
Aggressiveness-regulated Multi-agent
Stress Testing of Autonomous

Vehicles

by

Xiaoliang Zhou

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2023

© Xiaoliang Zhou 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The emerging era of autonomous vehicles (AVs) presents unprecedented potential for
transforming global transportation. As these vehicles begin to permeate our streets, the
challenge of ensuring their safety, especially in unprecedented scenarios, looms large, due to
the infrequent occurrence of high-risk scenarios within an essentially infinite number of test
cases. This Master’s thesis explores the intricate challenge of stress testing autonomous
vehicles in simulated environments. The study delves into the application of multi-agent
reinforcement learning (MARL) as a tool for stress testing AVs. Although MARL demands
higher computational resources, it demonstrates strong ability in uncovering complex ac-
cident scenarios. This marks a shift from the state-of-the-art which deploys single-agent
reinforcement algorithms that encounter limitations both in the quality of the generated
accident scenarios and in their ability to generate complex accident scenarios as the number
of traffic participants increases. Central to our approach is the integration of constraints
that regulate the level of aggressiveness of traffic participants to induce more realistic and
insightful accident scenarios. The thesis also presents the highway-attack-env, an environ-
ment for black-box AV testing that allows the assessment of both single and multi-agent
reinforcement learning algorithms. The contributions of this research include the intro-
duction of the aforementioned environment and a comprehensive benchmark, as well as a
comparative analysis of single-agent and MARL algorithms, underscoring the superiority
of the proposed multi-agent, aggressiveness-regulated methodology for AV validation.

iii

Acknowledgements

I would like to thank my supervisors Professor Mark Crowley and Professor Seyed Majid
Zahedi for their invaluable mentorship throughout my master’s journey. Their unwavering
support was instrumental in the realization of my research.

I’m equally thankful to my parents and my life partner Xiaomeng Lei for all their love
and support.

I also want to thank all members in the Multi-agent Systems Team and ECE Machine
Learning Lab for their kindness.

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Summary of Contributions . 3

1.2 Organization of Thesis . 3

2 Related Work 4

2.1 AV Falsification Methods . 4

2.2 Reinforcement Learning Usage in Black-box AV Stress Testing 5

3 Background 7

3.1 Reinforcement Learning Basics . 7

3.1.1 Markov Decision Process . 7

3.1.2 Reinforcement Learning Algorithm 8

v

3.2 Vanilla Policy Gradient and Trust Region Methods 9

3.2.1 Vanilla Policy Gradient . 9

3.2.2 Actor-Critic Method . 10

3.2.3 Surrogate Loss and Trust Region 10

3.3 Constrained Policy Optimization . 12

3.3.1 Constrained Markov Decision Process 13

3.3.2 Constrained Policy Optimization Algorithm 13

3.4 Multi-agent Reinforcement Learning Methods 14

3.4.1 Multi-agent Markov Decision Process and Markov Games 15

3.4.2 Multi-agent Reinforcement Learning Challenges 15

3.4.3 Multi-agent Trust Region Methods 16

3.4.4 Multi-agent Constrained Policy Optimization 17

4 Simulation Environment 19

4.1 Framework for Autonomous Vehicle Stress Testing 19

4.2 Termination Conditions and Absorbing State 20

4.3 Observation Space . 21

4.4 Action Space . 22

4.5 Reward . 22

4.6 Cost . 23

5 Methodology and Experiments 25

5.1 Design of the Target Agent . 25

5.2 Comparison of algorithms . 26

5.3 Experiments . 28

5.3.1 Experiments on a Fixed Starting Position 28

5.3.2 Experiments on Random Starting Positions 35

vi

6 Conclusions and Future Works 42

6.1 Conclusions . 42

6.2 Future Directions . 43

References 44

vii

List of Figures

4.1 Example environment starting positions of the agents, where the target
agent is highlighted in yellow, while the attacker agents are colored in green. 20

5.1 The fixed starting positions of the agents, where the target agent is high-
lighted in yellow, while the attacker agents are colored in green. 28

5.2 The training result of TRPO and HATRPO on the fixed starting scenario
using target0. 30

5.3 The training result of TRPO and HATRPO on the fixed starting scenario
using target1 . 30

5.4 The unrealistic accident found by TRPO algorithm on target0 31

5.5 The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on
fixed starting scenario using target0. 33

5.6 The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on
fixed starting scenario using target1. 33

5.7 The zero cost accident involving target0 found by all the algorithms, except
for CPO. 35

5.8 The zero cost accident involving target1 found by MACPO. 35

5.9 The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on
random starting scenario using target0 with close vehicle cost equals 20. . 37

5.10 The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on
random starting scenario using target0 with close vehicle cost equals 15. . 37

5.11 The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on
random starting scenario using target0 with close vehicle cost equals 10. . 37

viii

5.12 The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on
random starting scenario using target0 with close vehicle cost equals 5. . . 38

5.13 The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on
random starting scenario using target1 with close vehicle cost equals 20. . 38

5.14 The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on
random starting scenario using target1 with close vehicle cost equals 15. . 38

5.15 The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on
random starting scenario using target1 with close vehicle cost equals 10. . 39

5.16 The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on
random starting scenario using target1 with close vehicle cost equals 5. . . 39

ix

List of Tables

4.1 DiscreteMeta action space . 22

4.2 Aggressive or unrealistic behavior that will issue cost 23

5.1 List of key hyperparameters . 29

5.2 Number of “solved” starting scenarios after 2000 testing episodes 36

x

Chapter 1

Introduction

The development of autonomous vehicles (AVs) stands at the forefront of groundbreak-
ing innovations in transportation. As the combination of machine learning and robotics
transforms our roads, the promise of safer, more efficient, and environmentally friendly
transportation emerges. However, with any paradigm shift, challenges arise, and in the
case of AVs, one of the most significant hurdles is validation.

Autonomous vehicle validation is not merely about ensuring that the vehicle operates
correctly under typical conditions but about proving that it can handle the rarest, most
dangerous scenarios that could arise on the road. To understand the full scope of this
challenge, it is important to note that the risks of AV technologies remain largely uncharted.
Fatal accidents involving AVs underscore the pressing need to determine if AVs can safely
coexist with humans. Real-world testing, while the most direct method, is time-consuming
and, at times, dangerous due to the infrequency of severe accidents.

Simulation-based testing has emerged as a more economical and efficient alternative to
real-world testing. Much effort has been made both in industry and in academia to build
realistic simulations [14] [40]. However, due to the substantial computational overhead
associated with high-fidelity simulators, this Master’s thesis employs a more simplified AV
simulation environment for the experiments, which is adapted from highway-env [28]. Ad-
ditionally, AV validation under normal driving conditions is insufficient for revealing the
full spectrum of vulnerabilities within an AV system, given the rarity of these high-risk
scenarios. In our thesis, we focus on the AV stress testing problem instead, in which we
design adversarial agents tasked with the objective of compromising the target AV sys-
tem, thereby generating failure scenarios that offer revealing insights into its weaknesses.
Moreover, we acknowledge that not every accident involving the target AV system serves

1

as a constructive input for its improvement. There exist unavoidable accidents that can-
not be attributed to the target AV system. Additionally, given that the search space for
failure scenarios grows exponentially with the number of traffic participants in the simu-
lated environment, the search for realistic and insightful accidents becomes a challenging
problem.

Reinforcement learning (RL), particularly deep RL, powered by neural networks, has
shown remarkable efficacy across a wide array of complex tasks. Several studies have
leveraged RL as an approach to tackle different tasks in autonomous driving. In particular,
RL algorithms have been effectively applied to solve the AV motion planning task across
a range of scenarios [24] [20] [36] [33]. On the challenge of AV stress testing, adaptive
stress testing method has been utilized to find likely failure scenarios [25], where Trust
Region Policy Optimization (TRPO) [37] is employed as a solver to handle the sequential
decision making problem of finding failure scenarios. Following the naming convention of
RL, we name the target AV system as the target agent, and the other traffic participants
as the attacker agents. To the best of our knowledge, only single-agent RL algorithms are
explored in the literature of AV stress testing, which typically suffers from two issues:

• Given the exponential growth of the search space, single-agent RL algorithms might
fall short of detecting complex failure scenarios that involve multiple traffic partici-
pants.

• The identified failure scenarios are often unavoidable and unrealistic, offering limited
utility for enhancing the AV system.

To address the issue of search space complexity, we argue that conceptualizing the AV
stress testing problem within a multi-agent framework, where agents are independently
controlled, could offer substantive advantages. In this context, this Master’s thesis focuses
on a more complex but arguably more natural scenario: defining the AV stress testing
problem as a multi-agent MDP and leveraging multi-agent reinforcement learning (MARL)
algorithms to stress test AVs. This approach allows each agent to optimize independently
while guided by a centralized value estimation shared across the agents, which encourages
coordinated behavior between the agents and leads to discovery of more interesting failure
scenarios.

To improve realism, we introduce safety constraints into the learning process of the
attacker agents. In many real-world applications, agents are frequently deterred from
accessing certain states or actions labeled as “unsafe.” Addressing these constraints while
ensuring the learning agents achieve their goals is paramount. While this sentiment can

2

be employed by the training of safer AVs, we contend that the same philosophy can be
adapted to the context of AV stress testing. Specifically, these constraints can serve to
regulate the actions of attacker agents, thereby encouraging the generation of accident
scenarios in which attacker agents perform less unrealistic actions. Such accidents provide
more insights into the vulnerabilities inherent in the AV system.

In essence, this thesis not only delves into the complexities of stress testing AVs in a
simulated environment but also emphasizes generating insightful accidents by constraining
attacker agents’ behavior in a multi-agent setting. The ultimate objective is to create a
more insightful and realistic stress testing framework for AVs, ensuring their safe integra-
tion into our daily lives.

1.1 Summary of Contributions

Our contributions are two-fold:

• We introduce a simulation environment highway-attack-env featuring black-box au-
tonomous vehicle testing, which enables both single-agent and multi-agent reinforce-
ment learning algorithms to be tested. Additionally, we provide a benchmark to
evaluate the performance of different RL algorithms on the AV stress testing prob-
lem.

• We introduce multiagency and aggressiveness regulation into the AV stress testing
problem to more effectively find useful accidents. We compare several single-agent
and multi-agent reinforcement learning algorithms in the literature on our proposed
environment and the benchmark to justify our proposal.

1.2 Organization of Thesis

In Chapter 2, we provide an overview of existing research related to black-box AV stress
testing. Chapter 3 delves into the foundational concepts of single-agent and multi-agent
reinforcement learning, the constrained Markov Decision Process, and the algorithms that
we compared in this thesis. Chapter 4 offers a detailed description of our proposed simula-
tion environment, specifically designed for black-box AV stress testing. Chapter 5 presents
our method of introducing multiagency and aggressiveness regulation, and will provide
an in-depth discussion of our experimental results. Finally, Chapter 6 summarizes our
contributions and experimental findings, and outlines potential future research directions.

3

Chapter 2

Related Work

Stress testing for AVs is typically conducted in a black-box fashion, primarily due to
intellectual property (IP) constraints preventing access to the target agent’s model. Fur-
thermore, even when such models are accessible, directly inspecting those based on deep
neural networks rarely offers a thorough understanding of the model’s behavior. In [9],
Corso et al. provide a nice survey of algorithms for black-box AV validation problem.
They classify the safety validation task into three categories:

• Finding the adversarial disturbances of the system that cause the target agent to fail
(falsification).

• Finding the most-likely failure cases.

• Estimating the probability of failure of the system.

This thesis focuses on the quality of accidents generated, which falls into the first category.
While many different approaches have been proposed on other categories [22] [34] [11], we
focus our first part of literature review on the falsification methods. Additionally, rein-
forcement learning has emerged as a promising approach in AV stress testing, we dedicate
another section to provide an overview of the usage of reinforcement learning in the stress
testing of AVs.

2.1 AV Falsification Methods

We’d like to acknowledge that [21] offers a thorough examination of falsification methods.
Some of the works we spotlight in this section have been elaborated upon in [21]. Ab-

4

bas et al. [1] introduce an automated framework to identify dangerous scenarios for AVs.
Their method involves a grid-search across a discretized state space that defines parame-
ters such as the starting position of the autonomous vehicle, weather conditions, and the
position and velocity of other vehicles. They choose Grand Theft Auto Five (GTA5) as
their simulation environment and discuss the necessary simulator attributes to ensure that
accidents identified in the virtual environment can be translated to real-world scenarios.
While Abbas et al. invest significant effort into evaluating the perception algorithms, our
study is solely centered on the motion planning module, assuming that the AV has accurate
knowledge of the position and velocity of surrounding vehicles.

Koschi et al. [26] put forward the idea of utilizing rapidly-exploring random trees,
supplemented by domain knowledge, to falsify an Adaptive Cruise Control (ACC) system.
Their approach leverages domain knowledge to classify “unsafe” states, which are more
prone to result in collisions. Their findings reveal that their technique can effectively falsify
sophisticated ACC systems, achieving greater computational efficiency in the process. Li
et al. [29] also employ domain knowledge in the search for scenarios likely to result in
collisions. Furthering this, they present AV-FUZZER, an framework that employs genetic
algorithms to randomly control traffic participants and discard states that are not safety-
critical. Similarly, our study incorporates domain knowledge to assess the aggressiveness
of traffic participants, encouraging the generation of more insightful accidents.

2.2 Reinforcement Learning Usage in Black-box AV

Stress Testing

We want to underscore the success of employing reinforcement learning in AV falsification.
Specifically, Koren et al. [25] propose to model the black-box AV stress testing problem as a
Markov Decision Process and apply the Adaptive Stress Testing (AST) strategy to find the
most-likely failure scenarios of the target agent, where reinforcement learning algorithms
are adopted as solvers to the sequential decision making process. Even though their goal
is to find the most likely failure scenarios of the AV, the adaptive stress testing strategy
can be used in a broader scheme to search for adversarial disturbance that will cause
accidents. Their work showed the successful construction of an adversarial policy against
the black-box target agent, while whether the accidents generated are insightful or not is
not specifically addressed. Corso et al. [6] also integrate Responsibility Sensitive Safety
(RSS) and trajectory dissimilarity into the reward function, enabling AST to generate a
wider range of accidents that are of greater interest. In contrast, our research takes a

5

different approach by regulating the level of aggressiveness exhibited in the actions of the
attacker agents.

Corso et al. [7] introduce an adaptive importance sampling approach to enhance rein-
forcement learning algorithms for rare event simulation, allowing for a more comprehensive
exploration of potential failure scenarios. Ding et al. [13] [12] propose to combine rein-
forcement learning with generative model to facilitate the generation of risky scenarios.
Notably, Feng et al. [15] propos Dense Deep Reinforcement Learning (D2RL) algorithm to
address the curse of dimensionality and the curse of rarity in the AV stress testing prob-
lem by removing the non-critical states from the Markov chain with the help of domain
knowledge. They show that D2RL was able to find accidents that were intractable for reg-
ular deep reinforcement learning algorithm to find. Our approach addresses this problem
differently by introducing multi-agency, which helps in escaping local optima and avoiding
premature convergence.

6

Chapter 3

Background

In this chapter, we provide the technical background of the algorithms that will be explored
in the subsequent chapters of the thesis.

3.1 Reinforcement Learning Basics

In this section, we give a concise introduction to the fundamentals of reinforcement learning,
including the Markov Decision Process and the general reinforcement learning paradigm.

3.1.1 Markov Decision Process

An MDP, or Markov Decision Process, is characterized by the tuple (S,A,P,R, ρ0, γ):

• S denotes the state space, or all possible states. A state comprised all the information
needed to make a decision of the next time step.

• A denotes the action space. An action is a choice of decision an agent can make
when in a particular state.

• P(s′|s, a) is the state transition function, indicating the likelihood of transitioning
from current state s to the next state s′ after taking action a. The Markov property
ensures that this probability is influenced solely by the current state-action pair and
not any previous states or actions.

7

• R : S×A→ R is the reward function, mapping a state-action pair to a real-valued
reward.

• ρ0 denotes the probability distribution of initial states.

• γ is the discount factor, determining the balance between immediate and future
rewards. Furthermore, it ensures that the cumulative reward remains finite, even
within an infinite horizon MDP.

3.1.2 Reinforcement Learning Algorithm

Reinforcement learning (RL) is a technique designed to solve a Markov Decision Process.
In RL, two primary entities exist: the agent and the environment. The environment
is responsible for managing state transitions and providing the agent with observations
and rewards. Based on the observation, the agent then decides the subsequent action
to take. Note that, the observation from the environment might differ from its state;
when it does, the environment is considered to be partially observable, making the MDP
a Partially Observable Markov Decision Process (POMDP). Here we define the return G,
as the discounted sum of future rewards:

G =
∞∑
t=0

γtR(st, at)

The main objective of RL is to discover a policy, a rule for selecting actions, denoted as
π : S×A→ [0, 1], that optimizes this return.

In the following, we outline the definitions of some essential functions that are used
throughout this chapter:

• The value function for a given policy π is represented as:

Vπ(st) = Eat∼π(at|st),st+1∼P(st+1|st,at),...

[
∞∑
l=0

γlr(st+l, at+l)

]
,

denoting the expected discounted sum of reward for policy π starting at state st.

• The state-action value function associated with policy π is defined as:

Qπ(st, at) = Est+1∼P(st+1|st,at),at+1∼π(at+1|st+1),...

[
∞∑
l=0

γlr(st+l, at+l)

]
,

8

denoting the expected discounted sum of reward for policy π starting at state st,
given that the action taken at st is at .

• The advantage function for policy π is given by:

Aπ(s, a) = Qπ(s, a)− Vπ(s).

3.2 Vanilla Policy Gradient and Trust Region Meth-

ods

Policy gradients (PG) are one of the fundamental methods used in reinforcement learning.
Characterized as an on-policy learning technique, it relies on data acquired from the current
policy. PG operates by calculating the gradient of a specified loss function to directly
propose updates to the policy π. In this section, we present a brief overview of the basic
Policy Gradient, alongside its extension, the actor-critic method. Subsequently, we delve
into two of its notable variations: Trust Region Policy Optimization (TRPO) [37] and
Proximal Policy Optimization (PPO) [39].

3.2.1 Vanilla Policy Gradient

The essence of the policy gradient technique is to update the policy π through the gradient
of a designated loss function. We can define a trajectory τ spanning a length T as a finite
sequence of (s, a, r) tuples: τ = (s0, a0, r0, s1, a1, r1, ..., sT−1, aT−1, rT−1). Herein, we use
r to denote the output from the reward function, specified as: rt = R(st, at). For an
estimation of the expectation using a collection of N trajectories, we denote the set of
trajectories as D = {τ1, τ2, ..., τN}.

Consider a policy π parameterized by θ. The optimization problem addressed by PG
can be formulated as:

maximize
θ

Es0∼ρ0,at∼πθ,st∼P

[
∞∑
t=0

γtR(st, at)

]
(3.1)

The result gradient, denoted as g, for the aforementioned objective function can be
derived as:

g =
1

N

∑
τ∈D

∞∑
t=0

Gt∇ log πθ(at|st) (3.2)

9

Subsequently, the policy parameter θ is updated by applying gradient ascent using the
step size α.

θk+1 = θk + αgk

3.2.2 Actor-Critic Method

Given the high variance when utilizing the return Gt, alternative functions often serve as
replacements. In this chapter, the advantage function A(st, at) is adopted, which is common
in the actor-critic variety of policy gradient techniques [17]. For actor-critic methodologies,
the term ’actor’ denotes the policy π, while ’critic’ denotes the assessment of the value of a
given state, often represented by the value function V parameterized by ϕ. Subsequently,
the advantage function is approximated using Vϕ and the trajectories’ rewards. Numerous
techniques exist for approximating the advantage function, among which the Generalized
Advantage Estimate (GAE) [38] is the most widely utilized option. In essence, actor-
critic approaches employ a trained value function to approximate the advantage function,
directing the update of the policy. The actor-critic algorithm is shown in Algorithm 1.

3.2.3 Surrogate Loss and Trust Region

The fundamental challenge with the Vanilla Policy Gradient technique is its sensitivity to
the choice of the step size α. Given that PG directly updates the parameter space, minor
modifications in parameters can induce significant shifts in the policy. This can lead to
the undesired effect of forgetting prior learned behaviors. Hence, maintaining a small step
size becomes crucial, which leads to suboptimal sample efficiency.

Trust Region Policy Optimization (TRPO) [37] introduces a surrogate loss, rooted in
the policy improvement bound introduced by [23]. This loss takes into account the KL
divergence between new and old policies. Rather than viewing the KL divergence as a
penalization term in the objective function, TRPO treats it as a constraint within the
optimization problem. This leads to larger step sizes and they named it as the trust
region constraint. A trust region represents a sphere in the policy space wherein any
policy updates are deemed reliable and safe. By ensuring policy updates remain within
this defined region, TRPO offers theoretical assurances on the monotonic improvement
of the objective function, typically characterized by expected cumulative rewards or a
corresponding performance metric.

10

Algorithm 1: Actor-Critic Algorithm

Input : policy network parameter θ0, value network parameter ϕ0, actor learning
rate αθ, number of training epochs K

1 for k ← 0 to K − 1 do
2 Sample a set of trajectories D using the policy πk.
3 Calculate the return G using the sampled set of trajectories D:

Gt =
∞∑
i=t

γiri.

4 Estimate advantage function A(st, at) based on value function Vϕk
using GAE.

5 Calculate the gradient gk:

gk =
1

N

∑
τ∈D

∞∑
t=0

A(st, at)∇ log πθ(at|st).

6 Update the policy network parameter θk+1:

θk+1 = θk + αθgk.

7 Update the value network parameter ϕk+1 by performing gradient descent on
the mean squared error:

1

N

∑
τ∈D

∞∑
t=0

(Vϕ(st)−Gt)
2.

TRPO updates the current policy πk by solving the following constrained optimization
problem:

πk+1 = argmax
π∈Πθ

Es∼dπk ,a∼π[A
πk(s, a)]

s.t. DKL(π, πk) ≤ δ

Here, the notation Πθ represents the policy space, parameterized by θ. The term

11

dπk is defined as the discounted future state distribution, mathematically expressed as:
(1 − γ)

∑∞
t=0P(st = s|π). Meanwhile, DKL(π, πk) denotes the expected KL divergence

between policies π and πk, averaged over state distributions obtained from the current
policy πk. Formally, it is described as: Es∼πk

[DKL(π(.|s)||πk(.|s)]. δ is the boundary of the
trust region, which is a hyperparameter of the algorithm.

Practically, this optimization problem is solved by approximating the KL divergence
using its second order expansion and obtain the fisher information matrixH. Consequently,

the update direction is given by
√

2δ
gTH−1g

H−1g. Note that, the term H−1g is approximated

by the conjugate gradient algorithm [19], since calculating H−1 is expensive. Because the
series of approximations may result in an excessively large update step, which may cause a
catastrophic performance decrease, a line search is subsequently employed to ensure both
the improvement of the objective and the satisfaction to the constraints.

Since TRPO requires complex second order method, Schulman et al. [39] propose Prox-
imal Policy Optimization (PPO), which updates using a new surrogate loss with multiple
steps of minibatch update:

min(
π(at|st)
πk(at|st)

Aπk(st, at), clip(
π(at|st)
πk(at|st)

, 1− ϵ, 1 + ϵ)Aπk(st, at))

where ϵ is a hyperparameter that regulates the divergence between the new policy and the
old policy. The PPO algorithm achieves comparable or superior performance to the TRPO
algorithm across various benchmarks.

3.3 Constrained Policy Optimization

The conventional policy optimization methods, such as PPO [39] and TRPO[37], primarily
focus on maximizing the expected cumulative reward without explicitly considering safety
constraints. While these methods can achieve impressive performance in a wide range of
tasks, they lack mechanisms to ensure that the learned policies satisfy specified constraints.
In safety-critical applications, such as autonomous driving, healthcare, and finance, an
agent’s behavior must remain within predefined safety bounds to prevent dangerous or
harmful actions.

To overcome this limitation, Constrained Policy Optimization [2] has emerged as a
promising approach. CPO introduces explicit constraints on the policy parameters to
prevent policy updates that violate safety requirements. By incorporating constraints into

12

the optimization process, CPO aims to strike a balance between maximizing the reward
and adhering to the specified safety boundaries. In the following sections, we first provide
the definition of Constrained Markov Decision Process and then describe CPO in details.

3.3.1 Constrained Markov Decision Process

A Constrained Markov Decision Process (CMDP) [3] can be thought of as an extension
of the standard MDP, augmented with a set of cost functions C1, ..., Cm. Each individ-
ual cost function, denoted as Ci : S × A × S → R, outputs the associated cost from a
transition (s, a, s′). Correspondingly, each of these cost functions has an associated set of
cost limits d1, ..., dm. Typically, constraints within CMDPs are categorized into two types:
average and peak constraints. For the average constraints, the requirement is that the
expected discounted sum of the policy’s cost should not exceed the designated threshold
di. Conversely, peak constraints enforce that none of the transitions should exceed the
designated threshold di. In the following subsections, we focus on the Constrained Policy
Optimization algorithm that ensures satisfaction of the average constraints.

3.3.2 Constrained Policy Optimization Algorithm

To ensure the satisfaction of the constraints while achieving the maximum reward, Con-
strained Policy Optimization (CPO) [2] has been proposed as a trust region method that
both enjoy the monotonic policy improvement like TRPO and strike a balance between
reward maximization and constraint satisfaction.

The optimization problem that CPO initially tries to solve is

πk+1 = argmax
π∈Πθ

J(π)

s.t. JCi
(π) ≤ di, i = 1, . . . ,m

D(π, πk) ≤ δ

where J(π) is the expected return of the policy π.

CPO derives a new policy improvement bound for the safety constraints and connects
it to KL-divergence based on [23] and [37].

JCi
(π′)− JCi

(π) ≤ 1

1− γ
Es∼dπ ,a∼π′ [Aπ

Ci
(s, a) +

2γϵπ
′

Ci

1− γ

√
1

2
Es∼dπ [DKL(π′(.|s)||π(.|s))]

13

Combining with the trust region method, the optimization problem becomes

πk+1 = argmax
π∈Πθ

Es∼dπk ,a∼π[A
πk(s, a)]

s.t. JCi
(πk) +

1

1− γ
Es∼dπk ,a∼π[A

πk
Ci
(s, a)] ≤ di, ∀i

DKL(π, πk) ≤ δ

The CPO paper [2] also provides a theoretical guarantee of monotonic improvement of
performance improvement of approximate satisfaction of constraints, which makes CPO a
reliable method in solving the CMDP problem.

To solve the optimization problem and calculate the update step practically, similar
to TRPO, CPO expands the KL-divergence constraint through its second-order Taylor
expansion and linearizes the constraints on cost functions using their first-order Taylor
expansions:

θk+1 = argmax
θ

gT (θ − θk)

s.t. ci + bTi (θ − θk) ≤ 0 i = 1, . . . ,m

1

2
(θ − θk)

TH(θ − θk) ≤ δ

where H is the Hessian of the KL-divergence, bi is the gradient of JCi
(πk), and ci =

JCi
(πk)− di. Subsequently, the optimization problem is solved through the application of

duality.

It should be highlighted that the CPO paper offers an analytical solution through the
utilization of the primal-dual method when there is only one cost function, i.e. m = 1.

Like TRPO, a line search is followed after computing the update step direction to ensure
the constraints satisfaction and objective improvement.

3.4 Multi-agent Reinforcement Learning Methods

In the previous subsections, we provide a brief introduction to certain single-agent rein-
forcement learning algorithms. Nonetheless, the complexities inherent in numerous real-
world situations demand interactions amongst multiple agents, which gives rises to the

14

paradigm of Multi-Agent Reinforcement Learning (MARL) [43]. In the subsections that
follow, we first define the Multi-agent Markov Decision Process and then outline the chal-
lenges associated with MARL. Subsequently, we present the multi-agent counterparts of
the single-agent reinforcement learning algorithms discussed in the prior sections.

3.4.1 Multi-agent Markov Decision Process and Markov Games

The Multi-agent Markov Decision Process of n agents applies the following modifications
to the MDP:

• The action space A is transformed into a set of action spaces {Ai, i = 1, . . . , n}.

• The domain of the transition function Pand the reward function R are modified to
the incorporate the joint action space A1 × . . .×An.

A Markov game, also known as a stochastic game, is a type of game that is played in a
sequence of stages. The players select actions based on policies and they receive a payoff
that depends on the current stage of the game and the actions selected. The current stage
and the actions selected also determine the probability of the next stage that the game
will transit to following a transition function. The stage sequence can either be infinite or
finite, and the total payoff of a player is usually calculated as the discounted sum of the
payoff received at each stage.

3.4.2 Multi-agent Reinforcement Learning Challenges

Transitioning from single-agent reinforcement learning problem to multi-agent reinforce-
ment learning problem is not trivial. One main issue people are facing is the non-stationary
environment. From the point of view of one learning agent, the other learning agents’ pol-
icy is evolving throughout the learning process. This results in non-stationarity in the
environment for this particular learning agent, which makes it harder to converge to sta-
ble policies. Another challenge is the equilibrium selection problem, in multi agent games,
multiple equilibria, especially in competitive scenarios, might exist, and determining which
equilibrium the system will converge to, or should converge to, becomes a critical challenge.
When agents engage in cooperative learning with a focus on optimizing a global reward,
an additional challenge is the multi-agent credit assignment problem: Determining which
agent is responsible for which part of a global reward or outcome can be non-trivial.

15

3.4.3 Multi-agent Trust Region Methods

For the policy gradient methods PPO and TRPO, considerable efforts have been made
to adapt these methodologies to multi-agent contexts. One simple attempt leverages the
effectiveness of independent learning to let the agents run PPO and TRPO independently,
oblivious to the presence of other agents. Specifically, de Witt et al. [10] compare the per-
formance of Independent PPO (IPPO) with QMIX [35] and independent Q learning on the
StarCraft Multi-Agent Challenge (SMAC) benchmark. Their findings suggest that IPPO
performed surprisingly better than the baselines. Another simple approach involves sharing
the critic network among the agents, enabling them to learn a global value function. Yu et
al. [42] designate this technique as Multi-Agent PPO (MAPPO), and illustrate that PPO-
based methods (MAPPO, IPPO) perform comparable or superior to other methods includ-
ing QMIX and MADDPG [32] on various benchmarks. However, both IPPO and MAPPO
methods lose the theoretical assurance of monotonic policy improvement while adapting
to multi-agent environment. In contrast, Kuba et al. [27] propose a novel multi-agent
trust region optimization algorithm that extends the monotonic objective improvement
property to multi-agent settings, and the resultant algorithms are named Heterogeneous-
Agent TRPO (HATRPO) and Heterogeneous-Agent PPO (HAPPO). They also verified
that the HATRPO and HAPPO methods outperform IPPO, MAPPO and MADDPG on
many benchmarks. Firstly, the simple advantage function in Section 3.1.2 is expanded
to handle multiple agents. The authors propose a multi-agent advantage decomposition
formula for cooperative Markov games as follows

Ai1:m
π (s, ai1:m) =

m∑
j=1

Aij
π (s, a

i1:j−1 , aij)

where i1:m can be any subset of agents. This formula suggests a way to ensure performance
improvement: given n agents following an arbitrary update sequence i1:n, and under the
condition that the first agent takes an action ai1 that ensures Ai1(s, ai1) > 0, and ev-
ery succeeding agent m ensures Aim(s, ai1:m−1 , a

im) > 0, by applying the above formula,
Aπ(s, a) > 0 is guaranteed.

The authors extend this formula to the multi-agent TRPO and PPO algorithms. In
other words, similar to MATRPO or MAPPO, a centralized value network is shared across
all agents. After the collection of a sample batch, a global advantage function A(s, a) is
calculated. During each update of the algorithm, agents follow a randomized permutation
sequence for updating. The first agent i1 employs A(s, a) to calculate the gradient gi1 in
HATRPO or the clip objective in HAPPO. After an agent im finishes updating the current

16

policy parameter θimk to θimk+1, the advantage term is multiplied by the factor

πim
θimk+1

(aim|oim)

πim
θimk

(aim|oim)
,

where aim denotes the action executed by agent im given the observation oim during the
sample collection phase. The succeeding agent im+1 will then employ this modified advan-
tage term to continue the update. The details of the HATRPO algorithm [27] is shown in
Algorithm 2.

3.4.4 Multi-agent Constrained Policy Optimization

To extend the CPO algorithm to the multi-agent domain, Gu et al. [18] first define a
constrained Markov game, which is the Multi-agent MDP augmented with cost functions
and corresponding cost limits. Subsequently, they introduce the Multi-Agent Constrained
Policy Optimization (MACPO) algorithm. This approach combines the CPO algorithm
with the HATRPO update paradigm. Furthermore, they have proved that the resultant
MACPO algorithm attains both the monotonic objective improvement guarantee and con-
straints satisfaction guarantee.

Put simply, combining the HATRPO and CPO algorithms is straightforward. One
merely needs to replace the TRPO update within the HATRPO algorithm with the CPO
update.

17

Algorithm 2: HATRPO Algorithm

Input : number of agent n, policy network parameters {θi0,∀i ∈ n}, global value network
parameters ϕ0, replay buffer B, actor learning rate αθ, number of training epochs K,
batch size B, episode length T , maximum number of line search steps L, KL divergence
threshold δ

1 for k ← 0 to K − 1 do
2 Sample a set of trajectories D using the joint policy πk = (π1

θ1
k
, . . . , πn

θn
k
).

3 Push transitions { sit, ait, sit+1, r
i
t } into B.

4 Sample a random minibatch of B transitions from B.
5 Estimate global advantage function A(s,a) based on D and the gloabl value function Vϕ.

using GAE.

6 Calculate the return G.

7 Draw a random permutation of agents i1:n.

8 Set M i1(s,a) = Aϕk
(s,a).

9 for agent im = i1, . . . , in do

10 Calculate the gradient gimk :

gimk =
1

B

B∑
b=1

T∑
t=0

M i1:m(st,at)∇θim
k

πim
θim
k

(aimt |s
im
t).

11 Use the conjugate gradient algorithm to compute xim
k = (Him

k)−1gimk , where Him
k is the

average KL divergence:

Him
k =

1

BT

B∑
b=1

T∑
t=0

DKL(π
im
θim
k

(·|simt)|πim
θim (·|simt)).

12 Calulate the step size βim
k :

βim
k =

√
2δ

(xim
k)THim

k xim
k

.

Update agent im’s policy parameter θimk+1 = θimk + αj
θβ

im
k xim

k , where j ∈ {0, 1, . . . , L} is
the smallest such j which improves the sample loss, found by the backtracking line
search.

13 Compute M i1:m+1(s,a) =
πim

θ
im
k

(aim |sim)

πim

θ
im
k+1

(aim |sim)
M i1:m(s,a) /*Unless m = n*

14 Update the global value network parameter ϕk+1 by performing gradient descent on the
mean squared error:

1

BT

B∑
b=1

T∑
t=0

(Vϕ(st)−Gt)
2

18

Chapter 4

Simulation Environment

This chapter describes the simulation environment used for autonomous vehicle evaluation.
The simulation environment used in reinforcement learning typically follows a similar API
model as gym [4] published by OpenAI. To the best of our knowledge, there doesn’t exist
simulation environment specifically designed to attack a black-box autonomous vehicle un-
der test, but there are some open-sourced gym-liked environment to train the autonomous
vehicle to learn how to drive. We design a new simulation environment highway-attack-env
on top of one of the minimalist environments for decision making in autonomous driving,
highway-env [28]. In the following subsections, we describes the overarching framework
for autonomous vehicle stress testing, termination conditions, observation space, action
space, reward structure and cost structure. Additionally, it’s essential to emphasize that
our devised environment have the flexibility to be configured to be either multi-agent or
single-agent environment.

4.1 Framework for Autonomous Vehicle Stress Test-

ing

Within the context of autonomous vehicle stress testing, it comprises two types of agents:
the attacker agent and the target agent. The attacker agents, under the control of rein-
forcement learning algorithms, learn behaviors aimed at instigating accidents involving the
target agent. While the target agent is treated as a black box which receives observations
of the current state in the environment and generates corresponding actions as outputs.
The experiment setup employed in our study contains a single target agent, while the

19

Figure 4.1: Example environment starting positions of the agents, where the target agent
is highlighted in yellow, while the attacker agents are colored in green.

number of attacker agents is not limited and could be multiple. In this thesis, we limit the
number of attacker agents to four, based on the reasoning that it’s uncommon for more
than four attacker agents to be involved in a single accident with the target agent. On the
initialization of the environment, both the attacker agents and the target agent start from
some starting positions. Starting positions can be set as either fixed or randomized. The
environment we employed is a two-dimensional three-lane highway environment of infinite
length. An example of this configuration is depicted in 4.1.

4.2 Termination Conditions and Absorbing State

At the end of an episode, the environment sends a termination signal. In our designed
environment for single-agent reinforcement learning algorithms, there are two termination
conditions:

• The target agent is involved in an accident.

• The time limit of the episode is reached and the target agent remains collision-free
throughout the episode.

Note that, while the attacker agents may collide with each other during the episode,
such collisions do not trigger the termination condition for the single-agent environment.
Nevertheless, these collisions will result in the involved attacker agents being immobilized
at the collision position.

In our designed multi-agent environment, the termination signal is issued agent-wise,
such that when an attacker agent receives the termination signal, it should stop learning.
Therefore, other than the two termination conditions in single-agent environment, which
will send termination signal to all attacker agents, the termination signal will also be sent
to the corresponding attacker agents when they collide with each other. To summarize,
the termination conditions for multi-agent environment are as follows:

20

• The attacker agent is involved in any accident.

• The time limit of the episode reached and the target agent remains collision-free
throughout the episode.

Similarly, when attacker agents collide with each other, they will enter an absorbing
state, where the subsequent actions will no longer take an effect on these attacker agents.

P(ŝ|ŝ, a) = 1, ∀a ∈ A

where ŝ denotes the absorbing state.

4.3 Observation Space

For the observation space, we adopt the same features used in highway-env [28]. The state
for the ith attacker agent si and target agent starget contains five features: [I,x,y,vx,vy]
where

• I is a Boolean value indicates whether the agent exist in the environment or not.

• x and y describes the x and y coordinates of the location of the agent in the envi-
ronment.

• vx and vy describes the velocity of the agent on x and y axis.

In the single-agent environment, the state vectors of the attacker agents are centered
around the target agent. And the observation contains information about all agents in the
environment: s = [starget, s1, s2, ..., sn].

While in the multi-agent environment, every attacker agent receive different observa-
tions. When using a simple design where each agent is assigned a constant index in the
observation, every agent invariably receives identical observations. This leads to challenges
in self-identification for the agent, making it difficult to adapt and optimize based on its
specific needs. Instead, We rearrange the sequence of the agents’ states in the observation,
so that the first state vector is always the ith attacker agent itself and the second is always
the state vector of the target agent. Additionally, the values are centered around the ith
attacker agent itself. This measure guarantees unique and tailored observations for each
individual attacker agents, which is crucial to the learning of disparate policies.

21

4.4 Action Space

For the action space, we adopt the same DescreteMeta action space as in highway-env [28]
for simplicity. Also, since the target agent is trained with DescreteMeta action space, it’s
fair to use the actions from the same action space to attack it. There are five available
actions in the DescreteMeta action space, as depicted in 4.1

Table 4.1: DiscreteMeta action space
Action Behavior
LaneLeft If the vehicle is not on the leftmost lane, it will change lane to

the left following a predefined speed profile and trajectory.
Keep The vehicle will not change lane and maintain its current velocity.
LaneRight If the vehicle is not on the rightmost lane, it will change lane to

to the right following a predefined speed profile and trajectory.
Faster The vehicle will accelerate if its current speed is less than the

predefined maximum speed.
Slower The vehicle will decelerate if its current speed is greater than the

predefined minimum speed.

4.5 Reward

This section describes the reward structure in our designed environment. The reward
calculation is performed on an agent-wise basis in both multi-agent and single-agent envi-
ronments. However, in the single-agent environment the sum of all attacker agents’ reward
is returned as a single total reward.

The primary objective behind the reward design is to cause accidents involving the tar-
get agent, and to maintain a higher number of controllable attacker agents, so the attacker
agents are trained to avoid colliding with each other. To achieve this, a positive reward
of 2.5 is issued for every attacker agent when the target agent is involved in a collision,
making the total reward received on target agent’s collision 10, because all attacker agent
could contribute to the collision of target agent, even though they are not the one directly
collides with it. A negative reward of -2.5 is assigned to each collided attacker agent when
they collide with each other. Note that, we choose not to incorporate an additional time
penalty, as we consider accidents discovered at various time steps to be equally useful.

22

A crucial aspect worth emphasizing is that since we want to exploit the full potential of
reinforcement learning in exploring diverse ways of causing accidents with the target agent,
we did not explicitly specify how accidents should be generated in the reward function. In-
stead, only a sparse positive reward is assigned when the accident involves the target agent.
By adopting this approach, the attacker agents are encouraged to discover innovative and
effective strategies through exploration, leading to a more comprehensive understanding of
the environment and fostering diverse accident-causing behaviors throughout the learning
process.

4.6 Cost

To regulate the aggressiveness of the attacker agents when generating accidents, we use
the cost to place a penalty on aggressive or unrealistic behaviors. We define six behaviors
that assign a cost for the attacker agent, as depicted in Table 4.2

Table 4.2: Aggressive or unrealistic behavior that will issue cost
Behavior Cost
If the vehicle is on the leftmost lane, but it is going to
perform a LaneLeft action. invalid action cost
If the vehicle is on the rightmost lane, but it is going to
perform a LaneRight action. invalid action cost
If there is an obstacle (could be other vehicles) in front of the
vehicle within 12 meters, and it performs a Faster action. close vehicle cost
If there is an obstacle (could be other vehicles) behind the vehicle
within 12 meters, and it performs a Slower action. close vehicle cost
When the vehicle is going to perform a LaneLeft action, but there is
another vehicle on the lane it is going to change to or there is another
vehicle in front of it, and their absolute distance is within 12 meters. close vehicle cost
When the vehicle is going to perform a LaneRight action, but there is
another vehicle on the lane it is going to change to or there is another
vehicle in front of it, and their absolute distance is within 12 meters. close vehicle cost

Similar to the reward computation, the cost calculation is performed on an agent-wise
basis in both the multi-agent and single-agent environment. And the sum of all individual
attacker agents’ costs is returned in the single-agent environment.

23

Notably, the cost structure defined above are fairly simple, but the last four behaviors
capture some unsafe driving behavior, such as changing lanes without checking the blind-
spot or mirror, deliberately rear-end the front vehicle . . ., so we can use the occurrence of
these events to measure the aggressiveness of the attacker agents. The actions in the first
two behaviors are characterized as invalid actions, and the simulator will perform a Keep
action instead if an invalid action is received. By assigning cost on these invalid actions,
we discourage the attacker agents from performing these actions in the simulation.

24

Chapter 5

Methodology and Experiments

This chapter initially outlines the design of the target agents, serving to demonstrate the
efficacy of the algorithms. Following this, we enumerate the algorithms selected for com-
parative analysis and articulate the research questions we aim to address. Subsequently,
we provide a detailed description of the experiments conducted and analysed the results.

5.1 Design of the Target Agent

To verify the effectiveness of an autonomous vehicle stress testing system, it is imperative
to employ complex target vehicles to enhance the challenge in simulating realistic acci-
dents. Given the time constraints and the scope of this thesis, we opted not to design a
normal autonomous driving system with advanced obstacle avoidance capabilities within
the highway-env. Instead, to provide a baseline for comparison that will be challenge to
find weaknesses in, we proposed a perfect target for our highway-attack-env. We reveal
the forthcoming actions of the attacker agent to the target agent. This allows the target
agent to simulate an additional step and select an action that will avert an accident based
on the attacker agents’ next move. In scenarios where no actions by the target result in
a collision-free outcome, the target agent defaults to the Keep action. Conversely, when
multiple actions by the target ensure a collision-free outcome, we instruct the target agent
to adopt a cautious lane-following strategy, taking into account the position and speed of
both preceding and following attacker agents in the same lane.

Because the perfect target is too good at avoiding collisions with attacker agents, we
introduced designed vulnerabilities to make better comparisons of different algorithms. We

25

incorporated two different vulnerabilities, leading to the creation of target0 and target1.
To maintain the degree of challenge in identifying realistic accidents, both target0 and
target1 will default to the action chosen by the perfect target when the vulnerability is not
triggered. Detailed descriptions of these vulnerabilities are as follows:

• target0: The first vulnerability we introduced necessitates the coordination of two
attacker agents. For the vulnerability to be triggered, both attacker agents must
drive adjacent to target0 at a close proximity. Upon detection of this configuration,
target0 will override the action determined by the perfect target and execute the
LaneLeft action, resulting in a collision with the attacker agent to its left.

• target1: The second vulnerability we introduced necessitates the coordination of
three attacker agents and builds upon the configuration of the first vulnerability. To
activate this vulnerability, apart from the two attacker agents driving adjacent to
the target at a close proximity, a third attacker agent must be positioned directly in
front of the target agent in the same lane, also within a proximate distance. When
this configuration is detected by target1, it will override the action determined by
the perfect target and execute the LaneLeft action, resulting in a collision with the
attacker agent to its left.

The purposefully engineered target agents afford us the ability to conduct experiments
in a more controlled fashion. Understanding the known vulnerabilities of these agents
allows for definitive verification when such weaknesses are detected. In the absence of this
controlled design, we would be restricted to statistical arguments regarding the likelihood
of uncovering potential vulnerabilities.

5.2 Comparison of algorithms

Similar to the framework presented in the “Adaptive Stress Testing of Autonomous Ve-
hicle” paper[25], the autonomous vehicle stress testing problem can be characterized as a
Markov Decision Process. Drawing from the notion that individual optimization by each
attacker agent can promote coordinated behavior among them to unveil more complicated
vulnerabilities in the target system, we propose to formulate the autonomous vehicle stress
testing problem as a multi-agent Markov Decision Process given in Section 3.4.1.

To foster the generation of more insightful accidents, we do not want the attacker
agents to take actions that are too aggressive, so we propose to regulate the aggressiveness

26

of the attacker agents’ actions. A straightforward strategy to regulate aggressiveness is to
remove aggressive actions from the action set at each time step. However, we argue that
such a method enforces an overall aggressiveness level of zero in the whole episode. It’s
important to consider that accidents with a non-zero value of aggressiveness might offer
valuable insights as well, particularly when the cost structure exhibits greater complexity.
As an alternative, we propose to frame the autonomous vehicle stress testing problem as
a constrained Markov game, as detailed in [18] and discussed in Section 3.4.4. Within this
framework, we employ cost functions to evaluate the aggressiveness of the actions. Note
that within a CMDP framework, constraints can be managed in two different manners:

• Peak Constraint: Ensures the cost associated with any individual transaction does
not exceed the threshold d.

• Average Constraint: Ensures the mean cost across an episode remains below the
threshold d.

Typically, the peak constraint is integrated within the reinforcement learning algorithm
by deducting the cost value of each step from its corresponding reward—a technique that
can be seamlessly extended to multi-agent reinforcement learning paradigms. On the other
hand, the state-of-the-art approach to addressing the average constraint is through the
Constraint Policy Optimization (CPO) [2] method. Additionally, a multi-agent version,
Multi-Agent Constrained Policy Optimizaiton (MACPO) [18], has also been proposed in
recent literature. We have given a short introduction to both CPO and MACPO in Chapter
3. It’s worth mentioning that the presence of multiple cost functions introduces extra
layers of complexity in solving the optimization problem in CPO and MACPO. Given this
difficulty, our approach aggregates the cost values incurred by a singular transition, thereby
reducing it to a single unified cost function for simplification. Consequently, the analytical
solution derived in [2] becomes applicable.

We conduct a series of experiments to address the subsequent research questions:

• Do MARL algorithms outperform single-agent RL algorithms in autonomous vehicle
stress testing?

• Does the integration of cost values contribute to the generation of more realistic
accidents?

• In the context of producing realistic accidents, is the CPO algorithm that optimizes
average constraints better than treating peak constraints as a penalty term in the
reward function?

27

Figure 5.1: The fixed starting positions of the agents, where the target agent is highlighted
in yellow, while the attacker agents are colored in green.

• Will the magnitude of the cost values affect the results in this process?

In the following subsections we describe each experiment in detail.

5.3 Experiments

Since all the algorithms under consideration employ the actor-critic framework, we stan-
dardiz the network architecture across them. Specifically, both the actor and critic net-
works consist of a single hidden layer of 128 neurons, with the tanh function serving as the
activation function. The critic network yields a singular output, representing the value of
the given state. While the actor network outputs the logits for all available actions the
agent might take. Note that for single-agent algorithms, due to the presence of only one
policy network, the actor network outputs the logits for every action across all learning
agents.

In the subsequent experiments, we perform training using TRPO, CPO, HATRPO, and
MACPO algorithms under varying conditions to answer the above research questions.

5.3.1 Experiments on a Fixed Starting Position

In this subsection, we train the algorithms within a fixed starting scenario. This specific
scenario has been validated to permit the triggering of both vulnerabilities that we intro-
duced. The hyperparameters we use in all our experiments are summarized in Table 5.1.
Additionaly, we have selected the close vehicle cost value to be 20. The rationale behind
this choice is elaborated upon in Section 5.3.2. This approach facilitates a clearer illustra-
tion of an algorithm’s learning trajectory when training on a specific starting scenario. A
representation of this starting scenario can be viewed in Figure 5.1.

28

Table 5.1: List of key hyperparameters
Hyperparameter Value
Number of training episodes 100000
Batch size 2000
Number of minibatches 4
Policy network update epochs 4
Value network update epochs 10
Discount factor 0.99
Maximum KL divergence 0.2
Maximum number of line search steps 10
line search fraction 0.5
Value network learning rate 2.5e-4

To elucidate the impact of incorporating cost values into the AV stress testing problem,
we compare the experimental outcomes generated both with and without integrating cost
in the learning process. We start our training with the TRPO and HATRPO algorithms
within the aforementioned fixed starting scenario. Note that these two algorithms omit
the cost received from the environment, relying solely on the return as their training
signal. The results of this experiment are depicted in Figure 5.2 and Figure 5.3. It’s
important to highlight that, although the cost is excluded in the algorithm, we still plot
it in the visualization. Additionally, we plot the difference between the reward and the
cost, offering insights into the aggressiveness of the resulting accidents. Notably, a value
of 10 in this plot suggests an accident that involves the target agent, but bears no cost.
From the data, it’s clear that both the TRPO and HATRPO algorithms converge to a
stable policy. Both algorithms attain a maximum return of 10, indicating that the policies
can learn an accident involving the target agent. However, the cost associated with these
accidents is not constrained and substantially exceeds 0. This suggests that the accidents
generated by these policies lack realism, which is intuitive as the algorithms maximize the
return without consideration of the cost.

29

Figure 5.2: The training result of TRPO and HATRPO on the fixed starting scenario using target0.

Figure 5.3: The training result of TRPO and HATRPO on the fixed starting scenario using target1 .

30

Figure 5.4: The unrealistic accident found by TRPO algorithm on target0

Upon evaluating the converged policies, it is also evident that the accidents found
by these two algorithms are not insightful. Specifically, the attacker agents appear to
straightforwardly drive towards the target agent. An illustrative example of this behavior
can be seen in Figure 5.4, which shows an accident detected by the single-agent TRPO
algorithm trained on target0. Such accidents are of limited utility, as the blame doesn’t
lie with the target agent. Consequently, they provide less opportunities for enhancing the
target agent’s algorithm.

In the next set of experiments, we integrate the cost component into the algorithms. For
TRPO and HATRPO, we deducted the cost from the reward of each step, resulting in the
newly defined algorithms TRPO-penalty and HATRPO-penalty, in which only the reward
signal is modified. For both CPO and MACPO, we set the cost limit as zero, aligning
our preference towards zero-cost accidents. It is worth mentioning that with the CPO and
MACPO approaches, there exist the flexibility to adjust the cost limit to different values,
should one wish to search for accidents with a specific value of aggressiveness. We train
TRPO-penalty, HATRPO-penalty, CPO, and MACPO algorithms using the same fixed
starting scenario and the two vulnerable target agents we previously defined. The training
proceeds in accordance with the same set of hyperparameters outlined in Table 5.1. The
close vehicle cost value is selected to be 20 as well. The results of this set of experiments are

31

illustrated in Figure 5.5 and Figure 5.6. Note that, TRPO-penalty and HATRPO-penalty
methods optimize the return-minus-cost value, while CPO and MACPO methods optimize
return and cost separately. We present the progression of all three attributes for better
comparison.

32

Figure 5.5: The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on fixed starting
scenario using target0.

Figure 5.6: The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on fixed starting
scenario using target1.

33

For target0, all the algorithms, except for CPO, converge to similar sequences of actions
that result in a collision with the target agent with no cost. The resulting accident can be
viewed in Figure 5.7. In contrast, when considering target1, only the MACPO algorithm
discovere a zero-cost approach to cause accidents involving the target agent. The other al-
gorithms settle on policies that neither incurred cost nor resulted in accidents, with the only
exception being the CPO algorithm, which converge to high cost accidents. Regarding the
rate of convergence measured by the number of episodes sampled, we observe that for the
less challenging target, target0, HATRPO-penalty reach convergence most rapidly, whereas
the other three algorithms exhibit comparable rate of convergence, with MACPO being
slower. For the more challenging target, target1, a similar pattern is observed. However,
an exception is the MACPO algorithm, which has the slowest convergence rate but ulti-
mately converg to the optimal accidents. When comparing the actual clock time required
for each update, constrained policy optimization methods consume more time compared
to the penalty methods because of the separate step of cost optimization. Additionally,
multi-agent methods are more time-consuming than single-agent methods due to the ne-
cessity to optimize more networks. However, we would like to underscore that multi-agent
methods offer the potential of distributed computing across different computing units. This
capability has the potential to offset the efficiencies of single-agent approaches in terms of
update speed.

We argue that the observed performance difference could stem from the inherent na-
ture of constrained policy optimization methods (CPO and MACPO) undertaking multi-
objective optimization. These methods explicitly compute the gradients of both the return
and the cost. Even though this can sometimes make convergence more challenging because
of possible conflicts between the two directions, it helps in avoiding premature convergence.
Conversely, the penalty methods engage in single-objective optimization, focusing solely
on the gradient of the net value of return-minus-cost. This approach can be more suscep-
tible to convergences to local optima, particularly in scenarios where the increase in return
mitigate the reduction in cost.

Furthermore, we want to emphasize that multi-agency plays an important role in finding
the vulnerabilities we introduced. When individual agents optimize independently yet are
guided by a joint value function, coordinated behaviors are more likely to emerge. Its
effectiveness is evident in the performance difference between CPO and MACPO methods:
While the CPO method quickly learned to cause accidents, it struggled to reduce costs.
On the other hand, MACPO might take longer to learn how to cause accidents, but it
managed to lower the cost of episodes.

The accident found by MACPO is depicted in Figure 5.8. Both of the accidents found
exploit the vulnerabilities we introduced, which shows the effectiveness of our suggested

34

Figure 5.7: The zero cost accident involv-
ing target0 found by all the algorithms,
except for CPO.

Figure 5.8: The zero cost accident involv-
ing target1 found by MACPO.

target agent design.

5.3.2 Experiments on Random Starting Positions

In previous experiments, our focus is on various algorithms’ ability in producing insightful
accidents from a fixed starting position. In this section, we introduce randomness to the
starting position by allowing attacker agents to initiate from random lanes, while the target
agent always starts sandwiched between the attacker agents in the central lane. Given that
each attacker agent can choose from three lanes and there are four attacker agents, this
results in a total of 34 = 81 unique starting scenarios.

We train the algorithms with these conditions to encourage the development of more
general policies. Furthermore, we also perform a grid search on the magnitude of the close
vehicle cost value within the range of [20, 15, 10, 5]. We maintain the invalid action cost
value at a constant value of 3, since the close vehicle cost value has a more direct impact
on the accident’s associated cost. The training results are shown in Figure 5.9 to Figure
5.16

35

For a clearer depiction of performance difference, we test the trained policies within
the environment. When an episode yields both zero cost and full reward outcomes for a
particular starting scenario, that scenario is considered “solved”. We evaluate the trained
policies with 2000 episodes, and once a starting scenario is “solved”, it will not be generated
again. We count the number of “solved” scenarios for each algorithm after 2000 episode,
and the results of this analysis can be found in Table 5.2.

Table 5.2: Number of “solved” starting scenarios after 2000 testing episodes
Target0 Target1

cost 5 cost 10 cost 15 cost 20 cost 5 cost 10 cost 15 cost 20
MACPO 43 27 26 54 12 28 27 33

HATRPO-penalty 21 46 53 27 27 27 27 27
CPO 0 0 0 0 0 0 0 0

TRPO-penalty 27 0 0 0 27 27 0 0

From our collected data, MACPO stands out as the most successful algorithm in re-
solving the most starting scenarios for both target0 and target1, particularly when trained
using the maximum close vehicle cost value set at 20. Specifically for the relatively simpler
target0, MACPO and HATRPO-penalty perform quite similarly. However, when dealing
with the more challenging target1, MACPO surpasses HATRPO-penalty by successfully
solving six additional starting scenarios. This aligns with our discussion in the previous
section. Additionally, despite only doubling the training steps from the fixed starting
scenario, the multi-agent algorithms learn many more starting scenarios. This indicates
the capability of multi-agent algorithms in efficiently learning more generalized policies
compared to their single-agent counterparts.

36

Figure 5.9: The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on random starting
scenario using target0 with close vehicle cost equals 20.

Figure 5.10: The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on random starting
scenario using target0 with close vehicle cost equals 15.

Figure 5.11: The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on random starting
scenario using target0 with close vehicle cost equals 10.

37

Figure 5.12: The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on random starting
scenario using target0 with close vehicle cost equals 5.

Figure 5.13: The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on random starting
scenario using target1 with close vehicle cost equals 20.

Figure 5.14: The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on random starting
scenario using target1 with close vehicle cost equals 15.

38

Figure 5.15: The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on random starting
scenario using target1 with close vehicle cost equals 10.

Figure 5.16: The training result of TRPO-penalty, HATRPO-penalty, CPO, MACPO on random starting
scenario using target1 with close vehicle cost equals 5.

39

We want to point out the existence of two local optima that lead to zero “solved”
starting scenarios. Agents might easily become trapped in these optima:

• Local Optimum 1: the agent neither incurs cost nor causes accidents with the target
agent.

• Local Optimum 2: the agent execute one high-cost action, leading to collisions with
the target agent.

Analyzing the TRPO-penalty result specifically, at cost values of 15 and 20, Local
Optimum 1 is more advantageous than Local Optimum 2 in terms of the return-minus-
cost value. The TRPO-penalty agent cannot escape from Local Optimum 1, resulting
in zero ”solved” initial scenarios. Conversely, for a cost value of 5, Local Optimum 2 is
more advantageous than Local Optimum 1. We argue that Local Optimum 2 is easier
to escape, eventually leading towards better local optima, where some zero-cost accidents
can be found. This argument is supported by the data in Table 5.2: with a cost of 5,
the TRPO-penalty approach resolved 27 starting scenarios when attacking either target.
When the cost stands at 10, the distinction between both optima blurs, offering the same
return-minus-cost value. As shown in Table 5.2 for attacking target 0 at cost 10, TRPO-
penalty solves none of the scenarios, while for attacking target 1 at the same cost, it solves
27 scenarios.

It is evident in Table 5.2 that HATRPO-penalty can always solve a considerable amount
of starting scenarios, which indicates escaping of these local optima, unlike TRPO-penalty.
This shows that it’s hard for a single-agent algorithm to decompose the gradient and find
the appropriate update direction for each agent, leading the algorithm to get trapped
in a local optimum. The introduction of multi-agency helps in escaping local optima
and finding the vulnerabilities in AVs. This advantage may also stem from the increased
computational workload undertaken by multi-agent algorithms as compared to their single-
agent counterparts.

Moerover, the CPO algorithm always converges to policies that generate accidents with
non-zero cost, indicating an inability to sufficiently reduce the cost in CPO. This can also
be attributed to the difficulty in single-agent algorithms to find the appropriate update
direction for each agent.

TRPO-penalty’s data in Table 5.2 shows that it is sensitive to the choice of the penalty
value, which aligns with the statement in [2]. However, we couldn’t determine the precise
influence of the close vehicle cost value on other algorithms. Nevertheless, we can observe

40

that the MACPOmethod benefits from the highest close vehicle cost value. We recommend
conducting a grid search on these cost values for future usage of this benchmark.

Note that when the objective is to search for insightful accidents in a specific starting
scenario, the reinforcement learning algorithm can be considered as a guided search algo-
rithm. The training of the algorithm can be halted when an accident with desired cost
is sampled. This removes the necessity for the RL algorithms to reach convergence, thus
saves AV stress testing time.

41

Chapter 6

Conclusions and Future Works

In the last chapter of this thesis, we summarize our contributions and outline what we
learned from the experiments. Additionally, we also discuss the potential future work for
this thesis.

6.1 Conclusions

In this thesis, we propose a gym-like simulation environment highway-attack-env featur-
ing black-box AV stress testing on top of the open-sourced highway-env [28], which opens
the possibility for both single-agent and multi-agent reinforcement learning algorithms
to be tested. We advocates multiagency and regulation on attacker agents’ aggressive-
ness to be introduced to the AV stress testing problem. In our experiments, we showed
that the integration of the cost value leads to more insightful accidents being generated.
Additionally, the superiority of the MACPO algorithm over the CPO algorithm and the
HATRPO-penalty algorithms concludes that introducing multi-agency and regulating the
aggressiveness of attacker agents with constrained policy optimization method are crucial
in AV stress testing problem. Since we were not able to conclude on the effect of the mag-
nitude of the cost values, we recommend conducting a grid search to identify the optimal
set of cost values.

42

6.2 Future Directions

The cost and reward structure we employ is simple and extendable, and breaks out a trade-
off between the target outcome as a positive reward and the naturalness criteria as a cost.
Additional cost or reward components could be added to extend this. For example, incor-
porating vehicle speed into the cost functions could provide a more accurate assessment
of attacker agents’ aggressiveness. We also acknowledge that the accidents with non-zero
cost may also be insightful given a more comprehensive cost structure. Specifically, the
cost limit can be set to an arbitrary value aiming to generate accidents where the attacker
agents exhibit a corresponding level of aggressiveness. Therefore, one possible future work
direction is to design better cost hierarchy and control the aggressiveness of the accidents
generated.

Our proposed highway-attack-env environment is relatively simple, but fast, efficient
and extendable. During our study, we have also considered several more advanced AV
simulation environments, including CARLA [14], SMARTS [44] and SUMO [31]. However,
these environment are either too costly for training or divert from our focus of black-box
AV stress testing. Another future work direction is to extend our work to other simulation
environments to incorporate more complex road structures and traffic scenarios.

We hope our proposed simulation environment and the benchmark can inspire novel
algorithms designed to generate insightful accidents.

43

References

[1] Houssam Abbas, Matthew O’Kelly, Alena Rodionova, and Rahul Mangharam. Safe
at any speed: A simulation-based test harness for autonomous vehicles. In Cyber
Physical Systems. Design, Modeling, and Evaluation: 7th International Workshop,
CyPhy 2017, Seoul, South Korea, October 15-20, 2017, Revised Selected Papers 7,
pages 94–106. Springer, 2019.

[2] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy
optimization. In International Conference on Machine Learning, pages 22–31. PMLR,
2017.

[3] Eitan Altman. Constrained Markov Decision Processes. Routledge, 2021.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym, 2016.

[5] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh.
A lyapunov-based approach to safe reinforcement learning. Advances in neural infor-
mation processing systems, 31, 2018.

[6] Anthony Corso, Peter Du, Katherine Driggs-Campbell, and Mykel J Kochenderfer.
Adaptive stress testing with reward augmentation for autonomous vehicle validatio.
In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pages 163–168.
IEEE, 2019.

[7] Anthony Corso, Kyu-Young Kim, Shubh Gupta, Grace Gao, and Mykel J Kochender-
fer. A deep reinforcement learning approach to rare event estimation. arXiv preprint
arXiv:2211.12470, 2022.

[8] Anthony Corso, Ritchie Lee, and Mykel J Kochenderfer. Scalable autonomous vehicle
safety validation through dynamic programming and scene decomposition. In 2020

44

IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC),
pages 1–6. IEEE, 2020.

[9] Anthony Corso, Robert Moss, Mark Koren, Ritchie Lee, and Mykel Kochenderfer. A
survey of algorithms for black-box safety validation of cyber-physical systems. Journal
of Artificial Intelligence Research, 72:377–428, 2021.

[10] Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk,
Philip HS Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you
need in the starcraft multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

[11] Jyotirmoy Deshmukh, Marko Horvat, Xiaoqing Jin, Rupak Majumdar, and Vinayak S
Prabhu. Testing cyber-physical systems through bayesian optimization. ACM Trans-
actions on Embedded Computing Systems (TECS), 16(5s):1–18, 2017.

[12] Wenhao Ding, Baiming Chen, Bo Li, Kim Ji Eun, and Ding Zhao. Multimodal safety-
critical scenarios generation for decision-making algorithms evaluation. IEEE Robotics
and Automation Letters, 6(2):1551–1558, 2021.

[13] Wenhao Ding, Baiming Chen, Minjun Xu, and Ding Zhao. Learning to collide: An
adaptive safety-critical scenarios generating method. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2243–2250. IEEE, 2020.

[14] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen
Koltun. CARLA: An open urban driving simulator. In Proceedings of the 1st An-
nual Conference on Robot Learning, pages 1–16, 2017.

[15] Shuo Feng, Haowei Sun, Xintao Yan, Haojie Zhu, Zhengxia Zou, Shengyin Shen,
and Henry X Liu. Dense reinforcement learning for safety validation of autonomous
vehicles. Nature, 615(7953):620–627, 2023.

[16] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shi-
mon Whiteson. Counterfactual multi-agent policy gradients. Proceedings of the AAAI
Conference on Artificial Intelligence, 32(1), Apr. 2018.

[17] Ivo Grondman, Lucian Busoniu, Gabriel AD Lopes, and Robert Babuska. A survey
of actor-critic reinforcement learning: Standard and natural policy gradients. IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
42(6):1291–1307, 2012.

45

[18] Shangding Gu, Jakub Grudzien Kuba, Munning Wen, Ruiqing Chen, Ziyan Wang,
Zheng Tian, Jun Wang, Alois Knoll, and Yaodong Yang. Multi-agent constrained
policy optimisation. arXiv preprint arXiv:2110.02793, 2021.

[19] Magnus R Hestenes, Eduard Stiefel, et al. Methods of conjugate gradients for solving
linear systems. Journal of research of the National Bureau of Standards, 49(6):409–
436, 1952.

[20] David Isele, Reza Rahimi, Akansel Cosgun, Kaushik Subramanian, and Kikuo Fu-
jimura. Navigating occluded intersections with autonomous vehicles using deep rein-
forcement learning. In 2018 IEEE international conference on robotics and automation
(ICRA), pages 2034–2039. IEEE, 2018.

[21] Maximilian Kahn. Dynamic-occlusion-aware risk identification for autonomous vehi-
cles using hypergames. 2021.

[22] Maximilian Kahn, Atrisha Sarkar, and Krzysztof Czarnecki. I know you can’t see me:
Dynamic occlusion-aware safety validation of strategic planners for autonomous vehi-
cles using hypergames. In 2022 International Conference on Robotics and Automation
(ICRA), pages 11202–11208. IEEE, 2022.

[23] Sham Kakade and John Langford. Approximately optimal approximate reinforce-
ment learning. In Proceedings of the Nineteenth International Conference on Machine
Learning, pages 267–274, 2002.

[24] Alex Kendall, Jeffrey Hawke, David Janz, Przemyslaw Mazur, Daniele Reda, John-
Mark Allen, Vinh-Dieu Lam, Alex Bewley, and Amar Shah. Learning to drive in a
day. In 2019 International Conference on Robotics and Automation (ICRA), pages
8248–8254, 2019.

[25] Mark Koren, Saud Alsaif, Ritchie Lee, and Mykel J Kochenderfer. Adaptive stress
testing for autonomous vehicles. In 2018 IEEE Intelligent Vehicles Symposium (IV),
pages 1–7. IEEE, 2018.

[26] Markus Koschi, Christian Pek, Sebastian Maierhofer, and Matthias Althoff. Compu-
tationally efficient safety falsification of adaptive cruise control systems. In 2019 IEEE
Intelligent Transportation Systems Conference (ITSC), pages 2879–2886, 2019.

[27] Jakub Grudzien Kuba, Ruiqing Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun
Wang, and Yaodong Yang. Trust region policy optimisation in multi-agent reinforce-
ment learning. arXiv preprint arXiv:2109.11251, 2021.

46

[28] Edouard Leurent. An environment for autonomous driving decision-making. https:
//github.com/eleurent/highway-env, 2018.

[29] Guanpeng Li, Yiran Li, Saurabh Jha, Timothy Tsai, Michael Sullivan, Siva Ku-
mar Sastry Hari, Zbigniew Kalbarczyk, and Ravishankar Iyer. Av-fuzzer: Finding
safety violations in autonomous driving systems. In 2020 IEEE 31st International
Symposium on Software Reliability Engineering (ISSRE), pages 25–36, 2020.

[30] Chenyi Liu, Nan Geng, Vaneet Aggarwal, Tian Lan, Yuan Yang, and Mingwei Xu.
Cmix: Deep multi-agent reinforcement learning with peak and average constraints. In
Machine Learning and Knowledge Discovery in Databases. Research Track: European
Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings,
Part I 21, pages 157–173. Springer, 2021.

[31] Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-
Pang Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wagner,
and Evamarie Wießner. Microscopic traffic simulation using sumo. In The 21st IEEE
International Conference on Intelligent Transportation Systems. IEEE, 2018.

[32] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Abbeel Pieter, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. Advances in
neural information processing systems, 30, 2017.

[33] Daniel Chi Kit Ngai and Nelson Hon Ching Yung. A multiple-goal reinforcement
learning method for complex vehicle overtaking maneuvers. IEEE Transactions on
Intelligent Transportation Systems, 12(2):509–522, 2011.

[34] Justin Norden, Matthew O’Kelly, and Aman Sinha. Efficient black-box assessment of
autonomous vehicle safety. arXiv preprint arXiv:1912.03618, 2019.

[35] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar,
Jakob Foerster, and Shimon Whiteson. Monotonic value function factorisation for
deep multi-agent reinforcement learning. The Journal of Machine Learning Research,
21(1):7234–7284, 2020.

[36] Kasra Rezaee, Peyman Yadmellat, and Simon Chamorro. Motion planning for au-
tonomous vehicles in the presence of uncertainty using reinforcement learning. In
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3506–3511. IEEE, 2021.

47

https://github.com/eleurent/highway-env
https://github.com/eleurent/highway-env

[37] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International Conference on Machine Learning,
pages 1889–1897. PMLR, 2015.

[38] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438, 2015.

[39] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[40] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity
visual and physical simulation for autonomous vehicles. In Field and Service Robotics:
Results of the 11th International Conference, pages 621–635. Springer, 2018.

[41] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy
gradient methods for reinforcement learning with function approximation. Advances
in neural information processing systems, 12, 1999.

[42] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen,
and Yi Wu. The surprising effectiveness of ppo in cooperative multi-agent games.
Advances in Neural Information Processing Systems, 35:24611–24624, 2022.

[43] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning:
A selective overview of theories and algorithms. Handbook of reinforcement learning
and control, pages 321–384, 2021.

[44] Ming Zhou, Jun Luo, Julian Villella, Yaodong Yang, David Rusu, Jiayu Miao, Weinan
Zhang, Montgomery Alban, Iman Fadakar, Zheng Chen, Aurora Chongxi Huang,
Ying Wen, Kimia Hassanzadeh, Daniel Graves, Dong Chen, Zhengbang Zhu, Nhat
Nguyen, Mohamed Elsayed, Kun Shao, Sanjeevan Ahilan, Baokuan Zhang, Jiannan
Wu, Zhengang Fu, Kasra Rezaee, Peyman Yadmellat, Mohsen Rohani, Nicolas Perez
Nieves, Yihan Ni, Seyedershad Banijamali, Alexander Cowen Rivers, Zheng Tian,
Daniel Palenicek, Haitham bou Ammar, Hongbo Zhang, Wulong Liu, Jianye Hao,
and Jun Wang. Smarts: Scalable multi-agent reinforcement learning training school
for autonomous driving, 11 2020.

48

	Author's Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Summary of Contributions
	Organization of Thesis

	Related Work
	AV Falsification Methods
	Reinforcement Learning Usage in Black-box AV Stress Testing

	Background
	Reinforcement Learning Basics
	Markov Decision Process
	Reinforcement Learning Algorithm

	Vanilla Policy Gradient and Trust Region Methods
	Vanilla Policy Gradient
	Actor-Critic Method
	Surrogate Loss and Trust Region

	Constrained Policy Optimization
	Constrained Markov Decision Process
	Constrained Policy Optimization Algorithm

	Multi-agent Reinforcement Learning Methods
	Multi-agent Markov Decision Process and Markov Games
	Multi-agent Reinforcement Learning Challenges
	Multi-agent Trust Region Methods
	Multi-agent Constrained Policy Optimization

	Simulation Environment
	Framework for Autonomous Vehicle Stress Testing
	Termination Conditions and Absorbing State
	Observation Space
	Action Space
	Reward
	Cost

	Methodology and Experiments
	Design of the Target Agent
	Comparison of algorithms
	Experiments
	Experiments on a Fixed Starting Position
	Experiments on Random Starting Positions

	Conclusions and Future Works
	Conclusions
	Future Directions

	References

