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Abstract

With the unexpected increase in demand and the need to minimize human interaction

during the Covid-19 pandemic, companies have been forced to accelerate the transition from

traditional to robotic mobile fulfillment systems. The key to a successful warehouse man-

agement system, whether traditional or automated, is an efficient order-picking process.

In this study, we focus on the order batching problem, where items and orders are grouped

into batches for simultaneous picking in automated warehouses that use autonomous pick-

ing carts. We propose five different mathematical models, including a generalized quadratic

assignment model. We focus on the latter as it provides the best results and propose a

Lagrangian relaxation to obtain lower bounds and an iterative Simulated Annealing (SA)

algorithm that generates an initial solution using a K-means clustering algorithm. We

carry out testing using an open-source dataset to assess the iterative SA algorithm in min-

imizing congestion and travel distance in an automated warehouse. We find that it finds

solutions of good quality as measured by Lagrangian relaxation and is capable of solving

large realistic instances. The solutions successfully minimize travel distance and reduce

congestion by limiting path intersections.
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Chapter 1

Introduction

The transition from traditional warehouse systems to intelligent automated systems has

been accelerated during the COVID-19 pandemic as companies faced a surge in online

demand and a shortage in labor due to limited human interaction and mandatory distancing

measures. For example, Amazon had already implemented an automated system using Kiva

robotics that carries racks from storage areas to human-operated workstations to perform

order picking before the pandemic (Salles, 2020). Amazon decided to replace most of its

warehouse employees with robots in order to speed up deliveries and cope with increased

demand. Automated warehouse systems enabled companies to collect data throughout

every step of the order-handling process. The collected data carry valuable information

that can be used to determine new strategies to improve efficiency and detect weaknesses in

the system. This highlights the importance of automated warehouse systems for companies

looking to survive in a post-pandemic world.

The key to a successful warehouse management system is having an efficient order

fulfillment process that involves order picking, consolidation, and packing. Order picking
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is retrieving the listed items from their storage areas to the consolidation area in order to

complete customer orders (Petersen and Schmenner, 2007). This process involves retrieving

information on products to collect, assigning products to pick lists, collecting products

from storage areas by human or robot pickers, receiving products in the consolidation

area, and packing each order separately to make them ready for delivery. Order picking

can be performed by humans or robots. As an example, we can look at online shopping to

understand how order picking works in e-commerce companies. After receiving a customer’s

order, items are collected from the warehouse as quickly as possible for packing and delivery.

In traditional warehouse systems, human workers use pick lists, handheld scanners, and

other tools to find the location of items and collect them. In this system, a human picker

starts from a dedicated workstation, collects items from the assigned list, and returns

items to the consolidation area for packing. If the pick cycle is large, this system can

mostly cause poor performance rate and delays (Boysen et al., 2018). Because of these

potential limitations of traditional systems and recent developments in robotic solutions,

warehouses had to consider and adopt automated systems. In contrast to traditional,

automated warehouse systems need robots, scanners, charging ports, sensors, and other

tools to perform efficient order picking. The efficiency and accuracy of order picking have

a significant role in customer satisfaction and, therefore, a company’s overall success.

Order picking is identified as the most expensive and challenging activity in a warehouse.

Frazelle (2002) reported that the cost of order-picking activities represents more than 65%

of the total warehouse operating cost. Inefficient order picking may result in higher costs

from incorrect shipments and delayed deliveries. One of the biggest challenges is that order

picking is expensive, has poor ergonomics, and needs a large number of operators who are

well-trained and available (Azadeh et al., 2019). The Robotic Mobile Fulfilment System

(RMFS) has provided online retailers a chance to improve order-picking efficiency and
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reduce labor expenses by enhancing order fulfillment and inventory control (Azadeh et al.,

2019). In an RMFS, robots move products from racks or shelves to workstations where

employees collect the needed items and place them in containers. The robots are equipped

with sensors and cameras to assist them in navigating the warehouse and avoiding obstacles,

and they can be programmed to collect certain products from predefined locations. With

the help of RMFS technology, order fulfillment is becoming much faster and more effective

since there is no need to spend more time searching the warehouse to find the listed items.

Several surveys have been published in recent years, reviewing the available technolo-

gies, research problems, solution methodologies, research gaps, and trends in automated

warehouse systems. Autonomous mobile robots (AMRs) have gained significant attention,

with Kiva robots being the most commonly used for “goods to person” AMRs. However,

“Autonomous picking carts” have emerged as a new solution, which requires a different

approach to order sequencing since these carts are not equipped with shelves. Rack move-

ment remains a key issue for Kiva robots, but the sequencing of orders is a higher priority

for autonomous picking carts. Figure 1.1 shows available autonomous picking carts in the

industry.

Several policies, such as batch picking, are available to reduce the cost of order picking.

Batch picking is grouping orders or items into batches for simultaneous collection. Items

from the same batch are collected by the same robot, whereas some of the items in an order

may have been placed by different batches and collected by different robots. However, if

required, order integrity can be maintained in batch picking by assigning entire items in

each order to the same batch. If order integrity is not satisfied, orders must be consolidated

after collecting items from the storage area. Another policy is zone clustering, a storage

assignment model combining items based on specific metrics such as frequency. This policy

can help reduce the total traveled time of robots since frequently bought products will be
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close to workstations.

Figure 1.1: Example of autonomous picking cart from Locus Robotics, 6 River Systems,
Fetch Robotics (Xie et al., 2022).

This study focuses on the order batching problem in an automated warehouse manage-

ment system using autonomous picking carts. Order batching involves grouping multiple

customer orders into batches to minimize travel time and maximize the efficiency of order

picking. This problem is complex and challenging, requiring the optimization of various

factors such as the number and size of batches, the sequence of orders within each batch,

and the allocation of orders to autonomous picking carts. Several studies have proposed

different algorithms and methodologies to tackle this problem, but it remains an active

research area.
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Figure 1.2: A small example of order batching and robot routing with four orders, six
SKUs, and three robots.

The aim of this work is to optimize order batching by considering the unique char-

acteristics and constraints of autonomous picking carts, such as limited capacity and the

need for order sequencing. We focus on systems requiring human and robot collaboration,

referred to as Meet-in-Isle, such as Locus Robotics. After assigning items to batches, each

batch will be assigned to a robot that goes through the directional aisles of the warehouse

to collect the items. When the robot arrives at the location of an item, the human picker

responsible for the aisle will take the item from the rack, scan it, and place it in the robot’s

tray. Then, the robot will move on to the next item in the pick list. When all items are

collected, the robot will return to the consolidation area to drop off items for packaging.

After completing picking, robots will wait temporarily in the workstation area until they

receive a new assignment.
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Figure 1.2 demonstrates a small example of an order batching and routing system with

four orders, six SKUs, and three robots. The goal is to assign items to a batch and each

batch to a robot. The routing for each batch will be determined based on the assigned

items and the robot’s location. For example, items 1,5,4,6 from orders 1 and 3 are assigned

to robot 1.

The objective of this work is to find the best order allocation to minimize the total

distance traveled and congestion by autonomous picking carts while satisfying the capacity

and sequencing constraints. To achieve this, we propose five different mathematical models

and find that the generalized quadratic assignment model performs the best. Since the

generalized quadratic assignment model is an NP-hard problem, we proposed an iterative

Simulated Annealing (SA) algorithm to solve it, and we used Lagrangian Relaxation to

find lower bounds.

An open-source dataset has been used to evaluate the proposed models and approach.

Based on the comparison of total travel distance among all models, it can be seen that SA

outperformed all models. SA can find a solution very close to the lower Lagrangian bound,

and it is much faster than all other models while solving large instances. The contributions

of this work are threefold. First, we model the order batching problem in an automated

warehouse with the objective of minimizing travel distance and congestion. Second, we

propose an iterative SA algorithm that generates an initial solution by using the K-means

clustering algorithm. Third, we carry out testing and numerical analysis on an open-source

dataset to demonstrate the efficiency of the proposed approach.

This thesis is organized as follows. Chapter 2 presents an overview of the literature

related to the problem. In Chapter 3, we describe the Order Batching Problem (OBP),

provide mathematical formulations, and propose the SA algorithm and Lagrangian relax-

ation. We evaluate the performance of the proposed models using open source data in
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Chapter 4. Finally, we present some concluding remarks and future research directions in

Chapter 5.
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Chapter 2

Literature Review

The increasing need for automation technology has prompted extensive research into di-

verse applications of warehouse automation for material handling systems. Zheng Zhang

(2023), for example, conducts a comprehensive analysis of automation products in the field

of warehousing, specifically targeting e-commerce companies. The primary emphasis of the

study centers around operational-level concerns, encompassing topics such as order allo-

cation, task scheduling, rack allocation, and robot path planning. The literature review

aims to unfold the challenges associated with robotic mobile fulfillment systems and the

proposed potential solutions. Storage location assignment will be addressed initially, fol-

lowed by the latest developments in warehouse fulfillment systems for autonomous mobile

robots, and finally, the order batching problem.
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2.1 Storage Location Assignment

The implementation of Robotic Process Automation (RPA) has been found to enhance

customer satisfaction due to its heightened reliability, efficiency, adherence to regulatory

requirements, and reduced susceptibility to human errors. The optimization of warehouse

layout plays a vital role in minimizing order fulfillment durations and enhancing overall

warehouse efficiency. A storage assignment strategy refers to the method by which items

are distributed among storage locations and the subsequent impact on the retrieval time

of the storage system (Roodbergen and Vis, 2009). There exist multiple techniques for the

allocation of products within rack storage facilities. Hausman et al. (1976) identifies five

distinct storage assignment techniques. The methods encompassed in this study include

dedicated storage assignments, random storage assignments, closest open location storage

assignments, full-turnover-based storage assignments, and class-based storage assignments

(Zone clustering).

The storage assignment method, or dedicated storage, assigns each product to a pre-

determined and unchanging location. This particular approach necessitates a significant

amount of physical area. The random storage assignment method is capable of assigning

products to any vacant location with equal probabilities. In the context of assigning storage

locations, the product will be allocated to the nearest available location in terms of proxim-

ity. This approach ensures that all products will be strategically positioned at the forefront

of the warehouse, in close proximity to the input/output points. Consequently, the rear

section of the warehouse will be left vacant. The storage assignment method known as full-

turnover-based determines the location of a product by considering its demand frequencies.

Items that occur most frequently will be located in close proximity to the input/output

(I/O) points. The storage assignment method based on class is commonly referred to as
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zone clustering. The survey paper by Roodbergen and Vis (2009) provides a comprehensive

overview of storage assignment methods and can serve as a valuable resource for obtaining

in-depth explanations on the topic.

Zone clustering is a storage assignment model that falls within the realm of storage

management techniques. Implementing zone-based assignments rather than random as-

signments can potentially minimize the overall travel time of robots effectively. Imple-

menting a synchronized zone order picking system can potentially enhance warehouse effi-

ciency (Roy et al., 2019). The primary objective of zone clustering is to minimize overall

travel expenses. Several researchers have directed their attention toward the issue of zone

clustering, employing various solution approaches.

Kim et al. (2020) investigated the problem of item assignment in the RMFS with the

objective of maximizing the sum of the similarity values of the items in each rack. Nev-

ertheless, the current methodology has yet to be extended to include the integration of

zone clustering into the RMFS. The study conducted by Li et al. (2020a) centers around

the assessment methodology for the storage location assignment policy, specifically em-

phasizing energy consumption awareness. The current study employs a novel storage as-

signment method whereby mobile racks with varying turnover rates are dispatched to the

autonomous storage area. Within a warehouse setting that contains a range of scales, the

suggested methodology has the potential to optimize both order-picking efficiency and the

utilization of Automated Guided Vehicle (AGV) energy to varying extents. The results

indicate that the implementation of the new strategy leads to a significant improvement

in order-picking efficiency and a reduction in energy consumption by AGVs. Roy et al.

(2019) conducted a study on the zone assignment algorithms used in the zone clustering

problem within the single-deep scenario. Furthermore, a two-stage stochastic model was

developed and utilized to investigate the allocation strategies of robots across multiple

10



storage zones, employing multi-class closed queueing network models. Lamballais et al.

(2016) achieved optimization of various parameters in the RMFS by introducing a novel

semi-open queueing network. These parameters include the maximum number of mobile

racks per SKU, the ratio of pick stations to replenishment stations, and the replenishment

level per rack.

The work of Keung et al. (2020), Keung et al. (2019), and Lee et al. (2019) devel-

oped a cloud-based framework for Cyber-Physical Systems (CPS) that addresses collision

avoidance, conflict resolution, and charge scheduling. However, it is important to note

that this framework has not yet gained recognition as a RPA. In order to mitigate human

errors, it is possible to employ a software robot that is capable of executing a multitude of

tasks. In order to mitigate the overall operating expenses within RMFS, it is imperative

to consider implementing a data-driven approach, specifically for addressing the storage

location assignment problem and the order classification problem. The utilization of the

data mining approach facilitates the process of pattern discovery and enables the simplifi-

cation of prediction procedures. Keung et al. (2021) conducted a comparative analysis of

nine distinct clustering algorithms, encompassing both semi-supervised and unsupervised

approaches. These algorithms, such as K-means, Gaussian Mixture Models, and Bayesian

Gaussian Mixture Models, were evaluated in terms of their performance in zone clustering

within the RMFS context. The results indicated that such algorithms achieved an average

accuracy rate of 95%.

Lamballais et al. (2016) investigate the impact of workstation placement in close prox-

imity to the storage area on the overall order throughput capacity. Yuan and Gong (2017)

propose the utilization of an open queueing network to effectively determine the opti-

mal quantity of robots and their corresponding average speed required to attain a desired

throughput time. Zou et al. (2017) employ a neighborhood search approach to identify an
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assignment rule that closely approximates the ideal. They propose a workstation assign-

ment rule that considers the workstations’ handling speeds. Furthermore, the findings of

this study indicate that the handling-speeds-based assignment rule outperforms the ran-

dom assignment approach in situations where there is a substantial discrepancy in handling

time among workers. Wu et al. (2020) develope a queue network model in order to assess

the performance of RMFS. The proposal suggests relocating the picking stations within

the storage area, resulting in the design of seven layout scenarios based on the arrangement

of the stations and the storage area. The findings demonstrate a substantial performance

enhancement as a result of vertical zoning. Numerous studies have demonstrated that the

allocation of storage is a critical factor in enhancing order-picking efficiency within RMFS.

2.2 Autonomous Mobile Robot Fulfillment Systems

The mobile fulfillment system (MFS), which utilizes mobile-rack technology, was originally

developed by Kiva Systems, a subsidiary of Amazon Robotics (Boysen et al., 2018). Ama-

zon has developed a logistical model called ”Shelf to The People” using the ”Kiva System,”

which has significantly influenced the evolution of the picking process. Amazon’s acquisi-

tion of the Kiva system took place in 2012, followed by its implementation in August 2015.

The Kiva Robots are widely recognized for their ability to improve workflow efficiency,

despite requiring human labor for operation. The Kiva Robots exclusively complement hu-

man labor and do not autonomously replace human positions. Hence, using Kiva Robots

can effectively reduce the time pickers would have otherwise expended on walking. In order

to fulfill their responsibilities, it is necessary for Amazon employees to be physically present

at a designated location. The order-picking process involves the utilization of robots to

transport mobile racks of shelves alongside static pickers who are responsible for selecting
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the items required to fulfill customers’ orders. The research conducted on mobile fulfill-

ment systems for goods-to-person operations was primarily based on the Kiva system. In

essence, implementing an automated mobile robot solution for transporting goods to indi-

viduals poses several captivating decision-making challenges, thereby providing inspiration

for numerous research endeavors.

Automated Mobile Robots (AMRs) are utilized to transport storage shelves to des-

ignated pick stations, where operators engage in the process of selecting products within

mobile shelf-based order-picking systems. AMRs align themselves in a sequential formation

and patiently queue at designated picking stations upon their arrival. The primary element

of AMR solutions for goods-to-person operations is the queueing behavior, as stated by

Enright and Wurman (2011). One potential approach to enhancing productivity and in-

creasing the rate of picking operations is to effectively manage the queue of activities at the

stations, thereby ensuring the continuous engagement of the pickers Wurman et al. (2007).

Conversely, the queues significantly impact various aspects of the robotic solution, such

as the order cycle time, AMR productivity, and the required number of robots. Queuing

theory models are widely regarded as the fundamental basis for the majority of studies

conducted on goods-to-person AMR systems, owing to the influence of these factors.

The distribution of items within each Stock Keeping Unit (SKU) spreads throughout

the racks. Consequently, selecting optimal racks and determining their arrival sequence

are interdependent decisions that significantly impact the order sequencing decision. A

close and mutually limiting relationship characterizes the interconnection between orders,

racks, and workstations (Yang et al., 2021). The order sequence for a single workstation

and the interdependent rack sequence in the Kiva system was determined by Boysen et al.

(2017). The researchers provided decomposing techniques utilizing simulated annealing

to tackle the two subproblems in isolation effectively. Nevertheless, the prolonged delay
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was disregarded in order to ensure the uninterrupted fulfillment of customer orders by the

current rack system. The put-to-light system successfully addressed the aforementioned

issue, as demonstrated by Füßler and Boysen (2017). This study involves the categorization

of products based on their SKUs into a diverse bin, necessitating the coordination of

workbench deliveries and ongoing order batches. Valle and Beasley (2021a) introduces two

heuristic modes that incorporate partial integer optimization. This study represents the

inaugural contribution in the existing body of literature by introducing an optimization

approach that addresses the concurrent allocation of orders and racks among multiple

pickers.

The scalability and non-modification requirements of collaborative AMR solutions have

received more attention in comparison to shelf-based goods-to-person solutions in recent

times Meller et al. (2018). Collaborative Meet-In-Aisle (MIA) solutions have garnered sig-

nificant attention in the realm of e-commerce fulfillment facilities as an alternative option.

Mobile autonomous mobile robots (MIA AMRs) possess the capability to navigate within

the designated picking area and retrieve orders. The AMR is provided with a set of ob-

jects to retrieve in the given scenario and proceeds toward the initial destination. Upon

the arrival of the AMR at the designated pick location, it promptly provides the picker

with explicit instructions to select the necessary products carefully and subsequently place

them within the specifically assigned container located on the AMR. Once the task is com-

pleted, the AMR proceeds to the subsequent picking location in order to fulfill its assigned

tasks. These robotic devices enhance the efficiency of order-picking operations through

the utilization of intelligent processors integrated into their onboard systems. In essence,

the robots possess the capability to accurately determine positions, strategically organize

selections, and provide assistance to pickers during the decision-making process, all facili-

tated by the integrated on-screen technology. According to Ghelichi and Kilaru (2021), it
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has been observed that MIA AMRs frequently possess containers, thereby eliminating the

need for workers to push carts manually. The ability to direct pickers and transfer goods

substantially reduced the training expenses associated with workers in fulfillment centers.

In conclusion, the utilization of MIA AMR systems presents a substantial potential for

augmenting order-picking operations within e-commerce fulfillment centers across various

aspects Ghelichi and Kilaru (2021). One of the primary shortcomings of MIA AMR so-

lutions pertains to their inherent constraint in facilitating the transportation of sizable

objects.

The literature on collaborative solutions is narrow. There are only a few papers on this

topic since most researchers worked on shelf-based goods-to-person systems. Ghelichi and

Kilaru (2021) developed analytical models for Last-Mile Delivery (LMD) and MIA mobile

solutions.

2.3 Order Batching

Order picking is a crucial process in warehouse management, contributing significantly to

overall cost and time. Minimizing pickers’ travel distances is one of the biggest order-

picking issues because it directly affects the operation’s productivity and efficiency. The

joint order batching and picker routing problem (JOBPRP) aims to assign orders to picker

routes and batches simultaneously. The JOBPRP has received a lot of scientific interest

recently, which has resulted in the development of numerous approaches and algorithms.

In manual picker-to-parts warehouses, Kübler et al. (2020) proposed a new iterative

strategy for resolving the joint dynamic storage location assignment, order batching, and

picker routing problems. The method employs a two-stage heuristic approach, with the

first stage taking dynamic storage location assignment and order batching into account
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and the second stage taking picker routing into account. In the DSLA-OB-PR problem,

picking routes for pickers to get the goods for each batch of orders, batching of orders,

and assigning storage locations to items are all factors. The challenge is satisfying the

order limitations while minimizing the pickers’ distance traveled. To deal with the DSLA-

OB-PR problem, the proposed method takes a two-step approach. In the first step, an

initial solution is generated using a heuristic algorithm that successively assigns goods to

storage locations, batches the orders, and assigns pickers to the batches. In the second

step, an iterative method is used to refine the initial solution by iteratively updating the

storage assignments, order batches, and picker routing assignments to lower the overall

journey distance. The experimental results reveal that the suggested approach surpasses

existing methods in terms of solution quality and computing efficiency. The suggested

technique also displays robustness in dealing with dynamic conditions such as changes in

order profiles and picker availability.

Arbex Valle and Beasley (2020) present an order batching estimate approach that con-

siders picker distance. The approach groups orders based on their location and size using

a clustering algorithm and then employs a heuristic to identify the ideal sequence of orders

within each cluster. The authors compare the suggested method to previous ways and

analyze it on a set of test situations, proving that it can drastically cut trip distance. The

suggested technique initially estimates the distance between each pair of storage locations

using the Euclidean distance formula. The distance matrix is then used to calculate the

distance traveled by pickers for various batch sizes. The calculation presented in this study

enables the determination of the optimal batch size, which aims to minimize the overall dis-

tance covered by the pickers. The method under consideration incorporated a substantial

set of constraints, which were introduced into the formulation with the aim of enhancing

the efficacy of linear programming relaxation. The study conducts a comparative analysis

16



between the proposed method and two alternative methods: the nearest neighbor heuristic

and the largest gap heuristic. The comparison is made in relation to both solution quality

and computational efficiency. The experimental findings demonstrate that the proposed

method exhibits superior performance compared to alternative methods, specifically con-

cerning the aggregate distance covered by pickers when considering a predetermined set of

orders.

A novel approach was proposed by Aerts et al. (2021) to address the JOBPRP in manual

picker-to-parts warehouses. The JOBPRP entails the identification of the most efficient

order batches and picker routes, with the aim of minimizing the overall distance covered by

pickers while still adhering to the constraints imposed by the orders. This study employs a

clustered vehicle routing problem (CVRP) framework to model the JOBPRP. Each cluster

corresponds to a batch of orders in this framework, and the pickup and delivery tasks

are represented as a vehicle routing problem. The present study introduces a heuristic

algorithm that employs a two-phase approach for addressing the CVRP. During the initial

phase, a solution is derived using a two-step approach: clustering the orders first and then

constructing routes for each cluster. During the second phase, a local search algorithm is

utilized to enhance the initial solution by iteratively exchanging orders among the clusters

and re-optimizing the routes. This study conducts a comparative analysis between the

proposed algorithm and established methods, namely the nearest neighbor heuristic and

the largest gap heuristic, with regard to both solution quality and computational efficiency.

The experimental findings demonstrate that the algorithm proposed in this study surpasses

alternative methods in both solution quality and computational efficiency. Furthermore,

the present study conducts a sensitivity analysis of the suggested algorithm, examining its

response to various factors, including the number of orders, the number of pickers, and

the dimensions of the warehouse. The analysis demonstrates that the algorithm proposed
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exhibits robustness and scalability, enabling it to effectively manage dynamic scenarios,

including fluctuations in order profiles and picker availability.

Cergibozan and Tasan (2022) propose a methodology that utilizes a genetic algorithm to

address the order batching problem. The method proposed in this study employs a hybrid

encoding scheme that integrates both binary and permutation representations of orders.

Additionally, a novel mutation operator is introduced, which takes into account the pick

path of orders. The authors implement the proposed method in a case study conducted at a

distribution center, wherein they demonstrate its ability to yield substantial enhancements

in the overall travel distance.

Xie et al. (2022) present a mathematical model that addresses the integrated order

batching and routing problem within the context of multi-depot AGV-assisted mixed-

shelves warehouses. The authors posit that current models addressing the joint order

batching and picker routing problem lack consideration for the integration of automated

guided vehicles (AGVs), a technology that holds the potential for substantially enhancing

the efficiency of order-picking operations within warehouse environments. The proposed

model integrates the utilization of AGVs by taking into account factors such as AGV

availability, capacity, and routing. The model also incorporates a mixed-shelves feature,

which facilitates the storage of various products within a single location. This effectively

minimizes the number of locations that pickers are required to visit. The authors sub-

stantiate the proposed model’s validity through a case study involving a mixed-shelves

warehouse with multiple depots where AGVs are utilized. Furthermore, they conduct a

comparative analysis of its performance against existing models that do not incorporate

AGVs. The findings indicate that the model exhibits a notable superiority over current

models in relation to order-picking efficiency and warehouse utilization. This paper makes

a significant scholarly contribution to the existing body of literature on the joint order
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batching and picker routing problem. It specifically focuses on the integration of AGVs

into the order-picking processes within warehouse operations. This statement underscores

the potential advantages associated with the utilization of AGVs in enhancing the efficacy

of order-picking operations and mitigating expenses within warehouse environments.

Matusiak et al. (2014) introduced a methodology comprising of two distinct sub-algorithms.

The routing process utilizes an optimal A* algorithm, while the batching process employs

a simulated annealing algorithm. The latter algorithm estimates the potential savings

achieved by combining more than two customer orders into a single batch, thereby avoid-

ing unnecessary routing. The primary objective of the PCES algorithm is to reduce the

computational complexity associated with batch evaluations in the context of warehouse

optimization. The results indicate that the proposed batching heuristics exhibit competi-

tive performance in terms of solution time and quality compared to other state-of-the-art

methods. The utilization of the REMIX heuristic, which integrates stochastic elements, en-

ables PCES to exhibit adaptability and attain favorable outcomes. The algorithm demon-

strates superior performance in handling wave sizes of medium to large magnitudes and

exhibits improved solution outcomes compared to the C&W(ii) algorithm when processing

batches consisting of three customer orders. However, it has been observed that for wave

sizes that are relatively small, other heuristics exhibit superior performance compared to

PCES. This can be attributed to the inconsistent behavior of PCES within this particu-

lar range. The performance of PCES is relatively satisfactory in comparison to optimal

batching and routing methods for small wave sizes, as it manages to achieve travel dis-

tance reductions while requiring less computational time. Furthermore, it facilitates the

assessment of various batch sizes within any given warehouse that adheres to precedence-

constrained routing.

In summary, the literature review provides an overview of the recent developments in
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the field of order batching and picker routing within warehousing. This encompasses a

range of techniques such as heuristics, metaheuristics, and exact methods. The papers

under review provide evidence of the efficacy of clustering, genetic algorithms, and dy-

namic programming in addressing the challenges posed by the JOBPRP, thereby enhanc-

ing order-picking efficiency and productivity. Moreover, the literature review highlights

the significance of taking into account dynamic variables, such as fluctuating order profiles

and the availability of pickers, when optimizing the processes of order batching and picker

routing.

It is important to acknowledge that the reviewed papers exhibit certain limitations

and offer opportunities for future research. For example, the majority of the proposed

methodologies are assessed using test instances of limited scale, which may limit their ap-

plicability to real-world warehouses characterized by a substantial volume of orders and

pickers. Additionally, certain methods that have been suggested may exhibit high com-

putational demands, rendering them unsuitable for the purposes of online or real-time

optimization of order picking. Hence, future investigations may prioritize the development

of more scalable and efficient methodologies capable of managing dynamic and extensive

order-picking operations.

In general, the papers under review offer significant insights into the issue of order

batching and picker routing in warehousing, presenting practical solutions that have the

potential to improve order-picking efficiency and productivity. The implementation of

these solutions has the potential to yield significant advantages for warehouse managers

and operators. These benefits include reducing operational costs, enhancing customer

satisfaction, and attaining a competitive edge within the market.
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Chapter 3

Problem Definition and Solution

Methodology

In this study, we consider Meet-In-Aisle autonomous order-picking solutions under a class-

based storage policy, meaning that our warehouse will be divided into classes based on

frequency. The goal is to minimize the total distance traveled by minimizing the total

pairwise distance of all items assigned to the same batch and, implicitly, the route conges-

tion measured by intersections between robot travel paths.

The system that is used in this study has some assumptions. We consider a class-based

storage policy, which means that products occupy specific zones in the warehouse based

on certain criteria, such as usage frequency. Operators are assigned to zones and can only

travel within their own zones. A zone has multiple aisles. An operator can be responsible

for one or multiple aisles. In order to navigate efficiently, robots are required to travel the

aisles within designated zones. Upon entering an aisle, a robot must go through the entire

length of the aisle. The operators will travel from robot to robot in their designated aisles.
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Robots’ velocity is constant. Acceleration and deceleration are assumed to be negligible.

The robots will collect a series of items from the assigned order batch. There is only one

order consolidation and workstation in the warehouse where robots bring back collected

items to pack orders. Orders are assigned to batches to create a pick list for the robots.

The congestion is taken into account based on the intersection of robot collection routes.

A sample layout of a warehouse that is used in this study is given in Figure 3.1 in which

there are 20 aisles between the first rack and the last rack on one side of the warehouse

and 20 aisles on another side. The distance of aisles is 3 meters, which can allow robots to

travel without collusion. The front side is dedicated to order consolidation and the robots’

waiting area.

The order allocation problem we consider focuses on assigning items to batches and

batches to robots. Since we know the location of each item in the warehouse, we use their

location to calculate our parameters. Details are provided in the next section.

3.1 Mathematical Models

Given a set of customer orders with a list of items to be picked and their corresponding

storage locations, the goal of the robotic order batching problem is to group the orders into

batches in a way that minimizes the total distance traveled by robots and congestion of

robots when retrieving items from storage locations. Congestion is an important factor to

consider in designing and operating automated warehouses, as it can significantly impact

system performance and efficiency. Congestion in automated warehouses can occur when a

high volume of products is transported, processed, or stored, leading to bottlenecks, delays,

and reduced throughput. This can result in longer order processing times, increased waiting

times, and reduced overall productivity of the warehouse. Several studies have highlighted
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the importance of congestion management in automated warehouses. For example, in a

study by Hsu et al. (2005), the authors demonstrated that congestion in the picking area

of a warehouse could result in reduced throughput and increased order processing times.

The robotic order batching problem takes into account various constraints such as

storage capacity, item availability, order deadlines, and order size. Formally, let O =

{1, 2, ..., n} be the set customer orders, where each order consists of a list of m items

to be picked and their corresponding storage locations, represented as (item1, location1),

(item2, location2), ..., (itemm, locationm). The warehouse has a set of robots that can

collect items from storage locations and deliver them to a designated station for packing

and shipping. Let I = {1, ..., nI} be the set of items that need to be collected to complete

orders. Indices i, j ∈ I will be used for items.

The goal is to partition the items into b batches B = {1, ..., nB}, where each batch

consists of a set of items that can be picked together in a single trip, such that the total

distance traveled by the robots or operators and the congestion are minimized. We use

indices b ∈ B for batches. The total traveled distance is the sum of the rectilinear distances

of items in each batch in the order of close to furthest. The distance between two items

is defined as dij, and it is calculated as the minimum rectilinear distance of two items

based on the location of aisles and racks. Let K = {1, ..., nK} be the set of aisles in the

warehouse, indexed by k. While forming the batches, each robot’s number of visited aisles

is essential to reduce the travel distance since robots move in one direction through aisles.

The problem takes into account various constraints, such as the storage capacity of the

robots or operators, the size of the orders, and the number of visited aisles by robots. The

solution should ensure that all the orders are fulfilled and the capacity of the robots or

operators is not exceeded.
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There are some parameters that are required to model the problem. Since the storage

location of each item is known, the binary parameter aki is defined to represent the items’

aisle locations, i.e., aki is 1 if item i ∈ I is on aisle k ∈ K, 0 otherwise. Each robot has a

container that can host a certain number of items, so Q represents the maximum capacity

of a container or robot. Orders contain different items with various amounts captured by

parameter mi, which is the total number of items in the given order. Finally, there is

a limited number of available robots in the warehouse, so the number of batches cannot

exceed nr.

In order to model the robotic order batching problem, we define three sets of binary

decision variables. We define the binary variables xib that take value 1 if item i ∈ I is in

batch b ∈ B, zkb that take value 1 if batch b ∈ B contains items in aisle k ∈ K, yb which

take value 1 if batch b is formed.

Next, we provide different models for the robotic order batching problem with conges-

tion. The first formulation is:
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[OBP1] : min
∑
k∈K

∑
b∈B

zkb (3.1)

s.t.
∑
b∈B

xib = 1 ∀i ∈ I (3.2)

∑
i∈I

aki xib ≤ zkb ∀b ∈ B, ∀k ∈ K (3.3)

∑
i∈I

mixib ≤ Qyb ∀b ∈ B (3.4)

∑
b∈B

yb ≤ nr (3.5)

xib, zkb, yb ∈ {0, 1} ∀b ∈ B, ∀k ∈ K, ∀i ∈ I (3.6)

The objective function 3.1 minimizes the total number of aisles visited by robots. Con-

straints 3.2 make sure each item is assigned to exactly one batch. Constraints 3.3 are

linking constraints for decision variables that ensure that if an item is assigned to a batch,

that batch will be assigned to the aisle of the item. Constraints 3.4 make sure that batch

capacity is not exceeded. Constraint 3.5 states that the total number of batches cannot

exceed the number of robots.

Instead of minimizing the total number of visited aisles, we can minimize the maximum
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number of aisles visited by any batch, leading to:

[OBP2] : min z (3.7)

s.t. z ≥
∑
k∈K

zkb ∀b ∈ B (3.8)

(3.2), (3.3), (3.4), (3.5), (3.6).

[OBP1] and [OBP2] only consider the number of visited aisles. Since we do not include

the maximum distance between assigned two items, a robot may travel from the first aisle

to the last one. To solve this problem, we add maximum distance constraints to our model.

Let w be the maximum distance between two assigned items for a batch. Since z and w

are not on the same scale, we multiply z with a weight factor L+W
K

where L is the length

of the warehouse, W is the width of the warehouse, and K is the total number of aisles.

The resulting model is:

[OBP3] : min
L+W

K
z + w

s.t. z ≥
∑
k∈K

zkb ∀b ∈ B (3.8)

(3.2), (3.3), (3.4), (3.5), (3.6)

w ≥ dijxibxjb ∀i ∈ I,∀j ∈ I,∀b ∈ B (3.9)

w ≥ 0.

Another alternative is to focus only on the maximum distance between assigned items

because this may have a higher impact on reducing the travel distance. This is achieved

by removing the zkb variables and constraints 3.3. Leading to:
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[OBP4] : min w

s.t.
∑
b∈B

xib = 1 ∀i ∈ I (3.2)

∑
i∈I

mixib ≤ Qyb ∀b ∈ B (3.4)

∑
b∈B

yb ≤ nr (3.5)

w ≥ dijxibxjb ∀i ∈ I,∀j ∈ I,∀b ∈ B (3.9)

w ≥ 0

xib, zkb, yb ∈ {0, 1} ∀b ∈ B, ∀k ∈ K, ∀i ∈ I.

A closely related model to [OBP4], is the generalized quadratic assignment model:

[OBP5] : min
∑
i∈I

∑
j∈I

dij
∑
b∈B

(xibxjb)

st.
∑
b∈B

xib = 1 ∀i ∈ I (3.2)

∑
i∈I

mixib ≤ Qyb ∀b ∈ B (3.4)

∑
b∈B

yb ≤ nr (3.5)

xib, yb ∈ {0, 1} ∀b ∈ B, ∀i ∈ I (3.6)

The Generalised Quadratic Assignment Problem models a wide range of problems that seek

to minimize the overall cost of pairwise interactions among entities, such as equipment or
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tasks, and where the placement of these entities into potential destinations is restricted

by the capacity of available resources. Being NP-hard, the generalized quadratic assign-

ment problem is difficult to solve directly. Hence, we propose Lagrangian relaxation and

metaheuristics to solve [OBP4] and [OBP5].

Each model is evaluated using a real-world dataset to determine its performance. Dur-

ing initial testing, it was observed that [OBP1] and [OBP2] do not adequately reduce travel

distance, with routing assignments often covering long distances. In order to minimize the

travel distance required for each robot to collect all assigned items, it is expected to have

assigned items situated in close proximity to one another. Hence, it is expected that visible

clusters of items are observed. The problem at hand is effectively addressed by [OBP3]

algorithm, whose solution enables the formation of clusters.

The following figures, Figure 3.2 to 3.6, display solutions from each model where rect-

angles represent items and their location in the warehouse. To better identify the clusters,

circles are used to denote the hypothetical center of the cluster, with spokes linking to

the location of the items. A small example involving 5 orders and 5 batches is used. A

good solution should contain distinctive clusters, thus reducing congestion by eliminating

intersections between robot travel paths.
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Figure 3.2: Assigned items’ distance from the center of batches for [OBP1]

Figure 3.2 displays the solution for [OBP1]. As observed, robots are required to travel

from the front to the back to gather items as [OBP1] does not minimize the distance

traveled by each individual robot. Instead, it focuses on minimizing the number of visited

aisles. Consequently, the solution results in paths of robots crossing each other, leading to

potential congestion.
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Figure 3.3: Assigned items’ distance from the center of batches for [OBP2]

Figure 3.3 displays the solution for [OBP2] and reveals that the issue observed in [OBP1]

persists,i.e., congestion due to the intersection of multiple paths.
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Figure 3.4: Assigned items’ distance from the center of batches for [OBP3]

Figure 3.4 displays the solution for [OBP3]. As observed, [OBP3] exhibits superior

cluster formation capabilities compared to [OBP1] and [OBP2]. This can be attributed

to the fact that [OBP3] takes into account the distances between assigned items. [OBP3],

however, is computationally demanding. Only small instances can be solved to optimality.
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Figure 3.5: Assigned items’ distance from the center of batches for [OBP4]

Figure 3.5 displays the solution for [OBP4] where it is evident that [OBP4] effectively

minimizes the distance between assigned items. Moreover, it should be noted that [OBP4]

exhibits a lower number of decision variables compared to [OBP3] enhancement in terms

of more optimal pathways.
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Figure 3.6: Assigned items’ distance from the center of batches for [OBP5]

Figure 3.6 displays the solution for [OBP5] where it is illustrated that it exhibits su-

perior performance compared to [OBP4], specifically in terms of item clustering. Similar

to [OBP4], [OBP5] is computationally intractable for large instances. It is, however, more

prone to decomposition, such as Lagrangian relaxation.

Table 3.1 presents a comparison of the computational time and objective value for the

five models with varying instance sizes. It displays the number of orders (Order), the

count of unique Stock Keeping Units (SKUs) (Item), the total quantity of collected SKUs
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(Quantity), the number of batches (Batch), and the capacity of each robot. A time limit of

900 seconds is imposed, and the objective of the best feasible solution obtained is provided.

As [OBP5] is the most time-consuming, we proposed to decompose it using Lagrangian

relaxation.

3.2 Lagrangian Relaxation for OBP5

We relax constraints 3.2 and 3.5 with Lagrange multiplier λi, and µ ≥ 0, respectively. The

resulting subproblem is:

min
∑
i∈I

∑
j∈I

dij
∑
b∈B

(xibxjb)−
∑
i∈I

∑
b∈B

λixib +
∑
i∈I

λi + µ
∑
b∈B

yb − nrµ

s.t. (3.4), (3.6).

It decomposes into nb subproblems, one for each batch:

min
∑
i∈I

∑
j∈I

dij(xixj)−
∑
i∈I

λixi + µy

s.t.
∑
i∈I

mixi ≤ Qy.
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Which is a quadratic knapsack problem that can be linearized using the new decision

variable vij = xixj.

min
∑
i∈I

∑
j∈I

dij(vij)−
∑
i∈I

λixi + µy

s.t.
∑
i∈I

mixi ≤ Qy

vij ≤ xi ∀i ∈ I,∀j ∈ I

vij ≤ xj ∀i ∈ I,∀j ∈ I

vij ≥ xi + xj − 1 ∀i ∈ I,∀j ∈ I

xi, vij ∈ {0, 1} ∀i, j ∈ I.

Possible solutions for subproblems can be either y = 0 with xi=0 or y = 1 with its

corresponding xi being to the solution to

[SP ] : min
∑
i∈I

∑
j∈I

dij(vij)−
∑
i∈I

λixi

s.t.∑
i∈I

mixi ≤ Q

vij ≤ xi ∀i ∈ I,∀j ∈ I

vij ≤ xj ∀i ∈ I,∀j ∈ I

vij ≥ xi + xj − 1 ∀i ∈ I,∀j ∈ I

xi, vij ∈ {0, 1} ∀i, j ∈ I
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The Lagrangian dual problem is:

max
λ,µ≥0

LR(λ, µ) = max
λ,µ≥0

(
∑
i∈I

λi − nrµ+ nbzSP ) (3.10)

The Lagrangian master problem is:

max nbθ +
∑
i∈I

λi − nrµ

s.t. θ +
∑
i∈I

λix
h
i − µ ≤

∑
i∈I

∑
j∈I

dijv
h
ij h = 1, ....H

λ urs, µ ≥ 0, θ ≤ 0.

Where H is the index set from the solution to [SP], and θ ≤ 0 is a result of the solution

y = 0, x = 0.

3.3 Simulated Annealing

Since solving [OBP5] is time-consuming, we opt for a Simulated Annealing (SA) algorithm

to be able to solve realistic instances. The SA algorithm starts with an initial solution

that implements a strategy specifically designed to address the problem domain. The ini-

tial solution’s fitness is evaluated by assessing its performance in relation to the objective

function. The algorithm subsequently progresses through a sequence of iterations, wherein

it generates a solution that is adjacent to the current one and assesses its level of suit-

ability. The algorithm, in accordance with the acceptance criterion, determines whether

to accept or reject the neighboring solution and subsequently updates the current solution

accordingly.
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3.3.1 Initial Solution and Neighbourhood Generation

One possible method for generating the initial solution is random allocation of items to

batches. Despite its simplicity, this method may yield suboptimal solutions. The potential

consequence of this situation is a decline in the effectiveness of the SA algorithm. Hence,

we propose an initial solution based on k-means clustering with capacity allocation. The

steps are:

1. Cluster all items using k-means, and the number of clusters equals the batch number.

2. Repeat the following steps until all items are assigned:

• Select an item from one of the clusters

• Check if the batch has capacity. If so, then assign the item to the selected batch.

If not, move to the next batch.

• Add the selected item to the solution with the chosen assignment.

Items are clustered according to their location within the warehouse. Nevertheless, the

current clustering solution fails to take into account batch capacity. Therefore, we must

assess the capacity of each cluster, and if it surpasses the limit, we proceed to transfer items

to the subsequent batch that is in close proximity to the preceding cluster. The algorithm

has a tendency to generate initial solutions that are reasonably good. The initial solutions

are represented as a two-dimensional array with dimensions nI by nB.

The objective function from [OBP5] is used as the fitness function for SA. A neigh-

bor solution is generated for each iteration in the search algorithm, and its fitness value

is evaluated. A neighbor solution is generated by randomly selecting an item from the

two dimensional array. The swap operation is executed on the chosen item. In order
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to identify the most effective swap, an evaluation is conducted on the capacity of each

batch, and a decision is made regarding the batch swap within a loop iteration. In the

event that the solution proposed by the neighbor surpasses the current solution in terms

of quality, the search process will transition to the newly generated solution, resulting in

an update to the best solution. When a suboptimal solution is generated, the search algo-

rithm proceeds to evaluate the neighbor solution using an acceptance probability calculated

as exp
(

current fitness−neighbor fitness
temperature

)
. Subsequently, the temperature is modified through the

process of multiplication with the cooling factor, thereby initiating a fresh iteration. The

search process persists until the temperature reaches a value below the predetermined

threshold, commonly referred to as the final temperature.

An iterative simulated annealing algorithm which is described in Algorithm 2. Initially,

a set of 100 initial solutions is generated using the GenerateInitialSolutionWithKMeans()

function. Subsequently, the best-performing solution is identified by evaluating its fitness

using the EvaluateFitness() function. Next, the simulated annealing algorithm is initiated,

and the resulting solution is obtained. Once a better solution is obtained using the SA

algorithm, we proceed to reapply SA using the previously obtained solution. The loop is

executed 10 times.
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Algorithm 1 Simulated Annealing Algorithm (SA)

1: Initialization:
2: Initialize: current solution ← GenerateInitialSolutionWithKMeans()
3: current fitness ← EvaluateFitness(current solution)
4: best solution ← current solution
5: best fitness ← current fitness
6: temperature ← initial temperature
7: cooling factor ← cooling factor
8: for iteration ← 1 to num iterations do
9: Generate a neighboring solution:
10: neighbor ← GenerateNeighbor(current solution)
11: neighbor fitness ← EvaluateFitness(neighbor)
12: Cool down the temperature:
13: temperature ← temperature × cooling factor
14: Calculate acceptance probability:

15: acceptance probability ← exp
(

current fitness−neighbor fitness
temperature

)
16: Accept or reject the neighbor solution:
17: if neighbor fitness ≤ current fitness then
18: current solution ← neighbor
19: current fitness ← neighbor fitness
20: if neighbor fitness ≤ best fitness then
21: best solution ← neighbor
22: best fitness ← neighbor fitness
23: end if
24: else if acceptance probability≥random(0,1) then
25: current solution ← neighbor
26: current fitness ← neighbor fitness
27: end if
28: if temperature < final temperature then
29: break
30: end if
31: end for
32: return best fitness, best solution
33: Output:best fitness, best solution
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Algorithm 2 Iterative Simulated Annealing Algorithm

1: Input: Instance, iteration, initial temperature, cooling factor
2: for i ← 1 to iteration do
3: Find the best initial solution:
4: if i = 1 then
5: best current ← [ ]
6: best fit ← [ ]
7: num iter ← 100
8: for iter ← 1 to num iter do
9: current ← GenerateInitialSolutionWithKMeans()
10: current fitness ← EvaluateFitness(current)
11: best current.append(current)
12: best fit.append(current fitness)
13: end for
14: min ind← index of minimum value in best fit
15: current← best curent[min ind]
16: else
17: Use previous SA solution:
18: current← best solution
19: end if
20: best solution, best fitness← SA(initial temperature,cooling factor, current)
21: end for
22: return best fitness, best solution
23: Output:best fitness, best solution
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Chapter 4

Numerical Testing

The proposed solution framework is tested on an open-source dataset from Kaggle called

“Online Retail Dataset”. All tests were performed using a 12th Gen Intel(R) Core(TM)

i7-1255U 1.70 GHz computer with 16.0 GB of RAM. Python 3.9.12 was used for data

analysis, and Gurobi 10.0.0 was used as the solver.

4.1 Data Set

The online retail dataset consists of transactional data of an online UK-based retailer

from 01/12/2010 to 09/12/2011. The dataset has 8 columns with information about each

transaction. The columns are described below:

1. InvoiceNo: Unique identifier for each transaction.

2. StockCode: Unique identifier for each item sold in the transaction.

3. Description: Description of the item sold.

43



4. Quantity: The quantity of the item sold in the transaction.

5. InvoiceDate: The date and time of the transaction.

6. UnitPrice: The price of one unit of the item sold.

7. CustomerID: Unique identifier for each customer.

8. Country: The country where the transaction was made.

The dataset consists of 541,909 transactions with a total of 3,719,908 items sold. The

transactions correspond to customers from 38 different countries, with the majority of

being from the United Kingdom. Figure 4.1 displays a heatmap for the number of total

orders for each day.

Figure 4.1: A heatmap of the number of orders by day, month, and year.

The number of items affects the batch and pick lists, as each robot carries a distinct

capacity. The distribution of item quantity per order is shown in Figure 4.2. It is clear

that certain orders display a quantity surpassing 1000 items. Due to the robot’s carrying

capacity limitations, allocating orders across multiple batches is necessary.
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Figure 4.2: Distribution of item quantity per order.

4.2 Data Preprocessing

Although the online retail dataset contains 8 columns, relevant information is extracted

from 3 columns. InvoiceNo is used to identify unique orders, StockCode for items, and

Quantity for order capacity. 4,000 SKUs are used and located in an empty warehouse for

this study. There are 20 aisles at the top and 20 aisles at the bottom. For each rack,

the rectilinear distance is calculated from the assembly workstation up to the location of

the item. Items are assigned to racks based on the item’s frequency and distance. More

frequent items are assigned to the shortest distance rack. As a result of this assignment,

each item’s aisle number, column, and row number are known. Table 4.1 shows a sample

after preprocessing.
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InvoiceNo Description Quantity aisle column row
536365 CREAM CUPID HEARTS COAT HANGER 8 5 34.0 4.2
536365 KNITTED UNION FLAG HOT WATER BOTTLE 6 3 17.5 9.6
536365 RED WOOLLY HOTTIE WHITE HEART. 6 23 11.5 17.2
536365 SET 7 BABUSHKA NESTING BOXES 5 23 11.5 19.4
536365 WHITE HANGING HEART T-LIGHT HOLDER 6 1 10.0 3.0
536365 WHITE METAL LANTERN 6 4 28.0 8.6
536366 HAND WARMER RED POLKA DOT 6 35 83.5 25.2
536366 HAND WARMER UNION JACK 6 2 16.0 11.8
536367 ASSORTED COLOUR BIRD ORNAMENT 32 1 10.0 4.0
536367 BOX OF 6 ASSORTED COLOUR TEASPOONS 6 5 34.0 11.8
536367 BOX OF VINTAGE ALPHABET BLOCKS 2 24 17.5 20.6
536367 BOX OF VINTAGE JIGSAW BLOCKS 3 24 17.5 23.6

Table 4.1: A sample of the dataset after data preprocessing

The following parameters are calculated from Table 4.1.

aki =

1, if item i ∈ I is on aisle k ∈ K

0, otherwise

mi = the weight of item i ∈ I

aki are obtained from column ’aisle’ and mi from ’Quantity’.

4.3 Results And Numerical Analysis

Using the data, we solved all models using Gurobi 10.0.0 on instances ranging from 5

orders, 25 items, 5 batches to 25 orders, 241 items, and 40 batches. The results for each

model are presented in the respective subsections below.
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4.3.1 OBP1 Results

Table 4.2 presents the results for model [OBP1]. The columns display the number of

order numbers (Orders), the number of Stock Keeping Units(Items), the total quantity

of collected SKUs (Quantity), the number of batches (Batches), and the capacity of each

instance. The optimal values are determined based on the total number of visited aisles,

while the computational time is given in seconds. In order to provide a comprehensive

comparison among all models, the total travel distance is computed by considering the

route of each robot with respect to a determined optimal solution. We assume that the

robot moves through the warehouse in one direction, starting from the item closest to the

workstation and proceeding to the nearest uncollected item. The optimal solutions with

routing for instances containing 5, 6, and 10 orders are displayed in Figure 4.3, 4.4, and

4.5, respectively. In the figures, the allocation of items to batches is visually represented by

different colors. Robots at the workstation are allocated batches, which are symbolically

represented by circles.

Orders Items Quantity Batches Capacity Optimal value(# aisles) Time(s) Total travel distance(m)
5 25 173 5 100 24 0.08 1289.5
6 45 734 10 100 44 0.13 2079.5
7 46 814 10 100 45 0.11 2017
10 65 1026 15 100 64 0.21 2321
12 83 1383 20 200 82 0.26 2790.5
15 105 2120 25 400 104 0.37 3720.5
15 105 2120 20 400 infeasible - -
17 151 2724 20 400 infeasible - -
20 174 3319 25 400 infeasible - -
25 241 6908 40 600 infeasible - -

Table 4.2: Optimal values and computational time for [OBP1]

We can see that even though the solution is optimal for OBP1, the same robot is

assigned to both the front and end aisles in the warehouse. This implies that one or more
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robots have to travel the warehouse from front to back twice, and their paths may cross,

which may cause congestion.

Figure 4.3: Display of the [OBP1] solution for 5 orders and 5 batches.
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Figure 4.4: Display of the [OBP1] solution for 6 orders and 10 batches.
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Figure 4.5: Display of the [OBP1] solution for 10 orders and 15 batches.

The outcomes of OBP1 show a significant occurrence of collisions, primarily attributed

to the concurrent crossing paths of multiple robots.
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4.3.2 OBP2 Results

Table 4.3 presents the solution results for [OBP2]. Optimal solutions that are illustrated

in Figures 4.6, 4.7, and 4.8. Again, the solutions do not minimize distance and involve

aisles far away from each other.

Orders Items Quantity Batches Capacity Optimal value(# aisles) Time(s) Total travel distance(m)
5 25 173 5 100 5 0.09 1302.5
6 45 734 10 100 5 0.14 1981.5
7 46 814 10 100 5 0.17 1965.5
10 65 1026 15 100 5 0.22 2873
12 83 1383 20 200 5 0.32 3407
15 105 2120 25 400 5 0.45 4288.5
15 105 2120 20 400 infeasible - -
17 151 2724 20 400 infeasible - -
20 174 3319 25 400 infeasible - -
25 241 6908 40 600 infeasible - -

Table 4.3: Optimal values and computational time for [OBP2]
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Figure 4.6: Display of the [OBP2] solution for 5 orders and 5 batches.
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Figure 4.7: Display of the [OBP2] solution for 6 orders and 10 batches.
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Figure 4.8: Display of the [OBP2] solution for 10 orders and 15 batches.

Solutions from [OBP2] may lead to congestion primarily attributed to the concurrent

crossing paths of multiple robots. Additionally, the cumulative travel distance of all robots

is large.
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4.3.3 OBP3 Results

Table 4.4 presents the implementation results for various order numbers using the same

representation as Table 4.2. The optimal solutions for all instances listed in Table 4.4 are

depicted in Figures 4.9, 4.10, and 4.11. The parameters used for OBP3 are as follows: the

length parameter (L) is set to 130, the width parameter (W ) is set to 29, and the value of

the parameter K is 42.

Orders Items Quantity Batches Capacity Optimal value(m) Time(s) Total travel distance(m)
5 25 173 5 100 77.6 1.45 1038.5
6 45 734 10 100 81.6 22.99 1943.5
7 46 814 10 100 92.9 35.10 1786.5
10 65 1026 15 100 92.9 71.59 2418
12 83 1383 20 200 92.9 239.12 3012
15 105 2120 25 400 148.2* 900.00 4243
15 105 2120 20 400 infeasible - -
17 151 2724 20 400 infeasible - -
20 174 3319 25 400 infeasible - -
25 241 6908 40 600 infeasible - -

* Best found feasible solution

Table 4.4: Optimal values and computational time for [OBP3]

Figure 4.9, 4.10, and 4.11 show that [OBP3] is good at clustering items for batches.

However, this model cannot solve more than 10 orders.
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Figure 4.9: Display of the [OBP3] solution for 5 orders and 5 batches.
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Figure 4.10: Display of the [OBP3] solution for 6 orders and 10 batches.

57



Figure 4.11: Display of the [OBP3] solution for 10 orders and 15 batches.

The results of [OBP3] indicate a slightly better overall travel distance compared to that

of [OBP1] and [OBP2]. Nevertheless, the issue of intersecting paths and the potential for

collisions remains a significant concern.
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4.3.4 OBP4 Results

Table 4.5 presents the results for various order numbers using the same representation as

Table 4.2. The optimal solutions visualized in Figure 4.12, 4.13 and 4.14.

Orders Items Quantity Batches Capacity Optimal value(m) Time(s) Total travel distance(m)
5 25 173 5 100 32.3 0.98 890.5
6 45 734 10 100 33.7 22.56 1386.5
7 46 814 10 100 44.0 19.91 1508.5
10 65 1026 15 100 20.2 486.16 1666.5
12 83 1383 20 200 11.9 376.71 1972.0
15 105 2120 25 400 18.3* 900 2547
15 105 2120 20 400 51.5* 900 2677.5
17 151 2724 20 400 108.6* 900 3529.5
20 174 3319 25 400 90.6* 900 4434
25 241 6908 40 600 120.3* 900 6329.5

* Best found feasible solution

Table 4.5: Optimal values and computational time for [OBP4]

Based on Table 4.5, it is evident that the computational times grow exponentially and

become intensive for 12 orders or more. Therefore, a time limit of 900 seconds is imposed,

and the best found feasible solutions are provided.
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Figure 4.12: Display of the [OBP4] solution for 5 orders and 5 batches.
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Figure 4.13: Display of the [OBP4] solution for 6 orders and 10 batches.
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Figure 4.14: Display of the [OBP4] solution for 10 orders and 15 batches.

The effectiveness of [OBP4] in minimizing the distance traveled by each robot is appar-

ent. Furthermore, it is important to acknowledge that [OBP4] has fewer decision variables

than [OBP3]. However, there is still room for improvement in terms of finding more efficient

travel paths.
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4.3.5 OBP5 Results

Table 4.6 presents the solution results for [OBP5] using the same representation as Table

4.2. The solutions are displayed in Figures 4.15,4.16, and 4.17. According to Table 4.6,

the solution time is very large for instances as small as 6 orders and 25 items. We set a

time limit of 900 seconds and took the best feasible solution.

Orders Items Quantity Batches Capacity Optimal value(m) Time(s) Total travel distance(m)
5 25 173 5 100 1365.40 24.42 659
6 45 734 10 100 1737* 900 1170.5
7 46 814 10 100 2059.9* 900 1159
10 65 1026 15 100 1968.8* 900 1548.5
12 83 1383 20 200 1151.6* 900 1646
15 105 2120 25 400 1018.8* 900 1835
15 105 2120 20 400 1877.4* 900 1611.5
17 151 2724 20 400 5449.5* 900 1845.5
20 174 3319 25 400 4840.9* 900 2306
25 241 6908 40 600 3668.1* 900 3237

* Best found feasible solution

Table 4.6: Optimal values and computational time for [OBP5]

Figure 4.15, 4.16, and 4.17 show that [OBP5] is good at clustering items for batches

and minimizing total travel distance for each robot.
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Figure 4.15: Display of the [OBP5] solution for 5 orders and 5 batches.
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Figure 4.16: Display of the [OBP5] solution for 6 orders and 10 batches.
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Figure 4.17: Display of the [OBP5] solution for 10 orders and 15 batches.

Figure 4.18 displays the travel distance of 5 robots for all models with 5 orders and 5

batches. Figure 4.19 displays the total travel distance of all robots for all models ranging

from 5 orders to 25 orders. According to Figure 4.18 and 4.19 [OBP5] achieves the lowest

travel distance among all the robots.
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Figure 4.18: Robot’s travel distance comparison for all models

Figure 4.19: Total travel distance comparison for all models
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4.3.6 Iterative SA and Lagrangian Relaxation Results

In this section, final temperature, cooling factor, and num iterations for the simulated

annealing algorithm, are set to 0.0001, 0.99, and 1000, respectively.

Table 4.7 presents results for various instances using the representation as Table 4.2.

To evaluate the quality of the SA solution, the second last column (Improvement) gives

the improvement over the OBP5 objective calculated as
(
100 ∗ SA−OBP5

OBP5

)
. The last column

(GAP) gives the SA solution quality with respect to the Lagrangian lower bound, calculated

as
(
100 ∗ LR−SA

SA

)
.

Lagrangian Relaxation provides a good quality lower bound, but it is not particularly

useful in terms of computing time. SA, on the other hand, provides good quality solutions

as assessed by the Lagrangian lower bound and the direct solutions of [OBP5]. Additionally,

Figure 4.20 and 4.22 show that SA is able to find solutions that effectively group items

and reduce robot travel distance and congestion.
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Figure 4.20: Assigned items’ distance from the center of batches for SA solution for 5
orders and 5 batches.
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Figure 4.21: Display of the SA solution for 5 orders and 5 batches.
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Figure 4.22: Assigned items’ distance from the center of batches for SA solution for 6
orders and 10 batches.
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Figure 4.23: Display of the SA solution for 6 orders and 10 batches.

The iterative SA algorithm achieves comparable solutions to OBP5 in short compu-

tational times. It finds better solutions for smaller instances but falls slightly short for

the large instances. With respect to LR, Sa finds solutions within an average of 6.2% but

ranges from 0% gap to 15.94%.
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Figure 4.24: Time comparison of [OBP5], SA and Lagrangian Relaxation

Figure 4.25: Time comparison of [OBP5] and SA

When comparing the iterative SA algorithm to the direct solution of [OBP5] in terms of
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time, it is shown in Figure 4.24 and 4.25 that the iterative SA approach exhibited superior

performance.
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Chapter 5

Conclusion

The use of automated warehouse systems has grown considerably during and after the

COVID-19 pandemic. This shift is driven by the need to enhance efficiency, minimize

human contact, and expedite delivery. The order-picking process, which is an essential

element of warehouse operations, has a substantial influence on both customer satisfaction

and operational expenses.

In this work, we presented, modeled, and provided solution methods for the order

batching problem in automated warehouses. We provided different mathematical models

and compared them based on clustering and distance minimization capabilities. We found

that the model based on the generalized quadratic assignment problem performs the best.

It suffers, however, from being computationally burdensome. To remedy this, we presented

a Lagrangian relaxation and a Simulated Annealing metaheuristic.

Numerical testing revealed that the proposed simulated algorithm provides a high-

quality solution as assessed by the Lagrangian lower bound and in comparison to the

direct solution of the mathematical model. It, therefore, presents a powerful tool to solve
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realistic instances and can be directly integrated into warehouse management systems.

Future research can be devoted to increasing the efficiency of the proposed Lagrangian

relaxation approach as it potentially provides a good quality bound. Alternatively, other

relaxations are worth exploring. In addition, different features of the order batching prob-

lem, such as congestion, can be modeled explicitly. Another possible direction is to inte-

grate different problems in warehouse management, such as layout optimization and order

batching.
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Nils Boysen, René De Koster, and Felix Weidinger. Warehousing in the e-commerce era:

A survey. European Journal of Operational Research, 277, 08 2018. doi: 10.1016/j.ejor.

2018.08.023.

Edward Frazelle. Warehouse Operations. Supply Chain Strategy: The Logistics of Supply

Chain Management. McGraw-Hill Education, New York, first edition. edition, 2002.

ISBN 9780071375993. URL https://www.accessengineeringlibrary.com/content/

book/9780071375993/chapter/chapter8.

78

https://img-journal.unibo.it/article/view/12265
https://www.accessengineeringlibrary.com/content/book/9780071375993/chapter/chapter8
https://www.accessengineeringlibrary.com/content/book/9780071375993/chapter/chapter8
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