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Abstract

This thesis discusses the implementation of a serverless cloud service designed for solving
discrete optimization problems encoded as boolean circuit satisfiability. Boolean circuit
satisfiability problem involves determining whether an input assignment exists that satisfies
a given boolean circuit. A cloud service is a platform that offers on-demand computing
resources and services over the Internet. In a serverless setup, the service automatically
manages and scales resources, eliminating the need for manual server management.

The main objective of this thesis is to provide a comprehensive and efficient approach
to address problems in NP (nondeterministic polynomial time) by utilizing boolean circuit
satisfiability. Our novel cloud service offers clients a more universal, efficient, and user-
friendly solution for solving problems in NP.

We proposed an enhanced boolean logical circuit that incorporates sub-circuits capable
of performing mathematical operations, simplifying the reduction process and expand-
ing the potential to tackle problems in NP across various domains. Our motivation for
this work arises from the fact that the augmented boolean circuit satisfiability problem is
NP-complete, and a wide range of discrete optimization problems can be reduced to it.
By leveraging a reduction to the proposed enhanced version of boolean circuit satisfiabil-
ity problem and using oracles such as conjunctive normal form (CNF) or Integer Linear
Programming (ILP) solvers, our service can efficiently address problems in NP in which
the decision version can be reduced to the improved circuit satisfiability problems within
polynomial time.

This thesis covers in-depth knowledge about the fundamentals of computational com-
plexity, presenting reductions from each of Karp’s 21 NP-complete problems to the Circuit-
SAT problem, demonstrating the versatility and applicability of our approach. Addition-
ally, we discuss a software library we have built that enables the construction of circuits as
well, allowing users to efficiently represent and solve problems using our cloud service. Fur-
thermore, the thesis includes details about the service’s working principles and deployment
aspects.
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Chapter 1

Introduction

With the rapid advancement of theoretical computer science, Nondeterministic Polynomial-
time (NP) class has emerged as a prominent subject of investigation within the field of
computational complexity classes. Numerous consequential computational problems aris-
ing in diverse domains such as science, engineering, and economics, can be effectively
reformulated as problems in NP class. Effective resolutions of these challenges would yield
substantial practical implications, including but not limited to enhancements in resource
management methodologies, advancements in bio-molecular structural exploration, and the
provision of more precise data analysis techniques. Additionally, research pertaining to the
reduction of problems in NP and the development of efficient solving techniques holds the
potential to offer insights into the long-standing and consequential “Polynomial-time (P)
vs. NP” problem, that is, whether there exists a polynomial-time algorithm to solve the
problem in NP. This question remains one of the most profound unresolved inquiries in
computer science, and substantially impacts cryptography and many other domains related
to security, given that numerous modern information security protocols are fundamentally
constructed on the premise that P ̸= NP .

This chapter first introduces the basic definition of abstract problem, algorithm, and
computational complexity; then elicits the throughout research topic: problems in NP class.
Then, a variety of examples of problems in NP and the process of reduction are illustrated.
In the second part, the through-out-topic circuit satisfiability problem is introduced, which
serves as the foundation for the solution proposed in the subsequent part of the thesis. In
the end, 21 famous NP-complete problems are presented, which involve various categories
of problems within the field of algorithms.
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1.1 Computation Complexity

1.1.1 Problems and Algorithm

Problems in different fields of study are expressed in different formats. A statement of
a “problem” in the computation area generally outlines the desired input and output re-
lationship [7]. Besides, an “instance” of a problem is composed of the input needed to
compute a solution to the problem. [7], and an “evidence” (a “certificate” or “witness”)
that is usually combined with a problem instance, is a piece of information that a deter-
ministic polynomial-time algorithm can be used to verify the correctness. For example,
the maximum value problem can be defined as:

Input: An array of n numerical elements: A = [a1, a2, ..., an].
Output: An element ai, where 1 ≤ i ≤ n, such that ∀ aj ∈ A, where 1 ≤ j ≤ n, aj ≤ ai.

A valid instance of this problem is given the input sequence A as [3, 7, 4, 2, 6, 8, 9, 0],
and the corresponding certificate should be 9 since 9 is larger than or equal to any of the
elements in array A.

Besides, it is of high necessity to introduce the concepts of “abstract problem” and
“algorithm” because their further fine-grained classification and new definitions built upon
them will be introduced later when computation complexity is involved.

Abstract Problem: Abstract problem is a binary relation on a set I of problem instance
and a set S of problem solutions.[7].

Algorithm: Algorithm is a computational procedure which takes a set of values as inputs
and generates a set of values as outputs [7].

1.1.2 Decision Problem and Optimization Problem

Decision problem: A problem with an output that can only be Yes or No [16].

Optimization problem: A problem which requires obtaining the best solution (associ-
ated with a maximum or minimum value) among all feasible solutions [7].

For example, to find the shortest path between two vertices in an undirected unweighted
graph, the optimization version of it presents in the form that given a graph G and a pair
of vertices ⟨u, v⟩, what is the shortest path connecting u and v with the least number of
edges? The decision version of a problem usually can be converted from the optimization
version by adding boundaries on the associated value [7]. Therefore, the decision version
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of finding the shortest path is: given a graph G, a pair of vertices ⟨u, v⟩, and an integer k,
if there exists a path from u to v which contains at most k edges?

The integer k mentioned above generally is the boundary of the related value for a pos-
sible solution. If there is an algorithm that could solve the decision version of a problem,
then by modifying the boundaries on the associated value and other conditions, the opti-
mization version can then be solved as well. Similarly, if an algorithm that could solve an
optimization problem exists, then the decision version can be resolved by calculating the
associated value based on the solution and comparing it to the boundary. Since the way of
changing the boundary k and other attributes until reaching the extremum is usually more
difficult than obtaining the related value of an optimized solution, the optimization version
of a problem is considered “harder” than the decision version. The words “harder” and
“easier” in this context refer to the fact that harder questions need more extra procedures
to solve than easier ones.

In the finding shortest path example, if an algorithm exists for the optimization version
(it returns the shortest path between u and v), the answer to the decision version can be
obtained by counting the number of edges along this path and then comparing it to k. If
the number of edges of the shortest path is even larger than the upper boundary k, then it
is impossible to find another shortest path which satisfies this property, thus, the decision
version should return “False”; otherwise, if the shortest path holds the condition, then the
decision version is therefore “True”. On the other hand, if there is an algorithm for the
decision version, to get the shortest path in the optimization problem, first decrease k to
find the number of edges in the shortest path. Then delete the start node (u) in G, and for
every neighbour of u (denote as u

′
), ask if there exists a path from u

′
to v which contains

at most k−1 edges. If returns “True”, then repeat the above procedure, if returns “False”,
try the next u

′
instead, until finding the satisfied vertex. Finally, all the deleted vertices

in order compose the shortest path.

1.1.3 Deterministic and Non-deterministic Algorithm

When focusings on decision problems, deterministic and non-deterministic algorithms can
be defined as below:

Deterministic Algorithm: A class of algorithms which exist only one state at a time
before terminating.
Non-deterministic Algorithm: A class of algorithms which not only allow multiple
states at a time when running, and hold the attributes that:

1. If the correct answer for the decision problem is “True”, then at least one of the end
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states when the non-deterministic algorithm terminates should be able to interpret
it as “True”.

2. If the correct answer for the decision problem is “False”, then none of the end states
when the non-deterministic algorithm halts could be interpreted as “True”.

The non-deterministic property comes from the fact that instead of picking up pa-
rameters according to a specific scheme in a deterministic algorithm, a non-deterministic
algorithm picks parameters to compute without any considerations.

1.1.4 Reduction

Reduction is the step to prove the “hardness” relationship between two problems. An
instance of a problem refers to a particular input to that problem; [7]. For two decision
problems A and B, the reduction from A to B is valid if and only if:

1. For every instance of A, there exists a polynomial time algorithm to convert it to an
instance for problem B.

2. Assume there is an algorithm for problem B, the answer for an instance of A is
“True” if and only if the algorithm returns “True” for the transformed instance for
B.

The reduction from A to B above indicates the difficulty of solving problem A is no
harder than the difficulty of solving problem B. Thus, if there doesn’t exist an algorithm
for solving A within polynomial time, then neither does B.

1.1.5 Computation Complexity Classes

Computation complexity is defined for the decision version of a problem. Below are several
most common computation complexity classes:

P class: The collection of all decisions problems that can be resolved with an algorithm
in polynomial time (there exists a constant k and an algorithm whose time-efficiency is
O(nk)) is in complexity class P.
NP class: The collection of all decisions problems that can be resolved with a non-
deterministic algorithm in polynomial time (there exists a constant k and a non-deterministic
algorithm whose time-efficiency is O(nk)) is in complexity class NP. Besides, a problem
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can also be categorized in NP if given a claimed solution of the problem, it can be verified
within polynomial time.
NP-complete class: The collection of all decision problems in NP that any other prob-
lems in NP can be reduced to them within polynomial time.

Problems in NP are ubiquitous in everyday life, for example, checking if a given solution
for Sudoku (n×n) is valid can be accomplished in polynomial time in n, but it is not possible
to find a solution within polynomial time, however, if there exists a non-deterministic
algorithm which can non-deterministically pick numbers for each slot then verify, then
return a correct solution is possible within polynomial time.

1.2 Logical Circuits and Circuit Satisfiability Prob-

lem

A logical circuit can be defined as a Directed Acyclic Graph (DAG) which consists of
vertices and directed edges with the following constraints:

• Every directed edge is assigned a boolean value (0 or 1) and signifies the information
flow from an input terminal to an output terminal in the overall graph.

• Every vertex in the graph represents an input or output terminal or a logical gate
(AND gate, OR gate, and NOT gate). Logical gates work like functions that are able
to conduct logical operations based on their own input boolean values, while input
and output terminals are the boolean information sending and receiving elements in
a graph.
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Figure 1.1: Three basic logical gates with their gate’s operation.

AND gate performs “and” operation where z = x ∧ y, and z = 1 if and only if both
input x and y are assigned with boolean value 1. OR gate performs “or” operation
where z = x ∨ y, and z = 1 if either input x or y, or both are assigned the boolean
value 1. NOT gate performs the negation of the original input value, where y = ¬ x.

• The indegree and outdegree of a NOT gate are both 1, while for AND and OR gates,
their indegree is 2 and outdegree is 1 for each. The input terminal has an indegree
of 0 and an outdegree of 1, while the output terminal has an indegree of 1 and an
outdegree of 0.

A logical circuit G can also be composed of two sub-circuits G1 and G2, where G1 =
⟨V1, E1⟩, G2 = ⟨V2, E2⟩. The two sub-circuits hold properties that ∀u ∈ V1, u /∈ V2, ∀e ∈
E1, e /∈ E2 and vice versa. There are two ways to combine sub-circuits:

1. G = G1 ∪ G2: graph G is the union of G1 and G2. The number of the input terminals
in G is the sum of the number of input terminals in G1 and G2, and the same goes
for output terminals as well. Besides, G1 and G2 do not share any common vertices
or edges. Since both G1 and G2 are acyclic, their union does not contain any cycle
either.

2. In the second way of combining G1 and G2, adjustments to G1 and G2 is made:
new edges are established to connect vertices between sub-graph G1 and G2. Assume
u1 ∈ V1, u2 ∈ V 2, in new graph G, there ∃e ∈ E such that e = ⟨u1, u2⟩ or e = ⟨u2, u1⟩.
In addition to the original G1 and G2 present in G, there are new edges directed from
vertices in G1 to vertices in G2, or from vertices in G2 to vertices in G1. The
constraint to this modification is to guarantee G is acyclic.
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A circuit satisfiability (Circuit-SAT) problem can be stated as: given a logical circuit
with a single output terminal, finding a possible assignment of boolean values to the edges
originating from the input terminal, such that the value of the edge leading to the output
terminal is 1. Below are two instances of the circuit satisfiability problem, and the only
difference between them is that the OR gate in the upper right becomes an AND gate.

Figure 1.2: Instance (a), which is satisfiable since the certificate x1 = 1, x2 = 1, x3 = 0
of this circuit results in the final output being 1. Source: Adapted from Introduction to
algorithms [7]

Figure 1.3: Instance (b), which is unsatisfiable since there is no assignment to the inputs
of this circuit that will cause the final output to be 1. Source: Adapted from Introduction
to algorithms [7]

Circuit-SAT problem can be proved to be in NP-complete class by reducing boolean
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satisfiability problem to it, which is the first problem to be proved in the NP-complete class
by Stephen Cook in 1971[6]. The service proposed in this thesis is based on solving circuit
satisfiability problems reduced from other problems in NP, more details will be introduced
in chapters 2 and chapter 3.

1.3 The Famous Karp’s 21 NP-complete Problems

In 1972, Karp listed 21 famous NP-complete computational decision problems by reducing
boolean satisfiability problem to each one of them. [15]. These classical problems not only
come in various forms, with traces found in everyday life, but also serve as the foundation
for many more complex problems in NP-complete. Below is the list of the decision version
and optimization version of Karp’s 21 problems which are NP-complete.

1. Boolean satisfiability problem: Given a boolean formula in Conjunctive Normal Form
(CNF), if the variables can be assigned in a way that makes the CNF formula true.

2. 0-1 Integer programming: Given integer matrix C and an integer vector d, if there
exist a 0-1 vector x such that Cx = d.

3. Clique problem

• Decision version: Given an undirected graph G = ⟨V,E⟩ and an integer k, if
there exists a clique of size k for graph G?

• Optimization version: Maximize integer k such that find out the maximum
clique in a given undirected graph G.

4. Set packing

• Decision version: Given a set S = {S1, . . . , Sn}, a universal set U , and an integer
k, where collection S contains subsets of U . If subsets in S can form a set C of
size k such that all subsets in C are pairwise disjoint?

• Optimization version: Find the set C which holds the maximum number of
mutually disjoint subsets (k).

5. Vertex cover problem

• Decision version: Given a pair ⟨G, k⟩, where G = ⟨V,E⟩ is an undirected graph
and k ∈ {1, . . . , |V |}, does G have a vertex cover of size ≤ k?
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• Optimization version: Find the smallest vertex cover of graph G such that the
size of vertex cover k reaches its minimum.

6. Set covering

• Decision version: Given a set S = {S1, . . . , Sn}, a universal set U and an integer
k, where S is a collection of subsets of U . If there exists a k-size (or less) set
cover C, which consists of subsets in S and its union is U?

• Optimization version: Find the smallest set cover for set S such that the size of
set cover k reaches its minimum.

7. Feedback node set

• Decision version: Given a graph G = {V,E} and an integer k, if there exists
a k-size Feedback Vertex Set (FVS) such that if all the vertices in FVS are
removed, the whole graph will have no circles.

• Optimization version: Find the smallest FVS for graph G such that the size of
FVS k reaches its minimum.

8. Feedback arc set

• Given a graph G = {V,E}, E = {e1, . . . , en}, and an integer k, if there is a
k-size feedback arc set which is a set of edges such that G will not contain any
circles if all edges in feedback arc set are removed.

• Optimization version: Find the smallest feedback arc set for graph G such that
the size of feedback arc set k reaches its minimum.

9. Directed Hamilton circuit

• Decision version: If there exists a Hamiltonian path in the directed graph G =
{V,E} which makes it possible for visiting each vertex exactly once.

• Optimization version: Find the longest Hamiltonian path in directed graph G.

10. Undirected Hamilton circuit

• If there exists a Hamiltonian path in the undirected graph G = {V,E} which
makes it possible for visiting each vertex exactly once.

• Optimization version: Find the longest Hamiltonian path in undirected graph
G.
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11. Satisfiability with at most 3 literals per clause: Given a boolean formula in 3-CNF
format, if the variables can be assigned in a way that makes the 3-CNF formula true.

12. Chromatic number (Graph Coloring Problem): Given a graph G = {V,E} and an
integer k, if there is a way/function c(·) of labelling k colours to all vertices such
that no two vertices connecting by an edge share the same colour, c(u) ̸= c(v) for
∀(u, v) ∈ E.

13. Clique cover

• Decision version: Given a graph G = {V,E} and an integer k, if there exists a
way of partitioning all the vertices V in the graph G into k cliques.

• Optimization version: Minimize the number of cliques k, such that find the
smallest clique cover.

14. Exact cover

• Decision version: Given a collection set S = {S1, . . . , Sn}, a universe set U and
an integer k, where collection set S contains subsets of set U . If there exists
a subcollection S∗ of S whose size is k, such that every item in U is contained
and only contained once in S∗.

• Optimization version: Minimize k, the size of the subcollection S∗, such that
find the smallest exact cover.

15. Hitting set

• Decision version: Given a set S = {S1, . . . , Sn}, a universal set U , and an integer
k, where S is a collection of subsets of U , and S1 ∪ . . .∪Sn = U . If there exists
a k-size hitting set H, which is a subset of U , such that for every collection
Si ∈ S, the number of items shared by H and Si is only 1, |H ∩ S| = 1.

• Optimization version: Minimize the number of items in hitting set H, so that
the size of H reaches its minimum.

16. Steiner tree

• Decision version: Given an instance of a Steiner tree problem in an undirected
graph, {G = ⟨E, V ⟩, T, k}, V = {u1, . . . , un} and E = {e1, . . . , em}, with non-
negative edges w(ei) ≥ 0. Terminal vertex set T is a subset of vertices of set V ,
and k ∈ Z. Is there a tree H =

〈
E

′
, V

′〉
, which is a subgraph of G, such that T

⊆ V
′
and the weight of the tree w(H) ≤ k.
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• Optimization version: Minimize k to find the minimum cost tree that connects
all the terminals.

17. 3-Dimensional matching

• Decision version: Given a 3-dimensional matching (3DM) problem denotes as
{X, Y, Z, T, k}, where set X, Y and Z are three finite sets with no sharing
elements, and set T = X × Y × Z, that is, T = {t1, . . . , ts}, ti = ⟨xi, yi, zi⟩
where xi ∈ X, yi ∈ Y and zi ∈ Z. A 3-dimensional matching M , M ⊆ T ,
holds the property that for ∀ti ̸= tj, ti ∈ M , tj ∈ M , and ti = ⟨xi, yi, zi⟩,
tj = ⟨xj, yj, zj⟩, such that xi ̸= xj, yi ̸= yj, and zi ̸= zj. If the size of the given
3DM is larger or equal to k?

• Optimization version: Maximize the number of elements inM to find the biggest
3-dimensional matching set M .

18. Knapsack

• Decision version: Given an integer k, a group of n items each has value: {v1, . . . , vn},
and weight {w1, . . . , wn}. Now by picking items into a knapsack, which has a
limit to the weight of the picked items W , if the total value of picked items is
greater than or equal to k.

• Optimization version: What is the maximum value the knapsack can carry?

19. Job sequencing

• Decision version: A description of job-shop scheduling problems: given two finite
sets M = {M1, . . . ,Mm} (for machines) and J = {J1, . . . , Jn} (for jobs), where
there aremmachines in the processing system, and n jobs are required to be pro-
cessed. For each Ji, there is a list Li = [(Mord1 , tord1), (Mord2 , tord2), . . . , (Mordm , tordm)]
assigned to it to describe in what order Ji should be completed on different ma-
chines including its corresponding time, and L = [L1, . . . , Ln]. Every job here
needs to go through all machines to be processed. Besides, each job must be
processed in the order of the process. The task of scheduling is to arrange the
processing, scheduling and sorting of all jobs, now given an integer k, if the time
cost by the scheduled sequence of jobs is less than or equal to k.

• Optimization version: How to arrange the order of jobs on each machine so that
the total time spent is the least.

20. Partition: Given an instance of partition problem S, where S is a multi-set of positive
integers. If the set S can be partitioned into two sets S1 and S2, and the sum of all
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the elements in S1 equals the sum of all the elements in set S2.

21. Max cut

• Decision version: Given a graph G = E, V and an integer k, where V =
⟨u1, . . . , un⟩ and E = ⟨e1, . . . , em⟩. If there exists a subset of vertex S1 such
that the number of edges of connecting set S1 and its complementary subset S2

is larger than or equal to k. S1 ∩ S2 ∅ and S1 ∪ S2 = S.

• Optimization version: Find the subset S1 which makes the number of edges
connecting it and S2 achieve its maximum.
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Chapter 2

Problem Solving

The diverse forms of problems within the NP class often permit the utilization of well-
established strategies to address specific problems. For example, a boolean satisfiability
problem can be solved by using an SAT solver. However, a notable gap persists in finding a
unified solution template for problems in NP. At this stage, the reduction process becomes
especially crucial in identifying inherent connections among problems within the same
computational complexity class, since it helps identify the hardness of solving a problem
and makes it possible to obtain the solution by solving other problems.

The core focus of this thesis revolves around addressing problems in NP in a universal,
efficient, and convenient manner. This thesis proposes an optimization service grounded in
boolean circuit satisfiability, designed to effectively address problems in the NP complexity
class while providing sound and logical solutions. In this chapter, the problems to be
tackled are provided and well examined first, along with the most common ways of solving
problems in NP class nowadays: by using a CNF Satisfiability (SAT) solver. The solution
concepts underlying the service proposed in this thesis are introduced next. Furthermore,
drawing upon the service’s approach to solving problems in NP, this chapter illustrates the
application of the corresponding solving methods to Karp’s 21 NP-Complete problems,
ultimately offering practical resolutions for each.
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2.1 Research Objectives

2.1.1 Problem examples

The research and development purpose of this service is to help people solve common
problems in NP more conveniently. In the first chapter, the well-known 21 Karp’s NP-C
problems are well elucidated, encompassing a broad spectrum of applications and forming
the basis for numerous intricate problems. For instance, the circuit satisfiability problem
serves as a crucial component in computer science, facilitating the verification of logical
reasoning system consistency. Similarly, the job sequencing problem frequently arises in
production planning to optimize job and task scheduling sequences. Furthermore, the
clique cover (partition into cliques) problem in an undirected graph, holds significant value
in social network analysis as it aids in identifying community structures and social circles.

Apart from the aforementioned 21 problems in NP-Complete class, there are many
other problems composed of naive problems in NP that are also the objects that this
service intends to solve. Below are two illustrative questions:

1. A problem that may arise in distributed cloud resource management services is the
allocation of supply resources to meet the demands of a distributed cloud environ-
ment. This issue involves determining how resources should be allocated to fulfill
the requirements of a particular resource. To well present this problem, two types of
resources are represented separately in undirected graphs.

• Demand Graph: demonstrates the arrangement/architecture of the intended
task and the resources it occupies, which is a set of sub-graphs consisting of
nodes and edges.

• Supply Graph: demonstrates the arrangement/architecture of the resources
that is provided and can be used, which is a set of sub-graphs consisting of
nodes and edges.

Both the demand graph and supply graph have node attributes and edge attributes,
which is the way to illustrate resources.

• Node Attributes: node is used for representing hardware resources, and its
attributes may include but are not restricted to the number of virtual Central
Processing Units (vCPUs), virtual Graphics Processing Units (vGPUs), storage,
and other components within compute or storage units (such as bare metal
servers or database instances).
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• Edge Attributes: edge is used for representing resources associated with net-
work connection services, and its attributes may include but are not restricted
to the time needed to establish Virtual Private Cloud (VPC) connections, or
the cost involved in connecting different clouds.

For both vertices and edges, attributes are always an integer in this case. Finally, the
problem requires a way of placement from the demand graph to the supply graph.
To be more specific, “placement” means to allocate nodes/edges from the demand
graph to nodes/edges of the supply graph, which implies that the resources a supply
node/edges provide are capable of implementing the task from demand nodes/edges
that are placed into it. Based on common sense, there are several rules for the
placement:

• Demand nodes are to be placed on supply nodes only.

• A demand edge is placed on zero or one supply edge. Assume a vertex has an
edge to itself with infinite value for all attributes, on which a demand edge may
be placed.

• For a specific supply node/edge, it should be satisfied that for every single at-
tribute it has, the sum of that specific attribute values from all the corresponding
demand nodes/edges placed into it should be less than or equal to the single
attribute value from that supply node/edge.

Besides, customized anti-affinity constraints can also be added as rules for the place-
ments, such as certain two nodes in the demand graph cannot be placed in a same
supply node, or certain two demand nodes have to be placed together in a node in
the supply graph.

2. Another strong example relates to scheduling Virtual Machines (VMs) in server to
prevent information leakage in side channels [14]. To enhance service efficiency and
optimize resource utilization in cloud computing, it is typical for multiple clients
to share a single server running multiple VMs. However, this approach exposes a
vulnerability as attackers can exploit the lack of complete isolation between different
VMs at the physical layer to execute sub-channel attacks, leading to the unauthorized
disclosure of sensitive information from victims through these sub-channels. This
problem involves three main subjects: epoch, virtual machine and server.

• epoch: One discrete period of time.

• VM: A VM is a unit of computation or execution used for processing client
tasks. A client may possess several VMs and the workload on VMs may last
several epochs.
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• Server: A physical machine equipped with computational capacity that is re-
sponsible for running a certain number of VMs.

The placement of a VM on a server is considered valid when the server has sufficient
capacity to run all the VMs it hosts at every epoch, which is similar to the problem
introduced in the first example. Besides, this problem becomes more intricate as it
requires addressing the issue of minimizing mutual sub-channel information leakage
between different clients by changing the VMs running in each server at different
epochs. Additionally, this thesis illustrates several scenarios for information leakage
as well [14]:

• Replication: This situation arises when a malicious VM is co-located with
multiple VMs belonging to the victim. Consequently, sensitive information runs
the risk of being duplicated, as the malicious VM can intercept and extract
various informative data fragments.

• Collusion: This scenario occurs when the victim’s VMs are confronted by
multiple attackers’ VMs, all of which can collude to extract a greater amount
of valuable information within a fixed epoch. For instance, each attacker’s VM
can be assigned the task of intercepting different pieces of information, thereby
increasing the overall effectiveness of the data extraction process.

By obeying the rules for calculating the potential leaked data, it presents a significant
challenge for cloud service providers to devise a strategy for distributing clients’ (also
possibly to be a potential attacker) VMs across different servers at different time
periods.

2.1.2 Traditional Solutions

SAT Solver

Although NP-Complete problems cannot be solved within polynomial time of their inputs,
there are ongoing efforts to develop programs that can efficiently tackle such problems.
Among these, SAT solvers have emerged as particularly notable, due to their success in
solving the boolean satisfiability problem. A SAT Solver takes a boolean formula in CNF
form as input, and returns the answer if the formula is satisfiable or not, if so, it will
provide one feasible solution as well. SAT Solver has been widely used in many fields
since its release, including artificial intelligence, Integrated Circuit (IC) design, software
verification, electronic hardware design etc.
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SAT solvers typically necessitate a CNF input, commonly stored in a file formatted ac-
cording to the Discrete Mathematics and Theoretical Computer Science (DIMACS) stan-
dard. The DIMACS format serves as a widely adopted standard for representing CNF
problems, making it the prevalent input format for SAT solvers, and enables SAT solvers
to efficiently process and solve boolean satisfiability problems. DIMACS files typically
consist of two sections: the header and clause lines. The problem line, starting with “p”,
specifies the parameters of the CNF problem. It includes the problem type, the number
of literals, and the number of clauses, all separated by spaces. The clause lines contain
the contents of individual CNF clauses, with each number separated by spaces. Each
number represents a literal, where positive numbers denote normal literals and negative
numbers represent the negation of the corresponding literal. The clause lines are termi-
nated by a 0 to indicate the end of each clause. Below is a simple example of CNF formula
(1 ∨ ¬2 ∨ 3) ∧ (2 ∨ 3) ∧ (1 ∨ ¬3) ∧ 2 in DIMACS format.

Listing 2.1: CNF formula in DIMACS format

1 p cnf 3 4

2 1 -2 3 0

3 2 3 0

4 1 -3 0

5 2 0

Using a search algorithm, SAT Solvers usually determine the range of potential truth
assignments for the variables. The process of exploring the assignment for input variables
is progressive. For every search, the algorithm assigns a variable as a value and performs
satisfiability reasoning, then update and analyzes the formula in the next search. Whenever
the formula cannot be satisfied in a certain phase, the search function goes back to the
last assignment of a variable and modify its value, iteratively propagating the assignment
to verify if the input formula is satisfiable or not.

It is of high necessity for a SAT Solver to adopt an efficient search algorithm; otherwise,
it will be indistinguishable from a normal program using brute force. Thus, to increase
the effectiveness of the search, multiple procedures have been proposed; such as clause
elimination procedure to simplify CNF [13], Scaling And Probabilistic Smoothing (SAPS)
algorithm to make dynamic local search more efficient [12], variable elimination with sub-
sumption and self-subsuming resolution in preprocessing to decrease the runtime of SAT
solvers[10] etc.

There is a wide selection of SAT solvers available, among which MiniSat stands out
as one of the most renowned. Initially presented in 2003 [21], MiniSat employs conflict-
driven learning, watched literals technique, and various other algorithms to significantly
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accelerate computation time while maintaining exceptional performance. It has become
the cornerstone upon which many SAT solvers are built, owing to its ability to effectively
incorporate clause learning techniques. Furthermore, the Maple series of SAT solvers,
enhanced with machine learning-based heuristics developed by Vijay Ganesh et al., have
made notable advancements in SAT solving [17]. In particular, MapleSAT has demon-
strated improved performance by employing the Learning Rate Branching (LRB) heuristic
technique which is built on a Multi-Armed Bandit (MAB) algorithm called Exponential
Recency Weighted Average (ERWA), and diverging from the conventional Variable State
Independent Decaying Sum (VSIDS) branching heuristic.

The advent of SAT solvers has opened up new possibilities for addressing prevalent
problems in the NP domain. This entails reducing the target problem into a boolean sat-
isfiability problem and subsequently employing an SAT solver to solve it. By inverting the
solution provided by the SAT solver, one can obtain the desired answer for the original
problem. This approach has proven to be an effective strategy for tackling problems in
NP using the capabilities offered by SAT solvers. However, the process of reducing the
original problem to a boolean satisfiability problem often proves to be intricate and bur-
densome. This is due to the inherent limitations of boolean satisfiability problems, which
only permit three logic operators, whereas many other problems may involve more complex
mathematical expressions. For instance, consider the exact cover problem, which relies on
graph theory. The task of transforming a graph-based problem into a boolean logic-based
problem for its solution is considerably complicated and convoluted. This process entails
not only encapsulating the fundamental mathematical numbers and graph characteristics
into boolean logic formulas (CNF form) but also meticulously representing each aspect
of the basic logic in the exact cover problem through these formulas. It requires careful
consideration of how to store and encode the essential components of the problem using
boolean logic expressions, and the scale of the final CNF form is expected to be vast, which
poses challenges in both the reduction process solving and testing.

Other Solvers

Apart from the SAT solvers that can solve the boolean satisfiability problem, solvers that
can directly solve the graph colouring problem have also emerged. FastColor, a graph
coloring problem solver released in 2017, introduces a novel reduction rule rooted in the
degree bounded independent set concept [18]. As a result, its algorithm outperforms the
approach proposed by Rossi in 2016 [20], delivering significantly enhanced performance.
Concorde, a highly efficient solver for the Traveling Salesman Problem (TSP) developed
by David L. et al. [5], excels at providing rapid solutions for large-scale TSP instances.
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But still, it should be noted that the aforementioned solvers are specifically designed
for a limited set of problems (graph colouring problem and TSP), which may restrict
the solver’s applicability. Their practicality significantly diminishes when confronted with
problems that cannot be easily reduced to these domains, particularly those unrelated to
graphs. Hence, this thesis focuses on the broader objective of utilizing solvers to address
general problems in NP, transcending the limitations of several specific problems. Besides,
it explores methodologies and approaches that enable the solver’s applicability to a wide
range of problems, aiming to enhance its versatility and effectiveness in solving various
NP-complete problems.

2.2 Solution Ideas

This thesis presents professional solutions for commonly encountered problems in NP class.
The approach first involves reducing a problem in NP to a circuit satisfiability problem in a
non-traditional sense. The featured circuit not only encompasses the three very basic logical
operators: AND, OR, and NOT gates, but also includes sub-circuits capable of performing
arithmetic operations based on numerical numbers. Specifically, below are seven enhanced
circuits that can be constructed in the service, and work as nested sub-circuits:

1. AND circuit: A big AND circuit which contains x input wires and perform AND
logic.

Figure 2.1: The AND circuit.

2. OR circuit: A big OR circuit which contains x input wires and perform OR logic.

Figure 2.2: The OR circuit.
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3. Bit-Not circuit: A circuit that takes 1-bit input, and has 1-bit output, which is
the negation of the input.

Figure 2.3: The Bit-Not circuit.

4. IntegerAsCircuit circuit: This circuit encodes a non-negative integer i and returns
it in binary as a boolean circuit.

Figure 2.4: The IntegerAsCircuit circuit.

5. Sum circuit: The circuit has a list of wires representing n binary numbers as input
and it outputs the number of wires equal to the sum of those binary values.

Figure 2.5: The Sum circuit.

6. LessEquals circuit: A circuit with x+ y input wires. It checks whether the binary
number represented by the first x bits is less than or equals the binary number
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represented by the next y bits. Its output wire will be assigned a boolean value of 1
if the first binary number in x wires is less than or equal to the second binary number
in y wires, otherwise 0.

Figure 2.6: The LessEquals circuit.

7. Choose circuit: A circuit takes 1 + y input wires and uses the first input wire as
the chooser-bit to choose the rest of y bits. If the chooser-bit is assigned a boolean
value of 1, the output y wires will be the same as the y input wires; otherwise, they
will all be set to a boolean value of 0 which represents the y input wires are not been
selected.

Figure 2.7: The Choose circuit.
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All of the aforementioned circuits are fundamentally composed of AND, OR, and NOT
gates. However, their ability to perform fundamental mathematical operations significantly
simplifies the challenges posed by other problems in NP when they are reduced to the
Circuit-SAT problem.

Then, to solve the circuit that probably contains the above extra four sub-circuits,
it should be encoded into a JSON file that comprehensively includes all its information.
The server proposed in this thesis takes that JSON file as input, effectively automates the
circuit-building process, and determines its feasible solution. In chapter 3, a comprehensive
exploration is provided regarding the library employed for constructing and solving circuits
with these new features.

Before delving into the implementation details of the service, at the end of this chap-
ter, the reduction process from all Karp’s 21 NP-C Problems to Circuit-SAT Problems is
presented as an example manual to provide references for other problems in NP.

2.3 Ways of Reducing Karp’s 21 NP-C Problems to

Circuit-SAT Problems

Below is the reduction process from all of Karp’s 21 NP-complete problems to the Circuit-
SAT problem. Karp’s 21 NP-complete problems come in various forms and cover a wide
range of domains. Clients can use this as a reference to reduce their own problems in NP
to a Circuit-SAT problem. The ideas for all the reductions presented in Chapter 2.3 of this
thesis were conceived independently by the author.

Boolean satisfiability problem

The boolean satisfiability problem (also known as SAT) is in the NP-complete class, cur-
rently, there is no deterministic algorithm that can solve this problem in polynomial time in
its input. The reduction from SAT problem to Circuit-SAT problem is achieved by creating
input wires for each unique literal, and constructing AND, OR and Bit-Not sub-circuits
according to logical operators in the boolean formula.
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0–1 integer programming

A 0-1 integer programming problem refers to a list of unknown variables and a few in-
equalities constraints. Its goal is to find the extreme value for a polynomial of unknowns.
A canonical form of it is:

• maximize cTx

• subject to Ax ≤ b, x ≥ 0 and x ∈ Zn

where c ∈ Rn, b ∈ Rm are vectors and A ∈ Rm×n is a matrix.

The circuit of the reduction from 0–1 integer programming problems to Circuit-SAT
problems has k ∗ dimR(x) input wires, where k is the upper limit of the number of bits
the unknown can occupy when represented in binary. Each unknown is represented by k
input wires in binary for future calculation.

1. Ax ≤ b can be expressed as k independent equations and for every inequality, the
inequality sign can be reified into a LessEquals sub-circuit. The right-hand side
number b of the equation is been expressed as an IntegerAsCircuit and its output is
input to the LessEquals sub-circuit. As for the left-hand side, each unknown xi is
multiplied by an integer ai (since IntegerAsCircuit could only generate an integer).
This is accomplished by using a Sum sub-circuit, which takes ai elements, and then
the k wires of xi are input ai times into the Sum sub-circuit. Finally, a Sum sub-
circuit is again used to sum up all the output results of each unknown in the vector,
its output is another part of the inputs of the LessEquals sub-circuit.

2. To determine the maximum of cTx, the reduction circuit requires clients to use ex-
ternal code to control the input of an IntegerAsCircuit sub-circuit and let it generate
a target value s. According to the feedback on the relationship between the previous
target s and cTx, the maximum can be gradually approached by continuously ad-
justing the value of s. First, we can convert cTx to a sub-circuit, the step is similar
to the step above when we construct for the left-hand side of a single inequality. The
output of the sub-circuit is part of the input for a LessEquals sub-circuit, and the
other part of the input is the output of an IntegerAsCircuit for the target s, before
finding the maximum value, the value of s is determined by the code used by clients.
According to each previous return, clients code should be able to adjust s. For ex-
ample, if cTx is less than or equal to the previous target s, then the code should
increase s this turn, otherwise make it smaller.

3. An AND sub-circuit is used in the end to ensure all the constraints above are guar-
anteed.
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Clique

A reduction from clique problem to circuit-sat is as follows. Given an instance of clique
problem, ⟨G = ⟨V,E⟩, k⟩, if there exists a clique of size k for undirected graph G? A clique
V ′ is a complete subgraph of G.

Let V = {u1, . . . , un}, for every vertex, an input wire is introduced and it is set to 1 if
and only if this vertex is chosen to be included in the k-sized clique.

The constraints for the clique problem are encoded as below:

1. For two disconnected vertices {ui, uj}, their corresponding input wires are both input
to an AND sub-circuit and then the output of the AND sub-circuit is then input to a
Bit-Not sub-circuit. This is to prevent any disconnected vertices from being selected
into the clique at the same time.

2. Input all the input wires into a Sum sub-circuit. Then, two LessEquals sub-circuits
take the output wires of the Sum sub-circuit as the first and second groups of input,
respectively. The other group of input wires for these two LessEquals sub-circuits
are the output of IntegerAsCircuit for k. This is to check if the number of vertices
in the final clique is exactly k.

3. An AND sub-circuit is constructed, with the output wires of the above sub-circuits
serving as its inputs. This construction ensures that all the above constraints are
satisfied, and its output wire becomes the output wire of the whole circuit.

Set packing

Suppose the input of an instance of set packing is ⟨{S1, . . . , Sn}, X, k⟩, where collection
S = {S1, . . . , Sn} contains subsets of set X. If there exists a collection C whose size is k
or more, such that all sets in C are pairwise disjoint?

The circuit we construct has n input wires, wire i is set to 1 if and only if Si has been
chosen into collection C.

The reduction is as follows:

1. For every pair of subsets ⟨Sk, Sj⟩, where Sk ∩ Sj ̸= ∅, input the wires representing
both subsets into an AND sub-circuit. Then, input the output of the AND sub-circuit
to an OR sub-circuit.

2. An AND sub-circuit is built in the end collecting all the output of OR sub-circuits
above, and its output is the output of the final whole circuit.
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Vertex cover

A reduction from vertex cover to circuit-sat is as follows. Assume we are given an instance
of vertex cover, ⟨G = ⟨V,E⟩, k⟩, if there exists a vertex cover of size at most k for undirected
graph G? A vertex cover V ′ is a subset of V such that for all the edges uv ∈ G, u ∈ V ′∨v ∈
V ′.

Assume V = {u1, . . . , un}. Our output circuit C has n input wires {i1, . . . , in}. An
input wire is set to 1 if and only if ui is chosen to be in the vertex cover.

We encode the constraints as follows:

1. For every edge ⟨ui, uj⟩ ∈ E, at least one of them has to be in the vertex cover. So —
for every edge ⟨ui, uj⟩, an OR with ii, ij as its input is built.

2. The integer sum i1 + . . . + in ≤ k. So a Sum sub-circuit which inputs are all the
input wires to the full circuit i1, . . . , in, an IntegerAsCircuit sub-circuit for k are
constructed; and finally, a LessEquals sub-circuit is used to compare the output of
the Sum and the IntegerAsCircuit.

3. Finally, an AND sub-circuit takes all the output wires of the above two constraints
as inputs is built, and the output wire of this AND sub-circuit is the output wire of
the full circuit.

Set covering

Given an instance of a set covering problem, ⟨{S1, . . . , Sn}, U, k⟩, where S = {S1, . . . , Sn}
is a collection of subsets of union set U . If there exists a k-size (or less) set cover C, which
consists of subsets in S and the union is U? That is, if C =

{
Scj , . . . , Sck

}
, then for all

e ∈ U , ∃Scm ∈ C such that e ∈ Scm .

The circuit constructed according to set covering has n input wires, {i1, . . . , in}, and
wire ij is set to 1 if and only if the jth subset in collection S is selected into the set cover.

The encoding of constraints for this question is as follows:

1. For each subset Si ∈ S, for every missing element not included in Si, use an OR
sub-circuit to receive the group of input wires whose corresponding subset contains
the missing element. An AND sub-circuit is then built to receive the wire for the
subset Si and all the output wires of the previous OR sub-circuits. (If there is only
one subset containing the missing element, then its wire can directly input to the
AND sub-circuit of Si).
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2. Input all the wires to a Sum sub-circuit, and a LessEquals sub-circuit is built to
compare the output of the Sum sub-circuit and the output of IntegerAsCircuit for k,
to check if the size of the set cover exceeds k.

3. Finally an AND sub-circuit is built, which inputs are all the output wires above and
its output is the output of the final whole circuit.

Feedback node set

Given an instance of a feedback node set problem: ⟨G = {V,E}, k⟩, if there exist a k-size
FVS such that if all the vertices in FVS are removed, the whole graph will have no cycles.

Assume V = {u1, . . . , un}, the circuit for feedback node set problem has n input wires,
{i1, . . . , in}, and a wire ij is set to 1 if and only if the jth vertex is chosen into the FVS.
The reduction is shown below:

1. Clients should first determine all the cycles in graph G, and record every relevant
index of vertices included. Then for all the vertices in every cycle, input their wires
to an OR sub-circuit to check if at least one of them is selected to be in FVS.

2. Input all the wires to a Sum sub-circuit. The Sum sub-circuit’s output, along with
the output of an IntegerAsCircuit for k, are both input to a LessEquals sub-circuit
to check if the number of the selected vertices is less than or equal to k.

3. Finally uses an AND sub-circuit to receive all the output wires above and its output
is the output of the whole circuit.

Feedback arc set

An instance of a feedback arc set problem is ⟨G = {V,E}, k⟩, E = {e1, . . . , en}, if there is
a k-size feedback arc with a set of edges such that it would not contain any cycles if all of
its edges are removed.

Similar to above, instead of creating wires for each vertex, now create n input wires for
each edge this time. A wire is set to 1 if and only if it is selected to feedback arc set. The
reduction to Circuit-SAT problem is shown below:

1. Number all edges from 1 to n, then clients need to initially identify all the cycles
within graph G and record all relevant indices of the included edges. For each cycle,
in order to determine if at least one of the edges in it has been chosen to be in the
feedback arc set, input the wires of all edges in the circuit to an OR sub-circuit.
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2. Similarly, a Sum (receiving all the input wires) sub-circuit, a LessEquals sub-circuit
and an IntegerAsCircuit for k are used to check if the number of the selected edges
is smaller than k.

3. An AND sub-circuit whose inputs are all the output wires above is then used in the
end to check if all the above constraints are satisfied.

Directed Hamiltonian path

Directed Hamiltonian path problem is to find out if there exists a path in the directed
graph G = {V,E} which makes it possible for visiting each vertex exactly once.

Assume G = {V,E}, E = {e1, . . . , en} and V = {u1, . . . , um}, the reduced circuit
possess n input wires each represent if an edge, an input wire ij is set to 1 if and only if
its corresponding edge ej is selected into the undirected Hamiltonian path.

The reduction from directed Hamiltonian path problem to Circuit-SAT problem is
shown below:

1. To make sure no vertices are visited twice or more, for every edge ei, where ei =
⟨ua, ub⟩, ua is the source, ub is the destination, all the wires representing edges whose
destination is ua is connected to a bit-NOT sub-circuit and pass to an AND sub-
circuit.

2. To ensure all the vertices are visited, for every vertex, input all the wires whose
corresponding edges connect to it to an OR sub-circuit.

3. Pass all the inputs to a SUM sub-circuit to calculate the number of selected edges. To
verify the fact that the number of edges in Hamiltonian path in G equals the number
of vertices minus 1, the output of the SUM is input to a LessEquals sub-circuit and
the other part of its input is an IntegerAsCircuit for m− 1.

4. In the end, all the output wires above should be input to an AND sub-circuit to
guarantee all the constraints are satisfied.

Undirected Hamiltonian path

Similar to the directed Hamiltonian path problem, the undirected Hamiltonian path prob-
lem is asking if an undirected path in graph G = {V,E} exists, such that each vertex will
be visited precisely only once.
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According to the given graph G = {V,E}, E = {e1, . . . , en} and V = {u1, . . . , um}, the
circuit has n input wires, {i1, . . . , in}, each represent an edge, and an wire ij is set to 1 if
and only if edge ej is selected into the undirected Hamiltonian path.

The reduction from undirected Hamiltonian path problem to Circuit-SAT problem is
shown below:

1. Input all the input wires to a LessEquals sub-circuit to check if the number of the
selected edges in the path is exactly m − 1, m is the number of the vertices. Thus,
the other part of the input is the output of an IntegerAsCircuit sub-circuit for m.

2. For each input wire, input it to two Choose sub-circuits both as the chooser-bit (first
bit), and the rest of the input wires of the two Choose sub-circuits are the output
of two individual IntegerAsCircuit (for 1) sub-circuits. Each of the IntegerAsCircuit
sub-circuit represents a vertex to the edge connected, and in the entire whole circuit,
all Choose sub-circuits that choose to represent the same vertex need to feed their
outputs into a Sum sub-circuit. Later, the output of the Sum sub-circuit is the input
of two LessEquals sub-circuits to check if the output is less than or equal to 2 and
larger than or equal to 1.
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That is, if an edge is selected in an undirected Hamiltonian path, the two vertices it
connected will also be selected, finally by checking how many times each vertex has
been counted (x), making sure 1 ≤ x ≤ 2, then it is guaranteed that every vertex will
only be visited once (only the start and end vertex will be counted once and others
will be counted twice).

3. In the end, an AND sub-circuit is constructed whose input is all the output wires
above, this is to make sure all the above constraints are satisfied.

Satisfiability with at most 3 literals per clause

3-SAT problem is also NP-complete, which formula contains 3 literals in every clause.

Similar to the original SAT problem, when solving 3-SAT problems by using the circuit
solver, the input should be in accordance with the input of the formula, and each unknown
variable is assigned to an input wire. The construction of the circuit sub-circuits should
be aligned with the connection order between the operators in the formula.
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Graph Coloring Problem (Chromatic number)

Assume our input is an instance of graph colouring problem ⟨G = ⟨V,E⟩, k⟩, and ask if
there is a way/function c(·) of labelling k colours to all vertices such that no two vertices
connecting by an edge share the same colour, c(u) ̸= c(v) for ∀(u, v) ∈ E.

Let V = {u1, . . . , un}, for every vertex um, construct k input wires, {im,1, . . . , im,k}. A
wire im,j is set to 1 if and only if um is set to the jth color.

We encode the constraints as follows:

1. For every k input wire constructed according to a vertex, use a Sum sub-circuit to
calculate their sum value, checking if it is equal to 1 since each vertex should be and
only be assigned to one type of colour. Input both the output of the Sum sub-circuit
and the output of an IntegerAsCircuit for 1 to two LessEquals sub-circuits to check
if they are the same.

Sum

xi,k

xi,2

xi,1

...

IntegerAsCircuit(1)

LessEquals

LessEquals

...

...

...

2. For every edge ⟨u, v⟩, check input wires {iu,j, iv,j} for all j ∈ k by inputting them to
an AND sub-circuit and concatenate the AND with an OR sub-circuit, to make sure
not assigning vertex u and v to the same colour.

AND NOT

xi,z

xj,z

3. An AND sub-circuit of the output wires of the above sub-circuits is constructed in
the end to make sure all the above constraints are satisfied, whose output wire is the
output wire of the full circuit.
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Clique cover

Assume the input of clique cover is ⟨G = {V,E}, k⟩, if there exists a way of partitioning
all the vertices V in the graph G into k cliques. Suppose V = {u1, . . . , un}, the circuit we
built has n ∗ k input wires. Wire ij,a, j ∈ {1, . . . , n} and a ∈ {1, . . . , k}, is set to 1 if and
only if decide to categorize the jth vertex into the ath clique.

The reduction from the clique problem to Circuit-SAT problem is as follows:

1. For each vertex, input its k wires into a Sum sub-circuit. Input its output and the
output of an IntegerAsCircuit for 1 to two LessEquals sub-circuits to check if they
are the same. This is to guarantee the constraint that one vertex should only be
grouped into one clique.

2. For every two vertices which are not connected, they can not be put into the same
clique. Thus, for ∀(u, v) and (u, v) /∈ E, input k pairs of wires iu,a and iv,a, a ∈
{1, . . . , k}, into an AND sub-circuit and then concatenate its output to a Bit-Not
sub-circuit.

3. Inputs all the output wires above to an AND sub-circuit in the end, this is to make
sure all the constraints above are satisfied at the same time.

Exact cover

Suppose our input is ⟨{S1, . . . , Sn}, X⟩, where collection set S = {S1, . . . , Sn} contains
subsets of set X. If there exists a subcollection S∗ of S whose size is k, such that every
item in U is contained and only contained once in S∗. Our full circuit has n input wires
i1, . . . , in where the wire ij is set to 1 if and only if Sj is in the exact cover.

We encode the constraints as follows:

1. For each pair Sj, Sk that is chosen to be in our solution, we ensure that their inter-
section is empty.

That is, for each pair of input wires ij, ik, which have the property Sj ∩ Sk ̸= ∅, we
create an AND sub-circuit with ij and ik as the inputs and then place a Bit-Not
sub-circuit directly after its output.

2. For each member x ∈ X, an OR sub-circuit is built, whose inputs ik1 , . . . , ikq are
all the input wires to the full circuit which corresponding subset contains element x,
where x ∈ {Sk1 ∩ . . . ∩ Skq}.
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3. An AND sub-circuit of the output wires above is constructed in the end to make sure
all the above constraints are satisfied, whose output wire is the output wire of the
full circuit.

Hitting set / Set cover problem

Given a set S = {S1, . . . , Sn}, a universal set U , and an integer k, where S is a collection
of subsets of U , and S1 ∪ . . . ∪ Sn = U . If there exists a k-size hitting set H, which is a
subset of U , such that for every collection Si ∈ S, the number of items shared by H and
Si is only 1, |H ∩ S| = 1.

Steiner tree

Given an instance of a Steiner tree problem in an undirected graph, {G = ⟨E, V ⟩, T, k},
V = {u1, . . . , un} and E = {e1, . . . , em}, with non-negative edges w(ei) ≥ 0. The terminal
vertex set T is a subset of vertices of set V , and k ∈ Z. Is there a tree H =

〈
E

′
, V

′〉
, which

is a subgraph of G, such that T ⊆ V
′
and the weight of the tree w(H) ≤ k.

The circuit has m inputs for each edge, and an input wire is set to 1 if and only if the
edge is selected into the tree. The reduction from this problem to Circuit-SAT problem is
shown below:

1. To check that all the vertices in the terminal set are included, for every vertex uk ∈ T ,
all the edges connected to it are passed to an OR sub-circuit. This is used to ensure
that at least one of the edges is chosen, and the vertex is in the final output tree H.

2. To ensure all the vertices in H are connected, for each pair of vertices {ui, uj} (ui ∈ T
and uj ∈ T ), clients should record all the possible pass connecting ui ∈ T and uj ∈ T .
For every possible path, use an AND sub-circuit to receive all the input of edges
included. Finally, the output of the AND for each path should then be input to a
SUM sub-circuit, this is to calculate how many paths are there between ui ∈ T and
uj ∈ T . The output of the SUM will be input to a LessEquals sub-circuit, the other
part of the LessEquals input is the output of an IntegerAsCircuit for value 1. This
is to make sure there exists only one path between two vertices in the tree H and
prevent cycles.

3. Every input wire is passed to a Choose sub-circuit as the chooser bit, and the other
input is the output of an IntegerAsCircuit for the weight of that edge. The output
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of all the Choose sub-circuits is input to a Sum sub-circuit to calculate the sum
of the weight of selected edges. Then the output of the Sum sub-circuit and an
IntegerAsCircuit for k is compared, and both are input to a LessEquals sub-circuit.

4. An AND sub-circuit is used to take all the sub-circuit output above as input to ensure
those constraints are satisfied. Its output is the final output of the entire circuit.

3-dimensional matching

Given a 3-dimensional matching (3DM) problem denotes as {X, Y, Z, T, k}, where set X,
Y and Z are three finite sets with no sharing elements, and set T = X × Y × Z, that
is, T = {t1, . . . , ts}, ti = ⟨xi, yi, zi⟩ where xi ∈ X, yi ∈ Y and zi ∈ Z. A 3-dimensional
matching M , M ⊆ T , holds the property that for ∀ti ̸= tj, ti ∈ M , tj ∈ M , and ti =
⟨xi, yi, zi⟩, tj = ⟨xj, yj, zj⟩, such that xi ̸= xj, yi ̸= yj, and zi ̸= zj. If the size of the given
3DM is larger or equal to k?

The circuit for 3DM problem contains s inputs {i1, . . . , is} where s is the size of the
set T . A wire ij is set to 1 if and only if the jth element in T is selected into set M . The
reduction from 3DM problem to Circuit-SAT problem is shown below:

1. For each pair of subset ⟨ti, tj⟩, both ti and tj ∈ T , if they contain any common
elements, for example, xi = xj or yi = yj or zi = zj, then pass the ith and jth input
wires into an AND sub-circuit and then the output of the AND sub-circuit should
then pass to an OR sub-circuit. This is to make sure any two triples with no empty
intersection should not be selected into a 3DM at the same time.

2. A LessEquals sub-circuit is used to compare the number of elements in M with k.
One part of its input is the output of an IntegerAsCircuit sub-circuit for k, and
another part of the input is the output wires of a Sum sub-circuit. The Sum takes
all s input wires into it and figures out how many of them are chosen.

3. Finally to guarantee all the constrains above, an AND sub-circuit is used to accept all
the sub-circuits output wires, and its output is the final output of the whole circuit.

Knapsack

Following is the reduction from Knapsack to Circuit-SAT. Assume there are n values each
has value: {v1, . . . , vn}, and the weight of each item is given: {w1, . . . , xn}. Now by picking
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items into a knapsack, which has a limit to the weight of the picked items W , ask what is
the maximum value it can carry.

The problem can be solved by using binary search on the final possible values. Every
time after deciding the value V , we encode the constraints:

Build a circuit with n input wires, {i1, . . . , in}, the wire is set to 1 if and only if this
item is selected to be placed in the knapsack.

1. Connect each input wire ij to a Choose sub-circuit, meanwhile, the other input of
the Choose sub-circuit is the output of IntegerAsCircuit for wj. Then concatenate
all Choose outputs into a Sum, later the output wires of the Sum and another Inte-
gerAsCircuit for W are both input to a LessEquals sub-circuits to check if the weight
of the selected items exceeds the limit W .

2. Similarly, as for checking the value, connect each input wire ij to a Choose sub-
circuit, meanwhile, the other input of the Choose is the output of IntegerAsCircuit
for vj. Then concatenate all Choose outputs into a Sum, later the output wires of the
Sum and another IntegerAsCircuit for V are both input to a LessEquals sub-circuit
to check if the expected value V is less than or equal to the sum of the picked items.

3. Finally an AND sub-circuit is built, which inputs are all the output wires of the
above constraints and its output is the output of the final whole circuit.

Job sequencing

A description of job-shop scheduling problems: given two finite sets M = {M1, . . . ,Mm}
(for machines) and J = {J1, . . . , Jn} (for jobs), where there are m machines in the pro-
cessing system, and n jobs are required to be processed. For each Ji, there is a list
Li = [(Mord1 , tord1), (Mord2 , tord2), . . . , (Mordm , tordm)] assigned to it to describe in what or-
der Ji should be completed on different machines including its corresponding time, and
L = [L1, . . . , Ln]. Every job here needs to go through all machines to be processed. Be-
sides, each job must be processed in the order of the process. The task of scheduling
is to arrange the processing, scheduling and sorting of all jobs, so that the performance
indicators can be optimized while the constraints are met.

There are four constraints that should be considered:

1. One machine can only process at most one job at a certain time.
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2. A job cannot appear on multiple machines at the same time (it can only work on one
machine).

3. Each job can only be processed once on one machine.

4. For each job, every process is carried out on a specific machine, and the subsequent
process may only begin until the preceding process is finished.

An instance of job-shop scheduling problem is given {M,J, L, k}, if there exists a way
of arranging all the jobs so that the final finish time is within k. The reduction of job
sequencing problem to Circuit-SAT problem is shown below.

The circuit holds m× n× t inputs, where t is the sum of time for all jobs to complete
on every different machine. An input wire Mk Ji Tx (k ∈ [1, . . . ,m], i ∈ [1, . . . , n] and
x ∈ [0, . . . , t]) is set to 1 if and only if decide to make machine Mk process job Ji in time
slot Tx. The worst arrangement is to let jobs from J1 to Jn be completed in order, and it
takes t times. Assume the overall time axis is divided into t segments, here the time slot
Tx denotes the xth slot from the jobs start.

1. First, to make sure every machine can only process at most one job at a time slot, so
for every machine k ∈ [1, . . . ,m] and every time slot x ∈ [0, . . . , t], a Sum sub-circuit
is used to take all the wires of {Mk J1 Tx,Mk J2 Tx, . . . ,Mk Jn Tx} as inputs and
its output are passed to a LessEquals sub-circuit to check if for machine Mk at time
x there is only one or even no job is processing.

2. Second, in order to ensure that the same job cannot appear in more than two job-
shops at the same time, for every job i ∈ [1, . . . , n] and every time slot x ∈ [0, . . . , t],
each pair of ⟨Ma Ji Tx,Mb Ji Tx⟩ (a ̸= b and a, b ∈ [1, . . . ,m]) needs an AND sub-
circuit which concatenates with an OR to guarantee these two inputs are equal at
the same time.

3. Third, to guarantee each job should be processed and only be processed once in
each machine, the number of time slots occupied by a job should be continued and
equal to the provided duration. Thus, for every machine k ∈ [1, . . . ,m] and every
job i ∈ [1, . . . , n], the given required working time r is Li[k][1]; then all input wires
{Mk Ji T1,Mk Ji T2, . . . ,Mk Ji Tt} should pass to a Sum sub-circuit and determine
if the total working time duration is r. Besides, for every consecutive r group of input
wires in {Mk Ji T1,Mk Ji T2, . . . ,Mk Ji Tt}, input each group of wires into AND
sub-circuits, the outputs of all the AND sub-circuits are passed to an OR sub-circuit.
This is to make sure a job does not stop during processing.
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4. Fourth, to make sure the final decision sequence is in alignment with the given or-
der of each job, for every job i ∈ [1, . . . , n], get the sequence of the required pro-
cessing machines seqi = [Mord1 ,Mord2 , . . . ,Mordm ], from the second machine Mord2 ,
check if the previous machine has this job occupied for the corresponding required
time long. By following the above sub-circuit, once a group of consecutive wires
{Mk Ji Tx,Mk Ji Tx+1, . . . ,Mk Ji Tx+r} are set to 1, check if the number of ”1’s”
in the input wires {Mk−1 Ji T0,Mk−1 Ji T1, . . . ,Mk−1 Ji Tx−1} is the same as the
required processing time for the previous machine and the same job Ji.

5. Finally, an AND sub-circuit is built to accept all the output wires above, and its
output is the output of the whole circuit.

Partition

Given an instance of partition problem S, where S is a multi-set of positive integers. If
the set S can be partitioned into two sets S1 and S2, and the sum of all the elements in S1

equals the sum of all the elements in set S2.

Assume S = {s1, . . . , sn}, there are n elements in it. The circuit for the partition
question has n input wires, and an input wire ij is set to 1 if and only if the jth elements
are selected into set S1.

The reduction of the constraints of partition problems is as follows:

1. Every input wire ij (j ∈ [1, . . . , n]) is set as a chooser wire of a Choose sub-circuit,
and the other part of the Choose sub-circuit is the output of IntegerAsCircuit sub-
circuit for the value of the ith element in S. Then all the output wires of Choose
sub-circuits then pass to a Sum sub-circuit to get the summation. Assume the sum
of all the elements in S is T . Later the output of IntegerAsCircuit sub-circuit for
T/2 and the output of the Sum sub-circuit are input to two LessEquals sub-circuits
with different orders and check if they are the same.

Max cut

Given a max cut problem G = ⟨E, V ⟩, where V = ⟨u1, . . . , un⟩ and E = ⟨e1, . . . , em⟩. If
there exists a subset of vertex S1 such that the number of edges of connecting set S1 and
its complementary subset S2 reaches its maximum. S1

⋂
S2 = ∅ and S1

⋃
S2 = S.

36



The corresponding circuit should be capable to check if the number of edges connecting
S1 and S2 equals some integer k. Then every time by changing the number of k, we can
finally reach its maximum.

The circuit for the above sub-question has n input wires where n is the number of
vertices. A wire ij is set to 1 if and only if the jth vertex is selected into set S1.

Below is the reduction of the above sub-question to a Circuit-SAT problem.

1. For every edge ei = ⟨uj, uk⟩ in G, input the two corresponding wires for uj and uk into
a XOR sub-circuit. An off-the-shelf XOR sub-circuit can be used, or built by using
combinations of AND, OR, and Bit-Not sub-circuits. The outputs of all the XOR
sub-circuits are then passed to a Sum sub-circuit, which represents the number/sum
of the edges connecting two sets. Then similarly, the output of IntegerAsCircuit
sub-circuit for k and the output of the Sum sub-circuit are passed to two LessEquals
sub-circuits with different orders to check if the number is equal to k.

Since k ∈ [0, . . . ,m] (E = ⟨e1, . . . , em⟩), to find the maximization, if the current selec-
tion k is unsatisfiable, then the k for next try can be set to k/2; and if the current selection
k is satisfiable, the program can try k = (k +m)/2 for the next term until we reach the
max border.
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Chapter 3

The Circuit Construction Service

The service proposed has versatile applications across various domains, due to the enhanced
convenience in constructing sub-circuits involving digital-related operations compared to
traditional circuits that only consist of AND, OR, and NOT gates, the service supported
in this thesis can be applied to solve a wider range of problems, ranging from resource
allocation, program scheduling to path selection and beyond.

To solve a problem in NP, once it is reduced to the Circuit-SAT problem which may
include the enhanced sub-circuits introduced in Chapter 2.2, the proposed circuit construc-
tion service can be utilized to address it. The process involves several steps: firstly, clients
should format the circuit to be built in JSON and pass it to the service, allowing the Circuit
Construction Service to decode and retrieve the circuit’s pertinent details. Secondly, the
Circuit Construction Service utilizes the circuit library to construct and solve the circuit,
and if a circuit is satisfiable, a certificate will be provided alongside the solution. Lastly,
once the user receives the answer, they can deduce the final result according to the reduc-
tion process. By following these steps, the circuit construction service enables efficient and
professional circuit-solving capabilities.

All the steps mentioned above are presented thoroughly in chapter 3 along with sev-
eral examples. Besides, the service is deployed on AWS Lambda, a serverless computing
platform provided by Amazon Web Services, which eliminates the need to consider server
provisioning and maintenance during the deployment process and make responses to in-
coming requests. The deployment details are elaborated at the end of this chapter.
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3.1 Main Components

3.1.1 JSON Encoding of a Circuit

Before constructing a circuit, it is essential to establish a standardized expression format
for circuits that can be parsed by the service. In this thesis, JavaScript Object Notation
(JSON) is used as the input format for the service, which encompasses all the information
about the circuit to be constructed. After receiving a JSON encoding of a circuit, the
input is parsed during the initial phase of the service’s construction process.

JSON is a lightweight and widely adopted data interchange format used for storing and
representing structured data. It employs name/value pairs as the fundamental building
blocks to store information. JSON’s popularity stems from its simplicity and efficiency
in transmitting data between servers. Its flexibility and language independence enable
seamless parsing and generation across multiple programming languages, making it excep-
tionally versatile and widely utilized in various industries.

JSON exhibits a straightforward and intuitive syntax characterized by name/value pairs
enclosed in curly braces and separated by commas. The syntax of JSON originates from
the syntax used for JavaScript objects, which holds the following properties [1]:

• JSON object is presented within curly braces, which consists of a collection of name/-
value pairs separated by commas.

• Array holds organized sequences of values and is enclosed within square brackets.

• The value of JSON data could be a string (enclosed in double quotes), a number, a
boolean (true or false), null, or even nested objects.

The versatility of the values enables JSON to represent intricate data structures and
facilitate effortless information interpretation and communication across a wide range of
platforms. Below is a short code snippet depicting a JSON object for a game:

Listing 3.1: A JSON object for a game.

1 {

2 "game": "The Legend of Zelda: Breath of the Wild",

3 "releaseYear": 2017,

4 "platforms": ["Nintendo Switch", "Wii U"],

5 "publisher": "Nintendo",

6 "is3D": true

7 }
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The JSON format of a circuit that the server can parse has the following characteristics:

1. Each JSON encoding is specifically designed to store a single circuit.

2. The initial name within the JSON object is labeled as “InputWire”, serving to indi-
cate the number of input wires connected to the circuit and the corresponding value
for this name should be an integer.

3. The subsequent name, “Gates”, is responsible for preserving the precise intercon-
nections present within the circuit. Its value holds a list of sub-circuits, with each
sub-circuit being an autonomous JSON object consisting of five name/value pairs in-
cluding “ID”, “Type”, “Input”, “Output” and “Info”, which collectively encompass
essential information regarding the sub-circuits identification, type, input connec-
tions, output connections, and additional details.

As for a sub-circuit, the name/value pairs in the JSON object are described as follows:

1. ID: In a circuit, each input wire and sub-circuit is assigned a unique ID. Starting
from ID=1, all input wires are assigned IDs in sequential order. For example, if there
are 4 input wires, each input wire should receive a distinct ID ranging from 1 to
4. The IDs for each sub-circuit are assigned sequentially after the number of input
wires. Using the previous example, all sub-circuits should be assigned non-repeating
IDs greater than 4. Besides, the value here should only be a number.

2. Type: The “Type” field simply denotes the type of a sub-circuit, and its corre-
sponding value is a string chosen from the following options: “And”, “Or”, “BitNot”,
“LessEquals”, “IntegerAsCircuit”, “Sum”, and “Choose”.

3. Input: The value of the “Input” name for a sub-circuit is a list of sub-circuit IDs,
and if there are no input wires towards it, it keeps empty. The IDs in it represent the
sub-circuits whose outputs serve as inputs to the current sub-circuit. Additionally,
the order of the IDs in the input gate list corresponds to the construction order of
the current sub-circuit. For instance, for sub-circuits such as LessEquals and Sum
where the input order matters, the gate associated with the first ID in the input ID
list establishes its outputs as the initial group of inputs for the current sub-circuit.
This pattern continues with the subsequent IDs in the list, dictating the input order
for subsequent groups within the sub-circuit.

4. Output: The value of the “Output” name for a sub-circuit is a list of sub-circuit
IDs, and if its output is the one output wire for the whole circuit, it remains empty.
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The IDs in the list represent the sub-circuits whose inputs serve as outputs to the
current sub-circuit.

5. Info: The “Info” name is initialized as −1 by default for all types of sub-circuits,
except for the IntegerAsCircuit. The IntegerAsCircuit sub-circuit requires a posi-
tive integer as input and generates the corresponding binary representation of that.
Therefore, the value of the “Info” name for the IntegerAsCircuit sub-circuit is the
intended number to be generated.

Below is an example of a circuit encoding in JSON format, which takes 3 wires as
input and contains two AND sub-circuits and an OR sub-circuit. The output of the AND
sub-circuit with ID=6 is the output of the entire circuit.

Figure 3.1: An example circuit.
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Listing 3.2: A JSON object for the circuit in figure 3.1.

1 {

2 "InputWire": 3,

3 "Gates": [

4 {"ID": 4,

5 "Type": "And",

6 "Input": [1,2],

7 "Output": [6],

8 "Info": -1},

9 {"ID": 5,

10 "Type": "Or",

11 "Input": [2,3],

12 "Output": [6],

13 "Info": -1},

14 {"ID": 6,

15 "Type": "And",

16 "Input": [4,5],

17 "Output": [],

18 "Info": -1}

19 ]

20 }

3.1.2 Circuit Library

Circuit-SAT Library Circuit-SAT Library was designed and developed by my supervisor
Mahesh Tripunitara, which provides multiple functions for building and solving an instance
for a Circuit-SAT problem. In chapter 2.2, four new sub-circuits are introduced along
with their specific functions and features. In this thesis, these mentioned sub-circuits are
treated as black boxes, emphasizing solely their inputs, outputs, and operations. While
these sub-circuits are primarily constructed using AND, OR, and NOT gates, their intricate
implementation intricacies are beyond the preview of this thesis.

The circuit library offers functionalities for manipulating the Circuit object, which
contains nested classes Circuit.Gate, Circuit.GateType, and Circuit.Wire. In the context
of the Circuit-SAT problem, a wire refers to an instantiation of the Circuit.Wire class,
and a gate refers to an instantiation of the Circuit.Gate class. The GateType class is
an enumeration type designed to represent various types of logic gates. It provides a
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set of enum constants, including AND, OR, and NOT, which can be utilized within the
construction function Gate(Circuit.GateType t, Circuit.Wire[] in, Circuit.Wire out) of the
Circuit.Gate class. The Circuit.Wire and Circuit.Gate classes both have a common method
getId() which allows retrieving their respective IDs within a circuit. Additionally, the
getInputTo() and getOutputOf() methods of the Circuit.Wire class provide access to the
two Circuit.Gate objects that an instantiated Circuit.Wire object is connected to. On
the other hand, the getInputs() and getOutput() methods of the Circuit.Gate class allow
obtaining the input wire list and output wire list, respectively, for an instantiated gate
object.

The fields of the Circuit class encompass the collections of gates, inputs, outputs, and
wires. The gate field represents the set of all instantiated gate objects contained within a
Circuit object; similarly, the wire field represents the set of all instantiated Circuit.Wire
objects. Besides, The inputs and outputs fields respectively represent the input wire list
and output wire list of a Circuit object. Besides, the Circuit class also offers a variety of
methods that can be applied to instantiated objects to modify the internal circuit structure.

• resetIDs(): This Application Programming Interface (API) needs to be called to
update the cache in the library before every new circuit is built.

• Circuit(): The constructor function, by utilizing it to instantiate objects, the re-
sulting instances represent the Circuit-SAT problem to be solved.

• union(Circuit c): Accept another circuit, denoted as c, as an input and perform
a union operation with the Circuit object that invokes the union() function. As a
result, the invoking circuit then becomes the final union circuit. The inputs of the
c circuit are added as inputs of the invoking circuit, and the same applies to the
outputs. Please be aware that this routine does not verify the uniqueness of IDs or
any other constraints, and it simply performs a basic union operation.

• getInputs(): Return a list of the input wires of the Circuit object that invokes the
getInputs() function.

• getOutputs(): Return a list of the output wires of the Circuit object that invokes
the getOutputs() function.

• fuse(Circuit.Wire p, Circuit.Wire t): Fuse wires p and t together to merge them
into a single wire. This operation is commonly used to connect the output wire of one
(sub-)circuit to the input wire of another (sub-)circuit, and the fused wire is returned
as the result. It is important to note that the argument p represents the “permanent”
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wire that will be retained, while the argument t represents the “throw-away” wire
that will be discarded.

• removeAsInput(Circuit.Wire w): Take the wire w (which should be in the input
wire list) and remove it from the input wire list. This function is usually called
before the fuse() method, since in most cases, it is of high necessity to first remove
the Circuit.Wire object from the input wire list of a Circuit before fusing it with
another wire.

• removeAsOutput(Circuit.Wire w): Take the wire w (which should be in the
output wire list) and remove it from the output wire list. This function is usually
called before the fuse() method, since in most cases, it is of high necessity to first
remove the Circuit.Wire object from the output wire list of a Circuit before fusing
it with another wire.

Moreover, the Circuit class has sub-classes: BigAndOr, BitNot, Choose, IntegerAsCir-
cuit, LessEquals, Sum, etc., and the objects generated by instantiating these sub-classes
represent sub-circuits with the corresponding functionalities, and these sub-classes also
inherit the aforementioned methods from their parent class.

• BigAndOr(boolean isOr, int nInputWires): Create a big AND or OR circuit
based on the provided parameters. The first argument, a boolean value, determines
whether an OR gate should be created (isOr = true) or an AND gate should be
created (isOr = false). The second argument, nInputWires, specifies the number of
input wires for the sub-circuit. For instance, if nInputWires is equal to 2, only one
gate will be generated as the sub-circuit since each AND and OR gate requires two
inputs. If nInputWires is set to 4, the resulting circuit will consist of three gates.
The number of output wires in the sub-circuit is always 1 as usual.

• BitNot(): Create a circuit that takes 1-bit input, and has 1-bit output, which is the
negation of the input.

• Choose(int y): Construct a circuit to select (or not select) the specified y bits. In
a Choose circuit, the first input wire represents the chooser bit, followed by the rest
y input wires. Therefore, the total number of input wires is equal to 1 + y, and the
circuit’s output consists of y wires. If the first chooser bit is set to 1, the Choose
circuit will select the y input wires, and the output of the circuit will be the same
as the selected y wires. On the other hand, if the first chooser bit is set to 0, the y
wires will not be selected, and all output bits will be assigned a boolean value of 0.
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• IntegerAsCircuit(int i): Encode and return the non-negative integer i in binary
as a boolean circuit.

• LessEquals(int x, int y): Return a circuit with x+y input wires. The circuit
compares whether the binary number represented by the first x bits is less than or
equal to the binary number represented by the next y bits. If this comparison holds
true, the output wire will be assigned a boolean value of 1; otherwise, it will be
assigned a value of 0.

• Sum(java.util.List<java.lang.Integer> x): Return a circuit that has the number
of input wires equal to the sum of integer values in x. The input is to be perceived
as |x| binary numbers, and the circuit represents the sum of those binary numbers.
Thus, the number of output wires of the circuit is at most log2|x| + maxix, where
maxix is the largest integer value in x.

For example, the subsequent code snippet depicts the functions employed in the con-
struction of a circuit c and an OR gate (which has 2 inputs) in it, with an assumption that
the output of the OR gate is not the final output of circuit c.

Listing 3.3: Define a new circuit c and an OR gate.

1 public static String ConstructCitcuitC() {

2 // Define a new circuit c.

3 Circuit.resetIDs()

4 Circuit c = new Circuit()

5

6 // Build an OR gate with 2 inputs.

7 Circuit firstOR = new BigAndOr(true, 2)

8 // Union the OR gate with circuit c.

9 c.union(firstOR)

10 // Remove the OR gate output wires form the circuit’s output.

11 c.removeAsOutput(firstOR.getOutput.get(0)

12 ...

13 }

The following code describes the statements used for solving the Circuit-SAT prob-
lem based on circuit c. After the cnf.dimacs file is generated by calling function cnfSat-
ToFile(Circuit c, java.lang.String loc), the service uses SAT4J, which is a Java library for
solving CNF-SAT problems, to solve the CNF-SAT problem in file cnf.dimacs.
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The CircuitUtils class in the circuit library provides functions for reducing the Circuit-
SAT problem represented by circuit c to a CNF-Satisfiability problem. Once a circuit is
constructed, the cnfSatToFile(Circuit c, java.lang.String loc) method is used to convert the
circuit c to a one-output CNF-Satisfiability problem and stores the formula in a DIMACS
format file1.

During the process of reducing a Circuit-SAT problem according to the circuit c to a
boolean satisfiability problem, all the input wires in c are mapped to the literals in the
SAT problem in the order. For example, if there are 10 input wires to c, the reduced
CNF formula will contain 10 literals x1, x2, . . . , x10 as well, which correspond to those 10
input wires in order. On the other hand, if the CNF formula is satisfiable, the boolean
assignments to the first 10 literals given by SAT solver are the assignments to the 10 input
wires of the original circuit c.

1The DIMACS format file employs the standardized DIMACS format to store the CNF formula, which
can be parsed and solved by SAT solvers. In this paper, it stores the CNF formula resulting from the
reduction from the Circuit-SAT encoded in the JSON input received by the service.
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Listing 3.4: Solve the Circuit-SAT problem.

1 // Import the external libraries SAT4J for future access.

2 import org.sat4j.specs.ISolver;

3 import org.sat4j.minisat.SolverFactory;

4 import org.sat4j.reader.Reader;

5 import org.sat4j.reader.DimacsReader;

6

7 public static String ConstructCitcuitC() {

8 ...

9 // Convert circuit c, a Circuit-SAT problem, into a CNF-Satisfiability

problem in DIMACS.

10 CircuitUtils.cnfSatToFile(c, "cnf.dimacs");

11

12 // Use SAT4J solver to solve the generated boolean SAT problem.

13 ISolver solver = SolverFactory.newDefault();

14 solver.setTimeout(3600);

15 Reader reader = new DimacsReader(solver);

16 reader.parseInstance("cnf.dimacs");

17

18 // ISolver object holds method isSatisfiable() to check if the problem

is satisfiable.

19 if (solver.isSatisfiable()) {

20 int[] solution = solver.model();

21 return = "Solution found: " + Arrays.toString(solution);

22 } else {

23 return "Unsatisfiable!";

24 }

25 }

3.1.3 Working Principle

This service, upon receiving the JSON-encoded representation of a circuit, leverages the
circuit library introduced in the previous section (chapter 3.1.2) to construct the circuit.
Firstly, during the process of parsing the original input’s string-formatted circuit infor-
mation, the service utilizes the JSONObject.fromObject() function to instantiate the input
content as a JSONObject object. Subsequently, the service can invoke the built-in func-
tions of the JSONObject object in Java to extract the contents of relevant values based on
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the name’s type. Finally, through the parsing of the input circuit, each sub-circuit in the
list associated with the “Gates” name in the original input is instantiated as a Gate object.
The Gate2 class is a newly defined internal class within the service, facilitating convenient
access to the circuit information being constructed. Each Gate object encompasses five
attributes:

• id, corresponds to the name “ID” in the JSON encoding3 of each sub-circuit.

• type, corresponds to the name “Type” in the JSON encoding of each sub-circuit.

• input id list, corresponds to the name “Input” in the JSON encoding of each sub-
circuit.

• output id list, corresponds to the name “Output” in the JSON encoding of each sub-
circuit.

• info num, corresponds to the name “Info” in the JSON encoding of each sub-circuit.

Specifically, a Gate object is instantiated based on the information within a sub-circuit’s
JSON encoding. The instantiated attributes such as “id”, “type”, and “info num” corre-
spond to the values of the “ID”, “Type”, and “Info” of the respective sub-circuit. The
“input id list” and “output id list” attributes of the Gate object keep track of the IDs of
the other sub-circuits connected to it in the input and output directions respectively.

After obtaining all the sub-circuit information within a circuit, to ensure the accuracy of
subsequent computations, the service first performs error checking on all the generatedGate
objects, including but not limited to verifying that their id attributes are unique positive
integers and that the content of the type attribute belongs to the range of sub-circuit
types provided by the circuit library. Additionally, specific error checks are performed for
different types of Gate objects. For example, for all Gate objects with a type equal to
LessEquals, their input id list can only contain two integers. For all objects with a type
equal to IntegerAsCircuit, their info num attribute must be a non-negative integer, and
the input id list must be an empty list.

The service also performs overall validity checks on the circuit. For instance, the circuit
composed of all generated Gate objects must have one and only one output wire, meaning

2Please note that the term “Gate” is used as a class name in the code, and each instantiated Gate
object is responsible for storing information about a sub-circuit. Here, “Gate” is not referring to the logic
gates introduced in chapter 1, but rather to sub-circuits presented in chapter 2, which perform specific
logical or mathematical operations.

3The JSON encoding of a sub-circuit is described in chapter 3.1.1
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that there should be only one Gate object whose input id list is an empty list. The match-
ing of input and output relationships among Gate objects is also included in the scope of
the checks. If Gate A’s input id list contains the ID of Gate B, Gate B’s output id list
must also include the ID of Gate A.

Once the service completes the error checking process, which includes but is not limited
to the aforementioned checks, it proceeds to classify all the sub-circuits to be constructed
into a regular group and a special group based on their types. The regular group includes
sub-circuits such as AND, OR, Bit-Not, and IntegerAsCircuit, which the number of input
wires could be determined based on its list of input IDs. For example, when constructing
an AND sub-circuit, the number of input wires can be determined based on the input id list
attribute of the corresponding instantiated Gate object, allowing the construction of that
AND sub-circuit. A special group consists of sub-circuits with unknown specific numbers
of input wires, such as Choose, LessEquals, and Sum. For instance, when constructing a
LessEquals sub-circuit, two exact numbers x and y are needed for the construction function,
and x and y are both the number of wires that a binary representation of a number contains,
so it is not possible to determine the exact number of wires included in each input solely
based on two IDs in its input id list.

To construct the final circuit, the function first instantiates a Circuit object, c, by calling
the constructor of the Circuit class from the circuit library. Then, add the corresponding
number of input wires to the circuit according to the required quantity. A tracking list
is used to record the constructed sub-circuits and their corresponding IDs. To ensure
subsequent retrieval and other operations related to the stored sub-circuits in this thesis,
a new class named CircuitID has been introduced. This class comprises three attributes:

• the ID of a sub-circuit

• the actual sub-circuit itself

• the count of input wires already fused for that sub-circuit’s input terminal (set to 0
by default).

After creating each sub-circuit, an instance of the CircuitID object is instantiated based
on its ID and stored in the tracking list. Next, traverse all the Gate objects that need to be
built, the corresponding sub-circuits belonging to the normal group are constructed first.
The number of input wires for each sub-circuit is determined by parsing the input id list
of its corresponding Gate object, and the sub-circuit is instantiated accordingly. Then,
the newly instantiated sub-circuit is merged with the circuit c using the union() function.
Based on its input id list and output id list, the decision is made whether to use the re-
moveAsInput() and removeAsOutput() functions remove the input and output wires of the
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new sub-circuit from the input and output wires of the circuit c. In addition, wire fusion
within circuit c will be conducted after all the sub-circuits are constructed. In the end,
the CircuitID object instantiated according to the newly constructed sub-circuit is added
to the tracking list.

As for constructing the sub-circuit in the special group, the service utilizes a while loop
to perform the following operations as long as the length of the tracking list is less than
the number of sub-circuits to be constructed. The service iterates through all the sub-
circuits awaiting construction, and for every sub-circuits belonging to the special group, it
first checks if all its source sub-circuits, identified by whether the sub-circuit ID is in the
input id list or not, have already been constructed (i.e., present in the tracking list). If
all the source sub-circuits have been built, the service accesses them from the tracking list
to obtain the output wire count of their corresponding circuits. However, if there are IDs
in the input id list that correspond to sub-circuits not yet constructed (i.e., not present
in the tracking list), the service will skip those particular special sub-circuits and try to
instantiate them in the next iteration of the while loop. Through repeated iterations of
the while loop, the circuit is gradually constructed step by step, starting from the input
direction and progressing toward the output direction.

After all the sub-circuits have been constructed and unioned with the final circuit c,
the service proceeds to fuse the input and output wires between all the sub-circuits. By
iterating through the tracking list generated in the previous step, which records all the
completed sub-circuits, for each sub-circuit, the service again traverses the input id list
attribute of its corresponding Gate object. It fuses each output wire of the sub-circuit
associated with every ID in the input id list with the input wire of that sub-circuit in
sequence. In addition, if an ID belongs to an input wire of circuit c, the service connects
that input wire to the corresponding sub-circuit’s input.

The following pseudocode illustrates the logic used to construct an entire circuit, along
with algorithms for creating an AND sub-circuit, a Sum sub-circuit, and the Fuse() func-
tion.
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Algorithm 1 Circuit Construction - AND Circuit
1: Inputs:

• the circuit that the AND sub-circuit belongs to – c

• the tracking gate list recording all the constructed sub-circuits – tracking gate list

• the Gate object which contains all the information of building the AND circuit –
normalGate.

2: Output: None
3: function GateAndConstruction(c, tracking gate list, normalGate)
4: Circuit and Gate = new BigAndOr(false, normalGate.input id list.size())
5: c.union(and Gate)
6: for i = 0 to normalGate.input id list.size()− 1 do
7: c.removeAsInput(and Gate.getInputs().get(i))

8: if not normalGate.output id list.isEmpty() then ▷ Determin if the output of the
AND sub-circuit is the final output of the circuit c.

9: for i = 0 to normalGate.output id list.size()− 1 do
10: c.removeAsOutput(and Gate.getOutputs().get(i))

11: tracking gate list.add(CircuitID(and Gate, normalGate.id))
12: return
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Algorithm 2 Circuit Construction - Sum Sub-circuit
1: Inputs:

• the circuit that the Sum sub-circuit belongs to – c

• the tracking gate list recording all the constructed sub-circuits – tracking gate list

• the Gate object which contains all the information of building the AND circuit –
specialGate.

2: Output: None
3: function GateSumConstruction(c, numWires, tracking gate list, specialGate)
4: for all srcId ∈ specialGate.input id list do ▷ Check if the two input source gates

have all been constructed.
5: if srcId > numWires then
6: flag ← false
7: for all constructedGate ∈ tracking gate list do
8: if constructedGate.id == srcId then
9: flag ← true
10: break for
11: if not flag then return

12: sumInput ← [·] ▷ Input source gates have all been constructed.
13: for all constructedGate ∈ tracking gate list do
14: if constructedGate.id ∈ specialGate.input id list then sumIn-

put.add(constructedGate.getOutputs().size())

15: Circuit sum Gate = new Sum(sumInput)
16: c.union(sum Gate)
17: for i = 0 to specialGate.input id list.size()− 1 do
18: c.removeAsInput(sum Gate.getInputs().get(i))

19: if not specialGate.output id list.isEmpty() then ▷ Determin if the output of the
Sum sub-circuit is the final output of the circuit c.

20: for i = 0 to specialGate.output id list.size()− 1 do
21: c.removeAsOutput(sum Gate.getOutputs().get(i))

22: tracking gate list.add(CircuitID(sum Gate, specialGate.id))
23: return

52



Algorithm 3 Fuse Wire
1: Inputs:

• the final circuit - c

• the gate list contains all the sub-circuits information – gateList

• the input wire list of circuit c – input wire list

• the tracking gate list recording all the constructed sub-circuits –tracking gate list

2: Output: None
3: function FuseWire(c, gateList, input wire list)
4: numWires ← input wire list.wires()
5: for all Gate ∈ gateList do
6: if not Gate.input id list.isEmpty() then
7: for all source ∈ Gate.input id list do
8: if source <= numWires then ▷ The source ID corresponds an input

wire
9: des ← circuitTemp, circuitTemp ∈ tracking gate list & circuit-

Temp.id == gate.id
10: c.fuse(input wire list.get(source-1,

des.sub circuit.getInputs().get(des.numFused))
11: des.numFused + = 1
12: else ▷ The source ID corresponds to a sub-circuit.
13: src← circuitTemp, circuitTemp ∈ tracking gate list & circuitTemp.id

== source
14: des ← circuitTemp, circuitTemp ∈ tracking gate list & circuit-

Temp.id == gate.id
15: for i = 0 to src.sub circuit.getOutputs().size() do
16: c.fuse(src.sub circuit.getOutputs().get(i),

des.sub circuit.getInputs().get(des.numFused))
17: des.numFused + = 1

18: return
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Algorithm 4 Circuit Construction - The Entire Circuit

1: Inputs: the number of input wires – numWires, a list of circuits to be constructed –
gateList. Output: the constructed circuit c

2: function CircuitConstruction(numWires, ArrayList<Gate> gateList)
3: input wire list, tracking gate list, special gate list, normal gate list ← [·], [·], [·], [·]
4: for all gate ∈ gateList do
5: if gate.type ∈ {“And”, “BitNot”, “Or”, “IntegerAsCircuit”} then
6: normal gate list.add(gate)
7: else if gate.type ∈ {“Choose”, “Sum”, “LessEquals”} then
8: special gate list.add(gate)

9: Circuit.ResetIDs()
10: circuit.Circuit c = new circuit.Circuit()
11: for i = 0 to numWires− 1 do
12: c.addNewInput() ▷ Add numWires input wires to circuit c.
13: input wire list.add(c.getInputs.get(i))

14: for all normalGate ∈ normal gate list do ▷ Construct normal gates.
15: if normalGate.type == “And” then
16: AndConstruct(c, tracking gate list, normalGate)
17: else if normalGate.type == “Or” then
18: OrConstruct(c, tracking gate list, normalGate)
19: else if normalGate.type == “Not” then
20: NotConstruct(c, tracking gate list, normalGate)
21: else if normalGate.type == “IntegerAsCircuit” then
22: IACConstruct(c, tracking gate list, normalGate)

23: while tracking gate list.size() < gateList.size() do ▷ Construct special gates.
24: for all specialGate ∈ special gate list do
25: if specialGate ! = constructedGate.sub circuit, constructedGate ∈ track-

ing gate list then
26: if specialGate.type == “Choose” then
27: ChooseConstruct(c, numWires, tracking gate list, special-

Gate)
28: else if specialGate.type == “LessEquals” then
29: LEConstruct(c, numWires, tracking gate list, specialGate)
30: else if specialGate.type == “Sum” then
31: SumConstruct(c, numWires, tracking gate list, specialGate)

32: FuseWire(c, gateList, input wire list, tracking gate list)
33: return c
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Finally by converting the Circuit-SAT problem based on the constructed circuit c to
a CNF-SAT problem by calling the function CircuitUtils.cnfSatToFile(), the problem is
then solved by using solver SAT4J later. After obtaining the result, if it is satisfiable, the
boolean values corresponding to each input wire will also be provided, and the solution to
the original problem is also answered.

3.1.4 AWS Lambda Deployment

Cloud computing services have emerged as a rapidly growing industry within the realm of
computer engineering over the past few decades. These services enable clients to effortlessly
access the resources and services they require through the network dynamically, without
the need for physical servers. By efficiently managing and orchestrating a vast array of
interconnected computing resources, cloud computing services form a cohesive computing
resource pool, which seamlessly delivers on-demand services to users, allowing for scalability
and expansion as needed. Amazon Web Services (AWS) is one of the most prominent and
largest cloud computing providers globally and it is the platform used for server deployment
in this thesis. AWS offers an extensive suite of cloud computing services encompassing
elastic computing, storage, databases, Internet of Things (IoT) capabilities, and a diverse
range of managed products. Leveraging AWS, individuals can effectively address a wide
spectrum of software development requirements, all while alleviating the dependency on
physical servers.

In 2014, AWS introduced AWS Lambda, pioneering the revolutionary concept of server-
less computing. Serverless computing, also referred to as Function as a Service (FaaS),
represents a cloud computing model empowering developers to write and deploy code as
self-contained functions, eliminating the burden of managing the underlying infrastructure
[11]. Within this architecture, the cloud service provider dynamically allocates resources
and scales applications in response to the workload. AWS Lambda seamlessly processes
events by executing function instances, whereby functions serve as the fundamental build-
ing blocks. Users and other AWS services can effortlessly invoke functions by dispatching
JSON-formatted events, which are meticulously processed and executed within the Lambda
environment, thereby enabling a diverse range of use cases. Once deployed, users gain the
flexibility to directly invoke functions using the Lambda API or seamlessly configure AWS
services and resources to trigger the execution of these functions [4].
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Service Deployment on AWS Lambda

1. Code preparation and packaging
Maven is employed and serves as a robust tool for organizing and managing code and
its associated dependencies. The directory structure of the optimization service is as
follows:

/JAVA-build-lambda

pom.xml

src

main

java

circuit

dev.jackie

handlers

CirConSolveHandler

...(source code)...

test

java

circuit

target

The root directory of the project, named JAVA-build-lambda, contains a project description
file called pom.xml. This file is responsible for documenting the required dependencies for
the source code and serves as the unique identifier for this Maven project. The directory
src/main/java/dev/jackie is designated for storing the Java source code, while src/main/-
circuit is the directory for the circuit library introduced in chapter 3.1.2. The src/test/java
directory is specifically assigned for housing the test source code, while the src/test/circuit
directory is dedicated to storing the generated test resources of the circuit library. Finally,
upon compilation and packaging, all resulting files are consolidated and located within the
target directory.

Within the pom.xml file, the following dependencies are declared, which encapsulate crucial
functionalities and features that is used by the source code:

• org.apache.commons:commons-lang3:3.11 : Apache Commons Lang library, ver-
sion 3.11. It provides a broad variety of functionality for standard string ma-
nipulation and object utility functions.

• commons-beanutils:commons-beanutils:1.7.0 : Apache Commons BeanUtils li-
brary, version 1.7.0. The manipulation of JavaBeans is supported by this li-
brary.
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• commons-collections:commons-collections:3.2.1 : Apache Commons Collections
library, version 3.2.1. It offers broad effective data-handling implementations.

• commons-logging:commons-logging:1.1.1 : Apache Commons Logging library, ver-
sion 1.1.1. This library provides a simple and unified logging interface.

• net.sf.ezmorph:ezmorph:1.0.6 : Ezmorph library, version 1.0.6. The library is
used for Java object conversions.

• org.ow2.sat4j:org.ow2.sat4j.core:2.3.5 : OW2 SAT4J library, version 2.3.5. This
library offers a powerful solver for boolean satisfiability problems, which helps
to solve the final cnf.dimacs file generated by the circuit library.

• net.sf.json-lib:json-lib:2.4 : Json-lib library, version 2.4. It facilitates the pro-
cessing and manipulation of JSON data.

• org.junit.jupiter:junit-jupiter:RELEASE : The latest version of the JUnit Jupiter
library, which is employed for writing and executing unit tests.

• com.amazonaws:aws-lambda-java-core:LATEST : The most recent version of the
AWS Lambda Java Core library, providing seamless functionality support when
deploying Java functions on AWS Lambda.

To make AWS Lambda able to invoke the whole service as a function, AWS Lambda Java
SDK provides RequestHandler interface to define handlers for Lambda functions. The func-
tion signature of the handler function is shown below, class CirConSolveHandler() is de-
signed to implement the RequestHandler interface along with explicit generic type param-
eters. Within CirConSolveHandler(), method public String handleRequest(Map<String,
String> input, Context context) is defined to take a Map<String, String> object as one
of the input parameter, which contains the information needed to build a circuit. Besides,
it takes a Context object as input as well, which contains the run-time execution informa-
tion of the Lambda function. The handleRequest() function constructs a circuit according
to the input, solves the corresponding Circuit-SAT problems and returns the answer in a
string.

57



Figure 3.2: The handler function handleRequest().

Finally, to upload the code as a function to AWS Lambda, the whole Maven is packaged
into a .zip archive, including all the necessary dependencies and resources required. At
this point, all the necessary preparations before uploading the code have been completed.

2. Create an AWS Lambda function
To deploy the above function in AWS Lambda, firstly, search and navigate to the AWS
Lambda page in the browser. Select “Create function” and enter a desired function
name. Choose Java 11 as the runtime and select x86 64 as the architecture. Keep the
remaining options at their default settings. Secondly, after the function is created, click
on “Edit” in the “Runtime settings” section; and in the Handler field, enter the path
dev.jackie.handlers.CirConSolveHandler::handleRequest to the handler function. Finally,
Upload the zip package containing the Java function.
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Figure 3.3: Adding the path to function handleRequest().

During the first step of creating a function, the desired execution role can also be modified
as needed, which determines the permissions granted to AWS Lambda functions for access-
ing AWS resources and services during runtime. In this thesis, the function deployment
utilizes the default option “create a new role with basic Lambda permissions”, since the
role provided by this option already holds sufficient permissions for the function.

3. Event
Once the function is deployed to AWS Lambda, it can be triggered by an event. In the
case of the handler function handleRequest(), the event is expected to be in the form of
a name/value pair of strings, where the name in the event is the string “fileContent”,
and the corresponding value is the JSON-encoded representation (as described in Section
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3.1.1) of a circuit converted to a string format. Once an event triggers the handleRequest()
function, the JSON encoding of the circuit is parsed based on the value corresponding to
the “fileContent” name. This allows for further operations such as circuit construction to
be performed and Circuit-SAT problems to be solved.

According to the previous introduction, the deployment of this optimization service on
AWS Lambda eliminates the need for manual consideration of hardware and infrastructure
provisioning, such as memory allocation and vCPUs. Besides, the service demonstrates
event-driven characteristics as well, eliminating the requirement for continuous running in
the background. Regarding billing, services are charged solely based on actual resource
consumption during execution, without any fees for idle state service and resources. This
pay-per-use pricing model ensures efficient resource allocation and optimal cost manage-
ment for the deployed services. Hence, this streamlined deployment process not only
enhances convenience but also demonstrates cost-effectiveness.

3.2 Result Demonstration

To test the service deployed on AWS Lambda and demonstrate its usage, the following
knapsack is used for testing.

Given an integer k = 17, a group of 3 items each has weight: {2, 5, 8}, and value
{4, 7, 10}. Now by picking items into a knapsack, which has a limit to the weight of the
picked items W = 14, if the total value of picked items is greater than or equal to k?

In order to utilize the service for problem-solving purposes, the first step involves ref-
erencing the methods discussed in chapter 2.3 regarding the reduction of the knapsack
problem to the Circuit-SAT problem. The circuit takes 3 input wires as input, {i1, . . . , in},
The wire is assigned a value of 1 if and only if the corresponding item is selected to be
included in the knapsack. In order to verify whether the total weight of the selected
items exceeds the specified limit W = 14, connect each input wire ij to a Choose gate.
Additionally, the other input of the Choose subcircuit is connected to the output of the
IntegerAsCircuit subcircuit for wj. Subsequently, the Choose outputs are combined into a
SUM subcircuit. Afterwards, the output wires of the SUM subcircuit, along with another
IntegerAsCircuit subcircuit for W , are connected as inputs to a LessEquals sub-circuit in
order. Likewise, for verifying the value, the aforementioned subcircuit structure can be
utilized to check if the value of the selected items exceeds k. The only distinction lies in
converting the numerical output of the IntegerAsCircuit from weight to value. Finally,
an AND gate is constructed, taking the outputs of the LessEquals subcircuits from the
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two aforementioned subcircuits as inputs. The output of the AND gate serves as the fi-
nal output of the entire circuit. figure 3.4 illustrates the resultant reduced Circuit-SAT
problem.

Figure 3.4: The Circuit-SAT problem reduced from the given knapsack problem.

Then according to the circuit in figure 3.4, the JSON encoding of the circuit should be
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provided as the value of a name/value pair in the event to trigger the function deployed on
AWS Lambda. The answer to this problem is as shown below. According to the answer, if
the second item (weight of 5, value of 7) and the third item (weight of 8, value of 10) are
chosen while excluding the first item (weight of 2, value of 4), it would satisfy the condition
of selecting goods with a total weight not exceeding W = 14 and a value greater than or
equal to k = 17. In fact, for this problem, the answer returned by the service is entirely
accurate.

Figure 3.5: The returned results for the satisfiable knapsack problem.

If we modify the aforementioned knapsack problem by changing the value of k to 18,
the problem will become unsatisfiable because there is no way to select items such that
the total value of the chosen items exceeds or equals k = 18 while ensuring the total
weight of the selected items remains no greater than W = 14. The circuit obtained
by reducing this modified problem needs to replace the IntegerAsCircuit subcircuit that
originally generated 17 with an IntegerAsCircuit subcircuit that generates 16. The answer
returned by the service after inputting the JSON encoding of the corresponding circuit for
this variant problem is as below.

Figure 3.6: The returned results for the unsatisfiable knapsack problem.

The above test results further demonstrate that the service deployed on the AWS
Lambda cloud is capable of constructing circuits based on the content of the provided
JSON encoding and solving the related Circuit-SAT problems.
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Chapter 4

Summary and Future Work

4.1 Summary of the Results

This thesis provides a comprehensive exploration of problems in the NP complexity class
and proposes a novel serverless optimization service in the cloud based on boolean circuit
satisfiability to address these problems.

The first chapter introduces the concept as well as the significance of the NP class in
computational complexity, highlighting its relevance to various domains such as science,
engineering, and economics. Chapter 1.1 provides a demonstration of the fundamental
concepts related to the thesis topic, including the concepts of problems, algorithms, com-
putational complexity classes, reduction etc.; which aims to lay the foundation for under-
standing the most relevant and intricate concepts pertaining to this thesis. In chapter 1.2,
boolean circuit and Circuit-SAT problem is introduced, which is the core processing target
of the proposed service. Additionally, chapter 1.3 presents examples of problems in NP to
further bring forth the subsequent discussion on the idea and resolution of problems in NP.

In chapter 2, an optimization service grounded in boolean circuit satisfiability as a
universal and efficient approach to solving problems in NP is primarily proposed. Chapter
2.1 elaborates general examples of problems in NP that this thesis aims to solve, discusses
solvers specifically designed for several specific problems in NP, and addresses the need for a
unified solution template for problems in NP class. Therefore, in chapter 2.2, the underlying
solution concept of the service is proposed, along with the novel circuit incorporated in the
proposed service of this thesis, emphasizing its fundamental role in enabling the service to
address problems in NP with greater ease and efficiency. The application of the service
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to Karp’s 21 NP-Complete problems is presented in chapter 2.3 as a reference for the
reduction of other problems in NP to the Circuit-SAT problem.

The third chapter provides a detailed explanation of the operational principles of the
service, including the JSON format required by the circuits that can be parsed by the
service (chapter 3.1.1), the circuit library that the service relies on (chapter 3.1.2), and
the algorithmic logic involved in circuit construction (chapter 3.1.3). Additionally, chapter
3.1.4 provides a comprehensive, step-by-step guide on the steps of deploying the service on
AWS Lambda, accompanied by the relevant concepts. In chapter 3.2, a specific knapsack
problem is used as a case study for analysis and solution. Starting from reducing it to a
Circuit-SAT problem, to the JSON representation of the circuit, and finally constructing
the actual circuit and obtaining the answer, we have outlined the detailed process of using
this service from start to finish.

4.2 Future Work

However, although this thesis proposes a service that offers a relatively universal and
simpler solution to problems in NP, there is still significant room for improvement in this
service. This mainly includes optimization of the algorithm during circuit construction to
reduce its time and space complexity, and in the deployment service stage, auxiliary steps
such as security certification could be added to ensure the security of the server.

In fact, as one of the key components of this paper, the circuit library, the diversity of
sub-circuit functionalities it provides significantly influences the overall operations the final
circuit can perform. If the diversity of sub-circuits within the circuit library is expanded, it
might potentially make the reduction of other problems to the Circuit-SAT problem more
convenient.

When considering improvements to the internal logic of circuit construction within the
service, a viable approach is to store the entire circuit as a DAG within the service instead
of using a simple list. By treating logical sub-circuits as individual nodes, the process can
begin from the source nodes (corresponding to the input wires), and traverse the remaining
nodes using the Breadth-First Search (BFS) algorithm. Since the order in which sub-
circuits within a circuit are processed can be influenced by the input JSON file, the BFS
algorithm prevents the issue encountered in the original algorithm, where sub-circuits that
still lack completed input connections might be repeatedly traversed. For instance, when
facing a sub-circuit like LessEquals, which requires a specific number of input wires before
constructing, if its input sub-circuits have not yet been constructed, this sub-circuit, as
well as its fellow-up sub-circuits, would be continually traversed in subsequent loops. In
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contrast, the BFS algorithm in the DAG ensures that when traversing each node, at least
one sub-circuit in its input direction has been constructed. If all the nodes outputting
to it have already been built, the corresponding sub-circuit can be smoothly constructed.
Otherwise, it remains in the queue awaiting subsequent iterations until its direct input
connections are established.

During the deployment phase of the service, AWS provides the Identity and Access
Management (IAM) service, allowing fine-grained control over resource access and identity
authentication for servers [3]. In the case of deploying the service proposed in this thesis
on AWS Lambda, IAM can be utilized to add different users and grant them corresponding
access permissions. This ensures that users can interact with the server smoothly while
safeguarding the confidentiality of the server’s information as well as preventing mutual
information leakage between users. Configuring AWS API Gateway is equally important
in the deployment. It allows seamless integration with AWS Lambda, facilitating access
to backend services by creating RESTful APIs to interact with resources in Lambda [2].
Additionally, API Gateway collaborates with IAM to provide identity authentication, en-
suring the security of information for both the server and clients [2]. The configuration of
API Gateway will offer future clients of this service a more convenient and flexible way of
accessing it.

Besides, the service can be optimized with multi-threading capabilities to efficiently
process requests, allowing clients to obtain processing results more effectively.

Overall, this thesis contributes to the advancement of concepts regarding computation
complexity of the NP class. It introduces a serverless optimization service that relies on
boolean circuit satisfiability along with an innovation of the functionality that a circuit
can carry. The service is capable of parsing the JSON encoding of the circuit provided
as input, enabling the construction of the circuit and subsequently determining whether
the corresponding Circuit-SAT problem is satisfiable. Through innovative functional en-
hancements to the traditional circuit in a Circuit-SAT problem, this service significantly
simplifies the complexity associated with reducing problems to this particular challenge,
making it possible to universally and efficiently solve problems in NP.
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