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Abstract

Rigidity in quantum information theory refers to the stringent constraints underlying
optimal or near-optimal performance in certain quantum tasks. This property plays a cru-
cial role in verifying untrusted quantum devices and holds significance for secure quantum
protocols. Previous work by Nayak and Yuen [18] demonstrated that all optimal super-
dense coding protocols are locally equivalent to the canonical Bennett-Wiesner protocol.
For higher-dimensional superdense coding protocols, [18] showed they may exist only in
a relaxed form, and Farkas, Kaniewski and Nayak [6] showed there are infinitely many
dimensions d ≥ 4 such that the rigidity does not exist even in the relaxed form.

Our work is dedicated to establishing the rigidity properties of near-optimal superdense
coding protocols. Specifically, we explore scenarios where Alice can employ finite but
arbitrary ancilla qubits for encoding, Bob can perform positive operator-valued measure
(POVM) for decoding and can answer with error. In such contexts, we prove that any near-
optimal superdense coding must be locally equivalent to a superdense coding protocol close
to the canonical Bennett-Wiesner protocol.

In the search for extending the result to higher dimensional superdense coding protocols,
we find a method to orthogonalize any two unitary matrices in the same space. However,
the question of whether it is feasible to orthogonalize more than two d×d unitary matrices
when d > 2 remains an intriguing yet unresolved matter.
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Chapter 1

Introduction and preliminaries

1.1 Introduction

Rigidity in quantum information theory refers to a fascinating property observed in certain
quantum systems and tasks. When we say a protocol is “rigid," it means that achieving
optimal or even near-optimal performance by that protocol demands highly specific and
strict constraints. One example is the rigidity property of the CHSH game [3]. The

canonical optimal quantum protocol that wins the game with probability cos
(π
8

)2
≈ 0.85

requires the two parties (Alice and Bob) playing the game to share an Einstein-Podolsky-

Rosen (EPR) state
(

i.e.,
1√
2
(|00⟩+ |11⟩)

)
, and they each measure in a basis depending

on the received bit. Miller and Shi [16] showed that any protocol that achieves a winning

probability close to the optimal probability cos
(π
8

)2
is, up to local isometries, close to the

canonical optimal strategy. Several other works demonstrate the optimal strategy is often
uniquely characterized, or in the case of near-optimal strategies, there is little room for
variation.

The concept of rigidity is essential because it provides a clear understanding of the
limitations and possibilities in quantum information processing tasks. Moreover, it becomes
particularly valuable when dealing with untrusted quantum devices since it allows us to
verify the correctness of a quantum system based solely on its observable behaviour, without
having to trust the intricate mechanisms of the device. This property plays a vital role in
building secure and reliable quantum protocols and applications.
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The investigation into rigidity in quantum information processing traces its origins to
the works of Mayers and Yao [14, 15], who laid the foundation for the concept of device-
independent quantum cryptography. The central notion behind their study is that classical
users can ascertain the correctness of untrusted quantum hardware by checking merely the
classical input-output statistics of the protocol versus that of an optimal non-local game.
Subsequently, non-local game rigidity has been used in diverse domains such as quantum
cryptography [24, 4], complexity theory [9], and quantum information [22]. However,
very few works consider the rigidity properties other than non-local games. Notable ones
include the rigidity of quantum random access codes [23, 5], and rigidity of superdense
coding [18, 6].

In this work, we focus on proving the rigidity properties of near-optimal superdense
coding protocols. In 1992, Bennett and Wiesner [1] proposed the superdense coding pro-
tocol: Alice and Bob each initially own one qubit of an EPR state. Then, Alice is given
a classical message i ∈ [4]. Depending on i, Alice applies a Pauli operator to her part of
the shared initial state and sends that qubit to Bob. Bob then performs a projective mea-
surement to perfectly distinguish the state and recover the classical message i. Nayak and
Yuen [18] showed that any optimal superdense coding protocol is locally equivalent to the
superdense coding protocol by Bennett and Wiesner. For higher-dimensional superdense
coding protocols, for d > 2, Nayak and Yuen [18] showed there are multiple non-equivalent
superdense coding schemes, even if maximally entangled states of local dimension d are
used, each given by an orthogonal unitary basis (OUB). So rigidity may only hold up to
the choice of an OUB. For d > 3, Farkas, Kaniewski and Nayak [6] showed if entangled
states of local dimension larger than d are allowed, there are schemes which are provably
not locally equivalent to those that use the additional entanglement as shared random-
ness and an OUB of d × d matrices depending on the randomness. A natural question
to ask is whether there are rigidity properties when the superdense coding is performing
non-optimally.

In section 1.2, we introduce notations for the rest of this work. In section 1.3, we
formally explain the settings of the problem, summarize the rigidity properties of near-
optimal superdense coding protocols, and show the key techniques used in the proofs.

1.2 Preliminary

In this work, for standard quantum computing notations, we refer readers to [19] for
reference. Most other notations are defined at their first use, and in their successive uses,
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we believe the readers can find the definition within a page or two. We list the remaining
notations that are used throughout this work:

For a complex number c := ρ exp(iθ) where ρ ≥ 0 and θ ∈ (−π, π], denote its real part
as Re{c} and its imaginary part as Im{c}. Define arg(c) := θ when ρ > 0, and define

arg(0) := 0. For non-zero x, y ∈ C, define ∠(x, y) := arccos

(
Re{xy∗}
|x||y|

)
∈ [0, π].

Given a complex Euclidean space X , let dim(X ) denote its dimension. Let H represent
a Hilbert space. If we put a superscript over H, that superscript represents the dimension
of the Hilbert space, and if we put a subscript below H, that subscript represents a specific
sub-space’s label.

Define the maximally entangled state with local dimension d as |Φd⟩ :=
1√
d

∑
i∈[d]

|i⟩⊗|i⟩ ∈

Hd ⊗Hd where the ⊗ represents the tensor product.

Let I be the identity matrix. A subscript of a lower-case letter or a number represents
the dimension of the identity matrix (i.e. Id is a d × d identity matrix), and a subscript
of an upper-case letter represents the label of the space the identity matrix is acting
on. Let diag(x1, · · · , xn) represent an n × n diagonal matrix with x1, · · · , xn along the
main diagonal, and 0 everywhere else. Let L(X ) denote the set of all dim(X ) × dim(X )
complex matrices. Let U(d) denote the set of all d × d unitary matrices, and let SU(d)
denote the set of all d× d unitary matrices with determinant 1. For any S ⊂ R≥0, define
US(d) := {U : U ∈ Cd×d,∃s ∈ S, UU † = U †U = s2Id}.

For two matrices M,N ∈ Cn×n, define ⟨M,N⟩ := 1

n
Tr
(
M †N

)
. Define the Frobenius

norm ∥M∥F :=
√

Tr(M †M). If M and N are positive semi-definite operators on the same

space, define the fidelity as F(M,N) := Tr

(√√
MN
√
M

)
.

1.3 Our results

We use Definition 2.1 from [18] to define a superdense protocol. We restate it as follows:

Definition 1.1. (Superdense coding protocol). We say (τ, (Ui)) is a (d, ϵ)-superdense coding
protocol if the following conditions are met: Let HA := HA′ ⊗ HA′′ and HB be a finite-
dimensional Hilbert space with dim(HA′′) = dim(HB) = d, and dim(HA′) is finite but
arbitrary. Alice and Bob initially share a density matrix τ ∈ L(HA ⊗HB). Alice receives
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an input i ∈ [d2] which is given uniformly at random, and then performs unitary operator
Ui ∈ L(HA) on τ . Then, Alice sends her qubit(s) A′′ to Bob. At this point, Bob has the
state ρi := TrA′((Ui ⊗ IB)τ(U †

i ⊗ IB)). Bob uses a POVM (Mi)i∈[d2] such that

1

d2

d2∑
i=1

Tr(ρiMi) ≥ 1− ϵ.

In addition, we say (τ, (Ui)) is a (d, ϵ)-worst case superdense coding protocol if

min
i∈[d2]
{Tr(ρiMi)} ≥ 1− ϵ.

Figure 1.1: An illustration of Definition 1.1. The circuit is from [18].

See Figure 1.1 for illustration. Notice that the setting for Bennett and Wiesner protocol
is a special case when d = 2, ϵ = 0, dim(HA′) = 0, and Bob uses a projective measurement.
Their setting is extended in Definition 1.1 so that

• We allow a higher dimensional shared entanglement.
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• We allow Bob to answer with an error ϵ.

• We allow Alice to use ancilla qubits.

• We allow Bob to perform positive operator-valued measure (POVM).

In Definition 1.1, we allow Alice to have ancilla qubits with an arbitrary finite dimension.
However, on Bob’s side, the dimension (dim(HB)) is restricted to d. This is because we
would like to restrict the amount of the shared entanglement between Alice and Bob while
not limiting the power of Bob’s measurement. Fundamentally, using a POVM can be
seen as performing a projective measurement in a larger space. Thus, Bob effectively has
ancilla qubits that are used exclusively for implementing the POVM but not for shared
entanglement.

By adapting Definition 2.4 in [18], we define the local equivalence as follows:

Definition 1.2. (Local equivalence). Suppose (τ, (Ui)) and (τ ′, (Vi)) are both (d, ϵ)-superdense
coding protocols. They are locally equivalent if and only if there exists a unitary matrix
W ∈ L(HA) such that

τ ′ = (W ⊗ IB)τ(W † ⊗ IB),
and

Vi = UiW
†, ∀i ∈ [d2].

Also, define the closeness between unitary matrices U and V when acting on density
matrix τ and then tracing out the A part as

Sτ,A(U, V ) := F(TrA(UτU
†),TrA(V τV

†)).

Intuitively, if Sτ,A(U, V ) is high, then U and V are interchangeable with little effect to a
superdense coding protocol with initial state τ .

In this work, we prove the following main theorem:

Theorem 1.3. Any (d, ϵ)-superdense coding protocol (τ ′, (Vi)) is locally equivalent to (d, ϵ)-
superdense coding protocol (τ, (Ui)), such that there exists a density matrix σ ∈ L(HA′) and
unitary matrices Wi ∈ L(HA′′) with

F (τ, σ ⊗ |Φd⟩⟨Φd|) ≥ 1− (21 + 6
√
6)ϵ = 1−O(ϵ),

and

1

d2

d2∑
i=1

Sτ,A′(Ui ⊗ IB, IA′ ⊗Wi ⊗ IB) ≥ 1− (106 + 28
√
6)ϵ = 1−O(ϵ).
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Notice the above theorem works for any dimension d ≥ 2. In the case when d = 2, we
further get:

Theorem 1.4. There exists c > 0 such that any (2, ϵ)-superdense coding protocol (τ ′, (Vi))
with ϵ < c is locally equivalent to (2, ϵ)-superdense coding protocol (τ, (Ui)) which satisfies
the following properties: there exists a density matrix σ ∈ L(HA′) and pair-wise orthogonal
(W̃i)i∈[4] ⊂ U(2) (i.e., ⟨W̃i, W̃j⟩ = δij, and δij is the Kronecker delta), such that

F (τ, σ ⊗ |Φd⟩⟨Φd|) ≥ 1− (21 + 6
√
6)ϵ = 1−O(ϵ),

and

1

4

4∑
i=1

Sτ,A′(Ui ⊗ IB, IA′ ⊗ W̃i ⊗ IB) ≥ 1− (394 + 108
√
6)ϵ = 1−O(ϵ).

The proof of the stricter rigidity results when d = 2 relies heavily on being able to nicely
orthogonalize 2× 2 unitary matrices. This is done by finding a Hilbert space isomorphism
between real and non-negative scalings of SU(2) and R4. We can then make use of vector
orthogonalization algorithms to orthogonalize 2 × 2 unitary matrices. When d > 2, such
a nice property does not hold. In the search for extending the previous result, we found a
way to orthogonalize any two d× d unitary matrices while perturbing one only slightly:

Theorem 1.5. Suppose we have U1, U2 ∈ U(d) for any d ≥ 2 such that

|⟨U1, U2⟩| =
∣∣∣∣1d Tr(U †

1U2

)∣∣∣∣ ≤ ϵ,

then, there exists U ∈ U(d) such that ⟨U1, UU2⟩ = 0 and

∥UU2 − U2∥2nhs = ∥U − Id∥2nhs ≤ 196ϵ = O(ϵ),

where ∥M∥nhs :=

√
1

d
Tr(M †M), for any M ∈ Cd×d.

The key idea is reducing the problem into “rotating" the eigenvalues of U †
1U2, or into

rotating unit vectors in R2, so that the vectors sum up to 0. We additionally ensure that
the total rotation angle is small. An upper bound on the total rotation angle is shown by
analyzing an algorithm. The question of whether it is feasible to similarly orthogonalize
more than two unitary matrices when d > 2 remains an intriguing yet unresolved matter.
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Chapter 2

Distinguishing n quantum states in Cn

The goal of this chapter is to prove a useful result in distinguishing n quantum states in
Cn, and this will help to prove Theorem 3.2 in chapter 3.

The setting for the main result of this chapter (Lemma 2.6) is as follows: suppose we
sample a density matrix τ from (τi)i∈[n] ⊂ L(Cn) uniformly at random. Suppose there
exists a POVM (Mi)i∈[n] ⊂ L(Cn) such that we can distinguish τ with an average success

probability at least 1 − ϵ
(

i.e.
1

n

n∑
i=1

Tr(Miτi) ≥ 1 − ϵ
)

. Informally, Lemma 2.6 proves

that the τi’s on average are close to pure states, and the POVM is close to a projective
measurement.

Before proving Lemma 2.6, we first show a few other results about the closeness of
quantum states, that is: suppose we have three density matrices ρ1, ρ2 and ρ3. If the
fidelity between ρ1 and ρ2 is high, and the fidelity between ρ2 and ρ3 is high, then we show
the fidelity between ρ1 and ρ3 is high. The results here can be seen as an adaption of
Lemma 3.3 in [17].

Lemma 2.1. Suppose there are density matrices ρ1, ρ2, ρ3 such that the fidelity F(ρ1, ρ2)
2 ≥

1− ϵ1 and F(ρ2, ρ3)
2 ≥ 1− ϵ2, then F(ρ1, ρ3)

2 ≥ 1− ϵ1 − ϵ2 − 2
√
ϵ1ϵ2.

Proof. Suppose F(ρ1, ρ2)
2 = 1− δ1 ≥ 1− ϵ1 and F(ρ2, ρ3)

2 = 1− δ2 ≥ 1− ϵ2. By [20, 8, 21],
the function C(ρ, δ) :=

√
1− F(ρ, δ)2 is a metric.

By the triangle inequality of a metric,

C(ρ1, ρ3) ≤C(ρ1, ρ2) + C(ρ2, ρ3)
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=
√

1− (1− δ1) +
√
1− (1− δ2)

=
√
δ1 +

√
δ2.

Therefore,

F(ρ1, ρ3)
2 =1− C(ρ1, ρ3)

2

≥1− (
√
δ1 +

√
δ2)

2

=1− δ1 − δ2 − 2
√
δ1δ2

≥1− ϵ1 − ϵ2 − 2
√
ϵ1ϵ2.

Corollary 2.2. Suppose there are density matrices ρ1, ρ2, ρ3 such that F(ρ1, ρ2)2 ≥ 1− ϵ1
and F(ρ2, ρ3)

2 ≥ 1− ϵ2, then F(ρ1, ρ3)
2 ≥ 2F(ρ1, ρ2)

2 + 2F(ρ2, ρ3)
2 − 3.

Proof. Suppose F(ρ1, ρ2)
2 = 1− δ1 and F(ρ2, ρ3)

2 = 1− δ2. As proved earlier,

F(ρ1, ρ3)
2 = 1− C(ρ1, ρ3)

2 ≥1− δ1 − δ2 − 2
√
δ1δ2

≥1− 2δ1 − 2δ2

=2F(ρ1, ρ2)
2 + 2F(ρ2, ρ3)

2 − 3,

where the second inequality is by Cauchy-Schwartz inequality.

Corollary 2.3. Suppose there are arbitrary pure states |a1⟩ , |a2⟩ , |b⟩. Then, |⟨a1|a2⟩|2 ≥
2|⟨a1|b⟩|2 + 2|⟨a2|b⟩|2 − 3.

Proof. The square of the inner product between two pure states equals the square of fidelity
of corresponding density matrices of the two pure states. Thus, this is a direct consequence
of Corollary 2.2.

Lemma 2.4. Suppose there are density matrices ρ1, ρ2, ρ3 such that F(ρ1, ρ2) ≥ 1− ϵ1 and
F(ρ2, ρ3) ≥ 1− ϵ2, then F(ρ1, ρ3) ≥ 1− ϵ1 − ϵ2 − 2

√
ϵ1ϵ2.

Proof. The function B’(ρ, δ) :=
√

1− F(ρ, δ) is also a metric since it is the standard Bures

metric multiplied by a
1√
2

factor. The remaining of this proof is almost identical to the

proof of Lemma 2.1. By triangle inequality,

B’(ρ1, ρ3) ≤ B’(ρ1, ρ2) + B’(ρ2, ρ3) ≤
√

1− (1− ϵ1) +
√

1− (1− ϵ2) =
√
ϵ1 +
√
ϵ2.
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Therefore,

F(ρ1, ρ3) = 1− B’(ρ1, ρ3)
2 ≥ 1− ϵ1 − ϵ2 − 2

√
ϵ1ϵ2.

Corollary 2.5. Suppose there are density matrices ρ1, ρ2, ρ3 such that F(ρ1, ρ2) ≥ 1 − ϵ1
and F(ρ2, ρ3) ≥ 1− ϵ2, then F(ρ1, ρ3) ≥ 2F(ρ1, ρ2) + 2F(ρ2, ρ3)− 3.

Proof. Suppose F(ρ1, ρ2) = 1− δ1 and F(ρ2, ρ3) = 1− δ2. As proved earlier,

F(ρ1, ρ3) = 1− B’(ρ1, ρ3)
2 ≥1− δ1 − δ2 − 2

√
δ1δ2

≥1− 2δ1 − 2δ2

=2F(ρ1, ρ2) + 2F(ρ2, ρ3)− 3.

Now, we prove the main result of this chapter.

Lemma 2.6. Suppose we sample a density matrix τ from (τi)i∈[n] ⊂ L(Cn) uniformly at
random. Suppose there exists a POVM (Mi)i∈[n] ⊂ L(Cn) such that we can distinguish τ

with an average success probability at least 1− ϵ
(

i.e.
1

n

n∑
i=1

Tr(Miτi) ≥ 1− ϵ
)

. Then, we

can construct an orthonormal basis (|ζi⟩)i∈[n] of Cn and pure states (|ψi⟩)i∈[n] ⊂ Cn such

that
1

n

n∑
i=1

⟨ζi|Mi|ζi⟩ ≥ 1− 2ϵ,
1

n

n∑
i=1

⟨ψi|τi|ψi⟩ ≥ 1− 2ϵ, and
1

n

n∑
i=1

|⟨ζi|ψi⟩|2 ≥ 1− 12ϵ.

Proof. Suppose the spectral decomposition of Mi is given by Mi =
n∑

j=1

λi,j |ϕi,j⟩⟨ϕi,j|. With-

out loss of generality, assume λi,j ≥ λi,k for all i, j, k ∈ [n] and j < k.

Define pi,j := Tr(τi |ϕi,j⟩⟨ϕi,j|). Since τi is positive semi-definite, pi,j ≥ 0 for all i, j ∈ [n].

Also,
n∑

j=1

|ϕi,j⟩⟨ϕi,j| = In, so
n∑

j=1

pi,j = Tr

(
τi

n∑
j=1

|ϕi,j⟩⟨ϕi,j|

)
= Tr(τiIn) = Tr(τi) = 1 for all

i ∈ [n], and (pi,j)j∈[n] forms a probability distribution over [n].

Since we can distinguish τ with average success probability at least 1− ϵ,

n(1− ϵ) ≤
n∑

i=1

Tr(τiMi) =
n∑

i=1

Epiλi,· ≤
n∑

i=1

λi,1. (2.1)
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Also, as
n∑

i=1

Mi = In,

n∑
i=1

λi,1 +
n∑

i=1

n∑
j=2

λi,j = Tr

(
n∑

i=1

Mi

)
= Tr(In) = n

=⇒
n∑

i=1

n∑
j=2

λi,j ≤ n− n(1− ϵ) = nϵ.

At this point, we have proved that the largest eigenvalues of the Mi sum to at least
n(1−ϵ), and the sum of the remaining eigenvalues is at most nϵ. This shows thatMi is close
to |ϕi,1⟩⟨ϕi,1| on average. However, (|ϕi,1⟩)i∈[n] may not be pairwise orthogonal. To prove
that (Mi) is close to a projective measurement, we orthogonalize the states (|ϕi,1⟩)i∈[n].
Define

A :=
n∑

i=1

√
λi,1 |i⟩⟨ϕi,1| ,

and

N := AA† =

(
n∑

i=1

√
λi,1 |i⟩⟨ϕi,1|

)(
n∑

j=1

√
λj,1 |ϕj,1⟩⟨j|

)
.

Suppose A has singular value decomposition UΣV † where U, V are unitary and Σ is
diagonal and positive semi-definite. We hope to show rows of UV † are a “good" orthog-
onalization of (|ϕi,1⟩)i∈[n]. This in the literature is called Löwdin’s symmetric orthogonal-
ization [13].

By the singular value decomposition, N = UΣV †V ΣU † = UΣ2U †. Since

A†A =
n∑

i=1

λi,1 |ϕi,1⟩⟨ϕi,1| ⪯
n∑

i=1

Mi = In,

all eigenvalues of A†A are less than 1. Since A†A and AA† = N have the same non-zero
eigenvalues, and they are both positive semi-definite, 0 ⪯ N ⪯ In, so 0 ⪯ Σ2 ⪯ In which
further implies 0 ⪯ Σ2 ⪯ Σ ⪯ In. Thus,∥∥A− UV †∥∥2

F = ∥Σ− In∥2F
=Tr((Σ− In)(Σ− In))
=Tr

(
Σ2
)
− 2Tr(Σ) + Tr(In)
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≤Tr
(
Σ2
)
− 2Tr

(
Σ2
)
+ Tr(In)

=Tr(In)− Tr
(
Σ2
)

=n− Tr(N)

=n−
n∑

i=1

⟨i|N |i⟩

=n−
n∑

i=1

λi,1

≤nϵ,

and the last inequality is simply by Inequality 2.1.

Define ⟨ζi| := ⟨i|UV † which is the i-th row of UV †. Since UV † is unitary, (⟨ζi|)i∈[n] is

an orthonormal basis. Now, we want to bound
1

n

(
n∑

i=1

⟨ζi|Mi|ζi⟩

)
.

nϵ ≥
∥∥A− UV †∥∥2

F =
n∑

i=1

∥∥∥√λi,1 ⟨ϕi,1| − ⟨ζi|
∥∥∥2

=
n∑

i=1

(
λi,1 ∥⟨ϕi,1|∥2 + ∥⟨ζi|∥2 − 2

√
λi,1Re{⟨ϕi,1|ζi⟩}

)
=

n∑
i=1

(
λi,1 + 1− 2

√
λi,1Re{⟨ϕi,1|ζi⟩}

)
≥

n∑
i=1

(
λi,1 + 1− 2

√
λi,1|⟨ϕi,1|ζi⟩|

)
.

The above inequality implies

n∑
i=1

2
√
λi,1|⟨ϕi,1|ζi⟩| ≥ n− nϵ+

n∑
i=1

λi,1 ≥ n(1− ϵ) + n(1− ϵ) = 2n(1− ϵ)

=⇒
n∑

i=1

√
λi,1|⟨ϕi,1|ζi⟩| ≥ n(1− ϵ)

=⇒

(
1

n

n∑
i=1

√
λi,1|⟨ϕi,1|ζi⟩|

)2

≥ (1− ϵ)2 ≥ 1− 2ϵ

11



=⇒ 1

n

(
n∑

i=1

λi,1|⟨ϕi,1|ζi⟩|2
)
≥

(
1

n

n∑
i=1

√
λi,1|⟨ϕi,1|ζi⟩|

)2

≥ 1− 2ϵ (2.2)

=⇒ 1

n

(
n∑

i=1

⟨ζi|Mi|ζi⟩

)
≥ 1

n

(
n∑

i=1

λi,1|⟨ϕi,1|ζi⟩|2
)
≥ 1− 2ϵ, (2.3)

where the second last implication (Equation 2.2) is due to convexity of the function f(x) =
x2, and the last implication is by the spectral decomposition of Mi. This proves the POVM
is close to a projective measurement with projectors Pi := |ζi⟩⟨ζi|.

The next step is to show the τi’s are close to pure states. We first show
n∑

i=1

pi,1 is large:

n(1− ϵ) ≤
n∑

i=1

Tr(τiMi) =
n∑

i=1

n∑
j=1

pi,jλi,j ≤
n∑

i=1

pi,1 +
n∑

i=1

n∑
j=2

λi,j

=⇒
n∑

i=1

Tr(τi |ϕi,1⟩⟨ϕi,1|) =
n∑

i=1

pi,1 ≥ n(1− ϵ)− nϵ ≥ n(1− 2ϵ). (2.4)

Then, we use an approach similar to the beginning of this entire proof. Suppose

the spectral decomposition of τi is
n∑

j=1

ηi,j |ψi,j⟩⟨ψi,j|. Define qi,j := |⟨ψi,j|ϕi,1⟩|2. Since

(|ψi,j⟩)j∈[n] is orthonormal for every i ∈ [n], qi,j is a probability distribution over j ∈ [n].
Denote this probability distribution as qi. Without loss of generality, assume ηi,j ≥ ηi,k for
all i, j, k ∈ [n] and j < k. Then,

n(1− 2ϵ) ≤
n∑

i=1

pi,1 =
n∑

i=1

Eqi(ηi,·) ≤
n∑

i=1

ηi,1 =
n∑

i=1

⟨ψi,1|τi|ψi,1⟩ .

We can define |ψi⟩ := |ψi,1⟩ for all i ∈ [n] so that

1

n

n∑
i=1

⟨ψi|τi|ψi⟩ ≥ 1− 2ϵ,

which proves that the τi’s are close to pure states |ψi⟩ on average.

The final step is to bound
1

n

n∑
i=1

|⟨ζi|ψi⟩|2. From Equation 2.4,

n(1− 2ϵ) ≤
n∑

i=1

Tr(τi |ϕi,1⟩⟨ϕi,1|) =
n∑

i=1

n∑
j=1

ηi,j|⟨ϕi,1|ψi,j⟩|2

12



≤
n∑

i=1

|⟨ϕi,1|ψi,1⟩|2 +
n∑

i=1

n∑
j=2

ηi,j

=
n∑

i=1

|⟨ϕi,1|ψi⟩|2 +

(
n−

n∑
i=1

ηi,1

)

≤
n∑

i=1

|⟨ϕi,1|ψi⟩|2 + 2nϵ,

so
1

n

n∑
i=1

|⟨ϕi,1|ψi⟩|2 ≥ 1− 4ϵ. Combine this result, Corollary 2.3 and Equation 2.3, we get

1

n

n∑
i=1

|⟨ζi|ψi⟩|2 ≥
1

n

n∑
i=1

(
2|⟨ζi|ϕi,1⟩|2 + 2|⟨ψi|ϕi,1⟩|2 − 3

)
≥2(1− 2ϵ) + 2(1− 4ϵ)− 3

=1− 12ϵ.

This finishes the proof of the lemma.

Another result that will be used later is as follows:

Corollary 2.7. Suppose we sample a density matrix τ from (τi)i∈[n] ⊂ L(Cn) uniformly at
random. Suppose there exists a POVM (Mi)i∈[n] ⊂ L(Cn) such that we can distinguish τ

with an average success probability at least 1−ϵ
(

i.e.
1

n

n∑
i=1

Tr(Miτi) ≥ 1−ϵ
)

. Then, there

are pure states (|ψi⟩)i∈[n] such that
1

n

n∑
i=1

⟨ψi|τi|ψi⟩ ≥ 1−2ϵ, and
1

n

n∑
i=1

⟨ψi|Mi|ψi⟩ ≥ 1−3ϵ.

Proof. Following the notation in Lemma 2.6,
1

n

n∑
i=1

⟨ψi|τi|ψi⟩ =
n∑

i=1

ηi,1 ≥ 1 − 2ϵ was

proved. Then, by the intermediate results in Lemma 2.6,

n(1− ϵ) ≤
n∑

i=1

Tr(τiMi) =
n∑

i=1

n∑
j=1

ηi,j ⟨ψi,j|Mi|ψi,j⟩

≤
n∑

i=1

⟨ψi,1|Mi|ψi,1⟩+
n∑

i=1

n∑
j=2

ηi,j

13



=
n∑

i=1

⟨ψi|Mi|ψi⟩+

(
n−

n∑
i=1

ηi,1

)

≤
n∑

i=1

⟨ψi|Mi|ψi⟩+ 2nϵ,

so
1

n

n∑
i=1

⟨ψi|Mi|ψi⟩ ≥ 1− 3ϵ.
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Chapter 3

Rigidity of superdense coding on the
initial state

Define the maximally entangled state |Φd⟩ with local dimension d as

|Φd⟩ :=
1√
d

∑
i∈[d]

|i⟩ ⊗ |i⟩ ∈ Hd ⊗Hd.

For any bipartite pure state |Ψ⟩ ∈ Hd
X ⊗ Hd

Y , it is maximally entangled if and only if

TrX(|Ψ⟩⟨Ψ|) = TrY (|Ψ⟩⟨Ψ|) =
I
d
.

In this chapter, we exploit the structure of the initial state τ of any (d, ϵ)-superdense
coding protocol (τ, (Ui)). In Theorem 3.2 at the end of this chapter, we prove there exists
a unitary matrix W ∈ L(HA) and a density matrix σ ∈ L(HA′) such that the fidelity

F
(
τ, (W ⊗ IB)(σ ⊗ |Φd⟩⟨Φd|)(W † ⊗ IB)

)
≥ 1−O(ϵ).

We first prove a lemma that will be used in Theorem 3.2:

Lemma 3.1. For any maximally entangled state |Ψ⟩ ∈ Hd
X ⊗ Hd

Y , there exists U ∈ U(d)
such that |Ψ⟩ = (U ⊗ I) |Φd⟩.

Proof. Since |Ψ⟩ is maximally-entangled, TrY (|Ψ⟩⟨Ψ|) =
I
d

=
1

d

d∑
i=1

|i⟩⟨i| is maximally-

mixed. Any purification of TrY (|Ψ⟩⟨Ψ|) in Hd
X ⊗ Hd

Y is in the form of
1√
d

d∑
i=1

|ui⟩ ⊗ |i⟩

15



for some orthonormal basis {|ui⟩}i∈[d] of Hd
X . Let U :=

d∑
i=1

|ui⟩⟨i|. U is unitary and

(U ⊗ I) |Φd⟩ =
1√
d

∑
i∈[d]

|ui⟩⟨i|i⟩ ⊗ |i⟩ =
1√
d

d∑
i=1

|ui⟩ ⊗ |i⟩.

Then, we prove the main result of this chapter.

Theorem 3.2. For any (τ, (Ui)) that is a (d, ϵ)-superdense coding protocol, there exists a
unitary matrix W ∈ L(HA) and a density matrix σ ∈ L(HA′) such that

F
(
τ, (W ⊗ IB)(σ ⊗ |Φd⟩⟨Φd|)(W † ⊗ IB)

)
≥ 1− (21 + 6

√
6)ϵ.

Proof. Suppose after Alice applies Ui on HA, the state on HA ⊗HB becomes τi := (Ui ⊗
IB)τ(U †

i ⊗ IB), and denote the state on HA′′ ⊗ HB as ρi which is TrA′(τi). Denote the
POVM Bob uses as (Mi)i∈[d2].

We first prove TrA(τ) is close to maximally mixed. By Corollary 2.7, there exist pure

states (|ψi⟩)i∈[d2] such that
1

n

n∑
i=1

⟨ψi|ρi|ψi⟩ ≥ 1−2ϵ, and
1

n

n∑
i=1

⟨ψi|Mi|ψi⟩ ≥ 1−3ϵ. Then,

F(|ψi⟩⟨ψi| ,Mi) =Tr

(√√
|ψi⟩⟨ψi|Mi

√
|ψi⟩⟨ψi|

)
=Tr

(√
|ψi⟩⟨ψi|Mi |ψi⟩⟨ψi|

)
=
√
⟨ψi|Mi|ψi⟩Tr

(√
|ψi⟩⟨ψi|

)
=
√
⟨ψi|Mi|ψi⟩ ∈ [0, 1].

Let p be the uniform distribution over [d2]. By the monotonicity of fidelity under partial
trace, and joint-concavity of fidelity [25],

F

(
EpTrA′′(|ψi⟩⟨ψi|),

I
d

)
=F(Ep TrA′′(|ψi⟩⟨ψi|),Ep TrA′′(Mi))

≥Ep F(TrA′′(|ψi⟩⟨ψi|),TrA′′(Mi))

≥Ep F(|ψi⟩⟨ψi| ,Mi)

≥Ep(F(|ψi⟩⟨ψi| ,Mi)
2)

=Ep ⟨ψi|Mi|ψi⟩
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≥1− 3ϵ. (3.1)

Similarly,

F (Ep TrA′′(|ψi⟩⟨ψi|),TrA(τ)) =F(Ep TrA′′(|ψi⟩⟨ψi|),Ep TrA(τi))

≥Ep F(TrA′′(|ψi⟩⟨ψi|),TrA′′(ρi))

≥Ep F(|ψi⟩⟨ψi| , ρi)
≥Ep(F(|ψi⟩⟨ψi| , ρi)2)
=Ep ⟨ψi|ρi|ψi⟩
≥1− 2ϵ. (3.2)

Apply Lemma 2.4 on Inequalities 3.1 and 3.2,

F

(
TrA(τ),

I
d

)
≥ 1− 3ϵ− 2ϵ− 2

√
3ϵ2ϵ = 1− (5 + 2

√
6)ϵ, (3.3)

and this finishes the proof that TrA(τ) is close to maximally mixed.

Since
Ep ⟨ψi|ρi|ψi⟩ ≥ 1− 2ϵ,

there exists k ∈ [d2] such that

F(ρk, |ψk⟩⟨ψk|) =
√
⟨ψk|ρk|ψk⟩ ≥ 1− 2ϵ.

Now, we prove |ψk⟩⟨ψk| is close to maximally-entangled. As TrA(τ) = TrA(τk) =
TrA′′(ρk),

F(TrA(τ),TrA′′(|ψk⟩⟨ψk|)) =F(TrA′′(ρk),TrA′′(|ψk⟩⟨ψk|))
≥F(ρk, |ψk⟩⟨ψk|)
≥1− 2ϵ. (3.4)

Apply Lemma 2.4 on Inequalities 3.3 and 3.4,

F

(
TrA′′(|ψk⟩⟨ψk|),

I
d

)
≥1− 2ϵ− (5 + 2

√
6)ϵ− 2

√
2ϵ(5 + 2

√
6)ϵ

=1− (7 + 2
√
6)ϵ− 2

√
(2 +

√
6)2ϵ

17



=1− (11 + 4
√
6)ϵ.

Since |ψk⟩ is a purification of TrA′′(|ψk⟩⟨ψk|) on HA′′ ⊗ HB′′ , and any purification of
I
d
∈ L(HB′′) on HA′′ ⊗HB′′ is maximally-entangled (proved in Lemma 3.1), by Uhlmann’s

theorem, there exists a unitary matrix V ∈ L(HA′′) such that

∣∣⟨Φd| (V † ⊗ IB) |ψk⟩
∣∣ = F

(
TrA′′(|ψk⟩⟨ψk|),

I
d

)
≥ 1− (11 + 4

√
6)ϵ, (3.5)

and this finishes the proof that |ψk⟩⟨ψk| is close to maximally-entangled.

Then, we prove the main part of the theorem. Let |χk⟩ be a purification of τk on
HR ⊗HA ⊗HB′′ where HR is some extra space for purification. In addition, |χk⟩ is also a
purification of TrA′(τk) = ρk. Any purification of |ψk⟩ on HR⊗HA⊗HB′′ can be expressed
as |ξ⟩ ⊗ |ψk⟩ for some pure state |ξ⟩ ∈ HR ⊗ HA′ . Again, by Uhlmann’s theorem, there
exists

∣∣∣ξ̃〉 ∈ HR ⊗HA′ such that

F
(
|χk⟩⟨χk| ,

∣∣∣ξ̃〉〈ξ̃∣∣∣⊗ |ψk⟩⟨ψk|
)
=F(ρk, |ψk⟩⟨ψk|)

=
√
⟨ψk|ρk|ψk⟩

≥
√
1− 2ϵ

≥1− 2ϵ.

If we define σ := TrR

(∣∣∣ξ̃〉〈ξ̃∣∣∣) ∈ L(HA′), then

F(τk, σ ⊗ |ψk⟩⟨ψk|) =F
(
TrR (|χk⟩⟨χk|) ,TrR

(∣∣∣ξ̃〉〈ξ̃∣∣∣⊗ |ψk⟩⟨ψk|
))

≥F
(
|χk⟩⟨χk| ,

∣∣∣ξ̃〉〈ξ̃∣∣∣⊗ |ψk⟩⟨ψk|
)

≥1− 2ϵ. (3.6)

Then, with V as in Equation 3.5 above,

F(σ ⊗ ((V ⊗ IB) |Φd⟩⟨Φd| (V † ⊗ IB)), σ ⊗ |ψk⟩⟨ψk|)

=F
(
TrR

(∣∣∣ξ̃〉〈ξ̃∣∣∣⊗ ((V ⊗ IB) |Φd⟩⟨Φd| (V † ⊗ IB))
)
,TrR

(∣∣∣ξ̃〉〈ξ̃∣∣∣⊗ |ψk⟩⟨ψk|
))

≥F
(∣∣∣ξ̃〉〈ξ̃∣∣∣⊗ ((V ⊗ IB) |Φd⟩⟨Φd| (V † ⊗ IB)),

∣∣∣ξ̃〉〈ξ̃∣∣∣⊗ |ψk⟩⟨ψk|
)
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=F((V ⊗ IB) |Φd⟩⟨Φd| (V † ⊗ IB), |ψk⟩⟨ψk|)
=
∣∣⟨Φd| (V † ⊗ IB) |ψk⟩

∣∣
≥1− (11 + 4

√
6)ϵ. (3.7)

Apply Lemma 2.4 on Inequalities 3.6 and 3.7,

F
(
τk, σ ⊗ ((V ⊗ IB) |Φd⟩⟨Φd| (V † ⊗ IB))

)
≥1− 2ϵ− (11 + 4

√
6)ϵ− 2

√
2ϵ(11 + 4

√
6)ϵ

=1− (13 + 4
√
6)ϵ− 2

√
(4 +

√
6)2ϵ

=1− (21 + 6
√
6)ϵ.

If we define the unitary matrix W := U †
k(IA′ ⊗ V ) ∈ L(HA), then

F
(
τ, (W ⊗ IB)(σ ⊗ |Φd⟩⟨Φd|)(W † ⊗ IB)

)
=F

(
τ, (U †

k ⊗ IB)(σ ⊗ ((V ⊗ IB) |Φd⟩⟨Φd| (V † ⊗ IB)))(Uk ⊗ IB)
)

=F
(
(Uk ⊗ IB)τ(U †

k ⊗ IB), σ ⊗ ((V ⊗ IB) |Φd⟩⟨Φd| (V † ⊗ IB))
)

=F
(
τk, σ ⊗ ((V ⊗ IB) |Φd⟩⟨Φd| (V † ⊗ IB))

)
≥1− (21 + 6

√
6)ϵ.
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Chapter 4

Discussion on Alice’s ancilla qubits

For any (d, ϵ)-superdense coding protocol (τ, (Ui)), we learned the structure of the shared
initial state τ in chapter 3. Specifically, Theorem 3.2 shows there exists a unitary matrix
W ∈ L(HA) and a density matrix σ ∈ L(HA′) such that

F
(
τ, (W ⊗ IB)(σ ⊗ |Φd⟩⟨Φd|)(W † ⊗ IB)

)
≥ 1− (21 + 6

√
6)ϵ.

Without repeatedly referring to the unitary matrix W later, we use Definition 1.2 for
local equivalency. Intuitively, up to Alice’s local freedom, we can think of the initial state τ
as being conjugated by W . When Alice needs to apply Ui to her part of τ , she first applies
W † to cancel the conjugation and then applies Ui. (τ, (Ui)) and (τ ′, (Vi)) are equivalent
because (UiW

†)(WτW †)(UiW
†)† = UiτU

†
i for all i ∈ [d2]. Thus, the two protocols achieve

identical performance when Bob uses the same measurement.

Using this definition, Theorem 3.2 can also be stated as: Any (d, ϵ)-superdense coding
protocol (τ ′, (Vi)) is locally equivalent to (d, ϵ)-superdense coding protocol (τ, (Ui)), such
that there exists a density matrix σ ∈ L(HA′) with

F (τ, σ ⊗ |Φd⟩⟨Φd|) ≥ 1− (21 + 6
√
6)ϵ.

In section 4.1, we get some information about the structure of the unitary matrices
(Ui)i∈[d2] in (τ, (Ui)) mentioned in the above paragraph. This is a natural extension of the
previously proved Theorem 3.2. Then, in section 4.2, we discuss the implications of the
results from section 4.1. Specifically, we try to answer why we can further restrict Alice
to have no ancilla qubits and assume the shared initial state is exactly the maximally
entangled state |Φd⟩.
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4.1 Structure of the unitary matrices applied by Alice

For simplicity, define the closeness between unitary matrices U and V when acting on
density matrix τ and then tracing out the A part as

Sτ,A(U, V ) := F(TrA(UτU
†),TrA(V τV

†)).

We get the following result:

Theorem 1.3. Any (d, ϵ)-superdense coding protocol (τ ′, (Vi)) is locally equivalent to (d, ϵ)-
superdense coding protocol (τ, (Ui)), such that there exists a density matrix σ ∈ L(HA′) and
unitary matrices Wi ∈ L(HA′′) with

F (τ, σ ⊗ |Φd⟩⟨Φd|) ≥ 1− (21 + 6
√
6)ϵ = 1−O(ϵ),

and

1

d2

d2∑
i=1

Sτ,A′(Ui ⊗ IB, IA′ ⊗Wi ⊗ IB) ≥ 1− (106 + 28
√
6)ϵ = 1−O(ϵ).

Proof. Let (τ, (Ui)) be a superdense coding protocol that is locally equivalent to (τ ′, (Vi))
and F (τ, σ ⊗ |Φd⟩⟨Φd|) is maximized.

We continue to use the notation from Theorem 3.2. Let τi := (Ui ⊗ IB)τ(U †
i ⊗ IB) and

ρi := TrA′(τi). Denote the POVM Bob uses as (Mi)i∈[d2]. Let p be the uniform distribution
over support [d2]. The following results are proved in Theorem 3.2:

• F

(
TrA(τ),

I
d

)
≥ 1− (5 + 2

√
6)ϵ.

• There exists (|ψi⟩)i∈[d2] such that Ep F(ρi, |ψi⟩⟨ψi|) ≥ 1− 2ϵ.

• F (τ, σ ⊗ |Φd⟩⟨Φd|) ≥ 1− (21 + 6
√
6)ϵ. This finishes the proof of the first part of this

theorem.

For the second part of the proof, since TrA(τ) = TrA(τi) = TrA′′(ρi),∀i ∈ [d2],

Ep F(TrA(τ),TrA′′(|ψi⟩⟨ψi|)) =Ep F(TrA′′(ρi),TrA′′(|ψi⟩⟨ψi|))
≥Ep F(ρi, |ψi⟩⟨ψi|)
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≥1− 2ϵ.

By Corollary 2.5 and linearity of expectation,

Ep F

(
TrA′′(|ψi⟩⟨ψi|),

I
d

)
≥Ep

(
2F (TrA′′(|ψi⟩⟨ψi|),TrA(τ)) + 2F

(
TrA(τ),

I
d

)
− 3

)
≥2(1− 2ϵ) + 2(1− (5 + 2

√
6)ϵ)− 3

=1− (14 + 4
√
6)ϵ.

|ψi⟩ is a purification of TrA′′(|ψi⟩⟨ψi|) onHA′′⊗HB′′ , and any purification of
I
d
∈ L(HB′′)

onHA′′⊗HB′′ is maximally-entangled. By Uhlmann’s theorem, there exist unitary matrices
Wi ∈ L(HA′′) such that∣∣∣⟨Φd| (W †

i ⊗ IB) |ψi⟩
∣∣∣ = F

(
TrA′′(|ψi⟩⟨ψi|),

I
d

)
,∀i ∈ [d2].

Therefore, by Corollary 2.5

Ep F
(
ρi, (Wi ⊗ IB) |Φd⟩⟨Φd| (W †

i ⊗ IB)
)

≥Ep

(
2F (ρi, |ψi⟩⟨ψi|) + 2F

(
|ψi⟩⟨ψi| , (Wi ⊗ IB) |Φd⟩⟨Φd| (W †

i ⊗ IB)
)
− 3
)

≥2(1− 2ϵ) + 2(1− (14 + 4
√
6)ϵ)− 3

=1− (32 + 8
√
6)ϵ.

As F(τ, σ ⊗ |Φd⟩⟨Φd|) ≥ 1− (21 + 6
√
6)ϵ,

F(TrA′(τ), |Φd⟩⟨Φd|)
=F(TrA′(τ),TrA′(σ ⊗ |Φd⟩⟨Φd|))
≥F(τ, σ ⊗ |Φd⟩⟨Φd|)
≥1− (21 + 6

√
6)ϵ,

and we get

1

d2

d2∑
i=1

Sτ,A′(Ui ⊗ IB, IA′ ⊗Wi ⊗ IB)
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=Ep F
(
TrA′((Ui ⊗ IB)τ(U †

i ⊗ IB)),TrA′((IA′ ⊗Wi ⊗ IB)τ(IA′ ⊗W †
i ⊗ IB))

)
=Ep F

(
ρi, (Wi ⊗ IB) TrA′(τ)(W †

i ⊗ IB)
)

≥Ep

 2F
(
ρi, (Wi ⊗ IB) |Φd⟩⟨Φd| (W †

i ⊗ IB)
)
+

2F
(
(Wi ⊗ IB) |Φd⟩⟨Φd| (W †

i ⊗ IB), (Wi ⊗ IB) TrA′(τ)(W †
i ⊗ IB)

)
− 3


=Ep

(
2F
(
ρi, (Wi ⊗ IB) |Φd⟩⟨Φd| (W †

i ⊗ IB)
)
+ 2F (|Φd⟩⟨Φd| ,TrA′(τ))− 3

)
≥2(1− (32 + 8

√
6)ϵ) + 2(1− (21 + 6

√
6)ϵ)− 3

=1− (106 + 28
√
6)ϵ,

where the second line is by definition of Sτ,A′ , and the fourth line is by Corollary 2.5.

4.2 Eliminating Alice’s ancilla

Theorem 1.3 implies Alice’s ancilla qubits do not help the protocol. Up to local equivalence,
the shared initial state τ is close to a bipartite state σ⊗ |Φd⟩⟨Φd| where the σ is on Alice’s
ancilla qubits, and the Ui’s are essentially only acting on |Φd⟩, which is similar to apply
Wi without using the ancilla qubits. However, we have yet to exploit the full structure
of the unitary operators (Ui). In the following chapters, we show more structures about
the unitary operators assuming Alice has no ancilla qubits, and the shared initial state is
exactly |Φd⟩⟨Φd|. The last step of this section is to show why such simplification is valid.

The following version of the union bound will be used in Lemma 4.2 later:

Lemma 4.1. Let p be any probability distribution with support [n]. Suppose
n∑

i=1

pixi ≥ 1−ϵ

and
n∑

i=1

piyi ≥ 1− δ with ϵ, δ, xi, yi ∈ [0, 1],∀i ∈ [n], then
n∑

i=1

pixiyi ≥ 1− ϵ− δ.

Proof. Since xi, yi ∈ [0, 1] for all i ∈ [n],
n∑

i=1

pi(1− xi)(1− yi) ≥ 0

⇐⇒
n∑

i=1

pi − pixi − piyi + pixiyi ≥ 0
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⇐⇒
n∑

i=1

pixiyi ≥
n∑

i=1

pixi +
n∑

i=1

piyi −
n∑

i=1

pi

⇐⇒
n∑

i=1

pixiyi ≥ (1− ϵ) + (1− δ)− 1 = 1− ϵ− δ.

Lemma 4.2. In addition to all the properties stated in Theorem 1.3, (σ⊗ |Φd⟩⟨Φd| , (IA′ ⊗
Wi)) is a (d, (56 + 16

√
6)ϵ)-superdense coding protocol.

Proof. We continue to use the notation from Theorem 3.2. Let

ρi := TrA′((Ui ⊗ IB)τ(U †
i ⊗ IB)).

Denote the POVM Bob uses as (Mi)i∈[d2]. Let the spectral decomposition of Mi be
n∑

j=1

λi,j |ϕi,j⟩⟨ϕi,j|. Without loss of generality, assume λi,j ≥ λi,k for all i, j, k ∈ [n] and

j < k. Let p be the uniform distribution over [d2]. The following properties were previ-
ously proved:

•

Epλi,1 ≥ 1− ϵ, (4.1)

proved in Lemma 2.6.

• There exists (|ψi⟩)i∈[d2] such that Ep F(|ψi⟩⟨ψi| , ρi)2 ≥ 1− 2ϵ, proved in Theorem 3.2,
and Ep ⟨ψi|Mi|ψi⟩ ≥ 1− 3ϵ, proved in Corollary 2.7.

• F

(
TrA′′(ρi),

I
d

)
≥ 1− (5 + 2

√
6)ϵ,∀i ∈ [d2], proved in Theorem 3.2.

• Define ⟨ξi| := ⟨Φd| (W †
i ⊗IB), then |⟨ξi|ψi⟩| = F

(
TrA′′(|ψi⟩⟨ψi|),

I
d

)
,∀i ∈ [d2], proved

in Theorem 1.3.

We first prove Ep

(
|⟨ξi|ψi⟩|2

)
is large. By Corollary 2.2 and linearity of expectation,

Ep

(
|⟨ξi|ψi⟩|2

)
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=Ep

(
F

(
TrA′′(|ψi⟩⟨ψi|),

I
d

)2
)

≥Ep

(
2F (TrA′′(|ψi⟩⟨ψi|),TrA′′(ρi))

2 + 2F

(
TrA′′(ρi),

I
d

)2

− 3

)

≥Ep

(
2F (|ψi⟩⟨ψi| , ρi)2 + 2F

(
TrA′′(ρi),

I
d

)2

− 3

)
≥2(1− 2ϵ) + 2(1− (5 + 2

√
6)ϵ)2 − 3

≥2(1− 2ϵ) + 2(1− (10 + 4
√
6)ϵ)− 3

=1− (24 + 8
√
6)ϵ. (4.2)

Then, we prove our final result. Notice Mi may not have trace 1, so we cannot apply
Corollary 2.2 directly. Expanding Mi’s spectral decomposition gives us the following:

Ep ( ⟨ξi|Mi|ξi⟩)

=
1

d2

d2∑
i=1

d2∑
j=1

λi,j|⟨ϕi,j|ξi⟩|2

≥ 1

d2

d2∑
i=1

d2∑
j=1

λi,j
(
2|⟨ϕi,j|ψi⟩|2 + 2|⟨ψi|ξ⟩|2 − 3

)
≥2

(
1

d2

d2∑
i=1

⟨ψi|

(
d2∑
j=1

λi,j |ϕi,j⟩⟨ϕi,j|

)
|ψi⟩

)
+ 2

(
d2∑
i=1

1

d2
λi,1|⟨ψi|ξi⟩|2

)

− 3

(
1

d2

d2∑
i=1

d2∑
j=1

λi,j

)

≥2

(
1

d2

d2∑
i=1

⟨ψi|Mi|ψi⟩

)
+ 2(1− ϵ− (24 + 8

√
6)ϵ)− 3

(
1

d2

d2∑
i=1

Tr(Mi)

)

≥2(1− 3ϵ) + 2(1− (25 + 8
√
6)ϵ)− 3Tr(Id2)

d2

=1− (56 + 16
√
6)ϵ,

where the third line is due to Corollary 2.3, and the third last line is by applying Lemma 4.1
to Inequality 4.1 and Inequality 4.2.
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Corollary 4.3. In addition to all the properties stated in Theorem 1.3, (|Φd⟩⟨Φd| , (Wi)) is
a (d, (56 + 16

√
6)ϵ)-superdense coding protocol.

Proof. Since

TrA′((IA′ ⊗Wi ⊗ IB)(σ ⊗ |Φd⟩⟨Φd|)(IA′ ⊗W †
i ⊗ IB)) = (Wi ⊗ IB) |Φd⟩⟨Φd| (W †

i ⊗ IB),

Alice’s ancilla qubits have no effect in (σ ⊗ |Φd⟩⟨Φd| , (IA′ ⊗Wi)). Therefore, Lemma 4.2
directly implies (|Φd⟩⟨Φd| , (Wi)) is a (d, (56 + 16

√
6)ϵ)-superdense coding protocol.

Therefore, any (d, ϵ)-superdense coding protocol (τ ′, (Vi)) is locally equivalent to (d, ϵ)-
superdense coding protocol (τ, (Ui)), such that TrA′(τ) is close to |Φd⟩⟨Φd|, there exists
unitary matrices Wi ∈ L(HA′′), and Ui is close to IA′ ⊗ Wi when acting on τ and then
tracing out the A′ part for each i ∈ [d2]. Further, (|Φd⟩⟨Φd| , (Wi)) is a (d,O(ϵ))-superdense
coding protocol. If we can then show some structure of the (Wi) even only considering
(|Φd⟩⟨Φd| , (Wi)), we automatically get results about the structure of (Ui) by Theorem 1.3.
We will show how the last reduction is formally done in section 5.2.
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Chapter 5

Rigidity of near-optimal superdense
coding protocols

In this chapter, we try to obtain some further results on the unitary matrices (Wi) in
Theorem 1.3 in the case when the dimension d = 2. We show any near-optimal super-
dense coding protocol, up to local equivalence, is close to the standard Bennett-Wiesner
superdense coding protocol in Theorem 1.4.

5.1 Orthogonalizing 2× 2 unitary matrices

By the discussions in section 4.2, we consider (|Φd⟩⟨Φd| , (Wi)) first, that is, the shared initial
state is exactly |Φd⟩, and Alice has no ancilla qubits, so the unitary matrices Wi ∈ L(HA′′).
Under this simplification, at the end of this section, we will show when d = 2, the unitary
matrices (Wi) have a “good" orthogonalization.

We start with proving some general results that may also be useful for dimensions
d > 2.

Lemma 5.1. For any M ∈ Cd×d, we have Tr(M) = d ⟨Φd| (M ⊗ Id) |Φd⟩.

Proof.

⟨Φd| (M ⊗ Id) |Φd⟩ =
1

d

d∑
i=1

d∑
j=1

(⟨i|M |j⟩ ⊗ ⟨i| Id |j⟩) =
1

d

d∑
i=1

⟨i|M |i⟩ = 1

d
Tr(M).
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Notice that the matrix M might not be unitary in the above proof.

Lemma 5.2. For any pure state |Ψ⟩ ∈ Cd⊗Cd, there exists a matrix M ∈ Cd×d such that
|Ψ⟩ = (M ⊗ Id) |Φd⟩ and Tr

(
M †M

)
= d.

Although M may not be unitary and cannot act on states in the usual quantum com-
puting setting, the above lemma will be useful for later proofs.

Proof. Suppose |Ψ⟩ =
d∑

i,j=1

mi,j |i⟩ ⊗ |j⟩ for complex coefficients mi,j. ⟨Ψ|Ψ⟩ = 1 implies

d∑
i,j=1

|mi,j|2 = 1. Define M :=
√
d

d∑
i,j=1

mi,j |i⟩⟨j|. We show |Ψ⟩ is essentially a vectorization

of M multiplied by a
√
d factor.

(M ⊗ Id) |Φd⟩ =
1√
d

d∑
j=1

(M |j⟩)⊗ |j⟩

=
d∑

j=1

(
d∑

i=1

mi,j |i⟩⟨j|j⟩

)
⊗ |j⟩

=
d∑

i,j=1

mi,j |i⟩ ⊗ |j⟩

= |Ψ⟩ .

For the last part of the proof, by Lemma 5.1,

Tr
(
M †M

)
= d ⟨Φd| (M †M ⊗ I) |Φd⟩ = d ⟨Ψ|Ψ⟩ = d.

Define
σ⃗ := [iI2,X,Y,Z]⊺ ,

and notice that I has coefficient i, the imaginary square-root of -1. The X, Y, and Z are
Pauli matrices.

Lemma 5.3. For any U ∈ U(2), there exists unique α ∈ [0, π), and a unique unit vector
v⃗ = [vI , vX , vY , vZ ]

⊺ ∈ R4 such that U = eiα (v⃗ · σ⃗) = eiα (vI iI+ vXX+ vYY+ vZZ).
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Proof. By Equation 4.8 in [19] on page 175,

U = eiβRn⃗(θ) = eiβ
(
cos

(
θ

2

)
I2 − i sin

(
θ

2

)
(nXX+ nYY+ nZZ)

)
,

for some β, θ ∈ R, and a unit vector n⃗ = [nX , nY , nZ ]
⊺ ∈ R3. This is the well-known Bloch

sphere representation of 2× 2 unitary operators.

Define u⃗ := [uI , uX , uY , uZ ]
⊺ where uI := cos

(
θ

2

)
, uX := sin

(
θ

2

)
nX ,uY := sin

(
θ

2

)
nY ,

and uZ := sin

(
θ

2

)
nZ . Notice u⃗ ∈ R4, |u⃗|2 = cos2

(
θ

2

)
+ sin2

(
θ

2

)
|n⃗|2 = 1, and

eiβ
(
cos

(
θ

2

)
I2 − i sin

(
θ

2

)
(nXX+ nYY+ nZZ)

)
=ei(β−

π
2 )
(
cos

(
θ

2

)
iI2 + sin

(
θ

2

)
nXX+ sin

(
θ

2

)
nYY+ sin

(
θ

2

)
nZZ

)
=ei(β−

π
2 ) (u⃗ · σ⃗) .

Then, there exists a unique k ∈ Z and α ∈ [0, π) such that kπ + α = β − π

2
. If the k

is even, define v⃗ := u⃗, and if the k is odd, define v⃗ := −u⃗. It is straightforward to check
ei(β−

π
2 ) (u⃗ · σ⃗) = eiα (v⃗ · σ⃗).

If there exists α′ ∈ [0, π) and v⃗′ ∈ R4 such that eiα
′
(
v⃗′ · σ⃗

)
= eiα (v⃗ · σ⃗), as {iI2,X,Y,Z}

forms a basis for C2×2 and v⃗ ̸= 0⃗, we must have eiα
′
v⃗′ = eiαv⃗, or equivalently v⃗′ = ei(α−α′)v⃗.

Since v⃗, v⃗′ ∈ R4, ei(α−α′) ∈ R, so α − α′ = nπ for some n ∈ Z. As α, α′ ∈ [0, π),
α − α′ ∈ (−π, π), and n must be equal to 0. Therefore, α = α′ and v⃗ = v⃗′, and the
uniqueness is proved.

For any S ⊂ R≥0, define

US(d) := {U : U ∈ Cd×d,∃s ∈ S, UU † = U †U = s2Id},

and we can think of it as a set containing constant scalings of all d× d unitary matrices.

Lemma 5.4. For any U ∈ U{k}(2) where k ≥ 0, there exists a unique α ∈ [0, π) except when
k = 0, and a unique vector v⃗ = [vI , vX , vY , vZ ]

⊺ ∈ R4 such that |v⃗| = k and U = eiα (v⃗ · σ⃗).
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Proof. When k = 0, U has to be the zero matrix. For any α ∈ [0, π), v⃗ = 0⃗.

When k > 0, U ′ :=
U

k
is unitary. By Lemma 5.3, there exists a unique α′ ∈ [0, π) and

v⃗′ ∈ R4 such that U ′ = eiα
′
(
v⃗′ · σ⃗

)
. Then, if we let α := α′ and v⃗ := kv⃗′, U = eiα (v⃗ · σ⃗).

The uniqueness of α and v⃗ follows from the proof of Lemma 5.3.

For any U, V ∈ UR≥0
(d), define the equivalence relationship U ∼ V if and only if

there exists α ∈ R such that eiαU = V . It is straightforward to verify this equivalence
relationship ∼ is well-defined. Notice that U{1}(d)/ ∼ is isomorphic to SU(d)

Let f : C4 → C2×2 be defined as f(v⃗) := v⃗ · σ⃗.
For any matrices U, V ∈ C2×2, define

⟨U, V ⟩ := 1

2
Tr
(
U †V

)
.

Lemma 5.5. The restriction of f to R4 is a Hilbert space isomorphism between R4 and
UR≥0

(2)/ ∼.

Proof. f is clearly a linear map by its definition.

f is surjective by Lemma 5.4 and the definition of f .

For any u⃗, v⃗ ∈ R4, call their entries as u⃗ = [uI , uX , uY , uZ ]
⊺, and v⃗ = [vI , vX , vY , vZ ]

⊺,
then

⟨f(u⃗), f(v⃗)⟩
=⟨u⃗ · σ⃗, v⃗ · σ⃗⟩

=
1

2
Tr
((
−uI iI†2 + uXX

† + uYY
† + uZZ

†
)
(vI iI2 + vXX+ vYY+ vZZ)

)
=
1

2
(uIvI + uXvX + uY vY + uZvZ) Tr(I)

=uIvI + uXvX + uY vY + uZvZ

=⟨u⃗, v⃗⟩,

where the third equality above is because I,X,Y,Z are Hermitian, unitary, and mutually
orthogonal with respect to the trace inner product.

One may ask why proving surjection is sufficient. It can be checked that the three
above conditions imply f is a bijection.
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Corollary 5.6. f is a Hilbert space isomorphism between C4 and C2×2.

Proof. The proof is almost identical to the proof of Lemma 5.5. The surjection part can
be verified as {iI2,X,Y,Z} forms a basis for C2×2.

By Lemma 5.5, to orthogonalize unitary matrices in U(2) or to orthogonalize maximally-
entangled states in H2⊗H2, we can equivalently orthogonalize unit vectors in R4, and we
can make use of known (linear) vector orthogonalization algorithms. Consider the following
example:

• Suppose we start with two maximally-entangled states (T⊗I2) |Φ2⟩ and (H⊗I2) |Φ2⟩,
where T := e−i 3π

8

(
cos
(π
8

)
iI2 + sin

(π
8

)
Z
)
. Define v⃗T :=

[
cos
(π
8

)
, 0, 0, sin

(π
8

)]⊺
and

θT := −3π

8
so that f(v⃗T) ∼ T = eiθTf(v⃗T). Similarly, H = ei0

(
1√
2
X +

1√
2
Z

)
.

Define v⃗H :=

[
0,

1√
2
, 0,

1√
2

]⊺
and θH := 0 so that f(v⃗H) = H = eiθHf(v⃗H).

We use Löwdin’s symmetric orthogonalization [13] to orthogonalize v⃗T and v⃗H. If the
singular value decomposition of [v⃗Tv⃗H] is UΣV †, then,

[
v⃗′T v⃗′H

]
:= U

[
I2
0

]
V † ≈


0.950690 −0.131072
−0.100318 0.727627

0 0
0.293470 0.673335

 ,
and we get two orthonormal unit vectors v⃗′T and v⃗′H. If we define U1 := eiθT v⃗′T · σ⃗,
U2 := eiθH v⃗′H · σ⃗,

1

2
Tr
(
U †
1U2

)
= ⟨U1, U2⟩ = ei(θH−θT)⟨v⃗′T, v⃗′H⟩ = 0.

So by Lemma 5.1,

⟨Φ2| (U †
1 ⊗ I2)(U2 ⊗ I2) |Φ2⟩ = ⟨Φ2| (U †

1U2 ⊗ I2) |Φ2⟩ =
1

2
Tr
(
U †
1U2

)
= 0,

and (U1 ⊗ I) |Φ2⟩ and (U2 ⊗ I) |Φ2⟩ are orthonormal maximally-entangled states. We
also have{

⟨Φ2| (U †
1 ⊗ I)(T⊗ I) |Φ2⟩ = ⟨Φ2| (U †

1T⊗ I) |Φ2⟩ = ⟨U1,T⟩ = ⟨v⃗′T, v⃗T⟩,
⟨Φ2| (U †

2 ⊗ I)(H⊗ I) |Φ2⟩ = ⟨Φ2| (U †
2H⊗ I) |Φ2⟩ = ⟨U2,H⟩ = ⟨v⃗′H, v⃗H⟩.
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Therefore, minimizing
∣∣∣⟨v⃗′T, v⃗T⟩∣∣∣ is equivalent to minimizing |⟨U1,T⟩| or∣∣∣⟨Φ2| (U †

1 ⊗ I)(T⊗ I) |Φ2⟩
∣∣∣,

and minimizing
∣∣∣⟨v⃗′H, v⃗H⟩∣∣∣ is equivalent to minimizing |⟨U2,H⟩| or∣∣∣⟨Φ2| (U †

2 ⊗ I)(H⊗ I) |Φ2⟩
∣∣∣.

Thus, such a Hilbert space isomorphism allows us to build algorithms for unitary matrices
in U(2) and maximally-entangled states in H4 from known algorithms for vectors.

Now we try to find a bound on the absolute value of the inner product of vectors that
guarantees linear independence. We need this result because later results depend on linear
independence.

Lemma 5.7. Suppose there are n unit vectors (v⃗i)i∈[n] ⊂ Cn. If for all i ̸= j, |⟨v⃗i, v⃗j⟩| <
1

n− 1
, then (v⃗i)i∈[n] are linearly independent.

Proof. (v⃗i)i∈[n] are linearly independent if and only if the Gram matrix G := (⟨v⃗i, v⃗j⟩)i,j
has full rank. The notation here means the entry of G on the i-th row and the j-th column
is ⟨v⃗i, v⃗j⟩.

Let Ri :=
∑

j∈[n]\{i}

|Gi,j|. By our assumption, Ri < (n − 1)
1

n− 1
= 1 for all i ∈ [n].

By Gershgorin circle theorem [7], each eigenvalue of G is at least Gi,i − Ri > 1 − 1 = 0.
Therefore, G has full rank and (v⃗i)i∈[n] are linearly independent.

Lemma 5.8. The condition |⟨v⃗i, v⃗j⟩| <
1

n− 1
for all i ̸= j in Lemma 5.7 is optimal.

Proof. We show if we relax the condition to |⟨v⃗i, v⃗j⟩| ≤
1

n− 1
for all i ̸= j, then there are

unit vectors (v⃗i)i∈[n] ⊂ Rn that are linearly dependent.
Consider the n elementary basis vectors e⃗i ∈ Rn. The convex hull of the endpoints is a

regular polygon and lies inside a hyperplane H of Rn given by x1 + x2 + · · ·+ xn = 1. The
center of this polygon is

c⃗ :=
1

n

n∑
i=1

e⃗i =


1/n
1/n
...

1/n

 .
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Let v⃗i =
e⃗i − c⃗
∥e⃗i − c⃗ ∥

, then

v⃗i =
e⃗i − c⃗
∥e⃗i − c⃗ ∥

=
e⃗i −

∑
j∈[n] e⃗j/n√

(n−1)2

n2 + (n− 1) (−1)2

n2

=

√
n− 1

n
e⃗i −

∑
j∈[n]\{i}

1√
n(n− 1)

e⃗j.

Clearly, span({v⃗i}i∈[n]) < n because all vectors are parallel to the hyperplane H of Rn.
However, for i, j ∈ [n] and i ̸= j,

⟨v⃗i, v⃗j⟩ =
√
n− 1

n

(
− 1√

n(n− 1)

)
(⟨e⃗i, e⃗i⟩+ ⟨e⃗j, e⃗j⟩) +

∑
k∈[n]\{i,j}

(
− 1√

n(n− 1)

)2

=− 1

n− 1
.

Lemma 5.9. Let (|Φd⟩⟨Φd| , (Wi)) be a (d, ϵ)-superdense coding protocol. If

ϵ <
1

2d2(d2 − 1)2
,

then the states ((Wi ⊗ Id) |Φd⟩)i∈[d2] are linearly independent.

Proof. Suppose Bob uses POVM (Mi)i∈[d2]. Let

si := Tr
(
Mi(Wi ⊗ Id) |Φd⟩⟨Φd| (W †

i ⊗ Id)
)
= 1− ϵi,

be the success probability for some ϵi ∈ [0, 1] when Alice receives i.

Since
1

d2

d2∑
i=1

si =
1

d2

d2∑
i=1

(1 − ϵi) ≥ 1 − ϵ, for any i, j ∈ [d2] with i ̸= j, we have

ϵi + ϵj ≤ d2ϵ. By Appendix A.9 of [10], for any i, j ∈ [d2] and i ̸= j,∣∣∣⟨Φd| (W †
i ⊗ Id)(Wj ⊗ Id) |Φd⟩

∣∣∣ ≤√ϵi(1− ϵj) +
√
ϵj(1− ϵi)

≤
√
2(ϵi(1− ϵj) + ϵj(1− ϵi))

=
√
2(ϵi + ϵj − 2ϵiϵi)
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≤
√
2(ϵi + ϵj)

≤
√
2d2ϵ.

If
√
2d2ϵ <

1

d2 − 1
, or equivalently ϵ <

1

2d2(d2 − 1)2
, then by Lemma 5.7, ((Wi ⊗

Id) |Φd⟩)i∈[d2] are linearly independent.

Corollary 5.10. Let (|Φd⟩⟨Φd| , (Wi)) be a (d, ϵ)-worst case superdense coding protocol. If

ϵ <
1

2(d2 − 1)2
,

then the states ((Wi ⊗ Id) |Φd⟩)i∈[d2] are linearly independent.

Proof. Similar to the proof of Lemma 5.9, this time, we have

si ≥ 1− ϵ,∀i ∈ [d2].

Then, for any i, j ∈ [d2] and i ̸= j,∣∣∣⟨Φd| (W †
i ⊗ Id)(Wj ⊗ Id) |Φd⟩

∣∣∣ ≤√2(ϵ+ ϵ) ≤
√
2ϵ.

If
√
2ϵ <

1

d2 − 1
, or equivalently ϵ <

1

2(d2 − 1)2
, then by Lemma 5.7, ((Wi⊗Id) |Φd⟩)i∈[d2]

are linearly independent.

Corollary 5.11. Let (|Φ2⟩⟨Φ2| , (Wi)) be a (2, ϵ)-superdense coding protocol. If ϵ <
1

72
,

then the states ((Wi ⊗ Id) |Φd⟩)i∈[d2] are linearly independent.

Proof. This is obtained by applying Lemma 5.9 when d = 2.

Lemma 5.12. Suppose we have n pure states (|ϕi⟩)i∈[n] ⊂ Rn (not Cn). Consider any

POVM (Mi)i∈[n] ⊂ Cn×n that maximizes
d∑

i=1

⟨ϕi|Mi|ϕi⟩. If (|ϕi⟩)i∈[n] are linearly indepen-

dent, then there exists orthonormal (|ψi⟩)i∈[n] ⊂ Rn such that

d∑
i=1

|⟨ψi|ϕi⟩|2 =
d∑

i=1

⟨ϕi|Mi|ϕi⟩ .
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Proof. Solving the semi-definite program from [26] to find the optimal POVM to distinguish
the real states (|ϕi⟩)i∈[n] yields real and symmetric solutions (M ′

i)i∈[n]. Since (|ϕi⟩)i∈[n] are
pure and linearly independent, by the main result of [11], (M ′

i)i∈[n] are pairwise orthogonal
rank 1 projectors. Therefore, there exists orthonormal (|ψi⟩)i∈[n] ⊂ Rn such that M ′

i =
|ψi⟩⟨ψi|.

Theorem 5.13. Let (|Φ2⟩⟨Φ2| , (Wi)) be a (2, ϵ)-superdense coding protocol. If ϵ <
1

72
, then

there exists pair-wise orthogonal (W̃i)i∈[4] ⊂ U(2) (i.e. ⟨W̃i, W̃j⟩ = δij), such that

1

4

4∑
i=1

∣∣∣⟨W̃i,Wi⟩
∣∣∣2 ≥ 1− ϵ.

Proof. Denote the optimal POVM performed by Bob as (Mi)i∈[4]. By Corollary 5.11,
((Wi ⊗ I2) |Φ2⟩)i∈[4] are linearly independent. Thus, by [11], (Mi)i∈[4] are rank 1 projectors
that are pairwise orthogonal (i.e., MiMj = δi,jMi, ∀i, j ∈ [4]), so there exists orthonormal
(|ψi⟩)i∈[4] such that Mi = |ψi⟩⟨ψi| ,∀i ∈ [4]. By Lemma 5.2, there exists matrices (Ni)i∈[4] ⊂
C2×2 such that (Ni ⊗ I2) |Φ2⟩ = |ψi⟩ and ⟨Ni, Ni⟩ = 1 for all i ∈ [4].

Consider the unique vectors (w⃗i)i∈[4] ⊂ R4 and (θi)i∈[4] ⊂ [0, π) such that eiθiw⃗i · σ⃗ = Wi

as given by Lemma 5.4. Since ⟨Ni, Ni⟩ = 1 and {iI2,X,Y,Z} forms a basis for C2×2, there
exists (n⃗i)i∈[4] ⊂ C4 such that n⃗i · σ⃗ = Ni. By Corollary 5.6, we must have ⟨n⃗i, n⃗i⟩ =
⟨Ni, Ni⟩ = 1. Then, by the condition of success probability,

4(1− ϵ) ≤
4∑

i=1

⟨Φ2| (W †
i ⊗ I2)Mi(Wi ⊗ I2) |Φ2⟩

=
4∑

i=1

⟨Φ2| (W †
i ⊗ I2) |ψi⟩⟨ψi| (Wi ⊗ I2) |Φ2⟩

=
4∑

i=1

∣∣∣⟨Φ2| (W †
i ⊗ I2)(Ni ⊗ I2) |Φ2⟩

∣∣∣2
=

4∑
i=1

|⟨Wi, Ni⟩|2

=
4∑

i=1

|⟨w⃗i, n⃗i⟩|2,
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where the second last equality is due to Lemma 5.1, and the last equality is due to Corol-
lary 5.6. By Lemma 5.12, there exists real orthonormal vectors (n⃗′

i)i∈[4] ⊂ R4 such that

4∑
i=1

∣∣∣⟨w⃗i, n⃗′
i⟩
∣∣∣2 = 4∑

i=1

|⟨w⃗i, n⃗i⟩|2 ≥ 4(1− ϵ).

Therefore, if we define W̃i = eiθin⃗′
i · σ⃗, by Lemma 5.3, W̃i is unitary. By definition of f

and Lemma 5.5,
⟨W̃i, W̃j⟩ = ei(θj−θi)⟨n⃗′

i, n⃗
′
j⟩ = δi,j,∀i, j ∈ [4],

and
1

4

4∑
i=1

∣∣∣⟨W̃i,Wi⟩
∣∣∣2 = 1

4

4∑
i=1

∣∣∣ei(θi−θi)⟨w⃗i, n⃗′
j⟩
∣∣∣2 = 1

4

4∑
i=1

∣∣∣⟨w⃗i, n⃗′
j⟩
∣∣∣2 ≥ 1− ϵ.

5.2 Rigidity of near-optimal superdense coding proto-
cols

Now, we have all the tools to prove the rigidity of any near-optimal superdense coding
protocol when d = 2. This shows the discussions in section 4.2 formally:

Theorem 1.4. There exists c > 0 such that any (2, ϵ)-superdense coding protocol (τ ′, (Vi))
with ϵ < c is locally equivalent to (2, ϵ)-superdense coding protocol (τ, (Ui)) which satisfies
the following properties: there exists a density matrix σ ∈ L(HA′) and pair-wise orthogonal
(W̃i)i∈[4] ⊂ U(2) (i.e., ⟨W̃i, W̃j⟩ = δij, and δij is the Kronecker delta), such that

F (τ, σ ⊗ |Φd⟩⟨Φd|) ≥ 1− (21 + 6
√
6)ϵ = 1−O(ϵ),

and

1

4

4∑
i=1

Sτ,A′(Ui ⊗ IB, IA′ ⊗ W̃i ⊗ IB) ≥ 1− (394 + 108
√
6)ϵ = 1−O(ϵ).

Proof. The construction of the protocol (τ, (Ui)) is directly from Theorem 1.3, and there
exists a density matrix σ ∈ L(HA′) such that

F (τ, σ ⊗ |Φd⟩⟨Φd|) ≥ 1− (21 + 6
√
6)ϵ,
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and the first part of the proof is done.

Theorem 1.3 also implies that there exist unitary matrices Wi ∈ L(HA′′) such that if
we define ρi := TrA′((Ui ⊗ IB)τ(U †

i ⊗ IB)) and let p be the uniform distribution over [4],
then

Ep F
(
ρi, (Wi ⊗ IB) |Φd⟩⟨Φd| (W †

i ⊗ IB)
)
≥ 1− (32 + 8

√
6)ϵ,

F(TrA′(τ), |Φd⟩⟨Φd|) ≥ 1− (21 + 6
√
6)ϵ,

and by Corollary 4.3, (|Φd⟩⟨Φd| , (Wi)) is a (d, (56 + 16
√
6)ϵ)-superdense coding protocol.

Let c :=
1

72(56 + 16
√
6)

. When (56+16
√
6)ϵ <

1

72
(i.e., ϵ < c), by Theorem 5.13, there

exists orthogonal (W̃i)i∈[d2] ⊂ U(2) (i.e. ⟨W̃i, W̃j⟩ = δij), such that

1

4

4∑
i=1

∣∣∣⟨Φ2| (W̃i
† ⊗ I2)(Wi ⊗ I2) |Φ2⟩

∣∣∣2 = 1

4

4∑
i=1

∣∣∣⟨W̃i,Wi⟩
∣∣∣2 ≥ 1− (56 + 16

√
6)ϵ,

where the equality comes from Lemma 5.1. Combining all above results and using Corol-
lary 2.5 twice, we have

1

d2

d2∑
i=1

Sτ,A′(Ui ⊗ IB, IA′ ⊗ W̃i ⊗ IB)

=Ep F
(
TrA′((Ui ⊗ IB)τ(U †

i ⊗ IB)),TrA′((IA′ ⊗ W̃i ⊗ IB)τ(IA′ ⊗ W̃i
† ⊗ IB))

)
=Ep F

(
ρi, (W̃i ⊗ IB) TrA′(τ)(W̃i

† ⊗ IB)
)

≥Ep

(
2F
(
ρi, (W̃i ⊗ IB) |Φd⟩⟨Φd| (W̃i

† ⊗ IB)
)

+ 2F
(
(W̃i ⊗ IB) |Φd⟩⟨Φd| (W̃i

† ⊗ IB), (W̃i ⊗ IB) TrA′(τ)(W̃i
† ⊗ IB)

)
− 3
)

≥Ep

(
4F
(
ρi, (Wi ⊗ IB) |Φd⟩⟨Φd| (W †

i ⊗ IB)
)

+ 4F
(
(Wi ⊗ IB) |Φd⟩⟨Φd| (W †

i ⊗ IB), (W̃i ⊗ IB) |Φd⟩⟨Φd| (W̃i
† ⊗ IB)

)
− 6

+ 2F (|Φd⟩⟨Φd| ,TrA′(τ))− 3
)

≥4(1− (32 + 8
√
6)ϵ) + 4(1− (56 + 16

√
6)ϵ) + 2(1− (21 + 6

√
6)ϵ)− 9

=1− (394 + 108
√
6)ϵ.
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Therefore, by Theorem 1.1 in [18], any near-optimal superdense coding protocol, up to
local equivalence, is close to the standard Bennett-Wiesner superdense coding protocol.
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Chapter 6

Orthogonalizing two unitary matrices in
general

Notice that chapter 5 only works for dimension d = 2. In the higher dimension case when
d > 2, the same method does not work because SU(d) or even scalings of it (defined as
UR≥0

(d)/ ∼) when d > 2 is not isomorphic to a vector space. In the attempt to solve the
problem when d > 2, we find a way to orthogonalize 2 arbitrary d × d unitary matrices
with any d > 2.

In this chapter, we first explain how this orthogonalization of 2 unitary matrices is
reduced to another simpler problem of rotating 2D vectors such that the sum of vectors is
0⃗ while the total angle of rotation is small. The reduction is shown in section 6.1, then we
solve that simpler problem in section 6.2, and derive the final result in section 6.3.

6.1 Orthogonalizing two unitary operators by “rotating"
eigenvalues

Suppose we have U1, U2 ∈ U(d) for any d ≥ 2 such that

|⟨U1, U2⟩|2 =
∣∣∣∣1d Tr(U †

1U2

)∣∣∣∣2 ≤ ϵ.

This implies
∣∣∣Tr(U †

1U2

)∣∣∣ ≤ d
√
ϵ.
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Suppose we modify U2 by multiplying a unitary matrix U such that ⟨U1, UU2⟩ = 0 and
U is close to the identity matrix Id. This orthogonalizes U1 and U2 with a small change to
U2 because

∥UU2 − U2∥F = ∥U − Id∥F .

Define U ′ := U †
1UU1. Notice

∥U ′ − Id∥F =
∥∥∥U †

1UU1 − U †
1U1

∥∥∥
F
=
∥∥∥U †

1(U − Id)U1

∥∥∥
F
= ∥U − Id∥F ,

and
⟨U1, UU2⟩ =

1

d
Tr
(
U †
1UU2

)
=

1

d
Tr
(
U †
1UU1U

†
1U2

)
=

1

d
Tr
(
U ′U †

1U2

)
.

Equivalently, if we can find such unitary U ′ that is close to Id and Tr
(
U ′U †

1U2

)
= 0,

then it gives us the U which is also close to Id and orthogonalizes U1 and U2.

Let the spectral decomposition of U †
1U2 be ŨDŨ † where Ũ is unitary and D is diagonal.

Values on the diagonal are eigenvalues of U †
1U2, and by properties of unitary matrices, each

eigenvalue has modulus 1. So we can rewrite D := diag(eiθ1 , eiθ2 , · · · , eiθd). Since

|Tr(D)| =
∣∣∣Tr(ŨDŨ †

)∣∣∣ = ∣∣∣Tr(U †
1U2

)∣∣∣ ≤ d
√
ϵ,

we have

∣∣∣∣∣
d∑

j=1

eiθj

∣∣∣∣∣ ≤ d
√
ϵ.

We can construct U ′ in the form of ŨD′Ũ † where D′ := diag(eiω1 , eiω2 , · · · , eiωd). Then,

Tr
(
U ′U †

1U2

)
= Tr

(
ŨD′Ũ †ŨDŨ †

)
= Tr(D′D) =

d∑
j=1

ei(θj+ωj),

and

∥U ′ − Id∥F =
∥∥∥ŨD′Ũ † − Ũ Ũ †

∥∥∥
F
= ∥D′ − Id∥F =

√√√√ d∑
j=1

|eiωj − 1|2.

Informally, the original problem is reduced to the following problem: Suppose we have
unit vectors v⃗1, · · · , v⃗d ∈ R2 (representing eiθ1 , · · · , eiθd). We want to make small rotations
to them

(
each eiθj is rotated to ei(θj+ωj)

)
such that the vectors sum up to the zero vector
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(
d∑

j=1

ei(θj+ωj) = 0

)
while the sum of the angles of rotation

(
d∑

j=1

|ωj|

)
is small. We will

show later that it is sufficient to bound
d∑

j=1

|ωj| from above to get an upper bound for∣∣∣∣∣∣
√√√√ d∑

j=1

|eiωj − 1|2
∣∣∣∣∣∣. We will first solve this reduced problem in section 6.2, and then use the

result to solve the original problem in section 6.3.

6.2 Rotating vectors in R2 to sum up to 0⃗

In this section, we solve the problem proposed at the end of section 6.1. The idea is as

follows: suppose the unit vectors v⃗1, · · · , v⃗d ∈ R2 do not sum up to 0⃗. Let s⃗ :=
d∑

i=1

v⃗i.

There are two cases:

1. If there exists i ∈ [d] such that v⃗i’s component orthogonal to s⃗ is not “too small,"
then we can rotate v⃗i by a tiny angle to reduce |s⃗|. The direction of rotation depends
on the cross product between v⃗i and s⃗. We will show this in Lemma 6.2.

2. If v⃗i’s component orthogonal to s⃗ is “small" for all i ∈ [d], then we can find two
vectors v⃗j1 and v⃗j2 , rotate them by a small amount, and make the sum of all vectors
equal to 0⃗. We will show this in Lemmas 6.3, 6.5 and 6.6.

We can keep reducing |s⃗| as described in case 1 and update the sum s⃗ until s⃗ = 0⃗ or we reach
case 2, and in the latter case, we perform the described fix to make s⃗ = 0⃗. In the analysis,
we propose an algorithm to do case 1 discretely in Theorem 6.9. The algorithm either halts
and gives us the correct solution with a small total rotation, or it runs indefinitely, and we
prove the intermediate vectors produced by the algorithm converge to a correct solution
with a small total rotation.

In the remainder of this section, we still use complex numbers to represent vectors in
R2. Lemma 6.1 shows how to compute the inner product and cross product of the vectors
in terms of the complex numbers.
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Lemma 6.1. For x, y ∈ C, suppose x = a + bi and y = c + di, then Re{xy∗} equals the

inner product between vectors
[
a
b

]
,

[
c
d

]
∈ R2, and Im{x∗y} equals the last component

of the cross product between vectors

 a
b
0

 ,
 c
d
0

 ∈ R3.

Proof. Re{xy∗} = Re{(a+ bi)(c− di)} = ac+ bd =

[
a
b

]
·
[
c
d

]
.

Im{x∗y} = Im{(a− bi)(c+ di)} = ad− bc, and

 a
b
0

×
 c
d
0

 =

 0
0

ad− bc

.

For non-zero x, y ∈ C, define

∠(x, y) := arccos

(
Re{xy∗}
|x||y|

)
∈ [0, π].

By the property of vector inner product and Lemma 6.1, ∠(x, y) equals the angle
between x and y viewed as non-zero vectors on the complex plane.

Lemma 6.2 formally explains case 1 at the beginning of the section 6.2.

Lemma 6.2. Suppose s ∈ (0, 1], θ ∈ [
√
s, π −

√
s], and 0 < ∆ < 0.28s

√
s, then

|s+ exp(i(θ +∆))− exp(iθ)| < s−
√
s

2
∆.

Proof.

|s+ exp(i(θ +∆))− exp(iθ)|2

=(s+ exp(i(θ +∆))− exp(iθ))(s+ exp(−i(θ +∆))− exp(−iθ))
=s2 + s(exp(i(θ +∆)) + exp(−i(θ +∆)))− s(exp(iθ) + exp(−iθ))
+ exp(i(θ +∆)) exp(−i(θ +∆)) + exp(iθ) exp(−iθ)
− (exp(i∆) + exp(−i∆))

=s2 + s(2 cos(θ +∆)− 2 cos(θ)) + 2− 2 cos(∆)

=s2 − 4s sin

(
θ +

∆

2

)
sin

(
∆

2

)
+ 2− 2 cos(∆), (6.1)
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where the last equality is due to the trigonometric identity

cos(a− b)− cos(a+ b) = 2 sin(a) sin(b). (6.2)

Since s ∈ (0, 1], we have 0 < ∆ < 0.28s
√
s <
√
s. Therefore, θ+

∆

2
∈
(√

s, π −
√
s+

∆

2

]
⊂(√

s, π −
√
s

2

)
, and sin

(
θ +

∆

2

)
≥ sin

(
π −
√
s+

∆

2

)
. Continuing from Equation 6.1,

we have

|s+ exp(i(θ +∆))− exp(iθ)|2

≤s2 − 4s sin

(
π −
√
s+

∆

2

)
sin

(
∆

2

)
+∆2 By cos(∆) ≥ 1− ∆2

2
,∀∆ ∈ R

=s2 − 2s
(
cos
(√

s−∆
)
− cos

(√
s
))

+∆2 By the trigonometric identity 6.2

=s2 − 2s

(∫ √
s

√
s−∆

sin(t) dt

)
+∆2

≤s2 − 2s(
√
s− (

√
s−∆)) sin

(√
s−∆

)
+∆2

≤s2 − 2s∆(
√
s−∆) sin(1) + ∆2

=s2 − 2s∆sin(1)
√
s+ 2s∆2 sin(1) + ∆2, (6.3)

where the second last inequality follows because sin(t) ≥ sin
(√

s−∆
)

when t ∈ [
√
s −

∆,
√
s] ⊂ [0, 1], and the last inequality is because sin(t) ≥ t sin(1) when t ∈ [0, 1].

Note that if the right hand side of Equation 6.3 is less than
(
s−
√
s

2
∆

)2

, the proof is

complete. We have

s2 − 2s∆sin(1)
√
s+ 2s∆2 sin(1) + ∆2 < s2 − s

√
s∆+

s

4
∆2

⇐⇒ ∆2((2 sin(1)− 1/4)s+ 1) < ∆(2 sin(1)− 1)s
√
s

⇐⇒ ∆ <
(2 sin(1)− 1)s

√
s

(2 sin(1)− 1/4)s+ 1
.

Since s ≤ 1, (2 sin(1)− 1/4)s+ 1 ≤ 2 sin(1)− 1/4 + 1,

(2 sin(1)− 1)s
√
s

(2 sin(1)− 1/4)s+ 1
≥ (2 sin(1)− 1)

2 sin(1)− 1/4 + 1
s
√
s > 0.28s

√
s.

Therefore, when ∆ < 0.28s
√
s, |s+ exp(i(θ +∆))− exp(iθ)| < s−

√
s

2
∆.
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Lemmas 6.3, 6.5 and 6.6 combined formally explains case 2 at the beginning of the

section 6.2. Specifically, denote s :=
d∑

i=1

exp(iθi). If 1 ≥ |s| > 0 and ∠(s, exp(iθi)) ≤
√
|s|

or ≥ π −
√
|S| for all i ∈ [d], by Lemma 6.3, there are j, k ∈ [d] such that

∠(s, exp(iθj)),∠(s, exp(iθk)) ≤
√
|s|.

Then, by Lemma 6.6, there exists ωj and ωk such that |ωj|+ |ωk| ≤ 10
√
|s| and

exp(i(θj + ωj)) + exp(i(θk + ωk)) +
∑

i∈[d]\{j,k}

exp(iθi) = 0.

Lemma 6.3. Suppose the angles θ1, · · · , θd ∈
[
−π
3
,
π

3

]
∪
[
2π

3
,
4π

3

]
are sorted in non-

decreasing order. Suppose further that d ≥ 2 and
d∑

i=1

exp(iθi) is real and positive. Then,

θ1, θ2 ∈
[
−π
3
,
π

3

]
.

Proof. By design, Re{exp(iθi)} is either in
[
1

2
, 1

]
(when θi ∈

[
−π
3
,
π

3

]
) or in

[
−1,−1

2

]
(when θi ∈

[
2π

3
,
4π

3

]
). Suppose all θi are in

[
2π

3
,
4π

3

]
, then Re

{
d∑

i=1

exp(iθi)

}
≤ −d

2
< 0.

Suppose only θ1 is in
[
−π
3
,
π

3

]
, then Re

{
d∑

i=1

exp(iθi)

}
≤ 1− d− 1

2
, and

• When d = 2, to make
d∑

i=1

exp(iθi) = exp(iθ1) + exp(iθ2) real, the imaginary parts

of exp(iθ1) and exp(iθ2) must cancel. Either exp(iθ2) = exp(iθ1)
∗ or exp(iθ1) =

− exp(iθ2). When exp(iθ2) = exp(iθ1)
∗, θ2 = −θ1 ∈

[
−π
3
,
π

3

]
, and it violates our

assumption that only θ1 is in
[
−π
3
,
π

3

]
. When exp(iθ1) = − exp(iθ2),

d∑
i=1

exp(iθi) = 0

which is not positive, so this is a contradiction.
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• When d > 2, Re

{
d∑

i=1

exp(iθi)

}
≤ 1 − d− 1

2
≤ 0 and is not positive, so this is a

contradiction.

Therefore, we must have both θ1 and θ2 in
[
−π
3
,
π

3

]
.

The following inequality is used multiple times later, so we prove it as a lemma:

Lemma 6.4. arccos

(
2 cos2(

√
s)− s

2

)
≤ 2
√
s for any s ∈ [0, 1].

Proof. When s ∈ [0, 1],

2
√
s ≥ arccos

(
2 cos2(

√
s)− s

2

)
⇐⇒ 2 cos

(
2
√
s
)
− (2 cos2(

√
s)− s) ≤ 0

⇐⇒ 2 cos
(
2
√
s
)
− (cos

(
2
√
s
)
+ 1− s) ≤ 0

⇐⇒ cos
(
2
√
s
)
− 1 + s ≤ 0. (6.4)

Equation 6.4 holds for all s ∈ [0, 1] if and only if cos(2s) − 1 + s2 ≤ 0 holds for all
s ∈ [0, 1] because f(x) = x2 is a bijection from [0, 1] to itself.

d

ds

(
cos(2s)− 1 + s2

)
= 2s− 2 sin(2s) and

d2

ds2
(
cos(2s)− 1 + s2

)
= 2− 4 cos(2s). The

second derivative is negative when s ∈
[
0,
π

6

)
, and is positive in s ∈

(π
6
, 1
]
, so the first

derivative is 0 when s = 0, decreases between s = 0 and s =
π

6
, and increases between

s =
π

6
and s = 1. Thus, cos(2s)− 1+ s2 ≤ max{cos(0)− 1+ 02, cos(2)− 1+ 12} = 0 when

s ∈ [0, 1]. Therefore, arccos
(
2 cos2(

√
s)− s

2

)
≤ 2
√
s for any s ∈ [0, 1].

For any complex number ρ exp(iθ) with θ ∈ (−π, π], define

arg(ρ exp(iθ)) := θ,

when ρ > 0, and define
arg(0) := 0.
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Lemma 6.5. For an arbitrary s ∈ [0, 1] and θ1, θ2 ∈ [−
√
s,
√
s], we have arg(exp(iθ1) +

exp(iθ2)− s) ∈ [−2
√
s, 2
√
s].

Proof. Denote exp(iθ1) + exp(iθ2) as ρ exp(iθ) with ρ ≥ 0 and θ ∈ (−π, π], so

arg(exp(iθ1) + exp(iθ2)− s) = arg(ρ exp(iθ)− s).

By the parallelogram rule for vector addition, θ ∈ [min{θ1, θ2},max{θ1, θ2}] ⊂ [−
√
s,
√
s],

and
ρ2 = (exp(iθ1) + exp(iθ2))(exp(−iθ1) + exp(−iθ2)) = 2 + 2 cos(θ1 − θ2).

Since θ1, θ2 ∈ [−
√
s,
√
s], θ1 − θ2 ∈ [−2

√
s, 2
√
s] ⊂ [−2, 2], so

cos(θ1 − θ2) ∈ [cos
(
2
√
s
)
, 1],

and
ρ2 ∈ [2 + 2 cos

(
2
√
s
)
, 4].

Since 2 + 2 cos
(
2
√
s
)
= 2 + 2 cos2(

√
s) − 2 sin2(

√
s) = 4 cos2(

√
s), ρ ∈ [2 cos

(√
s
)
, 2].

One crucial property that will be used later is ρ ≥ 2 cos
(√

s
)
≥ 2 cos(1) > 1 ≥ s.

With the bound on θ and ρ, we prove the following inequality geometrically:

|arg(ρ exp(iθ)− s)| ≤
∣∣arg (2 cos(√s) exp(i√s)− s)∣∣.

Suppose we fix θ and vary ρ, as in Figure 6.1, the shorter the height of the parallelogram,
the larger the angle its diagonal incident with the origin makes to the real axis. That is, if
ρ > ρ′ > 0, then θ2 > θ1, where θ1 := arg(ρ exp(iθ)− s) and θ2 := arg(ρ′ exp(iθ)− s).
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Figure 6.1: arg(ρ′ exp(iθ)− s) > arg(ρ exp(iθ)− s) for ρ > ρ′ > 0.

For the case when θ is negative, by symmetry, we have

|arg(ρ exp(iθ)− s)| = |arg(ρ exp(−iθ)− s)|.

So we obtain the inequality

|arg(ρ′ exp(iθ)− s)| > |arg(ρ exp(iθ)− s)|,

for any ρ′ ∈ (0, ρ).

If we fix ρ and vary θ, as in Figure 6.2, ρ exp(iθ) − s represents a point on a circle of
radius ρ centered at −s. If π ≥ θ′ > θ ≥ 0, then arg(ρ exp(iθ′)− s) > arg(ρ exp(iθ)− s).
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Figure 6.2: arg(ρ exp(iθ′)− s) > arg(ρ exp(iθ)− s) for π ≥ θ′ > θ ≥ 0.

Similarly, in the case when θ or θ′ is negative, if |θ′| > |θ|, then |arg(ρ exp(iθ′)− s)| >
|arg(ρ exp(iθ)− s)|. Hence, as we explain below,

|arg(ρ exp(iθ)− s)| ≤
∣∣arg(2 cos(√s) exp(iθ)− s)∣∣

≤
∣∣arg (2 cos(√s) exp(i√s)− s)∣∣

≤ arccos

(
2 cos2(

√
s)− s

2

)
≤ 2
√
s.

Here, the last inequality is by Lemma 6.4, and the third inequality is by the definition of arg
function and the monotonicity of arccos function. The latter inequality can be seen more
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clearly with the help of Figure 6.3 below. Let ω := arg
(
2 cos

(√
s
)
exp
(
i
√
s
)
− s
)
. From

Figure 6.3, cos(ω) =
2 cos2(

√
s)− s

r
≥ 2 cos2(

√
s)− s

2
, so ω ≤ arccos

(
2 cos2(

√
s)− s

2

)
.

Figure 6.3: ω = arccos

(
2 cos2(

√
s)− s

r

)
≤ arccos

(
2 cos2(

√
s)− s

2

)
.

Lemma 6.6. For an arbitrary s ∈ [0, 1], suppose θ1, θ2 ∈ [−
√
s,
√
s]. Then, there exists

ω1, ω2, such that |ω1| + |ω2| ≤ 10
√
s, and exp(i(θ1 + ω1)) + exp(i(θ2 + ω2)) = exp(iθ1) +

exp(iθ2)− s.

Proof. For any a, b ∈ C, we say a is aligned with b if ab = 0 or ∠(a, b) = 0. We first find
ω′
1 and ω′

2 such that both exp(i(θ1 + ω′
1)) and exp(i(θ2 + ω′

2)) are aligned with exp(iθ1) +
exp(iθ2)− s. Using Lemma 6.5,

|arg(exp(iθ1) + exp(iθ2)− s)| ≤ 2
√
s,
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and as |θ1|, |θ2| ≤
√
s, the angles

|ω′
1|, |ω′

2| ≤ (2 + 1)
√
s = 3

√
s. (6.5)

Since exp(i(θ1 + ω′
1)) and exp(i(θ2 + ω′

2)) are aligned,

|exp(i(θ1 + ω′
1)) + exp(i(θ2 + ω′

2))| = 2.

Next, we derive bounds on |exp(iθ1) + exp(iθ2)− s|. Define ρ := |exp(iθ1) + exp(iθ2)|
and θ := arg(exp(iθ1) + exp(iθ2)). By the proof of Lemma 6.3, ρ ∈ [2 cos

(√
s
)
, 2] and

θ ∈ [−
√
s,
√
s]. Applying the law of cosine to the triangle in Figure 6.4,

Figure 6.4: |ρ exp(i|θ|)| = |exp(iθ1) + exp(iθ2)− s|.

we get
|exp(iθ1) + exp(iθ2)− s|2 = ρ2 + s2 − 2ρs cos θ.

Since
∂

∂ρ

(
ρ2 + s2 − 2ρs cos θ

)
= 2(ρ− s cos θ)

and s cos θ ≤ 1, but ρ ≥ 2 cos
√
s ≥ 2 cos(1) > 1, if we fix s and θ, |exp(iθ1) + exp(iθ2)− s|2

increases as ρ increases. Then,

ρ2 + s2 − 2ρs cos θ ≥ (2 cos
√
s)2 + s2 − 4s cos

√
s = (2 cos

√
s− s)2,

ρ2 + s2 − 2ρs cos θ ≤ 22 + s2 − 4s cos
√
s ≤ 4,

and the last inequality uses 4 cos
(√

s
)
≥ 2 cos

(√
s
)
≥ 2 cos(1) > 1 ≥ s when s ∈ [0, 1].

Therefore,
2 ≥ |exp(iθ1) + exp(iθ2)− s| ≥ 2 cos

(√
s
)
− s > 0,

and the last inequality guarantees 2 cos
(√

s
)
− s is always positive when s increases from

0 to 1. This condition is necessary as the sign change may potentially ruin the alignment
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because we consider two vectors pointing in opposite directions not aligned. Instead of
writing max{2 cos

(√
s
)
− s, 0}, we can thus write the quantity 2 cos

(√
s
)
− s.

Since exp(i(θ1 + ω′
1)) is aligned with exp(i(θ2 + ω′

2)), and both of them are aligned with
exp(iθ1) + exp(iθ2)− s for any x ∈ [0, π/2],

exp(i(θ1 + ω′
1 + x)) + exp(i(θ2 + ω′

2 − x))

is also aligned with exp(iθ1) + exp(iθ2)− s. In addition, if we make

|exp(i(θ1 + ω′
1 + x)) + exp(i(θ2 + ω′

2 − x))| = |exp(iθ1) + exp(iθ2)− s|,

then exp(i(θ1 + ω′
1 + x)) + exp(i(θ2 + ω′

2 − x)) = exp(iθ1) + exp(iθ2) − s because if two
complex numbers viewed as vectors are aligned, and they have the same length, then they
must be equal.

Since exp(i(θ1 + ω′
1)) and exp(i(θ2 + ω′

2)) are aligned,

|exp(i(θ1 + ω′
1 + x)) + exp(i(θ2 + ω′

2 − x))|
=|exp(i(θ1 + ω′

1 + x)) + exp(i(θ1 + ω′
1 − x))|

=|exp(ix) + exp(−ix)|
=2 cos(x).

To make |exp(i(θ1 + ω′
1 + x)) + exp(i(θ2 + ω′

2 − x))| = |exp(iθ1) + exp(iθ2)− s|, we choose
x so that

2 cos(x) = |exp(iθ1) + exp(iθ2)− s|.

A solution for x exists because when x ∈ [0, π/2], 2 cos(x) takes all values in [0, 2] which
contains |exp(iθ1) + exp(iθ2)− s|. Furthermore, by Lemma 6.4,

2 cos(x) = |exp(iθ1) + exp(iθ2)− s| ≥ 2 cos
(√

s
)
− s

=⇒ x ≤ arccos

(
2 cos(

√
s)− s

2

)
≤ arccos

(
2 cos2(

√
s)− s

2

)
≤ 2
√
s.

If we define ω1 := ω′
1+x and ω2 := ω′

2−x, exp(i(θ1 + ω1))+exp(i(θ2 + ω2)) = exp(iθ1)+
exp(iθ2)− s, and by Inequality 6.5, |ω1|+ |ω2| ≤ 2(3 + 2)

√
s = 10

√
s.
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The following lemma helps prove the convergence of the algorithm when it runs indef-
initely. The idea comes from the differential inequality

df

dx
≤ −c

√
f(x),

c > 0,

f(x) ≥ 0,∀x ∈ R,

(6.6)

that the solution to 6.6 decreases to 0 quickly. One can verify it by solving the differential
equation with the inequality in 6.6 replaced by an equality, and applying Bihari–LaSalle
inequality [12, 2]. Furthermore, using the definitions from below, BN ’s can be considered
as the total cost of the algorithm until the N -th iteration and the aN ’s can be considered
as the objective value at the N -th iteration. Lemma 6.7 shows that if the objective values
aN decreases quickly in each iteration of the algorithm, then the total cost BN will not be
too large when aN becomes small or 0.

Lemma 6.7. Let ((ai, bi) : i ∈ N≥1) be a sequence in R≥0 × R>0 such that 0 ≤ ai+1 ≤

ai −
bi
√
ai

2
for all i ∈ N≥1. For an arbitrary N ∈ N≥1, define BN :=

N−1∑
i=1

bi when N > 1

and B1 = 0. For any N ≥ 1, if BN ≤ 4
√
a1, then aN ≤

(4
√
a1 −BN)

2

16
, or if BN > 4

√
a1,

then aN = 0.

Proof. We prove this lemma by induction. When N = 1, B1 = 0 ≤ 4
√
a1, and a1 ≤

(4
√
a1 − 0)2

16
= a1.

For an arbitrary N ∈ N≥1, suppose if BN ≤ 4
√
a1, then aN ≤

(4
√
a1 −BN)

2

16
, or if

BN ≥ 4
√
a1, then aN = 0.

• If BN ≤ 4
√
a1, then

– If aN > 0, aN ≤
(4
√
a1 −BN)

2

16
implies BN ≤ 4(

√
a1 −

√
aN), and 0 ≤ aN+1 ≤

aN−
bN
√
aN

2
implies bN ≤ 2

√
aN . Therefore, BN+1 = BN+bN ≤ 4

√
a1−2

√
aN ≤

4
√
a1, and

aN+1 ≤ aN −
bN
√
aN

2
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≤
(4
√
a1 −BN)

2

16
− bn

2

√
(4
√
a1 −BN)2

16

=
(4
√
a1 −BN)

2

16
−
bn(4
√
a1 −BN)

8

=
(4
√
a1 −BN)(4

√
a1 −BN − 2bn)

16

=
(4
√
a1 −BN − bn + bn)(4

√
a1 −BN − bn − bn)

16

<
(4
√
a1 −BN − bn)2

16

=
(4
√
a1 −BN+1)

2

16
.

– If aN = 0, then 0 ≤ aN+1 ≤ aN −
bN
√
aN

2
, so aN+1 = 0. If BN+1 ≤ 4

√
a1, then

aN+1 = 0 ≤
(4
√
a1 −BN+1)

2

16
. If BN+1 > 4

√
a1, we have aN+1 = 0.

• If BN > 4
√
a1, then aN = 0, aN+1 = 0.

Corollary 6.8. Let ((ai, bi) : i ∈ N≥1) be a sequence in R≥0 × R>0 such that 0 ≤ ai+1 ≤

ai −
bi
√
ai

2
for all i ∈ N≥1. If N := inf{i : ai = 0, i ∈ N≥1} exists, then BN ≤ 4

√
a1.

Proof. Suppose such N exists. If N = 1, then B1 = 0 ≤ 4
√
a1. If N > 1, we have

aN−1 > 0, so BN−1 ≤ 4
√
a1 by Lemma 6.7. By the proof of Lemma 6.7 for the case when

BN−1 ≤ 4
√
a1 and aN−1 > 0, BN = BN−1 + bN−1 ≤ 4

√
a1 − 2

√
aN−1 ≤ 4

√
a1.

Theorem 6.9. Suppose we have angles θ1, · · · , θd ∈ R such that

∣∣∣∣∣
d∑

i=1

exp(iθi)

∣∣∣∣∣ ≤ 1, then

there exists ω1, · · · , ωd ∈ R such that
d∑

i=1

exp(i(θi + ωi)) = 0 and

d∑
i=1

|ωi| < 14

√√√√∣∣∣∣∣
d∑

i=1

exp(iθi)

∣∣∣∣∣.
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Proof. All variables in Algorithm 1 are global variables and are initialized to 0. We run
Algorithm 1 below by calling MAIN on line 24 with arguments θ1, · · · , θd. The high-level
idea of each function is as follows:

• MAIN finds a small ∆ and then call ADJUST.

• In ADJUST, if there exists j ∈ [d] such that exp(iθj)’s component orthogonal to
d∑

i=1

exp(iθi) is not “too small," then we increase/decrease θi by ∆ so that

∣∣∣∣∣
d∑

i=1

exp(iθi)

∣∣∣∣∣
becomes smaller. This process is repeated until such j does not exist or ∆ is too
large. If such j does not exist, we call FIX. If ∆ is too large, we return to MAIN and
update ∆ to a smaller value.

• FIX is called when exp(iθj)’s component orthogonal to
d∑

i=1

exp(iθi) is “small" for all

j ∈ [d]. By Lemmas 6.3 and 6.6, we can find j1, j2 ∈ [d] and modify θj1 and θj2 by a

small amount, so that

∣∣∣∣∣
d∑

i=1

exp(iθi)

∣∣∣∣∣ becomes 0 immediately.

Note that we do not actually change θi for a clearer proof later. We use ωi to represent
the total change to θi.

Algorithm 1
1: procedure Fix

2: ∃(ω′
i)i∈[d] such that

n∑
i=1

|ω′
i| ≤ 10

√
Sk and

d∑
i=1

exp(i(θi + ωi + ω′
i)) = 0

3: ▷ See explanation later on how to construct ω′
i

4: for all i ∈ [d] do
5: ωi ← ωi + ω′

i

6: end for ▷ After the for-loop,
d∑

i=1

exp(i(θi + ωi)) = 0

7: end procedure
8: procedure Adjust
9: while ∆ < 0.28|Sk|

√
|Sk| do ▷ Check if ∆ is still small enough

10: if ∃j ∈ [d],∠(exp(i(θj + ωj)), Sk) ∈ (
√
|Sk|, π −

√
|Sk|) then

11: if Im{S∗
k exp(i(θj + ωj))} > 0 then
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12: ▷ Check cross product to determine the rotation direction
13: ωj ← ωj +∆
14: else
15: ωj ← ωj −∆
16: end if
17: Ωk ← ∆ ▷ Record the amount of change at iteration k
18: else
19: Fix
20: end if

21: k ← k + 1, Sk ←
d∑

i=1

exp(i(θi + ωi))

22: end while
23: end procedure
24: procedure Main(θ1, · · · , θn)

25: k ← 1, |S1| ←
d∑

i=1

exp(iθi) ▷ S1 ≤ 1 by assumption

26: while |Sk| > 0 do

27: ∆← min

{
1

2k
,
|Sk|

3
2

10

}
▷ A small (positive) value less than 0.28|Sk|

3
2

28: Adjust ▷ After the procedure call, |Sk| <
(

∆

0.28

) 2
3

29: end while
30: end procedure

We verify some properties of Algorithm 1:

• If the if-condition on line 10 evaluates to true, and if we further assume Sk ≤ 1, by

the while-loop condition on line 9 and Lemma 6.2, |Sk+1| ≤ |Sk| −
√
|Sk|
2

Ωk. Since
|S1| ≤ 1, a short induction can show until FIX on line 19 is called for the first time,
(|Sk|) is a decreasing sequence in [0, 1].

• When FIX on line 19 is called for the first time, the previous point shows |Sk| ≤ 1.
The if-statement on line 10 and Lemma 6.3 further show we can find j1, j2 ∈ [d]

such that ∠(exp(i(θj1 + ωj1)), Sk),∠(exp(i(θj2 + ωj2)), Sk) ∈ [0,
√
|Sk|]. Then, by

Lemma 6.6, we can change ωj1 and ωj2 by at most 10
√
|Sk| to make

d∑
i=1

exp(i(θi + ωi)) =
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0. This explains the assertion on line 2.

• When we return from FIX back to line 19, k ← k+1 and Sk ← 0, the algorithm will
terminate after jumping out of the two while-loops on line 9 and on line 26 as ∆ > 0
and Sk = 0.

• If FIX on line 19 is never called and assume the while-condition on line 9 evaluates to

true, by Lemmas 6.2 6.7 and Corollary 6.8,
k−1∑
i=1

Ωi has to be smaller than 4(
√
|S1| −√

|Sk|) for all k. After each iteration of the while-loop on line 9, k increases by 1, and
k−1∑
i=1

Ωi increases by ∆, so eventually,
k−1∑
i=1

Ωi will exceed 4(
√
|S1| −

√
|Sk|) ≤ 4

√
|S1|,

and the while-condition on line 9 will evaluate to false.

• The previous two points show the while-loop on line 9 terminates regardless of
whether FIX on line 19 is called.

If Algorithm 1 eventually terminates with k = K, define ω(j)
i as the ωi at the snapshot

when Sj is computed, then at the end, as we explain below,

d∑
i=1

|ωi| =
d∑

i=1

∣∣∣ω(K)
i

∣∣∣ ≤ K−1∑
k′=1

d∑
i=1

∣∣∣ω(k′+1)
i − ω(k′)

i

∣∣∣ ≤ 4
√
|S1|+ 10

√
|S1| = 14

√
|S1|.

The second inequality holds because

d∑
i=1

∣∣∣ω(k+1)
i − ω(k)

i

∣∣∣ ≤ Ωk, ∀1 ≤ k < K − 1,

and

• If FIX on line 19 is not called,

d∑
i=1

∣∣∣ω(K)
i − ω(K−1)

i

∣∣∣ ≤ ΩK−1,

and by Lemma 6.7 and Corollary 6.8 on sequence (|Si|,Ωi),
K−1∑
i=1

Ωi ≤ 4
√
|S1|.
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• If FIX on line 19 is called in the end,
d∑

i=1

∣∣∣ω(K)
i − ω(K−1)

i

∣∣∣ ≤ 10
√
|S1|,

and by Lemma 6.7 and Corollary 6.8 on sequence (|Si|,Ωi),
K−2∑
i=1

Ωi ≤ 4
√
|S1|.

If the algorithm does not terminate, then FIX on line 19 is never called. When ∆ is

updated on line 27, since
|Sk|

3
2

10
< 0.28|Sk|

3
2 , whenever ADJUST on line 28 is called, the

while-condition on line 9 is satisfied initially, so k increases after calling ADJUST on line 28
and goes to infinity as the algorithm runs indefinitely.

∆ ∈
(
0,

1

2k

]
, and the while-condition on line 9 ensures that after calling ADJUST on

line 28, |Sk| ∈

(
0,

(
∆

0.28

) 2
3

]
⊂

(
0,

(
1

0.28 · 2k

) 2
3

]
. When k = k′, for any k2 > k1 ≥ k′,

by Lemma 6.7,
d∑

i=1

∣∣∣ω(k2)
i − ω(k1)

i

∣∣∣ ≤ k2−1∑
j=k1

d∑
i=1

∣∣∣ω(j+1)
i − ω(j)

i

∣∣∣
≤

(
k2−1∑
j=k1

Ωj

)
≤4
√
|Sk1|

≤4
√
|Sk′|

≤4

√(
1

0.28 · 2k′
) 2

3

.

So the sequence
((

ω
(j)
i

)
i∈[d]

)
j∈N+

is a Cauchy-sequence in compact set
[
−20

√
|S1|, 20

√
|S1|
]d

,

and it has a limit. Since the function f(ω1, · · · , ωd) =

∣∣∣∣∣
d∑

i=1

exp(i(θi + ωi))

∣∣∣∣∣ is continuous,

f
(
lim
k→∞

ω
(k)
1 , · · · , lim

k→∞
ω
(k)
d

)
= lim

k→∞
f
(
ω
(k)
1 , · · · , ω(k)

d

)
= lim

k→∞
|Sk| = 0.
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Therefore, if we define ωi := lim
k→∞

ω
(k)
i for all i ∈ [d], then by Lemma 6.7,

d∑
i=1

|ωi| =
d∑

i=1

∣∣∣ lim
k→∞

ω
(k)
i

∣∣∣ ≤ lim
k→∞

k−1∑
j=1

d∑
i=1

∣∣∣ω(j+1)
i − ω(j)

i

∣∣∣ ≤ ( lim
k→∞

k−1∑
j=1

Ωk

)
≤ 4
√
|S1|.

Lemma 6.10. Suppose we have angles θ1, · · · , θd ∈ R such that

∣∣∣∣∣
d∑

i=1

exp(iθi)

∣∣∣∣∣ > 1. Then,

there exist ω1, · · · , ωd ∈ R such that
d∑

i=1

exp(i(θi + ωi)) = 0 and
d∑

i=1

|ωi| <
π

2

∣∣∣∣∣
d∑

i=1

exp(iθi)

∣∣∣∣∣+
π

2
+ 14.

Proof. All variables in Algorithm 2 are initialized to 0. We run Algorithm 2 below by
calling MAIN with arguments θ1, · · · , θd.

Algorithm 2
1: procedure Main(θ1, · · · , θd)

2: S ←
d∑

i=1

exp(iθi)

3: while |S| > 1 do ▷ This while-loop’s functionality is explained later
4: j ← argmin

k∈[d]
{∠(exp(i(θk + ωk)), S)}

5: α← ∠(exp(i(θj + ωj)), S)
6: if Im{S∗ exp(i(θj + ωj))} > 0 then
7: ωj ← ωj + π − 2α
8: else
9: ωj ← ωj − π + 2α

10: end if

11: S ←
d∑

i=1

exp(i(θi + ωi))

12: end while
13: end procedure

In each iteration of the while-loop, we find j ∈ [d] such that exp(i(θj + ωj)) has the

largest signed projection length onto S. Since S =
d∑

i=1

exp(i(θi + ωi)), the projection from
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exp(i(θj + ωj)) to S has length at least
|S|
d

>
1

d
. Then, we can reduce |S| by modifying

ωj, so that the signed projection length is negated while the component orthogonal to S
is unchanged. See Figure 6.5 for an illustration.

Figure 6.5: Illustration of each while-loop iteration in Algorithm 2.

Let β :=
π

2
− α, where α := ∠(exp(i(θj + ωj)), S) as on line 5. Each iteration of

the while-loop reduces |S| as ||S| − 2 cosα| = ||S| − 2 sin β| with
d∑

i=1

|ωi| increasing by at

most (π − 2α) = 2β. Since 2 sin β ∈
(
2

d
, 2

]
where the lower bound is from the previous

paragraph, either |S| ≥ 2 sin β and ||S| − 2 sin β| = |S| − 2 sin β, or |S| < 2 sin β, and
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||S| − 2 sin β| ≤ 1. In the former case, |S| decreases by at least
2

d
per iteration of the while-

loop, and in the latter case, the algorithm terminates immediately. Therefore, Algorithm

2 terminates with

∣∣∣∣∣
d∑

i=1

exp(i(θi + ωi))

∣∣∣∣∣ ≤ 1, and as explained below,

d∑
i=1

|ωi| ≤

(∣∣∣∣∣
d∑

i=1

exp(iθi)

∣∣∣∣∣+ 1

)
sup

β∈[0,π
2
]

{
2β

2 sin β

}
=
π

2

∣∣∣∣∣
d∑

i=1

exp(iθi)

∣∣∣∣∣+ π

2
.

The first inequality is because S decreases from

∣∣∣∣∣
d∑

i=1

exp(i(θi))

∣∣∣∣∣ down to −1 (it is −1

because 2 sin β might be larger than S in the last round ). In each round, to decrease S

by 2 sin(β),
d∑

i=1

|ωi| increases by at most 2β, and we bound this by the sup.

After the execution of Algorithm 2, |S| ≤ 1, we use Theorem 6.9 to finish the proof.

This last step increases
d∑

i=1

|ωi| by at most 14.

Corollary 6.11. Suppose we have angles θ1, · · · , θd ∈ R such that

∣∣∣∣∣
d∑

i=1

exp(iθi)

∣∣∣∣∣ > 1. Then,

there exist ω1, · · · , ωd ∈ R such that
d∑

i=1

exp(i(θi + ωi)) = 0 and
d∑

i=1

|ωi|2 < 96

∣∣∣∣∣
d∑

i=1

exp(iθi)

∣∣∣∣∣.
Proof. Notice in Lemma 6.10, either arg(S) is unchanged, or in the last iteration, possibly
arg(S) ← π − arg(S). Whenever an ωi is changed, either exp(i(θi + ωi)) has a negative
projection onto S, or it is in the last iteration. In both cases, ωi will never be changed
again in future iterations of Algorithm 2. Therefore, we can further bound

d∑
i=1

∣∣ω2
i

∣∣ ≤ (∣∣∣∣∣
d∑

i=1

exp(iθi)

∣∣∣∣∣+ 1

)
sup

β∈[0,π
2
]

{
(2β)2

2 sin β

}
=
π2

2

∣∣∣∣∣
n∑

i=1

exp(iθi)

∣∣∣∣∣+ π2

2
.

Then, we apply Theorem 6.9 with angles θi + ωi and obtain angles ω′
i such that

d∑
i=1

exp(i(θi + ωi + ω′
i)) = 0,
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and
d∑

i=1

|ω′
i| ≤ 14

√√√√∣∣∣∣∣
d∑

i=1

exp(i(θi + ωi))

∣∣∣∣∣ ≤ 14.

We may assume ω′
i ∈ [−π, π], so

d∑
i=1

|ω′
i|
2 ≤ π

d∑
i=1

|ω′
i| ≤ 14π,

and
d∑

i=1

|ωi + ω′
i|
2 ≤

d∑
i=1

(
|ωi|2 + 2|ωi||ω′

i|+ |ω′
i|
2
)

≤ π2

2

∣∣∣∣∣
d∑

i=1

exp(iθi)

∣∣∣∣∣+ π2

2
+ 2

√√√√(π2

2

∣∣∣∣∣
d∑

i=1

exp(iθi)

∣∣∣∣∣+ π2

2

)
14π + 14π

≤ π2

2

∣∣∣∣∣
d∑

i=1

exp(iθi)

∣∣∣∣∣+ π2

2
+ 14π + 2

√
14π3

√√√√∣∣∣∣∣
d∑

i=1

exp(iθi)

∣∣∣∣∣
≤
(
π2

2
+
π2

2
+ 14π + 2

√
14π3

) ∣∣∣∣∣
d∑

i=1

exp(iθi)

∣∣∣∣∣
< 96

∣∣∣∣∣
d∑

i=1

exp(iθi)

∣∣∣∣∣,
where the second line is by the Cauchy-Schwartz inequality, and the following lines use∣∣∣∣∣

d∑
i=1

exp(iθi)

∣∣∣∣∣ > 1.

6.3 Orthogonalizing two unitary matrices

We combine the algorithms from the previous section to orthogonalize a pair of unitary
operators in such a way that one of them is perturbed only slightly.
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Theorem 1.5. Suppose we have U1, U2 ∈ U(d) for any d ≥ 2 such that

|⟨U1, U2⟩| =
∣∣∣∣1d Tr(U †

1U2

)∣∣∣∣ ≤ ϵ,

then, there exists U ∈ U(d) such that ⟨U1, UU2⟩ = 0 and

∥UU2 − U2∥2nhs = ∥U − Id∥2nhs ≤ 196ϵ = O(ϵ),

where ∥M∥nhs :=

√
1

d
Tr(M †M), for any M ∈ Cd×d.

Proof. We continue from the derivations in section 6.1. Let the spectral decomposition of
U †
1U2 be ŨDŨ † where Ũ is unitary andD := diag

(
eiθ1 , eiθ2 , · · · , eiθd

)
is diagonal. Section 6.1

showed we can find the required U = U1ŨD
′Ũ †U †

1 by finding D′ = diag
(
eiω1 , eiω2 , · · · , eiωd

)
such that Tr(D′D) = 0, and ∥U − Id∥nhs =

1√
d
∥U − Id∥F =

1√
d
∥D′ − Id∥F.

We are given that
∣∣∣Tr(U †

1U2

)∣∣∣ ≤ dϵ. Depending on whether dϵ ≤ 1 or not, there are
two cases:

• If dϵ ≤ 1, by Theorem 6.9, there exists D′ such that

Tr(DD′) =
d∑

i=1

ei(θi+ωi) = 0,

and
d∑

i=1

|ωi| ≤ 14

√√√√∣∣∣∣∣
d∑

i=1

eiθi

∣∣∣∣∣ ≤ 14
√
dϵ.

Notice in a sector with central angle |ωi| and radius 1, the chord length
∣∣eiωi − 1

∣∣ is
less than the arc length |ωi|. Thus,

∥D′ − Id∥2nhs =
1

d

d∑
i=1

∣∣eiωi − 1
∣∣2 ≤ 1

d

d∑
i=1

|ωi|2 ≤
1

d

(
d∑

i=1

|ωi|

)2

≤ 196ϵ,

and the second-last inequality uses the convexity of function f(x) = x2.
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• If dϵ > 1, by Corollary 6.11, there exists D′ such that

Tr(DD′) =
d∑

i=1

ei(θi+ωi) = 0,

and
d∑

i=1

|ωi|2 ≤ 96

∣∣∣∣∣
d∑

i=1

eiθi

∣∣∣∣∣ ≤ 96dϵ.

Then,

∥D′ − Id∥2nhs =
1

d

d∑
i=1

∣∣eiωi − 1
∣∣2 ≤ 1

d

d∑
i=1

|ωi|2 ≤ 96ϵ.
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