we can obtain from using a multi-vector dense retriever.

Inference For dense retrieval, we evaluated both the exact search (Flat) and HNSW
indexes [Malkov and Yashunin, 2018] from the Faiss [Johnson et al., 2019] implementa-
tion (M=256, efConstruction=16, and efSearch=64). The candidate filter stage in the
multi-vector representation case (i.e., ColBERT v1 [Khattab and Zaharia, 2020]) is quan-
tized and clustered for efficient approximate nearest-neighbors (ANN) search. For sparse
retrieval, we convert the lexical weights to frequencies by scaling and rounding them up,
and then index on top of Anserini [Yang et al., 2017]. For unsupervised retrieval, inference
is done with the same manually extracted keywords used in Zhong et al. [2022a].

90

Baseline systems We select representative and effective runs reported on the ARQMath-
2 and -3 datasets [Mansouri et al., 2021c, 2022] for comparisons.

For traditional retrieval systems, we include a community-driven oracle baseline ex-
tracted from MSE linked posts [Mansouri et al., 2022], a classic tf–idf model from Terrier
using Robertson’s tf and the standard Sparck Jones’ idf [Terrier contributors, 2014], and
the most effective BM25+ run generated by the MSM team submitted at ARQMath-3.

Second, we include the most effective structure search submissions to the ARQMath-3
lab: (1) Approach0 [Zhong et al., 2022a] and (2) MathDowsers [Kane et al., 2022] which
extracts bags of features from SLT and handles both math and text using BM25.

Third, we make a fair comparison among DPR, SPLADE, and ColBERT retrievers
we have built (in the same code framework) on top of our further pretrained Coco-MAE
backbone. We also compare a DPR model fine-tuned by our setup but on the TU DBS
Math ALBERT backbone [Reusch et al., 2022].1 The most effective neural retrievers sub-
mitted to ARQMath are included, e.g., the TU DBS math 10 run [Reusch et al., 2022]
generated by reranking candidates on the entire set of answers using a fine-tuned cross
encoder based on ALBERT [Lan et al., 2019]; additionally, the Mini-LM and RoBERTa
two-stage retrieval system by the MIRMU team [Geletka et al., 2022], where the Mini-LM
is commonly used in some effective cross-domain neural retrievers [Wang et al., 2021b,
Thakur et al., 2022].

Lastly, top effective systems using hybrid search are also compared, i.e., (1) the MSM
ensemble system using reciprocal rank fusion (RRF) to combine classic lexical retrievers
with a domain-adapted Sentence Transformer [Mansouri et al., 2022, Novotnỳ et al., 2021];
(2) the MSM + MIRMU ensemble run integrated with the two-stage MIRMU run in a
post-hoc experiment [Geletka et al., 2022]; (3) the Approach0 fusion run from combining
Approach0 and a fine-tuned ColBERT model [Zhong et al., 2022a]. And finally, (4) a
concatenated run from the best runs of the MSM team and the Approach0 team, which
achieves the best-published scores on the ARQMath-3 dataset to date. Note that the
ARQMath-2 scores in this concatenated run are unknown because it was created by a
third team in post-hoc experiments [Kane et al., 2022].

5.3.2 Main Results

Tables 5.2 and 5.3 summarizes our main results. We include a column that indicates
whether a corresponding system can practically generate the run using only a single CPU

1We are aware of other existing MIR backbones [Geletka et al., 2022, Peng et al., 2021]; however, either
they do not pretrain a passage-level embedding or the checkpoints are not available for our evaluation.

91

Table 5.2: Systems compared on the ARQMath-2 dataset using the official metrics.
Whether or not a run can be practically retrieved using a single CPU is indicated in the
last column. Hybrid search scores are reported using the linear interpolation parameters
tuned on 5-fold cross validations.

Row System
ARQMath-2

1-CPU
NDCG’ MAP’ P’@10

Baseline / Traditional IR
1 Community Linked 0.203 0.120 0.282 -
2 tf–idf 0.185 0.046 0.063 ✓

3 BM25+ 0.285 0.082 0.116 ✓

Structure search
4 Approach0 (tree matching) 0.383 0.185 0.241 ✓

5 MathDowsers (bag of struct. feats.) 0.510 0.223 0.265 ✓

Neural retrievers
6 Our DPR (Math ALBERT, Flat index) 0.315 0.118 0.189 ✓

7 TU DBS math 10 cross encoder 0.454 0.228 0.321 ✗(‡)

8 MIRMU Mini-LM and RoBERTa 0.487 0.233 0.316 ✗(‡)

9 Our DPR (Coco-MAE, HNSW index) 0.403 0.165 0.238 ✓

10 Our DPR (Coco-MAE, Flat index) 0.416 0.173 0.247 ✓

11 Our SPLADE-max (Coco-MAE, text-only) 0.408 0.171 0.209 ✓

12 Our ColBERT (Coco-MAE) 0.441 0.198 0.251 ✗(†)

Hybrid systems
13 MSM ensemble 0.381 0.119 0.152 ✓

14 MSM + MIRMU ensemble (∗) 0.467 0.186 0.261 ✗(‡)

15 Approach0 fusion 0.460 0.226 0.296 ✗(†)

16 MSM ensemble + Approach0 fusion (∗) - - - ✗(†)

Our hybrid search
17 MABOWDOR (base, HNSW index) 0.515 0.250 0.306 ✓

18 MABOWDOR (base, Flat index) 0.514 0.254 0.307 ✓

19 MABOWDOR (full, Flat index) 0.527 0.265 0.316 ✓

(∗): Systems directly tuned on the datasets in a post-hoc experiment.
(‡): Not practical for single-CPU search due to using a cross-encoder reranker.
(†): Depending on an expensive multi-vector dense retriever, i.e., ColBERT (v1).

92

Table 5.3: Systems compared on the ARQMath-3 dataset using the official metrics.
Whether or not a run can be practically retrieved using a single CPU is indicated in the
last column. Hybrid search scores are reported using the linear interpolation parameters
tuned on 5-fold cross validations.

Row System
ARQMath-3

1-CPU
NDCG’ MAP’ P’@10

Baseline / Traditional IR
1 Community Linked 0.112 0.054 0.177 -
2 tf–idf 0.272 0.064 0.124 ✓

3 BM25+ 0.396 0.122 0.194 ✓

Structure search
4 Approach0 (tree matching) 0.397 0.159 0.271 ✓

5 MathDowsers (bag of struct. feats.) 0.474 0.164 0.247 ✓

Neural retrievers
6 Our DPR (Math ALBERT, Flat index) 0.394 0.147 0.260 ✓

7 TU DBS math 10 cross encoder 0.436 0.158 0.263 ✗(‡)

8 MIRMU Mini-LM and RoBERTa 0.498 0.184 0.267 ✗(‡)

9 Our DPR (Coco-MAE, HNSW index) 0.460 0.194 0.319 ✓

10 Our DPR (Coco-MAE, Flat index) 0.464 0.192 0.324 ✓

11 Our SPLADE-max (Coco-MAE, text-only) 0.472 0.179 0.287 ✓

12 Our ColBERT (Coco-MAE) 0.490 0.202 0.310 ✗(†)

Hybrid systems
13 MSM ensemble 0.504 0.157 0.241 ✓

14 MSM + MIRMU ensemble (∗) 0.576 0.214 0.309 ✗(‡)

15 Approach0 fusion 0.508 0.216 0.345 ✗(†)

16 MSM ensemble + Approach0 fusion (∗) 0.594 0.234 0.345 ✗(†)

Our hybrid search
17 MABOWDOR (base, HNSW index) 0.536 0.241 0.381 ✓

18 MABOWDOR (base, Flat index) 0.534 0.239 0.381 ✓

19 MABOWDOR (full, Flat index) 0.553 0.246 0.386 ✓

(∗): Systems directly tuned on the datasets in a post-hoc experiment.
(‡): Not practical for single-CPU search due to using a cross-encoder reranker.
(†): Depending on an expensive multi-vector dense retriever, i.e., ColBERT (v1).

93

– we use this resource requirement to estimate system expense in efficiency because many
system runs do not have query latency reported in Mansouri et al. [2022].

We have named two optimal configurations in our hybrid search, i.e., MABOWDOR-
base and MABOWDOR-full. The MABOWDOR-base setting uses structure search for
math, BM25+ for text, and dense representations produced by DPR for passage-level
retrieval; the MABOWDOR-full configuration additionally includes a sparse SPLADE-max
model, which encodes only text tokens (see Eq. 5.19). More specifically, MABOWDOR-
base linearly combines systems at row 4 and 9 or row 4 and row 10,2 depending on the
index scheme; and MABOWDOR-full further combines the SPLADE-max run at row 11.

As shown in Tables 5.2 and 5.3, traditional retrieval falls short in the MIR domain –
around 3 times less effective than our hybrid search in the worst case (comparing rows 3
and 19). This has to do with the inability of traditional bag-of-words models to capture
sequential, structural semantics and symbol substitutions. Neural retrievers (rows 6 to 12),
in general, achieve a higher level of effectiveness similar to that of structure search methods
(rows 4, 5), but many are impractical for running in a single-CPU inference environment.
Hybrid systems (rows 13 to 19), on the other hand, show better overall effectiveness. Our
MABOWDOR hybrid models achieve better effectiveness. In the best case, MABOWDOR-
full outperforms the previous best submission in ARQMath-3 (i.e., Approach0 fusion) by
9% in NDCG′, 14% in MAP′, and 12% in P′@10.

From the efficiency and model complexity perspective, the MSM ensemble runs at row
13 or 16 in Tables 5.2 and 5.3 are contributed by at least 4 systems, and the MSM +
MIRMU run at row 14 consists of a total of 9 different systems [Geletka et al., 2022].
Although Approach0 fusion at row 15 has only 3 subsystems, its practical adoption is
limited by its dependency on multi-vector dense representations, which result in either
an overly large index (costing ∼80 GiB for indexing the ARQMath corpus in our case)
or creating a complex scoring pipeline [Santhanam et al., 2021, 2022a]. Systems using a
cross encoder or depending on an expensive multi-vector dense retriever are considered to
have an efficiency bottleneck here because a query can take minutes to run on a single
CPU. In contrast, our MABOWDOR-base hybrid search only requires a single learned
component (i.e., DPR) while achieving much faster run times when using an HNSW index,
i.e., (avg, max, med, std) = (0.40, 1.03, 0.36, 0.22) seconds; the run times of the structure
search are (0.52, 1.68, 0.42, 0.31) seconds. All run times are reported using in-memory and
single-threaded retrieval on an Intel mid-range i5-8600K CPU with DDR4 memory.

2We do not use MathDowsers for structure search because its updated version takes more than 10
seconds on average per query [Kane et al., 2022].

94

Table 5.4: Ablations on MABDOWDOR components and the standalone sparse retriever,
evaluated on ARQMath-3. Linear interpolation is tuned using cross-validation. Underlined
(p < 0.01) and italic (p < 0.05) are considered significantly different from the non-ablated
case using the two-tailed pairwise t-test.

Ablations NDCG’ MAP’ P’@10

1 MABDOWDOR (full) 0.553 0.246 0.386
2 minus sparse vector (text only) 0.534 0.239 0.381
3 using text + math sparse vector 0.542 0.240 0.376
4 minus dense vector 0.534 0.224 0.358
5 minus structure search 0.501 0.209 0.322

6 Sparse vect. (Coco-MAE, text-only) 0.472 0.179 0.287
7 using text + math sparse vector 0.404 0.148 0.256

5.3.3 Analysis

Is each component of hybrid search necessary? What are their best scope and
combination?

As shown in Table 5.4, we break down our hybrid search to study its source of effective-
ness. Rows 1, 2, 4, and 5 indicate that the structure search and dense representation
are more effective components than when each is combined with sparse retrieval. Each
component of the hybrid search is necessary since removing any component will lead to a
significant drop in both NDCG′ and MAP′. In particular, the structure search is crucial to
be incorporated for good top precision – otherwise, the P′@10 will be significantly lower in
row 5. These results justify our hybrid search components and indicate that the structure
search and dense representation used in our proposed MABOWDOR-base hybrid search
are complementary at the same time using a minimal number of components.

Interestingly, in both hybrid search and standalone scenarios – according to rows 1, 3,
6, and 7 in Table 5.4 – the sparse representation is more effective when it is only used
to represent text tokens instead of being used to weigh math tokens. To understand why
the full-scope sparse vector is sub-optimal, we have probed some sample search results
and found that math tokens tend to be commonly shared by many contents from different
topics, and including math token weights in lexical retrieval causes many false positives if
the model cannot correctly recognize the topic of a post (an example is shown in Figure 5.3).

To further discover the best scope of each component, we disassemble the topics into
two important dimensions in MIR, i.e., the formula search topics and the heterogeneous

95

Q: What is the Fourier transform of function f(x) = 1
|x|?

SPLADE (text + math), doc#1125280 (irrelevant):

... ln |x| is defined for all x ̸= 0. It derivative 1
x for all x ̸= 0, so

∫
1
x dx = ln |x|+ C.

Top scored tokens: <vert>, <frac>, <x>, absolute, <ln>.

SPLADE (text only), doc#1085035 (relevant):

In general, 1/f may not have a Fourier transform, even in the sense of tempered distribu-
tions. ... And similarly for 1/f(t) where we use the partial fraction expansion of 1/f .

Top scored tokens: fourier, f, reciprocal, transform, fraction.

Figure 5.3: Example question from the ARQMath-3 dataset (Topic A.360) and the re-
trieved passages by SPLADE models using all and text-only representations, respectively.
Tokens wrapped in angle brackets are math tokens.

0.14 0.15 0.16 0.17 0.18
Topics dependent on text + formula

0.185

0.190

0.195

0.200

0.205

0.210

0.215

0.220

To
pi

cs
 d

ep
en

de
nt

 o
n

fo
rm

ul
a

on
ly

MAP'

DPR
DPR (Coco-MAE)
ColBERT
SPLADE-max
Struct+BM25

0.14 0.15 0.16 0.17 0.18
Topics dependent on text + formula

0.215

0.220

0.225

0.230

0.235

To
pi

cs
 d

ep
en

de
nt

 o
n

fo
rm

ul
a

on
ly

BPref

DPR
DPR (Coco-MAE)
ColBERT
SPLADE-max
Struct+BM25

Figure 5.4: MAP’ and bpref score divided into two different topic dependency dimensions.
The upper points are better at formula search topics while the points on the right are
better at heterogeneous topics that depend on both text and formula(s).

96

Col
BER

T
DP
R

DP
R (
Coc

o-M
AE)

SPL
AD
E (
full
)

SPL
AD
E (
tex

t-o
nly
)

Str
uct

 +
BM

25

ColBERT

DPR

DPR (Coco-MAE)

SPLADE (full)

SPLADE (text-only)

Struct + BM25

MAP'

Col
BER

T
DP
R

DP
R (
Coc

o-M
AE)

SPL
AD
E (
full
)

SPL
AD
E (
tex

t-o
nly
)

Str
uct

 +
BM

25

ColBERT

DPR

DPR (Coco-MAE)

SPLADE (full)

SPLADE (text-only)

Struct + BM25

P'@10

Figure 5.5: The pair-wise fusion test score matrices from 5-fold cross-validation in MAP’
and P’@10. The lower triangular and diagonal elements are scores evaluated for topics that
depend on formula and text, and the upper triangular elements are evaluated for formula
search topics. Score are shown in grids where their background grey scale is min-max
normalized in each measurement.

97

topics (the former are formula-centered, and the latter further require capturing contex-
tual semantics around formulas); both categories are provided in the official ARQMath
datasets. In Figure 5.4, we show a scatter plot to illustrate the different strengths of var-
ious methods. We can see that structure search excels at formula search topics, dense
representations (either multi-vector or single-vector) can be good at both dimensions, and
the lexical sparse model is better at handling heterogeneous topics with more non-math
tokens. This also helps to attribute the success of combining structure search as the
Coco-MAE backbone boosts DPR retriever effectiveness in both dimensions, especially for
heterogeneous topics where structure search is performing poorly. Therefore, our dense
representation complements structure search effectively.

Lastly, to confirm which two components demonstrate the best hybrid effectiveness, we
conduct a pair-wise fusion among different methods and consider the two kinds of topics
individually (see Figure 5.5). The results echo our findings that the structure search and
dense retrievers are the most complementary combinations, especially for heterogeneous
topics. This suggests that passage-level representations are greatly beneficial to discover
semantic connections in text-formula contexts, where unsupervised lexical matching and
structure search are inadequate. In addition, data-driven methods in general can comple-
ment unsupervised retrieval by bridging vocabulary mismatch; this is useful in math-aware
retrieval if math expressions have different structures or symbols.

Interestingly, DPR based on pretrained vanilla BERT is on par with its counterpart
based on Coco-MAE when combined with structure retrieval at heterogeneous topics (at
the bottom rows in Figure 5.5) while it performs not as well at formula search topics (at the
right-most columns in Figure 5.5). This suggests that the injected token-level information
through the MLM decoder task of the Coco-MAE pretraining is most helpful in formula
search when complementing structure search.

Results in Figure 5.5 show that dense representation improves effectiveness when com-
bined with structure search more than when it is combined with learned sparse repre-
sentation (i.e., from the SPLADE model). As a result, the MABOWDOR-base model
is regarded as a performant and cost-effective MIR model although an additional sparse
model could add more effectiveness.

How do dense retrieval and structure search mutually benefit each other?

To explain the significant effectiveness boosts obtained from combining structure and dense
retrieval, it has been found that the improvement primarily stems from reduced false
positive rates, as a result of the mutual compatibility between these two methods.

To support this conclusion, I initially select the top-10 topics that achieve the highest
MAP’ boost in the fusion run, compared to either the structure search or the dense retrieval

98

Figure 5.6: Relevant and non-relevant hits returned by complementary systems. Inter-
sected hits with their ranking scores and histograms are in the scatters plot, and hits
returned by only one system is illustrated in a side histogram in the corresponding axis.

99

Table 5.5: Ablations on the MABDOWDOR-(base), sparse, multi- and single-dense rep-
resentations using different backbones. All hybrid scores are cross-validated results. Un-
derlined (p < 0.01) and italic (p < 0.05) are considered significantly different from the
non-ablated case using the two-tailed pairwise t-test.

Ablations NDCG’ MAP’ P’@10

1 MABDOWDOR (base) 0.534 0.239 0.381
2 replace backbone w/ ORQAm 0.526 0.228 0.345
3 replace backbone w/ Cot-MAE m 0.534 0.236 0.369
4 replace backbone w/ CoCondenserm 0.526 0.230 0.367
5 replace backbone w/ BERT m 0.507 0.219 0.367
6 replace backbone w/ BERT (vanilla) 0.493 0.202 0.340

7 Sparse vect. (Coco-MAE, text-only) 0.472 0.179 0.287
8 replace backbone w/ BERT m 0.464 0.176 0.287

9 Multiple dense vect. (Coco-MAE) 0.490 0.202 0.310
10 replace backbone w/ BERT m 0.416 0.168 0.310

11 Single dense vect. (Coco-MAE) 0.464 0.192 0.324
12 replace backbone w/ BERT m 0.408 0.164 0.297

alone. Subsequently, I create a scatter graph that depicts the fusion hits and no-intersection
hits. As shown in Figure 5.6, the results returned by structure search alone has a higher
false positive rate compared to dense retrieval. However, when a structure hit is also found
by dense retriever, the false positive rate (especially at the top results) greatly reduces.
A similar pattern also happens in the dense retrieval pass except the no-intersection hits
generated by the dense retriever alone already has a good precision among the top results.
This is presumably attributed to the good context-level semantic matching ability from
dense retrieval (compared to focusing on only structure features); by combining it with
structure search, the relevant hits get further boosted to a higher ratio in the top results.

Is the pretraining scheme we propose beneficial? In what way does it benefit
the most in our hybrid search?

Another ablation result is shown in Table 5.5, to study the benefits of using different
pretraining methods. By comparing rows 1 – 6, we see that the Coco-MAE backbone
is the most effective one among all the considered backbones. Moreover, in all types of
representations, our proposed pretraining scheme boosts the downstream MIR tasks in
NDCG′ and MAP′ scores. When compared to retrievers on top of a domain-adapted

100

1 2 3 4 5
#Epochs

0.00

0.05

0.10

0.15

0.20

MAP' (heterogeneous topics)

Coco-MAE
Cot-MAE
CoCondenser
ORQA
BERT (math)
BERT (vanilla)

1 2 3 4 5
#Epochs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

BPref (heterogeneous topics)

Coco-MAE
Cot-MAE
CoCondenser
ORQA
BERT (math)
BERT (vanilla)

Figure 5.7: Change of MAP’ and bpref scores for the DPR model fine-tuning on different
backbones and at different training stage on the ARQMath-2 dataset. Scores are measured
by topics that depend on both text and formula (i.e., heterogeneous topics). The dashed
lines denote models without a decoder.

BERT backbone (row 1, and rows 5 – 12), Coco-MAE improves NDCG′ and MAP′ scores
significantly (p < 0.05 at least) except for the sparse representation case.

Apart from being sensitive to input scope as we have observed in Table 5.4, the sparse
representation is affected less by the replacement of the backbone (shown by row 7 and 8
in Table 5.5), which is expected because the sparse representation almost never depends
on the passage-level code. From another perspective, the multi-vector representations
from ColBERT at rows 9 and 10 suffer the largest degradation by switching the backbone
from Coco-MAE to BERTm, even if both are further pretrained for the math domain.
The single dense representation also suffers more than the sparse representation does, by
comparing rows 7, 8 and 11, 12. These imply that our enhancement to the bottleneck
code during Coco-MAE pretraining boosts dense representations in general and improves
retrievers relying on passage-level representations, whereas the sparse retriever effectiveness
is instead mostly dependent on the encoder MLM objective and thus is less affected because
both Coco-MAE and BERTm also have this MLM task during pretraining.

Admittedly, the effectiveness gains for the Coco-MAE backbone compared to a few
competitive alternatives in rows 3 and 4 are not significant. However, we find that the
Coco-MAE backbone has been shown consistently better effectiveness in heterogeneous

101

topics during different stages of training (see Figure 5.7) – notably better than other back-
bones without an MLM decoder. This indicates our pretraining method achieves better
training efficiency for heterogeneous topics that require a contextualized understanding of
both math and text content, which creates merits to be used for retrieval in the MIR domain
in particular. As shown in Figure 5.7, the Coco-MAE, Cot-MAEm, and CoCondenserm

backbones all offer distinctly overall better effectiveness during fine-tuning, highlighting an
advantage to having an MLM decoder architecture compared to the ORQAm and BERT
backbones. On the other hand, the ORQAm backbone can nevertheless achieve a compara-
ble effectiveness level towards the end of the 6th epoch, which indicates that a pretraining
objective that better mimics the retrieval task (i.e., ICT) is also critical.

In general, the consistent training efficiency seen in Figure 5.7 validates that the swap
of in-context passage embeddings during pretraining has further boosted the quality of en-
coding formula-text semantics. This benefits the heterogeneous data retrieval presumably
because we have created a more challenging pretraining task that predicts context words
from relevant formulas and vice versa.

What are the relative importance of the two unsupervised methods?

The unsupervised retrieval described so far contains two methods, i.e., structure search for
math formulas and a bag-of-words model for retrieving regular text words using BM25+
(see Section 3.2.3). It is also interesting to understand the individual importance of each
unimodal method and how different ratios of these individual methods affect the comple-
mentary effectiveness when combined with dense retrieval.

As a result, the unsupervised retrieval is further broken down into pure structure search
targeting only math formulas and text search using only the text keywords. Table 5.6
summarizes the effectiveness result for each unimodal component as well as when they are
combined with a dense retriever (D). In the case of math-only search (M), a query will be
skipped if it contains only text keywords, similarly, a query will be skipped if it contains
only math formulas in text-only search (T).

As shown in Table 5.6, row 3 and 4 represent the most effective cases when we solely
consider unsupervised search by adjusting the interpolation weights between math-only and
text-only search, with zero contribution from the dense retriever (row 1–5). Interestingly,
math weight and text weight are even when they achieve the highest precision score.
This finding highlights the equal importance of both formula and text matching in our
unsupervised retrieval approach. It suggests that considering both mathematical formulas
and textual content is crucial for achieving effective retrieval results.

However, when the data-driven retriever is introduced (i.e., 6 – 15 rows associated
to non-zero dense retriever weights), the unsupervised text retrieval becomes the least

102

Table 5.6: The effectiveness evaluated on the ARQMath-3 dataset by performing a grid
search for linear interpolation weights. The interpolation weights associated with the
scores from the dense retriever with a Coco-MAE backbone, the structure search using
math keywords only, and the text-only retrieval using BM25+ are represented by D, M,
and T respectively. Bold and underlined are the first and second highest scores for each
metric in each block. Results are generated by merging top-1000 results individually.

Row D M T NDCG’ MAP’ P@10 bpref

1 0.00 0.00 1.00 0.304 0.095 0.174 0.104
2 0.00 0.25 0.75 0.384 0.134 0.246 0.145
3 0.00 0.50 0.50 0.396 0.149 0.269 0.162
4 0.00 0.75 0.25 0.395 0.152 0.258 0.161
5 0.00 1.00 0.00 0.328 0.121 0.212 0.137

6 0.25 0.00 0.75 0.454 0.168 0.255 0.160
7 0.25 0.25 0.50 0.505 0.204 0.315 0.194
8 0.25 0.50 0.25 0.517 0.219 0.355 0.210
9 0.25 0.75 0.00 0.475 0.194 0.300 0.187

10 0.50 0.00 0.50 0.488 0.197 0.342 0.190
11 0.50 0.25 0.25 0.531 0.229 0.368 0.223
12 0.50 0.50 0.00 0.494 0.210 0.349 0.206
13 0.75 0.00 0.25 0.497 0.205 0.340 0.200
14 0.75 0.25 0.00 0.499 0.211 0.340 0.206
15 1.00 0.00 0.00 0.464 0.192 0.324 0.192

important because the best scores are now achieved by rows at 8 and 11, where text search
has the smallest weight in either row. Presumably, when dense retrieval is introduced, it
is able to replace some unsupervised text-based retrieval capabilities. Consistent with our
expectations, the overall good effectiveness observed from rows 10-15, where the math-only
retrieval has a substantial weight in the interpolation (at least 0.5), further emphasizes the
importance of structure search and its continued vital role in obtaining effective supervised
math-aware retrieval results.

103

Chapter 6

Conclusion and Future Work

Unlike traditional information retrieval, math information retrieval (MIR) poses unique
challenges due to its special characteristics. In this thesis, I have made significant advance-
ments in MIR by proposing and combining two efficient and complementary methods:
structure search and contextual supervised retrieval based on Transformer models.

For previous work in MIR (reviewed in Section 2.3), the structure search has often been
costly and involved extensive feature engineering. However, the reviewed structure search
in this thesis is not only efficient but also having simple structure features. It utilizes
leaf-root paths to uncover meaningful and well-defined structure matches (see Section 3.1)
which can be understood and visualized in search results. Furthermore, the single-tree
matching structure search objective can be accelerated using specialized inverted index
and dynamic pruning optimizations. These optimizations require minimal changes to be
compatible with the traditional IR architecture. Notably, the proposed structure search
approach achieves top-effective and real-time math formula retrieval [Zhong et al., 2020].

In addition, a hybrid search method using both structure search and supervised retrieval
is proposed with sub-second run times in each component and has achieved the state-
of-the-art effectiveness on ARQMath datasets [Zhong et al., 2023]. Combining structure
search with a supervised retriever in an end-to-end pipeline proves highly effective for math
answer retrieval. This is because the Transformer model uncovers contextual connections
and overcomes the issue of imposing too many lexical or structural constraints over search
candidates. On the other hand, structure similarity in math formulas has a strong relevance
signal that leads to the state-of-the-art unsupervised MIR search. By combining these
methods, different semantic aspects in math documents can be captured, offering a cost-
effective solution for addressing MIR challenges.

104

Looking to the future, continuous advancements in math retrieval will be crucial: First,
MIR also requires image or multi-modal retrieval to handle topics like geometry and topol-
ogy. Second, a query formula structure needs to be transformed to recall other mathe-
matically equivalent formulas but in different structures. Lastly, it is an ongoing endeavor
to continuously improve the modeling of math language and its representation. This is
because math language comprises intricate reasoning and abstract concepts that arguably
represent a pinnacle of intellectual sophistication.

Previously, these challenges were difficult to address. However, with the recent rapid
advancements in large language models (LLMs), I believe we can potentially tackle these
challenges in a progressively unified manner. Particularly, LLMs have the potential to
serve as a “central processing unit” capable of handling multi-modality representations [Li
et al., 2023, Driess et al., 2023], they can also function as retrieval-augmented generative
models, extracting more precise information from the results obtained by first-stage re-
trievers [Guu et al., 2020, Izacard and Grave, 2020, Borgeaud et al., 2022, Shi et al., 2023].
Recently, multi-hop query refinement has been developed to further break down an input
question, to ask follow-up questions, and to gather existing retrieval results [Yao et al.,
2022, Khattab et al., 2022]. In the case of MIR, this signifies the great potential to trans-
form an unfamiliar form of a math formula into a more commonly recognized identity that
is more suitable for use as a structure search query. Furthermore, we will have the ability
to automatically select best formula(s) for structure search to enhance the effectiveness of
math-aware retrieval. Lastly, thanks to the significant advancements in the mathematical
abilities of LLMs [Rae et al., 2021, Lewkowycz et al., 2022, Bubeck et al., 2023], we are
witnessing a promising pathway to directly address math problems or subproblems with
the assistance of these models.

Enlightened by these advancements, I have done a preliminary experiment to evaluate
the impact of these technologies on math-aware retrieval. For this experiment, I utilized
the most advanced, yet proprietary, OpenAI APIs available at the time of writing. For
the baseline systems, I select the most high-performing dense retriever and hybrid search
system described in this thesis, namely the DPR (Dense Passage Retrieval) based on
the Coco-MAE backbone, and the MABOWDOR-base model, which achieves the optimal
effectiveness while maintaining a balanced level of efficiency. I rerank the full top-1000
results using the cheaper but up-to-date embedding API from OpenAI1 ($0.0001 / 1K
tokens), and for the evaluation of GPT-4 model2 ($0.06 / 1K output tokens), I limit the
reranking to top-10 results generated from baseline systems.

1Ada-002 model, details are available at: https://platform.openai.com/docs/models/embeddings
2See https://platform.openai.com/docs/models/gpt-4.

105

https://platform.openai.com/docs/models/embeddings
https://platform.openai.com/docs/models/gpt-4

To generate reranked order using the GPT-4 generative model, I employ the following
prompt template:

Sort the list PASSAGES by how good each text answers the QUESTION (in

descending order of relevancy).

QUESTION = "...", PASSAGE1 = "...", PASSAGE2 = "...", ..., PASSAGE10

= "...".

PASSAGES = [PASSAGE1, PASSAGE2, PASSAGE3, PASSAGE4, PASSAGE5, PASSAGE6,

PASSAGE7, PASSAGE8, PASSAGE9]

SORTED PASSAGES = [

As shown by Table 6.1 and 6.2, the best dense retriever proposed in this thesis is slightly
more effective than the Ada-002 embedding. Admittedly, the proposed DPR model is es-
pecially fine-tuned on the math domain, and the Ada-002 embedding can be used for
general text retrieval; however, both the pretraining and fine-tuning of the Coco-MAE and
DPR retriever consume minimal data and budget (using the 110M-parameter bert-base

model and fine-tuned only against the Math StackExchange website with half-million sam-
ple pairs). On the other hand, the hybrid search combining dense retrieval and structure
search is shown to be highly effective, outperforming Ada-002 and on par with GPT-4 in
top-10 precisions. However, GPT-4, despite being a generalist model [Bubeck et al., 2023],
can boost the effectiveness of math retrieval in other cases. 3

We are currently witnessing an exciting era where language models like GPT-4 continue
to astound us with their capabilities. The potential of a generative approach to directly or
even fully handle queries in the field of Math Information Retrieval looks more promising
than ever. Nevertheless, I believe that the cost-effective retrieval methods introduced in
this thesis, based on structure similarity and hybrid search, will play a vital role in serving
as a first-stage efficient retriever or as a complementary tool for LLMs [Schick et al., 2023,
Shen et al., 2023, Patil et al., 2023, Hao et al., 2023, Lu et al., 2023]. Moreover, in order to
address the remaining challenges in this domain, it is reasonable to expect the emergence
of more automatic and closed-loop learning approaches. I believe these approaches will
effectively and interactively integrate math retrieval models, leading to further enhanced
math answering performance.

3However, we cannot rule out the possibility that these proprietary LLMs are trained on the MSE
dataset that we are using for testing.

106

Table 6.1: Evaluation of the OpenAI reranked results on the ARQMath-3 (Task 1) using
DPR (Coco-MAE, HNSM indexed) as base run. The up-to-date best available embedding
model Ada-002 and generative model GPT-4 are compared.

Row Run NDCG’ MAP’ P’@10 bpref

Top-1000 reranking

(1) DPR (Coco-MAE) 0.460 0.194 0.319 0.195
(2) Ada-002 0.453 0.190 0.309 0.202

Top-10 reranking

(3) DPR (Coco-MAE) 0.108 0.048 0.236 0.062
(4) Ada-002 0.112 0.044 0.235 0.063
(5) GPT-4 0.121 0.059 0.229 0.068

Table 6.2: Evaluation of the OpenAI reranked results on the ARQMath-3 (Task 1) dataset
using MABOWDOR-base (HNSM indexed) as base run. The up-to-date best available
embedding model Ada-002 and generative model GPT-4 are compared.

Row Run NDCG’ MAP’ P’@10 bpref

Top-1000 reranking

(1) MABOWDOR-base 0.536 0.241 0.381 0.232
(2) Ada-002 0.497 0.205 0.318 0.208

Top-10 reranking

(3) MABOWDOR-base 0.132 0.063 0.330 0.088
(4) Ada-002 0.121 0.049 0.248 0.069
(5) GPT-4 0.153 0.079 0.321 0.092

107

References

Muhammad Adeel, Hui Siu Cheung, and Sikandar Hayat Khiyal. MATH GO! prototype
of a content based mathematical formula search engine. Journal of Theoretical & Ap-
plied Information Technology, 2008. URL http://www.jatit.org/volumes/research-
papers/Vol4No10/15Vol4No10.pdf.

Qingyao Ai, Liu Yang, Jiafeng Guo, and W. Bruce Croft. Analysis of the paragraph vector
model for information retrieval. In ICTIR, 2016. URL https://dl.acm.org/doi/pdf/
10.1145/2970398.2970409.

Akiko Aizawa. An information-theoretic perspective of tf–idf measures. Information
Processing & Management, 2003. URL https://www.sciencedirect.com/science/
article/pii/S0306457302000213.

Akiko Aizawa, Michael Kohlhase, and Iadh Ounis. NTCIR-10 Math Pilot Task Overview.
In NTCIR, 2013. URL http://ntcir-math.nii.ac.jp/wp-content/blogs.dir/23/
files/2013/10/01-NTCIR10-OV-MATH-AizawaA.pdf.

Akiko Aizawa, Michael Kohlhase, Iadh Ounis, and Moritz Schubotz. NTCIR-11 Math-2
Task Overview. In NTCIR, 2014. URL https://research.nii.ac.jp/ntcir/workshop/
OnlineProceedings11/pdf/NTCIR/OVERVIEW/01-NTCIR11-OV-MATH-AizawaA.pdf.

Miltiadis Allamanis, Pankajan Chanthirasegaran, Pushmeet Kohli, and Charles Sutton.
Learning continuous semantic representations of symbolic expressions. In ICML, 2017.
URL http://proceedings.mlr.press/v70/allamanis17a/allamanis17a.pdf.

Vo Ngoc Anh and Alistair Moffat. Pruned query evaluation using pre-computed impacts.
In SIGIR, 2006. URL https://dl.acm.org/doi/10.1145/1148170.1148235.

Michal Siedlaczek Antonio Mallia and Torsten Suel. An experimental study of index
compression and DAAT query processing methods. In ECIR, 2019. URL https:

//link.springer.com/chapter/10.1007/978-3-030-15712-8 23.

108

http://www.jatit.org/volumes/research-papers/Vol4No10/15Vol4No10.pdf
http://www.jatit.org/volumes/research-papers/Vol4No10/15Vol4No10.pdf
https://dl.acm.org/doi/pdf/10.1145/2970398.2970409
https://dl.acm.org/doi/pdf/10.1145/2970398.2970409
https://www.sciencedirect.com/science/article/pii/S0306457302000213
https://www.sciencedirect.com/science/article/pii/S0306457302000213
http://ntcir-math.nii.ac.jp/wp-content/blogs.dir/23/files/2013/10/01-NTCIR10-OV-MATH-AizawaA.pdf
http://ntcir-math.nii.ac.jp/wp-content/blogs.dir/23/files/2013/10/01-NTCIR10-OV-MATH-AizawaA.pdf
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/OVERVIEW/01-NTCIR11-OV-MATH-AizawaA.pdf
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/OVERVIEW/01-NTCIR11-OV-MATH-AizawaA.pdf
http://proceedings.mlr.press/v70/allamanis17a/allamanis17a.pdf
https://dl.acm.org/doi/10.1145/1148170.1148235
https://link.springer.com/chapter/10.1007/978-3-030-15712-8_23
https://link.springer.com/chapter/10.1007/978-3-030-15712-8_23

Andrea Asperti, Ferruccio Guidi, Claudio Sacerdoti Coen, Enrico Tassi, and Stefano Za-
cchiroli. A content based mathematical search engine: Whelp. In TYPES. Springer,
2006. URL https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
1e0f2b0a1625150fba154f2983af06108e82c37e.

Avinash Atreya and Charles Elkan. Latent semantic indexing (LSI) fails for TREC collec-
tions. SIGKDD, 2011. URL https://dl.acm.org/doi/pdf/10.1145/1964897.1964900.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization.
arXiv:1607.06450, 2016. URL https://arxiv.org/abs/1607.06450.

Alexei Baevski and Michael Auli. Adaptive input representations for neural language
modeling. arXiv:1809.10853, 2018. URL https://arxiv.org/abs/1809.10853.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv:1409.0473, 2014. URL https://arxiv.org/
abs/1409.0473.

Yang Bai, Xiaoguang Li, Gang Wang, Chaoliang Zhang, Lifeng Shang, Jun Xu, Zhaowei
Wang, Fangshan Wang, and Qun Liu. SparTerm: Learning term-based sparse represen-
tation for fast text retrieval, 2020. URL https://arxiv.org/abs/2010.00768.

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong Liu,
Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, Mir Rosenberg,
Xia Song, Alina Stoica, Saurabh Tiwary, and Tong Wang. MS MARCO: A human
generated machine reading comprehension dataset. arXiv:1611.09268, 2016. URL
https://arxiv.org/abs/1611.09268.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford,
Katie Millican, George Bm. Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc,
Aidan Clark, et al. Improving language models by retrieving from trillions of tokens.
In ICML. PMLR, 2022. URL https://proceedings.mlr.press/v162/borgeaud22a/
borgeaud22a.pdf.

Andrei Z Broder, David Carmel, Michael Herscovici, Aya Soffer, and Jason Zien. Efficient
query evaluation using a two-level retrieval process. In CIKM, 2003. URL https:

//dl.acm.org/doi/pdf/10.1145/956863.956944.

Sebastian Bruch, Siyu Gai, and Amir Ingber. An analysis of fusion functions for hybrid
retrieval. arXiv:2210.11934, 2022. URL https://arxiv.org/abs/2210.11934.

109

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1e0f2b0a1625150fba154f2983af06108e82c37e
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=1e0f2b0a1625150fba154f2983af06108e82c37e
https://dl.acm.org/doi/pdf/10.1145/1964897.1964900
https://arxiv.org/abs/1607.06450
https://arxiv.org/abs/1809.10853
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2010.00768
https://arxiv.org/abs/1611.09268
https://proceedings.mlr.press/v162/borgeaud22a/borgeaud22a.pdf
https://proceedings.mlr.press/v162/borgeaud22a/borgeaud22a.pdf
https://dl.acm.org/doi/pdf/10.1145/956863.956944
https://dl.acm.org/doi/pdf/10.1145/956863.956944
https://arxiv.org/abs/2210.11934

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric
Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, Harsha Nori, Hamid Palangi, Marco Tulio Ribeiro, and Yi Zhang.
Sparks of Artificial General Intelligence: Early experiments with GPT-4.
2023. URL https://www.microsoft.com/en-us/research/publication/sparks-of-
artificial-general-intelligence-early-experiments-with-gpt-4.

Chris Buckley and Ellen M. Voorhees. Retrieval evaluation with incomplete information.
In SIGIR, 2004. URL https://dl.acm.org/doi/10.1145/1008992.1009000.

Fredrik Carlsson, Amaru Cuba Gyllensten, Evangelia Gogoulou, Erik Ylipää Hellqvist, and
Magnus Sahlgren. Semantic re-tuning with contrastive tension. In ICLR, 2020. URL
https://www.diva-portal.org/smash/get/diva2:1684806/FULLTEXT01.pdf.

Wei-Cheng Chang, Felix X Yu, Yin-Wen Chang, Yiming Yang, and Sanjiv Kumar. Pre-
training tasks for embedding-based large-scale retrieval. arXiv:2002.03932, 2020. URL
https://arxiv.org/abs/2002.03932.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets
with sublinear memory cost. arXiv:1604.06174, 2016. URL https://arxiv.org/abs/
1604.06174.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. A simple
framework for contrastive learning of visual representations. In ICML. PMLR, 2020.
URL http://proceedings.mlr.press/v119/chen20j/chen20j.pdf.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the
properties of neural machine translation: Encoder-decoder approaches. arXiv:1409.1259,
2014. URL https://arxiv.org/abs/1409.1259.

W. Bruce Croft and David J. Harper. Using probabilistic models of document re-
trieval without relevance information. Journal of documentation, 1979. URL https:

//www.emerald.com/insight/content/doi/10.1108/eb026683/full/html.

W. Bruce Croft, Donald Metzler, and Trevor Strohman. Search engines: Information
retrieval in practice. Addison-Wesley Reading, 2010. URL https://www.academia.edu/
download/30740463/z2009 2465.pdf.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge
neurons in pretrained Transformers. arXiv:2104.08696, 2021. URL https://arxiv.org/
abs/arXiv:2104.08696.

110

https://www.microsoft.com/en-us/research/publication/sparks-of-artificial-general-intelligence-early-experiments-with-gpt-4
https://www.microsoft.com/en-us/research/publication/sparks-of-artificial-general-intelligence-early-experiments-with-gpt-4
https://dl.acm.org/doi/10.1145/1008992.1009000
https://www.diva-portal.org/smash/get/diva2:1684806/FULLTEXT01.pdf
https://arxiv.org/abs/2002.03932
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174
http://proceedings.mlr.press/v119/chen20j/chen20j.pdf
https://arxiv.org/abs/1409.1259
https://www.emerald.com/insight/content/doi/10.1108/eb026683/full/html
https://www.emerald.com/insight/content/doi/10.1108/eb026683/full/html
https://www.academia.edu/download/30740463/z2009_2465.pdf
https://www.academia.edu/download/30740463/z2009_2465.pdf
https://arxiv.org/abs/arXiv:2104.08696
https://arxiv.org/abs/arXiv:2104.08696

Yifan Dai, Liangyu Chen, and Zihan Zhang. An N-ary tree-based model for similarity
evaluation on mathematical formulae. In International Conference on SMC. IEEE, 2020.
URL https://ieeexplore.ieee.org/iel7/9282733/9282811/09283495.pdf.

Zhuyun Dai and Jamie Callan. Context-aware term weighting for first stage passage re-
trieval. In SIGIR, 2020. URL https://dl.acm.org/doi/pdf/10.1145/3397271.3401204.

Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. Convolutional neu-
ral networks for soft-matching n-grams in ad-hoc search. In WSDM, 2018. URL
https://dl.acm.org/doi/pdf/10.1145/3159652.3159659.

Fraser Dallas. Math information retrieval using a text search engine. Master’s thesis,
University of Waterloo, 2018. URL https://uwspace.uwaterloo.ca/handle/10012/
13329.

Kenny Davila and Richard Zanibbi. Layout and semantics: Combining representations
for mathematical formula search. In SIGIR, 2017. URL https://dl.acm.org/doi/abs/
10.1145/3077136.3080748.

Kenny Davila, Richard Zanibbi, Andrew Kane, and Frank Wm. Tompa. Tangent-3 at
the NTCIR-12 MathIR Task. In NTCIR, 2016. URL https://www.cs.rit.edu/~rlaz/
files/ntcir2016 tangent.pdf.

Kenny Davila, Ritvik Joshi, Srirangaraj Setlur, Venu Govindaraju, and Richard Zanibbi.
Tangent-V: Math formula image search using line-of-sight graphs. In ECIR, 2019. URL
https://par.nsf.gov/servlets/purl/10124341.

Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W. Bruce
Croft. Neural ranking models with weak supervision. In SIGIR, 2017. URL https:

//dl.acm.org/doi/pdf/10.1145/3077136.3080832.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding. arXiv:1810.04805, 2019.
URL https://arxiv.org/abs/1810.04805.

Shuai Ding and Torsten Suel. Faster top-k document retrieval using block-max indexes.
In SIGIR, 2011. URL https://dl.acm.org/doi/10.1145/2009916.2010048.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian
Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-E:
An embodied multimodal language model. arXiv:2303.03378, 2023. URL https://

arxiv.org/abs/2303.03378.

111

https://ieeexplore.ieee.org/iel7/9282733/9282811/09283495.pdf
https://dl.acm.org/doi/pdf/10.1145/3397271.3401204
https://dl.acm.org/doi/pdf/10.1145/3159652.3159659
https://uwspace.uwaterloo.ca/handle/10012/13329
https://uwspace.uwaterloo.ca/handle/10012/13329
https://dl.acm.org/doi/abs/10.1145/3077136.3080748
https://dl.acm.org/doi/abs/10.1145/3077136.3080748
https://www.cs.rit.edu/~rlaz/files/ntcir2016_tangent.pdf
https://www.cs.rit.edu/~rlaz/files/ntcir2016_tangent.pdf
https://par.nsf.gov/servlets/purl/10124341
https://dl.acm.org/doi/pdf/10.1145/3077136.3080832
https://dl.acm.org/doi/pdf/10.1145/3077136.3080832
https://arxiv.org/abs/1810.04805
https://dl.acm.org/doi/10.1145/2009916.2010048
https://arxiv.org/abs/2303.03378
https://arxiv.org/abs/2303.03378

Susan T. Dumais. Latent semantic analysis. Annual Review of Information Science and
Technology (ARIST), 2004. URL https://asistdl.onlinelibrary.wiley.com/doi/
pdf/10.1002/aris.1440380105.

Hui Fang and Chengxiang Zhai. An exploration of axiomatic approaches to information
retrieval. In SIGIR, 2005. URL https://dl.acm.org/doi/10.1145/1076034.1076116.

Deborah Ferreira and André Freitas. STAR: Cross-modal statement representation
for selecting relevant mathematical premises. In EACL, 2021. URL https://

aclanthology.org/2021.eacl-main.282.pdf.

Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant.
SPLADE v2: Sparse lexical and expansion model for information retrieval.
arXiv:2109.10086, 2021a. URL https://arxiv.org/abs/2109.10086.

Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. SPLADE: Sparse lexical
and expansion model for first stage ranking. arXiv:2107.05720, 2021b. URL https:

//arxiv.org/abs/2107.05720.

Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant. From
distillation to hard negative sampling: Making sparse neural ir models more effective.
arXiv:2205.04733, 2022. URL https://arxiv.org/abs/2205.04733.

Dallas Fraser, Andrew Kane, and Frank Wm. Tompa. Choosing math features for
BM25 ranking with Tangent-L. In DocEng, 2018. URL https://dl.acm.org/doi/abs/
10.1145/3209280.3209527.

George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T. Dumais. The
vocabulary problem in human-system communication. Communications of the ACM,
1987. URL https://dl.acm.org/doi/pdf/10.1145/32206.32212.

Neeraj Gangwar and Nickvash Kani. Semantic representations of mathematical expressions
in a continuous vector space. arXiv:2211.08142, 2022. URL https://arxiv.org/abs/
2211.08142.

Liangcai Gao, Ke Yuan, Yuehan Wang, Zhuoren Jiang, and Zhi Tang. The
math retrieval system of ICST for NTCIR-12 MathIR Task. In NTCIR,
2016. URL https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/
pdf/ntcir/MathIR/03-NTCIR12-MathIR-GaoL.pdf.

112

https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/aris.1440380105
https://asistdl.onlinelibrary.wiley.com/doi/pdf/10.1002/aris.1440380105
https://dl.acm.org/doi/10.1145/1076034.1076116
https://aclanthology.org/2021.eacl-main.282.pdf
https://aclanthology.org/2021.eacl-main.282.pdf
https://arxiv.org/abs/2109.10086
https://arxiv.org/abs/2107.05720
https://arxiv.org/abs/2107.05720
https://arxiv.org/abs/2205.04733
https://dl.acm.org/doi/abs/10.1145/3209280.3209527
https://dl.acm.org/doi/abs/10.1145/3209280.3209527
https://dl.acm.org/doi/pdf/10.1145/32206.32212
https://arxiv.org/abs/2211.08142
https://arxiv.org/abs/2211.08142
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/03-NTCIR12-MathIR-GaoL.pdf
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/03-NTCIR12-MathIR-GaoL.pdf

Liangcai Gao, Zhuoren Jiang, Yue Yin, Ke Yuan, Zuoyu Yan, and Zhi Tang. Preliminary
exploration of formula embedding for mathematical information retrieval: Can mathe-
matical formulae be embedded like a natural language? arXiv:1707.05154, 2017. URL
https://arxiv.org/abs/1707.05154.

Luyu Gao and Jamie Callan. Unsupervised corpus aware language model pre-training
for dense passage retrieval. arXiv:2108.05540, 2021a. URL https://arxiv.org/abs/
2108.05540.

Luyu Gao and Jamie Callan. Condenser: A pre-training architecture for dense retrieval.
arXiv:2104.08253, 2021b. URL https://arxiv.org/abs/2104.08253.

Luyu Gao, Zhuyun Dai, Tongfei Chen, Zhen Fan, Benjamin Van Durme, and Jamie Callan.
Complement lexical retrieval model with semantic residual embeddings. In ECIR, 2021a.
URL https://arxiv.org/pdf/2004.13969.pdf.

Luyu Gao, Yunyi Zhang, Jiawei Han, and Jamie Callan. Scaling deep contrastive
learning batch size under memory limited setup. arXiv:2101.06983, 2021b. URL
https://arxiv.org/abs/2101.06983.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning
of sentence embeddings. arXiv:2104.08821, 2021c. URL https://arxiv.org/abs/
2104.08821.

Jonas Geiping and Tom Goldstein. Cramming: Training a language model on a single gpu
in one day. arXiv:2212.14034, 2022. URL https://arxiv.org/abs/2212.14034.

Martin Geletka, Vojtěch Kalivoda, Michal Štefánik, Marek Toma, and Petr Sojka. Diverse
semantics representation is king: MIRMU and MSM at ARQMath 2022. In CLEF, 2022.
URL http://www.dei.unipd.it/~ferro/CLEF-WN-Drafts/CLEF2022/paper-02.pdf.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward
layers are key-value memories. arXiv:2012.14913, 2020. URL https://arxiv.org/abs/
2012.14913.

André Greiner-Petter, Abdou Youssef, Terry Ruas, Bruce R. Miller, Moritz Schubotz,
Akiko Aizawa, and Bela Gipp. Math-word embedding in math search and semantic
extraction. Scientometrics, 2020. URL https://link.springer.com/article/10.1007/
s11192-020-03502-9.

113

https://arxiv.org/abs/1707.05154
https://arxiv.org/abs/2108.05540
https://arxiv.org/abs/2108.05540
https://arxiv.org/abs/2104.08253
https://arxiv.org/pdf/2004.13969.pdf
https://arxiv.org/abs/2101.06983
https://arxiv.org/abs/2104.08821
https://arxiv.org/abs/2104.08821
https://arxiv.org/abs/2212.14034
http://www.dei.unipd.it/~ferro/CLEF-WN-Drafts/CLEF2022/paper-02.pdf
https://arxiv.org/abs/2012.14913
https://arxiv.org/abs/2012.14913
https://link.springer.com/article/10.1007/s11192-020-03502-9
https://link.springer.com/article/10.1007/s11192-020-03502-9

Jiafeng Guo, Yixing Fan, Qingyao Ai, and W. Bruce Croft. A deep relevance match-
ing model for ad-hoc retrieval. In CIKM, 2016. URL https://dl.acm.org/doi/pdf/
10.1145/2983323.2983769.

Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang, Qingyao Ai, Hamed Zamani, Chen
Wu, W. Bruce Croft, and Xueqi Cheng. A deep look into neural ranking mod-
els for information retrieval. Information Processing & Management, 2020. URL
https://www.sciencedirect.com/science/article/pii/S0306457319302390.

Suchin Gururangan, Ana Marasović, Swabha Swayamdipta, Kyle Lo, Iz Beltagy, Doug
Downey, and Noah A. Smith. Don’t stop pretraining: Adapt language models to domains
and tasks. arXiv:2004.10964, 2020. URL https://arxiv.org/abs/2004.10964.

K Guu, K Lee, Z Tung, P Pasupat, and MW Chang. REALM: Retrieval-augmented
language model pre-training. arXiv:2002.08909, 2020. URL https://arxiv.org/abs/
2002.08909.

Hiroya Hagino and Hiroaki Saito. Partial-match retrieval with structure-
reflected indices at the NTCIR-10 math task. In NTCIR, 2013. URL
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=
2e0c5ec56bf204c0302dc81a0ab3c2d44c76e373.

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. ToolkenGPT: Augmenting frozen
language models with massive tools via tool embeddings. arXiv:2305.11554, 2023. URL
https://arxiv.org/abs/2305.11554.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In CVPR, 2016. URL https://openaccess.thecvf.com/
content cvpr 2016/papers/He Deep Residual Learning CVPR 2016 paper.pdf.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. DeBERTa: Decoding-
enhanced bert with disentangled attention. arXiv:2006.03654, 2020. URL https://

arxiv.org/abs/2006.03654.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv:1606.08415,
2016. URL https://arxiv.org/abs/1606.08415.

Yoshinori Hijikata, Hideki Hashimoto, and Shogo Nishida. An investigation of in-
dex formats for the search of MathML objects. In International Conferences on
Web Intelligence and Intelligent Agent Technology-Workshops, 2007. URL https:

//ieeexplore.ieee.org/document/4427581.

114

https://dl.acm.org/doi/pdf/10.1145/2983323.2983769
https://dl.acm.org/doi/pdf/10.1145/2983323.2983769
https://www.sciencedirect.com/science/article/pii/S0306457319302390
https://arxiv.org/abs/2004.10964
https://arxiv.org/abs/2002.08909
https://arxiv.org/abs/2002.08909
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2e0c5ec56bf204c0302dc81a0ab3c2d44c76e373
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=2e0c5ec56bf204c0302dc81a0ab3c2d44c76e373
https://arxiv.org/abs/2305.11554
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/2006.03654
https://arxiv.org/abs/1606.08415
https://ieeexplore.ieee.org/document/4427581
https://ieeexplore.ieee.org/document/4427581

Yoshinori Hijikata, Hideki Hashimoto, and Shogo Nishida. Search mathematical formulas
by mathematical formulas. In SHI (Symposium on Human Interface), 2009. URL https:

//link.springer.com/content/pdf/10.1007/978-3-642-02556-3 46.pdf.

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. Improving neural networks by preventing co-adaptation of feature de-
tectors. arXiv:1207.0580, 2012. URL https://arxiv.org/abs/1207.0580.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 1997. URL https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/
neco.1997.9.8.1735.pdf.

Thomas Hofmann. Probabilistic latent semantic indexing. In SIGIR, 1999. URL https:

//dl.acm.org/doi/pdf/10.1145/312624.312649.

Xuan Hu, Liangcai Gao, Xiaoyan Lin, Zhi Tang, Xiaofan Lin, and Josef B. Baker.
WikiMirs: A mathematical information retrieval system for wikipedia. In JCDL, 2013.
URL https://dl.acm.org/doi/abs/10.1145/2467696.2467699.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. Learning
deep structured semantic models for web search using clickthrough data. In CIKM, 2013.
URL ihttps://dl.acm.org/doi/pdf/10.1145/2505515.2505665.

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux, and Jason Weston. Poly-encoders:
Transformer architectures and pre-training strategies for fast and accurate multi-sentence
scoring. arXiv:1905.01969, 2019. URL https://arxiv.org/abs/1905.01969.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models
for open domain question answering. arXiv:2007.01282, 2020. URL https://arxiv.org/
pdf/2007.01282.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Ar-
mand Joulin, and Edouard Grave. Towards unsupervised dense information retrieval
with contrastive learning. arXiv:2112.09118, 2021. URL https://arxiv.org/abs/
2112.09118.

Shuiwang Ji, Yaochen Xie, and Hongyang Gao. A mathematical view of attention mod-
els in deep learning. Texas A&M University (Lecture Notes), 2019. URL http:

//people.tamu.edu/~sji/classes/attn.pdf.

115

https://link.springer.com/content/pdf/10.1007/978-3-642-02556-3_46.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-02556-3_46.pdf
https://arxiv.org/abs/1207.0580
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://dl.acm.org/doi/pdf/10.1145/312624.312649
https://dl.acm.org/doi/pdf/10.1145/312624.312649
https://dl.acm.org/doi/abs/10.1145/2467696.2467699
ihttps://dl.acm.org/doi/pdf/10.1145/2505515.2505665
https://arxiv.org/abs/1905.01969
https://arxiv.org/pdf/2007.01282
https://arxiv.org/pdf/2007.01282
https://arxiv.org/abs/2112.09118
https://arxiv.org/abs/2112.09118
http://people.tamu.edu/~sji/classes/attn.pdf
http://people.tamu.edu/~sji/classes/attn.pdf

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang,
Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language gen-
eration. ACM Computing Surveys, 2022. URL https://dl.acm.org/doi/pdf/10.1145/
3571730.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang,
and Qun Liu. TinyBERT: Distilling BERT for natural language understanding.
arXiv:1909.10351, 2019. URL https://arxiv.org/abs/1909.10351.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs.
IEEE Transactions on Big Data, 2019. URL https://ieeexplore.ieee.org/document/
8733051.

Simon Jonassen and Svein Erik Bratsberg. Efficient compressed inverted index skipping for
disjunctive text-queries. In ECIR, 2011. URL https://link.springer.com/chapter/
10.1007/978-3-642-20161-5 53.

Karen Sparck Jones. A statistical interpretation of term specificity and its application in
retrieval. Journal of documentation, 1972. URL https://www.emerald.com/insight/
content/doi/10.1108/eb026526.

Shahab Kamali and Frank Wm. Tompa. Improving mathematics retrieval. TDML,
2009. URL https://dml.cz/bitstream/handle/10338.dmlcz/702556/DML 002-2009-

1 6.pdf.

Shahab Kamali and Frank Wm. Tompa. A new mathematics retrieval system. In ICKIM,
2010. URL https://dl.acm.org/doi/pdf/10.1145/1871437.1871635.

Shahab Kamali and Frank Wm. Tompa. Structural similarity search for mathematics re-
trieval. In MKM. Springer, 2013. URL https://link.springer.com/chapter/10.1007/
978-3-642-39320-4 16.

Chris Kamphuis, Arjen P. de Vries, Leonid Boytsov, and Jimmy Lin. Which BM25 do
you mean? A large-scale reproducibility study of scoring variants. In ECIR, 2020. URL
https://link.springer.com/chapter/10.1007/978-3-030-45442-5 4.

Andrew Kane, Yin Ki Ng, and Frank Wm. Tompa. Dowsing for answers to math questions.
doing better with less. CLEF, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon
Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural
language models. arXiv:2001.08361, 2020. URL https://arxiv.org/pdf/2001.08361.

116

https://dl.acm.org/doi/pdf/10.1145/3571730
https://dl.acm.org/doi/pdf/10.1145/3571730
https://arxiv.org/abs/1909.10351
https://ieeexplore.ieee.org/document/8733051
https://ieeexplore.ieee.org/document/8733051
https://link.springer.com/chapter/10.1007/978-3-642-20161-5_53
https://link.springer.com/chapter/10.1007/978-3-642-20161-5_53
https://www.emerald.com/insight/content/doi/10.1108/eb026526
https://www.emerald.com/insight/content/doi/10.1108/eb026526
https://dml.cz/bitstream/handle/10338.dmlcz/702556/DML_002-2009-1_6.pdf
https://dml.cz/bitstream/handle/10338.dmlcz/702556/DML_002-2009-1_6.pdf
https://dl.acm.org/doi/pdf/10.1145/1871437.1871635
https://link.springer.com/chapter/10.1007/978-3-642-39320-4_16
https://link.springer.com/chapter/10.1007/978-3-642-39320-4_16
https://link.springer.com/chapter/10.1007/978-3-030-45442-5_4
https://arxiv.org/pdf/2001.08361

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov,
Danqi Chen, and Wen-Tau Yih. Dense passage retrieval for open-domain question an-
swering. arXiv:2004.04906, 2020. URL https://arxiv.org/abs/2004.04906.

Omar Khattab and Matei Zaharia. ColBERT: Efficient and effective passage search via
contextualized late interaction over BERT. In SIGIR, 2020. URL https://dl.acm.org/
doi/abs/10.1145/3397271.3401075.

Omar Khattab, Keshav Santhanam, Xiang Lisa Li, David Hall, Percy Liang, Christo-
pher Potts, and Matei Zaharia. Demonstrate-Search-Predict: Composing retrieval
and language models for knowledge-intensive NLP. arXiv:2212.14024, 2022. URL
https://arxiv.org/abs/2212.14024.

Shinil Kim, Seon Yang, and Youngjoong Ko. Mathematical equation retrieval using
plain words as a query. In CIKM, 2012. URL https://dl.acm.org/doi/pdf/10.1145/
2396761.2398653.

Michael Kohlhase and Ioan Sucan. A search engine for mathematical formulae. In
Jacques Calmet, Tetsuo Ida, and Dongming Wang, editors, Artificial Intelligence and
Symbolic Computation, 2006. URL https://link.springer.com/chapter/10.1007/
11856290 21.

Michael Kohlhase, Bogdan A Matican, and Corneliu-Claudiu Prodescu. MathWeb-
Search 0.5: Scaling an open formula search engine. In CICM, 2012. URL https:

//link.springer.com/chapter/10.1007/978-3-642-31374-5 23.

Giovanni Kristianto, Florence Ho, Goran Topic, and Akiko Aizawa. The MCAT
math retrieval system for NTCIR-11 math track. In NTCIR, 2014. URL
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/
Math-2/06-NTCIR11-MATH-KristiantoGY.pdf.

Giovanni Yoko Kristianto, Goran Topic, and Akiko Aizawa. MCAT math
retrieval system for NTCIR-12 MathIR task. In NTCIR, 2016. URL
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/
MathIR/04-NTCIR12-MathIR-KristiantoGY.pdf.

Kriste Krstovski and David M. Blei. Equation embeddings. arXiv:1803.09123, 2018. URL
https://arxiv.org/abs/1803.09123.

George Labahn, Edward Lank, Mirette Marzouk, Andrea Bunt, Scott MacLean, and David
Tausky. MathBrush: A case study for pen-based interactive mathematics. In Proceedings

117

https://arxiv.org/abs/2004.04906
https://dl.acm.org/doi/abs/10.1145/3397271.3401075
https://dl.acm.org/doi/abs/10.1145/3397271.3401075
https://arxiv.org/abs/2212.14024
https://dl.acm.org/doi/pdf/10.1145/2396761.2398653
https://dl.acm.org/doi/pdf/10.1145/2396761.2398653
https://link.springer.com/chapter/10.1007/11856290_21
https://link.springer.com/chapter/10.1007/11856290_21
https://link.springer.com/chapter/10.1007/978-3-642-31374-5_23
https://link.springer.com/chapter/10.1007/978-3-642-31374-5_23
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/06-NTCIR11-MATH-KristiantoGY.pdf
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/06-NTCIR11-MATH-KristiantoGY.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/04-NTCIR12-MathIR-KristiantoGY.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/MathIR/04-NTCIR12-MathIR-KristiantoGY.pdf
https://arxiv.org/abs/1803.09123

of the Fifth Eurographics Conference on Sketch-Based Interfaces and Modeling, 2008.
URL https://cs.uwaterloo.ca/~msmarzou/sbim2008.pdf.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and
Radu Soricut. ALBERT: A lite BERT for self-supervised learning of language represen-
tations. arXiv:1909.11942, 2019. URL https://arxiv.org/abs/1909.11942.

Kenton Lee, Ming-Wei Chang, and Kristina Toutanova. Latent retrieval for weakly su-
pervised open domain question answering. arXiv:1906.00300, 2019. URL https:

//arxiv.org/abs/1906.00300.

Lillian Lee. IDF revisited: A simple new derivation within the robertson-spärck jones
probabilistic model. In SIGIR, 2007. URL https://dl.acm.org/doi/pdf/10.1145/
1277741.1277891.

Whay C. Lee and Edward A. Fox. Experimental comparison of schemes for interpreting
boolean queries. 1988. URL https://eprints.cs.vt.edu/archive/00000112/01/TR-
88-27.pdf.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
Vinay Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al.
Solving quantitative reasoning problems with language models. arXiv:2206.14858, 2022.
URL https://arxiv.org/abs/2206.14858.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the
loss landscape of neural nets. NeurIPS, 2018. URL https://proceedings.neurips.cc/
paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping
language-image pre-training with frozen image encoders and large language models.
arXiv:2301.12597, 2023. URL https://arxiv.org/abs/rXiv:2301.12597.

Jimmy Lin. A proposed conceptual framework for a representational approach to informa-
tion retrieval, 2022. URL https://dl.acm.org/doi/pdf/10.1145/3527546.3527552.

Jimmy Lin and Xueguang Ma. A few brief notes on deepimpact, COIL, and a conceptual
framework for information retrieval techniques. arXiv:2106.14807, 2021. URL https:

//arxiv.org/abs/2106.14807.

Xiaoyan Lin, Liangcai Gao, Xuan Hu, Zhi Tang, Yingnan Xiao, and Xiaozhong Liu. A
mathematics retrieval system for formulae in layout presentations. In SIGIR, 2014. URL
https://dl.acm.org/doi/pdf/10.1145/2600428.2609611.

118

https://cs.uwaterloo.ca/~msmarzou/sbim2008.pdf
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1906.00300
https://arxiv.org/abs/1906.00300
https://dl.acm.org/doi/pdf/10.1145/1277741.1277891
https://dl.acm.org/doi/pdf/10.1145/1277741.1277891
https://eprints.cs.vt.edu/archive/00000112/01/TR-88-27.pdf
https://eprints.cs.vt.edu/archive/00000112/01/TR-88-27.pdf
https://arxiv.org/abs/2206.14858
https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a41b3bb3e6b050b6c9067c67f663b915-Paper.pdf
https://arxiv.org/abs/rXiv:2301.12597
https://dl.acm.org/doi/pdf/10.1145/3527546.3527552
https://arxiv.org/abs/2106.14807
https://arxiv.org/abs/2106.14807
https://dl.acm.org/doi/pdf/10.1145/2600428.2609611

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou,
and Yoshua Bengio. A structured self-attentive sentence embedding. arXiv:1703.03130,
2017. URL https://arxiv.org/abs/1703.03130.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized
bert pretraining approach. arXiv:1907.11692, 2019. URL https://arxiv.org/abs/
1907.11692.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization.
arXiv:1711.05101, 2017. URL https://arxiv.org/abs/1711.05101.

Pan Lu, Liang Qiu, Wenhao Yu, Sean Welleck, and Kai-Wei Chang. A survey of
deep learning for mathematical reasoning. arXiv:2212.10535, 2022. URL https:

//arxiv.org/pdf/2212.10535.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-
Chun Zhu, and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning
with large language models. arXiv:2304.09842, 2023. URL https://arxiv.org/abs/
2304.09842.

Shuqi Lu, Di He, Chenyan Xiong, Guolin Ke, Waleed Malik, Zhicheng Dou, Paul Bennett,
Tieyan Liu, and Arnold Overwijk. Less is more: Pre-train a strong text encoder for dense
retrieval using a weak decoder. arXiv:2102.09206, 2021. URL https://arxiv.org/abs/
2102.09206.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. Sparse, dense, and at-
tentional representations for text retrieval. TACL, 2021. URL https://direct.mit.edu/
tacl/article/doi/10.1162/tacl a 00369/100684.

Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to
attention-based neural machine translation. arXiv:1508.04025, 2015. URL https://

arxiv.org/abs/1508.04025.

Yuanhua Lv and Chengxiang Zhai. Lower-bounding term frequency normalization. In
CIKM, 2011. URL https://dl.acm.org/doi/abs/10.1145/2063576.2063584.

Kai Ma, Siu Cheung Hui, and Kuiyu Chang. Feature extraction and clustering-based re-
trieval for mathematical formulas. In International Conference on Software Engineering
and Data Mining, 2010. URL https://ieeexplore.ieee.org/iel5/5510904/5542824/
05542894.pdf.

119

https://arxiv.org/abs/1703.03130
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1711.05101
https://arxiv.org/pdf/2212.10535
https://arxiv.org/pdf/2212.10535
https://arxiv.org/abs/2304.09842
https://arxiv.org/abs/2304.09842
https://arxiv.org/abs/2102.09206
https://arxiv.org/abs/2102.09206
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00369/100684
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00369/100684
https://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1508.04025
https://dl.acm.org/doi/abs/10.1145/2063576.2063584
https://ieeexplore.ieee.org/iel5/5510904/5542824/05542894.pdf
https://ieeexplore.ieee.org/iel5/5510904/5542824/05542894.pdf

Xinyu Ma, Jiafeng Guo, Ruqing Zhang, Yixing Fan, Xiang Ji, and Xueqi Cheng. PROP:
Pre-training with representative words prediction for ad-hoc retrieval. In WSDM, 2021a.
URL https://dl.acm.org/doi/pdf/10.1145/3437963.3441777.

Xinyu Ma, Jiafeng Guo, Ruqing Zhang, Yixing Fan, Yingyan Li, and Xueqi Cheng.
B-PROP: Bootstrapped pre-training with representative words prediction for ad-
hoc retrieval. In SIGIR, 2021b. URL https://dl.acm.org/doi/pdf/10.1145/
3404835.3462869.

Xinyu Ma, Jiafeng Guo, Ruqing Zhang, Yixing Fan, and Xueqi Cheng. Pre-train a discrimi-
native text encoder for dense retrieval via contrastive span prediction. arXiv:2204.10641,
2022a. URL https://arxiv.org/abs/2204.10641.

Yi Ma, Doris Tsao, and Heung-Yeung Shum. On the principles of parsimony and self-
consistency for the emergence of intelligence. arXiv:2207.04630, 2022b. URL https:

//arxiv.org/abs/2207.04630.

Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. CEDR: Contextu-
alized embeddings for document ranking. In SIGIR, 2019. URL https://dl.acm.org/
doi/pdf/10.1145/3331184.3331317.

Joel Mackenzie, Andrew Trotman, and Jimmy Lin. Wacky weights in learned sparse repre-
sentations and the revenge of score-at-a-time query evaluation. arXiv:2110.11540, 2021.
URL https://arxiv.org/abs/2110.11540.

Yu A Malkov and Dmitry A Yashunin. Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs. IEEE transactions on pattern
analysis and machine intelligence, 2018. URL https://ieeexplore.ieee.org/iel7/
34/4359286/08594636.pdf.

Antonio Mallia, Micha l Siedlaczek, and Torsten Suel. An experimental study of index
compression and DAAT query processing methods. In ECIR. Springer, 2019. URL
https://par.nsf.gov/servlets/purl/10171629.

Antonio Mallia, Omar Khattab, Torsten Suel, and Nicola Tonellotto. Learning passage
impacts for inverted indexes. In SIGIR, 2021. URL https://dl.acm.org/doi/pdf/
10.1145/3404835.3463030.

Antonio Mallia, Joel Mackenzie, Torsten Suel, and Nicola Tonellotto. Faster learned sparse
retrieval with guided traversal. arXiv:2204.11314, 2022. URL https://arxiv.org/abs/
2204.11314.

120

https://dl.acm.org/doi/pdf/10.1145/3437963.3441777
https://dl.acm.org/doi/pdf/10.1145/3404835.3462869
https://dl.acm.org/doi/pdf/10.1145/3404835.3462869
https://arxiv.org/abs/2204.10641
https://arxiv.org/abs/2207.04630
https://arxiv.org/abs/2207.04630
https://dl.acm.org/doi/pdf/10.1145/3331184.3331317
https://dl.acm.org/doi/pdf/10.1145/3331184.3331317
https://arxiv.org/abs/2110.11540
https://ieeexplore.ieee.org/iel7/34/4359286/08594636.pdf
https://ieeexplore.ieee.org/iel7/34/4359286/08594636.pdf
https://par.nsf.gov/servlets/purl/10171629
https://dl.acm.org/doi/pdf/10.1145/3404835.3463030
https://dl.acm.org/doi/pdf/10.1145/3404835.3463030
https://arxiv.org/abs/2204.11314
https://arxiv.org/abs/2204.11314

Behrooz Mansouri, Shaurya Rohatgi, Douglas W. Oard, Jian Wu, C Lee Giles, and Richard
Zanibbi. Tangent-CFT: An embedding model for mathematical formulas. In SIGIR,
2019a. URL https://dl.acm.org/doi/abs/10.1145/3341981.3344235.

Behrooz Mansouri, Richard Zanibbi, and Douglas W. Oard. Characterizing searches for
mathematical concepts. In JCDL. IEEE, 2019b. URL https://ieeexplore.ieee.org/
iel7/8776994/8791105/08791164.pdf.

Behrooz Mansouri, Anurag Agarwal, Douglas W. Oard, and Richard Zanibbi. Finding old
answers to new math questions: The ARQMath Lab at CLEF 2020. In Advances in
Information Retrieval, 2020a. URL https://ceur-ws.org/Vol-2696/paper 271.pdf.

Behrooz Mansouri, Douglas W. Oard, and Richard Zanibbi. DPRL systems in the CLEF
2020 ARQMath lab. In CLEF, 2020b. URL https://par.nsf.gov/servlets/purl/
10198749.

Behrooz Mansouri, Douglas W. Oard, Anurag Agarwal, and Richard Zanibbi. Ef-
fects of context, complexity, and clustering on evaluation for math formula retrieval.
arXiv:2111.10504, 2021a. URL https://arxiv.org/abs/2111.10504.

Behrooz Mansouri, Douglas W. Oard, and Richard Zanibbi. DPRL systems in the CLEF
2021 ARQMath Lab: Sentence-BERT for answer retrieval, learning-to-rank for formula
retrieval. In CLEF, 2021b. URL http://ceur-ws.org/Vol-2936/paper-04.pdf.

Behrooz Mansouri, Richard Zanibbi, Douglas W. Oard, and Anurag Agarwal. Overview of
ARQMath-2 (2021): Second CLEF lab on Answer Retrieval for Questions on Math
(Working Notes Version). In CLEF, 2021c. URL http://ceur-ws.org/Vol-2936/
paper-01.pdf.

Behrooz Mansouri, Vı́t Novotný, Anurag Agarwal, Douglas W. Oard, and Richard Zanibbi.
Overview of ARQMath-3 (2022): Third CLEF lab on Answer Retrieval for Questions
on Math (Working Notes Version). In CLEF, 2022. URL https://ceur-ws.org/Vol-
3180/paper-01.pdf.

Jordan Meadows and Andre Freitas. A survey in mathematical language processing.
arXiv:2205.15231, 2022. URL https://arxiv.org/abs/2205.15231.

Erica Melis, Giorgi Goguadze, Martin Homik, Paul Libbrecht, Carsten Ull-
rich, and Stefan Winterstein. Semantic-aware components and services
of ActiveMath. British Journal of Educational Technology, 2006. URL

121

https://dl.acm.org/doi/abs/10.1145/3341981.3344235
https://ieeexplore.ieee.org/iel7/8776994/8791105/08791164.pdf
https://ieeexplore.ieee.org/iel7/8776994/8791105/08791164.pdf
https://ceur-ws.org/Vol-2696/paper_271.pdf
https://par.nsf.gov/servlets/purl/10198749
https://par.nsf.gov/servlets/purl/10198749
https://arxiv.org/abs/2111.10504
http://ceur-ws.org/Vol-2936/paper-04.pdf
http://ceur-ws.org/Vol-2936/paper-01.pdf
http://ceur-ws.org/Vol-2936/paper-01.pdf
https://ceur-ws.org/Vol-3180/paper-01.pdf
https://ceur-ws.org/Vol-3180/paper-01.pdf
https://arxiv.org/abs/2205.15231

https://bera-journals.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/
j.1467-8535.2006.00613.x.

Bruce R. Miller and Abdou Youssef. Technical aspects of the digital library of mathematical
functions. In AMAI, 2003. URL https://link.springer.com/article/10.1023/A:
1022967814992.

Bruce R. Miller and Abdou Youssef. Augmenting presentation mathml for search. Lec-
ture Notes in Computer Science, 2008. URL https://www2.seas.gwu.edu/~ayoussef/
papers/Augmenting%20Presentation%20MathML%20for%20Search.pdf.

Robert Miner and Rajesh Munavalli. An approach to mathematical search through
query formulation and data normalization. In MKM. Springer, 2007. URL https:

//link.springer.com/chapter/10.1007/978-3-540-73086-6 27.

Jozef Mǐsutka and Leo Galamboš. Extending full text search engine for mathematical
content. Towards Digital Mathematics Library, 2008. URL https://dml.cz/bitstream/
handle/10338.dmlcz/702546/DML 001-2008-1 7.pdf.

Rajesh Munavalli and Robert Miner. Mathfind: A math-aware search engine. In SIGIR,
2006. URL https://dl.acm.org/doi/pdf/10.1145/1148170.1148348.

Eric Nalisnick, Bhaskar Mitra, Nick Craswell, and Rich Caruana. Improving document
ranking with dual word embeddings. In WWW, 2016. URL https://dl.acm.org/doi/
pdf/10.1145/2872518.2889361.

Yin Ki Ng. Dowsing for math answers: exploring MathCQA with a math-aware
search engine. Master’s thesis, University of Waterloo, 2021. URL https://

uwspace.uwaterloo.ca/handle/10012/17696.

Yin Ki Ng, Dallas Fraser, Besat Kassaie, and Frank Wm. Tompa. Dowsing for answers
to math questions: Ongoing viability of traditional MathIR. In CLEF, 2021. URL
http://ceur-ws.org/Vol-2936/paper-05.pdf.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder,
and Li Deng. MS MARCO: A human generated machine reading comprehension dataset.
In CoCoNIPs, 2016. URL http://ceur-ws.org/Vol-1773/CoCoNIPS 2016 paper9.pdf.

Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernández Ábrego, Ji Ma, Vincent Y
Zhao, Yi Luan, Keith B Hall, Ming-Wei Chang, et al. Large dual encoders are general-
izable retrievers. arXiv:2112.07899, 2021. URL https://arxiv.org/abs/2112.07899.

122

https://bera-journals.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1467-8535.2006.00613.x
https://bera-journals.onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1467-8535.2006.00613.x
https://link.springer.com/article/10.1023/A:1022967814992
https://link.springer.com/article/10.1023/A:1022967814992
https://www2.seas.gwu.edu/~ayoussef/papers/Augmenting%20Presentation%20MathML%20for%20Search.pdf
https://www2.seas.gwu.edu/~ayoussef/papers/Augmenting%20Presentation%20MathML%20for%20Search.pdf
https://link.springer.com/chapter/10.1007/978-3-540-73086-6_27
https://link.springer.com/chapter/10.1007/978-3-540-73086-6_27
https://dml.cz/bitstream/handle/10338.dmlcz/702546/DML_001-2008-1_7.pdf
https://dml.cz/bitstream/handle/10338.dmlcz/702546/DML_001-2008-1_7.pdf
https://dl.acm.org/doi/pdf/10.1145/1148170.1148348
https://dl.acm.org/doi/pdf/10.1145/2872518.2889361
https://dl.acm.org/doi/pdf/10.1145/2872518.2889361
https://uwspace.uwaterloo.ca/handle/10012/17696
https://uwspace.uwaterloo.ca/handle/10012/17696
http://ceur-ws.org/Vol-2936/paper-05.pdf
http://ceur-ws.org/Vol-1773/CoCoNIPS_2016_paper9.pdf
https://arxiv.org/abs/2112.07899

Gavin Nishizawa, Jennifer Liu, Yancarlos Diaz, Abishai Dmello, Wei Zhong, and Richard
Zanibbi. MathSeer: A math-aware search interface with intuitive formula editing, reuse,
and lookup. In ECIR, 2020. URL https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC7148076.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with BERT. arXiv:1901.04085,
2019. URL https://arxiv.org/abs/1901.04085.

Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. From doc2query to docTTTT-
Tquery. 2019a. URL https://cs.uwaterloo.ca/~jimmylin/publications/
Nogueira Lin 2019 docTTTTTquery-v2.pdf.

Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and Jimmy Lin. Multi-stage docu-
ment ranking with BERT. arXiv:1910.14424, 2019b. URL https://arxiv.org/abs/
1910.14424.

Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. Document expansion by
query prediction. arXiv:1904.08375, 2019c. URL https://arxiv.org/abs/1904.08375.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of
Transformers with simple arithmetic tasks. arXiv:2102.13019, 2021. URL https:

//arxiv.org/abs/2102.13019.

Landon Curt Noll. FNV Hash. 2023. URL http://www.isthe.com/chongo/tech/comp/
fnv/index.html. [Online; accessed 2023-06-16].

Immanuel Normann and Michael Kohlhase. Extended formula normalization for ε-retrieval
and sharing of mathematical knowledge. In MKM. Springer, 2007. URL https://

link.springer.com/chapter/10.1007/978-3-540-73086-6 28.

Vı́t Novotnỳ and Michal Štefánik. Combining sparse and dense information retrieval.
CLEF, 2022. URL http://ceur-ws.org/Vol-3180/paper-06.pdf.

Vı́t Novotnỳ, Petr Sojka, Michal Stefánik, and Dávid Lupták. Three is better than one:
Ensembling math information retrieval systems. In CLEF, 2020. URL http://ceur-

ws.org/Vol-2696/paper 235.pdf.

Vı́t Novotnỳ, Michal Štefánik, Dávid Lupták, Martin Geletka, Petr Zelina, and Petr Sojka.
Ensembling ten math information retrieval systems. In CLEF, 2021. URL http://

ceur-ws.org/Vol-2936/paper-06.pdf.

123

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148076
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7148076
https://arxiv.org/abs/1901.04085
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://arxiv.org/abs/1910.14424
https://arxiv.org/abs/1910.14424
https://arxiv.org/abs/1904.08375
https://arxiv.org/abs/2102.13019
https://arxiv.org/abs/2102.13019
http://www.isthe.com/chongo/tech/comp/fnv/index.html
http://www.isthe.com/chongo/tech/comp/fnv/index.html
https://link.springer.com/chapter/10.1007/978-3-540-73086-6_28
https://link.springer.com/chapter/10.1007/978-3-540-73086-6_28
http://ceur-ws.org/Vol-3180/paper-06.pdf
http://ceur-ws.org/Vol-2696/paper_235.pdf
http://ceur-ws.org/Vol-2696/paper_235.pdf
http://ceur-ws.org/Vol-2936/paper-06.pdf
http://ceur-ws.org/Vol-2936/paper-06.pdf

Vı́t Novotnỳ. Interpretable Representations for Fast and Accurate Retrieval of Math-
ematical Information. PhD thesis, Dissertation, Masaryk University, 2021. URL
https://is.muni.cz/th/o4thd/Revidovana verze po obhajobe disertace.pdf.

Shunsuke Ohashi, Giovanni Yoko Kristianto, Akiko Aizawa, et al. Efficient algo-
rithm for math formula semantic search. IEICE Transactions, 2016. URL https:

//www.jstage.jst.go.jp/article/transinf/E99.D/4/E99.D 2015DAP0023/ pdf.

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large
language model connected with massive APIs. arXiv:2305.15334, 2023. URL https:

//arxiv.org/abs/2305.15334.

Nidhin Pattaniyil and Richard Zanibbi. Combining TF–IDF text retrieval with an in-
verted index over symbol pairs in math expressions: The tangent math search engine
at ntcir 2014. In NTCIR, 2014. URL https://research.nii.ac.jp/ntcir/workshop/
OnlineProceedings11/pdf/NTCIR/Math-2/08-NTCIR11-MATH-PattaniyilN.pdf.

Shuai Peng, Ke Yuan, Liangcai Gao, and Zhi Tang. MathBERT: A pre-trained model
for mathematical formula understanding. arXiv:2105.00377, 2021. URL https:

//arxiv.org/abs/2105.00377.

Lukas Pfahler and Katharina Morik. Self-supervised pretraining of graph neural network for
the retrieval of related mathematical expressions in scientific articles. arXiv:2209.00446,
2022. URL https://arxiv.org/abs/2209.00446.

Xin Qian and Diego Klabjan. The impact of the mini-batch size on the variance of gradients
in stochastic gradient descent. arXiv:2004.13146, 2020. URL https://arxiv.org/abs/
2004.13146.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxiang
Dong, Hua Wu, and Haifeng Wang. RocketQA: An optimized training approach to
dense passage retrieval for open-domain question answering. arXiv:2010.08191, 2020.
URL https://arxiv.org/abs/2010.08191.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis
Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling
language models: Methods, analysis & insights from training Gopher. arXiv:2112.11446,
2021. URL https://arxiv.org/abs/2112.11446.

124

https://is.muni.cz/th/o4thd/Revidovana_verze_po_obhajobe_disertace.pdf
https://www.jstage.jst.go.jp/article/transinf/E99.D/4/E99.D_2015DAP0023/_pdf
https://www.jstage.jst.go.jp/article/transinf/E99.D/4/E99.D_2015DAP0023/_pdf
https://arxiv.org/abs/2305.15334
https://arxiv.org/abs/2305.15334
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/08-NTCIR11-MATH-PattaniyilN.pdf
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings11/pdf/NTCIR/Math-2/08-NTCIR11-MATH-PattaniyilN.pdf
https://arxiv.org/abs/2105.00377
https://arxiv.org/abs/2105.00377
https://arxiv.org/abs/2209.00446
https://arxiv.org/abs/2004.13146
https://arxiv.org/abs/2004.13146
https://arxiv.org/abs/2010.08191
https://arxiv.org/abs/2112.11446

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of trans-
fer learning with a unified text-to-text Transformer. JMLR, 2020. URL https:

//www.jmlr.org/papers/volume21/20-074/20-074.pdf.

Ori Ram, Gal Shachaf, Omer Levy, Jonathan Berant, and Amir Globerson. Learn-
ing to retrieve passages without supervision. arXiv:2112.07708, 2021. URL https:

//arxiv.org/abs/2112.07708.

Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using siamese
BERT-networks. arXiv:1908.10084, 2022. URL https://arxiv.org/abs/1908.10084.

Anja Reusch, Maik Thiele, and Wolfgang Lehner. An ALBERT-based similarity measure
for mathematical answer retrieval. In SIGIR, 2021a. URL https://dl.acm.org/doi/
abs/10.1145/3404835.3463023.

Anja Reusch, Maik Thiele, and Wolfgang Lehner. TU DBS in the ARQMath lab 2021,
CLEF. In CLEF, 2021b. URL http://ceur-ws.org/Vol-2936/paper-07.pdf.

Anja Reusch, Maik Thiele, and Wolfgang Lehner. Transformer-encoder and decoder models
for questions on math. CLEF, 2022. URL http://ceur-ws.org/Vol-3180/paper-
07.pdf.

Stephen E. Robertson. Understanding inverse document frequency: on theoretical ar-
guments for idf. Journal of documentation, 2004. URL https://www.emerald.com/
insight/content/doi/10.1108/00220410410560582/full/html.

Stephen E. Robertson, Steve Walker, Susan Jones, Micheline M. Hancock-Beaulieu, Mike
Gatford, et al. Okapi at TREC-3. TREC, 1995. URL https://www.microsoft.com/en-
us/research/publication/okapi-at-trec-3.

Shaurya Rohatgi, Jian Wu, and C Lee Giles. PSU at CLEF-2020 ARQMath Track: Unsu-
pervised re-ranking using pretraining. In CLEF, 2020. URL http://ceur-ws.org/Vol-
2696/paper 121.pdf.

Shaurya Rohatgi, Jian Wu, and C Lee Giles. Ranked list fusion and re-ranking with
pre-trained transformers for arqmath lab. 2021. URL http://ceur-ws.org/Vol-2936/
paper-08.pdf.

Tetsuya Sakai and Noriko Kando. On information retrieval metrics designed for evaluation
with incomplete relevance assessments. Information Retrieval, 2008. URL https://

link.springer.com/article/10.1007/s10791-008-9059-7.

125

https://www.jmlr.org/papers/volume21/20-074/20-074.pdf
https://www.jmlr.org/papers/volume21/20-074/20-074.pdf
https://arxiv.org/abs/2112.07708
https://arxiv.org/abs/2112.07708
https://arxiv.org/abs/1908.10084
https://dl.acm.org/doi/abs/10.1145/3404835.3463023
https://dl.acm.org/doi/abs/10.1145/3404835.3463023
http://ceur-ws.org/Vol-2936/paper-07.pdf
http://ceur-ws.org/Vol-3180/paper-07.pdf
http://ceur-ws.org/Vol-3180/paper-07.pdf
https://www.emerald.com/insight/content/doi/10.1108/00220410410560582/full/html
https://www.emerald.com/insight/content/doi/10.1108/00220410410560582/full/html
https://www.microsoft.com/en-us/research/publication/okapi-at-trec-3
https://www.microsoft.com/en-us/research/publication/okapi-at-trec-3
http://ceur-ws.org/Vol-2696/paper_121.pdf
http://ceur-ws.org/Vol-2696/paper_121.pdf
http://ceur-ws.org/Vol-2936/paper-08.pdf
http://ceur-ws.org/Vol-2936/paper-08.pdf
https://link.springer.com/article/10.1007/s10791-008-9059-7
https://link.springer.com/article/10.1007/s10791-008-9059-7

Sidath Harshanath Samarasinghe and Siu Cheung Hui. Mathematical document retrieval
for problem solving. In International Conference on Computer Engineering and Tech-
nology. IEEE, 2009. URL https://ieeexplore.ieee.org/iel5/4769406/4769407/
04769534.pdf.

Keshav Santhanam, Omar Khattab, Jon Saad-Falcon, Christopher Potts, and Matei Za-
haria. ColBERTv2: Effective and efficient retrieval via lightweight late interaction.
arXiv:2112.01488, 2021. URL https://arxiv.org/abs/2112.01488.

Keshav Santhanam, Omar Khattab, Christopher Potts, and Matei Zaharia. PLAID: An
efficient engine for late interaction retrieval. arXiv:2205.09707, 2022a. URL https:

//arxiv.org/abs/2205.09707.

Keshav Santhanam, Jon Saad-Falcon, Martin Franz, Omar Khattab, Avirup Sil, Radu
Florian, Md Arafat Sultan, Salim Roukos, Matei Zaharia, and Christopher Potts.
Moving beyond downstream task accuracy for information retrieval benchmarking.
arXiv:2212.01340, 2022b. URL https://arxiv.org/abs/2212.01340.

Timo Schick, Jane Dwivedi-Yu, Roberto Dess̀ı, Roberta Raileanu, Maria Lomeli, Luke
Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. arXiv:2302.04761, 2023. URL https://arxiv.org/pdf/
2302.04761.

Till Hendrik Schulz, Tamás Horváth, Pascal Welke, and Stefan Wrobel. A gener-
alized Weisfeiler-Lehman graph kernel. Machine Learning, 2022. URL https://

link.springer.com/article/10.1007/s10994-022-06131-w.

Hinrich Schütze, Christopher D. Manning, and Prabhakar Raghavan. Introduction to
information retrieval. Cambridge University Press Cambridge, 2008. URL https:

//nlp.stanford.edu/IR-book/information-retrieval-book.html.

Ron Shamir and Dekel Tsur. Faster subtree isomorphism. Journal of Algorithms, 1999.
URL https://www.sciencedirect.com/science/article/pii/S0196677499910441.

Dongdong Shan, Shuai Ding, Jing He, Hongfei Yan, and Xiaoming Li. Optimized top-
k processing with global page scores on block-max indexes. In WSDM, 2012. URL
https://dl.acm.org/doi/10.1145/2124295.2124346.

Mohammed Shatnawi and Abdou Youssef. Equivalence detection using parse-tree normal-
ization for math search. In ICDIM. IEEE, 2007. URL https://ieeexplore.ieee.org/
iel5/4444189/4444274/04444297.pdf.

126

https://ieeexplore.ieee.org/iel5/4769406/4769407/04769534.pdf
https://ieeexplore.ieee.org/iel5/4769406/4769407/04769534.pdf
https://arxiv.org/abs/2112.01488
https://arxiv.org/abs/2205.09707
https://arxiv.org/abs/2205.09707
https://arxiv.org/abs/2212.01340
https://arxiv.org/pdf/2302.04761
https://arxiv.org/pdf/2302.04761
https://link.springer.com/article/10.1007/s10994-022-06131-w
https://link.springer.com/article/10.1007/s10994-022-06131-w
https://nlp.stanford.edu/IR-book/information-retrieval-book.html
https://nlp.stanford.edu/IR-book/information-retrieval-book.html
https://www.sciencedirect.com/science/article/pii/S0196677499910441
https://dl.acm.org/doi/10.1145/2124295.2124346
https://ieeexplore.ieee.org/iel5/4444189/4444274/04444297.pdf
https://ieeexplore.ieee.org/iel5/4444189/4444274/04444297.pdf

Tao Shen, Xiubo Geng, Chongyang Tao, Can Xu, Kai Zhang, and Daxin Jiang. Unifier:
A unified retriever for large-scale retrieval. arXiv:2205.11194, 2022. URL https://

arxiv.org/abs/2205.11194.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting
Zhuang. HuggingGPT: Solving AI tasks with ChatGPT and its friends in Hugging-
Face. arXiv:2303.17580, 2023. URL https://arxiv.org/abs/2303.17580.

Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke
Zettlemoyer, and Wen-tau Yih. Replug: Retrieval-augmented black-box language mod-
els. arXiv:2301.12652, 2023. URL https://arxiv.org/abs/2301.12652.

Petr Sojka and Martin Ĺı̌ska. The art of mathematics retrieval. In DocEng, 2011a. URL
https://dl.acm.org/doi/10.1145/2034691.2034703.

Petr Sojka and Martin Ĺı̌ska. Indexing and searching mathematics in digital libraries:
architecture, design and scalability issues. In MKM. Springer, 2011b. URL https:

//is.muni.cz/th/udtlg/teze Archive.pdf.

Yujin Song and Xiaoyu Chen. Searching for mathematical formulas based on graph rep-
resentation learning. In CICM, 2021. URL https://link.springer.com/chapter/
10.1007/978-3-030-81097-9 11.

David Stalnaker. Math expression retrieval using symbol pairs in layout trees. 2013. URL
https://www.cs.rit.edu/~dprl/files/StalnakerMScThesisAug2013.pdf.

David Stalnaker and Richard Zanibbi. Math expression retrieval using an inverted in-
dex over symbol pairs. In Document recognition and retrieval, 2015. URL https:

//www.cs.rit.edu/~rlaz/files/drr-stalnaker2015-revised.pdf.

Trevor Strohman, Howard Turtle, and W. Bruce Croft. Optimization strategies for complex
queries. In SIGIR, 2005. URL https://dl.acm.org/doi/10.1145/1076034.1076074.

Tao Tao and Chengxiang Zhai. An exploration of proximity measures in information
retrieval. In SIGIR, 2007. URL https://dl.acm.org/doi/10.1145/1277741.1277794.

Terrier contributors. Terrier documenetation, 2014. URL http://terrier.org/docs/
v4.0/javadoc/org/terrier/matching/models/TF IDF.html. [Online; accessed 2022-
12-17].

Nandan Thakur, Nils Reimers, and Jimmy Lin. Domain adaptation for memory-efficient
dense retrieval. arXiv:2205.11498, 2022. URL https://arxiv.org/abs/2205.11498.

127

https://arxiv.org/abs/2205.11194
https://arxiv.org/abs/2205.11194
https://arxiv.org/abs/2303.17580
https://arxiv.org/abs/2301.12652
https://dl.acm.org/doi/10.1145/2034691.2034703
https://is.muni.cz/th/udtlg/teze_Archive.pdf
https://is.muni.cz/th/udtlg/teze_Archive.pdf
https://link.springer.com/chapter/10.1007/978-3-030-81097-9_11
https://link.springer.com/chapter/10.1007/978-3-030-81097-9_11
https://www.cs.rit.edu/~dprl/files/StalnakerMScThesisAug2013.pdf
https://www.cs.rit.edu/~rlaz/files/drr-stalnaker2015-revised.pdf
https://www.cs.rit.edu/~rlaz/files/drr-stalnaker2015-revised.pdf
https://dl.acm.org/doi/10.1145/1076034.1076074
https://dl.acm.org/doi/10.1145/1277741.1277794
http://terrier.org/docs/v4.0/javadoc/org/terrier/matching/models/TF_IDF.html
http://terrier.org/docs/v4.0/javadoc/org/terrier/matching/models/TF_IDF.html
https://arxiv.org/abs/2205.11498

Nicola Tonellotto, Craig Macdonald, and Iadh Ounis. Efficient and effective retrieval
using selective pruning. In WSDM, 2013. URL https://dl.acm.org/doi/pdf/10.1145/
2433396.2433407.

Goran Topić, Giovanni Yoko Kristianto, Minh-Quoc Nghiem, and Akiko Aizawa.
The MCAT math retrieval system for NTCIR-10 math track. In NTCIR, 2013.
URL http://ntcir-math.nii.ac.jp/wp-content/blogs.dir/23/files/2013/10/05-
NTCIR10-MATH-TopicG.pdf.

Andrew Trotman and Matt Crane. Micro-and macro-optimizations of SAAT search. Soft-
ware: Practice and Experience, 2019. URL https://onlinelibrary.wiley.com/doi/
pdf/10.1002/spe.2683.

Howard Turtle and James Flood. Query evaluation: strategies and optimizations. In-
formation Processing & Management, 1995. URL https://www.sciencedirect.com/
science/article/pii/030645739500020H.

Gabriel Valiente. Algorithms on trees and graphs. Springer, 2002. URL https:

//link.springer.com/book/10.1007/978-3-030-81885-2.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In NIPS, 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Ellen M. Voorhees. The evolution of cranfield. Information Retrieval Evaluation in
a Changing World: Lessons Learned from 20 Years of CLEF, 2019. URL https:

//link.springer.com/chapter/10.1007/978-3-030-22948-1 2.

Kexin Wang, Nils Reimers, and Iryna Gurevych. TSDAE: Using Transformer-based
sequential denoising auto-encoder for unsupervised sentence embedding learning.
arXiv:2104.06979, 2021a. URL https://arxiv.org/abs/2104.06979.

Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna Gurevych. GPL: Generative pseudo
labeling for unsupervised domain adaptation of dense retrieval. arXiv:2112.07577, 2021b.
URL https://arxiv.org/abs/2112.07577.

Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan
Majumder, and Furu Wei. SimLM: Pre-training with representation bottleneck for dense
passage retrieval. arXiv:2207.02578, 2022. URL https://arxiv.org/abs/2207.02578.

128

https://dl.acm.org/doi/pdf/10.1145/2433396.2433407
https://dl.acm.org/doi/pdf/10.1145/2433396.2433407
http://ntcir-math.nii.ac.jp/wp-content/blogs.dir/23/files/2013/10/05-NTCIR10-MATH-TopicG.pdf
http://ntcir-math.nii.ac.jp/wp-content/blogs.dir/23/files/2013/10/05-NTCIR10-MATH-TopicG.pdf
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2683
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2683
https://www.sciencedirect.com/science/article/pii/030645739500020H
https://www.sciencedirect.com/science/article/pii/030645739500020H
https://link.springer.com/book/10.1007/978-3-030-81885-2
https://link.springer.com/book/10.1007/978-3-030-81885-2
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://link.springer.com/chapter/10.1007/978-3-030-22948-1_2
https://link.springer.com/chapter/10.1007/978-3-030-22948-1_2
https://arxiv.org/abs/2104.06979
https://arxiv.org/abs/2112.07577
https://arxiv.org/abs/2207.02578

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural net-
works. In CVPR, 2018. URL http://openaccess.thecvf.com/content cvpr 2018/

papers/Wang Non-Local Neural Networks CVPR 2018 paper.pdf.

Yuehan Wang, Liangcai Gao, Simeng Wang, Zhi Tang, Xiaozhong Liu, and Ke Yuan.
WikiMirs 3.0: A hybrid MIR system based on the context, structure and importance of
formulae in a document. In JCDL, 2015. URL https://dl.acm.org/doi/pdf/10.1145/
2756406.2756918.

Zichao Wang, Andrew S Lan, and Richard G. Baraniuk. Mathematical formula represen-
tation via tree embeddings. In iTextbooks AIED, 2021c. URL http://ceur-ws.org/
Vol-2895/paper02.pdf.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-
thony Moi, Pierric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz, Joe Davison,
Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander Rush.
Transformers: State-of-the-art natural language processing. In EMNLP, 2020. URL
https://aclanthology.org/2020.emnlp-demos.6.

Xing Wu, Guangyuan Ma, Meng Lin, Zijia Lin, Zhongyuan Wang, and Songlin Hu. Con-
textual mask auto-encoder for dense passage retrieval. arXiv:2208.07670, 2022. URL
https://arxiv.org/abs/2208.07670.

Shitao Xiao and Zheng Liu. RetroMAE v2: Duplex masked auto-encoder for pre-training
retrieval-oriented language models. arXiv:2211.08769, 2022. URL https://arxiv.org/
abs/2211.08769.

Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. End-to-end
neural ad-hoc ranking with kernel pooling. In SIGIR, 2017. URL https://dl.acm.org/
doi/pdf/10.1145/3077136.3080809.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett, Junaid
Ahmed, and Arnold Overwijk. Approximate nearest neighbor negative contrastive learn-
ing for dense text retrieval. arXiv:2007.00808, 2020a. URL https://arxiv.org/abs/
2007.00808.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai
Zhang, Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the Trans-
former architecture. In International Conference on Machine Learning. PMLR, 2020b.
URL http://proceedings.mlr.press/v119/xiong20b/xiong20b.pdf.

129

http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Non-Local_Neural_Networks_CVPR_2018_paper.pdf
http://openaccess.thecvf.com/content_cvpr_2018/papers/Wang_Non-Local_Neural_Networks_CVPR_2018_paper.pdf
https://dl.acm.org/doi/pdf/10.1145/2756406.2756918
https://dl.acm.org/doi/pdf/10.1145/2756406.2756918
http://ceur-ws.org/Vol-2895/paper02.pdf
http://ceur-ws.org/Vol-2895/paper02.pdf
https://aclanthology.org/2020.emnlp-demos.6
https://arxiv.org/abs/2208.07670
https://arxiv.org/abs/2211.08769
https://arxiv.org/abs/2211.08769
https://dl.acm.org/doi/pdf/10.1145/3077136.3080809
https://dl.acm.org/doi/pdf/10.1145/3077136.3080809
https://arxiv.org/abs/2007.00808
https://arxiv.org/abs/2007.00808
http://proceedings.mlr.press/v119/xiong20b/xiong20b.pdf

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks? arXiv:1810.00826, 2018. URL https://arxiv.org/abs/1810.00826.

Peilin Yang, Hui Fang, and Jimmy Lin. Anserini: Enabling the use of lucene for informa-
tion retrieval research. In SIGIR, 2017. URL https://dl.acm.org/doi/pdf/10.1145/
3077136.3080721.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. React: Synergizing reasoning and acting in language models.
arXiv:2210.03629, 2022. URL https://arxiv.org/abs/2210.03629.

Michihiro Yasunaga and John D Lafferty. TopicEQ: A joint topic and mathematical equa-
tion model for scientific texts. In AAAI, 2019. URL https://ojs.aaai.org/index.php/
AAAI/article/download/4728/4606.

Keisuke Yokoi and Akiko Aizawa. An approach to similarity search for mathematical
expressions using MathML. In DML (Digital Mathematics Library), 2009. URL https:

//dml.cz/handle/10338.dmlcz/702557.

Abdou Youssef. Search of mathematical contents: Issues and methods. In IASSE, 2005.
URL https://www2.seas.gwu.edu/~ayoussef/papers/MathSearch-IASSE05.pdf.

Abdou Youssef. Methods of relevance ranking and hit-content generation in math search.
In MKM. Springer, 2007. URL https://link.springer.com/chapter/10.1007/978-3-
540-73086-6 31.

Yaodong Yu, Sam Buchanan, Druv Pai, Tianzhe Chu, Ziyang Wu, Shengbang Tong,
Benjamin D Haeffele, and Yi Ma. White-box transformers via sparse rate reduction.
arXiv:2306.01129, 2023. URL https://arxiv.org/abs/2306.01129.

Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv
Kumar. Are Transformers universal approximators of sequence-to-sequence functions?
arXiv:1912.10077, 2019. URL https://arxiv.org/abs/1912.10077.

Hamed Zamani, Mostafa Dehghani, W. Bruce Croft, Erik Learned-Miller, and Jaap
Kamps. From neural re-ranking to neural ranking: Learning a sparse representation
for inverted indexing. In CIKM, 2018. URL https://dl.acm.org/doi/pdf/10.1145/
3269206.3271800.

Richard Zanibbi and Dorothea Blostein. Recognition and retrieval of mathematical expres-
sions. In IJDAR, 2012. URL https://link.springer.com/article/10.1007/s10032-
011-0174-4.

130

https://arxiv.org/abs/1810.00826
https://dl.acm.org/doi/pdf/10.1145/3077136.3080721
https://dl.acm.org/doi/pdf/10.1145/3077136.3080721
https://arxiv.org/abs/2210.03629
https://ojs.aaai.org/index.php/AAAI/article/download/4728/4606
https://ojs.aaai.org/index.php/AAAI/article/download/4728/4606
https://dml.cz/handle/10338.dmlcz/702557
https://dml.cz/handle/10338.dmlcz/702557
https://www2.seas.gwu.edu/~ayoussef/papers/MathSearch-IASSE05.pdf
https://link.springer.com/chapter/10.1007/978-3-540-73086-6_31
https://link.springer.com/chapter/10.1007/978-3-540-73086-6_31
https://arxiv.org/abs/2306.01129
https://arxiv.org/abs/1912.10077
https://dl.acm.org/doi/pdf/10.1145/3269206.3271800
https://dl.acm.org/doi/pdf/10.1145/3269206.3271800
https://link.springer.com/article/10.1007/s10032-011-0174-4
https://link.springer.com/article/10.1007/s10032-011-0174-4

Richard Zanibbi and Li Yu. Math Spotting: Retrieving math in technical documents using
handwritten query images. In ICDAR, 2011. URL https://ieeexplore.ieee.org/
iel5/6065245/6065247/06065351.pdf.

Richard Zanibbi, Kenny Davila, Andrew Kane, and Frank Wm. Tompa. The Tangent
search engine: Improved similarity metrics and scalability for math formula search.
arXiv:1507.06235, 2015. URL https://arxiv.org/abs/1507.06235.

Richard Zanibbi, Akiko Aizawa, Michael Kohlhase, Iadh Ounis, Goran Topic, and
Kenny Davila. NTCIR-12 MathIR task overview. In NTCIR, 2016a. URL
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/
OVERVIEW/01-NTCIR12-OV-MathIR-ZanibbiR.pdf.

Richard Zanibbi, Kenny Davila, Andrew Kane, and Frank Wm. Tompa. Multi-stage math
formula search: Using appearance-based similarity metrics at scale. In SIGIR, 2016b.
URL https://dl.acm.org/doi/abs/10.1145/2911451.2911512.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma. Learning to retrieve:
How to train a dense retrieval model effectively and efficiently. arXiv:2010.10469, 2020a.
URL https://arxiv.org/abs/2010.10469.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Min Zhang, and Shaoping Ma. RepBERT: Con-
textualized text embeddings for first-stage retrieval. arXiv:2006.15498, 2020b. URL
https://arxiv.org/abs/2006.15498.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, and Shaoping Ma. Op-
timizing dense retrieval model training with hard negatives. In SIGIR, 2021. URL
https://dl.acm.org/doi/pdf/10.1145/3404835.3462880.

Kaizhong Zhang and Tao Jiang. Some MAX SNP-hard results concerning un-
ordered labeled trees. Information Processing Letters, 1994. URL https://

www.sciencedirect.com/science/article/abs/pii/0020019094900620.

Mengxue Zhang, Zichao Wang, Richard Baraniuk, and Andrew Lan. Math operation
embeddings for open-ended solution analysis and feedback. arXiv:2104.12047, 2021.
URL https://arxiv.org/abs/2104.12047.

Jin Zhao, Min-Yen Kan, and Yin Leng Theng. Math information retrieval: user require-
ments and prototype implementation. In JCDL, 2008. URL https://dl.acm.org/doi/
pdf/10.1145/1378889.1378921.

131

https://ieeexplore.ieee.org/iel5/6065245/6065247/06065351.pdf
https://ieeexplore.ieee.org/iel5/6065245/6065247/06065351.pdf
https://arxiv.org/abs/1507.06235
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/OVERVIEW/01-NTCIR12-OV-MathIR-ZanibbiR.pdf
https://research.nii.ac.jp/ntcir/workshop/OnlineProceedings12/pdf/ntcir/OVERVIEW/01-NTCIR12-OV-MathIR-ZanibbiR.pdf
https://dl.acm.org/doi/abs/10.1145/2911451.2911512
https://arxiv.org/abs/2010.10469
https://arxiv.org/abs/2006.15498
https://dl.acm.org/doi/pdf/10.1145/3404835.3462880
https://www.sciencedirect.com/science/article/abs/pii/0020019094900620
https://www.sciencedirect.com/science/article/abs/pii/0020019094900620
https://arxiv.org/abs/2104.12047
https://dl.acm.org/doi/pdf/10.1145/1378889.1378921
https://dl.acm.org/doi/pdf/10.1145/1378889.1378921

Tiancheng Zhao, Xiaopeng Lu, and Kyusong Lee. SPARTA: Efficient open-domain question
answering via sparse Transformer matching retrieval. arXiv:2009.13013, 2020. URL
https://arxiv.org/abs/2009.13013.

Wei Zhong. A novel similarity-search method for mathematical content in latex markup
and its implementation. Master’s thesis, University of Delaware, 2015. URL https:

//udspace.udel.edu/handle/19716/17656.

Wei Zhong and Hui Fang. OPMES: A similarity search engine for mathematical content. In
ECIR, 2016. URL https://link.springer.com/chapter/10.1007/978-3-319-30671-
1 79.

Wei Zhong and Jimmy Lin. PyA0: A Python toolkit for accessible math-aware search. In
SIGIR, 2021. URL https://dl.acm.org/doi/abs/10.1145/3404835.3462794.

Wei Zhong and Richard Zanibbi. Structural similarity search for formulas using leaf-root
paths in operator subtrees. In ECIR, 2019. URL https://par.nsf.gov/servlets/
purl/10124342.

Wei Zhong, Shaurya Rohatgi, Jian Wu, Lee Giles, and Richard Zanibbi. Accelerating
substructure similarity search for formula retrieval. In ECIR, 2020. URL https://

link.springer.com/chapter/10.1007/978-3-030-45439-5 47.

Wei Zhong, Xinyu Zhang, Ji Xin, Jimmy Lin, and Richard Zanibbi. Approach Zero and
Anserini at the CLEF-2021 ARQMath track: Applying substructure search and BM25
on operator tree path tokens. In CLEF, 2021. URL http://ceur-ws.org/Vol-2936/
paper-09.pdf.

Wei Zhong, Yuqing Xie, and Jimmy Lin. Applying structural and dense semantic matching
for the ARQMath Lab 2022, CLEF. CLEF 2022, 2022a. URL http://ceur-ws.org/
Vol-3180/paper-09.pdf.

Wei Zhong, Jheng-Hong Yang, and Jimmy Lin. Evaluating token-level and passage-level
dense retrieval models for math information retrieval, 2022b. URL https://arxiv.org/
abs/2203.11163.

Wei Zhong, Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. One blade for one
purpose: Advancing math information retrieval using hybrid search. In SIGIR, 2023.

Qi Zhu, Yuxian Gu, Lingxiao Luo, Bing Li, Cheng Li, Wei Peng, Minlie Huang, and
Xiaoyan Zhu. When does further pre-training MLM help? An empirical study on

132

https://arxiv.org/abs/2009.13013
https://udspace.udel.edu/handle/19716/17656
https://udspace.udel.edu/handle/19716/17656
https://link.springer.com/chapter/10.1007/978-3-319-30671-1_79
https://link.springer.com/chapter/10.1007/978-3-319-30671-1_79
https://dl.acm.org/doi/abs/10.1145/3404835.3462794
https://par.nsf.gov/servlets/purl/10124342
https://par.nsf.gov/servlets/purl/10124342
https://link.springer.com/chapter/10.1007/978-3-030-45439-5_47
https://link.springer.com/chapter/10.1007/978-3-030-45439-5_47
http://ceur-ws.org/Vol-2936/paper-09.pdf
http://ceur-ws.org/Vol-2936/paper-09.pdf
http://ceur-ws.org/Vol-3180/paper-09.pdf
http://ceur-ws.org/Vol-3180/paper-09.pdf
https://arxiv.org/abs/2203.11163
https://arxiv.org/abs/2203.11163

task-oriented dialog pre-training. In EMNLP Insights Workshop, 2021. URL https:

//aclanthology.org/2021.insights-1.9.

Shengyao Zhuang and Guido Zuccon. TILDE: Term independent likelihood model for
passage re-ranking. In SIGIR, 2021a. URL https://dl.acm.org/doi/pdf/10.1145/
3404835.3462922.

Shengyao Zhuang and Guido Zuccon. Fast passage re-ranking with contextualized exact
term matching and efficient passage expansion. arXiv:2108.08513, 2021b. URL https:

//arxiv.org/abs/arXiv:2108.08513.

Justin Zobel and Alistair Moffat. Exploring the similarity space. In SIGIR, 1998. URL
https://dl.acm.org/doi/pdf/10.1145/281250.281256.

Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-scalar RAM-CPU
cache compression. In ICDE. IEEE, 2006. URL https://ieeexplore.ieee.org/iel5/
10757/33902/01617427.pdf.

133

https://aclanthology.org/2021.insights-1.9
https://aclanthology.org/2021.insights-1.9
https://dl.acm.org/doi/pdf/10.1145/3404835.3462922
https://dl.acm.org/doi/pdf/10.1145/3404835.3462922
https://arxiv.org/abs/arXiv:2108.08513
https://arxiv.org/abs/arXiv:2108.08513
https://dl.acm.org/doi/pdf/10.1145/281250.281256
https://ieeexplore.ieee.org/iel5/10757/33902/01617427.pdf
https://ieeexplore.ieee.org/iel5/10757/33902/01617427.pdf

Glossary

first-stage retrieval An often more efficient stage that searches against the whole index
to filter candidates used for potentially a more expensive later stage(s). 2

math-aware Being aware of the heterogeneous data often seen in a math document that
contains both math language (i.e., formulas) and their context language. 3

MIR Math information retrieval (Math IR). See Section 2.3 4

OPT Operator Tree. The OPT represents a math formula by identifying operators and
operands in the expression, and constructing a tree recursively where each internal
node is the operator of its children operands. 32

structure search The retrieval of formulas based on their structure similarities. 22

structure similarity In our context, the similarity measured by largest common sub-
structure(s) between formula OPT representations. 35

134

	Examining Committee Membership
	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Challenges
	Effectiveness Challenges
	Efficiency and Complexity Issues

	Math-Aware Retrieval and Formula Search
	An Example

	Contributions and Outline

	Background
	Traditional Ad-Hoc Retrieval
	Ranking
	Efficiency

	Supervised Retrieval
	Transformer Encoder
	Neural Retriever

	Math Information Retrieval
	Early Work (2003 – 2013)
	Better Structure Search (2014 – 2019)
	Data-Driven Retrieval (2017 – Now)

	Experiment Datasets
	Evaluation Measurements

	Effective Structure Search
	Structure Matching
	Structure Similarity
	Path Weighting
	Approximated Matching
	Multi-Tree Matching

	Other Unsupervised Similarities
	Symbol Similarity
	Context Lexical Similarity
	Overall Similarity

	Evaluation
	Experimental Setup
	Main Results
	Ablation Study

	Efficient Structure Search
	Rank-Safe Dynamic Pruning
	Intuition and Background
	Definitions
	MaxRef Pruning Strategy
	GBP Pruning Strategies

	Implementation
	Structure Query Processing
	Heterogeneous Query Processing

	More Efficient Dynamic Pruning
	Initial Threshold
	Combining with Dynamic Thresholds

	Evaluation
	Experimental Setup
	Main Results
	Analysis

	Supervised and Hybrid Search
	Contextualized Pretraining
	Preliminaries
	Coco-MAE Pretraining

	Domain-optimized Hybrid Search
	Hybrid Components
	Fine-Tuning
	Combining Complementary Models
	Fusing Different Relevance Signals

	Evaluation
	Experimental Setup
	Main Results
	Analysis

	Conclusion and Future Work
	References
	Glossary

