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Abstract

This work focuses on Parkinson’s disease (PD), a neurodegenerative disease characterized

by the production of Lewy bodies in the brain, resulting in the degeneration of dopaminer-

gic nigrostriatal neurons. A common and debilitating symptom of PD is Freezing of Gait

(FoG), which is described as a sudden, episodic inability to make forward progress while

walking despite the intention to do so. FoG can lead to falls and difficulties in everyday

tasks, especially mobility. Conventional PD treatments have a variable impact on miti-

gating FoG due to large heterogeneity within the freezing population, necessitating active

monitoring of an individual’s FoG severity. This study aims to aid the development of ac-

tive FoG severity monitoring using wearable sensors and machine learning. Specifically, it

explores the ternary (3-class) domain of FOG classification (akinetic, kinetic, and no FoG),

which has not been extensively studied before. Specific objectives of this thesis comprises

of: identifying suitable datasets, selecting and optimizing machine learning models, evalu-

ating model performance on participants, and identifying potential applications based on

observed results.

Two datasets were considered for this study, including the Sydney dataset collected by Goh

et al. at the University of Sydney in Australia, and the publicly-available MJFF dataset

comprising multiple collections of data from various groups. The Sydney dataset consists

of 10 participants completing the Ziegler protocol in their “ON” and “OFF” medication

states while equipped with a tri-axial inertial measurement unit (IMU) on their sternum,

lumbar, and bilateral feet. Throughout this dataset, there was a total of 24.9% of the time

spent in an akinetic freeze and 8.87% of the time spent in a kinetic freeze. As for the

MJFF dataset, it was comprised of 100 participants completing a similar Ziegler protocol

and an alternative DeFOG protocol in the two medication states with a lumbar tri-axial

accelerometer. In total, there were 833 trials for the Zeigler protocol in this dataset, and

91 trials for the DeFOG protocol, combining to produce a total of 1.47% of the time spent

in an akinetic freeze and 12.39% of the time spent in a kinetic freeze states.

For classification models, a total of seven architectures were considered, including six clas-
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sical models and one deep network model. The classical models received input in the form

of feature vectors, whereas the deep model utilized frequency domain signals along with

a convolutional network backbone to extract information. The features included in this

study were selected from establishing an initial pool, then trimming the included features

down using common feature engineering techniques such as Kendalls correlation, and Min-

imum Redundancy - Maximum Relevance (mRMR). Additionally, all models went through

a randomized grid search for the optimal hyperparameters and architecture parameters to

optimize performance on the utilized datasets.

Testing the models with the participant data in the Sydney dataset revealed that all

classical models and the deep network model encountered challenges in ternary FoG clas-

sification compared to results in the current literature. While some models performed

well for a subset of participants, mainly severe freezers, the majority of the classifiers

struggled to accurately label ternary FoG bouts with many F1-scores falling below 40%.

The top-performing classical model, logistic regression (LR), faced difficulties in classify-

ing kinetic freezing and temporal accuracy. It was theorized these difficulties arose due to

limited frequency domain features in the final feature set, and limited information about

neighbouring windows when making inferences. While the deep model also struggled with

correctly classifying the timing of the bout, to a larger extent, it had trouble differentiating

between akinetic and kinetic freezing. This drop in performance is likely attributable to

freeze states not achieving steady state, and/or the large heterogeneity within the popu-

lation producing in manifesting akinetic and kinetic freezing (e.g., some akinetic freezes

might have movement, while others are purely akinetic with no movement at all).

When FoG onsets and offsets were not considered, both models demonstrated better per-

formance in classifying severity, with the LR model predicting correct severity for seven

out of ten individuals and achieving an F1-score of 76% in akinetic freezing and correctly

predicting six out of ten individuals and achieving an F1-score of 60% in kinetic freez-

ing. The deep model correctly classified the combined total severity (akinetic and kinetic

percentages combined) for seven out of ten individuals and achieved an F1-score of 58%.
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The findings of this thesis indicate that existing models face challenges in automatically

detecting ternary FoG labels. Further exploration of feature pools and architectures is

warranted to enhance performance in free-living applications. Post-calibration techniques

on model outputs or combining models in a majority voting system are recommended.

Ultimately, this study suggests that the current use of ternary FoG classification may be

better suited for severity estimates or as an annotation tool for clinicians, rather than a

gold standard for free-living labels. More specifically, the models could be used to provide

severity estimates in free-living conditions. These estimates could be later combined with

in-clinic visits to gain a deeper understanding of an individual’s disease progression. Al-

ternatively, actual FoG bout classification can serve as a tool to expedite annotators by

flagging areas of interest prior to a manual confirmation process.
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Chapter 1

Introduction

1.1 Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative disease that can be characterized by the

production of Lewy bodies in the brain that cause degeneration of dopaminergic nigros-

triatal neurons [11]. Considering PD mainly affects older adults and is the second most

common neurodegenerative disease worldwide, PD will inevitably become more prevalent

as current larger generations grow older [12].

1.1.1 Freezing of Gait

One of the common and debilitating symptoms of PD is freezing of gait (FoG), defined as a

“brief, episodic absence or marked reduction of forward progression of the feet despite the

intention to walk” [13, 14]. Often people with FoG describe it as the feeling of your feet

being glued to the floor despite the intention to make your next step. This makes FoG a

concerning symptom for the PD population since this lack of forward progression (despite

intention) can lead to falls and be debilitating to everyday mobility tasks [15]. In recent

studies, FoG events have been viewed to belong to two main subtypes: 1) akinetic, where
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the individual exhibits a complete lack of movement during the freeze; 2) kinetic, where

the individual exhibits tremor in the lower limbs or very short shuffling steps during the

freeze [13].

At the time of writing, the severity of FoG is measured in-clinic dominantly by gait analysis

and/or questionnaires [16, 10, 17, 18, 19, 20]. Gait analysis can be completed in real-time,

or with the assistance of video annotations. Video annotations provide the benefit of a

closer look at an individual’s gait patterns, but are often time-consuming for experts and

can introduce inter-rater reliability challenges. Regardless of the method for analysis, the

gait features are often used in a rating system such as the Ziegler severity score that helps

to fit a certain trial onto an established scale [16, 10]. A large proportion of these rating

systems utilize the subtype of freeze as a dominating metric (e.g., kinetic, or akinetic) when

binning the severity [17, 18].

As for questionnaires, this form of assessment can help reduce the time commitment but

is vulnerable to subjectivity among individuals. The primary outcome of questionnaires

can also vary heavily, with some such as the NFOG primarily focused on the onset of FoG

which in turn struggles with severity [21]. While other questionnaires, such as the C-FOG,

aim to highlight the heterogeneity of FoG triggers within the target population [22].

1.2 Motivation

Individuals that experience FoG can seek aid through conventional PD treatments includ-

ing deep brain stimulation (DBS), medication (e.g., Levodopa), or gait therapy [23, 24].

However, due to the large amount of heterogeneity within the FoG population, understand-

ing the benefits of specific treatment plans throughout an individual’s disease progression

requires active monitoring of their symptom severity. Monitoring of an individual’s FoG

severity will help characterize the response to specific treatments and will aid in making

adjustments to improve quality of life [23, 24, 25].

A crucial step to enable active monitoring is the development of automation tools that can
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streamline the current assessment techniques that are done manually. This development

aims to include both in-clinic and remote FoG assessments. Automatic modelling, with

current machine learning classification and wearable sensor technologies, can be utilized

for feats such as FoG classification. In current literature, this topic has been explored

extensively in the binary domain, investigating no FoG vs FoG labels only [26]. At the

time of writing, little to no work has been published extrapolating this solution space to

the ternary domain to break FoG labels into separate akinetic and kinetic freezing types,

along with no FoG.

As mentioned, manifestation of FoG is highly heterogeneous across the population. This

work proposes a ternary FoG classification approach towards a more granular individual

severity assessment. In clinical assessments, severity estimates often include FoG subtype,

with kinetic freezing often viewed as a less severe instance compared to akinetic. Therefore,

assessing the degree of each FoG subtype may help to align an automatic severity assess-

ment more closely with current clinical methods [16, 17]. Additionally, the exploration of

ternary FoG may facilitate reflection on both the current clinical definitions of freezing and

the performance of models in current literature in the ternary domain (i.e., identifying if

existing architectures and feature sets are preferable for specific FoG subtypes) [13, 27].

1.3 Wearable Sensors

Wearable sensors are compact electronic devices equipped with various sensors that can be

easily worn or attached to the body. These devices are designed to collect and monitor a

wide range of physiological data, such as heart rate, body temperature, movement patterns,

and even brain activity. Wearable sensors have gained immense popularity in recent years

due to their potential to revolutionize healthcare by providing continuous and non-invasive

monitoring of an individual’s health and well-being.

In the context of aiding PD assessment, wearable sensors offer a promising avenue for

early diagnosis and continuous monitoring of patients. Symptoms from PD can potentially
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be characterized by subtle changes in movement patterns, cognitive abilities, and even

physiological responses. Wearable sensors, such as smartwatches and activity monitors with

built-in accelerometers and gyroscopes, can track changes in gait and tremors, enabling

early detection or severity tracking throughout the disease progression. By providing real-

time data and long-term insights, wearable sensors offer valuable information to clinicians,

enabling them to personalize treatment plans and improve the quality of life for patients

suffering from these challenging conditions. As technology advances, wearable sensors

hold the potential to play a pivotal role in early detection, continuous monitoring, and

management of neurodegenerative diseases.

1.4 Classification

Classification is a technique in machine learning involving grouping distinct samples into

defined groups. It is a widely used technique in various fields to organize and categorize

data based on specific characteristics or features. To achieve classification, a subset of

labelled examples, often referred to as the training data, is used in conjunction with a

parametric or non-parametric model. This model is designed to learn and capture patterns

from the input data which permits differentiation between unique classes. Once trained,

the classification model can automatically detect the class of a new sample based on its

defining features [4].

One practical application of classification models is in conjunction with wearable sensors.

These compact electronic devices equipped with various sensors can continuously monitor

physiological data, movement patterns, and other relevant information from individuals.

By leveraging classification algorithms, the collected data can be analyzed and categorized

to aid in various healthcare applications. For instance, wearable sensors integrated with a

classification model can help in the detection and continuous monitoring of FoG symptoms

for the PD population [26].
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1.5 Thesis Objectives

Based on the current state of FoG classification, the objective of this work is to inves-

tigate the ternary domain FoG classification with wearable sensors through current clas-

sical and deep machine learning architectures. This investigation contains the following

sub-objectives: 1) identification of suitable FoG datasets that can be used for training

and testing of machine learning models, 2) selection of both classical and deep machine

learning models based on binary classification in current literature, and optimizing the

hyperparameters based on the selected datasets, 3) evaluation of model performance on

a holdout set of participants, and the impact motor situation and subtype of the freezer

have on the performance, and finally 4) the identification of potential applications of the

ternary models based on the observed performance.

An additional side-objective was made to explore the impact of solely using a lumbar tri-

axial accelerometer has on model performance. While this was not the main objective

of this thesis, this analysis was included to provide preliminary insight into the tradeoff

between the size of the sensor set used during collection and the potential impact on

classification performance.
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Chapter 2

Literature Review

2.1 Freezing of Gait

FoG in PD is defined as a “brief, episodic absence or marked reduction of forward pro-

gression of the feet despite the intention to walk” [13, 14]. Some individuals describe this

phenomenon as the feeling of your feet being glued to the floor despite the intention to

make your next step. These events can be categorized into two main subtypes: 1) akinetic,

where there is a complete absence of movement, and 2) kinetic, which involves a lack of

“effective” forward progression with lower limb movements such as tremors [13]. However,

due to considerable heterogeneity within the FoG population, there is no concrete defini-

tion for distinguishing the onset, offset, and subtype of freezes, leading to variations in

professional interpretation [13]. For example, some may consider akinetic freezes as no

movement whatsoever, whereas others may still classify a freezing bout as akinetic if there

are small sections of movement within a freezing event.

Moreover, the triggers that provoke FoG events are often unique to each individual, en-

compassing factors such as the environment, motor context, and emotional state [28, 14].

Researchers have identified three main subgroups based on a set of an individual’s triggers,

namely asymmetric-motor, anxious, and sensory-attention, which can aid in further char-
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acterizing a freezing situation. The derivation of these subgroup labels was accomplished

through an individual’s C-FOG questionnaire answers. The asymmetric-motor participants

represented a greater proportion with asymmetric impairments rather than bilaterally, the

anxious group represented individuals with greater scores for anxious-related items, lastly,

the sensory-attention group represented individuals with greater scores for set-shifting re-

lated items [22].

Both the FoG subtypes and the specific provoking triggers can be correlated with the

severity of the symptom. Consequently, understanding these relationships can lead to

an enhanced standard of care by optimizing interventions, rehabilitation therapy, and

medication strategies to better address the unique challenges presented by FoG in PD.

2.1.1 Clinical Assessment

Currently, the assessment of FoG severity in a clinical setting can vary among clinicians,

with no established gold-standard method [19]. Typically, severity is evaluated using ques-

tionnaires, such as the NFOG questionnaire, and/or by measuring the percentage of time

an individual spends in specific FoG subtypes and FoG onsets and offsets of specific freez-

ing subtypes during tasks designed to provoke FoG events, such as the Ziegler protocol

[19, 20, 17, 10]. These tasks simulate common activities of daily living while eliciting FoG

events. In clinical research studies, video data from these tasks is often used to analyze an

individual’s gait patterns, allowing for a more detailed assessment of severity [29]. How-

ever, during regular clinic visits, video data collection is resource-intensive and may not be

feasible in real time.

Translating the onsets and offsets of each specific freezing subtype into severity is done in

various ways [16, 10, 17, 18]. One such method is the Ziegler severity score which looks

at the freezing subtypes that occurred and their frequency/duration towards calculating

a score out of 36. The hierarchy of the freezing is as follows: 1) no FoG or festination,

2) kinetic FoG - small disturbed and rapid steps, with some degree of advancement, 3)

stationary FoG - either trembling in place or total akinesia that patient could overcome,
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and 4) abortion of the task or interference by examiner. More details around the specific

scoring can be found in the work done by Ziegler et al., and Goh et al. [16, 10].

Another method of FoG severity characterization is to bin the time spent frozen for each

subtype into distinct groups using threshold techniques. One interpretation of these bins,

known as the Jerusalem protocol, breaks up the time spent frozen with less than 10%

indicating mild severity, between 10% and 50% indicating moderate severity, and anything

above 50% indicating severe impairment. This interpretation is currently in the validation

stage of development and has received funding from the Michael J. Fox Foundation to

generate evidence to support clinical use.

While the current questionnaires for clinical assessment of FoG are useful for identifying

FoG type and frequency, they provide limited insight into the progression of the symptom.

Additionally, questionnaires can introduce subjectivity, leading to significant variation be-

tween individuals [30]. As for in-clinic visits to measure severity, these might not fully

capture the true severity of FoG due to limited testing windows and potential variabil-

ity between in-clinic freezing and at-home freezing (e.g., Hawthorne effect), potentially

creating bias in assessing an individual’s true severity [31]. Hence, developing low-cost,

low-burden methods of objectively estimating FoG severity is a key objective in PD re-

search.

2.1.2 Remote Monitoring

An alternative to in-clinic assessment is remote monitoring, which can supplement the

ability to detect changes in FoG severity and reduce bias from actual FoG severity during

a clinical visit. Remote monitoring can be achieved by equipping individuals with a sensor

set, such as an inertial measurement unit (IMU) and/or electrocardiogram (ECG), or

by capturing video footage during their daily activities. However, remote monitoring is

challenged by high dependence on activities performed in daily life with little structure

compared to in-clinic protocols. The lack of consistent self-selected activities can lead to

inconsistencies in interpreting wearable sensor data and may bias assessments.
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Analyzing longer free-living datasets for remote monitoring can be more tedious compared

to small in-clinic trials, making it challenging to accurately assess an individual’s condition.

As a result, the progression of remote monitoring has been limited, with most data collected

in remote settings used primarily for exploratory studies. For example, Mancini et al.

conducted a study to investigate gait features such as the number of turns and gait bouts,

gait speed, and turn angle over a 7-day span. They found correlations between these gait

features and the predicted time spent frozen by their binary FoG classification method

[32].

Since remote monitoring is often limited to biosignal or IMU data, with motion capture

and video data being largely infeasible in free-living scenarios, remote classification mainly

focuses on capturing gait analytics [33]. These gait analytics include rudimentary features

such as walking speed, step times, or turning speed as proxy measures for FoG severity. As

the number of analytics extracted grows, the manual interpretation of the metrics becomes

more difficult, especially for longer collection periods. Therefore, approaches involving

automatic classification models that utilize these metrics to predict actual FoG events

have been investigated, which can then estimate severity through the percentage of time

spent frozen [26, 34, 32]. Utilizing a classification model in remote monitoring can help

ensure an individual’s severity is captured with limited required manual intervention. Not

only would such a model provide severity estimations in remote settings where manual

annotations would be tedious, but could also serve to further inform clinical assessments.

2.2 Freezing of Gait Classification

In the existing literature, the majority of FoG detection models focus on binary detection

[26]. This approach involves consolidating all subtypes of FoG into a singular term, re-

sulting in only two labels: no FoG vs FoG. While this simplifies the classification problem,

it comes at the expense of losing additional insight that could be gained from identifying

types of FoG. In particular, separating the FoG subtypes will help to more closely align re-
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mote monitoring with clinical assessments that weigh subtypes differently when calculating

the severity [16, 17].

2.2.1 Data Selection

The performance of a machine learning model is highly influenced by the quality of data;

therefore, in FoG classification, the selection of high-quality datasets is imperative for

efficient and accurate predictions. The data selection process consists of two main parts: 1)

the sensor type and locations used to collect the raw data, and 2) pre-processing techniques

applied to the raw data before passing it to the model.

In current literature, the most frequent sensor set used is a tri-axial lumbar accelerometer,

likely due to low obtrusiveness, low burden to the individual and low cost of equipment.

Other sensors have been explored, such as ECG, IMU with gyroscopes, or multiple sensors

on other locations (e.g., bi-lateral shank or feet [26]). The sensor setup utilized by a model

can have a large impact on the performance. For example, a strong sensor set should

capture descriptive features that have a high correlation to FoG events. However, there is

a trade-off: a lower number of sensors brings lower cost and high ease of use for the PD

individual, whereas a larger sensor set can provide more descriptive feature sets and more

accurate models. It should also be noted that the impact the size of the sensor set will

have on the performance will in fact have a saturation point (e.g., adding another IMU

near an existing sensor, such as an additional foot sensor, will add little to no additional

information).

For pre-processing techniques, methods used in the literature are dependent on the type of

model used. Many efforts have made use of filtering, normalization, and/or standardization

techniques to help remove noise and ensure all signals are equally scaled. Sensor signals

are often segmented into windows of time to allow for feature calculations and/or models

that require inputs of more than a single sample instance. The size of these windows

heavily depends on the model architecture and features planned to be extracted. For FoG
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classification, previous works have utilized window sizes between 2 and 4 seconds of data

[26, 35, 36].

Some models, mainly classical types, require features to be passed as inputs instead of

the original raw signal. Unlike deep learning models, classical models lack the ability to

automatically extract (or learn) information from raw signals. The extraction and selection

of the parameters prior to the model is the process of feature engineering, which aims to

extract useful information from each subsequent window.

Some of the most common features in current literature are shown in Table 2.1. All

features from this table were based on the popularity observed in the literature review work

done by Pardoel et al., and the FoG classification work done by Arami et al., with only

applicable sensor locations and sensor types relative to the accessible datasets of this study

included [26, 34]. This inclusion criterion for features selected consists of accelerometer and

gyroscope sensors, located on bilateral feet, lumbar, and/or sternum. In combination with

these criteria, features requiring a separate classification algorithm, such as gait detection

and analytics pipeline, were left out of the table due to the possibility of compounding

errors.

In combination with the features extracted, some studies have utilized correlation statistics

to identify an optimal feature set for FoG classification [34]. This feature pruning process

can be broken into 3 categories including filters, wrappers, and embedded techniques. For

purposes of this work, only the filter methods are explored. Filter pruning involves cal-

culating scores for each feature and selecting only the top k-performing feature set [37].

This score can be calculated in a univariate sense, where each feature vector is compared

to the true labels. From here, statistical methods such as Kendall’s or Spearman’s cor-

relation, analysis of variance (ANOVA), or mutual information can be used to calculate

a score [38, 39, 40]. Another class of methods within the filter technique is multivariate

approaches, which also compares each feature to the true labels, but also uses the rela-

tionships between features to generate the score. While this process is more involved and

computationally expensive, it can identify a more optimal set of features. An example
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Feature Sensor Type Description
Mean Acc., Gyro. Mean of signal
Min, Max, Median Acc. Descriptive statistics
RMS Acc., Gyro. Root mean square (RMS) of a signal
Standard Deviation/Variance Acc., Gyro. Standard deviation of a signal
Integral Acc. Integral of acceleration (singular or double)
Kurtosis Acc., Gyro. Measure of signal tailedness within window

distribution
Skewness Acc. Measure of signal asymmetry within window

distribution
K index Gyro. Summation of the absolute value of low pass

filtered angular velocity of left and right
shanks in sagittal plane

Number of dominant peaks Acc. Number of signal dominant peaks
Number of zero crossings Acc. Number of signal zero crossings
Pearson’s correlation coefficient Acc., Gyro. Similarity between two signals
Entropy Acc., Gyro. Shannon’s entropy calculation
PSD bands Acc. Specific frequency bands of power spectral

distribution (PSD)
Band Power Acc., Gyro. Area under the curve of power spectral den-

sity plot, between specific bands
Freezing Index Acc. Ratio of signal power in freeze band (3–8 Hz)

and locomotion band (0–3 Hz)
Extended Freezing Index Acc. Square of the freezing index with a prior mean

subtraction

Table 2.1: Common features for accelerometer (acc.) and gyroscope (gyro.) sensors in
current literature.

of this technique is called minimum Redundancy - Maximum Relevance (mRMR), which

aims to identify a multi-variate correlation between features and the labels to identify the

most descriptive and the least redundant feature set [41]. As for the models not requiring

pre-processed features, such as deep models, samples are often similarly windowed and

have pre-processing techniques such as filtering or normalization applied to improve the

learning capabilities of the model.

The last component of the data selection process is annotating or labelling of the data.

High-quality annotations are imperative for supervised learning techniques discussed in this
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work and, therefore, should not be overlooked when designing the classification pipeline.

Often, annotations for FoG classification are carried out in a similar manner to clinical

studies, where multiple raters use video data to flag all FoG events during a task with a

clear process to handle non-consensus labels [42, 29].

2.2.2 Binary Models

The majority of existing FoG classification models focus on the binary paradigm by com-

bining all FoG subtypes into a single label. These binary models can be further broken

down into three main categories: 1) threshold, 2) classical, and 3) deep models. For thresh-

old methods, there is no required training set and the models are designed around fixed

parameters prior to implementation. In this work, threshold methods were not explored

due to being out of the scope of investigating machine learning models for FoG detec-

tion. As for classical models, these can be parametric or non-parametric, but regardless

require a distinct set of samples for making inferences on new samples. The term classical

describes the type of architectures used within this category, which are more traditional

mathematical algorithms such as logistic regression (LR), random forest (RF), or support

vector machine (SVM), along with the basic variation of a neural network (NN) with the

limitation of at most one hidden layer. Finally, deep models are similar to classical models

with the requirement of a set of samples in order to train a model. The only deviation is

the complexity of the architecture, with deep models utilizing networks with two or more

hidden layers which help to establish deeper connections between the internal nodes.

2.2.2.1 Classical Models

As stated, classical models include parametric or non-parametric models utilizing a training

set of samples to make inferences on new samples with traditional mathematical algorithms,

or simple (i.e., few hidden layers) feed-forward NN architectures. Classical models offer the

benefit of relative simplicity, which not only helps reduce the amount of overfitting but also
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lowers the conceptual complexity, making them advantageous in medical applications like

FoG classification. This simplicity also facilitates the development and training of models

on limited datasets, a common scenario in medical applications.

Several classical models are commonly used in FoG classification, including LR, RF, SVM,

AdaBoosted decision tree (ADT), and k-nearest neighbours (KNN) [26]. However, the

reported performance of these models varies widely in the literature due to differences in

study designs, definitions for annotating FoG events, and the quantity of data available.

Decision tree-based models, such as RF and ADT, have demonstrated sensitivity perfor-

mance ranging from 66.25% to 98.35% and specificity ranging from 66.00% to 99.72%.

On the other hand, SVM models have achieved sensitivity ranging from 74.7% to 99.73%

and specificity ranging from 79.0% to 100% [26]. These performance ranges were deter-

mined through various testing approaches, including cross-validation, leave one subject out

(LOSO), and test hold-out sets [26].

2.2.2.2 Deep Models

Deep models are similar to classical NN models, however, they involve numerous hidden

layers and are often equipped with techniques such as convolutional layers, skip connec-

tions, or recurrent layers, instead of the basic feed-forward structure. The benefits of deep

models are on the opposite side of the spectrum compared to classical models with high

complexity due to the increase in the number of layers and connections. This increase in

complexity, in turn, helps to reduce model bias but increases the variance of overfitting. To

help limit undesired variance, larger datasets with high variability are required; addition-

ally, techniques such as early stopping during training can be implemented [43, 44, 45, 8].

As mentioned earlier, another benefit of deeper models is the ability to learn features

internally, requiring only the windowed signals as inputs to the model. Deep models

that utilize convolutional layers in their backbone are capable of this feature extraction;

however, a convolutional backbone can be inserted prior to most architectures to replace

the external feature engineering step.
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Additionally, one concept that is included in specific types of deep models is the ability

to look at multiple windows at once. Considering multiple windows at once in a sequence

format is not limited to deep models. Features from multiple windows can be passed into

classical models, although, this is not as common as the deep network architectures. The

concept of passing multiple window samples for a singular label introduced through recur-

rent neural network (RNN) has the benefit of utilizing neighbouring temporal information

while keeping the window sizes in the desired range [46]. This method is preferred since

increasing window size reduces the temporal resolution of the classification pipeline.

Some of the common deep models in the literature include convolutional neural network

(CNN) and transformers [43, 44, 45, 8]. As opposed to classical models, similar model

architectures are still unique due to the complexity and variations in the design process.

Therefore, instead of reporting ranges, individual performance found for various deep net-

work models in literature can be seen below in Table 2.2.

Model Type Group Sensitivity Specificity Precision F1-Score
CNN Borzi et al. 0.877 0.883 - -
CNN + MLP Bikia et al. 0.856 0.857 - -
CNN Yang et al. - - - 0.67
Transformer Sigcha et al. 0.842 0.939 0.617 0.71

Table 2.2: The performance of recent deep model architectures for binary FoG classifica-
tion.

2.2.3 Ternary Models

At the time of writing, all FoG models in literature have been developed for the binary case

where all subtypes are consolidated into a singular FoG label. This gap in the field warrants

the exploration of the performance of successful models in the binary space extended for

the ternary space. By characterizing the performance of extended models, the findings of

the current study will help provide insight into their capacity to detect and classify FoG.
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Ternary classification is important for many reasons, primarily to provide greater insight

to clinicians. This additional insight is mainly in the form of a more granular assessment

of an individual’s disease progression by providing labels and severity estimations for each

FoG subtype. Pure akinesia is often viewed as the most severe form of freezing, therefore

combining the kinetic and akinetic severities into a single metric may be misleading from

an individual’s true severity and quality of life [16, 17]. Thus, this additional insight

can help better identify and plan specific treatment(s) or disease management plans (e.g.,

medication, therapy) to suit an individual’s situation.

Lastly, as mentioned due to the large heterogeneity in the FoG population, the exact defi-

nition for the subtype, onset and offset of FoG have various interpretations [13]. Therefore,

the exploration of ternary FoG classification also aims to advance the understanding and

relationships between the subtypes by analyzing how trained models from the binary space

perform in the ternary domain.

2.2.4 Motor Context

Transitioning away from solely defining the problem of FoG as ternary or beyond, it is

crucial to explore another aspect often overlooked in current literature: the performance of

FoG classification in relation to the motor context. While some studies, such as the work

by Yang et al., test their models on various gait tasks like the timed up and go (TUG) and

turning separately, this limited investigation merely scratches the surface of understanding

the impact of the motor context [44].

Understanding the implications of the motor context on classifier performance is partic-

ularly significant when considering the application of FoG detection. In particular, if

deployed in uncontrolled free-living environments, it is important to understand in what

motor situations (e.g., turning, straight-line walking, approaching a doorway) a model will

succeed, and in which situations it has trouble. Not only is this applicable for free-living

conditions, but as well, severity estimations are often broken down by motor situations to

gain a better understanding of an individual’s triggers [18, 22]. With the model’s motor
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situation performance, the shortcomings of the model in a motor situation can potentially

be addressed, or be used to develop a system that utilizes the best model for each specific

motor situation.
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Chapter 3

Data

3.1 Sydney Dataset

The first dataset used in this work was collected by Goh et al. at the University of Sydney

in Australia. The collection of this data was completed with the intention of assessing the

reliability of the protocol for evaluating FoG in people with PD. It also aimed to determine

correlations between the test results and video annotations, examine the test duration as

a measure of FoG severity, assess usability, and explore reliability differences based on

clinical experience. This dataset consisted of 10 participants, all deemed freezers in the

PD population based on their clinical history and questionnaires (e.g., Movement Disorder

Society-Unified (MDS-Unified) Section III, and New Freezing of Gait Questionnaire) [10].

3.1.1 Protocol

Each participant who participated in the dataset’s study completed the Ziegler protocol

in both their “ON” medication and “OFF” medication states [16]. The Ziegler protocol

involves the following steps: 1) starting the trial seated, 2) after the trial is started, the

participant stands from their seat, 3) once standing, they walk forward until they are
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within a box taped/painted on the ground, 4) while within the box, they complete one

360 degrees turn clockwise, then one 360 degrees turn counterclockwise, 5) after turning,

they continue to walk forward until approaching a closed door, 6) once at the door, they

open it, walk through the doorway, and perform a 180-degree turn, and 7) once all of this

is complete, they make their way back to their seat, and the test concludes once they pass

the box where the 360-degree turns were made [16, 10, 1] (see Figure 3.1).

Figure 3.1: Illustration of the tasks completed in the Ziegler protocol [1].

The Ziegler protocol was completed three times for each medication state, with each iter-

ation adding an additional cognitive task to increase the probability of provoking a FoG

event. The first iteration was the regular Ziegler protocol with no additional cognitive

loads. The second iteration involved the addition of carrying a tray while completing the

Ziegler protocol. The final iteration kept the tray while adding the requirement of having

the participant complete a counting task during the trial. Not every participant completed

all three variations in the “OFF” medication state due to increased amounts of freezing.

Individuals who spent the majority of their regular Ziegler trial in the “OFF” medication

state were not required to complete the subsequently increased cognitive load iterations.

This occurred for two participants, resulting in a total of 54 trials being collected.
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3.1.2 Hardware

During the trials, the participant was wearing seven Opal IMU sensors located on the

forehead, sternum, lumbar, and bilateral shank and foot. Each IMU sensor captured

tri-axial acceleration and angular velocity at 128Hz. The bilateral shank IMU data was

excluded from this work due to some a subset of trails missing data. Additionally, video

data was captured for the purposes of annotating each trial to generate FoG, and motor

situation labels.

3.1.3 Annotations

FoG annotations were made by multiple FoG experts by breaking each video into 3 checks

including 1) identifying each situation throughout the trial (i.e., no FoG, festination, FoG

and the specific subtype, and deviation from the protocol), 2) The start and stop of each

situation, and 3) any additional comments [10, 29]. With this structure, each trial was

annotated for the start and stop of FoG events and their respective subtype. Lastly, the

annotators produced a Ziegler severity score out of 36 for each individual. To ensure con-

sistency in the rating, the interrater reliability was determined using intraclass correlation

coefficients and was found to be 0.8. More details on the annotation procedure can be

found in the supplementary materials for the work done by Goh et al. “The Ziegler Test

Is Reliable and Valid for Measuring Freezing of Gait in People With Parkinson Disease”

[10].

As well, the motor situation during the trial was annotated for future performance break-

down based on the context. These annotations were made outside the Goh et al. group

by members of the Neural and Rehabilitation Engineering (NRE) lab at the University of

Waterloo, applying a similar annotation breakdown structure to the FoG labels [10, 29].

To limit the variability, each trial was broken down into four distinct sections including

1) forward walking from the first effective step after standing to reach the box where the

360-degree turn is completed, 2) right turn from when they initiate the clockwise turn to
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completion, 3) left turn for when they imitate the counter-clockwise turn to when they

make a step out of the box, 4) doorway for the remainder of the trial. These 4 labels

(forward walking, right turn, left turn, and doorway) span the entire trial with no gaps

between neighbouring labels, except for the initial sit-to-stand prior to forward walking.

3.1.4 Descriptive Statistics

Throughout the entire Sydney dataset, a total of 24.9% was spent in an akinetic freeze and

8.87% was spent in a kinetic freeze. The breakdown by participant can be seen in Table

3.1. Additional participant statistics can be found in Table 3.2. For more demographic

statistics, please refer to the work done by Goh et al. “The Ziegler Test Is Reliable and

Valid for Measuring Freezing of Gait in People With Parkinson Disease” [10].

Participant Code Akinetic Severity Kinetic Severity Number of Trials
21DH Mild (0.71%) Mild (10.0%) 6
28FV Moderate (32.5%) Moderate (16.92%) 6
39KR Severe (76.55%) Mild (1.35%) 4
45PG Mild (0.0%) Moderate (20.14%) 6
54EJ Mild (2.29%) Mild (9.17%) 6
76CA Mild (2.49%) Mild (3.56%) 6
83OS Mild (1.01%) Moderate (16.58%) 6
85TL Mild (0.0%) Mild (0.76%) 6
93QN Mild (0.0%) Mild (0.0%) 6
97MU Severe (64.57%) Mild (2.29%) 4

Table 3.1: Breakdown of the severity and number of trials for all individuals within the
Sydney dataset.
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Participant Sex Age Duration of PD (years) Most affected side C-FOG Dominant Subgroup UPDRS (0-132) MMSE (0-30)
21DH Male 78 11 Left Sensory Attention 29 30
28FV Male 81 12 Both Asymmetric Motor 53 26
39KR Female 75 8 Left Sensory Attention 27 28
45PG Male 62 14 Left Anxiety 18 30
54EJ Male 66 16 Left Anxiety 35 25
76CA Male 75 16 Both Sensory Attention 57 28
83OS Male 76 5 Left Anxiety 45 29
85TL Male 60 10 Right Sensory Attention 47 29
93QN Male 61 18 Right Sensory Attention 40 30
97MU Male 72 23 Both Asymmetric Motor 22 28

Table 3.2: Participant demographics, and PD-related information for all individuals within
the Sydney dataset. C-FOG dominant subgroup was based on the scores on page 2 out of
4 for the C-FOG questionnaire [10].

3.2 MJFF Dataset

The second dataset utilized in this study, known as the MJFF dataset, comprises multiple

collections from various groups [47]. These groups include The Center for the Study of

Movement, Cognition, and Mobility, The Neurorehabilitation Research Group at Katholieke

Universiteit Leuven in Belgium, and the Mobility and Falls Translational Research Center

at the Hinda and Arthur Marcus Institute for Aging, affiliated with Harvard Medical School

in Boston. With the assistance of the Michael J. Fox Foundation for Parkinson’s Research,

the data from these sources were merged and made available on a Kaggle competition for

developing FoG algorithms.

The MJFF dataset consists of 924 trials completed by 100 participants. This dataset plays

a crucial role in the study by expanding the number of trials from the original 54 to close

to 1000 trials total when combining the datasets. This is imperative since this extensive

dataset allows for the training of deeper models with large dataset requirements.

3.2.1 Protocol

The data for this study was collected from multiple sources, the dataset was divided into

two sub-datasets with different protocols. The first sub-dataset, named tDCS, followed

the Ziegler protocol and was conducted in both the “ON” and “OFF” states with three
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levels of difficulty, similar to the Sydney dataset [1, 48]. The second sub-dataset, named

DeFOG, employed a different protocol designed to provoke freezing of gait (FoG) events

through various gait tasks, also in both the “ON” and “OFF” medication states [2, 47].

The DeFOG protocol consisted of seven specific gait tasks completed by participants in

their own homes. These tasks included 4-meter walk, Timed Up and Go (TUG), dual-task

TUG (involving subtracting numbers as an additional cognitive load), turning tasks with

alternating directions, dual-task turning tasks with cognitive load, hotspot door (a walking

trial involving opening a door, entering another room, turning, and returning to the start

point), and personalized hotspot (walking through an area in the house that the subject

described as FoG provoking). For the second visit, the same tasks were completed for

both medication states, but with the inclusion of audio cueing for the non-dual-task tasks.

The audio cueing involved providing tones at certain frequencies when a FoG event was

detected to help re-initiate walking [47]. A graphic illustrating this DeFOG protocol is

presented in Figure 3.2.

The number of trials completed for each protocol is detailed in Table 3.3.

3.2.2 Hardware

For each protocol completed in this dataset, a different hardware set was used, however,

all data collected in the MJFF dataset only used a single lumbar tri-axial accelerometer

sensor. For the Ziegler protocol, an Opal tri-axial accelerometer was used at a sampling

rate of 128Hz. As for the DeFOG protocol, this data was collected with a tri-axial Ax3

by Axivity at 100Hz. Similar to the Sydney dataset, video data was used for later offline

annotations of each trial [47].

3.2.3 Annotations

Annotations were made through offline video analysis of each trial. The annotations in-

cluded the start and stop of the FoG event, and whether or not it was kinetic or akinetic.
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Figure 3.2: Illustration of the tasks completed in the DeFOG protocol [2].

No labels were made to highlight the motor situation of the individual throughout the

trial. However, additional annotations were made to highlight where each freeze occurred

within the options of start hesitation, turning, or walking [47]. These labels could have

been used to produce a general understanding of the motor situation, however, this was
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not pursued due to the labels only being present during FoG events which would cause the

label quantity per trial to be inconsistent.

3.2.4 Descriptive Statistics

Throughout the entire MJFF dataset, a total of 1.47% was spent in an akinetic freeze and

12.39% was spent in a kinetic freeze. The breakdown of akinetic and kinetic freezes within

each sub-dataset, along with the percent each sub-dataset contributes to the overall MJFF

dataset can be seen in Table 3.3. Additionally, the distribution of severities for akinetic and

kinetic across all participants in both protocols can be seen in Figure 3.3. This distribution

binned the percent time spent frozen for akinetic and kinetic events separately for each

individual based on the Jerusalem protocol mentioned earlier. For the participants of the

MJFF dataset, the average age was 67.8 ± 7.95, and the average years since diagnosis was

10.4 ± 6.27.

Dataset Akinetic Percent Kinetic Percent Number of Trials
tDCS 0.73 % 30.30 % 833
DeFOG 1.85 % 3.04 % 91

Table 3.3: Breakdown of the freezing distribution between the two sub-datasets within the
MJFF dataset.

3.3 Preprocessing

During the preprocessing phase of the data, specific steps were applied to the datasets

to ensure proper synchronization and prepare them for further analysis [8, 49, 50]. For

the Sydney dataset, synchronization was achieved by identifying an auditory tone in the

video data, which marked the beginning of each trial. This tone was used to crop both the

annotations and sensor data accordingly. As for the MJFF dataset, synchronization had

already been carried out by external sources, eliminating the need for this step.
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Figure 3.3: Distribution of the participant severities for akinetic and kinetic freezing in the
MJFF dataset based on the total time spent frozen (%TF).

After synchronization, the raw data and labels for each dataset were subsampled to a rate of

40Hz [8, 49, 50]. This subsampling ensured computational efficiency while still preserving

the essential frequencies for human activity recognition and analysis, particularly in the

freezing of gait (FoG) domain, which involves frequencies in the 3-8 Hz range. To facilitate

consistent comparisons, raw data provided by the IMU sensors was normalized within the

range of [0,1] with respect to each individual trial, minimizing variability introduced by

different sensor types.

The next step involved windowing the data to create chunks of samples with a window size

of 3.2 seconds and a step size of 1.6 seconds [26, 36, 35, 8]. This window size was selected

based on the existing literature, falling within the range of 2-4 seconds. Moreover, using

a window size corresponding to an integer power of 2 (e.g., 3.2 seconds at 40 Hz gives

128 samples) allowed for efficient fast Fourier transform (FFT) calculations in subsequent

analyses.
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Similarly, the labels were windowed with the same specifications: 3.2 seconds window size

and 1.6 seconds step size [26, 36, 35, 8]. For the windowed labels, a single label was

generated by taking the mode of the window, representing the label that appeared most

frequently in a given window. Additionally, it was noted whether this label corresponded

to the second half of the window (i.e., the last 1.6 seconds). This approach aimed to

reduce overlap during the unwindowing process in postprocessing. An issue arising from

this method was the vacant label period during the first half of the first window in each

trial. To address this, each label array was padded with non-FoG labels, indicating a lack

of freezing, thereby ensuring consistency in subsequent analyses.

3.3.1 Classical Model Preprocessing

The preprocessing applied to both datasets that is specific to the classical models was the

feature extraction. This process involved extracting a feature set from the windowed data,

which could then be passed into the classical models for training and evaluation. More

details on this process can be found in the subsequent section 3.4.

3.3.2 Deep Model Preprocessing

As mentioned earlier, the deeper models utilized convolutional layers in the network back-

bone to automatically extract relevant features, eliminating the need for external feature

engineering. Consequently, the preprocessing steps for the deeper models diverged from

those of the classical models.

Specifically, for the deeper model, the data underwent a transformation into the frequency

domain using the FFT. This choice was influenced by the findings of Sigcha et al., who

demonstrated that representing data in the frequency domain led to superior performance

compared to using time-domain signals and features [51].

Once the data was transformed into the frequency domain, the windows were grouped into

sequences of four consecutive windows. The labels for these sequences were derived from
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the last window in each series. However, this approach introduced a gap in the labels at

the beginning of each trial, as the first three windows in each sequence had no associated

inferences. To address this, we padded the initial sequences with zeros, indicating the

default non-FoG label.

For more detailed information on the architecture and design of the deeper model used in

this work, please refer to section 4.2.

3.4 Feature Engineering

The feature engineering process commenced by identifying a large pool of potential features

(see Table 3.4). The pool consisted of 24 features when considering the tri-axial lumbar

accelerometer alone and expanded to 145 features when incorporating the tri-axial IMU

sensor data from the sternum, lumbar, and bilateral feet.

Feature Sensor Type Sensor Location Direction
Root mean squared Acc., Gyro. Sternum, lumbar, bi-lateral feet AP, ML, V
Standard deviation Acc., Gyro. Sternum, lumbar, bi-lateral feet AP, ML, V
Kurtosis Acc., Gyro. Sternum, lumbar, bi-lateral feet AP, ML, V
Skewness Acc., Gyro. Sternum, lumbar, bi-lateral feet AP, ML, V
Number of dominant peaks Acc. Sternum, lumbar, bi-lateral feet AP, ML, V
Number of zero crossings Acc. Sternum, lumbar, bi-lateral feet AP, ML, V
Extended freezing index Acc. Sternum, lumbar, bi-lateral feet AP, ML, V
Displacement Acc. Sternum, lumbar, bi-lateral feet AP, ML, V
Cross-correlation Gyro. Bi-lateral feet ML

Table 3.4: Initial feature pool for accelerometer (acc.) and gyroscope (gyro.) sensors
established based on common features in current literature (AP - anterior-posterior, ML -
medial-lateral, V - vertical).

Next, the feature set underwent trimming using various methods to determine the optimal

selection. For this purpose, the 3-fold cross-validation F1-score was computed for the

classical models, employing their default scikit-learn hyperparameters [52]. To simplify
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the feature engineering process, the individual F1-scores of the multiple classical models

were averaged.

The initial evaluation involved the complete pool, establishing a performance benchmark

without employing feature selection. Subsequently, feature sets comprising 40%, 60%, and

80% of the features (k-value) were evaluated. This pruning process was performed using

five feature selection techniques. The first four techniques, including ANOVA, mutual

information, Spearman’s, and Kendall’s, were univariate approaches relying on the corre-

lation between labels and individual features. The top correlated features were selected

and retained for further performance analysis. The fifth technique, mRMR, constituted

a multi-variate method, enabling the assessment of correlations not only between features

and labels but also within the feature set, thereby identifying redundant features.

The k-value and feature selection method combination that yielded the highest overall

cross-validation F1-score defined the final feature set. Additionally, in cases where sensors

were symmetrically applied (e.g., bilateral IMU sensors in the Sydney dataset), features

extracted from one side were mirrored to mitigate left or right bias in the feature engineering

pipeline (i.e., if only the right foot had feature X extracted for the Y direction, then the left

foot feature X in the Y direction was added to the feature pool, regardless of the ranking).

For a comprehensive account of the results obtained from this feature engineering study,

please refer to section 5.1.1.
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Chapter 4

Classification

After collecting data and preprocessing accordingly, the subsequent step in automatic FoG

detection is to select and train a model. In this work, six classical machine learning models

and one deep network machine learning model were tuned, trained and tested on the

data to explore the optimal architecture for FoG detection. The classical models were

implemented with the use of the Scikit-Learn framework, whereas the deep network model

was implemented with the Pytorch deep learning framework [52, 7].

4.1 Classical Models

As stated, the classical models include architectures that deviate from a neural network

(e.g., LR, RF, or SVM), or have less than 2 hidden layers. This makes these models ideal for

problems where overfitting is an issue, which can often be present in unbalanced datasets,

or smaller datasets. However, the trade reduced overfitting, for often higher bias as a

result of the lower complexity. The classical models used in this study pulled inspiration

from current literature and include the following: LR, RF, SVM, KNN, ADT and finally,

a single layer NN [26, 34].
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4.1.1 Logisitc Regression

LR classification builds on the fundamentals of linear regression by using a linear function

of the inputs to produce the inference (i.e., y = wxi + b). However, leaving the model

with this representation would produce an output outside the classification range (i.e.,

(0, 1). Therefore, to limit the range, the standard logistic function, otherwise known as

the sigmoid function, is used to translate the linear function output within the continuous

range to a classification range (see Equation 4.1). One caveat for the sigmoid function is

the limitation of a binary output, therefore for classification problems beyond binary one

logistic regression model can be created for each class in a one versus rest (OVR) fashion

[4].

f(y) =
1

1 + e−y
=

1

1 + e−(wx+b)
(4.1)

4.1.2 Random Forest

A RF classifier in its simplest form is a collection, or forest, of basic decision trees, which

is a concept known as ensemble learning. A decision tree thresholds features at each node,

and then depending on if the values are higher or lower, the path will be followed. The

last layer of nodes is assigned classes, which forces classification by following the directed

path along the tree. Along with being a collection of decision trees, a RF classifier uses a

method called bagging which only uses subsets of the training data and feature set at each

node which helps to introduce variance. The collection of these high variance trees helps to

produce an overall model with reduced overfitting after combination with majority voting

[4]. An illustration of this ensemble learning technique can be seen in Figure 4.1.
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Figure 4.1: Visualization of the random forest architecture, modified from [3].

4.1.3 Support Vector Machine

A SVM classifier functions by representing the n-dimensional feature vector of each sample

in an n-dimensional space. From here, a model is developed by identifying a hyperplane

that divides the classes best (i.e., the largest margin between the closest opposing class

samples). However, sometimes the n-dimensional space is not enough to find a distinguish-

ing hyperplane, therefore SVM models introduce transformations known as kernels. These

kernels take the n-dimensional space and translate it into an m-dimensional while intro-

ducing non-linearity into the model. Finally, for multiclass problems, this is often treated

in a similar way to logistic regression, with solving for the model multiple times in a OVR

fashion [4]. A 2-dimension example of a SVM classifier can be seen in Figure 4.2.
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Figure 4.2: 2-Dimensional visualization of a support vector machine model [4].

4.1.4 K-Nearest Neighbnours

KNN differs from the other models considered by being a non-parametric algorithm. KNN

represents each sample as a point in n-dimensional space for an n-dimensional feature

set. From here, a sample is classified as a certain class based on the proximity to the

already defined class distributions. To quantify the proximity, distance functions are used

with some of the most common ones being Euclidean distance, and the cosine similarity.

The values from the distance function are then used to define a subset of the k-closest

labelled points within the space. This subset of k-closest labelled points is then used in a

majority voting system to identify which class the sample belongs to. There is a tradeoff

when defining the number of neighbouring points to include with higher values being more

computationally expensive, but better reflecting the relationship of the sample to the class

distribution of the entire population [4]. A 2-dimensional representation of this algorithm

can be seen in Figure 4.3.
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Figure 4.3: 2-Dimensional visualization of a k-nearest neighbours model [5].

4.1.5 Decision Tree with AdaBoost

ADT is very similar to a RF classifier with it being a collection of decision trees combined

to produce a single class output. However, the difference for a ADT classifier is often

the trees within the collection are extremely simplified (i.e., only one level of nodes). The

concept behind this type of ensemble learning is that enough simplified classifiers combined

will produce a low variance prediction. In addition to this, ADT also frequently alters the

equally distributed majority voting and instead can assign different weights to specific trees

within the model. Lastly, unlike a RF model which produces all of the trees in the forest

without influence, the previously created trees in AdaBoost impact the development of

future trees [53].
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4.1.6 Neural Network

The NN classifier is the most complex out of the classical models considered in this work.

glsnn function by having a series of nodes at each layer which take in the outputs from

the previous layer, transform the values and then pass them on to the next layer. Often

each node in layer i− 1 will pass its output into every node in layer i, this is often called

a fully-connected structure (see Figure 4.4). Each node within each layer has weights and

a bias and applies it to the input vector in a similar manner to LR (i.e., y = wxi + b).

Again, similar to logistic regression, non-linearity is introduced to the system through

transformations known as activation functions in the NN space. One of the most common

activation functions is ReLU which can be seen in Figure 4.5. To achieve classification,

the final layer will utilize an activation function and a threshold so a binary output is

produced. For classification problems higher than binary, multiple output nodes can be

used, with each representing its own class [4].

Figure 4.4: Visualization of a fully-connected feed-forward neural network architecture [6].

4.2 Deep Network Model

The term deep network essentially encapsulates any neural network with numerous hidden

layers. This produces architectures that often are inversely proportional to classical models,
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Figure 4.5: ReLU activation function used to introduce non-linearity into neural network
models [7].

with a higher chance of overfitting (or variance), and lower bias. However, the increased

amount of overfitting can be addressed with larger more variable training datasets, or

early stopping while training to prevent this overfit. To implement early stopping, a

random stratified 10% of the training data was separated and used to make a validation

set. If the validation loss was greater than the training data loss by 0.1 for ten consecutive

epochs, then the training procedure was halted. This criterion was defined in a relative

sense between the train and validation loss, rather than only considering the loss of the

validation because it aimed at limiting the bias towards the training data. Early stopping

can also be used with only the validation loss, however, this is for computational resource

optimization through stopping training when the loss function appears to be converging

to its global minimum.

The deep network model used in this work was modelled after the transformer network

developed by Sigcha et al. with slight modifications in the architecture and training hy-

perparameters [8]. These changes were designed through the tuning procedure, which is

explained in section 4.3.2.
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4.2.1 Transformer

The transformer developed by Sigcha et al. is a variation of the traditional transformer

architecture introduced by Vaswani et al. [54]. In deep models, we can often break the

architecture into three sections: the backbone, the neck, and the head [55]. The backbone

serves as the feature extractor, while the neck organizes these extracted features, high-

lighting their similarities and differences. The head then utilizes these organized details for

final predictions. For their model, Sigcha et al. used convolutional layers as the backbone,

transformer encoder blocks as the neck, and a regular neural network as the head (see

Figure 4.6) [8].

Figure 4.6: The transformer architecture designed by Sigcha et al. [8].

The convolutional backbone in this context operates on data in batches, convolving the

batches of the signal with specific filters (or kernels) whose weights are optimized during

training. This process generates new signals by applying the convolution operation across
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the entire signal and filter weights. Following this, pooling techniques such as max pooling

or average pooling are often applied to reduce dimensionality and emphasize the significant

features of the signal. The objective is to highlight key aspects of the signal through

dimensionality reduction, retaining only the dominant aspects (see Figure 4.7).

Figure 4.7: Visualization of a convolutional layer operations [9].

Moving to the neck of the model, the transformer encoder block comprises attention blocks.

Each attention block takes a query token, a set of key tokens, and a set of value tokens as

inputs. It calculates attention scores by performing a dot product between the query and

key tokens, followed by a softmax operation to obtain normalized weights. These weights

determine the importance of each key token for the given query token. The attention

block then computes a context vector, which is a weighted sum of the value tokens. This

context vector represents a comprehensive representation of the query token, capturing

dependencies and long-range relationships within a sequence effectively. Transformers often

employ multiple attention blocks, allowing the model to focus on relevant information and

capture intricate dependencies, making it a powerful tool for temporal signal analysis tasks.

Techniques like multi-head attention, residual connections, and layer normalization all help

to further enhance the model’s performance [54].

Finally, the regular neural network used as the head is the same as the neural network

described earlier. Overall, the combination of a convolutional backbone, transformer en-

coder blocks for the neck, and a regular neural network for the head form the architecture

developed by Sigcha et al., providing a powerful and versatile framework for various tasks

[8].
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4.3 Tuning Methodology

All models were tuned to ensure the optimal hyperparameters were used to produce the

best performance for the datasets used in this work. To achieve the tuned models, a

randomized grid search for specific hyperparameter options for each model was conducted.

Each potential model was graded based on the macro F1-score for the FoG labels, after

which the top-performing model was selected. The results for both the classical and deep

network model tuning can be found in the subsequent section 5.2.1.

4.3.1 Classical Model Tuning

For the six classical models, the randomized grid search was carried out with the use of

the scikit-learn framework which iterates through potential permutations and then scores

each model according to a shuffled stratified 5-fold cross-validation split [52]. Since cross-

validation is used within the default randomized grid search for scikit-learn, the MJFF

and Sydney datasets were combined and passed altogether to the classical model tuning

pipeline. Each model tunning process was run for a maximum of 250 iterations, with

fewer iterations run if half the number of possible permutations was less than 250. The

hyperparameters kept constant and considered during tuning for each model can be seen

in Table 4.1.

4.3.2 Deep Network Model Tuning

The deep model tuning procedure differed from classical models in several ways. To tune

the deep model, the Optuna Python framework was employed, as PyTorch does not provide

native hyperparameter tuning options [56, 7]. Due to computational and time constraints,

each possible model was evaluated only once, using the MJFF dataset for training and the

Sydney dataset for testing. For efficiency, a maximum of 100 iterations was run for the

possible model permutations, compared to the maximum of 250 for the classical models.
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Model Parameter Values Status

LR

Max Iterations 400 Constant
Solver liblinear Constant
Multi-Class ovr Constant
Class Weight balanced Constant
Penalty l1, l2 Tuned
Inverse of Regularization Strength (0.1,100) Tuned

RF

Class Weight balanced Constant
Number of Estimators (50, 200) Tuned
Criterion gini, entropy, log loss Tuned
Max Features sqrt, log2 Tuned

SVM

Max Iterations 400 Constant
Class Weight balanced Constant
Kernel linear, poly, rbf, sigmoid Tuned
Regularization (0.1, 10) Tuned

KNN

Number of Neighbours 5,100 Tuned
Weights uniform, distance Tuned
Algorithm auto, ball tree, kd tree, brute Tuned
Leaf Size (20, 100) Tuned
Power Parameter for the Minkowski Metric (1,5) Tuned

ADT

Class Weight balanced Constant
Number of Estimators 50,200 Tuned
Criterion gini, entropy, log loss Tuned
Learning Rate (0.5,3) Tuned
Max Features auto, sqrt, log2 Tuned

NN

Learning Rate adaptive Constant
Early Stopping TRUE Constant
Max Iterations 300 Constant
Batch Size 64, 128, 256, 512, 1024 Tuned
Activation relu, tanh Tuned
Initial Learning Rate 0.001, 0.0001, 0.01, 0.1 Tuned
Number of Iterations with no Change (2, 10) Tuned
Hidden Layer Size (10, 100) Tuned
Solver sgd, adam Tuned

Table 4.1: Classical model constant hyperparameters, and pool of hyperparameters opti-
mized during the tuning process.

Additionally, a unique constraint was applied to the deep model tuning, ensuring the

top-performing model had training and validation losses that converged. Convergence was
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checked through a visual analysis to verify both losses decreased over the epochs by at least

0.2, had limited noise (i.e., ≤ 0.1 change in loss between epochs), and finally, appeared to

be approaching a steady state near the end of the epochs (i.e., the derivative appeared to

be approaching zero). If neither converged or if the validation loss failed to converge, the

next best-performing model was considered.

The hyperparameters considered for the deep model tuning are listed in Table 4.2. The

complexity of the transformer encoder allowed numerous parameters to be altered, although

the architecture parameters were limited to options that did not impact the overall size and

structure of the data passed to the model. Consequently, the deep model tuning primarily

focused on training parameters to improve the model’s learning rather than altering the

model’s architecture.

Parameter Values Parameter Type
Optimizer Adam, SGD Hyperparameter
Learning Rate 0.01, 0.001, 0.0001, 0.00001, 0.005, 0.0005, 0.00005 Hyperparameter
First Dropout (0.2, 0.6) Architecture
Second Dropout (0.6, 0.9) Architecture
Batch Size 128, 256, 612 Hyperparameter
Momentum (0, 0.3) Hyperparameter
Number of Encoder Heads 1, 2, 4 Architecture

Table 4.2: Pool of parameters optimized during the deep model tuning process.

4.4 Test Cases

Various test cases were performed to examine the performance of the included models.

The first test case involved training the models on the MJFF data and testing them on

the holdout Sydney dataset. This scenario simulates a situation where a pre-trained model

exists and a different dataset with a different sensor but a similar setup attempts to utilize

the model. The second test case included training and testing on only the Sydney data

using a LOSO format. This case represents a practical environment where an organization

develops and trains a model on internal data and then applies it to a new participant.
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In the second test case, the deep network model was excluded due to the lack of trials

in the Sydney dataset compared to the MJFF data. This limitation would lead to high

overfitting toward the training data or abnormally high bias. This test case simulates the

environment of an organization utilizing an already developed model on their in-house data

that has overlapping sensor sets.

The models included in these test cases were all of the tuned classical models, the tuned

transformer model, and finally, the stock transformer with and without early stopping.

Also, both of these test cases were executed for the current standard binary domain and the

suggested ternary FoG classification (i.e., where the FoG labels are divided into akinetic and

kinetic subtypes). The inclusion of the binary scenario aimed primarily at benchmarking

the implementation of the tuned models and datasets by comparing the results with current

literature results. If the implemented models and datasets’ performance were similar to

the literature, this was taken as an indication that the execution lacked any major flaws,

and ternary domain exploration was granted. Little comparison, between the binary and

ternary classification performance was made. Detailed results for these test cases can be

found in section 5.3.

Additionally, it should be noted, models were only ever tested on the Sydney dataset

whether this was as a holdout set or in the LOSO fashion. No testing was conducted on

the MJFF dataset due to a large participant population, no records for the FoG subgroup

and finally, the lack of motor situations annotations [47].

Lastly, an exploratory test case was conducted, involving training and testing only on the

Sydney dataset using the LOSO approach, but with the incorporation of the sternum and

bi-lateral feet IMU sensors. The purpose of this test case was to investigate the implications

of solely using a lumbar sensor in FoG classification. As with the second test case, the

deep network model was not included in this scenario due to data limitations. The results

for this additional test case can be found in section 5.4.1.
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4.4.1 Performance Metrics

To gauge the performance of the models during each test case, a combination of standard

machine learning performance metrics and clinical FoG metrics were used. The machine

learning metrics used were accuracy, sensitivity, specificity, precision and F1-score of the

classification. Accuracy is beneficial to highlight the overlap of correct labels throughout

all the potential classes. Sensitivity and specificity on the other hand help to represent

the proportion of correct class predictions within the total number of true class instances.

Sensitivity in this case is for the positive instances (i.e., FoG subtypes), whereas the speci-

ficity is for the negative class (i.e., no-FoG). Precision is similar to sensitivity but instead

analyzes the proportion of correct class predictions to the total number of class predic-

tions. Lastly, the F1-score was considered with the most weight out of these metrics due

to it combining both the sensitivity and precision values into a single value which provides

a balanced metric that analyzes both the false and true positives. For the ternary case,

the macro averages for sensitivity, precision and F1-score were found with only the scores

for the FoG labels. This was done to remove the performance bump which the non-FoG

class would add to the ternary case only. This is vacant in the binary case since only a

single-column binary vector is necessary to represent the predicted labels.

As for the clinical metrics, the overall FoG severity was analyzed for individual participants

based on the time spent frozen with the Jerusalem protocol definitions (mild: %FoG < 10,

moderate: 10 < %FoG < 50, severe: %FoG > 50). Other clinical severity tools were

excluded from this analysis due to a lack of availability in the datasets, and/or complexity

when implemented in an automatic sense (i.e., final severity scores require some clinical

interpretations) [10, 16, 17, 18].

Lastly, strip chart plots that showcase the true and predicted labels for FoG, as well as

the motor situation, were made for each trial and combined into a single figure for each

participant. These figures provided an outlet for visual analysis of the performance of

the models, as opposed to strictly the numerical approach. This metric was included,

rather than solely relying on valued metrics because it helps to indicate the relation of
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the timing or onset and offset of the predicted and true labels. As well, it helps to gain

a visual understanding of the performance within specific motor situations, and during

the transition between situations (i.e., taking the first step after the 360-degree counter-

clockwise turn).
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Chapter 5

Results & Discussion

5.1 Feature Engineering

5.1.1 Results

After conducting the feature engineering procedure on the initial pool of features listed

in Table 3.4, the optimal number of features was determined. As a reminder, each final

set of features was found to be most optimal for the average F1-score across all the non-

tuned classical models after conducting the empirical study explained in section 3.4. When

considering only the lumbar IMU sensor location and based on mutual information, it was

found that 19 features were optimal for the binary classification and 14 features for the

ternary classification, out of the original 24 features. Since only the lumbar IMU sensor

location was considered, there was no need for additional features to ensure symmetry.

The selected features for the binary and ternary classifications can be found in Table 5.1

and Table 5.2.

In the case where all available sensors were considered, the optimal number of features

for both binary and ternary classifications was 57, out of the original 144 features. These
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Feature Sensor Types Sensor Locations Directions
Root mean squared Acc. Lumbar AP, ML, V
Standard deviation Acc. Lumbar AP, ML, V
Kurtosis Acc. Lumbar AP, ML
Skewness Acc. Lumbar V
Number of dominant peaks Acc. Lumbar V
Number of zero crossings Acc. Lumbar AP, ML, V
Extended freezing index Acc. Lumbar AP, ML, V
Displacement Acc. Lumbar AP, ML, V

Table 5.1: The 19 selected features based on mutual information for binary freezing of gait
classification (AP - anterior-posterior, ML - medial-lateral, V - vertical).

Feature Sensor Types Sensor Locations Directions
Root mean squared Acc. Lumbar AP, ML, V
Standard deviation Acc. Lumbar AP, ML, V
Skewness Acc. Lumbar V
Number of dominant peaks Acc. Lumbar V
Number of zero crossings Acc. Lumbar AP, ML, V
Extended freezing index Acc. Lumbar AP, ML, V

Table 5.2: The 14 selected features based on mutual information for ternary freezing of
gait classification (AP - anterior-posterior, ML - medial-lateral, V - vertical).

feature sets were selected using ANOVA for both situations. The detailed list of features

included in this set can be found in Appendix B.

5.1.2 Discussion

From the selected features when only considering the lumbar sensor it can be seen that all

possible features are represented in at least one axis for the binary classification. As for

ternary classification, only kurtosis and displacement were not represented. Additionally, it

should be noted, that 4 features including root mean squared, standard deviation, number

of zero crossings and extended freezing index, were represented in all three axes of the
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lumbar accelerometer. This hints toward these four features having a high correlation to

the labels, and are likely the driving features for the classical models. However, due to the

limited capabilities of the feature engineering test, and its empirical nature, there are no

inferences immediately identifiable from these optimal features.

5.2 Hyperparameter Tuning

5.2.1 Results

5.2.1.1 Classical Models

After conducting the tuning procedure for the classical models, the hyperparameters for

each model shown in Tables 5.3 were found to yield the highest average macro F1-score

in the shuffled stratified 5-fold cross-validation split in both the binary and ternary cases.

The tuned parameters for the scenario where more than just the lumbar accelerometer is

input to the models can be found in Appendix B.

5.2.1.2 Deep Network Model

Similarly, upon executing the tuning procedure for the deep network model, the hyper-

parameters presented in Table 5.4 were identified as yielding the highest average macro

F1-score on the Sydney dataset.

Furthermore, a comparison between the loss during training for the untuned model (uti-

lizing Sigcha et al. stock parameters) and the tuned model is illustrated in Figure 5.1 and

Figure 5.2 [8].
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Model Parameter Binary Tuned Value Ternary Tuned Value

LR
Penalty l2 l1
Inverse of Regularization Strength 6.6 3.6

RF
Number of Estimators 183 166
Criterion log loss log loss
Max Features log2 sqrt

SVM
Kernel sigmoid sigmoid
Regularization 8.9 8.2

KNN

Number of Neighbours 15 5
Weights distance distance
Algorithm auto brute
Leaf Size 20 60
Power Parameter for the Minkowski Metric 1 1

ADT

Number of Estimators 200 166
Criterion entropy log loss
Learning Rate 1.026316 2.342105
Max Features sqrt log2

NN

Batch Size 64 128
Activation tanh tanh
Initial Learning Rate 0.001 0.001
Number of Iterations with no Change 8 8
Hidden Layer Size 30 60
Solver adam adam

Table 5.3: Optimal values for classical model hyperparameters during the tuning procedure
for both binary and ternary classification.

Parameter Stock Value Binary Tuned Value Ternary Tuned Value
Optimizer Adam SGD Adam
Learning Rate 0.0006 0.0005 0.00005
First Dropout 0.25 0.2 0.4
Second Dropout 0.7 0.7 0.8
Batch Size 512 512 512
Momentum - 0.25 -
Number of Encoder Heads 3 4 4

Table 5.4: Optimal values found for the deep network model hyperparameters during the
tuning procedure for both binary and ternary classification.
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(a) Stock Model (b) Tuned Model

Figure 5.1: Comparison of stock and tuned deep model train and validation losses for
binary classification.

(a) Stock Model (b) Tuned Model

Figure 5.2: Comparison of stock and tuned deep model train and validation losses for
ternary classification.

5.2.2 Discussion

Since no specific classical model hyperparameters were referenced as a baseline, insight

gained from the tuning results is minimal. However, for the transformer model, a com-
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parison of the stock untuned model to the tuned models can be made. From Figure 5.1

and 5.2, the model is severely overfitting to the training data with the stock parameters,

indicated by the validation and training loss estimates. This is not desirable, as it will

likely lead to poor performance when the model is tested on non-training data. The tuned

model addressed this by modifying the hyperparameters to increase the bias and reduce

the overfitting (i.e., increase the magnitude of the loss, but reduce the difference between

the validation and the training loss). This is evident in Figure 5.1 and 5.2, where the vali-

dation loss function does not diverge from the training loss to the same degree as the stock

model. However, as mentioned this comes at the cost of higher loss magnitude for the the

training loss and the validation loss in the ternary domain. Overall, this was accomplished

with slower training rates, and/or larger dropout values.

An important thing to note for Figures 5.1 and 5.2 is that there was no early stopping

implemented within the stock model loss plot. This was done since Sigcha et al. did not

implement any early stopping and trained for the entire 150 epochs, with no loss analysis.

However, it can be observed that the final validation loss could be lower with the stock

model compared to the tuned model if early stopping was implemented. As mentioned

in section 4.4, along with the tuned transformer model, the stock transformer with and

without early stopping were both tested for all test cases. Despite this inclusion, it was

found that both the stock model with and without early stopping did not achieve high

enough F1-scores to be in the top five test cases for binary or ternary classification (see

Tables B.1 and B.2 in section B.1 within the Appendix for performance metrics). The

poor performance of the non-early stopping variant of Sigcha’s stock transformer model is

likely attributed to the overfitting of the model. However, for the stock model with early

stopping, the reason for the poor performance is most likely from different sources.

The binary and ternary stock transformer models both stopped around 40 to 50 epochs

when early stopping was implemented, which gave validation losses of roughly 0.3 and 0.4

respectively. These are lower than the final validation losses in the tuned model while

still limiting overfitting. In spite of this, both of these models performed much worse

than their tuned counterparts. In particular, both stock models struggled heavily with
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predicting instances of FoG. This highlights a clear disconnect between the loss function,

cross-entropy loss, and the main performance metric, the F1-score. This disconnect can

likely be attributed to the fact that the majority of the FoG datasets are non-FoG. However,

since non-FoG is the negative class, it is not included in the F1-score. Therefore, the low

validation loss was created from overfitting towards the non-FoG class, instead of the

positive classes. This overfitting to the negative class could happen for many reasons, with

the unbalanced datasets being a large contributor, but could also be associated with the

lower number of epochs and the initialization of the weights. Based on these findings it

appears as though the initial weights are more optimal for the majority class, non-FoG,

and thus fewer epochs restrict the extent to which the model starts to sacrifice the high

specificity for more positive class instances.

5.3 Classification

Due to a large number of models and two test cases, only the results for the top five tests

were considered for both the binary and ternary test cases. Since multiple test cases were

run for the classical models where the training set was modified, the classical models had

two opportunities to appear in the top five tests. The performance of each test was gauged

primarily on the overall F1-score. Additionally, since multiple training sets were used

across the top five tests, the direct comparison of these models has little validity. However,

in this study, the representation of performance does not aim to compare models directly

but to identify the most optimal conditions for the model architectures considered.

5.3.1 Binary Classification

5.3.1.1 Results

The performance metrics for the combined top five tests for binary classification can be

found in Tables 5.5 and 5.6. Table 5.5 represents the tests within the top five performing,
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based on F1-score, that were trained on the Sydney dataset and tested in a LOSO fashion.

Whereas Table 5.6 represents the tests within the top five performing that were trained

on the MJFF data, then tested on the Sydeney as a holdout set. The test code identifier

within these tables helps to distinguish the FoG classification domain, training data, and

position within the top five tests (e.g., BS2 represents binary, trained on Sydney and 2nd

in the top five tests, and BM1 represents binary trained on MJFF, and 1st in the top five

tests).

Model Test Code Accuracy Sensitivity Specificity Precision F1-Score
Logistic Regression BS2 0.73 0.61 0.79 0.61 0.61
AdaBoosted Decision Tree BS4 0.72 0.52 0.82 0.61 0.56

Table 5.5: Performance metrics for the tests trained on the Sydney dataset and within the
top five F1-scores for binary tests.

Model Test Code Accuracy Sensitivity Specificity Precision F1-Score
Transformer BM1 0.74 0.83 0.69 0.58 0.69
Logistic Regression BM3 0.70 0.61 0.74 0.56 0.58
AdaBoosted Decision Tree BM5 0.69 0.47 0.81 0.57 0.51

Table 5.6: Performance metrics for the tests trained on the MJFF dataset and within the
top five F1-scores for binary tests.

5.3.1.2 Discussion

From the binary classification performance, models tested on the Sydney dataset demon-

strated lower-end performance, but close to the range in current literature [26]. A potential

reason why many of the classical models do not fit in the sensitivity and specificity ranges

stated before is the limitation of using only lumbar features. Often these more simplis-

tic models are paired with a wider pool of descriptive features, which could hinder the

performance in this test case.

Regarding the tuned transformer model, the performance on the Sydney dataset is close

to the performance Sigcha et al. achieved [8]. The first potential reason for the drop
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in performance, mainly with specificity, could be associated with the amount of freezing

exhibited in the test set. The Sydney dataset has over 30% of the data spent in a freezing

episode, whereas the REMPARK dataset used by Sigcha et al. is composed of 10.5%

freezing [10, 8]. This increase in the proportion of negative class (i.e., no FoG) could aid

specificity by having the model slightly favour that class, which would essentially increase

the specificity (i.e., recall of the negative class). The second, larger contributor, is no

calibration process was carried out on the probability outputs from the model in the current

study; instead, the maximum value was assumed to be the desired class. Calibration helps

to further improve the performance and was utilized by Sigcha et al. when achieving

their maximum F1-score of 0.71 [8]. Other contributing factors to the slight decline in

performance compared to literature include the window sizes considered, FoG annotation

definitions, and the heterogeneity seen with the Sydney dataset and between the MJFF

and Sydney dataset.

Despite the slight drop in performance, the scores achieved by the binary models help

to indicate the test setup with regard to raw data, features, labels, and architectures is

functional. Therefore, the ternary FoG domain is investigated in more detail.

5.3.2 Ternary Classification

5.3.2.1 Results

The performance metrics for the combined top five tests for ternary classification can be

seen in Tables 5.7 and 5.8. Similar to binary, Table 5.7 represents the tests within the top

five that were trained on the Sydney dataset, and Table 5.8 represents the tests within

the top five that were trained on the MJFF dataset. The test codes in these tables are

formatted in a similar fashion (e.g., TS3 represents ternary, trained on Sydney and 3rd in

the top five tests). Additionally, overall confusion matrices for all top five tests can be seen

in Figure 5.3.

When just considering the top two test cases (TS1 and TM2), the performance broken
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Model Test Code Accuracy Sensitivity Specificity Precision F1-Score
Logistic Regression TS1 0.70 0.49 0.81 0.49 0.49
AdaBoosted Decision Tree TS3 0.66 0.37 0.82 0.47 0.41
K-Nearest Neighbour TS5 0.62 0.22 0.83 0.29 0.25

Table 5.7: Performance metrics for the tests trained on the Sydney dataset and within the
top five F1-scores for ternary tests.

Model Test Code Accuracy Sensitivity Specificity Precision F1-Score
Transformer TM2 0.59 0.47 0.66 0.42 0.42
Support Vector Machine TM4 0.26 0.60 0.08 0.17 0.27

Table 5.8: Performance metrics for the tests trained on the MJFF dataset and within the
top five F1-scores for ternary tests.

down by motor situation and freezing of gait subgroup can be seen in Table 5.9 and 5.10

respectively.

Model (Test Case) Motor Situation Accuracy Sensitivity Specificity Precision F1-Score True Akin. Percent Predicted Akin. Percent True Kin. Percent Predicted Kin. Percent

Logistic Regression (TS1)

Forward Walking 0.74 0.38 0.82 0.15 0.22 7.58% 18.69% 11.11% 5.05%
Right Turn 0.63 0.45 0.83 0.65 0.53 39.67% 28.12% 13.72% 6.52%
Left Turn 0.64 0.48 0.77 0.52 0.50 32.43% 30.92% 12.37% 8.14%
Doorway 0.83 0.69 0.85 0.46 0.55 12.24% 18.51% 1.64% 4.63%

Transformer (TM2)

Forward Walking 0.71 0.62 0.73 0.36 0.41 7.58% 25.76% 11.11% 10.10%
Right Turn 0.57 0.52 0.62 0.59 0.53 39.67% 29.08% 13.72% 29.62%
Left Turn 0.48 0.45 0.51 0.41 0.40 32.43% 27.30% 12.37% 34.99%
Doorway 0.65 0.25 0.72 0.21 0.22 12.24% 12.54% 1.64% 22.69%

Table 5.9: Performance metrics for the top two test cases in ternary classification broken
down by motor situation throughout the trials.

Model (Test Case) FoG Subgroup Group Size Accuracy Sensitivity Specificity Precision F1-Score True Akin. Percent Predicted Akin. Percent True Kin. Percent Predicted Kin. Percent

Logistic Regression (TS1)
Anxiety 3 0.71 0.16 0.81 0.23 0.18 1.26% 14.75% 14.57% 9.35%
Motor 2 0.57 0.30 0.88 0.53 0.38 39.77% 22.28% 13.60% 1.30%
Sensory Attention 5 0.79 0.82 0.77 0.67 0.74 27.73% 33.52% 2.85% 8.26%

Transformer (TM2)
Anxiety 3 0.59 0.56 0.60 0.25 0.35 1.26% 13.13% 14.57% 32.01%
Motor 2 0.45 0.32 0.59 0.41 0.33 39.77% 23.32% 13.60% 32.77%
Sensory Attention 5 0.70 0.63 0.73 0.60 0.60 27.73% 27.64% 2.85% 18.71%

Table 5.10: Performance metrics for the top two test cases in ternary classification broken
down by subgroup distribution across participants.

Furthermore, the breakdown by the participant for the top two models can be seen in Table

5.11 and 5.12 respectively. Similar breakdowns for the other top three models, along with

the confusion matrices for individual participants can be found in Appendix B.

Lastly, after further breakdown by the participant, the strip charts aiding in the visual-

ization of the labels of the top two test cases for each trial for participants 28FV, 76CA,
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(a) LR (TS1) (b) Transformer (TM2) (c) ADT (TS3)

(d) SVM (TM4) (e) KNN (TS5)

Figure 5.3: Ternary confusion matrics for the top five performing tests.

Participant Accuracy Sensitivity Specificity Precision F1-Score True Akin. Severity Predicted Akin. Severity True Kin. Severity Predicted Kin. Severity
93QN 0.35 0.00 0.35 0.00 0.00 Mild (0.0%) Moderate (30.77%) Mild (0.0%) Moderate (34.62%)
85TL 0.96 0.00 0.97 0.00 0.00 Mild (0.0%) Mild (3.05%) Mild (0.76%) Mild (0.0%)
76CA 0.77 0.24 0.81 0.07 0.11 Mild (2.49%) Mild (6.76%) Mild (3.56%) Moderate (14.59%)
21DH 0.88 0.07 0.98 0.01 0.02 Mild (0.71%) Mild (3.57%) Mild (10.0%) Mild (0.0%)
54EJ 0.83 0.12 0.92 0.28 0.14 Mild (2.29%) Mild (7.8%) Mild (9.17%) Mild (2.75%)
83OS 0.71 0.31 0.80 0.23 0.27 Mild (1.01%) Mild (0.0%) Moderate (16.58%) Moderate (22.61%)
45PG 0.51 0.00 0.64 0.00 0.00 Mild (0.0%) Moderate (46.76%) Moderate (20.14%) Mild (0.72%)
28FV 0.56 0.26 0.86 0.41 0.32 Moderate (32.5%) Moderate (20.77%) Moderate (16.92%) Mild (1.17%)
97MU 0.58 0.39 0.97 0.93 0.55 Severe (64.57%) Moderate (27.43%) Mild (2.29%) Mild (1.71%)
39KR 0.85 0.89 0.71 0.89 0.89 Severe (76.55%) Severe (76.82%) Mild (1.35%) Mild (0.27%)
Average 0.70 0.23 0.80 0.28 0.23 - - - -
SD 0.18 0.26 0.19 0.34 0.28 - - - -

Table 5.11: Performance metrics for the logistic regression model (TS1) in ternary classi-
fication broken down by individual within the Sydney dataset.

97MU can be seen in Figure 5.4, 5.5 and 5.6 respectively. Again, the additional strip charts

for the remaining participants can be found in Appendix B.
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Participant Accuracy Sensitivity Specificity Precision F1-Score True Akin. Severity Predicted Akin. Severity True Kin. Severity Predicted Kin. Severity
93QN 0.64 0.00 0.64 0.00 0.00 Mild (0.0%) Mild (8.46%) Mild (0.0%) Moderate (27.69%)
85TL 0.92 0.00 0.93 0.00 0.00 Mild (0.0%) Mild (4.58%) Mild (0.76%) Mild (2.29%)
76CA 0.68 0.29 0.70 0.06 0.09 Mild (2.49%) Moderate (17.44%) Mild (3.56%) Moderate (13.88%)
21DH 0.69 0.87 0.67 0.33 0.48 Mild (0.71%) Moderate (12.14%) Mild (10.0%) Moderate (26.43%)
54EJ 0.63 0.36 0.67 0.15 0.21 Mild (2.29%) Moderate (13.3%) Mild (9.17%) Moderate (22.48%)
83OS 0.53 0.57 0.52 0.24 0.34 Mild (1.01%) Moderate (13.57%) Moderate (16.58%) Moderate (39.2%)
45PG 0.61 0.71 0.59 0.39 0.51 Mild (0.0%) Moderate (12.23%) Moderate (20.14%) Moderate (36.69%)
28FV 0.42 0.31 0.54 0.31 0.29 Moderate (32.5%) Moderate (23.28%) Moderate (16.92%) Moderate (31.83%)
97MU 0.53 0.35 0.88 0.90 0.48 Severe (64.57%) Moderate (23.43%) Mild (2.29%) Moderate (36.0%)
39KR 0.65 0.64 0.68 0.88 0.74 Severe (76.55%) Severe (56.06%) Mild (1.35%) Moderate (22.1%)
Average 0.63 0.41 0.68 0.32 0.31 - - - -
SD 0.13 0.27 0.13 0.31 0.23 - - - -

Table 5.12: Performance metrics for the transformer model (TM2) in ternary classification
broken down by individual within the Sydney dataset.

5.3.2.2 Discussion

When observing the top five tests for the ternary classification, it can be seen that the

best-performing tests only have a slight overlap with the binary results, with LR and ADT

being trained on the Sydney, and the transformer trained on the MJFF still being present.

However, the LR and ADT trained on the MJFF data lost enough performance to be

removed from the top five tests, and be replaced with SVM trained on MJFF, and KNN

trained on Sydney. As well, the logistic regression model leads in performance, whereas

the transformer model drops to the second-best model.

Regardless of the test cases appearing in the top five, the performance of each dropped

by roughly 20 to 30%. Based on the confusion matrices in Figure 5.3, two trends were

observed with the deep and classical models, respectively. With the transformer model, it

appears the model is often predicting a kinetic label when a kinetic FoG is not occurring.

This is shown with 43% and 20% of the akinetic FoG events and no FoG events labelled as

kinetic, respectively. Despite this large number of false positives for the kinetic class, the

model still struggles with detecting kinetic properly, with only correctly classifying 49% of

the kinetic freezes.

As for the classical models, they appear to be on the other end of the spectrum with the

model substantially reducing the number of positive instances of the kinetic class. An in-

teresting consequence of the reduction in kinetic class predictions is the increase in akinetic

class performance. This hints towards a conflict between the kinetic and akinetic classes
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during prediction. This potential conflict could be a byproduct of the FoG definitions

(e.g., an akinetic bout of FoG being labelled as akinetic even if there is a small amount of

movement that the sensors might detect), highlighting the need for a concrete definition

and/or refinement in the current definition for onsets and offsets of each FoG subtype.

One exception to these two observed patterns is the SVM model, which drastically over-

predicts both akinetic and kinetic. Based on the scores and confusion matrices (see Tables

5.7 and 5.8, and Figure 5.3), the SVM model prioritized the sensitivity to result in a high

F1-score which created a model which labels the majority of the data as a freezing event.

Also, despite the overestimation of freezing events by the SVM model, the model does

not favour either the akinetic or kinetic freezing drastically more than the other compared

to the 4 other models. This indicates the SVM model is capable of extracting quantifi-

able differences between the two types of freezing but at the cost of poorer specificity and

precision.

Lastly, the observed differences between the transformer model and the classical models

with the prior favouring kinetic freezes and the later favouring akinetic freezes could have

been the result of the training procedure and features used. Since the transformer model

utilized signals in the frequency domain, the better performance for kinetic FoG is unsur-

prising, since kinetic FoG events are often paired with tremors more likely to be detected

using frequency domain inputs. With the classical models, only the freezing index feature

(ratio of the freezing powerband to the gait power band) directly captures information from

the frequency domain, which may have resulted in the lack of performance with kinetic

freezes. Specifically, the freezing index can appear to be large, which indicates a dominant

freezing band, during periods of little movement due to sensor noise [27]. This suggests

that the feature set selected for the tri-axial lumbar accelerometer for ternary classification

is more robust for akinetic freezing rather than kinetic. Furthermore, it would be bene-

ficial to investigate the performance of the transformer and classical models with a more

balanced set of frequency and time domain data (i.e., more frequency domain features for

the classical models less impacted by noise, and use of time domain signals along with

frequency domain for the transformer).
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Classical Model

To gain a better understanding of the performance of the classical models, the top classical

model test case, TS1 with LR, was analyzed by breaking up the test set into various groups.

As shown in section 5.3.2.1, the breakdown included the motor situation, FoG subgroup,

and participant.

Based on these breakdown results, a similar observation can be made to the overall analysis

where the LR model performs better when akinetic freezing is the dominant FoG subtype.

This trend is evident in the motor breakdown (see Table 5.9), where the model performs

best for right turn, left turn, and doorway motor situations. These motor situations are all

dominantly akinetic freezing. In contrast, forward walking is dominantly kinetic freezing

and sees a performance drop compared to akinetic freezing. This correlation with a drop in

performance and lack of akinetic freezing gives hints towards the LR not having particular

trouble with certain motor situations, but rather the types of freezing in those motor

situations. However, there is also the possibility that the drop in performance is the

byproduct of certain attributes, such as only linear movement, within the forward walking

motor situation.

Additionally, a similar pattern can be observed in both the subgroup breakdown (Table

5.10) and the participant breakdown (Table 5.11), with the LR model performing best

when akinetic freezing is the dominant type and when there is little kinetic freezing. For

example, participant 45PG in Table 5.11 has only kinetic freezing and the model performs

very poorly by classifying almost half of their trials as akinetic. It should also be noted

this pattern is not always consistent; for participant 28FV, akinesia is the dominant FoG

type, but the scores are only slightly higher than for participant 83OS. This lower score

from 28FV could be the result of the kinetic portion bringing down the scores, as there is

a moderate amount of this class. Regardless, this observation highlights a key limitation

apparent with the LR model, it has great difficulties capturing kinetic events with the

current information being passed into the model.

Another observation that can be made for the LR model is the reduced performance on
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milder freezers. This is difficult to represent for the motor situation and subgroup break-

downs but is evident in the participant breakdown (see Table 5.11). For certain par-

ticipants, such as 76CA, 85TL, and 93QN, the LR model struggles greatly with being

able to classify very few true positive instances of FoG, as shown through their F1-scores.

Participants 76CA and 93QN have the worst performance for these milder freezers, with

lower accuracy and specificity scores, indicating the model’s inability to predict FoG events

with proper temporal accuracy. Participant 85TL performed better, with only a few false

positives compared to the other individuals, resulting in higher accuracy and specificity

scores.

Overall, it can be said while the LR model is the best performing classical model, it is only

acceptable for bout classification for participant 39KR. This observed performance is likely

a byproduct of the features selected for the classical models. As mentioned, the feature set

is from parameters in the time domain, with only the extended freezing index being in the

frequency domain. This lack of frequency information could be a contributing factor to the

model’s limited ability to predict kinetic freezes. Based on the performance of participants

such as 45PG, it seems the model is still detecting freezing events, but is fitting them to

the akinetic class rather than the kinetic class. The poor performance on milder freezers

could be attributed to the model overfitting to stopping events, such as voluntary stops,

when there is a lack of freezing or akinetic freezing in particular.

On the other hand, performance when estimating severity is very good across participants.

More specifically, the LR model predicts the correct severity for seven out of ten individuals

for akinetic freezing and for six out of ten individuals for kinetic freezing. Across all par-

ticipants, the akinetic severity classification achieved an F1-score of roughly 76%, whereas

the kinetic severity classification achieved an F1-score of 60%. An additional benefit of the

severity estimates is error margins are within a neighbouring group (i.e., no severe freezers

were labelled mild, and vice versa). This better performance in severity estimation of each

class for the LR model indicates that the model is labelling freezing, but the exact timing of

the events rarely aligns with the true labels. This could potentially be because the classical

models are only capable of considering a single window at a time, making it more difficult
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to understand the surrounding conditions for correctly labelling the onset and offset of a

freezing bout. Also, this trouble with the exact onsets and offsets of the freezing bouts

could be another result of having no concrete clinical definition for the onset and offset of

a freeze, and hint toward the need for refinement of the current definitions [13].

Lastly, the performance of the severity estimations should be taken separately from the

automatic labelling performance, with no comparison between them. The severity esti-

mates are much more granular compared to the individual event labels and are a potential

contributor to the increase in performance.

Deep Network Model

Similar to the classical models, the deep model test case within the top five, TM2 with

transformer, was analyzed by the motor situation, FoG subgroup, and participant. As

opposed to the top classical model, the transformer appears to be less biased towards a

specific freezing type when breaking the performance down by specific groups. Specifically,

the overall confusion matrix for the transformer model showed kinetic freezing being the

favourite class out of the two FoG types. However, this trend is not followed when breaking

the analysis down by the motor situation, FoG subgroup, and participant.

Particularly, for motor situations (see Table 5.9), the transformer model does not perform

best for a single situation that is dominantly kinetic freezing. Instead, it performs best for

right turn which has over double the amount of akinetic freezing compared to kinetic freez-

ing. During the turning, left and right, the transformer does perform worse for specificity

indicating it has trouble identifying periods of non-FoG during the turning movements.

This could be potentially attributed to the increased number of voluntary pauses during

the turning as opposed to the linear motor situations. However, due to a large amount

of freezing, this does not reduce the F1-scores to below the values seen for forward walk-

ing and doorway. Also, from the subgroup breakdown (see Table 5.10), it was observed

the transformer model does not perform the best for the group that is dominantly kinetic

freezing, further highlighting the original hypothesis of the transformer model favouring
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the kinetic FoG class does not apply when subdividing the participants.

These findings indicate the lack of kinetic freezing alone does not reduce the performance

of the transformer model, and the input data is capable of describing both FoG subtypes,

as opposed to the difficulties seen with the classical models and the feature set. A possible

explanation may lie in specific behaviours within freezes exhibited during certain motor

situations or by certain FoG subgroups that confuse the model into classifying it as kinetic

freezing. For example, sensory attention freezers may manifest akinetic events that more

closely resemble a full akinetic freeze (i.e., no movement at all), whereas the other subgroups

may include slight movement or tremors during their akinetic events (but are still clinically

defined as akinesia).

When taking a look at the performance of the transformer model broken down by partic-

ipant, the previously observed trend from the overall performance also appears to falter.

Akin to the LR model, the only participant with acceptable scores was 39KR, and this

participant actually has the most amount of akinetic freezing in the entire population. This

might hint at the transformer performance not necessarily being tied to the dominance of

kinetic freezing but rather the total amount of freezing. This dependency is likely the

result of the deep network model considering 4 windows at a time in a single sequence, and

individuals that exhibit more severe freezing for both akinetic and kinetic often have longer

freezing bout durations for each subtype. This relationship can be observed by the positive

correlations between the number of consecutive FoG windows and time spent frozen for

both akinetic and kinetic freezing (see Figure 5.7). These longer bouts will help the sensor

data to reach a steady state throughout the entire sequence passed to the model, which

in turn could help diminish the number of false positives generated from labelling akinetic

freezing as kinetic or vice versa.

It should be noted some participants do in fact follow the trend observed from the overall

performance with the next two best-performing participants (45PG and 21DH) having

mainly kinetic freezing events. However, for both of these participants, there is still a large

amount of akinetic freezing predicted, further solidifying the fact the transformer model
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(a) Akinetic Freezes

(b) Kinetic Freezes

Figure 5.7: Relationship between the number of consecutive FoG windows and the time
spent frozen for akinetic and kinetic freezing across the ten participants in the Sydney
dataset.

has difficulty distinguishing between the subtypes of freezing.

As for the severity estimates from the transformer model, the estimates for each individual
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freezing class are worse than the LR model. However, when combining the labels for total

severity (i.e., akinetic and kinetic percentages combined), the model was able to correctly

classify seven out of ten individuals, with an F1-score of 58%. However, this is not specific

to the ternary domain, and would likely perform better in the binary classification since

the akinetic and kinetic labels would be competing, as seen in the ternary case. As well, it

should be noted again that this severity classification performance should not be directly

compared to the automatic labels due to differences in the granularity of the predictions.

These findings regarding the overall severity estimate suggest the transformer model suffers

more from the inability to distinguish the types of freezing. This difficulty in distinguishing

between the types of freezing could be a byproduct of the use of multiple window sequences

for a single sample inference. The model might be overcorrecting itself, creating a rapid

switch between the labels when the data is not able to achieve a steady state. Additionally,

this limitation could come down to a lack of post-calibration done for the probability

outputs, as well as the inclusion of only the frequency domain as input data.

Visualization

Taking the analysis a step further, Figures 5.4 to 5.6 help illustrate the performance of the

top two models broken down by trial and motor situation for a subset of participants. These

plots present the predicted and true FoG labels, along with the motor context labels in a

strip chart fashion. Each subfigure represents a different trial completed by the participant

with the following codes for the y-axis labels: 1) “Z” is regular Ziegler, 2) “ZC” represents

the Ziegler task while carrying a tray, 3) “ZCC” represents the Ziegler task while carrying

a tray and completing a computational task, 4) “ON” represents the on medication state,

and finally, 5) “OFF” represents the off medication state. Additionally, the legend on the

right side of the Figures illustrates the hatches and colours of the bars, as well as their

percentage overall for that specific individual’s trials (i.e., the percentage represents the

total time the label was annotated across all trials).

Examining the first trial breakdown, Figure 5.4, for participant 28FV, a moderate freezer
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overall, and moderate for both akinetic and kinetic freezing. Right away, it can be seen

the transformer model predicted quite a few more FoG bouts compared to the LR model,

resulting in many false positives. On the other hand, the LR model is conservative, missing

quite a few true FoG events, but when it does predict freezing, it often aligns well with

the true labels. Almost all of the events the LR model predicts are akinetic, following the

trend observed from the earlier breakdowns. As for the transformer model, it appears to

rapidly switch between the akinetic and kinetic classes when labelling bouts, which aligns

with the earlier hypothesis of difficulty distinguishing the FoG types.

Moving to the second trial breakdown, shown in Figure 5.5, for participant 39KR, an

individual who did not complete all six trials due to large amounts of freezing in their

“OFF” state. From this figure, while in their “ON” state they experienced no freezing,

but during their first instance of the “OFF” state they experienced copious amounts of

freezing. In particular, this individual experienced elongated bouts of akinetic freezes,

likely contributing to the excellent performance of both models. With longer bouts, the

data can hit a steady state, which helps the logistic regression model since it only considers

one window at a time. The transformer model also performs better with regard to akinetic

classification during these longer bouts. The issue of rapid changes from akinetic to kinetic

predicted labels still persists but to a lesser degree. The switching in this instance could

likely be attributed to movement within the akinetic freeze, but not enough to have it

labelled as a kinetic freeze during the annotations by Goh et al. [10]. Yet another instance

where the definition of the onset and offset of each FoG subtype could potentially be

refined. Lastly, for this individual, both models perform very well for the trials with no

freezing, with only a few instances of false positives. This indicates this individual has

very unique freezing characteristics, easily distinguishable from regular gait patterns and

voluntary stopping.

Finally, the last participant included in the trial breakdown was 93QN, another instance

of the deep heterogeneity observed in the Sydney dataset population, see Figure 5.6. This

individual exhibited no freezing events throughout all six trials. However, both models

predicted many freezing bouts, resulting in the worst performance from both models across
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all participants. In particular, the LR model seems to predict long periods of akinetic and

kinetic freezing, despite continuous movement by the individual. The transformer model

performs slightly better in this case but still predicts multiple instances of freezing for

every trial. This poor performance indicates severe differences in the gait patterns of

this individual compared to the others included in the training set. These differences

could include festination patterns or even slight hesitation in movement, not resulting

from freezing but from other cognitive tasks, such as the counting task. Additionally,

for this individual, the doorway situation made up the majority of their trials. This, in

combination with numerous false positives during the doorway situation, indicates the

models struggle with a reduction in pace or potentially variable pace when compared to

the training population. In this situation, per-participant calibration could be beneficial,

where a few benchmarking trials could be collected to calibrate the model outputs and

better fit the model on a per-participant basis.

5.4 Sensor Expansion

5.4.1 Results

When considering the other sensors along with the lumbar sensor the performance for the

top five models shown in Table 5.13 and Figure 5.8 were found. No test codes were used

for the sensor expansion due to only the Sydney dataset being utilized.

Model Training Data Accuracy Sensitivity Specificity Precision F1-Score
Neural Network Sydney 0.77 0.55 0.89 0.58 0.54
Logistic Regression Sydney 0.73 0.52 0.84 0.55 0.53
Support Vector Machine Sydney 0.59 0.56 0.60 0.60 0.53
Random Forest Sydney 0.76 0.38 0.96 0.57 0.45
K-Nearest Neighbour Sydney 0.71 0.36 0.90 0.49 0.42

Table 5.13: Performance metrics for the top five models for ternary freezing of gait classi-
fication when considering all sensors.
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(a) NN (b) LR (c) SVM

(d) RF (e) KNN

Figure 5.8: Ternary confusion matrics for the top five performing models when considering
all sensors.

Additionally, the performance for the second top model, LR, broken down by participant

can be seen in Table 5.14. The performance of the second top model was included for

comparison to the LR model when only using the lumbar accelerometer.

5.4.2 Discussion

When considering all sensors instead of just the lumbar accelerometer, the overall scores

of the models exhibit a slight increase, with the top model now being the NN. Figure 5.8

shows the error patterns observed during the lumbar ternary classification persist when
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Participant Accuracy Sensitivity Specificity Precision F1-Score True Akin. Severity Predicted Akin. Severity True Kin. Severity Predicted Kin. Severity
93QN 0.96 0.00 0.96 0.00 0.00 Mild (0.0%) Mild (3.85%) Mild (0.0%) Mild (0.0%)
85TL 0.97 0.00 0.98 0.00 0.00 Mild (0.0%) Mild (2.29%) Mild (0.76%) Mild (0.0%)
76CA 0.86 0.41 0.89 0.07 0.13 Mild (2.49%) Moderate (13.88%) Mild (3.56%) Mild (0.0%)
21DH 0.89 0.00 1.00 0.00 0.00 Mild (0.71%) Mild (0.0%) Mild (10.0%) Mild (0.0%)
54EJ 0.89 0.00 1.00 0.00 0.00 Mild (2.29%) Mild (0.0%) Mild (9.17%) Mild (0.0%)
83OS 0.79 0.00 0.96 0.00 0.00 Mild (1.01%) Mild (4.52%) Moderate (16.58%) Mild (0.0%)
45PG 0.80 0.00 1.00 0.00 0.00 Mild (0.0%) Mild (0.0%) Moderate (20.14%) Mild (0.0%)
28FV 0.61 0.58 0.63 0.45 0.49 Moderate (32.5%) Moderate (49.41%) Moderate (16.92%) Mild (9.05%)
97MU 0.34 0.01 1.00 0.97 0.02 Severe (64.57%) Mild (0.57%) Mild (2.29%) Mild (0.0%)
39KR 0.90 0.94 0.76 0.91 0.92 Severe (76.55%) Severe (79.25%) Mild (1.35%) Mild (0.0%)
Average 0.80 0.19 0.92 0.24 0.16 - - - -
SD 0.18 0.32 0.12 0.37 0.29 - - - -

Table 5.14: Performance metrics for the logistic regression model in ternary classification
when considering all sensors, broken down by individual within the Sydney dataset.

considering all sensors. While this performance increase while maintaining the same error

patterns is promising, it also suggests expanding the feature pool could potentially extract

more information and better overall performance. However, breaking the performance of

the LR model down by participant reveals a more nuanced picture. The boost in perfor-

mance comes from a select few participants, while others experience a drop in performance.

For instance, participant 39KR consistently achieves the best performance and attains an

F1-score above 90%, while participant 97MU’s F1-score drastically declines from the 50%

range to a score of zero, indicating no true positives were classified for any of the trials

(see Table 5.14).

The discrepancy in performance is particularly intriguing for participant 97MU who ex-

hibits large amounts of akinetic freezing. Throughout all of 97MU’s trials, the LR model

does not label any windows as kinetic despite the error patterns still showing better per-

formance for akinesia across all participants. Notably, the sensor set demonstrates an

improvement in severity estimates at the per-participant level, successfully classifying aki-

netic and kinetic severities in eight out of ten cases for both classes. This indicates the

expanded sensor set aids in differentiating between akinetic and kinetic movements over-

all but still struggles with temporal accuracy when classifying individual freezing bouts.

Lastly, this performance boost for severity estimates comes at the cost of extremely poor

performance for a subset of participants, such as 97MU, whose FoG type severities were

not properly classified. Therefore, while incorporating additional sensors shows promise in

certain aspects, it also underscores the need to address the variability in model performance
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when analyzing a heterogeneous group of freezers.
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Chapter 6

Conclusions & Recommendations

In this thesis, the objective was to investigate the ternary domain FoG classification with

wearable sensors through current classical and deep machine learning architectures. This

investigation had the following sub-objectives: 1) identification of suitable FoG datasets

that can be used for training and testing of machine learning models, 2) selection of both

classical and deep machine learning models based on binary classification in current liter-

ature, and optimizing the hyperparameters based on the selected datasets, 3) evaluation

of model performance on a holdout set of participants, and the impact motor situation

and subtype of the freezer have on the performance, and finally 4) the identification of

potential applications of the ternary models based on the observed performance.

The Ziegler and MJFF datasets were deemed to be suitable for this application with both

having ternary FoG labels and an overlapping sensor set of a singular tri-axial accelerom-

eter. With these datasets, a set of seven different models based on current literature were

tuned, trained and tested to provide performance metrics in the binary and ternary do-

mains. All testing was completed on the Sydney dataset because of the motor context and

FoG subgroup labelling throughout this dataset.

The performance for the binary domain was on the lower end but still aligned with what

is currently observed in the literature, indicating that the implementation of the signal
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processing and models was conducted to permit qualitative and (limited) quantitative

comparisons.

Moving on to the ternary domain, the results of the top five models indicate with the

current architectures and feature pools, accurate automatic labels are not possible for all

individuals. When testing the models on all participant’s data at once, the majority of the

classical models were observed to be biased toward akinetic freezing, while the deep model

was biased toward kinetic freezing. When breaking the test scenarios down further, it

was discovered that the top classical model, LR, struggled in dominantly kinetic scenarios,

and also struggled with temporal accuracy. As for the deep model, it did not follow the

trend of performing better in cases where the freezing was dominantly kinetic. Instead,

the deep model struggled more with the differentiation of the two subtypes. The drop

in akinetic performance is likely attributable to the challenge of differentiating types of

freezing, especially considering the larger amount of akinetic freezing throughout the test

set. In specific situations, such as large amounts of akinetic freezing for the classical

models and large amounts of freezing for the deep network models, the top-performing

models excelled. However, this was a minority of test cases and often F1-scores fell below

40%.

Moving away from the classification of individual bouts, and focusing purely on severity,

the model’s performance did improve. The top classical model, LR, was able to predict the

majority of participants’ akinetic and kinetic severity separately. The transformer model

did not perform as well for the individual subtype severities but did perform well when

predicting the overall severity (i.e., akinetic and kinetic severity combined).
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6.1 Recommendations

6.1.1 Applications

Based on the observed scores of the top two models, it can be concluded the automatic

ternary FoG classification using current feature pools and architectures is yet to be suffi-

ciently accurate for clinical use. However, this does not render the output of these models

useless; rather, it highlights that inferences produced by the ternary FoG classification

models should not be solely relied upon for accurate automatic labels. One potential ap-

plication of these models’ outputs is the use of severity predictions through the percent

time spent frozen, instead of the exact timing of each bout. The severity predictions are

on a much coarser scale compared to the individual bout labelling and showed higher per-

formance compared to the actual bout estimation with the top-performing model being

able to classify the akinetic severity for seven out of ten participants, making this classi-

fication more valuable for practical applications. For instance, these severity predictions

could be employed for long-term severity tracking, helping to identify whether an indi-

vidual’s symptoms are overall improving or worsening. This information, in turn, could

aid clinicians in determining the appropriate treatment direction for each patient. While

the severity estimates are not flawless, implementing per-participant calibration through

benchmark examinations could potentially mitigate errors observed for some individuals.

With this in mind, this free-living severity tracking should still not be independently used,

but paired with regular in-clinic checks to help provide more insight into an individual’s

disease progression in free-living. This combination of in-clinic assessments and continu-

ous monitoring through the models’ predictions could enhance the management of FoG in

patients.

Another potential application lies in utilizing the FoG prediction output as an annotation

tool. The model could initially process the data, highlighting areas of interest clinicians

might want to focus on more attentively during their analysis. While the models’ perfor-
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mance might not be strong enough to work independently of clinicians, they could still

streamline the annotation process by pinpointing potential FoG instances for further in-

spection.

6.1.2 Improvements

Building on the performance characterized during this work in the ternary FoG classifi-

cation space, the investigation of possible solutions should be continued. One promising

approach is to expand the quantity of data used and conduct a deeper exploration of

model architectures and hyperparameters. An essential next step would be to character-

ize the performance of calibrating the model to various groups and relate it back to the

non-calibrated models. Along with calibration, it may be beneficial to combine the models

discussed into a majority voting system to attenuate unique error patterns observed in

certain models.

The findings from the thesis suggest specifically examining voluntary stopping as a key

mechanism challenging the automatic detection of akinetic freezes. In this future inves-

tigation, an additional metric that should be included is the overlap of akinetic freeze

predictions with voluntary stopping labels, along with the true akinetic FoG labels. This

analysis would provide a better understanding of the frequency with which the model might

be misled by the lack of movement despite it being voluntary.

Moreover, the performance boost achieved by including the bilateral feet and sternum

sensors, along with angular velocity, suggests lumbar sensors alone might not be sufficient

for FoG detection, regardless of model complexity. Therefore, future FoG studies should

explore other sensor modalities and locations, as well as larger feature pools, to gain a

deeper understanding of the most informative features for FoG classification. Additional

sensor modality options include an electrocardiogram (ECG) to capture heart rate, which

has been shown to stay elevated during an involuntary stop (akinetic freeze) compared

to dropping instantly for voluntary stops among a population of freezers [27]. This could

aid in the classification of akinetic freezing. Furthermore, upper limb sensors could offer
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valuable free-living context by analyzing armswing waveforms and asymmetry. They may

also help in detecting periods of lack of balance, which are often correlated with freezing

events [57]. This inclusion of additional sensors could be used to pad the feature pool for

the classical models, and also help to improve the freezing type differentiation within the

transformer model.

Moving away from potential improvements of the classification models, based on the per-

formance in the ternary domain, further investigation into FoG definitions is warranted.

In particular, working towards defining quantitative thresholds for the onset and offset of

both akinetic and kinetic freezing would be desirable. The transformer model struggled

with movements within an already established akinetic bout, thus, revisiting the definitions

for when an akinetic or kinetic FoG transitions to another type or ends is necessary. These

thresholds could potentially be based on features such as displacement and velocity from

the common lumbar accelerometers, or features from other sensor modelaties.

In conclusion, continuing the exploration of these aspects in FoG detection can lead to

improved classification models and a more comprehensive understanding of this challenging

symptom in various contexts.
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Appendix A

Experiment Code

All code can be found on the following repository https://github.com/ahart97/fog_

classification and is only available upon request.
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Appendix B

Results Extended

B.1 Transformer Stock and Tuned Comparison

Below in Tables B.1 and B.2 are the comparison of the overall performance (i.e., on all

Syndey dataset participants) for the tuned version of the transformer model, and the stock

version with and without early stopping implemented.

Version Early Stopping Validation Loss Accuracy Sensitivity Specificity Precision F1-Score
Stock FALSE 0.86 0.72 0.56 0.80 0.60 0.58
Stock TRUE 0.33 0.72 0.51 0.83 0.62 0.56
Tuned TRUE 0.42 0.74 0.83 0.69 0.58 0.69

Table B.1: Comparison of the version of transformer models in binary classification. Stock
model with early stopping produces lowest (i.e., best) validation loss, while tuned model
produces highest (i.e., best) F1-score.

Version Early Stopping Validation Loss Accuracy Sensitivity Specificity Precision F1-Score
Stock FALSE 0.82 0.58 0.15 0.80 0.53 0.10
Stock TRUE 0.41 0.59 0.09 0.86 0.03 0.05
Tuned TRUE 0.85 0.59 0.47 0.66 0.42 0.42

Table B.2: Comparison of the version of transformer models in ternary classification. Stock
model with early stopping produces lowest (i.e., best) validation loss, while tuned model
produces highest (i.e., best) F1-score.
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B.2 All Sensors Feature Engineering

When considering all sensors, the features selected for the binary and ternary FoG classi-

fication can be seen in Table B.3 and B.4 respectively.
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Feature Sensor Types Sensor Locations Directions

Root mean squared

Acc.

Sternum AP
Right Foot AP, V
Left Foot AP
Lumbar AP, V

Gyro.
Right Foot AP, ML
Left Foot AP, V
Lumbar ML

Standard deviation

Acc.

Sternum AP, ML, V
Right Foot AP, ML, V
Left Foot AP, ML, V
Lumbar AP, ML, V

Gyro.

Sternum AP, ML, V
Right Foot AP, ML, V
Left Foot AP, ML, V
Lumbar AP, ML, V

Kurtosis

Acc.
Sternum ML
Right Foot AP
Lumbar AP

Gyro.
Sternum V
Right Foot AP, ML, V
Left Foot AP, V

Skewness Acc.
Sternum ML
Right Foot AP
Left Foot AP

Number of zero crossings Acc.

Sternum AP, ML, V
Right Foot AP, ML, V
Left Foot AP, V
Lumbar AP, ML

Table B.3: The 57 selected features based on ANOVA for binary freezing of gait classi-
fication when considering all sensors (AP - anterior-posterior, ML - medial-lateral, V -
vertical).
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Feature Sensor Types Sensor Locations Directions

Root mean squared

Acc.

Sternum AP
Right Foot AP, V
Left Foot AP
Lumbar AP, V

Gyro.

Sternum ML
Right Foot ML, AP, V
Left Foot AP
Lumbar ML, V

Standard deviation

Acc.

Sternum AP, ML, V
Right Foot AP, ML, V
Left Foot AP, ML, V
Lumbar AP, ML, V

Gyro.

Sternum AP, ML, V
Right Foot AP, ML, V
Left Foot AP, ML, V
Lumbar AP, ML, V

Kurtosis

Acc.
Sternum ML
Lumbar AP

Gyro.
Sternum V
Right Foot AP, ML, V
Left Foot AP, V

Skewness Acc.
Sternum ML
Right Foot AP

Number of dominant peaks Acc. Right Foot ML

Number of zero crossings Acc.

Sternum AP, ML, V
Right Foot AP, V
Left Foot AP, V
Lumbar AP, ML

Table B.4: The 57 selected features based on ANOVA for ternary freezing of gait clas-
sification when considering all sensors (AP - anterior-posterior, ML - medial-lateral, V -
vertical).
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B.3 All Sensors Hyperparameter Tuning

The hyperparameters found when utilizing all sensors for the classical model can be seen

in Table B.5.

Model Parameter Binary Tuned Value Ternary Tuned Value

LR
Penalty l1 l1
Inverse of Regularization Strength 9.6 8.9

RF
Number of Estimators 116 50
Criterion entropy entropy
Max Features log2 sqrt

SVM
Kernel rbf rbf
Regularization 6.5 8.6

KNN

Number of Neighbours 5 10
Weights unifrom distance
Algorithm brute brute
Leaf Size 40 100
Power Parameter for the Minkowski Metric 1 1

ADT

Number of Estimators 66 150
Criterion entropy log loss
Learning Rate 1.157895 2.868421
Max Features sqrt auto

NN

Batch Size 256 64
Activation relu relu
Initial Learning Rate 0.01 0.01
Number of Iterations with no Change 8 6
Hidden Layer Size 90 80
Solver adam adam

Table B.5: Optimal values found for the classical model hyperparameters during the tuning
procedure for both binary and ternary classification with all sensors.
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B.4 Additional Ternary Top Test Scores

The breakdown by the participant for the other three top models (ADT, SVM, and KNN)

can be seen in Tables B.6 to B.8.

B.4.1 Lumbar Sensor

Participant Accuracy Sensitivity Specificity Precision F1-Score True Akin. Severity Predicted Akin. Severity True Kin. Severity Predicted Kin. Severity
93QN 0.69 0.00 0.69 0.00 0.00 Mild (0.0%) Moderate (22.31%) Mild (0.0%) Mild (8.46%)
85TL 0.96 0.00 0.97 0.00 0.00 Mild (0.0%) Mild (1.53%) Mild (0.76%) Mild (1.53%)
76CA 0.75 0.00 0.80 0.00 0.00 Mild (2.49%) Mild (2.85%) Mild (3.56%) Moderate (16.37%)
21DH 0.87 0.47 0.92 0.47 0.47 Mild (0.71%) Mild (2.14%) Mild (10.0%) Mild (10.0%)
54EJ 0.78 0.04 0.87 0.11 0.06 Mild (2.29%) Moderate (10.55%) Mild (9.17%) Mild (3.21%)
83OS 0.67 0.17 0.77 0.21 0.19 Mild (1.01%) Mild (9.55%) Moderate (16.58%) Moderate (13.57%)
45PG 0.68 0.11 0.82 0.38 0.17 Mild (0.0%) Moderate (16.55%) Moderate (20.14%) Mild (5.76%)
28FV 0.56 0.37 0.75 0.48 0.41 Moderate (32.5%) Moderate (27.97%) Moderate (16.92%) Mild (6.7%)
97MU 0.62 0.49 0.88 0.86 0.62 Severe (64.57%) Moderate (35.43%) Mild (2.29%) Mild (5.71%)
39KR 0.51 0.41 0.89 0.91 0.56 Severe (76.55%) Moderate (34.23%) Mild (1.35%) Mild (8.89%)
Average 0.71 0.21 0.84 0.34 0.25 - - - -
SD 0.13 0.20 0.08 0.32 0.23 - - - -

Table B.6: Performance metrics for the AdaBoosted decision tree model (TS3) in ternary
classification broken down by individual within the Sydney dataset.

Participant Accuracy Sensitivity Specificity Precision F1-Score True Akin. Severity Predicted Akin. Severity True Kin. Severity Predicted Kin. Severity
93QN 0.00 0.00 0.00 0.00 0.00 Mild (0.0%) Severe (100.0%) Mild (0.0%) Mild (0.0%)
85TL 0.08 0.00 0.08 0.00 0.00 Mild (0.0%) Severe (90.08%) Mild (0.76%) Mild (2.29%)
76CA 0.05 0.41 0.03 0.01 0.02 Mild (2.49%) Severe (97.15%) Mild (3.56%) Mild (0.0%)
21DH 0.09 0.07 0.10 0.00 0.00 Mild (0.71%) Severe (90.0%) Mild (10.0%) Mild (0.0%)
54EJ 0.04 0.20 0.02 0.00 0.01 Mild (2.29%) Severe (98.62%) Mild (9.17%) Mild (0.0%)
83OS 0.25 0.03 0.29 0.00 0.00 Mild (1.01%) Severe (65.83%) Moderate (16.58%) Mild (0.5%)
45PG 0.19 0.00 0.24 0.00 0.00 Mild (0.0%) Severe (66.19%) Moderate (20.14%) Mild (2.88%)
28FV 0.33 0.64 0.02 0.21 0.32 Moderate (32.5%) Severe (97.65%) Moderate (16.92%) Mild (0.17%)
97MU 0.25 0.32 0.09 0.40 0.36 Severe (64.57%) Severe (52.0%) Mild (2.29%) Mild (0.57%)
39KR 0.68 0.86 0.02 0.73 0.79 Severe (76.55%) Severe (90.03%) Mild (1.35%) Mild (0.27%)
Average 0.19 0.25 0.09 0.14 0.15 - - - -
SD 0.19 0.29 0.10 0.24 0.25 - - - -

Table B.7: Performance metrics for the support vector machine model (TM4) in ternary
classification broken down by individual within the Sydney dataset.

B.4.2 All Sensors

The breakdown by the participant for the other top four models (NN, SVM, RF, and KNN)

when considering all sensors instead of just the lumbar accelerometer can be seen in Tables

B.9 to B.12.
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Participant Accuracy Sensitivity Specificity Precision F1-Score True Akin. Severity Predicted Akin. Severity True Kin. Severity Predicted Kin. Severity
93QN 0.79 0.00 0.79 0.00 0.00 Mild (0.0%) Moderate (20.0%) Mild (0.0%) Mild (0.77%)
85TL 0.98 0.00 0.99 0.00 0.00 Mild (0.0%) Mild (0.76%) Mild (0.76%) Mild (0.0%)
76CA 0.66 0.35 0.68 0.03 0.06 Mild (2.49%) Moderate (28.83%) Mild (3.56%) Mild (4.98%)
21DH 0.84 0.07 0.93 0.00 0.01 Mild (0.71%) Moderate (10.71%) Mild (10.0%) Mild (0.0%)
54EJ 0.83 0.00 0.94 0.00 0.00 Mild (2.29%) Mild (5.96%) Mild (9.17%) Mild (0.92%)
83OS 0.53 0.11 0.62 0.21 0.09 Mild (1.01%) Moderate (39.2%) Moderate (16.58%) Mild (4.52%)
45PG 0.60 0.00 0.75 0.00 0.00 Mild (0.0%) Moderate (28.78%) Moderate (20.14%) Mild (0.0%)
28FV 0.57 0.23 0.90 0.50 0.29 Moderate (32.5%) Moderate (18.93%) Moderate (16.92%) Mild (0.5%)
97MU 0.46 0.25 0.88 0.81 0.36 Severe (64.57%) Moderate (17.71%) Mild (2.29%) Moderate (15.43%)
39KR 0.40 0.25 0.93 0.91 0.38 Severe (76.55%) Moderate (20.49%) Mild (1.35%) Mild (4.31%)
Average 0.67 0.13 0.84 0.25 0.12 - - - -
SD 0.18 0.13 0.12 0.34 0.15 - - - -

Table B.8: Performance metrics for the k-nearest neighbours model (TS5) in ternary clas-
sification broken down by individual within the Sydney dataset.

Participant Accuracy Sensitivity Specificity Precision F1-Score True Akin. Severity Predicted Akin. Severity True Kin. Severity Predicted Kin. Severity
93QN 0.96 0.00 0.96 0.00 0.00 Mild (0.0%) Mild (3.85%) Mild (0.0%) Mild (0.0%)
85TL 0.97 0.00 0.98 0.00 0.00 Mild (0.0%) Mild (2.29%) Mild (0.76%) Mild (0.0%)
76CA 0.86 0.41 0.89 0.07 0.13 Mild (2.49%) Moderate (13.88%) Mild (3.56%) Mild (0.0%)
21DH 0.89 0.00 1.00 0.00 0.00 Mild (0.71%) Mild (0.0%) Mild (10.0%) Mild (0.0%)
54EJ 0.89 0.00 1.00 0.00 0.00 Mild (2.29%) Mild (0.0%) Mild (9.17%) Mild (0.0%)
83OS 0.79 0.00 0.96 0.00 0.00 Mild (1.01%) Mild (4.52%) Moderate (16.58%) Mild (0.0%)
45PG 0.80 0.00 1.00 0.00 0.00 Mild (0.0%) Mild (0.0%) Moderate (20.14%) Mild (0.0%)
28FV 0.61 0.58 0.63 0.45 0.49 Moderate (32.5%) Moderate (49.41%) Moderate (16.92%) Mild (9.05%)
97MU 0.34 0.01 1.00 0.97 0.02 Severe (64.57%) Mild (0.57%) Mild (2.29%) Mild (0.0%)
39KR 0.90 0.94 0.76 0.91 0.92 Severe (76.55%) Severe (79.25%) Mild (1.35%) Mild (0.0%)
Average 0.80 0.19 0.92 0.24 0.16 - - - -
SD 0.18 0.32 0.12 0.37 0.29 - - - -

Table B.9: Performance metrics for the neural network model in ternary classification with
all sensors broken down by individual within the Sydney dataset.

Participant Accuracy Sensitivity Specificity Precision F1-Score True Akin. Severity Predicted Akin. Severity True Kin. Severity Predicted Kin. Severity
93QN 0.82 0.00 0.82 0.00 0.00 Mild (0.0%) Mild (2.31%) Mild (0.0%) Moderate (15.38%)
85TL 0.49 0.00 0.49 0.00 0.00 Mild (0.0%) Mild (1.53%) Mild (0.76%) Moderate (48.85%)
76CA 0.37 0.71 0.35 0.11 0.18 Mild (2.49%) Mild (9.96%) Mild (3.56%) Severe (56.94%)
21DH 0.85 0.53 0.89 0.32 0.40 Mild (0.71%) Mild (0.0%) Mild (10.0%) Moderate (16.43%)
54EJ 0.61 0.60 0.61 0.13 0.21 Mild (2.29%) Mild (0.0%) Mild (9.17%) Moderate (43.12%)
83OS 0.62 0.77 0.59 0.27 0.40 Mild (1.01%) Mild (0.5%) Moderate (16.58%) Moderate (47.24%)
45PG 0.79 0.50 0.86 0.48 0.49 Mild (0.0%) Mild (0.0%) Moderate (20.14%) Moderate (20.86%)
28FV 0.42 0.33 0.50 0.40 0.30 Moderate (32.5%) Moderate (14.41%) Moderate (16.92%) Moderate (44.22%)
97MU 0.31 0.03 0.88 0.00 0.00 Severe (64.57%) Mild (0.0%) Mild (2.29%) Severe (60.0%)
39KR 0.91 0.97 0.67 0.88 0.93 Severe (76.55%) Severe (84.37%) Mild (1.35%) Mild (0.54%)
Average 0.62 0.44 0.67 0.26 0.29 - - - -
SD 0.21 0.33 0.18 0.26 0.27 - - - -

Table B.10: Performance metrics for the support vector machine model in ternary classi-
fication with all sensors broken down by individual within the Sydney dataset.

Participant Accuracy Sensitivity Specificity Precision F1-Score True Akin. Severity Predicted Akin. Severity True Kin. Severity Predicted Kin. Severity
93QN 1.00 0.00 1.00 0.00 0.00 Mild (0.0%) Mild (0.0%) Mild (0.0%) Mild (0.0%)
85TL 0.99 0.00 1.00 0.00 0.00 Mild (0.0%) Mild (0.0%) Mild (0.76%) Mild (0.0%)
76CA 0.86 0.24 0.91 0.05 0.09 Mild (2.49%) Moderate (11.03%) Mild (3.56%) Mild (0.71%)
21DH 0.89 0.00 1.00 0.00 0.00 Mild (0.71%) Mild (0.0%) Mild (10.0%) Mild (0.0%)
54EJ 0.89 0.00 1.00 0.00 0.00 Mild (2.29%) Mild (0.0%) Mild (9.17%) Mild (0.0%)
83OS 0.81 0.00 0.99 0.00 0.00 Mild (1.01%) Mild (0.5%) Moderate (16.58%) Mild (0.5%)
45PG 0.80 0.00 1.00 0.00 0.00 Mild (0.0%) Mild (0.0%) Moderate (20.14%) Mild (0.0%)
28FV 0.62 0.31 0.93 0.42 0.35 Moderate (32.5%) Moderate (23.45%) Moderate (16.92%) Mild (0.0%)
97MU 0.37 0.06 0.98 0.85 0.11 Severe (64.57%) Mild (4.57%) Mild (2.29%) Mild (2.86%)
39KR 0.75 0.72 0.84 0.92 0.81 Severe (76.55%) Severe (60.11%) Mild (1.35%) Mild (0.0%)
Average 0.80 0.13 0.96 0.22 0.14 - - - -
SD 0.18 0.22 0.05 0.35 0.25 - - - -

Table B.11: Performance metrics for the random forest model in ternary classification with
all sensors broken down by individual within the Sydney dataset.
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Participant Accuracy Sensitivity Specificity Precision F1-Score True Akin. Severity Predicted Akin. Severity True Kin. Severity Predicted Kin. Severity
93QN 0.95 0.00 0.95 0.00 0.00 Mild (0.0%) Mild (3.85%) Mild (0.0%) Mild (0.77%)
85TL 0.98 0.00 0.98 0.00 0.00 Mild (0.0%) Mild (1.53%) Mild (0.76%) Mild (0.0%)
76CA 0.70 0.29 0.73 0.05 0.09 Mild (2.49%) Moderate (14.59%) Mild (3.56%) Moderate (13.88%)
21DH 0.89 0.00 0.99 0.00 0.00 Mild (0.71%) Mild (1.43%) Mild (10.0%) Mild (0.71%)
54EJ 0.85 0.00 0.96 0.00 0.00 Mild (2.29%) Mild (5.96%) Mild (9.17%) Mild (0.0%)
83OS 0.79 0.00 0.96 0.00 0.00 Mild (1.01%) Mild (4.02%) Moderate (16.58%) Mild (0.0%)
45PG 0.80 0.00 1.00 0.00 0.00 Mild (0.0%) Mild (0.0%) Moderate (20.14%) Mild (0.0%)
28FV 0.52 0.19 0.85 0.34 0.24 Moderate (32.5%) Moderate (19.6%) Moderate (16.92%) Mild (3.02%)
97MU 0.45 0.20 0.95 0.89 0.32 Severe (64.57%) Moderate (14.29%) Mild (2.29%) Moderate (13.71%)
39KR 0.75 0.75 0.74 0.90 0.81 Severe (76.55%) Severe (63.88%) Mild (1.35%) Mild (8.09%)
Average 0.77 0.14 0.91 0.22 0.15 - - - -
SD 0.16 0.23 0.10 0.35 0.25 - - - -

Table B.12: Performance metrics for the k-nearest neighbours model in ternary classifica-
tion with all sensors broken down by individual within the Sydney dataset.
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B.5 Strip Charts

The strip charts for the top two models (LR and the transformer) for the remaining par-

ticipants can be seen in Figures B.1 to B.7.
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