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Abstract 

Nanoparticles (NP) have become a promising drug delivery system in the past few decades 

in pharmaceutics for its diversity in encapsulating different types of drugs, including 

proteins/peptides, nucleic acids and small molecule drugs for the treatment of a variety of diseases. 

Application in cancer cell NP-based drug delivery has been a majority focus because of NP’s 

capability in delivering effective treatment while keeping side effects low. Often, series of 

chemical and biological assays need to be carried out to pursue certain research goals. However, 

NP fabrication process is rather time-consuming and costly, consisting of material selection, 

formation, purification, and characterization.  

As NP composition choices can directly influence the NP physicochemical properties and 

biological behaviors, it is crucial to find the optimized combination efficiently to achieve better 

NP performances. To ease the burden of conducting experiments manually, collaboration with 

artificial intelligence (AI) techniques is likely to be a promising choice. Machine learning (ML) as 

a sub-concept of AI has been a popular tool in many pharmaceutical sciences studies, such as 

prediction of protein molecular structures, drug discoveries, high throughput screening, and 

prediction of drug formulation compositions, etc. It has been of researchers’ great interests in 

implementing this emerging technique to a variety of tasks to speed up pharmaceutics development. 

In this study, we formulated 32 doxorubicin (DOX) or docetaxel (DTX)-loaded NPs to 

train and test ML-based Gaussian Processes (GP) models that can estimate the underlying 

relationships between four NP composition physicochemical properties (e.g., poly (lactic-co-

glycolic) acid (PLGA) molecular weight (MW), PLGA lactic acid: glycolic acid (LA/GA) ratio, 

PLGA: drug weight ratio, and drug lipophilicity) and the corresponding drug EE% and therapeutic 

efficacy in ovarian cancer cells. No universal relationships between the predictor and response 
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variables can be concluded. Three GP models including EE% model, DOX NP IC50 model, and 

DTX NP IC50 model were evaluated for their prediction accuracies that were measured by 

normalized-RMSE in testing sets. The normalized RMSE are 0.187, 0.296, and 0.206, respectively. 

The EE% model has the highest prediction accuracy that may be attributed to the larger training 

dataset compared to the other two models. Furthermore, a simplified Bayesian Optimization (BO) 

model was built to output a set of x variable values that can potentially help to find formulations 

that optimize the NP EE% and therapeutic efficacy. In EE% model, the suggested formulation is 

2 mg drug with lipophilicity of 2.12 being loaded in 94 mg of 20001 Da, 1.17:1 (LA/GA) PLGA 

NP. In DOX NP IC50 model, the suggested formulation is 2 mg DOX-loaded 68 mg of 39997 Da, 

1.53:1 (LA/GA) PLGA NP. In DTX NP IC50 model, the suggested formulation is 2mg DTX-

loaded 90 mg of 20008 Da, 1.70:1 (LA/GA) PLGA NP. 
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Chapter 1: Introduction 

1.1 Drug delivery 

Conventional drug delivery faces multiple barriers that significantly constrains drug 

distribution and accumulation at target sites and eventually results in reduction of the therapeutic 

efficacy. Common drug administration routes include intravenous, subcutaneous, intramuscular, 

oral, topical, and pulmonary, etc1. Different from other administrated drugs, oral drugs encounter 

first pass effects mainly in the liver where drugs are metabolized. Thus, it ends up with a significant 

reduction in drug bioavailability which accounts for the percentage of drug available in the 

bloodstream upon initial dosing2. In order to be absorbed by the body, oral drugs need to be well-

solubilized in different dosage forms and be able to permeate biological barriers such as 

gastrointestinal (GI) membrane to enter systemic circulation. Hydrophobic drugs that are insoluble 

in aqueous solutions usually need to be formulated by mixing with extra hydrophilic excipients 

that may be toxic to humans. On the other hand, these drugs usually have better membrane 

permeability because of their high lipophilicity and are favored in neurological diseases owing to 

their abilities of crossing the blood-brain-barrier. However, they experience low bioavailability in 

systemic circulation after its dissolution in the GI tract. In contrast, hydrophilic drugs experience 

challenges in crossing the cell membrane but are readily solubilized in the bloodstream and 

cytoplasm. Besides small molecule drug delivery, gene therapy started its rapid development since 

it was first delivered to a patient by W. French Anderson in 19903. Unlike small molecule drugs, 

these genetic therapeutics include DNA and RNA macromolecules that need to be encapsulated in 

vehicles such as NP and viral delivery vectors in order to enter cells3,4. This strategy is also 

applicable for small molecule drugs to avoid restricted delivery as mentioned above. In these 
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aspects, NP has become a promising delivery system that improves therapeutics bioavailability 

and therapeutic effects.  

Several types of NP delivery systems have been created to maintain a relatively sustained 

and controlled drug release in the form of liposomes, micelles, polymeric NP, and metallic NP5. 

The release can be achieved through drug diffusion or NP matrix erosion/degradation depending 

on the drug physicochemical properties, NP composition, and biological environment the NPs are 

in6. The goals of NPs are to transport sufficient amount of drugs to target sites with advantage of 

crossing biological barriers, especially the blood-brain-barrier that blocks the entry of drug 

molecules by tight-junctions7,8. And to enhance drug stability by protecting it from enzymatic 

degradation or hepatic metabolism. NPs are also designed to enhance biocompatibility and to 

reduce unwanted cytotoxicity. Conventional drugs are free drugs in common forms of oral tablets 

or injectable solutions with excipients. However, their therapeutic effects are limited due to 

shortened half-life and insufficient drug accumulation. Regardless of the drug lipophilicity, NP is 

capable for delivering an extended range of drugs compared to conventional drug deliveries which 

end up in low bioavailability. NP formulations especially improve the delivery of hydrophobic 

drug as its low water solubility makes it difficult to be formulated in different dosage forms. Owing 

to its outstanding merits, NP has been recognized by scientists for its potential to improve drug 

delivery9. NP formulations can be modified to accommodate different biological environments and 

needs to promote their functions. For example, stabilizers such as poly-ethylene glycol (PEG), 

poly-vinyl alcohol (PVA), chitosan, poly-ethylene imine (PEI), and poly-vinyl pyrrolidone (PVP) 

help to stabilize the uniform colloidal suspension in preventing NP agglomeration and 

degradation10,11. Antibodies can also be conjugated to NPs for active cell targeting. They 
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specifically bind to the targeting receptors on cell surfaces and bring NPs into the cell precisely 

with enhanced specificity and therapeutic efficacy9,12.  

As one of the most life-threatening diseases, cancer has received great attentions and  

varieties of therapies have been applied for cure13,14. However, anticancer treatments still face 

challenges of inadequate drug accumulation, side effects on normal cells, and multidrug 

resistance13,15. Owing to the multifunctional characteristics, NPs have been proved to reduce 

toxicity on healthy cells and enhance prolonged drug release at the tumor site to boost therapeutic 

efficiency16,17. Although many studies have been done to optimize the NP formulations, the 

underlying relationship between NP compositions and NP behaviors are still ambiguous and the 

research is time-consuming and costly. Therefore, in this study, we focused on examining the 

therapeutic effects of different NP formulations on cancer cells and the NP encapsulation 

efficiency (EE%) which will be discussed later. In NP development, besides NP compositions and 

structures, the actual environment that drugs will be interacting with should also be examined. It 

is worth mentioning that tumor microenvironment is very distinct from that in other types of 

disease. Tumor consists of complex vasculature and stroma that potentially influence the entry and 

distribution of NPs18. The enhanced permeability and retention (EPR) effect in tumor cells allow 

NPs to undergo easier permeation and tissue retention that facilitate NP reaching its target site19. 

As NPs reach the cells, they usually enter cells through endocytosis under different trafficking 

pathways depending on their sizes20–22. Those that are smaller than 200nm undergo clathrin-

dependent, clathrin-independent/dynamin-dependent, clathrin-independent/dynamin-independent, 

or caveolae endocytosis, while those are larger than 200nm undergo macropinocytosis or 

phagocytosis if the size exceeds 500nm21. In all these pathways, the internalized NPs first reach 

the early endosome and eventually into the digestive enzyme lysosome22,23. Late lysosome digests 
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and degrades incoming particles by primarily increasing the endosomal acidification down to pH 

5.024. To avoid the fate of degradation, it is very important for NPs to escape from the endosome 

timely before the endosome-lysosome fusion. The four main routes to realize endosomal escape 

are membrane fusion, osmotic pressure, NP swelling, and membrane destabilization24. Several NP 

surface modifications have been introduced to enhance endosomal escape: peptides, viruses, toxins, 

chemicals, and polymers25. Another crucial factor that controls NP destination in endocytosis is 

the NP surface charge. NP surface charge is indirectly measured by zeta potential under an applied 

electric field. Zeta potential is the potential at the slipping plane which locates at the farthest layer 

from NP and connects to the dispersing aqueous solution26. The mechanisms of endosomal escape 

are different between cationic and anionic NPs. Cationic NPs escape due to proton sponge effect 

in which protons enter endosome and protonate basic chemical groups on the NP surface, 

following influx of chloride ions and increased osmotic pressure upon the entry of water molecules, 

resulting in endosome disruption24,27–29. Conversely, anionic NPs can be protonated into cationic 

NPs in the acidic endosome and break up endosome for drug release29. However, NPs can be 

cytotoxic depending on their surface charges and other physicochemical properties. For the goal 

of generating a stable and protective vehicle, NP materials should be well chosen upon the charge 

of the cargo considering the drug-NP interactions30. 
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Figure 1.1. Endocytosis process schematic. Created from BioRender.com. 

 

1.2 Polymeric NP formulations 

From 2016 to 2021, 29% of United States Food and Drug Administration (FDA) newly-

approved NPs are polymeric which is the most common type31. However, polymeric NPs only 

occupied 7% among all the NP clinical trials31. There is definitely great potential in polymeric NP 

development. Polymeric NPs are mainly categorized by their structures: nanospheres, 

nanocapsules9,32,33. The former type is structured with a polymeric matrix, while the later type 

contains an empty core capsuled by a polymeric shell. Although polymeric NP delivery systems 

have advantages in controlled release, easy production, and diverse surface modification34,35, their 

instability and aggregation remain as concerns in applying clinically9. As an external vehicle, NP’s 

fate inside the body is worth to be investigated. NPs face multiple obstacles along the delivery 

pathway, including immune response, body clearance, blood circulation, biodistribution, and cell 
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uptake9. Cell uptake profile also needed for detailed examination on NP stability and behaviors in 

a real biological environment. Not only the pharmacokinetics and pharmacodynamics of 

encapsulated drug need to be studied, that of the NP composition is necessary as well, as it controls 

the drug-NP interaction and drug release.  

To help accelerate polymeric NP development and better predict their EE% and therapeutic 

efficacies, a set of NPs were formulated in this project for closer examination. We chose to create 

our own dataset for higher data quality since NP formulations can vary in their compositions and 

methodologies that are very hard to be kept consistent and comparable among data extracted from 

literatures.  

Poly lactic-co-glycolic acid (PLGA) was chosen to be the main NP component in this 

project considering its excellent biodegradability, low toxicity, and high biocompatibility36. 

Double emulsion solvent evaporation method was used to fabricate NPs in the form of 

nanocapsules or nanospheres. Hydrophilic drug was encapsulated inside the water phase while 

hydrophobic drug was mixed with PLGA in the oil phase. Surfactant PVA serves as stabilizer or 

emulsifier to form a layer on the NP surface to enhance NP stability. Drug is released either when 

PLGA degrades through hydrolysis in aqueous medium or through passive diffusion from the NP 

surface. 

 

1.3 Physicochemical properties of NP formulation material  

Material selection of NP and the loading drug greatly impact the NP characterization, 

physicochemical properties, and cellular behaviors. In polymeric NPs, the choices of polymers 

determine the NP size, zeta potential, and potentially affect drug release, cellular uptake, and 
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toxicity37. In this study, we mainly investigated the effect of PLGA MW, PLGA LA/GA ratio, 

PLGA: drug weight ratio, and drug lipophilicity on the NP EE% and therapeutic efficacy. 

 

1.3.1 Predictors 

1.3.1.1 PLGA MW 

Different polymer MW indicates different polymer chain length and results in different 

polymer mechanical strength and degradation38. Higher MW means longer chains with more ester 

bonds needed to be broken in hydrolytic degradation and takes up more energy. It also increases 

polymer hydrophobicity and viscosity that affects drug-polymer interactions. With more 

interactions, especially hydrophobic drugs tend to retain with the polymer in oil phase. Polymer 

hydrolysis/degradation speed directly affects the drug release process and how the drug enters cells. 

Many relevant papers found that NP EE% increases as polymer MW increases because of the 

reasons above39–41. 

 

1.3.1.2 PLGA LA/GA ratio 

PLGA is composed of two types of repeating units, lactic acid (LA) and glycolic acid (GA). 

LA with an extra methyl group makes it more hydrophobic than GA. In general, the higher the 

LA/GA ratio, the more hydrophobic the PLGA. Increased hydrophobicity influences how the 

polymer interacts with drug and aqueous solution NPs disperse in. This further determines how 

well drug is encapsulated in NP and how it is released from the NP matrix. Many studies have 

demonstrated that the NP EE% increased as LA/GA ratio increased due to the increased 

hydrophobicity and viscosity of PLGA. Drug release is also controlled by the LA/GA ratio-driven 

PLGA degradation rate and interaction between drugs and both LA and GA monomers. LA/GA 
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ratio is also responsible for many other PLGA physicochemical properties, including mechanical 

strength, crystallinity, melting point, and glass transition point38,42.  

 

1.3.1.3 PLGA: drug weight ratio 

The amount of polymers used in NP formulations directly reflects on the NP stability and 

drug encapsulation capacity by influencing the interactions between PLGA and encapsulated drug, 

as well as the NP erosion and drug release. The increment of PLGA: drug weight ratio results in 

an increase of polymer solution viscosity but a decrease in shear stress that is positively 

proportional to polymer degradation which further controls the drug release rate40,43. 

 

1.3.1.4 Drug lipophilicity 

The logarithm of partition coefficient (logP) which measures the lipophilicity of molecules 

influences the molecule solubility and the interactions between molecules, NP core matrix (e.g., 

polymers), and external solution44–46. Shown in Equation 1, the higher the logP, the more 

lipophilic/hydrophobic the molecule. The more similar lipophilicity between the solvent and the 

drug, the more compatible they are, and higher EE%47. This can be explained by the concept of 

like-dissolves-like which states that molecules with similar polarities tend to dissolve together48. 

This property also impacts the drug release profile: hydrophilic drugs tend to diffuse into the 

external aqueous media because of its higher solubility in water. In contrast, hydrophobic drugs 

are prone to interact with the hydrophobic polymer, thus, stay inside the NP matrix. The ways that 

drugs are released rely on the logP eventually, either through diffusion or happens when NP matrix 

degrades. 

logP = log( ["#$%&'!"#$%!&]
["#$%&''$#()]

)                                                     (1) 
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1.3.2 Responses 

1.3.2.1 EE% 

EE% is one of the most important factors in NP development. Higher EE% is demanded 

but this really depends on the initial amount of drug being encapsulated since the space for drug 

saturates at a certain drug concentration level. The ability of NP encapsulating small molecule 

drugs can be varied under different NP formulations, drug properties, and preparation protocols. 

This includes the polymer, drug, surfactant that were chosen, and the formation methods used. 

Starting with the same amount of drug, NPs with higher EE is favored to achieve desired 

therapeutic effects at lower NP dose. In clinical trials, the use of NP with high EE% enhances drug 

accumulation in cells, helps to reduce side effects on other healthy cells, and may shorten the 

dosing frequency16,49,50. 

 

1.3.2.2 Half-maximal inhibitory concentration (IC50) 

IC50 is the drug concentration when the drug inhibits 50% of the cell growth. It directly 

measures the drug potency but also reflects the therapeutic efficacy using a Hill equation51–53. The 

lower the IC50 value is, the more potent and effective the drug is. IC50 also provides an insight 

into drug efficacy when the therapeutic effects differ between formulations. IC50 relies on many 

factor in NP: the main one is the drug mechanism of action which is determined by the drug 

chemical structure and its interactions with the target site. Other factors include the NP formulation 

components, drug release profile, and cell uptake profile. 
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1.4 Ovarian cancer (OC) 

OC has been one of the major cancer diseases in women and among all types of OC, 90% 

are epithelial-related54. As epithelial ovarian cancer (EOC) is often asymptomatic in early stages, 

over half of the patients were already at late stages when they were diagnosed55. With the urgent 

needs of effective treatments, different combinatorial therapies have been applied in clinical. 

Treatments usually consist of debulking surgery and chemotherapy upon the assessment of the 

stage patients are at55. Platinum chemotherapy is a common choice in OC, however, there is a high 

chance of drug resistance and recurrence after the treatment56. Other types of small molecule drugs 

in such case deserve attention, such as DOX and DTX. Of the two main prototypes of EOC, Type 

II high-grade serous (HGS) OC, is more aggressive than Type I low-grade serous (LGS) OC and 

has been the major subtype among diagnosed cases57. Herein, human epithelial ovarian cancer cell 

OVCAR3 from HGS subtype is used as model cell line for further investigation of 

chemotherapeutic drug-loaded NP to achieve better therapeutic effects. 

 

1.5 Chemotherapy drugs 

Most chemotherapy drugs have severe side effects on normal tissue while killing cancer 

cells and this has arisen as one of the main concerns in anticancer treatments. With the use of NPs, 

this concern is expected to be relieved by delivering higher amount of small molecule drugs 

directly to cancer cells by passive targeting facilitated by EPR effect or active targeting through 

ligand-receptor interactions with minimized cytotoxicity on normal cells58. To conduct deeper 

examinations of NP behaviors, two model drugs are studied for their logP and cytotoxicity in 

OVCAR3 cells.  
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1.5.1 DOX 

DOX is a very hydrophobic drug due to its chemical structure. Therefore, it is often added 

with hydrochloride (DOX×HCl) to improve its water solubility in facilitating the delivery into 

human bodies. To keep it simple, DOX will be used to represent DOX×HCl in the following 

paragraphs.  

DOX has been approved by FDA as intravenous injections in forms of either conventional 

solutions or liposomal NPs59. Adriamycin is the brand name of conventional DOX injection, 

without drug carriers. However, it can cause severe cardiomyopathy59,60. Doxil as the first FDA-

approved liposome injection, has been proved to have lower cytotoxicity, increased drug stability, 

and enhanced therapeutic effects61. In terms of mechanism of action, DOX targets DNA, inhibits 

topoisomerase II which modulates double-stranded DNA entanglement, and generates unstable 

radicals that cause cell membrane disruption and eventually cell death62. DOX has also been a 

common option in combination with other drugs in OC treatment but has not been as effective63,64. 

Further research should be done on improving the delivery of DOX. 

 

1.5.2 DTX 

DTX promotes the tubulin polymerization by interrupting the microtubule 

polymerization/depolymerization equilibrium and leads to cell death65,66. Well-known FDA-

approved docetaxel medications include Taxotere and its generic form Docefrez67. Both are 

intravenous injection for administration. DTX has been an effective drug in treating EOC along 

with platinum drug63,68 and has also been used in many other cancer diseases, such as breast cancer, 

lung cancer, and prostate cancer69. Studies have been done to show the advantages of DTX-loaded 

NP delivery, including enhanced drug accumulation in cancer cells and reduced cytotoxicity 
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systemically67,70. However, no DTX-loaded NP formulation has been approved by FDA yet. 

Further development is necessary to improve the DTX therapeutic efficacy in the form of NPs. 

 

1.6 ML applications in pharmaceutics 

ML, one of the subtypes of AI, has expedited and expanded the applications in many fields 

of study. The applications in healthcare have particularly increased after the corona virus (COVID-

19) pandemic in the past few years. ML has also shown the potential in promoting pharmaceuticals 

development. The power of ML in data utilization has demonstrated its ability in discovering 

underlying data structures that contain rich information71. ML has eased researchers from heavy 

wet-lab workload, for example, by making prediction, simulating data, and designing 

experiment72–74. The applications have spread among fields including molecular docking, 

computational biology, drug discovery, drug formulation development, and clinical therapy 

design75,76. In molecular docking, the scoring function that helps assess ligand interaction can be 

well-generated with higher prediction accuracy upon data training with the use of ML, resulting in 

the selection of better drug candidates77,78. Similarly, with the incorporation of ML, predictions on 

drug and protein structures, protein functions, genome engineering, and gene expression can also 

be efficiently improved79–82. ML has also been applied to optimize drug dosing and for the 

prediction of patient responses to treatment in order to design better clinical treatment76,83. 

ML offers numerous choices of algorithms for different data types and analysis purposes. 

It is mainly categorized into supervised learning, unsupervised learning, and reinforcement 

learning, according to the data type and ways of model-learning72. Supervised learning requires 

labelled output data that are clearly specified, while output data in unsupervised learning are not 

labelled. In other words, the target data or patterns in unsupervised learning are undetermined and 
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it is the job for ML model to discover. Different from supervised and unsupervised learning, 

reinforcement learning does not require data training, but rather makes decisions to obtain higher 

rewards upon an environment-interactive action taken by an agent at a certain state. ML has been 

mostly involved in common tasks of regression and classification in supervised learning, clustering 

and data dimensionality reduction in unsupervised learning84. Popular algorithms include linear 

regression, artificial neural network, support vector machine, random forests, k-nearest neighbors, 

principal component analysis, k-means clustering, and so on85,86. Each of them models data 

differently, even though some may from the same type of learning style. Thus, it is very essential 

to pick the useful algorithm to ensure reliable data fitting and fulfill goals in each project. 

In cooperation with ML, NP formulation design can be efficiently improved. For the 

purposes of making predictions of output values (EE% and IC50), supervised learning models are 

used in this project. 

 

1.6.1 Supervised learning 

1.6.1.1 GP 

GP is a non-parametric stochastic probabilistic model which finds the joint distribution 

over functions and is defined by a mean function 𝑚(𝒙) and covariance (i.e., kernel) function 

𝑘(𝒙, 𝒙) in Equation 2, where the mean function is the expectation of the true function and the 

covariance function finds the similarity between two inputs. The true function that GP is estimating 

maps input variables to output variables. As a probabilistic model, GP not only makes predictions 

on the output values, but also provides estimation of the function distribution uncertainty with the 

use of covariance function. In real cases, GP can also incorporate input and output data 

uncertainties87,88. As shown in Equation 3, the true function 𝑓(𝒙) is added with the noise 𝜖. GP 
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follows multivariate (joint) normal distribution which is saying that any set of finite number of 

random variables follows multivariate normal distribution. GP is based on Bayesian distribution 

to update a posterior distribution from a prior distribution after data training which is called 

conditioning. The prior distribution is of the early known information of the model itself, while 

the posterior distribution is used to make predictions on new data points and estimate prediction 

uncertainties, given a set of training inputs and outputs. In the posterior predictive distribution 

(Equation 4), 𝒙∗ represents the testing input, 𝑦∗ represents the testing output, 𝑿 and 𝒚 represent 

the training input and output, 𝜎* represents the error variance. 

The hypothesis space of GP consists of all possible functions that can fit the data. These 

functions are determined by the prior distribution89. Kernel matrix has 𝑛 × 𝑛 dimension, where 𝑛 

is the training dataset size. The basis function embedded in kernel functions are able to effectively 

project x variables into a new feature space and the computational complexity 𝑂(𝑛+) now only 

depends on 𝑛	90. In the new feature space, data structure is comprehensively examined and the 

underlying relationships between data points are better revealed. This method speeds up the 

analyzing process and enhances the prediction accuracy in small dataset scenarios.  

 𝑓(𝒙)~𝐺𝑃(𝑚(𝒙), 𝑘(𝒙, 𝒙))                                                    (2) 

𝑦 = 𝑓(𝒙) + 𝜖                                                                (3) 

p(𝑦∗|𝒙∗, 𝑿, 𝒚) = 𝑁(𝑚′(𝒙∗), 𝜎* + 𝑘′(𝒙∗, 𝒙∗))                                      (4) 

Kernel functions are mainly categorized into stationary and non-stationary kernels. 

Stationary kernels are determined by the differences between two sample points, rather than their 

locations91,92. Stationary kernels are subdivided into anisotropic (which considers both distance 

and direction between two points) and isotropic (only considers the distance between two points) 

kernels91. In contrast, non-stationary kernels focus on the locations of two sample points in the 
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input space91,92. In many cases, non-stationary kernels are more flexible to model data with 

complex structure but also require more parameter optimizations. There are many types of kernel 

functions available for GP: radial basis function (RBF) (Equation 5), Matérn kernel (Equation 6), 

periodic kernel, linear kernel, rational quadratic kernel, and dot product kernel93. In real world 

cases, a combination of kernels may be necessary to obtain a model that best explains the data. 

The combination can be multiplication and addition of multiple kernels.  

The most commonly used kernel is RBF which is also named as Gaussian kernel or squared 

exponential kernel (Equation 5). 𝒙 and 𝒙, are two different input variables, 𝜎* is the variance, and 

𝑙 is the length scale that controls the function smoothness. The smaller the 𝑙 is, the easier the prior 

function changes with x, the more fluctuating the function is93–95. 

𝑘(𝒙, 𝒙,) = 𝜎*𝑒(.
||𝒙,𝒙-||.

.&.
)                                                       (5) 

In multivariate regression cases, Matérn kernel (Equation 6) is commonly applied, where 

𝑣 determines the smoothness of the function, d accounts for the distance between two inputs, 

Γ	represents the gamma function, and 𝐾0 represents the modified Bessel function93,95,96. 

𝑘(𝒙, 𝒙,) = 1
2(3)*/,0

B√*3
$
𝑑(𝒙, 𝒙,)D

3

𝐾0(
√*3
$
𝑑(𝒙, 𝒙,))                                    (6) 

 

1.6.1.2  BO 

BO is a popular optimization method to find the best combination of input variables that 

maximize or minimize an objective function which is the function of interest. In this project, it is 

the function between the four predictors and two responses mentioned before. To reduce the 

computational cost, a surrogate model with a selected number of data is used to build the 

relationship between inputs and outputs, approximating the true objective function. One of the 
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most popular choices of surrogate model is GP. GP is a non-parametric model that is not 

constrained to a fixed number of parameters or functional form, so that it is more flexible in 

modeling data. It provides BO an estimated objective function with a mean and covariance 

function. 

The other component in BO is the acquisition function which suggests the next x value 

that’s worth to be examined in achieving higher EE% or lower IC50. It provides suggestions upon 

an agreement between balancing exploitation and exploration. In exploitation, the acquisition 

function suggests to evaluate areas around the current best x values with low risk. In contrast, in 

exploration the acquisition function suggests x values from unexplored region. A new set of x 

values will be created after each iteration in BO. The corresponding output y values should be 

collected by conducting wet-lab experiment and used to update GP model to be prepared for the 

next optimization iteration. 

 

1.7 Project rationale, hypothesis, and objectives 

1.7.1 Project rationale 

NP as a functional drug delivery platform faces challenges in selecting materials that are 

beneficial in improving its biological behaviors to meet specific criteria. The fabrication process 

of NP is time and money-consuming and the choices of materials directly influence the 

downstream cellular applications regarding the encapsulation capacity and the release of the cargo. 

Plenty of NP physicochemical properties are responsible for the NP performance, but the effects 

of a combination of them are still unseen. Two of the main expectations of NPs are to achieve 

higher EE% and lower IC50 to enhance NP therapeutic efficacy and potency in delivering more 

drugs to the target site while minimizing the side effects on normal cells. However, the 
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optimization is not as efficient in in-vitro lab work, as experimental design is built on the basis of 

controlling variables that require a significant amount of work to accurately describe the 

contribution of each variable to the responses. Beyond this, it is also difficult to find the 

contribution of a combination of variables without mathematical analysis. 

As ML technique emerged rapidly in the past decade, its advantage in accelerating drug 

design and development drew our attention. With the leverage of ML-based models, the black box 

of the relationships between NP composition properties and NP performances can be disclosed by 

training a subset of in-vitro data that is composed of input (material physicochemical properties) 

and output (EE% and IC50) variables at different values. The EE% and IC50 can therefore be 

predicted according to the selected inputs, following input optimization to enhance EE% and 

reduce IC50. 

 

1.7.2 Hypothesis 

We hypothesize that GP and BO models can make accurate predictions and optimizations 

on NP compositions in achieving high EE% and therapeutic efficacy based on the physicochemical 

properties of the selected materials. 

 

1.7.3 Objectives 

1. Formulate thirty-two DOX or DTX loaded NPs as well as corresponding blank NPs that 

are composed of different drug and polymers that have four physicochemical properties. 

Characterize NPs, measure drug EE%, and obtain IC50 value from MTS cell viability test. 

2. Analyze how the collected data are influenced by the four drug and polymer 

physicochemical properties. 
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3. Build GP and BO model and train them with the collected EE% and IC50 data from 

objective 1. 

4. Tune GP and BO model hyperparameters to improve prediction accuracy. 
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Chapter 2: Materials and Methods 

2.1 Materials 

Avanti J-E BioSafe centrifuge and Optima MAX-XP ultracentrifuge were purchased from 

Beckman Coulter. Q125 sonicator was purchased from Qsonica. FreezeZone 2.5 liter benchtop 

freeze dry system was purchased from Labconco. Zetasizer Ultra was purchased from Malvern 

Panalytical. AQUITY ultraperformance liquid chromatography (UPLC) H-Class, HSS C18 

column (100 Å, 1.8 µm, 2.1 mm), HSS-C18 VanGuard column (100 Å, 1.8 µm, 2.1 mm´5 mm) 

were purchased from Waters. Varioskan LUX multimode microplate reader was purchased from 

ThermoFisher Scientific.  

Acid terminated-PLGA were purchased from Nanosoft Polymers. CellTiter 96® 

AQueous One Solution Cell Proliferation Assay (MTS) was purchased from Promega. OVCAR3 

cell line was purchased from ATCC. RPMI 1640 with 2.5 mM L-Glutamine, 

penicillin/streptomycin 100x (P/S), heat-inactivated fetal bovine serum (FBS), 0.4% Trypan Blue 

were purchased from Fisher Scientific. Insulin from bovine pancreas, dichloromethane (DCM), 

acetonitrile (ACN), formic acid (FA), and PVA (MW 31,000-50,000 Da, 87-89% hydrolyzed) 

were purchased from Sigma Aldrich. 0.25% trypsin-EDTA was purchased from ThermoFisher 

Scientific. DTX and DOX were purchased from TCI Chemicals. 

 

2.2 PLGA NP formation 

Following the designated nanoparticle formulations, certain amount of PLGA was 

dissolved in 2 mL DCM. 2 mg of DOX was dissolved in 200 µL Milli-Q water while 2 mg DTX 

was dissolved together with PLGA in DCM. The drug amount was kept the same at 2 mg for both 

types of drugs to ensure the NP EE% are comparable between formulations. 200 µL of 10 mg/mL 
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DOX was emulsified with the organic phase of PLGA on ice using a microprobe sonicator at 60% 

amplitude for 20s per cycle for 5 cycles, with 5s of rest between each cycle to form the first water-

in-oil (W1/O) single emulsion. In DTX NP formulation, 200 µL water was used as the first water 

phase instead. The W1/O emulsion was then dropwise added to 10 mL 3% (w/v) PVA solution and 

underwent the same sonication procedure on ice to form the water-in-oil-in-water (W1/O/W2) 

double emulsion. The final emulsion was then added with 30 mL 3% (w/v) PVA solution and 

stirred at 600 rpm for 3 hrs to evaporate the organic solvent. Blank NPs were made under the same 

double emulsion protocol except that no drug was loaded. NPs were washed twice with doubled 

volume of water to remove free polymers and drugs using the floor centrifuge. The first supernatant 

was saved for EE% determination. NPs were washed at 20,000 ´g, 20 °C for 15 mins. Part of the 

NPs was frozen in -20 °C freezer overnight following freeze-drying for 24 hrs in the freeze dryer. 

The dried NPs were weighed to be used in NP weight concentration calculation. 

   

2.3 PLGA nanoparticle characterization 

NPs were washed and dispersed in MilliQ water for characterization using the Zetasizer. 

Both size and zeta potential were measured using cuvette DTS1070 in triplicates. NP size was 

measured with dynamic light scattering (DLS) back scatter technique and zeta potential was 

measured with electrophoretic light scattering (ELS). 

 

2.4 Indirect drug EE% measurement 

DOX was dissolved in MilliQ water and a serial dilution was performed for the standard 

curve. Similarly, a serial dilution of DTX was prepared in ACN for standard curve measurement. 

All standard drug solutions were filtered with 0.1 µm filter. The drug concentration in NP 
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supernatant was tested by photo diode array (PDA) detector, using reversed phase UPLC with a 

HSS C18 column (100 Å, 1.8 µm, 2.1 mm) which was equipped with HSS-C18 VanGuard column 

(100 Å, 1.8 µm, 2.1 mm ´ 5 mm) to avoid contamination. The supernatants collected from NP 

preparation step were ultracentrifuged at 100,000 ´g for 30min at 25 °C to separate free polymers 

and remaining NPs from free drug, following filtration with 0.1 µm filter. Filtered DTX samples 

were detected at 230 nm in mobile phase of ACN: H2O (50%: 50%, v/v) with flow rate 0.4 mL/min 

at 25 °C. Filtered DOX samples were detected at 233 nm in mobile phase of (A) 0.1% formic acid 

in H2O: ACN (50%: 50%, v/v) and (B) H2O at a ratio of 65%: 35% (v/v) with flow rate 0.3 

mL/min at 25 °C. Mobile phases were filtered by 0.22 µm filter and the sample injection volume 

is 3 µL. Each sample was measured in triplicates. 

EE% = 5#&6$	89:;<=	:>	?@%AB.?@%AB	CD	=EF	B%G'@D6&6D&
5#&6$	89:;<=	:>	?@%AB

 ×100%                        (7) 

 

2.5 Cell culture 

OVCAR3 cells were cultured in RPMI 1640 with L-Glutamine supplemented with 20% 

FBS, 1% P/S, and 0.01 mg/mL bovine pancreas insulin in 37 °C, 5% CO2 cell incubator. Cells 

were subcultured at 80% confluency. 0.25% trypsin-EDTA was used to detach the cells from cell 

culture flask following centrifugation at 125 ´g for 5 min. Cryoprotectant of 5% DMSO in 

complete growth medium was used to freeze cells that were then stored in liquid nitrogen tank. 

 

2.6 MTS cell viability test 

MTS cell viability assays were performed to find the IC50 value for free DOX, free DTX, 

and each NP formulation in OVCAR3 cells. Cells were counted by diluting 100 µL stock cells 
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solution with 100 µL Trypan Blue97. 100 µL cells were seeded in sterile 96-well plate at a density 

of 5000 cells/well and incubated in 37 °C, 5% CO2 cell incubator for 24 hrs. On the treatment day, 

all groups except for blank control group were added with 100 µL additional medium containing 

different components. In treatment groups, NPs at different concentrations in complete growth 

medium were added to cells. The positive control group was treated with 5% DMSO in complete 

growth medium and negative control group was treated with complete cell medium only. Each 

group consists of 6 replicated wells. Cells were washed with PBS twice to remove the residual NP 

after 48 hrs of NP treatment. 20 µL MTS reagent with 100 µL complete growth media were added 

to all groups (including a blank control group) away from light and incubated for 2 hrs before read 

at wavelength 490 nm using the microplate reader. Free drug IC50 values were obtained following 

the same protocol as NPs with free drugs in treatment groups instead.   

MTS validation test was performed by seeding cells at different densities and equilibrated 

for 1.5 hrs. 20 µL MTS reagent was then added to each well and incubated for 2 hrs in 37°C, 5% 

CO2 cell incubator. All absorbances were subtracted by the average reading of blank group (n=6) 

which only contains MTS reagent and medium. Results are shown in Appendix B Figure B1. 

Cell viability = 5@'6&H'D&	A@#%G.I0'@6A'	J$6DK	A@#%G
I0'@6A'	D'A6&C0'	L#D&@#$	A@#%G.I0'@6A'	J$6DK	A@#%G

× 100%                 (8) 

 

2.7 GP and BO models 

GP prior distribution was defined by prior mean of 0 and Matérn kernel function. 

GaussianProcessRegressor function was specified with a default ‘optimizer’ of ‘fmin_l_bfgs_b’ 

which is named Limited-memory Broyden-Fletcher-Goldfarb-Shanno Bound (L-BFGS-B). The 

optimizer minimizes the negative log marginal likelihood function to tune the hyperparameters. 
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Another parameter ‘n_restarts_optimizer’ was set to 20. The ‘length_scale’,  

‘length_scale_bounds’, and ‘nu’ hyperparameters in Matérn kernel were set as follows. 

 

Table 2.1. Hyperparameters in Matérn kernel. 
 

Prior mean length_scale length_scale_bounds nu 

EE%  

0 

1 0.1, 30 0.5 

DOX IC50 1 0.1, 30 0.5 

DTX IC50 1 2, 30 0.5 

 

BO utilizes GP as the surrogate function to predict the objective function which was set to 

‘none’. The acquisition function was set by “UtilityFunction’ using upper confidence bound (UCB) 

in which the hyperparameter ‘kappa’ controls the trade-off between exploration and exploitation. 

‘kappa’ was set to 0 since no extra experiments were performed for GP model update.  

Input data and code for GP and BO models are presented in supplementary files in Borealis 

repository. 
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Chapter 3: Results and Discussion 

3.1 PLGA NP 

Bilati et al. has found a decreasing trend on NP size as sonication amplitude increases 

before reaching a plateau98. This trend also stands for sonication time tests98. Sonication 

intentionally helps to break up aggregated NP, however, high sonication amplitude and long 

sonication time also have chance to introduce disturbance to NP, resulting in aggregation. Higher 

sonication amplitude provides stronger power which intensifies NP movements and increases NP 

collision frequency. The amplitude was optimized to 60% for NP formation in this study.  

We found that NP is only stable (in terms of precipitation-free) within a certain range of 

PLGA concentration but starts to lose the Tyndall effect and fails to be resuspended beyond lower 

and upper limits of PLGA concentration. Viscosity of PLGA in DCM solution increases as its 

concentration increases and the concentration should be kept lower than 50mg/mL for better 

practice. Therefore, the PLGA: drug weight ratio range was selected to fall between 20:1 and 50:1, 

where the amount of drug was fixed at 2 mg. 

Serving as a surfactant, PVA helps to stabilize the NP in avoiding coalescences and the NP 

stability increases with PVA concentration. The addition of PVA can effectively reduce the Gibbs 

free energy and interfacial tension to maintain a spontaneous formation of emulsion droplets, 

especially at higher concentrations40,99,100. Research has found that less hydrolyzed PVA helps to 

form more stable emulsion droplets, and this was confirmed by gelatinization studies where the 

organic solvent acetone is added to PVA solution to form precipitated PVA gels101. At lower 

degree of hydrolysis, PVA has less hydroxyl groups to form hydrogen bonds between or within 

PVA molecules, thus, less aggregation and more interactions with water molecules to stabilize 

NPs101. Herein, we used 87-89% hydrolyzed PVA to form well-dispersed NP. 
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Blank NPs cytotoxicity studies were performed following the same protocol as drug-loaded 

NPs. Data are shown in Appendix D Figure D1 and D2. Blank NPs composed with 50:50 

20kDa/40kDa and 75:25 20kDa/40kDa PLGA at 20:1 and 50:1 PLGA: drug ratio were produced. 

The cytotoxicity of NPs at 30:1 and 40:1 PLGA: drug ratio were extrapolated from the above-

mentioned NPs. That is, for example, if NPs at 20:1 and 50:1 PLGA: drug ratio both are non-toxic 

at 100 µg/mL, then NPs at 30:1 and 40:1 PLGA: drug ratio are also non-toxic at or below this 

concentration. Some of the NPs at 30:1 and 40:1 PLGA: drug ratio were also tested in cases that 

extrapolation failed. 

The size and zeta potential data of all formulated blank and drug-loaded NPs are listed in 

Appendix A Table A1. 

 

3.2 Drug EE% and NP IC50 

Table 3.1. Summary of values in four x variables (predictor) and two y variables (response) 

collected from in-vitro experiments. Data represent the mean ± SD (N=3 for EE%, and N=6 for 

IC50). 

logP PLGA MW 

(Da) 

PLGA: drug weight 

ratio 

LA/GA 

ratio 

EE% IC50 (µg/mL) 

 

 

 

 

 

 

 

 

20k 

20:1  

 

 

 

50:50 

20.89±0.04 4.04±1.72 

30:1 27.92±0.23 3.78±1.61 

40:1 35.35±0.17 2.44±1.25 

50:1 48.16±0.06 1.60±0.55 

 20:1 20.01±0.24 4.62±1.44 
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0.36 

(DOX) 

 

40k 

30:1 21.48±0.32 4.34±2.45 

40:1 33.96±0.03 3.70±1.91 

50:1 38.02±0.12 1.13±0.41 

 

 

20k 

20:1  

 

 

 

75:25 

30.58±0.17 8.70±3.77 

30:1 35.53±0.03 7.85±3.64 

40:1 37.74±0.07 2.61±1.53 

50:1 45.50±0.15 2.38±0.81 

 

 

40k 

20:1 16.34±0.31 11.85±5.26 

30:1 17.47±0.09 3.67±1.74 

40:1 21.73±0.19 3.06±0.82 

50:1 28.46±0.17 2.16±0.52 

 

 

 

 

 

 

 

2.74 

(DTX) 

 

 

 

20k 

20:1  

 

 

 

50:50 

24.59±0.23 0.0187±0.0032 

30:1 38.10±0.25 0.0116±0.0027 

40:1 42.63±0.53 0.0064±0.0015 

50:1 40.70±1.19 0.0019±0.0005 

 

 

40k 

20:1 34.59±0.21 0.0199±0.0053 

30:1 36.42±0.16 0.0084±0.0024 

40:1 42.46±0.77 0.0089±0.0034 

50:1 45.32±0.40 0.0072±0.0017 

 20:1  31.49±0.10 0.0362±0.0139 
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20k 

30:1  

 

 

75:25 

38.55±0.32 0.0069±0.0032 

40:1 45.97±0.63 0.0123±0.0030 

50:1 45.91±0.08 0.0068±0.0020 

 

 

40k 

 

20:1 24.96±0.28 0.0205±0.0043 

30:1 37.63±0.57 0.0143±0.0038 

40:1 43.64±0.59 0.0129±0.0026 

50:1 47.71±0.08 0.0122±0.0032 

 

Table 1 listed the EE% and IC50 values for all drug-loaded NPs with different drugs and 

at different PLGA MW, PLGA: drug ratio, and PLGA LA/GA ratio. The drug logP was calculated 

from the consensus logP from the SwissADME software102. For convenience, formulations will 

be denoted in the form of “PLGA: drug ratio_LA_PLGA MW”. For example, 20_50_20k is NP at 

20:1 PLGA: drug ratio with 50:50 20kDa PLGA. The relationships between the four drug and 

PLGA physicochemical properties will be discussed in later sections. 
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3.2.1 Drug EE% results 

 

Figure 3.1. DOX UPLC standard curve. Data represent the mean ± SD (N=3). Error bar (standard 

deviation) is too small to be shown in graph. R2 = 0.9999. 

 

Figure 3.2. DTX UPLC standard curve. Data represent the mean ± SD (N=3). Error bar (standard 

deviation) is too small to be shown in graph. R2 = 0.9999. 
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The UPLC standard curves of DOX and DTX follow a linear regression relationship with 

R2 = 0.9999 (Figure 3.1 and 3.2), indicating a high detection accuracy in UPLC. All drug EE% 

were calculated based on the standard curves.  

 

3.2.1.1 DOX EE% 

A. 

 

B. 

 

C. 

 

D. 

 

Figure 3.3. Effect of LA/GA ratio on DOX EE%: A) DOX EE% of 20kDa PLGA NP. B) DOX 

EE% of 40kDa PLGA NP. Effect of PLGA MW on DOX EE%: C) DOX EE% of 50:50 PLGA 
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NP. D) DOX EE% of 75:25 PLGA NP. **p<0.01, ***p<0.001, ****p<0.0001. Data represent the 

mean ± SD (N=3). 

Typically, the LA repeating unit in PLGA is more hydrophobic than GA repeating unit. 

Hence, the PLGA hydrophobicity at 75:25 LA/GA ratio is higher than that at 50:50 LA/GA ratio. 

According to the molecular dynamic simulation model produced by Stipa’s group, LA unit tends 

to keep its movement within itself (i.e., more self-interaction), while in the presence of both LA 

and GA units, PLGA interacts with the surrounding aqueous solvent more103. In the case of 

hydrophilic drug encapsulation, the drug-polymer interaction decreases as polymer hydrophobicity 

increases. The drug diffuses easier into the external aqueous phase, and results in decreased NP 

EE%. This explains the result in Figure 3.3B, where DOX EE% is lower in 75:25 40kDa PLGA 

NP, due to the increased PLGA hydrophobicity. However, when PLGA MW is at 20kDa in Figure 

3.3A, DOX EE% generally increases with PLGA LA/GA ratio, other than 50_75_20k NP. The 

inverse relationship might be due to the decreased PLGA self-interaction due to reduced chain 

entanglement at lower MW104. It is likely that DOX has more interaction with PLGA in this case, 

so that it may diffuse into the continuous external phase with low MW PLGA, especially when 

LA/GA ratio is also low (e.g., 50:50). Drug-polymer interaction plays the main role when PLGA 

MW is low, while PLGA self-interaction is dominant when PLGA MW is high.  

The effects of PLGA self-interaction and drug-PLGA interaction at different PLGA MW 

on DOX EE% are reflected in Figure 3.3C and D. DOX EE% of 20kDa PLGA NP are higher than 

that of 40kDa PLGA NP, owing to increased drug-PLGA interactions. Similarly, Presmanes et al. 

observed the same trend in PLGA NPs loaded with hydrophilic protein105. Conversely, some 

research papers found that hydrophilic drug EE% increases as PLGA MW increases, regardless of 
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the NP fabrication methods (single emulsion and double emulsion)40,41,106. There is lack of 

evidence on how exactly drug EE% changes with PLGA MW.  

 

A. 

 

B. 

 

C. D. 
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Figure 3.4. Effect of PLGA: drug ratio on DOX EE%: A) DOX EE% of 50:50 20kDa PLGA NP. 

B) DOX EE% of 50:50 40kDa PLGA NP. C) DOX EE% of 75:25 20kDa PLGA NP. D) DOX EE% 

of 75:25 40kDa PLGA NP. ***p<0.001, ****p<0.0001. Data represent the mean ± SD (N=3). 

In Figure 3.4, EE% increases as PLGA: drug ratio increases. As PLGA concentration (i.e., 

PLGA: drug ratio) increases, there are more PLGA chains present in the organic solution for NP 

construction, so that the solution viscosity increases. This restricts the drug from diffusing into the 

double emulsion NP continuous aqueous phase. Thus, more drugs were entrapped inside the NP 

and resulted in increased EE%. 
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3.2.1.2 DTX EE% 

A. 

 

B.

 

C. 

 

D. 

 

Figure 3.5. Effect of LA/GA ratio on DTX EE%: A) DTX EE% of 20kDa PLGA NP. B) DTX 

EE% of 40kDa PLGA NP. Effect of PLGA MW on DTX EE%: C) DTX EE% of 50:50 PLGA NP. 

D) DTX EE% of 75:25 PLGA NP. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Data represent 

the mean ± SD (N=3). 
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DTX EE% in 75:25 PLGA NP are mostly higher than that of 50:50 PLGA NP when PLGA 

MW is at 20kDa (Figure 3.5A), except for the 30:1 PLGA: drug ratio NPs that have insignificant 

EE% difference between each other. The increasing trend can be explained by the fact that DTX 

interacts more with hydrophobic 75:25 PLGA compared to more hydrophilic 50:50 PLGA. The 

increased drug-PLGA interaction helps to preserve DTX in oil phase. No clear relationship can be 

concluded between DTX EE% and PLGA LA/GA ratio in Figure 3.5B when PLGA MW is at 

40kDa. The impact of different LA/GA ratio on NP EE% at high PLGA MW 40kDa is too small 

to be observed. Unlike DOX NP, there is no clear trend between DTX EE% and PLGA MW in 

Figure 3.5C and D. The difference between the two selected PLGA MW is not significant enough 

to reflect on DTX EE%. Similarly, Fonseca et al. did not find a clear relationship between 

hydrophobic drug EE% and PLGA MW, either107. 
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C. 

 

D. 

 

Figure 3.6. Effect of PLGA: drug ratio on DTX EE%: A) DTX EE% of 50:50 20kDa PLGA NP. 

B) DTX EE% of 50:50 40kDa PLGA NP. C) DTX EE% of 75:25 20kDa PLGA NP. D) DTX EE% 

of 75:25 40kDa PLGA NP. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Data represent the 

mean ± SD (N=3). 

As shown in Figure 3.6, DTX EE% increases with PLGA concentration when PLGA MW, 

LA/GA ratio, and drug (logP) are fixed. The increment in EE% can be explained by the same 

reason as for Figure 3.4. However, DTX EE% of formulation 50_50_20k is lower than that of 

40_50_20k, and DTX EE% of 50_75_20k has no significant difference from that of 40_75_20k. 

This could be explained by PLGA saturation in oil phase as PLGA concentration increased. The 
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extra PLGA failed to continue forming emulsion droplets. As DTX is hydrophobic and was added 

to PLGA solution in the oil phase, the strong interaction between PLGA and DTX resulted in loss 

of DTX along with the extra PLGA, resulted in lower EE%. Additional independent experiments 

are necessary to confirm the variations between repeats.  

 

3.2.1.3 DOX vs. DTX EE% 

A. 

 

B. 

 

C. 

 

D. 
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Figure 3.7. DTX and DOX EE% at different PLGA MW and LA/GA ratio. A) Drug EE% at 50:50 

20kDa PLGA. B) Drug EE% at 50:50 40kDa PLGA. C) Drug EE% at 75:25 20kDa PLGA. D) 

Drug EE% at 75:25 40kDa PLGA. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Data 

represent the mean ± SD (N=3). 

Under the same NP composition, DTX EE% are in general higher than DOX EE% due to 

the high logP of DTX and the solution phase DTX is in. This is because drugs with different logP 

have different solubilities and partitioning in water or oil phase. Hydrophilic drug easily migrates 

from the first water phase to the second water phase and eventually be released into the solution, 

while hydrophobic DTX tends to stay in the oil phase with more interactions with the hydrophobic 

PLGA matrix. As mentioned above, DTX EE% in 50_50_20k NP is lower than formulation 

40_50_20k due to PLGA saturation. This reflects in a significantly lower (p<0.001) DTX EE% 

than DOX EE% in 50_50_20k NP.  

 

3.2.2 IC50 

Considering the subsequent comparisons between different NP formulations, absolute 

IC50 was used instead of relative IC50. In a Hill model, the top was set to 100% cell viability that 

represents no cell growth inhibition, and the baseline was set to 0% cell viability that represents 

100% cell growth inhibition. The absolute IC50 is therefore the drug concentration that inhibits 

50% cell growth. The lower and upper end of the sigmoidal curve in Figure 3.8 reach plateaus at 

baseline and top. The dose-response Hill model was built following Equation 9 using a nonlinear 

regression fit for log[absolute IC50] in GraphPad Prism 9108. 

Cell viability = Bottom + M:N	.O:==:9

1P1Q[(345$67!&8#(	:;<=,345>)8?	"!%".)BC33	D34EFG345H
I!J,K!##!L
<=,K!##!L ,0M]

          (9) 
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Figure 3.8. Schematic of absolute IC50. 

The free drug IC50 values were obtained under the same cell viability test protocol as drug-

loaded NPs. Free DOX IC50 are either lower than or not significantly different from DOX NP 

IC50 (Appendix C Figure C1). Free DTX IC50 are also either lower than or not significantly 

different from most of the DTX NP IC50, except for formulation 50_50_20k (Appendix C Figure 

C2). IC50 relies on how drugs were taken up by cells. The drug delivery pathways for free drug 

and NPs are quite different. As mentioned before, free drugs passively diffuse into the cells, while 

NPs with size greater than 200 nm undergo macropinocytosis or phagocytosis following entry into 

the digestive endosome. For the same type of drug, its cytotoxicity in different formulations also 

depends on how much of it accumulated in the cells within the fixed incubation time109. In other 

words, the more drug being released within cells, the greater the therapeutic effects, hence a lower 

IC50. The drug release rate from NPs was not determined in this study and the cell uptake profile 
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also remains unclear. According to the IC50 results, we could assume that the cellular drug 

accumulation of free drugs is higher than that of most of the drug-loaded NPs within the same 

amount of incubation time (48 hrs). The low drug accumulation of NPs might because of the slow 

drug release rate and NP decomposition rate. 

 

A. 

 

B. 

 

Figure 3.9. A) Dose response curve of free DOX drug. IC50 is 0.85±0.23 µg/mL. B) Dose 

response curve of free DTX drug. IC50 is 0.007±0.002 µg/mL. The free drug cytotoxicity tests 

follow the same procedure as drug-loaded NP cytotoxicity tests. Data represent the mean ± SD 

(N=6). Standard deviation error bars that are smaller than the data point symbol are hidden. 

NP composition should be well-evaluated and optimized if one aims to enhance the 

therapeutic efficacy of drug-loaded NPs compared to free drugs, in terms of increasing cellular 

accumulation and controlled drug release. Release study and cellular uptake study are required 

upon demands. These were not investigated in this study but should be involved in the future. 
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3.2.2.1 DOX IC50 

A. 

 

B. 

 

C. 

 

D. 

 

Figure 3.10. Effect of LA/GA ratio on DOX IC50: A) DOX IC50 of 20kDa PLGA NP. B) DOX 

IC50 of 40kDa PLGA NP. Effect of PLGA MW on DOX IC50: C) DOX IC50 of 50:50 PLGA 

NP. D) DOX IC50 of 75:25 PLGA NP. Multiple t test was performed. *p<0.05. Data represent the 

mean ± SD (N=6). 
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A.  

 

B. 

 

C. 

 

D. 
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Figure 3.11. Effect of PLGA: drug ratio on DOX IC50: A) DOX IC50 of 50:50 20kDa PLGA NP. 

B) DOX IC50 of 50:50 40kDa PLGA NP. C) DOX IC50 of 75:25 20kDa PLGA NP. D) DOX 

IC50 of 75:25 40kDa PLGA NP. One way ANOVA test was performed. *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001. Data represent the mean ± SD (N=6). 

 

 DOX is fluorescent and can be excited at 490 nm wavelength which is the same as MTS 

cell viability assay detection wavelength110. Since cells were all washed by PBS twice in both free 

DOX and DOX NP MTS assays, it is assumed that all residual DOX should have been washed 

away. Studies were performed to investigate the interference of DOX on MTS assay readings in 

the presence or absence of cells at A490 (Appendix B Figure B2 and B3). Results show there were 

no significant differences between the negative control group and up to 5µg/mL DOX in the 

presence of cells and 0.1 µg/mL DOX in the absence of cells.  

According to results in Figure 3.10, DOX NP IC50 is generally uncorrelated to PLGA 

LA/GA ratio (Figure 3.10A and B) or PLGA MW (Figure 3.10 C and D). It is likely that the chosen 

PLGA LA/GA ratio and PLGA MW do not have significant impact on the NP cellular 

accumulation or drug release that are related to NP IC50. And, because of the high standard 

deviation in each test group in cell viability tests, many of the differences between groups are 

statically insignificant. However, we noted that 75:25 40kDa PLGA NPs with 20:1 and 50:1 PLGA: 

drug ratio have higher IC50 than 50:50 40kDa PLGA NPs. Since 75:25 PLGA is more 

hydrophobic, it is likely hydrolyzed at a slower rate during degradation. Less drug accumulates in 

cells, so, more drug is needed to inhibit 50% of cell growth in 75:25 PLGA NPs.  

On the other hand, DOX NP IC50 generally decreases as PLGA: drug ratio increases 

(Figure 3.11). Recall that the DOX NP EE% increases as PLGA: drug ratio increases (Figure 3.4). 
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EE% also determines how much drug was delivered to cells, but not necessarily 100% of the drug 

is released and accumulated in cells. Combining the results in Figure 3.11, we observed that the 

more drug was encapsulated, the lower the NP IC50. We could assume that more drug was released 

and accumulated in cells at higher EE% as PLGA: drug ratio increased. Additional drug release or 

cellular uptake studies are necessary to support the conclusion.  

 

3.2.2.2 DTX IC50 
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Figure 3.12. Effect of LA/GA ratio on DTX IC50: A) DTX IC50 of 20kDa PLGA NP. B) DTX 

IC50 of 40kDa PLGA NP. Effect of PLGA MW on DTX IC50: C) DTX IC50 of 50:50 PLGA NP. 

D) DTX IC50 of 75:25 PLGA NP. Multiple t test was performed. *p<0.05, **p<0.01, ***p<0.001. 

Data represent the mean ± SD (N=6). 
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C. 

 

D. 
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Figure 3.13. Effect of PLGA: drug ratio on DTX IC50: A) DTX IC50 of 50:50 20kDa PLGA NP. 

B) DTX IC50 of 50:50 40kDa PLGA NP. C) DTX IC50 of 75:25 20kDa PLGA NP. D) DTX IC50 

of 75:25 40kDa PLGA NP. One way ANOVA test was performed. *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001. Data represent the mean ± SD (N=6). 

 

DTX NP IC50 also does not have general association with PLGA LA/GA ratio or PLGA 

MW (Figure 3.12). In Figure 3.12A, the 75:25 20kDa PLGA NPs have higher IC50 than 50:50 

PLGA NPs, except for formulations at 30:1 PLGA: drug ratio. The higher IC50 might be due to 

slower drug release. 75:25 PLGA tends to degrade slower because of its hydrophobic nature, thus, 

results in lower drug accumulation and higher IC50. For the same reason, 75:25 40kDa PLGA NPs 

at 30:1 and 50:1 PLGA: drug ratio have higher IC50 than 50:50 40kDa PLGA NPs in Figure 3.12B 

as well. NP degradation rate is reduced as PLGA MW increases because longer polymer chain 

requires more energy to be hydrolyzed. Higher drug concentration is required to achieve the same 

cytotoxicity. This explains the higher IC50 in 50:50 40kDa PLGA NP than 20kDa PLGA NP at 

50:1 PLGA: drug ratio in Figure 3.12C. However, there is no relationship between DTX NP IC50 

and PLGA MW in 75:25 PLGA NPs in Figure 3.12D. As shown in Figure 3.13, DTX NP IC50 

generally decreases as PLGA: drug ratio increases, with high statistical significances (p<0.05), 

while a few other data have no statistical significances between each other. This is similar to what 

was observed in Figure 3.11 for DOX IC50. As higher EE% was achieved in high PLGA: drug 

ratio NP, more DTX was delivered to cells. There is higher chance that more drug was released 

and accumulated as PLGA: drug ratio increases. Since IC50 can be associated with drug 

accumulation, a higher amount of drug being delivered to cells may cause higher therapeutic effect 

that leads to a lower IC50. 
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3.3 GP model  

3.3.1 Data preprocessing and split 

As prior mean was set to 0 in GP models, all data have also been standardized to a mean 

of 0 and standard deviation of 1 to ease the computation and to accelerate the model training111. 

Considering the different mechanism of action DOX and DTX inherit, the IC50 models were built 

independently for each drug. Data were split into training and testing set at a ratio of 8:2 in each 

of the GP models, that are 25 training points and 7 testing points in EE% model, and 12 training 

points and 4 testing points in each IC50 model. Training set was used to update GP posterior 

distribution, and testing set was used to evaluate model prediction performance. 

 

3.3.2 Kernel functions 

To make sure that physicochemical properties (x variables) are computer readable data, 

PLGA: drug ratios were converted to numerical values 20, 30, 40, and 50. And LA/GA ratio were 

converted to 1 and 3. 

Kernel function in GaussianProgressRegressor class in scikit-learn structures the true 

function by specifying the covariance between two input data. The hyperparameters length scale 

and nu that control the kernel function smoothness were optimized to better fit given training data. 

Upon data training, the posterior kernel estimates the prediction uncertainty (indicated by 

confidence interval) of the output values112. The uncertainty in the region that contains more 

observed data is likely to be lower than that in the region with less observed data. 

Compared to non-stationary kernel, stationary kernel simply finds the similarities between 

two data points from their distances rather than their values or the exact locations in input space91,92. 
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We tested both Matérn kernel and RBF kernel, where RBF is a special case of Matérn when the 

hyperparameter 𝜐 approaches infinity. The stationary Matérn kernel outcompeted RBF kernel with 

higher prediction accuracy with respect to higher R2 in predicted-y versus observed y linear 

regression plot in each GP model. The hyperparameters ‘length_scale’, ‘length_scale_bounds’, 

and ‘nu’ are listed in Table 2.1 in Section 2.7. The length scale controls the smoothness of the 

kernel function. A smaller length scale provides a function that loses the correlations between y 

values at a shorter distance between two x values. ‘nu’ controls the function differentiability that 

also accounts for function smoothness and its ability of taking derivatives at a point. ‘nu’ was set 

to 0.5 for all models, with a kernel of absolute exponential function. The initial length scale was 

set as 1 in each model. With the goal of maximizing the log-marginal likelihood function (or 

minimizing negative log-marginal likelihood function), the hyperparameter optimization restarted 

20 times following the setup of ‘n_restarts_optimizer’ within the ‘length_scale_bounds’.  

 For better estimation of the true function, the addition of data noise enables more accurate 

modeling. A White Kernel function of y variable noise 𝜀 can be added to the kernel matrix diagonal. 

The noise should be calculated as the average variance of the output values. It can be the 

measurement noises or the noises between repeated experiments. This method is worth trying in 

the future to obtain a better understanding of the data. 
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3.3.3 EE% prediction 

3.3.3.1 Predicted EE% in testing set 

 

Figure 3.14. Regression curve of predicted EE% versus observed EE% in testing set. Regression 

line function: y = 0.63x+11.68 (R2= 0.65). 

 

Table 3.2. Observed and predicted EE% in testing set. Bias is calculated as the absolute value of 

100%*(Predicted EE% – Observed EE%)/Observed EE%. 

 
Observed EE% Predicted EE% Bias% 

DOX 20_75_20k 30.58 25.63 16.19 

DOX 30_75_20k 35.53 30.52 14.10 

DOX 40_75_40k 21.73 25.42 16.98 
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DTX 20_75_20k 31.49 32.68 3.78 

DTX 20_75_40k 24.96 32.13 28.73 

DTX 30_50_20k 38.10 33.97 10.84 

DTX 50_50_40k 45.32 43.79 3.38 

 

Table 3.3. RMSE value for both training and testing models in EE% prediction. 

Model RMSE Normalized RMSE 

Training 1.49*10-9 4.68*10-11 

Testing 4.40 0.187 

 

Table 3.4. n_restarts_optimizer value and optimized hyperparameters in EE% model. 

n_restarts_optimizer length_scale nu 

20 4.02 0.5 

 

The R2 coefficient of determination in Figure 3.14 measures how much of the variance in 

predicted y can be explained by the observed y. R2 = 0.65 indicates a relatively good linear 

regression model explanation for predicted and observed EE%. However, R2 is not a convincing 

metric to evaluate model prediction accuracy. The ideal linear regression line that indicates high 

prediction accuracy should have a slope of 1 and y-intercept close to 0. However, a high R2 does 

not refer to high prediction accuracy. The biases calculated in Table 3.2 elaborates the percentage 

of predicted EE% that deviates from observed EE%. Among all test data, DTX 20_75_40k NP has 
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the largest bias at 28.73% between its observed and predicted EE%. Additionally, we should be 

focusing more on the root mean square error (RMSE) to explain model performance (Equation 10). 

It calculates the standard deviation of the prediction error between predicted and observed y values. 

𝑦C is the observed y value, 𝑦RK  is the predicted y value, and N is the number of data points. The 

lower RMSE, the higher prediction accuracy of the model. To compare RMSE between models, it 

is normalized to the range of observed y values in each model. Normalized-RMSE less than 1 is 

acceptable, meaning the prediction error is smaller than the observed output range. However 

normalized-RMSE larger than 1 indicates poor prediction. Training set normalized-RMSE is much 

lower than that in testing set due to the high flexibility of GP in learning data. The normalized-

RMSE of EE% testing model is 0.187 (Table 3.3). Liemohn et al. stated that the model prediction 

accuracy is good when RMSE is lower than the standard deviations of observed values and the 

predicted values113. However, they did not specify a value or relative percentage to evaluate the 

acceptability of normalized RMSE. The final hyperparameter length scale for kernel is 4.02 in EE% 

model (Table 3.4). 

RMSE = L∑ (TO.TPU ).Q
OR0

V
                                                          (10) 

 

 

3.3.3.2 EE% 3D surface response curve 

A. B. 
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Figure 3.15. 3D surface response curve for NP EE% at two fixed levels of drug hydrophobicity 

(logP), LA/GA ratio, polymer: drug ratio, and polymer MW. The fixed levels are the lower and 

upper limit for each input variable. 

3D surface response curves visualize the moving trend of responses under different 

predictor variables. Due to limited training data, all data were used for generating the curve in 

Figure 3.15 to better observed the trends between predictor and response variables (orange dots 

represent the data). Blue color in the gradient bar represents lower EE%, and red color represents 
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higher EE%. The surfaces in Figure 3.15 represent the predictions of EE% when two of the input 

variables are fixed at a lower and upper level of the domains at a time, while the other two variables 

lie on the x1 and x2 axes. The fixed levels are 0.36 and 2.74 for drug logP, 20000 and 40000 for 

PLGA MW, 20 and 50 for PLGA: drug ratio, and 1 and 3 for LA/GA ratio. The surfaces show the 

changes of EE% upon altering two of the x variables. We found that in Figure 3.15E-H, M-P, and 

U-X, when PLGA: drug ratio serves as one of the x axes, EE% of both drugs mostly change in 

higher range with PLGA: drug ratio compared to the change with the other two variables (e.g., 

PLGA MW or LA/GA) on the other x axis. This aligns with results in Figure 3.4 and 3.6. Other 

obvious trends include: in Figure 3.15D, EE% of 75:25 NP at 50:1 PLGA: drug ratio decreases 

greatly by over 15% towards the lowest drug logP and the highest PLGA MW. In Figure 3.15K, 

EE% of 40kDa PLGA NP at 20:1 PLGA: drug ratio increases by over 15% towards higher drug 

logP and lower LA/GA ratio. In Figure 3.15L, EE% of 40kDa NP at 50:1 PLGA: drug ratio 

decreases roughly by 15% towards the lowest drug logP and the highest LA/GA ratio. And in 

Figure 3.15R, when PLGA: drug ratio was fixed at 50:1, DOX EE% increases by around 10% as 

PLGA MW decreases from 40kDa to 20kDa, but varies only slightly with LA/GA ratio. 
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3.3.4 IC50 prediction 

3.3.4.1 Predicted IC50 in testing set 

 

Figure 3.16. Regression curve of predicted DOX NP IC50 versus observed DOX NP IC50 in 

testing set. Regression line function: y = 0.557x+2.512 (R2 = 0.40). 

 

Table 3.5. Observed and predicted DOX NP IC50 in testing set. Bias is calculated as the absolute 

value of 100%*(Predicted IC50 – Observed IC50)/Observed IC50. 

 
Observed IC50 

(µg/mL) 

Predicted IC50 

(µg/mL) 

Bias% 

DOX 20_75_20k 8.70 7.07 18.74 

DOX 30_50_20k 3.78 3.66 3.17 
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DOX 30_75_40k 3.67 7.01 91 

DOX 50_75_20k 2.38 2.62 10.08 

 

Table 3.6. RMSE value for both training and testing models in DOX NP IC50 prediction. 

Model RMSE Normalized RMSE 

Training 3.57*10-10 3.33*10-11 

Testing 1.87 0.296 

  

Table 3.7. n_restarts_optimizer value and optimized hyperparameters in DOX NP IC50 model. 

n_restarts_optimizer length_scale nu 

20 1.54 0.5 

 

The R2 of 0.40 in DOX NP IC50 predicted vs. observed output plot (Figure 3.16) is less 

than 0.5, indicating a weak relationship between predicted IC50 and observed IC50. The bias 

between predicted and observed IC50 of DOX 30_75_40k NP is the highest among all other test 

data, at 91% (Table 3.5), where the predicted IC50 is almost twice of the observed IC50. This large 

bias might be due to the very limited knowledge of function in that region of true function. This 

large deviation led to the low R2 in Figure 3.16. The normalized RMSE for DOX NP IC50 testing 

set in Table 3.6 is 0.296, which is higher than that of 0.187 in the EE% model. The lower 

normalized RMSE in EE% model could be due to the larger training set compared to the other two 

models, so that it generalizes testing data better. The final kernel length scale is 1.54 in this model 

(Table 3.7) to fit the training data. 
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Figure 3.17. Regression curve of predicted DTX NP IC50 versus observed DTX NP IC50 in 

testing set. Regression line function: y = 0.798x+0.00085 (R2 = 0.66). 

 

Table 3.8. Observed and predicted DTX NP IC50 in testing set. Bias is calculated as the absolute 

value of 100%*(Predicted IC50 – Observed IC50)/Observed IC50. 

 
Observed IC50 (µg/mL) Predicted IC50 (µg/mL) Bias% 

DTX 20_75_40k 0.0205 0.0181 11.71 

DTX 40_75_20k 0.0123 0.0073 40.65 

DTX 40_75_40k 0.0129 0.0121 6.20 

DTX 50_75_20k 0.0068 0.0078 14.71 
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Table 3.9. RMSE value for both training and testing models in DTX NP IC50 prediction. 

Model RMSE Normalized RMSE 

Training 1.74*10-12 5.08*10-11 

Testing 0.0028 0.206 

 

Table 3.10. n_restarts_optimizer value and optimized hyperparameters in DTX NP IC50 model. 

n_restarts_optimizer length_scale nu 

20 2 0.5 

 

 In DTX NP IC50 model, the R2 is 0.66 (Figure 3.17) which is greater than that of EE% 

model and DOX NP IC50 model, showing better goodness-of-fit of the linear regression model. 

In Table 3.8, the highest bias between predicted and observed IC50 is 40.65% at testing point DTX 

40_75_20k NP. The discrepancy is almost half of the observed IC50. The normalized-RMSE of 

0.296 (Table 3.6) in the DOX NP IC50 testing set is higher than that of 0.206 (Table 3.9) in DTX 

NP IC50 model, and is the highest among all three models. Therefore, DOX NP IC50 model has 

the lowest prediction accuracy. The length scale of 2 in DTX NP IC50 model (Table 3.10) is higher 

than that of 1.54 in DOX NP IC50 model (Table 3.7), indicating that the kernel smoothness in 

DTX NP IC50 model is higher. Specifically, larger length scale means that the correlation between 

two IC50 values decreases at a greater distance between input data. It is worth mentioning that the 

length scales between EE% model and IC50 models are not comparable due to the different input 

space dimensionalities, where EE% model has 4 input variables and IC50 models have 3 input 

variables. 
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3.3.4.2 IC50 3D surface response curve 

A.  

 

B. 

 

C. 

 

D. 

 

E. F. 



   65 

  

Figure 3.18. 3D surface response curve for DOX NP IC50 at two fixed levels of LA/GA ratio (1, 

3), polymer: drug ratio (20, 50), and polymer MW (20000, 40000).  

 

 DOX NP IC50 curves were created at a fixed drug logP of 0.36. DOX NP IC50 barely 

varied with PLGA MW and LA/GA ratio when PLGA: drug ratio is at the upper level 50:1 in 

Figure 3.18D. However, at 20:1 PLGA: drug ratio, DOX NP IC50 increases by approximately 

6µg/mL as LA/GA ratio increases in Figure 3.18C. More importantly, DOX NP IC50 follows an 

obvious increasing trend as PLGA: drug ratio decreases in Figure 3.18A, B, E, and F, opposite 

from DOX EE% variations in Figure 3.15M, N, U, and V. The reasons were explained in Section 

3.2.1.1 and 3.2.2.1 regarding drug EE%, release, and accumulation in cells. 

 

A.  B. 
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C. 

 

D. 

 

E. F. 
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Figure 3.19. 3D surface response curve for DTX NP IC50 at two fixed levels of LA/GA ratio (1, 

3), polymer: drug ratio (20, 50), and polymer MW (20000, 40000).  

 

 DTX NP IC50 curves were created at a fixed drug logP of 2.74. Similar to the surface 

trends of DOX NP IC50 in Figure 3.18, DTX IC50 also has a generally negative relationship with 

PLGA: drug ratio in Figure 3.19A, B, E, and F, except for a concave surface shape when PLGA: 

drug ratio is at the midpoint. Similar to DOX NPs, DTX NP IC50 does not change much with 

PLGA MW and PLGA LA/GA ratio when PLGA: drug ratio is at 50:1 (Figure 3.19D). Different 

from DOX NP IC50 which is higher at higher PLGA MW and LA/GA ratio in Figure 3.18C, DTX 

NP IC50 in Figure 3.19C is higher at lower PLGA MW as LA/GA ratio increases, when PLGA: 

drug ratio is fixed at 20:1. The difference might be due to the different drug logP that led to 

different drug-polymer interaction, resulting in different drug release profile and cellular 

accumulation. 
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3.4 BO model 

The package ‘bayes_opt’ from Fernando N. was used to create BO model114. The objective 

function was set to ‘none’ as we are using the surrogate GP model to estimate it. Since no GP 

updates will be done in this project, BO model only serves as a non-iterated model to suggest x 

variable combination that maximizes the function value in EE% GP model and minimize that in 

DOX and DTX NP IC50 GP model. All data (both training and testing data) were used in the 

surrogate GP model in BO to make the best use of all available information of the objective 

function. The search space in each model was set between the lower and upper values for each x 

variable, that are 0.36 and 2.74 for drug logP, 20000 and 40000 for PLGA MW, 20 and 50 for 

PLGA: drug ratio, and 1 and 3 for LA/GA ratio. The ‘UtilityFunction’ serves as the acquisition 

function to recommend suggested x variable values on its local maxima with a hyperparameter 

‘kappa’ that adjusts the trade-off between exploitation and exploration. In cases that updating GP 

model is required, ‘kappa’ can be set either high to explore areas where contain high uncertainty, 

or low to exploit known areas with less uncertainty but might also results in lower rewards. In 

exploration, the unexplored region is estimated and the corresponding uncertainty gets reduced. In 

exploitation, regions with higher reward (maximize/minimize objective function) will be exploited 

more. The suggested four physicochemical property values should be tested through in-vitro 

experiments for further GP model update and the next iteration in BO. Yet, due to time limitation, 

additional experiments have not been conducted. 

In this study, ‘kappa’ was set to 0 (i.e., exploitation only) for the reason that GP model will 

not be updated with new data. The BO output values of x variables are summarized in Table 3.11. 

These formulations give the maximum drug EE% or minimum drug IC50 according to the known 

knowledge of GP-estimated true functions. In market, there are existing PLGA polymers at 55:45, 
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60:40, and 65:35 LA/GA ratio that are approximately the same as the recommended PLGA LA/GA 

ratios.  

 

Table 3.11. Summary of BO-suggested x variable values to potentially optimize EE% and IC50. 

Models PLGA MW PLGA LA/GA 

ratio 

PLGA: drug 

ratio 

Drug logP 

EE% 20001.45 1.17 (55:45) 47.08 2.12 

DOX NP IC50 39997.25 1.53 (60:40) 34.05 N/A 

DTX NP IC50 20007.87 1.70 (65:35) 45.19 N/A 
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Chapter 4. Conclusions and future directions 

4.1 Conclusions 

The effects of NP compositions on NP biological behaviors are considerably important, as 

they are associated with drug-NP composition interactions, cell entry, cellular uptake, and drug 

release. The effort of selecting the correct material properties and conducting in-vitro response 

experiments can be huge. With the aim of efficiently optimizing NP materials in achieving higher 

drug loading and therapeutic effects, we utilized ML-based prediction models to map the function 

of inputs (NP material physicochemical properties) and outputs (EE% and IC50). ML techniques 

have successfully accelerated drug design process, reported by many papers in the past decade.  

As a proof-of-concept, we formulated 32 drug-loaded NPs and used GP and BO models to 

predict and optimize the NP EE% and IC50 under different PLGA MW, PLGA LA/GA ratio, 

PLGA: drug ratio, and drug logP in OVCAR3 treatment. We analyzed the possible relationships 

between the four NP physicochemical properties and EE% or IC50, respectively, via statistical 

analysis. Analysis was done separately for each drug, considering their different logP. Thereinto, 

DOX EE% generally increases as LA/GA ratio increases when PLGA MW is at 20kDa, except for 

formulations that are at the highest PLGA: drug ratio. However, the trend reverses when PLGA 

MW is at 40kDa. DTX EE% mostly increases as LA/GA ratio increases when PLGA MW is at 

20kDa, except for NPs with 30:1 PLGA: drug ratio. But no relationship was found when PLGA 

MW is at 40kDa. In both 50:50 and 75:25 PLGA NPs, DOX EE% is inversely proportional to 

PLGA MW. No relationship was observed for DTX EE%. For both drugs, their EE% increase with 

PLGA: drug ratio, except for DTX NPs with 50:50 and 75:25 20kDa PLGA at 50:1 PLGA: drug 

ratio that might have experienced PLGA saturation. Other than DTX NP with 50:50 20kDa PLGA 

at 50:1 PLGA: drug ratio, the rest all have higher EE% than DOX NPs. No obvious trend can be 
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concluded between DOX NP IC50 and LA/GA ratio or PLGA MW. However, 75:25 40kDa PLGA 

NPs at 20:1 and 50:1 PLGA: drug ratio have higher IC50 than 50:50 40kDa PLGA NPs. DTX NP 

IC50 increases with LA/GA ratio in 20kDa PLGA NPs, except for NPs at 30:1 PLGA: drug ratio. 

The same trend was observed in 40kDa PLGA NPs that are at 30:1 and 50:1 PLGA: drug ratio. In 

DTX-loaded 50:50 PLGA NPs, only 40kDa PLGA NP at 50:1 PLGA: drug ratio has higher IC50 

than 20kDa PLGA NP. No clear relationship between IC50 and PLGA MW was found in DTX-

loaded 75:25 PLGA NPs. Both DOX and DTX-loaded NPs have a decreasing IC50 as PLGA: drug 

ratio increases. In summary, it is difficult to conclude uniform relationships between material 

properties and responses, other than the positive relationship between NP EE% and PLGA: drug 

ratio, and negative relationship between NP IC50 and PLGA: drug ratio for both drugs. 

We have also successfully established one EE% and two IC50 GP models upon data 

training and testing, with normalized-RMSE (testing set) of 0.187 in EE% model, 0.296 in DOX 

IC50 model, and 0.206 in DTX IC50 model. 3D surface response curves were generated to 

visualize the model prediction, with two x variables on the horizontal plane and EE% or IC50 on 

the vertical plane. However, due to insufficient data, the prediction surfaces show limited 

information. More data is necessary to display more informatic and accurate prediction surface 

response curves. Due to time limitation, additional experiments were not performed to update the 

GP surrogate model and fully BO was not fully utilized in balancing exploration/exploitation to 

suggest the next valuable formulation for evaluation. A simplified BO model was built to output 

the suggested predictor variable values that gives the maximum EE% or minimum IC50 in the 

current GP-estimated model, considering exploitation only. Under such circumstance, the output 

formulation can be considered as the current recommended formulation as well as the next valuable 

formulation that needs to be tested on since areas with uncertainty is not explored. In other words, 
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these formulations are the optimal choices, given the current training data and true function 

information we have, but are not necessarily the best formulations when true function is explored 

more and more in the future. The recommended NP formulation that can achieve the highest EE% 

is loaded with drug with logP of 2.12 and 47_55_20001 PLGA. DOX NP with 34_60_39997 

PLGA and DTX NP with 45_65_20008 PLGA were recommended to achieve the lowest IC50 in 

each of the model. If we considered both exploration and exploitation in the BO model, the BO-

suggested formulation might not result in the highest or lowest function value but would be the 

next one that is worth testing to potentially help to find the ultimate optimal formulation until BO 

iteration stops at certain stopping criteria. 

To improve the model prediction accuracy, many approaches can be considered. That 

includes increasing training data set with larger diversity, choosing a more appropriate kernel 

function, and tuning the hyperparameters in the kernel function. The choice of kernel depends on 

the behaviors and structures of the dataset itself, therefore, different datasets need different kernels 

for better fitting. 

This project can be extended to other applications differently as a template. If one is also 

interested in OVCAR3 cells and input and output variables that were specifically used in this 

project, this GP model platform could predict the corresponding NP EE% and IC50 of the new 

input data. Restricted by the definition of GP where prediction relies on the similarities between 

data points, failure of generalization may occur if the new data domain is far from the training data 

domain a lot. The solution to this could be expanding the training data domain by introducing a 

variety of data in. If the cell line, input variable features, output variable features, or all are changed, 

the GP model structure still applies but the kernel and its hyperparameter shall be updated to be 
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suitable for specific tasks. Also, the variable features of the testing data should be the same as that 

of training data to ensure a successful model training and application.  

 In conclusion, we proved the hypothesis that the GP model can make relatively accurate 

predictions, but we failed to prove the hypothesis that BO optimizes formulations due to limited 

time of performing additional experiments. GP has shown its potential in accelerating NP 

formulation development by making predictions on response variables without conducting wet-

lab experiments. This ML technique has shown its power in making rapid predictions in order to 

reduce costs and time. Further improvements and implementations are worth to be done to fully 

leverage ML in boosting general NP formulation development. 

 

4.2 Limitations 

Due to time limitations, each experiment was only repeated once with at least triplicate 

measurements. In preliminary experiments, two NPs were made for 3 different times with triplicate 

measurements in characterization and EE% testing, shown in Appendix A Table A2 to demonstrate 

that NPs were reproducible. Furthermore, the uncertainty of response predictions was not included 

due to time limitation. Uncertainty estimation as GP’s nature may provide more interpretation on 

model predictability and more accurate relationships between predicted and observed responses in 

linear regression graphs. Additionally, measurement uncertainty has not been included in data 

training. There is necessity to add this data noise to generate more comprehensive prediction. 

Due to the limited number of data, the 3D prediction surface response curves lack details 

in between the lower and upper levels of each x variable. Specifically, since PLGA MW, PLGA 

LA/GA ratio, and logP variables only have two input values in each, and PLGA: drug ratio only 

has four input values, it is challenging to observe any other trends of EE% or IC50 at other points 
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within these domains. The biases between predicted y and observed y are relatively high in IC50 

models, with one of the DOX IC50 bias reached 91% and one of the DTX IC50 bias at 40.65%. 

In contrast, the highest bias in EE% model is only 28.73% which is much lower. This is due to the 

limited number of data in each IC50 training set that is only half of the size of EE% training set. 

 

4.3 Future directions 

NP drug release and cellular uptake studies can provide comprehensive examination on 

how the NP components play roles in effecting NP EE% and IC50. Therefore, it would be helpful 

to include these studies for us to explicitly explain the NP behavior. 

In the current model, only four predictors were analyzed for drug EE% and three were 

analyzed for drug IC50. However, there are many other predictors that could potentially influence 

the two responses, such as NP size and zeta potential. In future work, with the addition of more 

predictors, the model estimation and responses prediction might be improved with richer 

information from different aspects. 

To enhance the model prediction accuracy, more data should be generated and possibly 

include more predictor variables for deeper evaluation on the NP compositions. Another method 

to improve model prediction accuracy is leave-one-out cross validation (LOO CV). N-1 data points 

should be used to train the model, leaving one data to test the model performance. This process 

iterates N times (number of data) until each of the data has been ran as test set. This allows a more 

comprehensive data training, making the most use of the limited data. With increased number of 

training data in comparison to conventional training/testing data split method, the model prediction 

accuracy can be improved markedly. 
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In the case of a lack of data, a statistical strategy of bootstrapping could be used to simulate 

data from the present small dataset115. This resampling process allows estimation of the sampling 

distribution. Each time, n samples are randomly resampled from the original dataset (n samples), 

and form a bootstrap dataset. Data can be resampled multiple times. Bootstrap can provide various 

statistics and metrics of the estimates of quantity of interest115. This method enables better 

understanding of the data behavior and distribution in population. 
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Appendices 

Appendix A 

 

Table A1. Size and zeta potential of each NP formulation. Data represent mean ± SD (N=3). 

NP Size (nm) Zeta potential (mV) 

Blank 20_50_20k 220.4±1.6 -26.2±0.8 

Blank 50_50_20k 236.1±2.9 -22.6±0.3 

Blank 20_50_40k 235.6±4.1 -27.5±0.8 

Blank 50_50_40k 249.4±2.8 -22.0±0.3 

Blank 20_75_20k 225.0±4.4 -29.2±0.6 

Blank 30_75_20k 244.8±3.7 -26.0±0.7 

Blank 50_75_20k 256.8±2.1 -20.3±0.9 

Blank 20_75_40k 228.4±5.5 -27.1±0.4 

Blank 30_75_40k 252.0±5.4 -28.8±0.3 

Blank 40_75_40k 259.5±4.3 -21.7±1.2 

Blank 50_75_40k 263.5±1.6 -23.4±1.1 

DOX 20_50_20k 214.4±3.8 -28.7±0.7 

DOX 30_50_20k 230.9±1.7 -25.7±0.2 

DOX 40_50_20k 235.3±3.6 -25.2±0.3 

DOX 50_50_20k 249.0±2.5 -20.1±0.5 

DOX 20_50_40k 221.8±1.4 -25.0±0.5 

DOX 30_50_40k 241.3±2.3 -25.7±0.8 
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DOX 40_50_40k 247.5±2.9 -24.4±0.5 

DOX 50_50_40k 239.6±3.1 -15.5±0.3 

DOX 20_75_20k 223.1±2.5 -25.0±0.4 

DOX 30_75_20k 227.5±5.2 -20.9±0.4 

DOX 40_75_20k 249.0±3.9 -23.4±0.3 

DOX 50_75_20k 261.7±5.1 -23.8±0.4 

DOX 20_75_40k 232.7±2.7 -22.5±0.2 

DOX 30_75_40k 234.9±1.1 -25.1±0.1 

DOX 40_75_40k 258.8±2.0 -26.0±0.9 

DOX 50_75_40k 255.4±3.5 -24.9±0.4 

DTX 20_50_20k 208.9±3.4 -29.4±0.8 

DTX 30_50_20k 235.5±2.2 -30.8±0.8 

DTX 40_50_20k 244.8±5.0 -17.4±0.6 

DTX 50_50_20k 242.1±4.4 -22.0±0.3 

DTX 20_50_40k 233.6±3.8 -23.2±0.9 

DTX 30_50_40k 244.3±5.2 -25.3±0.7 

DTX 40_50_40k 257.8±6.0 -22.3±2.1 

DTX 50_50_40k 257.9±6.7 -15.4±1.0 

DTX 20_75_20k 235.9±4.8 -24.8±0.4 

DTX 30_75_20k 250.6±2.1 -20.4±1.8 

DTX 40_75_20k 255.4±0.8 -36.2±0.3 

DTX 50_75_20k 264.6±4.7 -16.5±0.5 
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DTX 20_75_40k 230.1±4.9 -26.8±1.0 

DTX 30_75_40k 243.6±1.1 -25.2±0.7 

DTX 40_75_40k 251.4±3.5 -23.6±2.4 

DTX 50_75_40k 267.7±1.5 -15.0±0.7 

 

Table A2. Size, zeta potential, and drug EE% for DOX 20_75_40k and DTX 20_50_20k. DOX 

20_75_40k was collected at 10,000 ´g. Each formulation was performed 3 different times with 

triplicate measurements. Data represent the mean ± SD (N=3). 

 Size (nm) PDI Zeta potential 

(mV) 

EE% 

DOX 20_75_40k 243.77±3.07 0.023±0.015 -22.32±10.06 12.44±2.07 

DTX 20_50_20k 215.93±2.45 0.023±0.002 -28.01±1.51 29.15±3.45 
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Appendix B 
 

 

Figure B1. Absorbance versus cell density curve at wavelength 490 nm. Cells at different densities 

were seeded and equilibrated for 1.5 hrs before readings were taken. Data represent the mean ± 

SD (N=6). The result shows that the absorbance is positively proportional to the cell number with 

a high linear regression R2 of 0.971. 
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Figure B2. DOX interference with MTS assay in the presence of cells. 5000 cells were seeded 

into each well and incubated for 24 hrs prior to addition of 100 µL fresh medium. A final 

concentration of 5% DMSO solution was added to positive control instead. After another 48 hrs 

incubation, all medium were discarded and cells were washed with PBS twice. 100 µL medium 

containing different DOX concentrations were added to treatment groups, respectively, as well as 

20 µL MTS reagent. Scan was taken at 490 nm after 2 hrs incubation in CO2 incubator. This study 

confirms that there are no significant differences in readings between negative control and groups 

containing different DOX concentration up to 5 µg/mL. 
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Figure B3. DOX interference with MTS assay in the absence of cells. This validation assay is 

done in a cell-free condition. 100 µL medium containing different DOX concentrations were added 

to treatment groups, respectively, as well as 20 µL MTS reagent. Scan was taken at 490 nm after 

2 hrs incubation in CO2 incubator. This study confirms that there’s no significant difference in 

readings between negative control group (0 µg/mL DOX) and treatment groups containing 

different DOX concentration up to 0.1 µg/mL. 
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Appendix C 
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Figure C1. Comparison between free DOX IC50 and A) DOX-loaded 50:50 20kDa PLGA NP 

IC50, B) DOX-loaded 50:50 40kDa PLGA NP IC50, C) DOX-loaded 75:25 20kDa PLGA NP 
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IC50, D) DOX-loaded 75:25 40kDa PLGA NP IC50. One way ANOVA test was performed. 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Data represent the mean ± SD (N=6). 
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Figure C2. Comparison between free DTX IC50 and A) DTX-loaded 50:50 20kDa PLGA NP 

IC50, B) DTX-loaded 50:50 40kDa PLGA NP IC50, C) DTX-loaded 75:25 20kDa PLGA NP 

IC50, D) DTX-loaded 75:25 40kDa PLGA NP IC50. One way ANOVA test was performed. 

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. Data represent the mean ± SD (N=6). 
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P. 

  

Figure D1. Blank NP and DOX NP cytotoxicity are compared to the negative control group which 

was not treated with any NP. Excess amount of blank NP was made to confirm that there was no 

cytotoxicity. One way ANOVA test was performed. Data represent the mean ± SD (N=6). 
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Figure D2. Blank NP and DTX NP cytotoxicity are compared to the negative control group which 

was not treated with any NP. Excess amount of blank NP was made to confirm that there was no 

cytotoxicity. One way ANOVA test was performed. Data represent the mean ± SD (N=6). 


