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Abstract

While universal quantum computers are still years away from being used for simulating
complicated quantum systems, analog quantum simulators have become an increasingly
attractive approach to studying classically intractable quantum systems in condensed matter
physics, chemistry, and high-energy physics. In this dissertation, we utilize superconducting
cavities and qubits to establish analog quantum simulation (AQS) platforms to study
systems of interest.

An approach of AQS that has gained interest lately is the use of photonic lattices to
simulate popular lattice models. These systems consist of an array of cavities or resonators
arranged on a lattice with some couplings graph between modes. We propose an in situ
programmable platform based on a superconducting multimode cavity. The unique design
of the cavity allows us to program arbitrarily connected lattices where the coupling strength
and phase of each individual coupling are highly programmable via parametrically activated
interactions. Virtually, any quadratic bosonic Hamiltonian can be realized in our platform
with a straightforward pumping scheme.

The effectiveness of the cavity-based AQS platform was demonstrated by the experi-
mental simulation of two interesting models. First, we simulated the effect of a fictitious
magnetic field on a 4-site plaquette of a bosonic Creutz ladder, a paradigmatic topological
model from high-energy physics. Under the right magnetic field conditions, we observed
topological features such as emergent edge states and localized soliton states. The platform’s
ability is further explored by introducing pairing (downconversion) terms to simulate the
Bosonic Kitaev chain (BKC), the bosonic version of the famous Fermionic Kitaev chain
that hosts Majorana fermions. We observe interesting properties of BKC, such as chiral
transport and sensitivity to boundary conditions.

In the final part of the dissertation, we propose and implement a parametrically activated
three-qubit interaction in a circuit QED architecture as the simplest building block to
simulate lattice gauge theories (LGT). LGT is a framework for studying gauge theories in
discretized space-time, often used when perturbative methods fail. The gauge symmetries
lead to conservation laws, such as Gauss’s law in electrodynamics, which impose constraints
tying the configuration of the gauge field to the configuration of ”matter” sites. Therefore,
any quantum simulation approach for LGTs must maintain these conservation laws, with one
strategy in AQS being to build them in at the hardware level. Here, the gauge constraints
are explicitly included using a higher-order parametric process between three qubits. The
simplest 2-site U(1) LGT building block is realized with two qubits as matter sites and a
third qubit as the gauge field mediating the matter-matter interaction, which is crucial to
maintain the symmetry of U(1) LGTs.

iv



Acknowledgements

My Ph.D. journey has been a profound and transformative experience, encompassing
both the achievement of my doctoral degree and significant personal growth. I would like
to express my heartfelt gratitude to the many individuals who have played pivotal roles
in this journey, which, like that of many others, endured the challenges of the COVID-19
pandemic.

I am deeply grateful to my supervisor, Christopher Wilson, for the opportunity to
join Engineered Quantum Systems Laboratory (EQSL), and his exceptional guidance and
mentorship on this journey. His skillful balance between providing direction and fostering
independence has enabled my personal and intellectual growth. Christopher’s unwavering
support during both personal challenges and unforeseen experimental setbacks reflects
his generous spirit. I truly appreciate his consistent presence and invaluable guidance
throughout this endeavor.

I had the privilege of collaborating with senior colleagues, particularly the postdoctorate
fellows. I extend my heartfelt appreciation to Ibrahim for his invaluable assistance, espe-
cially during many restless days and nights spent in the Quantum-Nano Fabrication and
Characterization Facility (QNFCF). His dedication and craftsmanship have been genuinely
inspiring. Dima’s consistent assistance with experiment setups and the cryostat was indis-
pensable to my research. Furthermore, I enjoyed working with Zheng, our esteemed theorist,
engaging in enlightening discussions spanning physics and beyond. Zheng’s insights offered
me valuable glimpses into the mindset of theoretical physicists.

EQSL introduced me to a remarkable community of colleagues, some of whom became
cherished friends. Sandbo, my office mate for an extended period, not only engaged me in
enlightening discussions but also contributed significantly to my work through this device.
Jimmy and I were partners in multiple projects, I enjoyed working together for a long
time. I’m also grateful to Cindy for being a friend and valuable colleague helping me with
fabrication and experiments. My heartfelt thanks extend to EQSL members Bharat, Guang,
Ben, Huichen, Mohammad, Amir, Nizar, Luyao, and Vadiraj. Their invaluable support has
left a substantial mark on my academic journey.

v



Dedication

To my beloved family,
To my dear father and mother, your love, guidance, and unconditional support have shaped
me into the person I am today. I am eternally grateful. To my sisters, Huda, Toha,
and Hunaida, your unwavering love and encouragement have been a constant source of
inspiration.

To my cherished wife, Nawal,
Your love, patience, and belief in me have been my greatest blessings. This dedication is a
small token of my appreciation for your extraordinary presence in my life.

To my beloved children, Leen and Husain,
Your laughter and innocence have filled my life with immeasurable joy and purpose. You
are my greatest treasures.

In memory of those who lost their lives in the devastating flooding in Derna, may their
souls find eternal peace.

With profound gratitude, I thank Allah for the countless blessings that He has bestowed
upon me, and I seek His guidance and mercy in all endeavors.

vi



Table of Contents

Examining Committee ii

Author’s Declaration iii

Abstract iv

Acknowledgements v

Dedication vi

List of Figures xi

List of Tables xiv

1 Introduction 1

2 Building Blocks Development 3

2.1 Josephson junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 SQUID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 transmon qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Resonator Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Qubit Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 The Dispersve Coupling . . . . . . . . . . . . . . . . . . . . . . . . 13

vii



2.4 Coplanar Waveguide λ/4 cavity . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Transmission Line Theory . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.2 Resonance modes of the transmission line λ/4 cavity . . . . . . . . 18

3 Superconducting Parametric Cavity as AQS 23

3.1 Device description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Uneven frequency spacing of cavity modes . . . . . . . . . . . . . . 23

3.1.2 SQUID as a shared boundary condition . . . . . . . . . . . . . . . . 26

3.1.3 Parametric interactions . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.4 Lattice programming . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Overview of the parametric cavity . . . . . . . . . . . . . . . . . . . 31

3.2.2 The experimental and measurement setup . . . . . . . . . . . . . . 33

4 Creutz Ladder Experiment 36

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Bosonic Creutz Ladder Theory . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1 Scattering Matrix for an effective non-Hermitian Hamiltonian . . . 39

4.3 Creating a 4-site BCL plaquette . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3.1 Characterization of the 4-site BCL plaquette . . . . . . . . . . . . . 42

4.4 Simulating the effect of a static gauge field on the BCL plaquatte . . . . . 42

4.4.1 Measurement Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Bosonic Kitaev Chain Experiment 54

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Kitaev Chain Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

viii



5.2.1 The Bosonic Kitaev Chain . . . . . . . . . . . . . . . . . . . . . . . 55

5.3 Programming the Hamiltonian in our AQS . . . . . . . . . . . . . . . . . . 58

5.3.1 Generic Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.2 Gauge invariance in Kitaev chain with arbitrary phases . . . . . . . 58

5.3.3 Transport in an open 3-mode system . . . . . . . . . . . . . . . . . 60

5.3.4 Instability in closed 3-site chain . . . . . . . . . . . . . . . . . . . . 63

5.4 Simulating a 3-Site bosonic Kitaev chain . . . . . . . . . . . . . . . . . . . 66

5.4.1 Characterization and Calibration . . . . . . . . . . . . . . . . . . . 67

5.4.2 Twisted-tubes picture of the 3-site chain . . . . . . . . . . . . . . . 67

5.4.3 Calibration of gauge invariant of the 3-site chain . . . . . . . . . . . 68

5.5 Observation of the bosonic Kitaev chain features . . . . . . . . . . . . . . 71

5.5.1 Chiral transport properties of BKC . . . . . . . . . . . . . . . . . . 71

5.5.2 Sensitivity to periodic boundary conditions . . . . . . . . . . . . . . 73

5.5.3 Wavefunctions localization in 3-site open chain . . . . . . . . . . . . 73

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Three-Body interaction 80

6.1 Lattice gauge theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Theory of U(1) Lattice gauge theories . . . . . . . . . . . . . . . . . . . . . 83

6.3 c-QED implementation of three-body interaction . . . . . . . . . . . . . . . 85

6.3.1 Hamiltonian Formulation . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3.2 SQUID energy approximation with an external flux . . . . . . . . . 86

6.3.3 Junction and SQUID as nonlinear inductors . . . . . . . . . . . . . 87

6.4 The system Hamiltonian as coupled oscillators . . . . . . . . . . . . . . . . 87

6.4.1 Treatment of the perturbative part . . . . . . . . . . . . . . . . . . 89

6.4.2 Realizing the parametric interaction . . . . . . . . . . . . . . . . . . 90

6.4.3 Interpretation/simulation of Gauss’s law . . . . . . . . . . . . . . . 91

6.4.4 Design and Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 92

ix



6.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.5.2 Device Characterization . . . . . . . . . . . . . . . . . . . . . . . . 100

6.6 Validation of the |110⟩ state . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.6.1 Characterizing the dispersive shifts of quantum states . . . . . . . . 104

6.6.2 Three-Body interaction . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Conclusion 116

7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Letter Of Copyright Permission 119

References 120

x



List of Figures

2.1 The Josephson Junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Illustration of a Superconducting Quantum Interference Device (SQUID) . 8

2.3 An illustration of a transmon coupled to a resonator . . . . . . . . . . . . . 9

2.4 Specturm of the transmon qubit and its interaction with the resonator . . 14

2.5 Simulation of Lossy Cavity Impedance and Schematic of Transmission Quar-
ter Wavelength Cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 A Study of the Reflection Coefficient and Phase Trajectory of single-port
cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 The reflection coefficient phase ΘΓ of the single-port cavity as a function of
frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Tunable Cavity Design with a SQUID . . . . . . . . . . . . . . . . . . . . . 27

3.3 Graphical representation of programmable lattices in our AQS . . . . . . . 31

3.4 Illustration of the selective activation feature in our multimode supercon-
ducting parametric cavity platform . . . . . . . . . . . . . . . . . . . . . . 32

3.5 CAD design of superconducting parametric cavity . . . . . . . . . . . . . . 33

3.6 The cryogenic microwave network of the experimental setup . . . . . . . . 35

4.1 Schematic representation of the Creutz ladder . . . . . . . . . . . . . . . . 39

4.2 Synthetic lattice of a 4-site BCL . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 The scattering matrix of a 4-site BCL . . . . . . . . . . . . . . . . . . . . . 44

4.4 BCL scattering matrix fit lincuts at ϕ = 0 . . . . . . . . . . . . . . . . . . 49

xi



4.5 BCL scattering matrix fit lincuts at ϕ = π/4 . . . . . . . . . . . . . . . . . 49

4.6 BCL scattering matrix fit lincuts at ϕ = π/2 . . . . . . . . . . . . . . . . . 50

4.7 BCL scattering matrix fit lincuts at ϕ = π . . . . . . . . . . . . . . . . . . 50

4.8 BCL topological precursors . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 Schematic representation of the bosonic Kitaev chain . . . . . . . . . . . . 57

5.2 Twisted-tubes picture of the bosonic Kitaev chain . . . . . . . . . . . . . . 69

5.3 Calibration of the gauge-invariant phase of the 3-site open chain . . . . . . 70

5.4 Transport of the 3-site open chain . . . . . . . . . . . . . . . . . . . . . . . 72

5.5 Transport of the 3-site open bosonic Kitaev chain at selected pump phases 76

5.6 3-site closed Kitaev chain spectrum . . . . . . . . . . . . . . . . . . . . . . 77

5.7 Zero eigenmodes peak of the reflection at site b as a function of pairing
strength in the closed chain . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.8 The support of x and p wave functions on lattice sites of the 3-site open chain 79

6.1 One-dimensional LGTs and quantum link representation . . . . . . . . . . 84

6.2 The circuit schematic of the three-qubit Device . . . . . . . . . . . . . . . 85

6.3 Simulation of 2-site U(1) LGTs . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 CAD drawing of three-qubit device . . . . . . . . . . . . . . . . . . . . . . 94

6.5 Three-qubit design spectrum simulation . . . . . . . . . . . . . . . . . . . . 95

6.6 Three-qubit interaction strength and resonance . . . . . . . . . . . . . . . 96

6.7 HFSS simulation of three-qubit device . . . . . . . . . . . . . . . . . . . . 97

6.8 three-qubit Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.9 The measured three-qubit spectrum and fit . . . . . . . . . . . . . . . . . . 101

6.10 Validation of |110⟩ state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.11 The state-dependent resonator shifts in the 2D dispersive plane . . . . . . 106

6.12 Achieving the three-body interaction . . . . . . . . . . . . . . . . . . . . . 107

6.13 Analyzing the System State using the 2D Dispersive Plane . . . . . . . . . 110

6.14 Extracting qubit 3 state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xii



6.15 The circuit of an alternative design of three-qubit device . . . . . . . . . . 112

6.16 The simulation of an alternative design of the three-qubit device as a function
of shared SQUID inductance . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.17 The alternative design of the three-qubit device as a function of DC flux bias 114

6.18 Alternative three-qubit design interaction strength and resonance . . . . . 115

xiii



List of Tables

4.1 Extracted uncoupled and pairwise coupling parameters for BCL model . . 47

4.2 The extracted BCL lattice parameters and their errors, σ. . . . . . . . . . 48

4.3 The extracted scaling parameters, Cnm and their errors. . . . . . . . . . . . 48

6.1 Readout Resonators characteristics . . . . . . . . . . . . . . . . . . . . . . 100

6.2 The extracted 3Qubit parameters by fitting the spectrum vs flux bias . . . 101

6.3 three-qubit device characterization . . . . . . . . . . . . . . . . . . . . . . 103

xiv



Chapter 1

Introduction

Quantum simulation is a rapidly developing field that has the potential to revolutionize our
understanding of quantum systems. In particular, there is an increasing need to develop
methods for simulating complex quantum systems that are classically intractable.

Classical computers have provided valuable insights into the behavior of many quantum
systems through numerical methods such as quantum Monte Carlo simulations. However,
the exponential scaling of quantum systems and the infamous ”sign problem” can make
simulating certain systems intractable [1, 2]. The sign problem, which arises from the
intrinsic physical properties of the system [3, 4, 1, 5], remains incurable in many cases,
particularly for a large set of quantum field theories [6, 7], as well as topologically ordered
systems [8], such as quantum spin liquids [9]. In addition, sign problems also affect
simulating lattice gauge theories (LGT), particularly, real-time evolution [10] and models
with finite fermion density [11].

Analog quantum simulation (AQS) offers a near-term solution to unlocking the power of
quantum computing. In AQS, a well-controlled artificial system is constructed to have the
same Hamiltonian as the system of interest, and the dynamics of the artificial system can be
studied to gain insights into the behavior of the original system. A particularly advantageous
case for AQS compared to digital quantum simulation with qubits are simulations involving
bosonic fields, which can be challenging to encode on small-scale qubit-based computers.

In this dissertation, we aim to investigate the use of AQS as a tool for studying classically
intractable systems, particularly those with topological properties and lattice gauge theories
models. One of our key contributions is the advancement of an in situ programmable
platform for AQS, which is based on a multimode superconducting parametric cavity. We
utilized this platform to demonstrate the feasibility of simulating topological models such
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as the bosonic Creutz ladder and the bosonic Kitaev chain. Additionally, we propose
and implement a three-qubit circuit as a building block for investigating many-body
interactions in lattice gauge theories (LGT). We will delve into the design, implementation,
and characterization of AQS circuits, highlighting the potential of AQS as a powerful
simulation tool for quantum systems and its potential applications in quantum computing.
To proceed, the thesis is presented as follows.

In chapter 2, we will delve into the design and implementation of the building blocks used
in the research, including superconducting cavities, superconducting quantum interference
devices (SQUIDs), transmon qubits, and other relevant components. We will also discuss
the role these building blocks play in the overall research and how they were used to achieve
specific goals.

In chapter 3, we will focus on developing and demonstrating the in situ programmable
platform for AQS. We will provide a detailed discussion of the theory and implementation
of the AQS platform and the experimental setup.

In chapter 4: we will discuss the theory of the bosonic Creutz ladder and the implemen-
tation of the model on our AQS platform. We demonstrate the use of the hopping terms in
our AQS platform to simulate a plaquette of Creutz ladder model under the effect of the
external magnetic field. We then provide an analysis of the experimental results to show
the emergent topological properties predicted in theory.

In chapter 5, we will extend the application of the AQS platform by adding a pairing
(downconversion) interaction to our set of programmable terms. The simulation of the
bosonic Kitaev chain model is demonstrated, which includes both the hopping and pairing
terms. We will provide the theory of the model, predicted properties, and implementation
on the AQS platform. The results of the simulated chain will be discussed to show that the
predicted chiral properties are achieved.

In chapter 6, we will focus on designing and implementing a three-qubit circuit as a
building block for simulating many-body interactions in LGTs.We will provide an overview
of the theory of LGTs with a focus on U(1) LGTs in particular. We will provide an in-depth
discussion of the implementation of the building block in the three-qubit circuit. Then,
we will discuss the experiment including device characterization and measurements of the
three-qubit circuit, and how the results mimic the dynamics of 2-site U(1) LGTs.
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Chapter 2

Building Blocks Development

This chapter will delve into the design and implementation of the building blocks used in this
thesis research, including superconducting cavities, superconducting quantum interference
devices (SQUIDs), transmon qubits, and any other relevant components.

2.1 Josephson junction

A Josephson junction is a nonlinear device made of two superconducting electrodes separated
by a thin insulating layer. It is the key element in superconducting devices, including
tunable cavities and qubits.

In superconducting metals, at very low temperatures, the electrons form Cooper pairs as
phonon scattering is suppressed, allowing current flow with zero resistance. Electron pairing
occurs due to attractive interaction mediated by the exchange of virtual phonons, giving
rise to a macroscopic quantum coherence across the material [12]. In contrast to normal
metals, where electrons and their dynamics are described statistically, Cooper pairs are
represented by one macroscopic wavefunction that describes the quantum state extending
over the entire material.

In a Josephson junction, the macroscopic wavefunction extends across the insulating
layer from one electrode to the other with a nonzero amplitude. Thus, Cooper pairs can
tunnel through the insulating layer, resulting in a supercurrent flowing through the junction,
a phenomenon known as quantum tunneling, depicted in Fig. 2.1. The supercurrent is a
direct result of the phase coherence of the macroscopic wavefunctions on the two sides of

3



the junction. The phase difference between the wave functions creates the dynamics of
Cooper pairs, which are described by the Josephson equations:

V = (
ℏ
2e

)
dφ

dt
voltage− phase relation (2.1)

I = Ic sinφ current− phase relation (2.2)

Here, Ic is the critical current, φ is the phase difference, ℏ is the reduced Planck constant,
and e is the electron charge. The critical current is the maximum allowable supercurrent
through a junction before it becomes dissipative. It can be related to the normal-state
resistance, RN , with the Ambegaokar-Baratoff relation at approximately T ≈ 0 [13].

Ic =
π∆sc(T )

2eRN

, (2.3)

where 2∆sc is the superconducting energy gap of the electrodes on either side of the junction.
The Josephson junction energy can be written as:

UJ =

t∫
0

dtI(t)V (t), (2.4)

where V (t) is the voltage across the junction, and I(t) is the current flowing through the
junction, both as functions of time. By substituting the Josephson equations for the voltage
and the current into Eq. 2.4, we get:

UJ = (
ℏ
2e

)

t∫
0

I(
dφ

dt
)dt = (

ℏ
2e

)Ic

φ∫
0

sinφdφ = Ej(1− cosφ), (2.5)

where Ej = ( ℏ
2e
)Ic is the so-called Josephson energy of the junction, we can think of Eq 2.5

as the effective potential energy of the Josephson junction as a function of the junction
phase.

4



(a)

Superconductor (AI)

Superconductor (AI)

Insulator (Al2O3)

 Phase across the junction 

(b)

Figure 2.1: The Josephson Junction. (Top) Schematic representation of a Josephson
junction, composed of a sandwich of superconductor-insulator-superconductor (S-I-S) layers.
The wavefunction of the supercurrent extends through the barrier with nonzero probability,
allowing for the quantum tunneling of Cooper pairs through the barrier. (Bottom) Scanning
electron microscopy (SEM) image of Josephson junction fabricated using the Dolan technique,
which employs double-angle evaporation. The Josephson energy, EJ is proportional to its
area, indicated by the green rulers, which define the overlap region of the S-I-S layers.
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2.2 SQUID

The superconducting quantum interference device (SQUID) is a loop created by connecting
a pair of junctions in parallel. The SQUID is sensitive to external magnetic field threading
the loop, making it useful for many applications, including magnetic field sensors and
tunable c-QED elements such as qubits and cavities. The macroscopic wavefunction in
superconductors constrains the phases of the parallel junctions, φα and φβ. To show that,
we start with the supercurrent equation that describes the phase across a superconductor
[12]

−2πλ2Lµ0

Φ0

J− 2π

Φ0

A = ∇φ, (2.6)

where λL is the material’s penetration depth at which the current density vanishes, J is
the current density, A is the electromagnetic vector potential, and φ is the wavefunction’s
phase.

To relate the junction phases, we can take a line integral along the SQUID loop. We
can choose the counter to be inside the cross-section of the superconductor where J = 0.
This simplifies the supercurrent equation by eliminating the second term, resulting in
∇φ = − 2π

Φ0
A. To this end, we proceed by taking the line integral around the closed path of

the SQUID loop,

∮
∇φ · dl =

∫
∇φβ +

∫
∇φα −

2π

Φ0

∫
leads

A · dl = φβ − φα −
2π

Φ0

∮
A. · dl. (2.7)

The line integral of the gradient ∇φ at the junctions equals the phase difference across
the junctions. On the other hand, the simplified supercurrent equation is applied for the
remaining part as it consists of superconductor paths, where the gradient ∇φ substituted
by the vector potential, A.

Now, we consider the SQUID loop in the presence of an external magnetic field. The
total flux threading the loop, Φext, can be expressed as the line integral of the vector
potential along the SQUID loop Φext =

∮
A · dl. Substiting this in Eq. 2.7 gives:∮

∇φ · dl = φβ − φα − 2π
Φext

Φ0

(2.8)

To ensure that the wavefunction phase is single-valued and continuous around the SQUID
loop, the total phase change must be a multiple of 2π, as the wavefunction must have same
value when takes a round-trip and return to the same location. This results in the final
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relation between the external field and SQUID phases which allows us to control the phase
difference φβ − φα by applying an external magnetic field:

2πn = φβ − φα − 2π
Φext

Φ0

(2.9)

We move on to construct the SQUID energy and use the relation in Eq. 2.9 to write it in
terms of the external flux. In the SQUID circuit shown in Figure 2.2, the total current
flowing in one direction can be expressed in terms of a sum of junction currents as

Isq = Ic,α sinφα + Ic,β sinφβ. (2.10)

Following the previous section, the SQUID energy reads,

USQ = −Ej,α cosφα − Ej,β cosφβ. (2.11)

By using an external magnetic flux to control the phase difference in Eq. 2.9 at n = 0, there
is only one true degree of freedom, namely the phase sum, which we call φsq. We define the
junction phases in terms of Φext and φsq, [14].

φsq =
φβ + φα

2
(2.12)

φα = φsq − π
Φext

Φ0

(2.13)

φβ = φsq + π
Φext

Φ0

(2.14)

The SQUID energy, then, can be re-written as:

USQ = −(Ej,α + Ej,β) cos

(
π
Φext

Φ0

)
cos(φsq)− (Ej,α + Ej,β) sin

(
π
Φext

Φ0

)
sin(φsq) (2.15)

Redefining the constant prefactors as EΣ = Ej,α +Ej,β and E∆ = Ej,α −Ej,β, we reach the
final expression:

USQ = −EΣ cos

(
π
Φext

Φ0

)
cos(φsq) + E∆ sin

(
π
Φext

Φ0

)
sin(φsq) (2.16)

It is worth noting that the first term is an even function in the external flux while the
second term is an odd function. Both terms can be tuned or modulated via the external
flux. This will play a vital role in creating the different parametric interactions needed to
build our analog quantum simulation platforms.
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Iα

Iβ

φαα Iα

φβα Iβ

φext = φα - φβ
Isq = Iα + Iβ

φsq = φα + φβ

Figure 2.2: Illustration of a Superconducting Quantum Interference Device (SQUID). This
device is created by connecting two junctions in parallel, forming a loop. By applying an
external magnetic field to the loop, the phase difference between the two junctions can be
controlled, enabling control over the effective critical current.

2.3 transmon qubit

During the last two decades, the design of superconducting qubits has improved significantly.
The first generation of these qubits was the charge qubit, also known as a Cooper Pair
Box (CPB). The CPB essentially consists of a superconducting island connected to a
Cooper-pairs reservoir (usually ground) by a Josephson junction. The superconducting
island is also coupled to an external voltage source via a gate capacitor. The number of
Cooper pairs in the island can be varied by adjusting the island potential, which allows for
performing quantum operations on the qubit. However, CPB qubits were found to be highly
sensitive to charge noise. To mitigate this problem, the transmon design was developed by
shunting the junction with a large capacitor, which increases the ratio of Josephson energy
to charging energy to over 100, and hence reduces charge sensitivity.

The simplest circuit for a single qubit often involves a transmon qubit coupled to a
readout resonator. We will proceed with deriving the Hamiltonian of a similar circuit, and
extract the useful quantities including qubit frequency, anharmonicity, and qubit-resonator
dispersive shift.

In a typical derivation of the transmon Hamiltonian, the flux variable ϕ is introduced
to describe the magnetic flux of the node [15]. The flux variable equals the time integral of
the voltage across the junction and can be directly related to the junction phase via the
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φ

T ∝ Ecφ̇
2U ∝ Ejφ

2V ∝ Ejφ
4CbEj

Cg

Cr Lr

Figure 2.3: An illustration of a transmon coupled to a resonator. (left) The transmon is
depicted as a Josephson junction shunted by a large capacitor. The resonator is shown as a
parallel LC oscillator, which is capacitively coupled to the qubit and is typically used for
readout measurements. (right) A simplified representation of the transmon circuit is shown,
where the junction of the qubit is split into two parts, with energies that depend on the
qubit flux. These parts are a linear inductor and a nonlinear inductor, representing the
fourth-order term of the junction energy expansion. This depiction describes the transmon
as an oscillator with a small nonlinear element that can be treated perturbatively.

Josephson equations:

ϕ =

t∫
−∞

V dt =
Φ0

2π
φ (2.17)

Writing the junction energy in terms of flux variable, by replacing φ = 2π ϕ
Φ0
, is particularly

useful because it allows us to analyze the transmon in terms of a simple harmonic oscillator,
which provides a familiar picture. In this sense, the potential energy describes the ”fictitious”
magnetic energy stored in the Josephson junction associated with flux; in reality, the junction
phase. On the other hand, the kinetic energy describes the electrical energy stored in
the capacitor associated with the charge, which is related to the flux derivative based on
Eq. 2.17, V = ϕ̇ . We proceed with deriving the Lagrangian and Hamiltonian, with the flux
being the generalized coordinates that describe the system’s degrees of freedom.

The kinetic energy stored in a capacitor is E = 1
2
CV 2

c = 1
2
Cϕ̇2. The capacitor flux

can be a node flux to the ground or, in the case of coupling capacitors, the flux difference
between two nodes at the capacitor ends. In a large network, it is more convenient to write
the system’s Hamiltonian in matrix form, which we will start practicing now. We aggregate
all circuit flux variables in the flux vector, Φ = (ϕq, ϕr). The capacitance matrix in Fig. 2.3
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can be easily written as:

C =

[
Cb + Cg −Cg

−Cg Cr + Cg

]
(2.18)

The total kinetic energy reads:

T =
1

2
Φ̇⊺CΦ̇ (2.19)

The potential energy stored as magnetic energy can be stored either in an inductor as

E = ϕ2

2L
or in the junction associated with the fictitious flux as E = −Ej cos

(
2π ϕ

Φ0

)
. Thus,

the total energy stored in our circuit read:

U = −Ej cos

(
2π
ϕq

Φ0

)
+

ϕ2
r

2Lr

(2.20)

With both energies, it is straightforward to write the Lagrangian as follows:

L = T − U =
1

2
Φ̇⊺CΦ̇ + Ej cos

(
2π
ϕq

Φ0

)
− ϕ2

r

2Lr

(2.21)

To derive the Hamiltonian, we define the vector conjugate momentum of the coordinate Φ
as:

Q =
∂L
∂Φ̇

= CΦ̇ (2.22)

Redefining Φ̇ in terms of the conjugate momentum:

Φ̇ = C−1Q (2.23)

The inverse of the capacitance matrix is simplified by assuming that C2
b , C

2
r ≫ C2

g and
Cr + Cg ≈ Cr, and defining the total qubit capacitance as CΣ = Cb + Cg. This results in
the simplified inverse matrix:

C−1 =

 1
CΣ

Cg
CΣCr

Cg
CΣCr

1
Cr

 (2.24)

The Hamiltonian can then be formulated as follows:

H = QΦ̇− L =
1

2
Q⊺C−1Q− Ej cos

(
2π
ϕq

Φ0

)
+

ϕ2
r

2Lr

(2.25)

We can then promote the q and ϕ to operators and impose the canonical commutation
relations. Then, we split the Hamiltonian into two decoupled subsystems, and a coupling

10



Hamiltonian to be treated consecutively. We can carry out the multiplication in the first
term of the Hamiltonian given by Eq. 2.25. The first part is the resonator Hamiltonian, the
second part is the qubit Hamiltonian, and the third part is the coupling Hamiltonian:

Ĥ = Ĥr + Ĥq + Ĥc (2.26)

Ĥr =
q̂2r
2Cr

+
ϕ̂2
r

2Lr

Resonator Hamiltonian (2.27)

Ĥq =
q̂2q
2CΣ

− Ej cos

(
2π
ϕ̂q

Φ0

)
Qubit Hamiltonian (2.28)

Ĥc =
Cg

CΣCr

q̂q q̂r Coupling Hamiltonian (2.29)

2.3.1 Resonator Hamiltonian

The Hamiltonian of the LC resonator can be written in a familiar way using the ladder
operators as

Ĥr = ℏωr (â
†â+

1

2
), (2.30)

where the resonator frequency is ωr = 1√
LrCr

, and the associated lowering and raising
operators are defined as

âr = +i
1√

2Crℏωr

q̂r +
1√

2Lrℏωr

ϕ̂r, (2.31)

â†r = −i
1√

2Crℏωr

q̂r +
1√

2Lrℏωr

ϕ̂r. (2.32)

Conversely, the charge and flux operators then expressed as

q̂r = −i
√
Crℏωr

2
(âr − â†r) (2.33)

ϕ̂r =

√
Lrℏωr

2
(âr + â†r). (2.34)

The eigenenergies of this Hamiltonian are evenly spaced, En = ℏωr(n+ 1
2
) , where n is a

non-negative integer. The raising and lowering operators, â† and â, allow for transitioning
between the energy levels. While the â† operator increases the energy by ℏωr, the â operator
decreases it by the same amount.
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2.3.2 Qubit Hamiltonian

The qubit Hamiltonian in equation 2.28 is written in terms of the charge and flux operators.
Nonetheless, it is insightful to change the operators to write Hamiltonian in a form similar
to the transmon paper [16]. We define the Cooper-pair number operator n̂q =

q̂q
2e
. Here, e is

the electron charge, and the factor 2 comes from the fact that a Cooper pair consists of two
electrons. In this context, we also define the charging energy Ec =

e2

2CΣ
, which represents

the energy required to add or remove a Cooper pair from the superconductor island.

The qubit Hamiltonian can then be rewritten as

Ĥq = 4Ec n̂
2
q − Ej cos φ̂q. (2.35)

Perturbative approach to transmon qubit

Written in the phase basis, Ĥq has the form of Mathieu’s differential equation, which can
be solved exactly in terms of special functions known as Mathieu functions. This approach
becomes essentially intractable when multiple coupled qubits are involved. Therefore, it
is convenient to develop a perturbative approach to solve Ĥq. We start by expanding the

cosine term of Ĥq to fourth order around the minimum φ = 0, giving

Ĥq = 4Ec n̂
2
q + Ej

φ̂2
q

2
+ Ĥp, (2.36)

where Ĥp is the fourth-order term which we will treat later on.

The leading-order Hamiltonian then is identical to the simple harmonic oscillator, and
thus we can write it in terms of the raising and lowering operators

Ĥq = ℏωq(â
†
qâq +

1

2
), (2.37)

with the Cooper-pair number and phase operators expressed as

φ̂q =
1√
2
(
8Ec

Ej

)1/4(âq + â†q), (2.38)

n̂q =
−i√
2
(
Ec

8Ej

)1/4(âq − â†q). (2.39)

12



Keeping in mind that the number operator is linked to the charge operator by changing the
prefactor, let us also define it here as

q̂q = −i
√
CΣℏωq

2
(âq − â†q). (2.40)

Now we starting treating Ĥp by rewriting it in terms of the lowering and raising operators
as

Ĥp = −Ej

φ̂4
q

24
= −Ej

24
(
2Ec

Ej

)(âq + â†q)
4 = −Ec

12
(âq + â†q)

4. (2.41)

Treatment of Ĥp in 1st order perturbation theory, results in a term that introduces
corrections to the diagonal elements of the qubit Hamiltonian as

Ĥp ≈ −
Ec

2
(â†qâq + â†qâqâ

†
qâq). (2.42)

While the linear term corrects the harmonic qubit frequency by Ec/2, the quadratic term
adds the nonlinearity needed for qubit anharmonicity. The full Hamiltonian with correction
then reads,

Ĥ = ℏωq(â
†
qâq +

1

2
)− Ec

2
(â†qâqâ

†
qâq + â†qâq). (2.43)

Now we extract the quantities of interest, keeping in mind that the transition frequency of
the qubit from |n⟩ to |n+ 1⟩ can be calculated as ωn,n+1 = (H|m=n+1−H|m=n)/ℏ. First, the
qubit frequency is found to be ω01 =

√
8EjEc/ℏ− Ec/ℏ. Second, the anharmonicity of the

qubit is found by the energy difference between transitions ω12 and ω01 , α = ω12−ω01 = −Ec.
A typical transmon is designed to suppress the sensitivity t charge noise with Ej/Ec ≥ 20,
while maintaining an anharmonicity of α/h ≥ 200 MHz. The qubit capacitance is primarily
determined by this anharmonicity which allows selective excitation of the first energy state,
effectively treating the transmon as a two-level system.

2.3.3 The Dispersve Coupling

In the previous section, we focused on the qubit and ignored its coupling to the resonator.
However, to gain a full understanding of the qubit-resonator system, we must consider
the coupling term and introduce the concept of qubit-resonator dispersive coupling. The
resonator-qubit system is typically used as a subsystem for each qubit added to a multi-qubit
system, where coupling to the resonator enables measuring the respective qubit state. In the
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+

ωc ωq

Figure 2.4: Specturm of the transmon qubit and its interaction with the resonator. (Left)
Depiction of the absolute value of low-energy eigenfunctions of the qubit in the phase
representation. In the transmon regime, the phase variable tends to remain near the
minimum of the cosine potential. This allows for approximating the cosine potential to a
fourth-order expansion, as indicated by the red dashed line. The uneven spacing between
energy levels, due to the cosine potential, enables addressing only the lowest first and second
transitions. (Right) Illustration of the energy levels of the qubit-resonator Hamiltonian in
the dispersive regime. The energy levels largely do not hybridize, instead, the resonator
energy levels are shifted by a small amount, and their spacing is slightly decreased when
the qubit is excited, enabling the detection of the qubit state by probing the resonator
response.
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limit for dispersive , the coupling strength g is much smaller than the frequency detuning
∆, i.e. g2

∆2 ≪ 1. This condition is essential and we will elaborate on it later.

We can represent the coupling Hamiltonian in Eq. 2.29 in the ladder operator notation
using the charge operators’ definition for both the transmon qubit in Eq. 2.40 and the
resonator in Eq. 2.33 , which we derived earlier.

Ĥc = −
ℏCg

2
√
CΣCr

√
ωqωr(âq − â†q)(âr − â†r) (2.44)

Now we recombine the complete system Hamiltonian including the bare resonator and
transmon Hamiltonians as

Ĥ = ℏωq â
†
qâq + ℏωr â

†
râr + ℏg(âq − â†q)(âr − â†r), (2.45)

where g = Cg

2
√
CΣCr

√
ωqωr . The resulting Hamiltonian after the rotating wave approximation

(RWA) would be
Ĥ = ℏωr â

†
râr + ℏωq â

†
qâq − ℏg(âqâ†r + â†qâr). (2.46)

We define the vector representing the system ladder operators, Â = (âr, âq), and view the

Hamiltonian in matrix form as Ĥ = Â†MÂ, where M is:

M =

[
ωr −g
−g ωq

]
. (2.47)

We apply the Bogoliubov transformation to Ĥ in the limit of g2

∆2 ≪ 1. The system’s
eigenenergies then reads,

ω̃r = ωr +
g2

∆
, (2.48)

ω̃q = ωq −
g2

∆
, (2.49)

and the eigenbasis operators :

[
ˆ̃ar
ˆ̃aq

]
=

1√
g2 +∆2

[
∆ g
−g ∆

] [
âr
âq

]
. (2.50)

It is worth noting that the coupling strength g and the calculation of the eigenbasis are
also valid for the qubit-qubit couplings when they are first treated as linear oscillators
before treating the perturbative parts similar to the following step. The perturbative part
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of the transmon qubit Hamiltonian, as given in Eq. 2.42, expressed in terms of the system’s
eigenbasis operators, gives:

Ĥp = −
Ec

12
(âq + â†q)

4

≈ − Ec

12

{
6

∆4

(∆2 + g2)2

(
ˆ̃a†q ˆ̃aq ˆ̃a

†
q
ˆ̃aq + ˆ̃a†q ˆ̃aq

)
+ 12

∆2g2

(∆2 + g2)2

(
2ˆ̃a†q ˆ̃aq ˆ̃a

†
r
ˆ̃ar + ˆ̃a†r ˆ̃ar + ˆ̃a†q ˆ̃aq

)
+ 6

g4

(∆2 + g2)2

(
ˆ̃a†r ˆ̃ar ˆ̃a

†
r
ˆ̃ar + ˆ̃a†r ˆ̃ar

)}
(2.51)

Leaving out ˆ̃a†ˆ̃a terms that only introduce constant frequency offset, the expression is
simplified in the limit of g2

∆2 ≪ 1, giving

Ĥp = −
Ec

2
ˆ̃a†q ˆ̃aq ˆ̃a

†
q
ˆ̃aq − 2Ec

g2

∆2
ˆ̃a†q ˆ̃aq ˆ̃a

†
r
ˆ̃ar −

Ec

2
(
g

∆
)4 ˆ̃a†r ˆ̃ar ˆ̃a

†
r
ˆ̃ar. (2.52)

This expression consists of three terms, with the first being the qubit anharmonicity, which is
nearly identical to the one derived for the bare qubit. The second term is the qubit-resonator
coupling, also known as the cross-Kerr coupling, which is essential in dispersive readout
schemes. The third term represents a weak anharmonicity acquired by the resonator due
to its coupling to a highly nonlinear system (qubit), neglected, henceforth, at this level of
approximation.

Finally, the Hamiltonian of a qubit dispersively coupled to a resonator reads,

Ĥ = ℏωr
ˆ̃a†r ˆ̃ar + ℏωq

ˆ̃a†q ˆ̃aq −
Ec

2
ˆ̃a†q ˆ̃aq ˆ̃a

†
q
ˆ̃aq − 2ℏχˆ̃a†q ˆ̃aq ˆ̃a†r ˆ̃ar. (2.53)

where χ = Ec
g2

ℏ∆2 . In the context of quantum computing, it is more convenient to express
the transmon qubit in the two-level representation, given its high nonlinearity, giving

Ĥ = ℏ
ωq

2
σz
q + ℏ(ωr − χσz

q )ˆ̃a
†
r
ˆ̃ar. (2.54)

The dispersive regime is achieved here when the coupling between the qubit and the
resonator, g, is much weaker than the frequency detuning, ∆ such that the energy exchange
between the two systems is negligible. Instead, the resonator frequency becomes dependent
on the qubit state, as seen in the second term of the resonator term. This shift can be
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detected as a change in the resonator response, which is measured through a scattering
matrix or pulsed measurement. When the qubit is excited, the resonator frequency is
shifted by 2χ, where the change in the magnitude or phase of the readout pulse can be
observed. Dispersive readout has become a widely used technique, as it allows for efficient
and non-destructive readout of the qubit state.

2.4 Coplanar Waveguide λ/4 cavity

In this work, we use a one-dimensional microwave cavity that is constructed from a coplanar
waveguide (CPW). The cavity is terminated at one end with a low-impedance component
that connects the central conductor to the ground. At the other end, the waveguide is
connected to an output transmission line through a capacitor that serves as a semireflective
mirror. This design is commonly referred to as a λ/4 transmission line resonator, where
the length of the transmission line is equivalent to a quarter of the wavelength of the
fundamental mode.

2.4.1 Transmission Line Theory

Transmission line theory describes the behavior of electromagnetic waves as they travel
along a physical medium, such as a cable or a waveguide. The incident wave, V+(z, t), is
the wave that travels in the initial propagation direction through the medium, while the
reflected wave, V−(z, t), is the wave that is created as a result of changes in the impedance of
the waveguide. The properties of the transmission line include the characteristic impedance,
Z0, and the complex propagation constant, γ = α + jβ, where α is the per-unit-length
attenuation constant, and β is the phase change per unit length. We follow the standard
approach in this section. The electromagnetic waves can be fully described by the equation:

V±(z, t) = V±e
∓γz+jωt (2.55)

Where V+ is the complex amplitude of the incident wave, ω is the angular frequency, t is
time, and z is the distance along the transmission line.

These are time-varying monochromatic plane waves. Thus, we can separate the time
and space variables and study only the spatial component of those waves to solve problems
of interest. The total wave describing voltage or current at any point in the transmission
line is simply the sum of both incident and reflected waves:

Vt(z) = V+e
−γz + V−e

γz (2.56)
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It(z) = I+e
−γz + I−e

γz. (2.57)

The incident and reflected currents in the line can be expressed in terms of the voltage and
the characteristic impedance, Z0, of the line as follows:

V+
I+

= Z0 =
−V−
I−

(2.58)

The load termination of the transmission line imposes a boundary condition that relates
the incident and reflected waves through Ohm’s law:

ZL =
Vt(0)

It(0)
= Z0

V+ + V−
V+ − V−

(2.59)

The reflected wave amplitude can be defined as a complex ratio of the incident wave,
V− = ΓV+, where Γ is the reflection coefficient. This relation is substituted in Eq. 2.59 and
then solved for Γ to give

Γ =
ZL − Z0

ZL + Z0

. (2.60)

The input impedance of a transmission line is the equivalent impedance seen looking into
the input port and is determined by the characteristic impedance of the line and any
reflections that occur along it. It can be calculated using Ohm’s law:

Zin(z) =
Vt(z)

It(z)
= Z0

e−γz + Γeγz

e−γz − Γeγz
, (2.61)

where V− is replaced by the reflection ratio. The expression can be further simplified to
reach [17],

Zin(z) = Z0
ZL + Z0 tanh γd

Z0 + ZL tanh γd
. (2.62)

2.4.2 Resonance modes of the transmission line λ/4 cavity

The resonant frequencies of a capacitively coupled λ/4 transmission line cavity can be
determined by considering the properties of the transmission line, including its length. In a
lossless transmission line α = 0, and β = 2π/λ = ω

√
ϵeff/c, where c is the speed of light

and ϵeff is the effective dielectric constant, which is estimated as the average of air and
substrate dielectric constants. The input impedance of the cavity, Zcav, is calculated by
first transforming the short circuit boundary condition ZL = 0, across the transmission line
of length d as

Zin(d)|ZL=0 = j Z0 tan βd. (2.63)
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After adding the coupling capacitor impedance to Zin(d), the cavity impedance at the input
port reads,

Zcav =
1

jωC
+ j Z0 tan βd. (2.64)

The resonance of a cavity occurs when the impedance is purely real, Im(Zcav) = 0 [17]. In
the limit of ωC → 0, which imposes an imperfect open circuit boundary condition, the
resonance condition reads,

Z0 tan βd =∞. (2.65)

The solution of this equation is βm = 2π
d
(1 + 2m). This implies an infinite number of

resonance modes corresponding to the permissible propagation constant values, with the
fundamental mode at f0 =

c
4d

√
ϵeff

. That is, the length of the waveguide equals a quarter

of the wavelength of the fundamental frequency d = λ/4, hence the name. The higher
resonance frequencies are multiples of f0 as follows:

fm = f0(1 + 2m), (2.66)

i.e., the resonator supports an infinite number of resonances that are spaced by 2f0.

External Quality factor

In practice, our devices cannot be lossless, as we assumed earlier. There are often internal
losses, e.g., due to conductive losses and impurities in the substrate and surface oxides. The
energy in the cavity modes gradually dissipates to those internal loss channels. Therefore,
we need to retrieve the photons/information from the modes before it dissipates if we want
to do any meaningful computation using the modes.

The quality factor (Q) of a resonator can be used to quantify the loss of a resonator. It
is defined as the ratio of the energy stored in the resonator to the energy lost per cycle of
oscillations [17]. The quality factor can be classified into two types: internal and external.
The internal Q factor, Qi, is determined by the intrinsic loss mechanisms of the cavity. On
the other hand, the external Q factor, Qe, takes into account energy leakage to output
transmission lines. The total resonator Q-factor, Qtot, is then defined as

1

Qtot

=
1

Qe

+
1

Qi

. (2.67)

In the context of our work, cavities are designed to have a lower Qe compared to Qi. This
means that the external coupling is the primary channel of energy leakage, causing most of
the photons in the cavity to leak through to the output transmission line. This is called the
over-coupled regime. On the other hand, Qe > Qi is known as the under-coupled regime.
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ZLV+ V-Zcav

Figure 2.5: Simulation of Lossy Cavity Impedance and Schematic of Transmission Quarter
Wavelength Cavity. (Left) The plot shows the numerical simulation of the cavity impedance
as a function of frequency. The simulated cavity has a length of 32030 um and is modeled
as a lossy system. The imaginary part of the impedance is observed to grow infinitely high
(in the case of a lossless cavity), while the total impedance becomes purely real. The real
part of impedance represents the internal losses of the cavity. The fundamental mode of the
cavity is around 1.5 GHz, and the plot shows the measurement bandwidth, in which about
four equally spaced cavity modes can be observed. (Right) The figure depicts a cartoon
illustration of a λ/4 cavity. The cavity is capacitively coupled to the input port, with a
characteristic impedance of 50Ω. The cavity can be terminated at the short-circuit end
with a load impedance, which can vary depending on the desired results.
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Scattering matrix

A standard approach to characterizing microwave systems is known as the scattering matrix.
The scattering matrix, S, can be viewed as a linear transfer function of a system in the
steady-state regime where a microwave signal is injected into one port while all ports are
probed. The matrix element Snm is defined as the ratio of the output signal at port n
to the input signal at port m. This can be understood as a linear function in this sense:
Vn = SnmVm, where the output voltage is linearly related to the input voltage with a
complex factor.

One system of interest is a cavity coupled to a single input/output port with characteristic
impedance Z0. System information, such as resonance frequencies, linewidth, and quality
factors, is extracted by measuring the reflection coefficient, Γ(ω). In addition, the coupling
regime can also be determined by the phase of the scattering measurement. The reflection
measurement, S11, can be analytically expressed as

S11(ω) =
V−
V+

= Γ(ω) =
Zcav(ω)− Z0

Zcav(ω) + Z0

. (2.68)
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Figure 2.6: Reflection Characterization in the Complex Plane: A Study of the Reflection
Coefficient and Phase Trajectory. (Left) The plot shows the reflection coefficient in the
complex plane as a function of frequency. The frequency sweep causes the reflection
coefficient trajectory to form a circle, |Γ| < 1. The green circle represents overcoupling,
where the trajectory encircles the origin. In the case of critical coupling, shown in blue, the
trajectory passes through the origin. In red, undercoupling is depicted, where the circle
does not include the origin. (Right) The phase of the reflection coefficient trajectory is
plotted as a function of frequency (unwrapped phase shown in dashed lines). The phase
wrap is a clear indicator of the type of coupling. In overcoupling, the phase changes by a
total of 360o, while in critical coupling, it changes by only 180o. In undercoupling, the total
phase change does not reach 180o.
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Chapter 3

Superconducting Parametric Cavity
as AQS

In this chapter, we introduce our analog quantum simulation platform, which is based
on a multimode superconducting parametric cavity. Our platform offers unique design
considerations and advantages, which we will discuss in detail. We will highlight the key
features that make this platform a suitable choice for quantum simulation, such as uneven
mode spacing, parametric interactions enabled by the SQUID, and the ability to program
complex coupling terms. Additionally, we will examine the pump schemes used to create
the parametric interactions and how to build lattice models. The characterization of the
device and the experimental setup will also be discussed.

3.1 Device description

Our platform is a multimode superconducting parametric cavity composed of several
resonant modes that share a common boundary condition imposed by a SQUID. We explore
the details in the following sections.

3.1.1 Uneven frequency spacing of cavity modes

The eigenmodes of a typical cavity are equally spaced, making it challenging to selectively
turn on or off the interaction between these modes using a parametric process. In a
parametric process, the interactions are activated by parametric signals that are resonant
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with the sum or difference of the modes’ frequencies. This means that, with equally spaced
modes, all interactions are turned on or off together. However, by making the mode spacing
nondegenerate, the resonance frequencies of the different interactions become unique. This
allows us to turn on or off any desired number of interactions without affecting stray
couplings.

One way of achieving nondegenerate spacing is by modulating the cavity’s characteristic
impedance along its length, [18]. The dispersion relation becomes highly nonlinear by
dividing the cavity length into n sections with varying impedance. We can reasonably
estimate the cavity modes and spacing by applying the concept of impedance transformation,
as discussed in chapter 2. Here, we transform the load impedance sequentially along different
cavity sections until we reach the input port. We label the sections incrementally, with the
first section at the load. This can be done by cascading the input impedance Eq. (2.62),
giving

Zin,1 =Z0,1
ZL + j Z0,1 tan βa1
Z0,1 + j ZL tan βa1

Zin,2 =Z0,2
Zin,1 + j Z0,2 tan βa2
Z0,2 + j Zin,1 tan βa2

.

.

.

Zin,n =Z0,n
Zin,n−1 + j Z0,n tan βan
Z0,n + j Zin,n−1 tan βan

,

where Zin,m is the input impedance at end of section m , and Z0,m and am are the
characteristic impedance and the length of section m, respectively. The total cavity
impedance follows, similar to that in the previous chapter, by adding the coupling capacitor
impedance.

Zcav =
1

jωC
+ Zin,n (3.1)

We design a λ/4 coplanar waveguide cavity divided into six sections with varied characteristic
impedance. The total length of the cavity is 3203µm. We compare the cavity response by
plotting the phase of the reflection coefficient of our design in contrast to the response of a
typical cavity with the same length, as shown in Fig 3.1. Unlike the typical equally spaced
modes, the spacing between our cavity modes differs. The unique differences in the mode
spacing allow us to assign a distinct modulation frequency for each interaction we target
without activating other undesired interactions.
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Figure 3.1: The reflection coefficient phase ΘΓ is shown as a function of frequency. The
fundamental mode of the cavity can be found around 1 GHz for both cases, which aligns
with the λ/4 mode of the cavity length. The blue line represents the response of our designed
cavity, with the resonance appearing at the center where the phase changes by 360 degrees,
marked by black dots. The red dashed line displays the resonances of a typical cavity of the
same length. Our designed cavity has shifted modes to nondegenerate resonances, unlike
the conventional cavity, where all modes are evenly spaced.

There is no direct method to determine the number of sections and their characteristic
impedance. The calculation is done numerically with trial and error where one has to
optimize the uneven spacing such that the difference frequencies are unique for every pair of
modes. The task becomes increasingly difficult for a large number of modes, as one has to
keep track of the difference frequency between all possible pairs. For coherent interactions,
the coupling strength between the modes should be in the strong coupling regime. i.e.,
stronger than the decay rate. Hence, the uniqueness of each pair frequency should be a
minimum twice the coupling strength, practically around 20 MHz. In this case, a simple
optimization algorithm can be developed to maximize the uniqueness of all pairs of modes
as a function of the number of sections and characteristic impedance.
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3.1.2 SQUID as a shared boundary condition

In a simple cavity, the mode frequencies are typically determined by the geometry and
dielectric constant of the substrate material. This means that those frequencies are set
during the design stage and cannot be changed once the cavity has been fabricated. However,
it is possible to change the electrical length of the cavity by incorporating a SQUID in place
of the short-circuit boundary condition [19]. The SQUID can be controlled by an external
flux generated by a coil attached to the sample holder, which allows us to adjust the load
impedance of the cavity, and hence its mode frequencies. In the quantum treatment of
the transmission line cavity, the cavity modes are quantized, and a flux variable for each
mode is defined to be proportional to the bosonic annihilation and creation operators of
the mode, ϕ̂n ∝ ân + â†n. With the SQUID termination, the Hamiltonian of the system can
be approximated as follows:

Ĥ =
∑
n

ωnâ
†
nân + Esq cos

(
π
Φ̂ext

Φ0

)
cos

(
2π
ϕ̂sq

Φ0

)
, (3.2)

where ϕ̂sq is the SQUID flux, and Esq is the Josephson energy of the SQUID.

The mode flux is not point-like; instead, it is distributed along the cavity length and can
be expressed arbitrarily as the mode function, fn(z). Thus, the mode flux can be written
with an explicit spatial component as ϕ̂n(z, t) = fn(z)ϕ̂n, describing the flux of mode n at
any time t and position z. To this end, the total cavity flux can be written as the sum of
all mode fluxes as

ϕ̂(z, t) =
∑
n

fn(z)ϕ̂n. (3.3)

For the impedance-modulated cavity, the mode functions are no longer a simple sinusoid.
Instead, they are piecewise functions made from a number of sinusoids that satisfy the
appropriate matching boundary conditions at each impedance discontinuity. Still, the
conceptual description is the same as that of a simple cavity. In particular, it suffices to
treat the SQUID flux, ϕ̂sq, as the cavity flux at the termination point z = 0. Thus, the flux
across the SQUID is proportional to the linear combination of all the cavity modes’ flux
variables, ϕ̂sq =

∑
n αnϕ̂n, where αn = fn(0), giving

Ĥ =
∑
n

ωnâ
†
nân + Esq cos

(
π
Φ̂ext

Φ0

)
cos

(
2π

∑
n αnϕ̂n

Φ0

)
. (3.4)

Under the assumption of weak nonlinearity, i.e., the cavity linear inductance is much larger
than the SQUID effective inductance, the cosine term in the SQUID can be approximated
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Figure 3.2: Tunable Cavity Design with a SQUID. (top) Schematics of the Cavity Design.
The short-circuit boundary condition is replaced with a SQUID. The SQUID loop is
inductively coupled to an external magnetic field to enable tuning and modulation of the
boundary condition. (bottom) The spatial distribution of the voltage standing wave of
the fundamental mode along the cavity. The blue line represents the bare cavity voltage
at the short-circuit end, where it reaches zero. On the other hand, when the SQUID is
tuned at a specific bias flux value, the voltage at the SQUID appears to extend beyond
the cavity length because it corresponds to the fundamental wavelength of a longer cavity.
This highlights that the addition of the SQUID acts as a tunable ”electrical length.
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to second order:

Ĥ =
∑
n

ωnâ
†
nân −

Esq

2
cos

(
π
Φ̂ext

Φ0

)
(2π

∑
n αnϕ̂n

Φ0

)2. (3.5)

The external flux on the SQUID loop includes both a DC flux bias, ϕb, and an AC flux

signal, ϕ̂p, also known as a pump, Φ̂ext = ϕb + ϕ̂p. Assuming π ϕ̂p

Φ0
≪ 1, the cosine term of

the external flux can be approximated as

cos

(
π
Φ̂ext

Φ0

)
= cos

(
π
ϕb + ϕ̂p

Φ0

)
= cos

(
π
ϕb

Φ0

)
�
�

�
�
�

��>
≈ 1

cos

(
π
ϕ̂p

Φ0

)
− sin

(
π
ϕb

Φ0

)
�

�
�
�

�
��>
π ϕ̂p

Φ0

sin

(
π
ϕ̂p

Φ0

)
. (3.6)

We can then separate the Hamiltonian into time-independent and time-dependent terms
Ĥ = Ĥ0 + Ĥt. The time-independent component, Ĥ0, captures the static properties of the
system, and it is given by

Ĥ0 =
∑
n

ωnâ
†
nân −

Esq

2
cos

(
π
ϕb

Φ0

)
(π

∑
n αnϕ̂n

Φ0

)2

=
∑
n

ωnâ
†
nân −

Esqπ

2Φ0

cos

(
π
ϕb

Φ0

)∑
n,m

αnαmϕ̂mϕ̂n.

(3.7)

The second term contributes to the modes’ inductive coupling for n ̸= m. Since the cavity
modes are far-detuned, the linear coupling will only result in a slight shift to the original
mode frequencies. More interestingly, in the case of n = m, the term becomes identical to
an effective inductive energy ∝ ϕ̂2

n, with a tunable inductance ∝ 1
Esqπ

Φ0
cos

(
π

ϕb
Φ0

)
α2
n

. Thus, this

term allows for the tuning of the cavity modes through the DC flux bias ϕb. In this view,
Ĥ can be expressed in terms of tunable mode frequencies, ωn(ϕb), as

Ĥ0 =
∑

nωn(ϕb) ˆ̃a
†
n
ˆ̃an. (3.8)

On the other hand, the time-dependent component, Ĥt, is given by:

Ĥt =
πEsq

2Φ0

sin

(
π
ϕb

Φ0

)
ϕ̂p(2π

∑
n αnϕ̂n

Φ0

)2 (3.9)

Here, the term represents the interaction between the pump, ϕ̂p, and the sum of the mode
fluxes, which will enable the parametric interactions between the modes, as discussed in
detail in the next section.
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3.1.3 Parametric interactions

To use the time-dependent Hamiltonian introduced earlier to create parametric interactions
by applying a proper pump signal. First, we must treat Ĥt perturbatively. Recalling that
the mode flux, ϕ̂n, can be expressed in terms of the bosonic annihilation and creation
operators, that is, ϕ̂n ∝ ân + â†n, we can rewrite Ĥt in terms of the bosonic operators. By
expanding the quadratic part, the Hamiltonian can be written as:

Ĥt = g0(ϕb)(â
†
p + âp)(

∑
n,m

ânâ
†
m + ânâm + h.c.) (3.10)

Note that we have simplified the term for clarity. The pump is represented in terms of
its bosonic operators, ϕ̂p ∝ â†p + âp. The coupling strength, g0(ϕb), encompasses the sine
term of the DC flux bias and all constants resulting from the quadratic expansion, while
assuming that αn is equal for all modes. It is also clear that the interaction strength is a
function of the DC flux bias.

In the limit of a strong coherent signal, the pump can be represented by a complex
number, αp, which characterizes the amplitude and phase of the coherent state. It is done
by transforming the pump bosonic operators through a displacement transformation [20]:

ˆ̃ap = âp + αp (3.11)

where ãp is the transformed annihilation operator. The Ĥt can then be rewritten as

Ĥt = g0(ϕb) [������:0
(ˆ̃a†p + ˆ̃ap)− (αp + α∗

p)] (
∑
n,m

ânâ
†
m + ânâm + h.c.) (3.12)

In this rewritten form, the first term inside the square brackets, (ˆ̃ap + ˆ̃a†p), contains the
quantum fluctuations associated with the mode signal, which we ignore. The second term,
(αp+α

∗
p), is a classical signal that is proportional to the amplitude and phase of the coherent

state. In other words, it is the expectation value of the mode operators in a large-amplitude
coherent state.

Including the mode energies, Ĥ0, the full Hamiltonian is:

Ĥ = Ĥ0 + g0(ϕb) (αp + α∗
p) (
∑
n,m

ânâ
†
m + ânâm + h.c.) (3.13)

To clearly capture the interesting dynamics, we move to the interaction picture via the
unitary transformation U = e

i
ℏH0t. Also, we write explicitly the temporal components of
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the pump signal,

Ĥint = iℏU̇U † + UĤU †

= g0(ϕb) (αpe
−iωpt + α∗

pe
iωpt) (

∑
n,m

ânâ
†
me

−i (ωn−ωm) t + ânâme
−i (ωn+ωm) t + h.c.)

= g0(ϕb) α
∗
p

∑
n,m

(ânâ
†
me

−i [(ωn−ωm)−ωp] t + ânâme
−i [(ωn+ωm)−ωp] t) + h.c.

(3.14)

Since cavity modes have different frequencies, most terms in the Hamiltonian are fast
oscillating and have weak effects. However, by setting the pump signal frequency to cancel
out some terms, time-independent interaction can be achieved. On the AQS platform, two
types of interaction are of interest: hopping and pairing interactions.

The hopping interaction can be activated by choosing a pump frequency that resonates
with the first term in Ĥint, ωp = ωn−ωm, [18]. The rotating-wave approximation is used to
ignore the effect of the fast oscillating terms, leading to the hopping interaction Hamiltonian,

Ĥhopping = g0(ϕb) |αp| (e−iθp ânâ
†
m + h.c.). (3.15)

Similarly, the pairing interaction can be activated by choosing a pump frequency that
resonates with the second term in Ĥint, ωp = ωn + ωm,[21, 22]. The rotating-wave approxi-
mation is used to reach the pairing interaction Hamiltonian

Ĥpairing = g0(ϕb) |αp| (e−iθp ânâm + h.c.). (3.16)

Notice here that the pump amplitude and phase give us control over the interaction strength
as well as the well-defined phase of the interaction. This gives us the ability to create those
interactions as desired between any two modes with varying strengths and phases. The
prefactor, g0(ϕb), can suppress or enhance these interactions, and thus the SQUID needs to
be biased to achieve a nonzero value to enable these parametric interactions.

3.1.4 Lattice programming

The quantum systems in which we are interested are typically represented as lattices
connected by interactions in spatial dimensions. In this platform, we instead represent these
lattices by constructing them in the frequency dimension, where the cavity modes serve
as the lattice sites, and the interactions are realized through parametric interaction. By
using a set of pump signals, we can create hopping or pairing interactions between pairs of

30



Figure 3.3: Graphical representation of three different shapes of lattices in a many-body
quantum system that can be implemented using the multimode superconducting parametric
cavity platform. The sites, represented as cavity modes in green circles, are aligned in a
straight line, square, and triangle pattern, with lines between the sites representing a type
of interaction. This illustration highlights the versatility of modeling quantum systems on
an arbitrary lattice structure.

cavity modes, thereby programming a graph of connections representing the desired lattice
model, illustrated in Fig. 3.3. In the literature, this has been referred to as using “synthetic
dimensions”.

With the choice of pump frequency, we selectively activate interaction between specific
pairs of modes. This is made possible by the uneven spacing of the cavity modes, which
allows for unique modulation frequencies for each interaction between any two sites, as
shown in Fig. 3.4. The parametric interactions are controlled by the pump strength and
phase. This allows us to control the phase of the coupling strength and implement models
with complex hopping and pairing terms, providing a deeper understanding of the underlying
physics of the quantum systems being studied.

3.2 Device Operation

3.2.1 Overview of the parametric cavity

The superconducting parametric cavity developed in this research consists of a long trans-
mission line quarter-wavelength cavity with five accessible modes within the measurement
bandwidth of 4-12 GHz and a SQUID serving as a tunable inductor shared by all cavity
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Figure 3.4: Illustration of the selective activation feature in our multimode superconducting
parametric cavity platform. The x-axis represents the frequency of the cavity modes, while
the y-axis represents the frequency of the parametric signal. As the parametric frequency
is varied, a specific interaction between a pair of modes is activated. Each row shows
four cavity modes in gray. When the parametric signal is at resonance, only two modes
turn green when the interaction between them is activated. The arrow represents the link
interaction, highlighting the ability to selectively activate interactions between specific
pairs of modes. This feature enables the implementation of specific lattice structures and
provides a powerful tool for simulating quantum systems.
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Figure 3.5: CAD design of superconducting parametric cavity. (a) The SQUID acts as a
boundary condition and is inductively coupled to a pump line (scaled by a factor of 16).
(b) The colored sections of the cavity possess varying characterizing impedance (scaled by
a factor of 8).

modes, modulated parametrically. The cavity impedance is modulated to create nonde-
generate spacing between the cavity modes, enabling the addressing of individual mode
couplings. The cavity is capacitance coupled to a transmission line for probing and per-
forming experiments.

3.2.2 The experimental and measurement setup

The experimental setup for our superconducting parametric cavity involves cooling the
device down using a cryogenic-free dilution refrigerator that can reach a temperature of 7
mK. The fridge is composed of five cooling stages, as shown in Fig. 3.6. Microwave signals
are transmitted to the device through 50 ohm SMA cables after significant attenuation
through the input line and pump line. The output of the cavity is connected to an amplifier
chain, starting with a HEMT amplifier at 4 K, to enhance the signal before it reaches room
temperature for further amplification. A coil is mounted in very close proximity to the
device to adjust the DC flux while the parametric modulation of the SQUID is achieved
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through an on-chip fast-flux line terminated by a 50 Ω terminator.

Circulators are used to help isolate input and output signals in a single input/output
device, allowing for the measurement of the device’s reflection without affecting the incident
signal. A set of pump signals is combined at room temperature and fed through the pump
line. The input signal to the device can either be from VNA when we perform spectrum
measurements or from arbitrary wave generators where the output is measured via a set of
digitizers for time-domain measurement.
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Figure 3.6: The cryogenic microwave network of the experimental setup
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Chapter 4

Creutz Ladder Experiment

4.1 Introduction

This chapter shows our platform’s potential for analog quantum simulation (AQS) to study
classically intractable systems. AQS offers a near-term solution to unlocking the power
of quantum computing by constructing a well-controlled artificial system with the same
Hamiltonian as the system of interest. We present an in situ programmable platform for
AQS based on a multimode superconducting parametric cavity for Hamiltonians of hopping
terms with arbitrary complex amplitudes.

Our key contribution is the demonstration of the feasibility of simulating topological
models such as the bosonic Creutz ladder (BCL) using our platform [23, 24, 25]. The BCL
is a simple quasi-1D lattice model, but nonetheless exhibits a wide range of interesting
behavior including topological and chiral states. It is historically important as one of the
first models of chiral lattice fermions [23, 26]. Our implementation of the BCL simulation
highlights the potential of AQS as a powerful simulation tool for quantum systems.

We will discuss the characterization of the device and the realization of a 4-site BCL
model. we will also present the measurements and discuss the observation of emerging
topological features of the BCL model. We will conclude by emphasizing the advantages of
our AQS device compared to competing platforms. This chapter is is largely adapted from
our publication [27], first co-authored with Jimmy Hung . The contributions of the authors
are as follows.

• The theory team, comprised of E. Solano, H. Alaeian, and E. Rico, formulated the
theoretical framework for using the device in simulating the BCL model.
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• Jimmy Hung and I shared equal responsibility for conducting the experiments and
collecting data.

• I took the lead in fitting the data to the scattering model discussed later and
reconstructing the model’s Hamiltonian.

• With the exception of the design and fabrication team, all authors contributed to the
interpretation of the results and provided valuable insights.

• Sandbo Chang designed the device and, with assistance from Vadiraj A. M. and
Ibrahim Nsanzineza, fabricated it.

• Jimmy Hung and I were jointly responsible for writing the majority of the manuscript,
while the theory team authored the theory section. All authors, except the design
and fabrication team, participated in reviewing and editing the manuscript.

4.2 Bosonic Creutz Ladder Theory

The Hamiltonian of the infinite Creutz ladder, illustrated in Fig. 4.1, is (ℏ = 1)

ĤC = −
∑
n

[
td

(
b̂†nân+1 + â†nb̂n+1

)
+
tv
2

(
b̂†nân + â†n+1b̂n+1

)
+ the

iϕ
2

(
â†n+1ân + b̂†nb̂n+1

) ]
+H.C.,

(4.1)

where td, tv, th are the diagonal, vertical, and horizontal coupling rates and ϕ/2 is the phase
of the horizontal coupling. This Hamiltonian describes the dynamics of a crossed-link
fermionic ladder in a magnetic field [23]. There are a number of interesting topological
features of the model. As elaborated in previous work [24], at ϕ = π, the Hamiltonian
is time-reversal, particle-hole, and chiral symmetric. Moreover, in the so-called strong
coupling limit of tv = 0 and td = th = 1 and with open boundary conditions (finite chain),
there are two chiral zero-energy modes localized at the two ends of the ladder. Here, we
study the simplest building block one can use to investigate the chiral properties of the
Creutz ladder.

We can program the bosonic version of ĤC into our parametric cavity with the ap-
propriate choice of pump frequencies. For ease of notation, we will now drop the {ân, b̂n}
notation of Eqn. 4.1 and simplify to {ân} with the connectivity of the lattice now encoded
in a coupling tensor gnm.
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To probe the system, we must couple it to our measurement line, which we model with
the coupling Hamiltonian

ĤP = i
∑
n

√
κextn

(
âi,n − â†i,n

) (
ân + â†n

)
, (4.2)

with âi,n describing the annihilation operator of the nth input mode with the external
coupling rate κextn .

To treat the dynamics of our driven, dissipative system, we use the following Lindblad
master equation [28, 29]

˙̂ρ = −i
[
ĤC + ĤP , ρ̂

]
+
∑
n

κn

(
ânρ̂â

†
n −

1

2
{â†nân, ρ̂}

)
,

where ρ̂ is the reduced density matrix of the plaquette and κn = κextn + κintn is the total
photon decay rate including the internal loss rate κintn . Here we are mainly interested in the
dynamics of cavity modes so the transmission-line bath can be integrated out in the typical
Lindblad form. The material loss inside the cavity leads to additional decay which could
either be included as a non-Hermitian term κintn or directly incorporated in the Lindblad
form. If the latter, their noise input contribution and corresponding input/output formalism
must be treated differently. While the coupling to the transmission line leads to input noise
terms, the internal loss noise contribution should be governed by the fluctuation-dissipation
theorem at the equilibrium temperature.

The Heisenberg-Langevin equations of motion for the mode operators follow directly as

˙̂an = i
(
∆n + i

κn
2

)
ân + i

∑
m ̸=n

gnm
2
âm +

√
κextn âi,n, (4.3)

where ∆n = ωs
n − ωn with ωs

n being the probe frequency of the nth mode. Using the input-
output formalism, the output modes which we detect are then defined as âo,n =

√
κextn ân−âi,n.

Finally, to find the scattering matrix, we solve for the steady-state solutions of Eqn. 4.3,
i.e., assuming ˙̂an = 0, and define Snm = ⟨âo,n|âo,n⟩ / ⟨âi,m|âi,m⟩.
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Figure 4.1: Schematic representation of the Creutz ladder. The arrows indicate the sign of
the hopping phase.Reproduced from [27], with permission.

4.2.1 Scattering Matrix for an effective non-Hermitian Hamilto-
nian

Following Ref. [30], the same scattering equations can also be derived as the Heisenberg
equations of motion of an effective non-Hermitian model Hamiltonian describing four
parametrically coupled resonator modes with frequencies ωa, ωb, ωc and ωd, loss rates κa
to κd , and a time-dependent coupling rate per link gnm(t) = |gnm| cos (ωp

nmt+ ϕnm). The
Hamiltonian is

Ĥ =
4∑

n=1

(
ωn − i

κn
2

)
â†nân+i

√
κextn (âi,n−â†i,n)(â†n+ân)−

∑
m ̸=n

gnm(t)(â
†
n+ân)(â

†
m+âm), (4.4)

assuming that the cavities are probed at ωs
n and ωs

m where ωs
m > ωs

n. The pump tone
frequency is set at ωs

p = ωs
m − ωs

n. Moving to the interaction picture and taking the
appropriate rotating-wave approximation, we find

Ĥint =
4∑

n=1

(
ωn − ωs

n − i
κn
2

)
â†nân

+ i
√
κextn (âi,nâ

†
n − â†i,nân)

−
∑
m̸=n

|gnm|
2

(eiϕnm â†nâm + e−iϕnm ânâ
†
m).

(4.5)
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The steady-state equations of motion of the steady-state solutions then follows as

i
√
κextn âi,n =

(
ωs
n − ωn + i

κn
2

)
ân +

∑
m ̸=n

|gnm|
2

eiϕnm âm (4.6)

Defining the normalized coupling as βnm = |gnm|eiϕnm/2
√
κnκm, and the normalized detun-

ing is defined as

∆̃n =
ωs
n − ωn

κn
+
i

2
(4.7)

The equation of motion becomes

i
√
κextn âi,n = κn∆̃nân +

∑
m ̸=n

√
κnκmβnmâm. (4.8)

For larger systems, formulating the EOMs describing the system in matrix form becomes
useful. First, we define a number of vectors representing the cavity mode operators as
A = (â1, . . . , ân)

T , the input modes Ain = (âi,1, . . . , âi,n)
T and output modes Aout =

(âo,1 . . . , âo,n)
T . Also, we define the total loss matrix K = diag(

√
κ1, . . . ,

√
κn) and the

external loss Kext = diag(
√
κext1 , . . . ,

√
κextn ) and finally the coupling matrix:-

M =

 ∆̃1 β12 . . .
...

. . .

β∗
m1 ∆̃m

 .

The final matrix form of the EOMs becomes KMKA = iKextAin.

To solve for the scattering matrix, we use the input-output formalism to define the
output mode operators as Aout = KextA−Ain. Finally, the steady-state scattering matrix
is defined as

S = ⟨Aout|Aout⟩ /
〈
AT

in

∣∣AT
in

〉
= iHM−1H− ⊮ (4.9)

where we have introduced H = diag(
√
η1, . . . ,

√
ηn).

4.3 Creating a 4-site BCL plaquette

We can create a programmable graph of connections between the modes, which then become
the sites of our lattice arrayed in synthetic dimensions. As discussed in chapter 3, we induce
parametric couplings between modes, including standard “hopping” by selecting a set of
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modulation frequencies in resonance with the coupling terms. Because the couplings are
created by coherent pump tones, we can control not only the magnitudes of the hopping
terms, but also their relative phases. This phase control allows us to implement models
with complex hopping terms, describing classical gauge fields and a variety of topological
systems.

We program a four-site plaquette by pumping the SQUID with four coherent tones
at the appropriate difference frequencies, ωp

nm, as seen in Fig. 4.2. The choice of ωp
nm

determines which gnm are nonzero, programming the connection graph of the lattice. The
mode and pump frequencies are listed in Table 4.1, where we use the specific mode labels
n ∈ {a,b,c,d}. We generate the pump tones using microwave generators phase-locked with
1 GHz references, which provides superior phase coherence.

In setting the coupling strengths for the lattice links, we normalize the coupling to the
geometric mean of the mode linewidths κm and κn, defining βnm = gnm/2

√
κmκn. Here, we

chose the βnm to be roughly equal and in the strong-coupling limit. We use strong coupling
here to mean that the eigenmodes of the system are resolved in frequency.

Figure 4.2: Synthetic lattice of a 4-site BCL. We program a four-site lattice in synthetic
dimensions using four pump tones, which have a well-controlled phase. We measure the
scattering matrix of the system by probing near each node frequency and measuring the
output at various nodes, which are separated in frequency space. Reproduced from [27],
with permission.
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4.3.1 Characterization of the 4-site BCL plaquette

We use a vector network analyzer (VNA) to characterize the lattice to probe the system
through its input capacitor as shown in Fig. 4.2. To measure the reflection coefficient,
Snn(∆n), of node n, we both probe and detect around that site’s frequency, ωn. When the
lattice is activated, the single resonance observed at each uncoupled mode frequency is split
into a number of resonances. We can interpret this set of resonances as the spectrum of
the eigenmodes that exist on the lattice. Each element is centered on the uncoupled mode
frequency and the frequency offset of the coupled eigenmodes can be viewed as the energy
of the mode in the common rotating frame of the pumps. We can infer the mode coupling
strengths, the gnm of Eqn. 4.3, as a function of pump power from the set of spectra {Snn}.
For the simple case of two coupled modes, the frequency splitting of the eigenmodes directly
gives the coupling strength. The situation is more complicated with more than two modes,
but the basic intuition is similar.

Since our lattice sites exist along synthetic dimensions in frequency space, measuring the
off-diagonal scattering coefficients Smn, which characterize transport between sites, requires
a frequency-conversion measurement, where the probe and detection frequencies are offset
by ωp

nm. We can distinguish Smn and Snm by swapping the probe and detection frequencies,
allowing us to see nonreciprocal features in the transport.

4.4 Simulating the effect of a static gauge field on the

BCL plaquatte

We simulate the effect of applying an external magnetic field to the lattice by making
the {gnm} complex. The phase of the hopping term represents the phase acquired by an
excitation moving along the link in the presence of the magnetic field. For our simple 4-site
plaquette, only the total phase around the loop matters. As such, we choose, without loss
of generality, to sweep the phase, ϕ, of the hopping term between sites a and c. Formally,
moving the phases between links can be seen as a gauge transformation.

Figure 4.3 shows the measured 4x4 scattering matrix. Each element Snm is measured as
a function of ϕ and ∆n. We clearly see nontrivial behavior as ϕ is varied, with a series of
degeneracies arising and disappearing. The off-diagonal elements {Smn} show the magnitude
of frequency-converting transport from site n to site m. The frequency differences are set
by the pump frequencies, ωp

nm (see Table 4.1). These transport measurements allow us to
recover “spatial” information about the support of the eigenmodes over the synthetic lattice.
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Being in the strong-coupling limit, we can excite a specific eigenmode at a well-defined
detuning, ∆n. As the eigenmodes are “spatially” distributed along the synthetic dimensions,
the excitation hops between the sites and eventually leaks out of the cavity at another site,
where it is then detected at the converted frequency.
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Figure 4.3: The scattering matrix of a 4-site BCL. The magnitude of the experimental (top)
and theoretical (bottom) scattering matrices as a function of lattice phase, ϕ, and frequency.
The frequency axes give the detunings, ∆n, from the uncoupled mode frequencies. The
diagonal reflection coefficients, {Snn}, provide the spectrum of the lattice eigenmodes. The
off-diagonal elements, {Smn}, are the magnitude of frequency-converting transport between
the nodes. The {Smn} allows us to characterize the “spatial” support of each eigenmode
over the lattice in the synthetic dimensions (see text). We see clearly that the transport is
nonreciprocal with {Smn} and {Snm} often being complements of each other. Reproduced
from [27], with permission.
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4.4.1 Measurement Fitting

After taking the scattering matrix measurements, we implement basic data preprocessing
steps, described in more detail below. All steps described are applied to the data in
linear amplitude units, converted from logarithmic units (dB) according to the relation
Snm,Lin = 10(Snm,Log/20).

Both the reflection and frequency-converting transmission measurements are subject
to frequency dependent gain and loss. Our first step in eliminating these effects is to
measure and correct for the background, while all pumps are off. For the reflection
measurements, we detune the cavity modes out of the VNA measurement bandwidth and
measure the background reflection. We then divide the cavity’s reflection data by the
recorded background trace. The procedure for the transmission data is similar, except
that we note that the background transmission measured is, in fact, the noise floor of the
measurement system, as there is negligible frequency conversion of the probe signal if the
pumps are not activated.

It is well-known that measurements of resonance curves in cryogenic environments often
result in asymmetric line shapes [31]. This distortion of the ideally symmetric lineshapes
can be caused by a number of effects, such small impedance mismatches in the measurement
line that lead to interference between the desired signal and unintentionally scattered
microwaves. A number of approaches to modelling these effects appear in the literature, but
a simple and efficient one reduces the stray scattering to a complex loading of the resonator,
producing a complex external loss rate, κ̄ext [31, 32]. The real part of κ̄ext is attributed to
the ideal loading conditions whereas the imaginary part is responsible for asymmetries in
the lineshape. In this sense, only the real part of κ̄ext contributes to the total quality factor.
Accordingly, we will define κextn = Re[κ̄extn ].

Following the above results, we define a complex external loss rate for each mode,
κ̄extn . In Eqn. 4.9 of the scattering matrix below, we use a complex coupling efficiency
η̄n = κ̄extn /κn, where the total loss rate is κn = Re[κ̄extn ] + κintn . The reflection data is fit with
this complex parameter η̄n to account for the asymmetries we observe in the data. For the
transport, the real part is used as we do not expect the same interference between probe
and scattered signal because they are at different frequencies. In fact, using the complex η̄n
in the fits of the transport does not produce a noticeable change.

With the fine-scale frequency dependence now removed, we still need to account for
the large-scale (between mode) frequency dependence of the loss and gain. We do this by
introducing 12 scale parameters, Cnm, one for each of the transmission coefficients. (After
the background subtraction, the diagonal Cnn = 1 by definition.)
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Next, we incorporate the noise floor of the VNA in the transport measurement fitting
by recognizing that the power of transported signal and the noise power add, giving

|Snm,fit| =
√

(Cnm|Snm,Lin|)2 + 1, (4.10)

recalling that the noise-floor power level has been normalized to one.

The pump tones acquire unknown phase shifts as they travel along the input lines. Since
our current system has only one loop, all of these phase shifts add up to produce a constant
offset in the loop phase, ϕ. Nevertheless, based on our understanding of the system and the
observed periodicity, we can digitally offset the phase of the measured data. This offset
phase, ϕoff , becomes a fitting parameter. In the data displayed in Fig. 4.3 , the extracted
ϕoff has been subtracted.

The fitting was done on 2D data. The 1st dimension is the frequency and the 2nd is the
loop phase, ϕ. We use four different values of ϕ: 0, π/4, π/2 and π. The phase differences
between measurements are known since we control them with the microwave generators
that produce the pump tones. Apart from the pump frequencies which are fixed, a total
of 33 real parameters are adjusted for fitting: the lattice parameters ωn, κn, η̄n, and βnm
as well as the ϕoff and the 12 scaling factors Cnm. Here we define the normalized coupling
strength βnm = gnm/2

√
κnκm. The full set of extracted parameters is listed in Tables I and

II.

we focus on fitting the magnitude of the scattering elements and neglect the phases. We
use a frequency-conversion circuit to measure the off-diagonal elements which makes the
phases of transport ill-defined without additional calibration of the conversion circuit.

The magnitude of 64 traces that include the 16 scattering matrix elements at four loop
phase values are fit simultaneously in one global fitting routine. Note that both the upper
and lower part of the scattering matrix must be fit because the transmission is nonreciprocal.
The low-level fitting routine is the builtin curve fitting operation of the “Igor Pro” software
package.

We use the scattering matrix in Eqn. 4.9 formulated above to create the single output
fitting function. The inputs of the fitting function are the probe frequency and the model
parameters mentioned above. In addition, it also includes the predefined values of the pump
tone frequencies and loop phases. Given those parameters, the function constructs the
coupling matrix M and the coupling efficiency matrix H and then calculates the scattering
matrix of the model for a defined frequency and loop phase. After that, the value of the
desired scattering element, whose indices are passed as additional parameters, is extracted
and rescaled based on Eqn. 4.10 before it is returned as the function output.
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The global fitting procedure cascades the traces of the scattering elements at the
designated loop phases to create a single trace to be fit. The global fitting function is then a
piece-wise function that includes the local values for loop phase and the scattering element
indices as inputs. The rest of the model parameters are global.

To generate initial guesses for the fitting routine, we perform a set of measurements on
pairwise coupled modes, that is, with only one coupling pump on at a time. We fit simpler
models of pairwise coupled modes to this set of data to extract initial estimates of ωn, κn,
ηn and βnm. The initial guess for the phase of η̄n is zero. The extracted parameters of these
pairwise fits are shown in Table 4.1.

Mode a b c d
ωn/2π [GHz] 4.1578 6.0979 7.4719 9.4802
κn/2π [MHz] 1.0745 1.6298 2.8179 4.1049

ηn 0.46 0.62 0.86 0.74

Coupling ac ad bc bd
ωp
nm [GHz] 3.3136 5.3223 1.3733 3.382

gnm/2π [MHz] 2.9795 3.1395 3.6815 4.6560
βnm 0.8561 0.7474 0.8589 0.9000

Table 4.1: Extracted uncoupled and pairwise coupling parameters, used as initial guesses
for the fitting routine for the full lattice. We see that there are small, ∼ 1 MHz, frequency
shifts between the pair-wise frequencies and the full lattice frequencies in Table 4.2. These
are consistent with small, pump-induced shifts of the cavity frequency.

We do the global fitting in two steps. In the first step, we hold the parameters ωn, κn
and η̄n constant at their initial values, and fit ϕoff along with the βn and Cnm. We perform
the second and final step by freeing the remaining parameters including ωn, κn and η̄n.
We note that, comparing Table 4.2 and Table 4.1, there are small differences between the
full-lattice parameters and the pairwise parameters. These small changes are consistent
with what is expected due to the strong parametric pumping.
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Mode a b c d
ωn/2π [GHz] 4.1589 6.0992 7.4726 9.4806
σ [KHz] 2.4 3 3.7 5.3

κn/2π [MHz] 1.0113 1.6494 2.9334 4.5804
σ [KHz] 5.7 10 7.4 15

|η̄n| 0.44 0.56 0.78 0.67
σ 15× 10−3 11× 10−3 11× 10−3 7× 10−3

Angle(η̄n) [deg] -16 2.1 -12.8 18
σ [deg] 1.02 0.74 0.34 0.33

Coupling ac ad bc bd
βnm 0.8446 0.8612 0.7950 1.0278
σ 2.78× 10−3 2.23× 10−3 2.21× 10−3 3.2× 10−3

Table 4.2: The extracted BCL lattice parameters and their errors, σ.

Mode a b c d
a – 19.55± 0.36 20.77± 0.42 19.83± 0.37
b 5.93± 0.11 – 9.31± 0.12 9.74± 0.1
c 8.64± 0.18 12.55± 0.16 – 13.52± 0.16
d 4.28± 0.08 6.74± 0.06 6.77± 0.08 –

Table 4.3: The extracted scaling parameters, Cnm and their errors.

The 64 VNA traces used, along with the resulting fits, are shown in the figures below.
Each trace contains four resonance peaks, some of them overlapping, resulting in a total of
256 peaks being fit simultaneously using just 33 parameters, or about 1/8 of a parameter
per peak. This can be compared to doing detailed fitting of a single resonance where often
five or more parameters are used to fit one peak. With that in mind, we would say that the
quality of the fit is remarkable given the complexity of the data.
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Figure 4.4: Fit results at ϕ = 0 , showing the measured scattering matrix (red lines) and
the fits (blue lines). Reproduced from [27], with permission.
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Figure 4.5: Fit results at ϕ = π/4, showing the measured scattering matrix (red lines) and
the fits (blue lines). Reproduced from [27], with permission.
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Figure 4.6: Fit results at ϕ = π/2, showing the measured scattering matrix (red lines) and
the fits (blue lines). Reproduced from [27], with permission.
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Figure 4.7: Fit results at ϕ = π, showing the measured scattering matrix (red lines) and
the fits (blue lines). Reproduced from [27], with permission.
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4.5 Observations

We observe a number of interesting features in the scattering matrix. First, we observe
clear nonreciprocity in the transport, for instance, noticing that Sbc and Scb are effectively
complements of each other. The definition of reciprocity is that Sij = Sji, which is clearly
broken here. We will not emphasize it here, but this can be connected to the fictitious
magnetic flux breaking time-reversal symmetry.

We also identify interesting eigenmodes that we associate with emerging topological
features of the Creutz ladder. At ϕ = π, Creutz predicted that the bulk states collapse in a
pair of flat bands at equal but opposite energies. A flat band implies that the bulk states
are localized, as the group velocity goes to zero. Creutz referred to the associated states as
“solitons” and identified the localization as arising from interference between alternate paths
on the lattice (see Fig. 4.8(d)), a phenomenon often referred to as Aharonov-Bohm caging
in recent literature. With open boundary conditions, Creutz also predicted the existence of
a pair of zero-energy states localized to the ends of the ladder. The connection between the
observed eigenmodes and these topological states is discussed in detail in Fig. 4.8.
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Figure 4.8: Topological precursors. (a) ϕ = 0 line cuts of the measured (red) and theory
(blue) scattering parameters in Fig. 4.3 when probing at node a. The vertical axes are
normalized to the background. The measurements indicate the existence of an eigenmode at
zero energy with significant support only in nodes a and b, which are not directly connected.
We infer this from the relatively high transmission amplitude from a to b. We also observe
a 2nd zero mode localized on sites c and d. (b) Twisted plaquette. We expect topological
features of the Creutz ladder to appear at ϕ = π and not ϕ = 0. However, we note that if
we twist the plaquette as indicated, ϕ = 0 regardless of the external flux. After twisting,
the zero modes now appear at the two ends of the plaquette. These states are reminiscent
of the predicted zero-mode end states [23]. (c) ϕ = π line cuts when probing from node
a. The scales of the vertical axes are the same as panel (a). The measurements indicate
the existence of two pairs of degenerate eigenmodes, one at positive and one at negative
detuning, that have support on all but one of the nodes. One of these four eigenmodes
exists on each corner. (d) Caging. We can associate the corner eigenmodes with the soliton
states in the Creutz ladder by identifying the lattice as the indicated trapezoidal path.
Due to Aharonov-Bohm caging, an excitation at, e.g., node a cannot propagate to node b.
Reproduced from [27], with permission.
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4.6 Discussion

Previously, we have demonstrated the feasibility of our AQS platform based on a multimode
superconducting parametric cavity by simulating a plaquette of the bosonic Creutz lad-
der [27]. The cavity modes share a superconducting quantum interference device (SQUID)
which acts as a common boundary condition. Parametric modulation of the boundary con-
dition induces complex “hopping” couplings that allow us to create a programmable graph
of connected (coupled) modes, realizing a lattice in synthetic dimensions. We characterize
the lattice with scattering measurements, reconstructing the experimental Hamiltonian,
and observing important precursors of topological features. By controlling the phases of
the complex hopping terms, we implemented static gauge fields and topological effects
including nonreciprical transport and Aharonov-Bohm caging. This platform can be easily
extended to larger lattices and different models involving other interactions.
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Chapter 5

Bosonic Kitaev Chain Experiment

5.1 Introduction

The mode-to-mode coupling demonstrated in the previous chapter can be extended in a
number of promising and interesting ways. In the BCL model, we only activated the simplest
type of coupling (hopping). Another well-characterized parametric process is two-photon
parametric downconversion which leads to a type of pairing interaction, as we defined it
in chapter 3. This process is activated by pumping at the sum of two mode frequencies,
adding Hamiltonian terms of the form â†i â

†
j. First, this term is interesting as it is a source

of nonclassical states, including squeezed and entangled states [22]. Next, downconversion
unlocks a number of interesting simulation effects. Combining both hopping and pairing
terms could help in simulating effects such as superconductivity [33], and also leads directly
to chiral and topological features, as in the bosonic Kitaev-Majorona chain [33]. Finally,
downconversion provides access to coherent non-Hermitian Hamiltonians, in contrast to the
loss-induced non-Hermiticity widely studied in the literature [34, 35].

As a demonstration of the pairing interaction in our platform, we follow the theory of
McDonald et al. [33] to construct and simulate chiral effects in a 3-site bosonic Kitaev
chain. We observe two striking properties of the bosonic Kitaev chain: chiral transport and
spectral sensitivity to boundary conditions. To validate our experiment, we use the theory
to reconstruct the Hamiltonian by fitting the experimental results to the Kitaev model.

This chapter is largely adapted from our paper [36]. The contributions of the authors
are as follows.

• The theory collaborators, comprised of A. McDonald and A.A. Clerk, proposed the
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bosonic Kitaev chain model and formulated the framework for using the device to
simulate the model.

• I have conducted the experiments and collected data. Jimmy S.C. Hung helped
conduct experiments and collect data in the early stages of the work.

• Z. Shi took the lead in fitting the data to the theory and reconstructing the model’s
Hamiltonian.

• We used two devices in this experiment. C.W. Sandbo Chang designed the first device
and, with assistance from I. Nsanzineza, fabricated it. D. Dubyna designed the second
device and, with assistance from I. Nsanzineza, fabricated it.

• While Z. Shi and I, along with Jimmy S.C. Hung in the early stages, took the lead in
interpreting the results, the theory collaborators also contributed to the interpretation
and provided valuable insights.

• Z. Shi and I were jointly responsible for writing the majority of the manuscript. The
theory collaborators also participated in reviewing and editing the manuscript.

5.2 Kitaev Chain Theory

5.2.1 The Bosonic Kitaev Chain

The Kitaev-Majorona chain is a famous topological model originally proposed as spinless
fermions residing on a 1D tight-binding lattice, with both hopping and pairing terms
between nearest-neighbor sites [37]. The model hosts a topologically nontrivial phase with
two unpaired Majorana modes at the ends of the chain, which form a single delocalized and
topologically protected fermionic mode. It is likewise possible to construct a topologically
nontrivial Kitaev chain model of bosons [33, 38], even though it does not host topologically
protected edge modes as the fermionic Kitaev chain does.

Consider the bosonic 1D tight-binding Hamiltonian ( ℏ = 1)

ĤB =
1

2

∑
j

(
itâ†j+1âj + i∆â†j+1â

†
j + h.c.

)
(5.1)

illustrated in Fig. 5.1(a). Here âj is a bosonic annihilation operator on site j, and for
simplicity we have assumed that the hopping strength it and the pairing strength i∆
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are purely imaginary with t > ∆ > 0 positive real constants. (In a large portion of
the parameter space, the system can be reduced to this special case via a Bogoliubov
transformation.) Following the fermionic example, McDonald et al. split each boson into
two normal Hermitian field quadratures, x̂j = (â†j + âj)/

√
2 and p̂j = i(â†j − âj)/

√
2. Now

the Hamiltonian consists entirely of the products of adjacent x̂ and p̂ quadratures,

ĤB =
1

2

∑
j

[(t+∆) p̂j+1x̂j − (t−∆) x̂j+1p̂j] , (5.2)

such that the Heisenberg equations of motion for x̂ and p̂ quadratures are independent of
each other:

˙̂xj =
1

2
(t+∆)x̂j−1 −

1

2
(t−∆)x̂j+1,

˙̂pj =
1

2
(t−∆)p̂j−1 −

1

2
(t+∆)p̂j+1. (5.3)

When ∆ is nonzero, the couplings are asymmetric between left and right, giving rise to
phase-dependent chiral propagation. In particular, the propagation becomes fully chiral as
∆ approaches t, with the x quadrature propagating to the right and the p quadrature to
the left.

While Eq. (5.1) is Hermitian, we can effectively view Eq. (5.3) as two decoupled bosonic
Hatano-Nelson chains with asymmetric hopping strengths [39]; this is an example of effective
non-Hermitian dynamics occurring in Hermitian systems [40, 38]. The spectra of non-
Hermitian systems can depend drastically on their boundary conditions, a phenomenon
known as the non-Hermitian skin effect [41]. Indeed, all energy eigenvalues of Eq. (5.1)
are real under open boundary conditions as long as ∆ < t, but become complex for any
nonzero ∆ under periodic boundary conditions [33]. In other words, the bosonic Kitaev
chain Eq. (5.1) is dynamically stable in the presence of edges for ∆ < t, and unstable in
the absence of edges for any nonzero ∆.
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Figure 5.1: (a) Schematic representation of the bosonic Kitaev chain. Black and blue arrows
indicate the hopping and pairing couplings, respectively. (b) Device cartoon. We create
parametric interactions between cavity modes by pumping the SQUID through a flux line.
Blue and black signals represent the two pumps creating hopping and pairing couplings for
each link. The system is probed through the input capacitor by a coherent tone. (c)–(d)
Synthetic Kitaev lattices. We program 3-site Kitaev chains in synthetic dimensions with (c)
open and (d) periodic boundary conditions, using four and six pump tones, respectively. We
characterize the open chain (c) by sending a coherent signal with a constant amplitude and
a phase varying from −180◦ to 180◦, while probing at various site frequencies to measure
signal transport. In the closed chain (d), we focus on the chain spectrum by measuring the
reflection coefficient around the frequency of each site.
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5.3 Programming the Hamiltonian in our AQS

5.3.1 Generic Hamiltonian

The general quadratic Hamiltonian that can be programmed in our AQS takes the following
form:

ĤS =
∑
j

δωj â
†
j âj +

1

2

∑
⟨jj′⟩

(
tjj′e

iφt
jj′ â†j âj′

+ ∆jj′e
iφ∆

jj′ âj âj′ + h.c.
)
, (5.4)

where we have already adopted the rotating-wave approximation and work in the frame
rotating at the frequency ωj at mode j (which is defined below in relation to the frequencies

of the parametric pumps). Here the detuning δωj = ωj − ω(0)
j , with ω

(0)
j the uncoupled

frequency of mode j. The second sum runs over all pairs of sites j and j′ we intend to
connect; the hopping tjj′ and the pairing ∆jj′ are respectively activated by parametric
pumps at the frequencies |ωj − ωj′ | and ωj + ωj′ , and have tunable phases φt

jj′ = −φt
j′j and

φ∆
jj′ = φ∆

j′j.

5.3.2 Gauge invariance in Kitaev chain with arbitrary phases

Under the local gauge transformation âj → âje
iθj , which transforms the quadratures x̂

and p̂ into generalized quadratures x̂θ and p̂θ, the coupling phases associated with the link
between j and j′ transform as φt

jj′ → φt
jj′ + θj − θj′ and φ∆

jj′ → φ∆
jj′ − θj − θj′ . Defining the

link phases φ±
jj′ ≡ (φt

jj′ ± φ∆
jj′)/2 = −φ∓

j′j, we find φ+
jj′ → φ+

jj′ − θj′ and φ−
jj′ → φ−

jj′ + θj
are independent of θj and θj′ respectively. For two links j1j2 and j2j3 sharing the site j2,
the linear combination φ+

j1j2
+ φ−

j2j3
is fully gauge-invariant.

For a translationally invariant Kitaev chain with arbitrary link phases, Eq. (5.4) becomes

ĤB,g =
∑
j

[
δωâ†j âj +

1

2

(
teiφt â†j âj+1

+∆eiφ∆ âj âj+1 + h.c.
)]

=
∑
k>0

(
a†k, a−k

) (
h01̆ + h · σ̆

)( ak
a†−k

)
, (5.5)
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where, going into momentum space, we have assumed periodic boundary conditions. Oper-
ators in the particle-hole space are marked with a breve, and their coefficients are

h0 (k) = δω + t cosφt cos k, (5.6)

and

h (k) =

(
∆cosφ∆ cos k,∆sinφ∆ cos k,

t sinφt sin k

)
. (5.7)

For a hypothetical fermionic Hamiltonian of the form Eq. (5.5), the spectrum would be
given by EF = h0 ± |h| with the gap closing at h = 0, and the momentum space winding
number would depend on whether the trajectory of h encloses the origin. However, this is
not the case for the bosonic Hamiltonian Eq. (5.5); owing to its effectively non-Hermitian
dynamics, its topology is characterized directly by the complex energy spectrum [35], found
as the eigenvalues of the dynamical matrix

(
h01̆ + h · σ̆

)
σ̆z, i.e.

EB (k) = t sin k sinφt

±
√
(δω + t cos k cosφt)

2 −∆2 cos2 k. (5.8)

Note that EB depends on the gauge-invariant phase φt = φ+
j−1,j + φ−

j,j+1 , but not on φ∆

which can be shifted by a uniform gauge transformation âj → âje
iθ. In particular, in

the special case δω = 0, we find EB becomes complex and the periodic chain becomes
dynamically unstable if |t cosφt| < ∆, in agreement with [33]. Again, the system is
always dynamically unstable under periodic boundary conditions if φt = π/2 and ∆ > 0.
Meanwhile, if t > ∆, it is possible to change the stability of the periodic system by tuning
φt between 0 and π/2.

Returning to Eq. (5.4), we probe the system by coupling it to a measurement line,
described by the Hamiltonian

ĤP = i
∑
j

√
κextj

(
â†in,j − âin,j

)(
â†j + âj

)
. (5.9)

Here κextj is the external coupling rate to the input mode âin,j. Taking internal dissipation
into account, the transport properties of the system then follow from the Heisenberg-
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Langevin equations of motion

˙̂aSj = i
(
δωS

j + i
κj
2

)
âSj +

i

2

∑
j′

(
tjj′e

iφt
jj′ âSj′

+ ∆jj′e
−iφ∆

jj′ âI†j′
)
+
√
κextj âSin,j,

˙̂aI†j = −i
(
δωI

j − i
κj
2

)
âI†j −

i

2

∑
j′

(
tjj′e

−iφt
jj′ âI†j′

+ ∆jj′e
iφ∆

jj′ âSj′
)
+
√
κextj âI†in,j, (5.10)

where the “signal” frequency component âSj is coupled to the “idler” frequency component

âIj′ by the pairing pump ∆jj′ ; the frequencies of both âSj and âIj have are close to ω
(0)
j ,

with the probe detuning defined as δωS,I
j = ωS,I

j − ω(0)
j . κj is the total single-photon loss

rate including both internal and external contributions. For steady-state solutions, we can
let the time derivatives vanish and substitute the solutions into the input-output relation

âS,Iout,j =
√
κextj âS,Ij − âS,Iin,j to obtain the transport properties.

5.3.3 Transport in an open 3-mode system

For simplicity, we present the analytical results at zero probe detuning δω = 0 from the
beginning. we express the output fields in terms of a scattering matrix



⟨âSo,a⟩
⟨âI†o,a⟩
⟨âSo,b⟩
⟨âI†o,b⟩
⟨âSo,c⟩
⟨âI†o,c⟩

 =


SSS
aa SSI

aa SSS
ab SSI

ab SSS
ac SSI

ac

SIS
aa SII

aa SIS
ab SII

ab SIS
ac SII

ac

SSS
ba SSI

ba SSS
bb SSI

bb SSS
bc SSI

bc

SIS
ba SII

ba SIS
bb SII

bb SIS
bc SII

bc

SSS
ca SSI

ca SSS
cb SSI

cb SSS
cc SSI

cc

SIS
ca SII

ca SIS
cb SII

cb SIS
cc SII

cc





⟨âSi,a⟩
⟨âI†i,a⟩
⟨âSi,b⟩
⟨âI†i,b⟩
⟨âSi,c⟩
⟨âI†i,c⟩


(5.11)

where, defining a common denominator

Do =
(
t2ab −∆2

ab

)
κc +

(
t2bc −∆2

bc

)
κa + κaκbκc, (5.12)

We move on to investigate the different matrix elements.

60



Transport from the center mode to the ends

We can write the relevant scattering matrix elements from central mode b to end mode a as

SSS
ab = SII∗

ab =
2i

Do

√
κexta κextb κc tab e

i(φ+
ab+φ−

ab),

SSI
ab = SIS∗

ab =
2i

Do

√
κexta κextb κc∆ab e

i(−φ+
ab+φ−

ab), (5.13)

where we used link phase definitions φ±
jj′ ≡ (φt

jj′±φ∆
jj′)/2. The matrix elements for transport

in the opposite directions, {SSS
ba , S

II
ba , S

SI
ba , S

IS
ba }, are obtained by interchanging modes a↔ b

and, by extension, φ+
ab ↔ −φ−

ab. (Note that φt
ab = −φt

ba, φ
∆
ab = φ∆

ba, so when interchanging
modes, we have φ+

ba = −φ−
ab.). Furthermore, we can also obtain similar expressions

for transport from central mode b to the other end at mode c, {SSS
bc , S

II
bc , S

SI
bc , S

IS
bc }, by

interchanging a↔ c.

To illustrate the possibility of phase-dependent chiral transport in an interesting case,

we consider a coherent tone input
〈
â
S/I
i,b

〉
= |⟨âi,b⟩| eiφi,b in the central mode b and probes

at a and c. It is straightforward to find the angular dependence of the complex transported
amplitudes from b to a and from b to c:

SSS
ab

〈
âSi,b
〉
+ SSI

ab

〈
âI†i,b

〉
∝ ieiφ

−
ab

[
tab e

i(φi,b+φ+
ab) + ∆ab e

−i(φi,b+φ+
ab)
]
,

SSS
cb

〈
âSi,b
〉
+ SSI

cb

〈
âI†i,b

〉
∝ ie−iφ+

ba

[
tbc e

i(φi,b−φ−
bc) + ∆bc e

−i(φi,b−φ−
bc)
]
. (5.14)

The input phase φi,b = −φ+
ab is favored in transport from b to a, and by analogy φi,b = φ−

bc

is favored in transport from b to c. This gives us the freedom to choose whether the same
or the orthogonal phases are favored in transport to the chain’s ends. In the trivial case,
we consider the same quadrature being transported to the ends; when φi,b = −φ+

ab and
φi,b = φ−

bc correspond to the same phase, i.e. when φ+
ab + φ−

bc = 0. On the other hand, it
is now clear that we can achieve a strongly chiral case when φi,b = −φ+

ab and φi,b = φ−
bc

correspond to orthogonal quadratures being transported to opposite directions, i.e. when
φ+
ab + φ−

bc = π/2 + nπ.

It is useful to define the transmission coefficient Γab = SSS
ab + SSI

ab . Assuming equal link
coupling strengths, the magnitudes of the transmission in the enhanced and suppressed
input phases reads, ∣∣Γ±

ab

∣∣ = κext
(t±∆)(

t2 −∆2 + κ2

2

) (5.15)
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Then, we can calculate the contrast between the amplitudes of the enhanced and suppressed
phases.

contrastab =

∣∣Γ+
ab

∣∣− ∣∣Γ−
ab

∣∣∣∣Γ+
ab

∣∣+ ∣∣Γ−
ab

∣∣ = ∆

t
(5.16)

The contrast then gives a direct measure of the pairing strength with respect to the hopping
strength, which we use later in the calibration process.

Investigating the chirality of the chain of transport between the ends

A particularly interesting case is to investigate the transport properties of the signal

propagating along the chain. Let us consider a coherent tone input
〈
â
S/I
i,a

〉
= |⟨âi,a⟩| eiφi,a

in mode a and probe mode c. The relevant scattering matrix elements are

SSS
ca = SII∗

ca =
2

Do

√
κexta κextc

(
−tab tbc e−i(φ+

ab+φ−
bc) + ∆ab∆bc e

i(φ+
ab+φ−

bc)
)
e−i(φ−

ab+φ+
bc),

SSI
ca = SIS∗

ca =
2

Do

√
κexta κextc

(
−∆ab tbc e

−i(φ+
ab+φ−

bc) + tab∆bc e
i(φ+

ab+φ−
bc)
)
ei(φ

−
ab−φ+

bc). (5.17)

Extracting the angular dependence of the transport and omitting irrelevant constants:

SSS
ca

〈
âSi,a
〉
+ SSI

ca

〈
âI†i,a

〉
∝e−iφ+

bc

[(
−tab tbc e−i(φ+

ab+φ−
bc) + ∆ab∆bc e

i(φ+
ab+φ−

bc)
)
ei(φi,a−φ−

ab)

+
(
−∆ab tbc e

−i(φ+
ab+φ−

bc) + tab∆bc e
i(φ+

ab+φ−
bc)
)
e−i(φi,a−φ−

ab)
]
. (5.18)

When the sum phases satisfy φ+
ab + φ−

bc = nπ, the input phases φi,a = φ−
ab and φi,a =

φ−
ab + π/2 correspond to transported amplitudes proportional to (tab ±∆ab) (tbc ∓∆bc)

respectively. Assuming equal link coupling strengths, we reach trivial dynamics as the
transport amplitudes become completely phase-independent (t+∆) (t−∆), consistent
with the trivial case mentioned in the previous section:

|Γca| =
2κext

2κ
(
t2 −∆2 + κ2

2

) (t2 −∆2
)
,

= η
(t2 −∆2)(

t2 −∆2 + κ2

2

) (5.19)

The transmission coefficient is independent of the input phase and equivalent to a hopping-
only lattice with an effective coupling strength of g2 = t2 −∆2.
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On the other hand, if we align the sum phases such that φ+
ba + φ−

bc = π/2 + nπ (i.e.
when input in mode a experiences chiral transport), the input phases φi,a = φ−

ab and
φi,a = φ−

ab + π/2 correspond to transported amplitudes proportional to (gt12± g∆12)(gt13± g∆13)
respectively. Again, we equal link couplings; the transmission coefficients are, respectively,∣∣Γ±

ca

∣∣ = η
(t±∆)2(

t2 −∆2 + κ2

2

) (5.20)

Then we can estimate the amount of phase-dependent enhancement and suppression of
transport compared to the trivial case:

enhancement =
(t+∆)

(t−∆)
,

suppression =
(t−∆)

(t+∆)
. (5.21)

We expect to see a substantial difference between the transported signal in the trivial case
and enhanced and suppressed signals in the chiral case. Therefore, with φ+

ab+φ
−
bc = nπ+π/2,

the transport depends more strongly on the input phase. The transport between a and c
exhibits chirality in the same regime: the input phase φi,a = φ−

ab corresponding to enhanced
transport from a to c yields an output phase −φ+

bc − (−1)nπ/2 at c, whose orthogonal
quadrature φi,c = −φ+

bc results in enhanced transport from c to a. We are thus able to
identify φ+

ab + φ−
bc = π/2 + nπ as the chiral transport regime for the whole open chain.

In the chiral case, the amplitude of the favored phase is enhanced (suppressed) twice

through the two links with factor (t±∆)
κ

for each link,∣∣Γ±
ca

∣∣ = κext
κ(

t2 −∆2 + κ2

2

) (t±∆)

κ

(t±∆)

κ
(5.22)

On the other hand, in the trivial case, an input phase is enhanced via the first link and
then suppressed in the following link, and vice versa for the orthogonal phase,∣∣Γ±

ca

∣∣ = κext
κ(

t2 −∆2 + κ2

2

) (t+∆)

κ

(t−∆)

κ
(5.23)

5.3.4 Instability in closed 3-site chain

We can also study how the closed 3-mode system approaches the instability threshold
in the linear theory. We simplify the 6 complex couplings with equal coupling strengths
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∆ab = ∆bc = ∆ca = ∆ and tab = tbc = tca = t. The quantity that signals instability within
the linear regime is the coefficient matrix determinant of the coupled Heisenberg-Langevin
equations. We again focus on zero detuning δω = 0 first. The determinant has the notable
feature that the link phases appear only through the combinations θa ≡ 2

(
φ+
ca + φ−

ab

)
,

θb ≡ 2
(
φ+
ab + φ−

bc

)
, and θc ≡ 2

(
φ+
bc + φ−

ca

)
:

Dc = 4 t2∆2
[(
t2 +∆2

)
cos θa − t2 cos (θb + θc)−∆2 cos (θb − θc)

]
+ 4 t2∆2

[(
t2 +∆2

)
cos θb − t2 cos (θa + θc)−∆2 cos (θa − θc)

]
+ 4 t2∆2

[(
t2 +∆2

)
cos θc − t2 cos (θa + θb)−∆2 cos (θa − θb)

]
+ 2t2∆4 cos (θa − θb − θc) + 2t2∆4 cos (θb − θc − θa)
+ 2t2∆4 cos (θc − θa − θb) + 2t6 cos (θa + θb + θc) + Cc, (5.24)

Note that the terms in Dc that do depend on the pump phases are independent of loss
rates. Where Cc is independent of the pump phases,

Cc =
[
κ3 + 3κ

(
t2 −∆2

)]2
+ 2

[
t6 − 2∆6 + 3t2∆4 − 4t4∆2

]
(5.25)

When all downconversion pumps are turned off, the only phase-dependent term in Dc is
proportional to t6, and simple algebra shows that Dc is positive definite as a function of
pump phases. Once the downconversion pump strength is increased above a threshold value,
Dc eventually becomes zero for certain pump phases, and the set of equations becomes
singular: this is the point where the closed 3-mode system turns unstable in the linear
theory. Dc becomes negative above the threshold.

At this point, we acknowledge that we can also discuss instability in terms of the
eigenvalues of the coefficient matrix, following McDonald, Pereg-Barnea, and Clerk. If
we multiply Eq. (5.10) by −i, then some of the eigenvalues of the coefficient matrix
(corresponding to δω of self-sustained eigenmodes) should have positive imaginary parts
when the system becomes unstable, i.e. amplitudes of certain eigenmodes should grow with
time. This is equivalent to monitoring the sign of the determinant Dc, although it could be
easier to work with Dc directly when we are interested in the transport properties.

Eq. (5.24) allows an analytical minimization with respect to e.g. θb by explicitly
expanding out the cosine and sine terms. Fortunately, the expression remains free of square
roots after this minimization:

Dc ≥ const.− 8t2∆2
[
t2 cos(θa + θc) + ∆2 cos(θa − θc)

− (t2 +∆2) cos θa − (t2 +∆2) cos θc
]

(5.26)
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Since cosines range between −1 and 1, it is clear by now that the minimum with respect
to θa and θc is found at cos θa = cos θc = −1. Consistent with the 3-fold symmetry, at
this point we also have cos θb = −1, i.e. φ+

ab + φ−
bc = nπ + π/2, reminiscent of the chiral

transport regime in the open 3-mode system. The minimum of Dc with respect to all link
phases reads

Dc
min =

(
κ2 − 4g2∆

) [
3g2t + (κ+ g∆)

2] [3g2t + (κ− g∆)2
]
. (5.27)

The threshold value of the pairing strength g∆ is, therefore, κ/2 in the closed system, which is

always less than the open system value (κ2/2 + g2t )
1/2

, which can be extracted from Eq. (5.12).
Right at the threshold, since the minimum of Dc is found at cos θa = cos θb = cos θc = −1,
it is clear that tuning away any of these three angles θa, θb, and θc should return the system
to stability

Deviation from chiral gauge invariant case

It is clear now that to reach the instability; all link connections must be set at the gauge
invariant phase to be in the chiral transport. We, therefore, can analyze the instability
condition as a function of satisfying the phase condition for equal gauge phase values
θa = θb = θc = θ:

Dc = 4

((
t cos

θ

2

)2

−∆2 +
(κ
2

)2)
, (5.28)

The condition to reach instability is

∆ >

√(
t cos

θ

2

)2

+
(κ
2

)2
. (5.29)

It is interesting to see that we retrieve the instability condition for the periodic boundary
condition we reached before. It means that we can verify this condition experimentally on
our small system.

Instability feature in the spectrum

Following the practice in the experiment, let us fix φ+
ab + φ−

bc = nπ + π/2 (i.e., cos θb = −1),
and identify φ∆

ac = −1
2
(θa + θc) +φ∆,0

ac and φt
ac =

1
2
(θa− θc) +φt,0

ac , where φ
∆,0
ac = −φ−

ab +φ+
bc
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and φt,0
ac = φ−

ab + φ+
bc are independent of the a− c link. We can then single out the φt

ac and
φ∆
ac dependence,

Dc =
[
κ3 + 3

(
t2 −∆2

)
κ
]2

+ 4 (t+∆)3 (t−∆)3

− 4
[
2∆2t cos

(
φ∆
ac − φ∆,0

ac

)
−
(
t3 +∆2t

)
cos
(
φt
ac − φt,0

ac

)]2
. (5.30)

Eq. (5.30) indicates that the minimum of Dc is found at:

cos
(
φ∆
ac − φ∆,0

ac

)
= − cos

(
φt
ac − φt,0

ac

)
= ±1

This result, derived from the earlier definitions, implies that either θa = θc = π or
θa = −θc = π. These conditions satisfy the non-trivial gauge invariant condition.

The spectrum structure of the 3-site closed chain is identical to the Creutz ladder
depending entirely on the loop phases determined by the hopping phases. Let us define the
loop phase as φloop = φt

ab + φt
bc + φt

ca. Taking into account θb = π, φloop =
π
2
− (φt

ac − φt,0
ac ),

which is equivalent to phase in the second cosine. Interestingly, the instability happens at a
certain φloop = ±π/2, which coincides with one of the near-zero eigenmodes. The additional
condition on φ∆

ac determines which one of those near-zero eigenmodes will experience
amplification and reaches instability.

5.4 Simulating a 3-Site bosonic Kitaev chain

We program a chain of three sites in the synthetic frequency dimension as seen in Fig. 5.1(b).
For the open chain geometry, the sites are connected by two links where each link is created
by two coherent pumps: a pump at the modes’ frequency difference to activate the hopping
and a pump at the modes’ sum frequency to activate the pairing potential. We inject four
phase-locked coherent tones at the selected frequencies through an on-chip flux line coupled
to the SQUID. The amplitudes and phases of these tones determine the same properties
of the complex hopping and pairing terms. The coherent pump tones are generated using
microwave sources whose references are locked in a daisy-chain fashion at 1 GHz. To impose
periodic boundary conditions on the 3-site chain, we apply two additional pump tones
which connect the open ends, forming a closed loop, as seen in Fig. 5.1(c).
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5.4.1 Characterization and Calibration

We characterize the 3-site open chain by phase-sensitive transport measurements. We send
in a probe tone around one site frequency and measure the reflected and transported signals
at all other sites. The injected signal propagates through the chain and eventually leaks
out, where it is then detected at the site frequencies via three RF digitizers. To observe
the dependence of the transport on the input phase, the probe tone is set at a constant
magnitude but with a phase that ramps at a constant rate from −π to π. The phase-
sensitivity of the transport converts the phase sweep of the input signal into magnitude
variations in the output signals.

An arbitrary chain is calibrated by activating each link separately while turning off
the remaining links. First, upon activating the hopping term of the link (j, j + 1), the
single mode resonance splits into two resonances whose frequency difference gives twice the
coupling strength, 2tj,j+1. We then set the tj,j+1 to be roughly equal along the chain and
in the strong-coupling limit. By strong coupling, we mean that the resonance splitting is
resolved, i.e., that tj,j+1 > κj, κj+1 where κj and κj+1 are the photon decay rates.

Then, we activate each link’s pairing term. In this case, there is no simple spectral
feature that quantifies the pairing strength, ∆j,j+1. We roughly calibrate ∆j,j+1 using
transport measurements in the following way. With both hopping and pairing terms applied,
we sweep the input phase of the signal described above at site j and measure the contrast
of the transport at site j + 1 as a function of phase, that is, the ratio of the maximum
transport magnitude to the minimum. Since the contrast follows ∝ ∆

t
approximately, we

then vary the pairing pump power, interpreting the power where the observed contrast
is maximum as ∆ij ≈ tij. Beyond this point in power, the system becomes dynamically
unstable, as predicted. We chose a pairing strength such that it satisfies the topological
metastability condition of ∆ > κ

2
.

5.4.2 Twisted-tubes picture of the 3-site chain

The coupling phases control the direction of the transport between the sites’ quadratures.
We find it convenient to define the sum and difference phases, φ±

j,j+1 =
(
φt
j,j+1 ± φ∆

j,j+1

)
/2,

similar to the theory section. When a link is activated, due to the chiral nature of the
transport, a certain quadrature will be favored and the respective orthogonal quadrature
will be suppressed in the transport from site j to site j + 1. Importantly, the favored
quadrature may have different projections on the IQ plane at both sites, e.g. xj could
be transported to pj+1, xj → pj+1; it is φ

−
j,j+1 and φ+

j,j+1 that determine the projections
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of the favored quadrature at site j and site j + 1 respectively. On the other hand, the
orthogonal quadrature will dominate the transported signal in the opposite direction, i.e.
pj ← xj+1 in this example. By programming the coupling phases on a single link, we
can tune continuously between different transport scenarios: for instance, starting from
xj → pj+1 and pj ← xj+1, we can vary φ+

j,j+1 to arrive at xj → xj+1 and pj ← pj+1, or vary
φ−
j,j+1 to arrive at pj → pj+1 and xj ← xj+1.

In the presence of more than one link, to intuitively understand the role of coupling
phases in chiral transport, we use the twisted-tubes picture shown in Fig. 5.2. Each link is
represented as a pair of interleaved directional tubes with elliptic cross-section, where blue
tubes transport to the left and red tubes to the right. The elliptic cross section rotates
along the direction of transport, and the major axis of the ellipse at either end of the tube
indicates the projection of the favored quadrature on the corresponding site’s IQ plane.
Looking at site a on the left end, for instance, the major axis of the red ellipse shows the
phase of the input signal that will be favored in transport to site b, whereas the major axis
of the blue ellipse determines the phase of the signal transported to site a. The ends of the
tube connecting a and b can be twisted by varying φ−

ab and φ
+
ab as illustrated in Fig. 5.2(a).

In the theoretical model, Eq. (5.1), it is easy to set the phases such that there is no twisting
of the quadratures along the chain. It is not easy to do this in the experimental setting.
However, twisting the ends of all tubes at a given site by the same angle amounts to a local
gauge transformation, and only the gauge-invariant linear combinations of link phases, e.g.
φ+
ab + φ−

bc, which determine the relative orientation of the tubes at the common site, are
physically significant. Exploiting this gauge freedom, we can adjust the link phases to find
the maximum (minimum) of transport, such that the quadratures are maximally aligned
(misaligned) regardless of the local twisting.

5.4.3 Calibration of gauge invariant of the 3-site chain

To calibrate the 3-site chain, we twist the end of the a− b tube at site b by varying φ+
ab while

keeping the ends of the b− c tube unchanged, effectively changing the gauge-invariant phase.
Figure 5.3 shows the measured phase-dependent transport when the signal is injected at
the center site b as a function of φ+

ab. The sinusoidal shape of the transport magnitudes
to site a and site c reflects the transport sensitivity to the input phase where maximum
(minimum) peaks correspond to the favored (suppressed) phases. While the transport to
site c is roughly maintained constant at a certain favored input phase, ϕin = 0, the favored
phase in transport to site a continuously varies between −180◦ to 180◦, resulting in two
special cases. In the trivial case (red curves) at φ+

ab = −90◦, the same input phase is favored
in transport to both chain ends, i.e. the transport magnitudes are in phase, indicating
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Figure 5.2: Twisted-tubes picture of the bosonic Kitaev chain. (a) Two connected links
in a 3-site chain. Each link is represented by a pair of directional interleaved tubes, with
blue (red) tubes describing transport to the left (right). The left (right) end of link ab
can be twisted by varying the difference phase φ−

ab (sum phase φ+
ab). For a given transport

direction, the major axis of the elliptical cross-section at the input (output) end determines
the favored input (output) phase. The curved arrows connecting IQ planes depict how a
signal evolves on the IQ plane as it propagates in the corresponding direction. The interface
between the tubes at the common site b determines the transport across the 3-site system.
In (a), transport is suppressed as the ends of the a− b and b− c tubes are misaligned at
the common site b. That is, a signal propagating from left to right arrives at node b in
the counterpropagating quadrature and is subsequently attenuated. In (b), by twisting the
right end of the a− b link and aligning the tubes, we create two continuous paths along the
chain and realize a chiral chain.
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Figure 5.3: Calibration of the gauge-invariant phase of the 3-site open chain. The lattice
cartoon depicts a signal injected in the center while reflected and transport signals are
being probed. The magnitude and phase of the measured output signals are plotted as a
function of the input phase in trivial (red) and chiral (blue) cases, as well as the theory fit
(black). Note that all magnitudes of the transport signals are modulated along the input
phase axis. However, while the trivial transport magnitudes are in phase, the chiral case
magnitudes are out of phase.

that the same input phases get favored or suppressed. In the twisted-tubes picture, this
corresponds to complete misalignment between the tube ends where they meet at site b
where the projection of the red tube of a link matches with the projection of the blue tube
of the other link, impeding chiral transport along the chain.

More interestingly, the chiral case (blue curves) is achieved at φ+
ab = 0◦ where the

orthogonal input phases transport to the opposite ends as the tubes become perfectly
aligned at the connection, and the transport magnitudes to the ends are completely out of
phase. When the transport to site a is enhanced for a certain input phase, its transport to
the other end at site c is highly suppressed; conversely, the transport of the orthogonal phase
is suppressed to site b and enhanced to site c. This is in agreement with the projections of
twisted tubes on the IQ plane being aligned at their meeting point at site b as shown in
Fig. 5.2(b). This implies that we have established a chiral chain with two directional paths,
where orthogonal quadratures transport along the chain in opposite directions.
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5.5 Observation of the bosonic Kitaev chain features

5.5.1 Chiral transport properties of BKC

We investigate the chain chirality by performing phase-dependent transport measurements
while sweeping the link phase φ+

ab . This allows us to examine the transition between chiral
and trivial regimes. The measurements, shown in Fig. 5.4, reveal interesting features that
we associate with the bosonic Kitaev-chain model. By choosing the proper gauge-invariant
phase obtained in the calibration process, the chain exhibits chiral transport properties.
While the trivial regime is found to be a special case at φ+

ab = 90◦, the chiral regime emerges
gradually from a small deviation around 90◦, reaching maximum chiral transport at φ+

ab = 0◦.
These two gauge-invariant phases align with the trivial and chiral cases established in the
calibration.

Figure 5.5 illustrates the line cuts of phase-dependent transport between the chain ends
in both the chiral and trivial cases. In the trivial case (red curves), the chain shows minimal
changes in the transport signals regardless of the input phase. In fact, the transport is
expected to be equivalent to a simple tight-binding model with hopping strength of t−∆.
The transport magnitudes from site a to site c and vice versa indicate a constant transport
of approximately 0.57, which will serve as a baseline for the chiral transport. Conversely,
in the more interesting chiral case (blue curves), the chain transport between the ends
exhibits a strong dependence on the input phase. In Fig. 5.5(a), for instance, the transport
from site a to site c for an input phase of 0◦ is enhanced, compared to the baseline, while
the transport of the orthogonal input phases at −90◦ and 90◦ are highly suppressed at a
transport of about 0.31. Theoretically, we expect the ratio of enhanced and suppressed
amplitudes, compared to the baselines, to be around t+∆

t−∆
and t−∆

t+∆
, respectively.

An additional signature of chirality, illustrated in Fig. 5.5, is the flattening of the
transport phase. In the chiral regime, the phase of the transport signal becomes largely
independent of the input phase and is determined by the favored local quadrature at the
corresponding site. This implies that the phase at the output of the tube is determined
by the twisting of the tube itself, rather than the initial excitation phase. For instance, in
Fig. 5.5(a), while the transport phase linearly follows the input phase in the trivial chain
over a range of 900 , the phase in the chiral chain only varies by 35◦.

We depict the measurements as injecting coherent excitations at chain ends with two
orthogonal phases, as shown in Fig. 5.5(c). In the trivial case (red), the excitation phase
plays no role in enhancing or suppressing its propagation. However, in the chiral case, an
excitation at ϕ = 0◦ propagates to the right, while the propagation of an excitation with
ϕ = 90◦ propagates to the left.
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Figure 5.4: Transport of the 3-site open chain. The magnitude and phase of the experimental
(left) and theoretical (right) output signals are plotted as functions of a− b link sum phase,
φ+
ab, and input phase, ϕ. The labels {Smn} indicate the output signal at site m when the

input signal is injected at site n. For instance, {Snn} gives the reflected signal off the input
site n, while {Smn} corresponds to the transport in the chain from site n to site m. We
clearly see that the transport between the chain ends, {Sac, Sca}, exhibits distinct features
between the trivial regimes at φ+

ab = ±90◦ and the chiral regimes φ+
ab = 0◦,±180◦ . While

the trivial transport shows little to no dependence on the input phase, the blue regions
highlight the chirality features due to transport magnitude sensitivity to the input phase

.

The observation of topological features under certain gauge invariant coupling phase is
consistent with the theoretical prediction that the chain becomes fully chiral if the hopping
terms in the Hamiltonian have purely imaginary coupling amplitudes in Eq. (5.1). In this
case, the Hamiltonian has a nonzero winding in E-plane, i.e. nontrivial topology, as opposed
to the trivial chain that can be reduced to only real hopping terms [33].
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5.5.2 Sensitivity to periodic boundary conditions

We examine the sensitivity of the chiral chain to boundary conditions by setting φ+
ab = 0◦

and then connecting chain ends at sites a and c as shown in Fig. 5.1(d). We measure the
reflection coefficients around the site frequencies using a vector network analyzer (VNA),
while varying both hopping and pairing phases of the a− c link, as seen in Fig. 5.6(a)–(c).
The observed resonances can be viewed as the spectrum of the chain eigenmodes. The
spectrum is centered at the frequency of the uncoupled site, while the frequency offset of
an eigenmode is interpreted as the energy of mode in the rotating frame of the pumps.

The dominant pattern is the braiding of the chain spectrum as a function of φt
ac,

which is largely determined by the loop phase defined as the sum of the hopping phases
around loop [27] as seen in Fig. 5.6(a). For certain phase conditions, however, we observe
discontinuities in the central branch of the spectrum, indicating that the chain is approaching
dynamical instability.

It is remarkable that the instability is determined solely by the coupling phases (the
pump amplitudes are constant), which is a manifestation of the transition from the trivial
to the chiral regime. We note that instability happens only when the closed chain spectrum
has a zero eigenmode, which occurs for two values of the loop phase. Consequently, the
gauge-invariant phase condition for chirality is satisfied by a certain pairing phase. In the
twisted-tubes picture, we rotate both ends of the a − c tube until it is aligned with the
other tubes where they meet, forming an uninterrupted path around the closed chain, as
depicted in Fig. 5.6(e).

In the absence of dissipation, the initial excitation traverses the loop indefinitely, being
amplified as it passes through each tube, resulting in dynamical instability for nonzero ∆. In
our chain, at the pairing strength shown, the dynamics are dampened by local dissipation,
leading only to a finite amplification as seen in Fig. 5.7 It is expected, under uniform
coupling strength, that instability can be reached at ∆ > κ

2
. We have confirmed that

for higher pairing strength, the system becomes unstable, leading to coupled parametric
oscillations of the modes. The instability under periodic boundary conditions has been
shown to be a crucial sign of realizing the topologically metastable Bosonic Kitaev chain,
which supports Majorona Bosons.

5.5.3 Wavefunctions localization in 3-site open chain

The spectrum of the open chain in both chiral and trivial regimes with N sites is identical.
The eigenenergies of both models are equivalent to a tight-binding model with hopping
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strength t̃ =
√
t2 −∆2 and eigenenergies En = t̃ cos kn, where kn = nπ

N+1
[33]. A chain with

odd N sites have a zero-eigenmode for k = π
2
. The eigenmode wavefunction is delocalized

with the support at site j proportional to 2
N+1

sin2 (knj). Hence, the zero-eigenmode wave
function does not have any support on even lattice sites. In our 3-site chain, it implies
that the zero eigenmode will be only supported on the chain ends and that the reflection
measurements will be identical in both trivial and chiral regimes.

Nevertheless, the stark difference lies in the spatial distribution of the x and p wave-
function parts in the chiral chain. In the trivial case, the x and p wavefunctions are simple

standing waves xk, pk =
√

2
N+1

∑N
j=1 sin (knj)xj, pk with spatial support identical to the

mode wavefunction. On the other hand, the x and p wavefunctions in the chiral chain are

localized to either end of the chain as xk, pk =
√

2
N+1

∑N
j=1 sin(knj)e

±r(j−1)xj, pj, where r

is the squeezing parameter defined as e2r = (t+∆)
(t−∆)

. In our 3-site chain, the x wavefunction

is localized at site c, while the support at site a is much weaker with a factor of (t−∆)
(t+∆)

,

whereas the support of p wavefunction is localized at site a with a factor of (t+∆)
(t−∆)

stronger
compared to site c support. This is consistent with the transmission factors from site a to
site c of x and p excitations in the absence of loss. Hence, we can interpret the support of
the wavefunction parts from the transport measurements.

The transport signals from both ends of the chain for a particular input phase are
normalized to infer the support of the eigenmodes. Figure 5.8 depicts the support of the
x and p wavefunctions in both chiral and trivial cases. Even in a small 3-site chain, we
observe strong localization of x and p on the right and left ends, respectively, in contrast to
the trivial case where the wavefunctions are delocalized with equal weights on both ends.

5.6 Discussion

The pairing terms break the conservation of particle numbers as they create and destroy
pairs of particles. This gives rise to a non-Hermitian dynamical matrix, although here these
dynamics are the results of a coherent process in a Hermitian Hamiltonian [40]. Our work,
then, can be naturally extended to implement effective non-Hermiticity, which has a wide
range of applications in quantum sensing, entanglement dynamics, and topological band
theory.

Furthermore, the realized 3-site system can also be used for a number of interesting
applications. We can utilize the demonstrated chiral features as a phase-dependent quantum
amplifier [33]. Alternatively, vacuum squeezing can be used to realize entangled multimode
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states, which is a complex resource that can play a central role in, e.g., Gaussian boson
sampling [42]. In addition to AQS, the model exhibits nonlinear dynamics in the above-
threshold regime, ∆ > t+ κ

2
. For instance, we have observed coupled parametric oscillations

in the system. The instability dynamics of the chiral closed chain in the nonlinear regime
can be interesting to explore in future work.
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Figure 5.5: Transport of the 3-site open bosonic Kitaev chain at selected pump phases. Line
cuts of Fig. 5.4 are shown for the chiral case at φ+

ab = 0◦ (blue curves) and the trivial case at
φ+
ab = 90◦ (red curves) as well as the theory fit (black). (a) Signal injected at the left end. In

the trivial case, the link phases are misaligned, and we measure phase-insensitive transport
signals for all input phases. In the nontrivial (chiral) case, the transport magnitudes change
with the input phase in a sinusoidal fashion. Moreover, the transported phase is flattened
despite the fact that ϕ is swept in a continuous linear fashion, a strong indication of how the
signal is propagated through a single quadrature. (b) When a signal is injected at the right
end, in the chiral case, the enhanced input phase at ϕ = ±90◦ is orthogonal to the favored
phase in the transport of the opposite direction. (c) a cartoon depicts the propagation of
excitations with orthogonal input phases in trivial and chiral chains.
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Figure 5.6: 3-site closed Kitaev chain spectrum. (a)–(c) The measured (top) and theory
(bottom) reflection magnitudes at site b as functions of the a− c hopping phase, φt

ac, and
probe detuning from the uncoupled site frequency. (a) Spectrum at φ∆

ac = 60◦, the chain
tubes are misaligned, reducing the total gain around the loop. In this case, sweeping φt

ac

produces a braided spectrum typical of loops with only hopping. At (b) φ∆
ac = 0◦ and (c)

φ∆
ac = 90◦, the braided spectrum is overall similar, but we observe discontinuities when the

gauge-invariant phase satisfies the chirality condition at φt
ac = 310◦ in (b) or φt

ac = 90◦

in (c), indicated by the black squares. Offsetting φ∆
ac by 90◦ forces the discontinuity to

jump from the top to the bottom zero eigenmodes. We note that the magnitudes of all
pumps are constant in these plots, so the onset of instability is caused only by satisfying the
chirality condition. Twisted-tubes depiction of the closed chain before alignment (d) and
after alignment (e). The excitation traverses the red or blue loop indefinitely, depending on
its initial phase.

77



1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

|S
bb

(δ
ω

=
0)

|

2.62.42.22.01.81.61.4
Pairing strength Δ [Arb. Linear] 

 Peak at chiral phase,

 Peak at trivial phase,  

= 90

= 310

Figure 5.7: zero eigenmodes peak of the reflection at site b as a function of pairing strength
in the closed chain. (black) in the trivial regime, increasing the pairing strength does not
affect the zero-mode reflection peak. (red) in the chiral regime, the effective loss is reduced
until we observe an amplified signal as the reflection coefficient reaches above 1

78



1.0

0.8

0.6

0.4

0.2

0.0
site a site b site c

1.0

0.8

0.6

0.4

0.2

0.0

 |xn|
2

|pn|
2

site a site b site c

(a)

(b)
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Chapter 6

Three-Body interaction

The parametric cavity-based ASO platform is capable of simulating static gauge fields
indirectly by including their effect, as demonstrated in Chapter 4. However, the simulation
of dynamics gauge fields, such as in Lattice Gauge Theories (LGTs) requires the explicit
addition of the gauge field degrees of freedom. One approach to fully simulating dynamic
fields involves engineering interactions beyond the standard two-body interactions accessible
with quadratic Hamiltonians. The lowest order of these would be three-body interactions.
In this chapter, we propose and implement a three-qubit device to achieve three-body
interaction. We will dive into the design details and simulations of the energy levels and
dynamics. Then, we show the experimental results, comparing them with theory.

The contributions to this work are as follows.

• I designed the three-qubit device.

• I fabricated the device with assistance from I. Nsanzineza.

• I conducted the experiments and collected data. Cindy Yang assisted in data collection.

• Z. Shi and I collaborated on fitting the data to the theory and reconstructing the
model’s Hamiltonian.

• I wrote this chapter independently.
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6.1 Lattice gauge theories

A significant part of modern fundamental physics relies on the formalism of gauge theories.
In fact, three out of the four forces of nature are considered gauge theories at the fundamental
level [43]. These gauge theories are quantum field theories that have a special type of local
symmetry known as gauge symmetry.

The first quantum gauge theory to be significantly developed was quantum electrody-
namics (QED), which describes the quantum interaction between the electromagnetic field
and electrically charged particles. QED is characterized by weak coupling and has been
successfully treated using perturbation theory. With the success of QED, the concept of
gauge theories was extended to both weak and strong nuclear forces. Also, a weakly-coupled
theory, the weak force was successfully described by expanding the gauge symmetry group of
QED, ultimately leading to the unified electroweak theory that combines the electromagnetic
and weak nuclear forces.

However, as its name suggests, the strong nuclear force is strongly coupled and cannot
generally be treated using perturbation theory. The fundamental theory of the strong force
is known as quantum chromodynamics (QCD). Looking for ways to tackle QCD in 1972,
Wilson proposed lattice gauge theories (LGTs), regularized by discretizing space-time, to
deal with strong interaction regimes where perturbative approaches fail [44]. Over the
past decades, LGTs have proved to be a powerful framework for overcoming challenging
problems in many fields of physics. It has allowed advances in not only elementary particle
physics but also in condensed matter physics [45, 46, 47], where it arises as an emergent
theory [48, 49], such as in strongly correlated systems. Furthermore, a wide range of
many-body systems can be transformed into a gauge theory via slave-particle or parton
decomposition [50]. This technique involves fractionalizing the original degree of freedom
into ’slave’ degrees of freedom that interact with emergent gauge fields [51].

Monte Carlo simulations have established themselves as a key tool in classical simulations
of LGTs. These simulations have proven invaluable in various fields of modern physics
ranging from low-energy spectra [52, 53, 54], phase diagrams [55, 56, 57], to muon magnetic
moment [58] and many others [59, 60]. Despite their proven efficiency, Monte Carlo methods
still fail to simulate a wide range of essential problems in LGTs [6, 7]. Such problems
include the time evolution of dynamics out of equilibrium [10] and models with finite
fermion density [11]. The difficulty with these problems is due to the so-called sign problem,
which prevents Monte Carlo simulations from converging or even properly defined [61].

In light of these limitations, quantum simulation has been proposed as a potential
approach for investigating LGTs in strongly-interacting regimes [62, 63, 64, 65]. The
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Hamiltonian of interest is either simulated digitally or by engineering systems that mimic
it. One of the difficulties of using the digital approach is that the interaction terms may
need to be broken down into a large set of two-qubit gates. For instance, the simulation
of one-dimensional Z2 LGTs and the U(1) spin 1/2 models involves breaking down the
interaction term into six two-qubit gates and three layers of single-qubit gates [66]. The
situation quickly gets worse for U(1) LGTs when the gauge field is required to take more
than two values, even in hardware-efficient simulation schemes. In addition, encoding
the large bosonic Hilbert space of gauge fields in a small-scale quantum computer can be
extremely challenging. Although promising approaches for the simulation of U(1) LGTs
have been realized using trapped ions where the gauge fields are integrated out [67, 68, 69],
these approaches are only valid for one-dimensional models and require additional long-range
qubit-qubit interactions that are hard to realize, particularly in superconducting circuit
platforms.

As a result, analog quantum simulation (AQS) has become an increasingly interesting
approach to studying LGTs [70, 10, 71, 72, 73, 74]. This has motivated us to design and
implement a building block for LGTs focusing on realizing the matter-gauge interaction
term in the form of a three-qubit interaction in superconducting circuits. Gauge fields take
different formulations depending on the phenomena studied and are characterized by the
underlying (gauge) symmetry group of the system. One of the common gauge groups used
to describe gauge fields is the U(1) symmetry group responsible for the emergence of the
Gauss’s law in QED, which describes a continuous symmetry of rotations on a unit circle.
Furthermore, the infinite gauge Hilbert space can be truncated as spin S with discrete
degrees of freedom without compromising the continuous symmetry U (1) in what is known
as the quantum link model representation [46]. The simplest U(1) LGTs can be called U(1)
spin 1/2 models [75], which consider a spin 1/2 gauge that takes only two possible values. In
this chapter, we develop a platform for simulating U(1) spin 1/2 models commonly involved
in describing coupled-spin systems, such as quantum spin liquids [76]. This simple yet
nontrivial U(1) LGT model still allows for studying complex systems with gauge symmetries
and investigating conservation laws, such as Gauss’s law. It also shows exciting physics,
such as confinement phase transition and spontaneous symmetry breaking [77, 66]. This
mainly serves as a demonstration of our platform’s capability of realizing the dynamical
gauge-matter interaction. By generalizing the approach here, this platform should be able
to extend the model to more sophisticated problems with larger gauge Hilbert spaces.
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6.2 Theory of U(1) Lattice gauge theories

In general, in LGTs, spacetime is discretized into a lattice where the matter fields (massive
particles) live on the lattice sites and the gauge fields live on the links connecting the sites.
For simplicity, we consider the theory of one-dimensional U(1) - LGT with configuration
depicted in Fig. 6.1(a).

Following [78] the Kogut-Susskind formulation of LGTs in a 1-dimensional staggered
lattice, the Hamiltonian can be written as a sum of three terms: Ĥm, Ĥg, and Ĥmg. The

first term, Ĥm, represents the energy of the matter fields and is given by:

Ĥm = µ
∑
n

(−1)nψ̂†
nψ̂n, (6.1)

where ψ̂n is the fermionic annihilation operator of the matter field on site n with rest mass
µ.

The second term, Ĥg, represents the energy of the gauge fields

Ĥg = ge
∑
n

(Ên,n+1)
2, (6.2)

where Ên,n+1 is the electric field operator on the link connecting sites n and n+ 1, and ge
measures its energy.

The third term, Ĥmg, is the matter-gauge interaction. It is given by

Ĥmg = −J
∑
n

ψ̂†
nÛn,n+1ψ̂n+1, (6.3)

where J is the kinetic energy term, and the unitary gauge operator Ûn,n+1 = eiθ̂n,n+1

with θ̂n,n+1 corresponding to the vector potential. Here, the gauge field is represented

by the canonical operators Ên,n+1 and θ̂n,n+1 which satisfy the commutation relation

[θ̂n,n+1, Êm,m+1] = iδ̂n,m. We see that the hopping of matter excitations is connected
to the gauge fields. This term is invariant under local gauge transformations of matter
V̂ †ψ̂nV̂ = eiαnψ̂n and gauges V̂ †Ûn,n+1V̂ = eiαnÛn,n+1e

−iαn+1 , where V̂ =
∏

n e
iαnĜn . The

U(1) local symmetry generator at site n is Ĝn = ψ̂†
nψ̂n− (Ên,n+1− Ên−1,n)+

1
2
[(−1)n−1]. It

is worth noting that, through Noether’s theorem, gauge symmetries imply the conservation
of a quantity in the system. For example, a system with translational symmetry implies the
conservation of momentum in that system. In this view, the symmetry leads to a conservation
law understood as a lattice version of Gauss’s law in 1D quantum electrodynamics.
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(a)

(b)

Figure 6.1: One-dimensional LGTs and quantum link representation. (a) depiction of 1D
LGTs considers matter fields ψ̂n living in lattice sites (green), coupled to U(1) gauge fields
living on the links (blue) connecting the sites, defined by (Ên,n+1, Ûn,n+1). (b) The LGTs

picture using quantum link models, the gauge fields’ Hilbert space is truncated to spin Ŝ
operators, where it approaches the Wilson formulation in the limit of S →∞. In this work,
we are concerned U(1) LGTs with link spin 1

2
, (ˆ̃σz

n,n+1, ˆ̃σ
+
n,n+1).

A convenient framework for dealing with LGTs in the context of quantum simulation is
given by quantum link models (QLMs) [79]. The infinite Hilbert space of the gauge field is
truncated by replacing it with spin S degrees of freedom with a 2S + 1-dimensional Hilbert
space. In fact, QLMs can be considered a generalization of LGTs, as they include models
relevant to condensed matter physics and quantum information theory [46]. In this work,
we consider S = 1

2
links and denote the link Pauli operators σ̂n,n+1, such that the unitary

gauge operator Ûn,n+1 (Û
†
n,n+1) maps to σ̂−

n,n+1 (σ̂
+
n,n+1), and the electric field operator Ên,n+1

maps to σ̂z
n,n+1. The relevant Hamiltonian terms are rewritten as (σ̂z

n,n+1)
2 = 1 for the

gauge energy term and ψ̂†
nσ̂

−
n,n+1ψ̂n+1 for the interaction term.

While superconducting circuits, and many other platforms, lack inherently fermionic
building blocks, one can still map one-component fermions to spin 1

2
in a one-dimensional

lattice using the Jordan-Wigner transformation [79]:

ψ̂n = (−1)
∑

i<n(σ̂
z
i +1)/2σ̂−

n ,

ψ̂†
n = (−1)

∑
i<n(σ̂

z
i +1)/2σ̂+

n ,

ψ̂†
nψ̂n = (σ̂z

n + 1)/2.

(6.4)

And the final (1+1)D U(1) - LGT Hamiltonian , depicted in Fig. 6.1(b), can be written as

Ĥm = µ
∑
n

(−1)n(σ̂z
n + 1)/2− J

∑
n

σ̂+
n σ̂

−
n,n+1σ̂

−
n+1 (6.5)
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Φext

Figure 6.2: The circuit schematic of the three-qubit Device. Qubits 1 and 3 are fixed
frequency transmon qubits, i.e. a Josephson junction shunted with a capacitor, representing
the matter sites. Qubit 2 is a tunable transmon qubit, i.e., a SQUID shunted with a
capacitor. The qubits are coupled with capacitors C12 and C23. The external flux, Φext, is
applied to activate the three-body interaction parametrically.

The three-body interaction term in the Hamiltonian ensures that the gauge fields and matter
particles evolve in a way that respects the gauge symmetries of the system. Importantly, the
local symmetry in U(1) LGTs is still respected in QLM with spin 1

2
links, which maintain

Gauss’s law defined by the modified symmetry generator

Ĝn = (σ̂z
n + 1)/2− (σ̂z

n,n+1 − σ̂z
n−1,n) +

1

2
[(−1)n − 1]. (6.6)

where the charge in site n is represented by (σ̂z
n + 1)/2, while the electric field divergence is

calculated as the difference of the electric field spin states between the links connected to
that site.

6.3 c-QED implementation of three-body interaction

We design a superconducting circuit to realize the interaction building block for U(1) LGTs.
The building block resembles a two-site lattice and a mediating gauge field in a link. A
transmon qubit is convenient for representing lattice sites and links as spin-1/2 systems.
The circuit design is shown in Fig. 6.2 where we have three transmon qubits capacitively
coupled in a chain fashion. The middle qubit is designed with an asymmetric SQUID, which
will allow us to control and activate the interactions parametrically.
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6.3.1 Hamiltonian Formulation

The Hamiltonian of the system is derived below. We define a flux vector, Φ = (ϕ1, ϕ2, ϕ3),
where ϕn represents the flux variable at qubit n. The capacitance matrix of the circuit can
be written as

C =

C1 + C12 −C12 0
−C12 C2 + C12 + C23 −C23

0 −C23 C3 + C23

 , (6.7)

where Cn is the capacitor at qubit n, and Cn,m is the coupling capacitance between qubits
n and m. In the standard way, the kinetic energy of the system is considered to be the
charging energy of the circuit capacitances and reads,

T =
1

2
Φ̇⊺CΦ̇. (6.8)

The diagonal elements represent the qubit charging energies, and the nonzero off-diagonal
elements are the capacitive coupling terms ∝ ϕ̇nϕ̇m.

On the other hand, the potential energy of the circuit is taken to be the inductive energy,
in this case, stored in the junctions and SQUID:

U =
∑
n

UJ,n + USQ,

where UJ,n are the junction energies of qubit 1 and 3 defined in Eq. 2.5, and USQ is the
SQUID energy, Eq. 2.16, all of which are functions of the flux at the junctions.

6.3.2 SQUID energy approximation with an external flux

To realize the parametric interaction, we operate the SQUID such that a maximum coupling
strength is achieved for the desired interaction. External flux consists of a DC flux ϕb, for
biasing the SQUID energy, and an AC flux signal ϕp(t), for the parametric drive. AC flux is
assumed to be small, ϕp(t) <<

Φ0

2π
, for minimum perturbation to the system energy, while

the DC flux bias is set at zero, ϕb = 0, such that the odd terms in the Taylor expansion
of the SQUID energy are at a maximum. In this regime, the external flux cosine and sine

terms are approximated as cos
(
π ϕp(t)

Φ0

)
≈ 1, and sin

(
π ϕp(t)

Φ0

)
≈ π ϕp(t)

Φ0
. The SQUID energy

can then be separated into static and time-dependent components as

USQ = USQ,0 + USQ,t , (6.9)
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USQ,0 = −EΣ cos

(
2π
ϕ2

Φ0

)
, (6.10)

USQ,t = E∆π
ϕp(t)

Φ0

sin

(
2π
ϕ2

Φ0

)
. (6.11)

The first term, USQ,0 is the static SQUID energy, and the second term, USQ,t, is the time-
dependent part, as it includes the parametric drive, which will be treated later when we
discuss the parametric interaction.

6.3.3 Junction and SQUID as nonlinear inductors

Similarly to 2, the qubits are treated as nonlinear resonators by Taylor expanding the
junction energies and the static SQUID energy to the fourth order in the flux variable. In
this approximation, the junctions and SQUID can be considered nonlinear inductors, such
as

U = −E cos

(
2π

ϕ

Φ0

)
≈ E(

2π

Φ0

)2
ϕ2

2
− E(2π

Φ0

)4
ϕ4

24
. (6.12)

The quadratic term is treated as the energy of an effective inductance L = 1
E
(Φ0

2π
)2, defined

from now on as UL = ϕ2

2L
. On the other hand, the quartic term, which we define as Up

onward, represents the nonlinearity of the system. All the junctions and SQUID terms are
summed up to reach the final expression of the system’s potential energy,

U ≈
∑
n

(UL,n − Up,n) + USQ,t.

6.4 The system Hamiltonian as coupled oscillators

To solve for the dynamics of the system, we first proceed to solve the linear part of the
system by dropping the nonlinear parts Up,n, and the time-dependent part USQ,t, of the
potential energy, which will be treated perturbatively later. The potential energy of the
linear system of coupled oscillators, U0, can be written in the matrix form as

U0 =
1

2
Φ⊺L−1Φ, (6.13)

where L−1 is the inverse of the inductance matrix defined

L−1 =

 1
L1

0 0

0 1
L2

0

0 0 1
L3

 . (6.14)

87



We next write down the Lagrangian L = T − U0 as

L =
1

2
Φ̇⊺CΦ̇− 1

2
Φ⊺L−1Φ. (6.15)

Since L−1 and C do not necessarily commute, we cannot find a unitary transformation that
diagonalizes both Lagrangian terms. However, diagonalization can still be done assuming
that either L or C is a positive definite matrix, which is reasonable given the physical
constraint that inductances and capacitances are positive. Here, the inductance matrix
is clearly positive definite, represented by a simple diagonal matrix with positive definite
entries. Nevertheless, to present a generic approach that includes both L and C couplings,
we diagonalize the Lagrangian starting with the diagonalization of the capacitance matrix.

The positive capacitance matrix can be written as C = VcΩcV
⊺
c using eigenvalue

decomposition, where Vc is the eigenvector matrix and Ωc is the eigenvalue matrix. Recalling
that VcV

⊺
c = I, it is straightforward then to define the new coordinate as Φ̃ =

√
ΩcV

⊺
c Φ ,

and rewrite the Lagrangian in terms of it as

L =
1

2
˙̃Φ⊺ ˙̃Φ− 1

2
Φ̃⊺ΩΦ̃, (6.16)

where Ω = (
√
Ωc)

−1V ⊺
c L

−1Vc(
√
Ωc)

−1 = (
√
ΩcV

⊺
c LVc

√
Ωc)

−1. Now the eigenmodes of the
system can be found by applying an eigenvalue decomposition to Ω such that Ω = V ΛV ⊺ ,
where V is the eigenvector matrix, and Λ is the eigenvalue matrix. The coordinates of the
eigenmodes are defined as Ψ = V ⊺Φ̃, and the diagonalized Lagrangian reads,

L =
1

2
˙̃Φ⊺V V ⊺ ˙̃Φ− 1

2
Φ̃⊺V ΛV ⊺Φ̃ =

1

2
Ψ̇⊺Ψ̇− 1

2
Ψ⊺ΛΨ. (6.17)

From this point, the derivation of the Hamiltonian of a harmonic oscillator is quite standard,
so we largely just write the results. We find that the Hamiltonian of the system is

H0 =
1

2
Q⊺Q+

1

2
Ψ⊺ΛΨ, (6.18)

where Q is the vector conjugate momentum of Ψ defined

Q =
∂L
∂Ψ̇

= Ψ̇. (6.19)

The diagonalized Hamiltonian can be thought of as a set of decoupled oscillators with mass
= 1. The frequency of the oscillator n is then the square root of the n-th element of the
diagonal matrix Λ, i.e., ωn =

√
λn. We can then rewrite the Hamiltonian as

H =
∑
n

(
q2n
2

+
1

2
ω2
nψ

2
n

)
. (6.20)
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Following the standard program of canonical quantization, we can then promote the qn and
ψn to operators and impose canonical commutation relations with ℏ = 1. Once the system
is quantized, the Hamiltonian can also be written in the bosonic operator representation as

Ĥ0 =
∑
n

ωn(â
†
nân +

1

2
), (6.21)

where ωn is the eigenfrequency, and ân is the lowering operator of the eigenmode n. The
constant term ωn

2
represents the vacuum energy in mode n. Here, the eigenmode operator

ψ̂n is defined in terms of the lowering and raising operators as

ψ̂n =
1√
2ωn

(ân + â†n). (6.22)

It is also useful to relate the set of eigenmode coordinates to the original uncoupled
coordinates using the transformation matrix B = L

1
2V . For given coordinate m, the

relation is
ϕ̂n =

∑
m

βn,mψ̂m, (6.23)

where βn,m is the matrix element of B at row n and column m.

6.4.1 Treatment of the perturbative part

Now, the perturbative term Up is redefined in terms of the eigenmodes, using Eq. 6.23, to
find correction and coupling terms.

Ûp = −
∑
n

(
2π

Φ0

)2
ϕ̂4
n

24Ln

= −
∑
n

(
2π

Φ0

)2
(
∑

m βn,mψ̂m)
4

24Ln

= −
∑
n

(
π

Φ0

)2
(
∑

m
βn,m√
ωm

(âm + â†m))
4

24Ln

(6.24)
When the quartic term is expanded, we end up with terms mixing the lowering and raising
operators of the different eigenmodes. However, most of those terms are fast-rotating terms
except for those in the form of â†nânâ

†
mâm. Using the RWA, we keep only the static terms

for the first-order perturbation theory results. This gives

Ûp = −
∑
n,m

χn,mâ
†
nânâ

†
mâm. (6.25)

When n = m, χn,m = ( π
Φ0
)2 1

4ω2
n

∑
k

β4
k,m

Lk
defines the mode nonlinearity, which creates the

anharmonicity of the qubit. Coming from quantum optics, this form of nonlinearity is
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often called Kerr nonlinearity. When n ≠ m, χn,m = ( π
Φ0
)2 1

2ωnωm

∑
k

β2
k,nβ

2
k,m

Lk
defines the

cross-Kerr coupling between the qubit modes.

For the transmons in our circuit, the nonlinearity is designed to be large enough so that
the system can be treated as an effective two-level system (qubit). We can therefore rewrite
the Hamiltonian making the two-level approximation for each qubit:

Ĥ =
∑
n

ωn

2
σ̂z
n −

∑
n<m

χn,m σ̂
z
nσ̂

z
m (6.26)

where σ̂z = |0⟩ ⟨0| − |1⟩ ⟨1|. In addition, the flux operators as defined earlier in Eq. 6.22
can be rewritten by reducing the lowering and raising operator to Pauli operators:

ψ̂n =
1√
2
(σ̂−

n + σ̂+
n ) (6.27)

where σ̂− = |0⟩ ⟨1| and σ̂+ = |1⟩ ⟨0|. The system in its static state represents three qubits at
different frequencies with only ZZ couplings. Although this type of coupling is not present
in LGTs theory discussed earlier, U(1) is still preserved in the presence of those terms as
they commute with the symmetry generator in Eq. 6.6.

6.4.2 Realizing the parametric interaction

Finally, we proceed to treat the time-dependent term, ÛSQ,t, in order to realize the proper
parametric interaction that simulates the three-body term in LGTs, σ̂+

n σ̂
+
n,n+1σ̂

−
n+1. The

first step is to write ÛSQ,t in terms of the eigenmodes as follows:

ÛSQ,t =
πE∆

Φ0

ϕp(t) sin

(
2π

∑
m β2,m ψ̂m

Φ0

)
(6.28)

Since the three-body interaction requires third-order mixing of the qubits, we only need to
keep the third-order term of the sine expansion. We substitute ψ̂m by the Pauli operator
representation in Eq. 6.27 as

ÛSQ,t =
2
√
2

3
(
π

Φ0

)4E∆ϕp(t)(
∑
m

β2,m√
ωm

(σ̂−
m + σ̂+

m))
3. (6.29)

Now, we can include the energy terms and write the Hamiltonian of the system, neglecting
the ZZ couplings:

Ĥ =
∑
m

ωm

2
σ̂z
m + E∆ϕp(t)(

∑
m

gm (σ̂−
m + σ̂+

m))
3, (6.30)
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where we defined gm = 1
3√3
( π
Φ0
)
4
3

√
2

ωm
β2,m. The system dynamics are captured by moving to

the interaction picture via the unitary transformation Û = e
i
ℏ Ĥ0t , where Ĥ0 =

∑
m

ωm

2
σ̂z
m ,

Ĥint = iℏ ˙̂
UÛ † + ÛĤÛ † = E∆ϕp(t)(

∑
m

gm(σ̂
−
me

−iωmt + σ̂+
me

iωmt))3

=E∆ϕp(t)
∑
n,m,k

gngmgk
∑

Sn,Sm,Sk∈{+,−}
σ̂Sn
n σ̂Sm

m σ̂Sk
k ei(Snωn+Smωm+Skωk)t,

(6.31)

where we expanded the cubic bracket in the first line. The Hamiltonian essentially contains
a sum of three-body terms in the form of σ̂Sn

n σ̂Sm
m σ̂Sk

k of all possible permutations of the
system’s qubits n,m, k , and the possible variation of Sn ∈ {+,−}, which denotes whether
the operator σ̂ is a raising operator σ̂+ or a lowering operator σ̂−. In the RWA, all of these
terms rotate at a non-zero frequency equal to Snωn+Smωm+Skωk, effectively causing little
to no effect on the system dynamics unless a counter-rotating factor is introduced to cancel
out the rotating frequency. The proper term in our Hamiltonian that corresponds to the
three-body term in LGTs, σ̂+

n σ̂
+
n,n+1σ̂

−
n+1, clearly is σ̂+

n σ̂
+
mσ̂

−
k , which rotates at a frequency

equals to ωn + ωm − ωk . To cancel out the term’s rotation, we can apply a pump signal
in the form: ϕp = αp cos [ωpt], where ωp = ω1 + ω2 − ω3, resulting in a non-rotating term
σ̂+
1 σ̂

+
2 σ̂

−
3 + σ̂−

1 σ̂
−
2 σ̂

+
3 as follows:

Ĥint =E∆αp cos [ωpt]
∑
n,m,k

gngmgk
∑

Sn,Sm,Sk∈{+,−}
σ̂Sn
n σ̂Sm

m σ̂Sk
k ei(Snωn+Smωm+Skωk)t

=E∆
αp

2

∑
n,m,k

gngmgk
∑

Sn,Sm,Sk∈{+,−}
σ̂Sn
n σ̂Sm

m σ̂Sk
k ei[(Snωn+Smωm+Skωk)±(ω1+ω2−ω3)]t

=E∆
αp

2
g1g2g3[σ̂

+
1 σ̂

+
2 σ̂

−
3 + σ̂−

1 σ̂
−
2 σ̂

+
3 ],

(6.32)

where RWA is applied by dropping fast-rotating terms. The frequency cancellation occurs
only when n = 1, m = 2, k = 3, in two cases S1 = +, S2 = +, S3 = − and S1 = −, S2 =
−, S3 = +. Finally, we change the qubit subscripts to follow the LGTs notations (σ̂1 → σ̂1,
σ̂2 → σ̂1,2, σ̂3 → σ̂2 ) to obtain the interaction Hamiltonian,

Hint = gαp(σ̂
+
1 σ̂

+
1,2σ̂

−
2 + h.c.). (6.33)

6.4.3 Interpretation/simulation of Gauss’s law

We provide an example of how the system can be viewed as the simplest 2-site U(1) LGT
while maintaining Gauss’s law, depicted in Fig. 6.3. The matter sites are represented by
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qubit 1 (site 1) and qubit 3 (site 2), where the states 0 and 1 encode the absence and
presence of an electron at the site, respectively. In addition, qubit 2 encodes the electric
field where states 0 and 1 represent the electric field pointing to the left or right, respectively.
The system was initialized at |001⟩ encoding an electron at site 2 with the electric field
pointing to the left, satisfying Gauss’s law. Once the three-body interaction is activated, the
system starts evolving toward state |110⟩, simulating an electron hopping from site 2 to site
1 while simultaneously flipping the direction of the electric field to the right. This illustrates
that the fundamental process of conserving Gauss’s law via the three-body interaction is
successfully captured in our system.

electron

no electron

�eld point right

�eld point left

Figure 6.3: Simulation of 2-site U(1) LGTs. The simulation mimics the behavior of the
electric field as the electron jumps from left to right. The lattice state satisfies Gauss’s law
at any moment in time, in the sense that the electric field points out of the charge. This is
hard to achieve using sequential approaches as those will result in breaking Gauss’s Law at
intermediate times as the field state flips before the electron hops or vice versa.

6.4.4 Design and Simulation

CAD drawings of the device design are shown in Fig. 6.4. The design of a parametric system
often requires that qubits be detuned in the initial state so that they do not interact unless
the parametric process is involved. To ensure proper detunings and placement of resonators
and qubit frequencies within the bandwidth of our measurement setup (4 − 8GHz), we
placed the qubits in the lower range between 4.5− 5.5 with about 500MHz spacing to avoid
crossing and difficult identification of higher-energy transitions. The readout resonators
were placed around 7 − 8GHz to allow for decent qubit-resonator detuning large than 2
GHz.

The anharmonicity of the qubits was chosen to be 250 MHz, which from Eq. 2.43 sets
the total capacitance of each qubit island to be around 80 fF. Taking this into account, the
qubit frequency determined the effective junction inductances as 15.5, 12.5, 10.5 nH. The
qubit-qubit coupling was also set at 160 MHz with the determined qubit capacitance; the
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coupling capacitance can be estimated at 5fF using g = Cg

2
√

CΣ,nCΣ,m

√
ωq,nωq,m. The readout

resonators are designed as lumped LC circuits with a capacitance of Cr = 300 fF. With
the 2 GHz qubit-resonator detuning, we predict a readout dispersive shift of 1.75 MHz
with qubit resonator coupling g = 170 MHz as in Eq. 2.53, and a corresponding coupling
capacitance of 10 fF.

We calculated the spectrum of the system and the strength of the parametric interaction
using the scQubits and Qutips packages in Python. The calculated spectrum is shown in
Fig. 6.5. The SQUID in our design not only allows the parametric process but can also be
tuned to change the system’s spectrum, particularly qubit 2. The simulation plots show
the energy transitions moving as the flux bias, ϕb, changes. Qubit 2 shows a large tuning
range, being the qubit with the SQUID. Some higher energy transitions also reflect the
tunability of qubit 2. For example, the three-body transition |001⟩ → |110⟩ is evidently
sensitive to flux bias, understandable, taking into account that its estimated transition
frequency ω3q = ωq1

01+ω
q2
01−ωq3

01, ignoring the cross-Kerr effect. Patterns of other three-body
transitions can be understood in a similar way. The tuning of the spectrum can also affect
the strength of the qubit-qubit coupling, as indicated by the cross-Kerr factors, χij, which
show changes as a function of flux bias. Specifically, χ12 decreases while χ23 increases as
qubit 2 is tuned away from qubit 1 and closer to qubit 3, which can affect the strength of
the three-body interaction.

The three-body strength is affected by flux bias in two ways. First, the three-body
interaction is realized through the sine term of the SQUID energy, which has a prefactor
cos(ϕb). Second, the change in qubit-qubit couplings inferred from the cross-Kerr terms, as
seen in Fig. 6.5(b), will also have an effect on the three-body strength since the parametric
terms in Eq. 6.32 involves an average of qubit couplings to the SQUID mode.

Finally, we analyze the strength of three-body interaction for the different possible
permutations in Fig. 6.6 In panel (b), we clearly see the resonance frequencies shift as the
parametric pump strength increases, which tunes in a consistent direction with the qubit
2 frequency in the spectrum plot, depending on whether the contribution of qubit 2 to
ω3q is positive or negative. This indicates that the parametric modulation also affects the
SQUID’s cosine term, resulting in effective flux biasing. On the basis of the calculation
results, we believe the interaction is achievable with a reasonable pump strength.

HFSS simulation

We simulate the whole chip using the finite-element-model software known as HFSS. The
aluminum film is modeled as a perfect conductor, and the qubit junctions are modeled as
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1 mm

(a)

(b) (c)

(a)

(b)

(c)

Qubit 1
Qubit 2
Qubit 3

Figure 6.4: CAD drawing of three-qubit device. (a) Three transmon qubits in Xmon shape
are capacitively coupled. (b) The qubit junction (orange) shunts the bottom finger to the
ground. (c) The SQUID of the middle qubit is inductively coupled to the pump line.
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(a)

(b) (c)

qubit 1st transition
qubit 2st transition
Three-body

Figure 6.5: The simulation of capacitively coupled three-qubit design. (a) Shows the first
two transitions of each qubit as a function of flux bias, with qubit 2 being strongly tunable
due to the presence of the SQUID. The resonance frequencies of the three-body transitions
are also plotted in red. (b) and (c) demonstrate the effect of flux bias on the important
system properties. In (b) shows the qubit self-Kerr, χii, (anharmonicities), as a function of
flux bias. (c) shows the pre-factor of the three-body terms without considering the pump
signal strength.
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(a) (b)

Figure 6.6: Three-qubit interaction strength and resonance. Calculations to first-order in
perturbation theory at zero flux bias are shown in (a) and (b), which describe the strength
and three-body resonance, ω3q, of the interaction as a function of pump signal amplitude,
respectively.

lumped-element linear conductors. Each qubit is assigned a lumped port in parallel to the
qubit node. The zeros of the input impedance seen by the port represent the resonances of
the chip. This allows us to estimate the capacitances of the physical layout of the qubit
and resonator design, as well as to estimate the coupling strengths. We sweep the middle
qubit frequency across the other two qubits to estimate the coupling strength as half of the
splitting due to the avoided crossings as shown in Fig. 6.7

6.5 Experiment

6.5.1 Experimental Setup

Fridge Setup

The device is cooled using a cryogenic-free dilution refrigerator that can reach a temperature
of approximately 7 mK. The interior structure of the fridge consists of five different stages,
starting from the 50K stage all the way down to the 10 mK stage, the mixing chamber
(MC), where the device is mounted.
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Figure 6.7: HFSS simulation of three-qubit device. The black line represents the bare
frequency of qubit 2. We observe two avoided crossings as the qubit passes qubit 1 and
qubit 3. The avoided crossing gap is equivalent to twice the coupling strength, g.

In addition to cooling the device down, we need a proper wiring setup between the device
ports and the room temperature instrument to control the qubits and readout the quantum
state of the device, as shown in Fig. 6.8 . The wiring setup includes three microwave
lines with 50-ohm SMA cables for input, control, and output signals, as well as a DC line
terminated by a coil for external flux bias.

Although the input signal at the device port needs to be at the few-photon level, the
high thermal noise at room temperature impedes us from achieving a good SNR. Instead,
the input signal at the fridge input is often set roughly from -20 to -40 dBm. Then, the
fridge input line is heavily attenuated along the different stages for proper cooling of the
input signal to maintain good SNR. In addition to a cryogenic low-pass filter, we will use
an in-house carbon nanotube-based lossy transmission line filter (CNT) designed to block
thermal radiation higher than 50 GHz.

However, the weak signal of the device output needs to be amplified before it is washed
away by thermal noise. We use a low-noise amplifier at the 3K stage, namely a high electron
mobility transistor (HEMT) amplifier, to enhance the signal before it reaches the fridge
output for further amplification. Also, the device output port is isolated from thermal noise
using circulators at the MC stage, where any noise coming from the output line/ HEMT is
shunted to a 50 OHM terminated port, thermally anchored to the MC plate.

We use an external coil mounted on the sample box to apply a DC flux bias on the
device via fridge DC lines. In addition, the device has an on-chip fast-flux line used for
parametric control, which we connect to through the pump line. The pump is treated as
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the input line we discussed, heavily attenuated with a low-pass filter.

Control and measurement Setup

We use digital-to-analog converters (DAC)s to generate the qubit control pulses. The pulse
wave is synthesized digitally at an IF frequency fIF = 150 MHz via a sampling rate of 1.2
Gsps. We use an upconversion circuit to upconvert the pulse to the RF range with a local
oscillator at around fLO = 5 GHz. Since the upconversion process typically results in two
sidebands in the RF range at fLO ± fIF , we use an IQ mixer to implement single-side-band
mixing. Channel 2 of the DAC is used to generate an out-of-phase pulse to be fed to the
Quadrature port of the IQ mixer, which will destructively interfere with the in-phase pulse
on one sideband, fLO − fIF , but constructively interfere on the other, fLO + fIF . Keep in
mind that the perfect phase calibration does not necessarily happen at 90◦ as the length of
the paths for both signals is not perfect and not equal. Additionally, LO leakage to the IQ
mixer output is a common issue that can be suppressed by tuning the dc offsets of mixer
inputs.

We inject three readout pulses to detect the resonator responses simultaneously. The
circuit involves three continuous-wave (CW) sources combined and connected to the input
port of a microwave switch. While the normally-closed (NC) output port is terminated by
a 50 ohm, the normally-opened (NO) output port is connected to the fridge input. The
readout pulses are generated at the NO port by feeding a square pulse to the switch trigger
port using an arbitrary function generator (AFG). In other words, the square pulse will act
as an envelope to the CW signals.

The parametric pulse we apply through the pump line is generated using an Aeroflex
3025C RF digital arbitrary wave generator (AWG) with integrated dual-channel; the single-
side-band mixing is calibrated onboard from the manufacturer. Since the AWG has an
output range of only up to 6 GHz, we employ an upconversion circuit to reach a higher
frequency with filtering at the output to eliminate sidebands and LO leakages.

Finally, the fridge output is filtered within the range of readout frequencies and down-
converted to a range of 2 GHz before it is split into three Aeroflex 3025C heterodyne
analog-to-digital converters (ADC)s called RF digitizers (ADC)s. In the digitization pro-
cess, the incoming signal is downconverted to an IF before it is sampled at 250MHz. This
process preserves the information from both quadratures, which are then produced digitally
by the FPGA.

Those instruments and pulses have to be synchronized together using a proper triggering
scheme. All of the Aeroflex instruments are modules mounted on a NI PXI-1045 chassis
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with trigger routing modules on the chassis backplane. This allows us to route the AWG
trigger signal to all ADC modules. Mounted on the same chassis, we used a NI PXI-6651
Timing module to synchronize standalone instruments with AWG trigger. It allows us to
generate additional synchronized trigger signals at two output ports, which are connected
through external cables to the AFG and DAC trigger inputs.
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Figure 6.8: three-qubit Experiment Setup.
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Readout resonator 1 2 3
Resonance frequency [GHz] 7.698 7.518 7.035
Internal decay rate, κint, [MHz] 0.439 0.489 5.1
External decay rate, κext, [MHz] 0.211 0.154 1.27
Coupling efficiency, η. 0.325 0.240 0.199

Table 6.1: The table shows all the resonator parameters extracted from VNA measurements,
including resonance frequencies, internal and external decay rates

6.5.2 Device Characterization

Spectroscopy Measurements

We first identify the resonators in our device using VNA measurements of the resonators.
The resonators are capacitively coupled to a two-port (through) transmission line. Using a
VNA, we measure S21 at low power across a wide range of frequency. The typical resonator
response in magnitude and phase helps identify any resonances in the system. Usually, the
system will have several stray resonances, which we rule out by performing a Punchout
experiment. In the Punchout experiment, we detect the resonators’ nonlinearity due to
coupling to qubits. This manifests as a sudden shift in the resonator frequency as the VNA
probe power is increased. The measured parameters of the readout resonators are listed in
table 6.1. We note that resonator 3 was far off from design with a very large internal decay
rate,κint, which will pose challenges on the qubit state readout.

Then, we use spectroscopy to find the qubits. We continuously measure the resonators
S21 using the VNA while applying an additional strong microwave signal which is stepped
over a wide frequency range to search for qubit frequencies. When the search signal hits a
qubit frequency, it excites the qubit into a mixed state, causing a change in the resonators’
response due to the qubit-resonator dispersive coupling.

Resolving some of the higher-order transitions in our complex system is essential to
realize the three-body interaction and characterize the qubit anharmonicities. Here, we
use two-tone spectroscopy. In addition to the resonator probe and first spectroscopy tone
fixed at the resonant frequency of one of the qubits, we apply a second spectroscopy tone
which is again stepped over a wide range in frequency. In other words, the system is
prepared in mixture that contains one of the single qubit states |10⟩ previously identified,
while the search tone scans for the next transition to either the qubit second state |20⟩ or
the qubit-qubit excited state |11⟩. The transition to the qubit second state gives us the
self-Kerr strength proportional to its anharmonicity, while the qubit-qubit transition yields
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Figure 6.9: The measured three-qubit spectrum and fit. The dots represent the measured
qubit frequencies as a function of flux bias and theory fit (dotted).

the cross-Kerr couplings.

Spectrum as a function of the flux bias

Here we measure the qubit frequencies as a function of the flux bias, ϕb. The tunability of
the qubit was found to be very large, spanning a range of more than 800 MHz. Following
the tuning curve, the qubit 2 frequency shifts down as a function of flux bias, crosses the
first qubit, and gets very close to the lowest qubit frequency, allowing us to observe avoided
crossings. We show in Fig. 6.9 the measured spectrum along with the fit using our design
model, which gives us information about the qubit-qubit couplings and qubit frequencies as
functions of external flux.

Qubit 1 2 3
ωq
01 [GHz] 5.731 5.888 5.0935

Qubit capacitance, Cn [fF] 82 116 116

Qubits n and m 12 13 23
Coupling capacitance, Cnm [fF] 2.464 5.274 1.605

Table 6.2: The extracted 3Qubit parameters by fitting the spectrum vs flux bias
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Qubit calibration and characterization

We now move on to the characterization and calibration of qubits and their control pulses.
To do that, we need to perform pulsed measurements. The measurements start with
initializing the system in an initial state, then either allowing the system to evolve or
applying a number of control pulses on qubits. Finally, the system state is measured by
applying readout pulses on the readout resonators.

First, the qubit frequency and π-pulse calibration are performed via the Rabi experiment
repeated for a varying pulse frequency. We apply a Gaussian control pulse on the qubit
to excite it to an arbitrary superposition state of |0⟩ and |1⟩. The control pulse width is
gradually increased to change the superposition amplitudes of the qubit state, analogous
to rotating the qubit on the Bloch sphere. Therefore, we observe the decaying Rabi
oscillations of the qubit coherent population which vanishes as the qubit state becomes
a statistically mixed state. We repeat this measurement by varying the control pulse
frequency around the qubit frequency identified earlier in spectroscopy. Based on standard
theoretical expectations, we identify the qubit frequency as the one with the slowest Rabi
oscillation. With the Rabi data, we can also calibrate the standard π-pulse and π/2-pulse
widths required to excite the qubit to state |1⟩.

A more accurate calibration of qubit frequency is then done using a Ramsey experiment.
First, a π/2-pulse is applied to initialize the qubit in an equal superposition state |0⟩ + |1⟩,
setting the qubit at the equator of the Bloch sphere. Then, the qubit state is allowed to
evolve freely for a time t before a second π/2-pulse is applied to rotate the state back to
the {|0⟩, |1⟩} basis. Finally, we readout the qubit state, projecting onto the {|0⟩, |1⟩} basis.
In general, plotting, e.g. the excited state population versus t shows decaying oscillations.
The oscillation frequency indicates the detuning from the actual qubit frequency. We repeat
this measurement with the updated qubit frequency until the oscillation vanishes, resulting
in a simple exponential decay curve. The time constant of this decay is known as TRamsey

(or T ∗
2 in standard NMR notation).

With the qubit frequency calibrated, we can complete the characterization by measuring
T1 and TEcho. The energy relaxation time, T1, is measured by initializing the qubit in
the ground state, applying a π pulse, then measuring the probability of finding the qubit
in the excited state over time. T1 characterizes the loss of energy by the qubit to the
environment. TRamsey and TEcho, on the other hand, describe the decay of coherence in
the qubit. TRamsey includes contributions from both energy relaxation and pure dephasing,
1/TRamsey = 1/2T1 + 1/Tϕ [80]. The measurement of TEcho, on the other hand, involves the
application of a refocusing “echo” π-pulse at the midpoint of the waiting time. The effect
of the refocusing pulse is to cancel the effects of low-frequency dephasing. In the best case,
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Qubit 1 Qubit 2 Qubit 3
Qubit frequency [GHz] 5.725 5.910 5.055
Qubit Anharmonicity [MHz] -184 -105 -156
Lifetime, T1, [ns] 1302 4216 7313
Ramsey decay time,TRamsey, [ns] 971 2470 2907
Echo decay time, TEcho, [ns] 965 - 4527
Dispersive shift on R1, 2χr1

100, [MHz] -7.3 -0.4 0
Dispersive shift on R2, 2χr2

010 [MHz] -2.2 -2.4 0
Dispersive shift on R3, 2χr3

001 [MHz] -2 -3 -0.5

Table 6.3: The table shows all the parameters extracted during the three-qubit charac-
terization, including qubit frequencies, anharmonicities, lifetimes, and dispersive shifts of
resonator frequencies.

TEcho can approach the homogeneous limit of TEcho = 2T1.

6.6 Validation of the |110⟩ state
The simulation of LGTs requires finding the qubits’ lowest states as well as an additional
higher state, namely |110⟩, in the model we aim to simulate. Due to the strong cross-Kerr
couplings and proximity of qubits 1 and 2, estimating |110⟩ as ωq1

01 + ωq2
01 is insufficient. We

show in Figure 6.10 that this is true; not only the transition frequency is shifted due to
cross-Kerr coupling, but also two other two-photon transitions exist very close to the target
state, namely |200⟩ and |020⟩.

To distinguish the state |110⟩ transition from other states, we climb the energy ladder
to the |110⟩ via two consecutive single-photon transitions. First, we calibrate the amplitude
of a control pulse to ensure it is weak enough not to excite higher transitions during a Rabi
experiment. Starting in the ground state, we sweep the pulse frequency in the expected
range where the target transition occurs to ensure that no undesired transitions exist in
that range. Then, we search for the target state by preparing the system in the |010⟩
or |100⟩ states, then perform a second 2D Rabi-style experiment in the same frequency
range. When the pulse frequency is in resonance with a single-photon transition, we observe
the Rabi oscillations between the one-excitation state and the two-excitation state. The
experiment is done twice by climbing the ladder via the two possible paths through |100⟩
or |010⟩. Since the transitions |100⟩ → |020⟩ and |010⟩ → |200⟩ are higher-order processes
involving the annihilation of a photon in one qubit and the creation of two photons in
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another, they are strongly suppressed under typical driving conditions. In addition, each
path connects to two states via a single-photon transition. i.e, |100⟩ → |200⟩ , |110⟩ and
|010⟩ → |020⟩ , |110⟩ . Hence, this allows us to determine the target state |110⟩ since it is
the only state accessible via single-photon transitions through both paths. Finally, we probe
the two-excitation states identified earlier via two-photon transitions by driving at half the
transition frequencies starting from the ground state, i.e., |000⟩ → |200⟩ , |020⟩ , |110⟩.

We further provide additional confirmation of the identified states |200⟩ , |110⟩ , |020⟩ by
means of setting bounds based on the values of the lower energy levels. According to the
transmon qubit design, the higher energy levels are expected to be shifted down since it
is characterized by a negative self-Kerr. In other words, the transition frequency to the
second energy level of a transmon, E|200⟩, is smaller than twice the transition frequency
to the first energy level, E|100⟩; i.e., E|200⟩ < 2E|100⟩. Also, the static qubit-qubit coupling
results in negative cross-Kerr, i.e., E|110⟩ < E|100⟩ + E|010⟩. This allows us to define a range
where we expect to find the energy level E|110⟩ , highlighted in green in Fig. 6.10. Since we
only observed the |110⟩ state, identified in the previous process, within those bounds, this
gives us high confidence it is the target state.

6.6.1 Characterizing the dispersive shifts of quantum states

In our complex system, it is crucial to characterize the resonator’s dispersive shifts to
identify the system state as it evolves. Not only do we need to characterize the shift of the
intended resonator-qubit pairs but also the unwanted coupling of all possible pairs. We find
that the unwanted shifts are too strong to mitigate in single-frequency readouts when we
expect the system to be in an arbitrary state. For this reason, we plot the state-dependent
dispersive shifts in a 2D plane where each axis represent a shift on resonator 1 and 2 to
allow us to distinguish the first two-qubit states as shown in Fig. 6.11. Since resonator 3
has a large decay rate, couples to all qubits, and exhibits only small dispersive shifts, we
leave it to the last step to infer only qubit-3.

6.6.2 Three-Body interaction

Now that we characterized the system, we proceed to the primary goal of this work: realizing
the three-body interaction. First, we initialize the system in the state |001⟩ by applying a π
pulse on qubit 3. Second, we activate the interaction for time t by applying the parametric
pulse with appropriate width on the SQUID loop at, ω3q, corresponding to the energy
difference between the initial state and the target state |110⟩. Finally, we apply three
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 Transitions
Single-photon Two-photon Higher order

Figure 6.10: Validation of |110⟩ state. Depiction of the measured energy levels and the
process used to determine the |110⟩ state. The plot shows two possible paths to |110⟩
by preparing the system at |010⟩ or |100⟩ state. (We use low-amplitude control pulses to
suppress multiphoton transitions.) Although the two-excitation states |020⟩ or |200⟩ can be
accessed via single-photon transitions via one of the paths, the only state accessible via single-
photon transition in both paths is the state |110⟩. The dashed lines depict the two-excitation
energy levels in the absence of cross-Kerr couplings. With negative cross-Kerr, those energy
levels shift down, i.e., E|020⟩ < 2E|010⟩, E|200⟩ < 2E|100⟩ and E|110⟩ < E|100⟩ + E|010⟩ which
sets bounds defined by the lowest energy levels. We define a region of interest (green),
bounded at the bottom by 2E|100⟩ and the top by E|100⟩ + E|010⟩, where we can only expect
state |110⟩ to be observed. After states identification, we use a stronger drive at half the
transition frequency to drive the two-excitation states via a two-photon process (orange)
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Figure 6.11: The state-dependent resonator shifts in the 2D dispersive plane. We character
the dispersive shifts of the one and two-excitation states. Depicts of the characterized
state-dependent where horizontal and vertical axes represent resonator 1 and resonator 2
shifts, respectively.

simultaneous readout pulses to measure the system state. In Fig. 6.12, we produce the 2D
Rabi-like chevrons by repeating the experiment while varying the parametric pulse time
and frequency.

We control how strong the interaction is by increasing the parametric pulse amplitude.
We show in Fig. 6.12 that we can achieve up to 7 MHz strength. In other words, we can
drive the system to reach the final state in as short a time as 70 ns. The difficulty in our
system remains that ω3q starts shifting down as we increase the pulse amplitude. This
happens because the strong modulation of the SQUID energy results, on average, in an
effective dc flux bias, which causes the system spectrum to shift, especially for qubit 2.
As a result, the energy difference between the target state and the initial state decreases.
We observe this experimentally and can fit the results using the three-qubit model with
parameters from the spectrum fit, as shown in Fig. 6.12

Although within the same order of magnitude, the model predicts a linear increase
in strength, whereas the experimental data shows a nonlinear trend at slightly higher
strength. One possible explanation is that with a strong pulse, we can be activating other
high-order transitions close in frequency to the current parametric frequency. Especially
when the frequency is changed as we increase the pulse amplitude, the strength and the
stray transitions activated are varied, resulting in a nontrivial trend. Although this does
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not undermine the significance of the three-body interaction we achieved, it highlights the
need for a better understanding of the model or an alternative three-qubit design that is
less disturbed by the strength of the pulse amplitude.
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Figure 6.12: Achieving the three-body interaction. (a) 2D Rabi chevron of three-body
interaction as we measure the |110⟩ state by readout at resonator 2. The extracted strength
(b) and resonance frequency, ω3q, (c) as a function of parametric pulse amplitude are plotted
in red markers (red markers) and the first-order perturbation is calculated using model
parameters from spectrum fit (black)

Inferring the system state

After realizing the target interaction, we further confirm it by inspecting the characterized
state-depedent dispersive shifts. However, the complicated family of dispersive shifts in
our system prevents us from making a direct inference. In the following, we describe the
inference process starting with a theoretical background.
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Dispersive coupling allows us to detect the state of the qubits by measuring the response
of the resonator to a readout pulse. The resonator field can reach steady state, that is,
ȧ = 0, with a sufficiently long readout pulse. i.e., t > κ, where κ is the total decay rate
of the resonator. Furthermore, the output mode quadratures are related to the resonator
quadratures by the input-output theorem. Thus, we can infer the qubit states by measuring
the averaged state-dependent resonator quadratures [81]. The averaged state-dependent
field amplitude, ασ, can be written as

ασ(ωd) = −
(κ/2)√

(κ/2)2 + (ωr − ωd + 2χσ)2
(6.34)

where ωd is readout frequency, σ is an eigenstate of the system, and 2χσ is the resonator’s
state-dependent dispersive shift. Furthermore, the measurement operator can be constructed
as [81]

M̂(ωd) =
∑
σ

ασ(ωd) |σ⟩ ⟨σ| . (6.35)

The expectation value of the measured field amplitude is then α(ωd, t) = Tr[ρ̂(t)M̂(ωd)]. The
density operator ρ̂(t) in time is ρ̂(t) =

∑
σσ′ Pσσ′(t) |σ⟩ ⟨σ′| where σ = {000, 001, 010, 100,

011, 101, 110}. Since M̂ is diagonal in the eigenstates basis, we arrive at the simple final
expression of interest:

α(ωd, t) =
∑
σ

Pσσ′(t)ασ(ωd). (6.36)

The field amplitudes travel through the measurement lines to be amplified. Therefore,
the measured signals, α̃(ωd, t), at the digitizers represent the field amplitudes with an
arbitrary scale, G, and the addition of noise, µ, i.e., α̃(ωd, t) = Gα(ωd, t) + µ. We extract
the normalization parameters by measuring the field amplitude in a known state, the ground
state, P000(t) = 1, such that what we measure reduces to

α̃(ωd, t) = −G
(κ/2)√

(κ/2)2 + (ωr − ωd)2
+ µ. (6.37)

Moving forward, all measured amplitudes are normalized so that we are directly observing
Eq. 6.36.

We use the 2D dispersive plane to extract the system states as it evolves over time. In
Fig. 6.13, the system is initialized at the state |001⟩, which corresponds to qubits 1 and
2 being in the ground state and qubit 3 being excited. The system then evolves to the
state |110⟩ and continues oscillating back and forth between these states. The difference
between dispersive shifts is larger than the resonator linewidths, |χ11 − χσ| > κ/2, which
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simplifies the state-distinction process. That means we can choose ω̃d = ωr + 2χ110 such
that all ασ(ω̃d) ≈ 0, and only α110(ω̃d) ≈ −1, which reduces the expectation values of the
measured field amplitude 6.36 to

|α(ωd, t)| = P|110⟩(t), (6.38)

Which directly measures the population of the state |110⟩ as shown in Fig. 6.13(d). We fit
the data to a decaying-oscillating probability Pσ(t) = aσ(1− cos(ωgt+ ϕσ))e

−t/Td , where
aσ oscillation amplitude, ϕσ determines the initial state population, Td is decay time, and
ωg is the oscillation frequency.

It is important to point out that the low population of |110⟩ can be partially attributed
to our simplified assumptions. In our analysis, we assume that the average of the readout
pulse amplitude over the pulse time corresponds to the magnitude of the resonator field
in the steady state, and that the qubits have an infinite lifetime. However, our readout
pulse time is comparable to qubits’ lifetimes. For such a case, we would need to fit the
whole dynamics of the dispersive resonators to reach a more accurate estimate of the state
population [82]. Further, due to the strong ZZ interaction, and in the presence of thermal
noise, we suffered from low fidelity single qubit gates which resulted in the initial low
population of qubit 3, P|001⟩(0) ≈ 0.6

109



 R
ea

do
ut

 F
re

qu
en

cy
 [G

H
z]

 R
adout M

ag [arb. linear] 
 H

igh              Low

 S
ta

te
 p

op
ul

at
io

n

7.700

7.698

7.696

7.694

7.692

7.690

Resonator #1

7.520
7.518
7.516
7.514
7.512
7.510
7.508
7.506

5004003002001000
 Time evolution [ns]

Resonator #2

0.5

0.4

0.3

0.2

0.1

0.0

500400300200100
 Time evolution [ns]

0

0

  P
   

   
   

(t)

(a)

(b)

(c)

(d)

Figure 6.13: Analyzing the System State using the 2D Dispersive Plane. On the left, the
averaged measured field amplitudes of resonators 1 (a) and resonator 2 (b) as a function of
readout frequency, ωd. The observed “blobs” indicate minimum peaks of the field amplitudes,
corresponding to the states with respective χσ evolving in time. The 2D coordinate of
these “blops” is determined by the shifts on both resonators. In (c), we can identify the
main interaction as the oscillation between the state |110⟩ (in red) and|001⟩ (in black), in
addition to the decay to lower qubit states |100⟩ and |010⟩. In (d), we can extract the
population of state |110⟩ by taking the line cut of resonator 2 amplitude at ω̃d = ωr +2χ110.

Fitting resonator 3 to extract qubit 3 state

Although resonator 3 was designed to be mainly coupled to qubit 3, the fabricated device
shows considerable issues with this readout resonator. First, it couples poorly to qubit
3. Next, it couples much more strongly than expected to qubits 1 and 2. This may be
due to the small resonator-qubit detuning with those qubits compared to qubit 3 ( about
800 MHz smaller). In addition, the resonator linewidth, κr3 = 6.37MHz, is larger than
all single-photon dispersive shifts, κr3 > χr3

001, χ
r3
100, χ

r3
010, leading to substantial overlaps

between all states.

Nevertheless, since we now know P110(t), including some of the interaction parameters,
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such as ωg and Td, we are still able to extract the qubit 3 state by fitting the resonator 3
measurements. The goal is to fit the resonator 3 field amplitudes to Eq 6.36. Therefore, we
measure and normalize the state-dependent field amplitudes of resonator 3, αr3

σ (ωd), for
the expected states to be involved in the dynamics, σ = {000, 001, 010, 100, 110} shown in
Fig. 6.13(c). While we assume a decaying sinusoidal P001(t) = a001(1−cos(ωgt+ ϕ001))e

−t/Td ,
the decay probabilities to lower energy levels, P010 and P100, are assumed to have constant
probabilities in the timescale, we are fitting. Finally, using Eq. 6.36, we fit the 2D
measurement of averaged field amplitude αr3(ωd, t) as seen in Fig in 6.14. Based on the
fits in Fig. 6.14 and Fig. 6.13, we can infer with high confidence that we have implemented
the desired three-body interaction which drives the oscillations between the states |001⟩
and |110⟩.

Other permutations of the three-body interaction are also possible, as mentioned in the
design section, such as |010⟩ → |101⟩ and |100⟩ → |011⟩ . We have experimentally tried
the permutation |010⟩ → |101⟩; however, we have not conducted additional experiments,
such as those in the validation of |110⟩ section, to confirm it.

Alternative design

Based on the detailed measurements and issues presented, we have also investigated an
alternative design in an attempt to overcome a few challenges. The tunability of qubit
2 results in a significant change in the coupling strength between the qubits when the
parametric drive amplitude is increased. Additionally, the three-body frequency, ω3q, drifts
as observed in Fig. 6.6(b). In light of these issues, we have considered an alternative
approach to mitigate these challenges.

The proposed design involves three qubits that share a SQUID, which acts as additional
inductance to the qubits and also weakly couples their current to enable parametrically
activated interactions. We use qubit parameters similar to those of the previous design, with
qubit frequencies of 4.5− 6 GHz, initial anharmonicities around 250MHz, and a shunting
capacitance of 70fF.

The simulation starts with a very small inductance and then gradually increases, as
shown in Fig. 6.16. In panel (b), we observe a downward shift in qubit frequencies as their
total inductance increases. However, panel (a) reveals that the three-body coupling strength
is also increasing - while the SQUID inductance results in reduced qubit anharmonicity,
it increases coupling to other qubits. After careful consideration, we chose a SQUID
inductance of 0.5 nH, which provides a reasonable coupling strength without compromising
qubit anharmonicities or increasing cross-Kerr terms.
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Figure 6.14: Extracting qubit 3 state. (a) measured (b) and fit (bottom) of reading out the
interaction at resonator 3 while sweeping the readout frequency. (c) The state-dependent
field amplitude of resonator 3 for different states. Taking the extracted information about
the state |11⟩ population, P110(t), we fit the 2D data in (a). The fit further confirms that
the system is oscillating between the initial state and the target state as expected by the
three-body interaction

Φext

Figure 6.15: The circuit of an alternative design of three-qubit device. The SQUID
inductance is shared among all three qubits.
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Figure 6.16: The simulation of an alternative design of the three-qubit device as a function
of shared SQUID inductance
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We examine the effect of DC biasing the SQUID in Fig. 6.17 on qubit frequencies and
other parameters. Basing the SQUID results in larger inductance, leading to stronger
coupling between the qubits, as is evident in panels (a) and (b). In (c), we observe the qubit
frequencies shifts in the same direction with a tuning range of about 250 MHz, implying
that the couplings are less sensitive to the flux bias. Therefore, we will operate the SQUID
at zero DC flux bias since the design inductance is achieved in the fabrication process.
However, if the coupling strengths are found to be weak, we can easily tune them to higher
values.

(b)

(c) (d)

(a)

(d)

Figure 6.17: The alternative design of three-qubit devices as a function of DC flux bias. (a)
shows the pre-factor of the three-body terms without considering the pump signal strength.
In (b), the qubit-qubit Kerr, χqi,qj, as a function of flux bias. (c) Qubit frequencies as
functions of flux bias due to the presence of the SQUID (solid). The resonance frequencies
of the three-body transitions are also plotted in (dotted). Also, qubit anharmonicities are
plotted as the SQUID is biased in (d).

Finally, we evaluated the effect of the parametric drive on the coupling strength and
three-body resonance frequencies in Fig. 6.18. The strongest coupling we achieved was
for the interaction (|010⟩ → |101⟩) with a strength of 25 MHz at a parametric amplitude
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of 0.1Φ0, as seen in panel (a). The shifts in resonance frequencies were on the scale of a
couple of MHz, whereas in the previous design, the shifts were one order of magnitude
larger. While this design mitigates the previous issues, one challenge that remains here is
to increase the coupling of other interaction permutations to be at a comparable strength.
This can be achieved with a simple optimization algorithm to tune the qubit charging and
junction energies.

(b)(a)

Figure 6.18: Alternative three-qubit design interaction strength and resonance. Calculations
to first-order in perturbation theory at zero flux bias are shown in (a) and (b), which
describe the strength and three-body resonance, ω3q, of the interaction as a function of
pump signal amplitude, respectively.
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Chapter 7

Conclusion

We have introduced a platform for programmable analog quantum simulation of topological
lattice models. The platform is hardware efficient, creating the lattice in synthetic dimensions
within a single parametric cavity terminated at the short circuit end with a SQUID. We
have demonstrated the potential of the platform and in situ tunable complex couplings that
are parametrically created and controlled with pump magnitude and phase. We performed
small-scale simulations of paradigmatic topological models of the bosonic Creutz ladder
and bosonic Kitaev chain, showing that we can reconstruct the realized Hamiltonians and
their topological features.

We have demonstrated that nontrivial non-Hermitian topological systems can be realized
using parametric downconversion on our AQS platform. Unlike dissipation-induced non-
Hermiticity, this approach allows us to preserve some of the Hamiltonian symmetries, such as
time-reversal symmetry. Therefore, this platform can be used to explore the rich topological
phases and symmetries of non-Hermitian systems. Furthermore, since the dynamics are
the results of a coherent process in a Hermitian Hamiltonian [40], our AQS platform can
implement genuine quantum dynamics with effective non-Hermiticity.

Comparing to competing platforms, such as shaking the optical lattice of a cold-atom
system [83] or modulating a harmonic optical cavity [84], we can make the general statement
that experimental demonstrations of simulations with complex hopping parameters have
generally employed some type of global modulation. While this global approach offers
efficiency, it also imposes limitations on uniformity and simulation size, as individual
couplings cannot be tuned and, e.g., the global control field will vary across the lattice.
Further, the global approach will generally limit the type and complexity of phase patterns,
i.e. simulated field configurations, that can be imprinted on the lattice. Lastly, the accessible
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connectivity graphs of these approaches is generally both limited and not programmable.
Our local approach, with individual amplitude and phase control on every link, circumvents
these problems. The obvious trade-off is the relatively large number of control fields
required.

In the last chapter, we proposed and implemented a three-qubit circuit to simulate U(1)
LGTs. We built a building block consisting of two matter sites connected by gauge field
link where all are encoded as qubits. In the experiment, we observed the system evolution
maintains the U(1) symmetry, and the gauge field satisfies Gauss’s law. While alternative
approaches rely on the breakdown of three-body interaction terms in U(1) LGTs into smaller
two-qubit gates or impose additional penalty terms in the Hamiltonian to keep the system
state in Hilbert subspace that respects Gauss’s law, we here implemented the three-body
interaction explicitly saving computational costs and avoiding ad-hoc approaches. That way
our three-qubit building block can be easily employed to create large-scale LGTs models,
including in higher dimensions.

7.1 Future work

In our experimental work on lattice models using a cavity-based AQS platform, we mainly
used a coherent classical state. The next natural step is to study quantum correlations
and/or introduce nonclassical states. In fact, in the bosonic kitaev chain, the pairing term
corresponds to a two-mode downconversion that generates entangled photons in pairs of
modes. This immediately implies that we can study quantum correlations in our 3-site
chain as well as other non-Hermitian models that can be realized with squeezing terms.
Alternatively, using single-mode downconversion on one mode, we create squeezed state
reservoirs, which then can be weakly coupled to a lattice as a source of nonclassical states.
More generally, one can couple a qubit to the parametric cavity as a source of programmable
quantum states, or for tomography purposes.

Furthermore, while we considered the linear limit of our cavity-based AQS platform in
the models we simulated, we can extend it to investigate models with nonlinearities. The
cavity modes inherit some of the SQUID nonlinearities which leads to addition terms like
self-Kerr and cross-Kerr terms. One can consider these terms to study the nonlinear Kitaev
chain. In fact, during the kitaev chain experiment, we noticed that the model exhibits
nonlinear dynamics above a specific threshold of coupling strength. For instance, we have
observed coupled parametric oscillations in the system, which can be interesting to explore
in future work. This would serve as a first example of non-Hermitian non-linear quantum
dynamics.
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We consider the scalability of our cavity-based AQS platform. We can increase the
number of nodes in a single cavity in a straightforward manner by increasing the physical
length of the cavity, increasing the density of the cavity modes in frequency [85]. Achieving
a frequency spacing of 100 MHz is straightforward. This would allow approximately 10
modes per 1 GHz within our 8 GHz of measurement bandwidth. This mode spacing would
still easily allow for gnm ≈ 10-20 MHz without worrying about mode crowding. However,
we do imagine that eventually there will be a limit to the number of pump tones we can
apply to a single cavity. In that sense, we view this device design as a hardware-efficient
building block in a larger system consisting of many of these cavities parametrically coupled
to each other [86]. Each individual cavity would then be a sublattice stitched together into
a larger lattice made of several cavities. Devices made from hundreds of coupled cavities on
a single chip have been demonstrated [87].

While we have emphasized, as a demonstration, the simulation of a quasi-1D lattice,
the platform is easily extensible to two dimensions (or higher). Essentially, the connection
graph of the simulated lattice is arbitrary and the dimensionality of the simulation is set
by the number of nearest-neighbor connections of each node. As an example of possible
physics to explore, Ref. [88] proposed a pattern of hopping phases that produces an effective
(magnetic) gauge field for photons in a 2D photonic lattice like ours.

Now, we consider future work of a three-qubit circuit for U(1) LGTs. There are three
parallel lines of works. First, the next step would be to build a simple model with at least 3
matter sites to observe nontrivial phenomena associated with LGTs such as string breaking
or confinement. In addition, in LGTs, the gauge fields are bosonic degrees of freedom
with infinite Hilbert space; therefore, we will replace the link qubit with a resonator that
naturally represents gauge fields. Finally, although the ZZ terms that we observed in our
design do not break the U(1) symmetry, it does not show up in theoretical models. Hence,
one could find alternative coupling approaches or qubit designs that suppress the residual
ZZ couplings.
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