Uniform Generation of Graphical
Realizations of Joint Degree Matrices

by

Qianye Zhou

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Combinatorics and Optimization

Waterloo, Ontario, Canada, 2023

© Qianye Zhou 2023

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Statement of Contributions

In this thesis, my primary contributions involve the design of the main algorithms and
the derivation of the main theorem. I'd like to emphasize the significant support I received
from my supervisor, Jane Gao, whose insights greatly elevated the quality of my work.
She not only provided valuable suggestions for improving the algorithms but also directly
refined my paper’s writing, including restructuring the overall composition. These revisions
played a crucial role in enhancing the quality of this thesis.

111

Abstract

In this thesis, we introduce JDM_GEN, an algorithm designed to uniformly generate
graphical realizations of a given joint degree matrix. Amanatidis and Kleer [2] previously
employed an MCMC-based method to address this problem. Their method fully resolved
the case of two degree classes, and showed that their switch Markov chain is rapidly mixing.
While our algorithm imposes certain restrictions on the maximum degrees, it is applicable
to any bounded number of degree classes and has a runtime complexity linear in the number
of edges.

v

Acknowledgements

I would like to thank my supervisor, Jane Gao. Her invaluable guidance, consistent
patience, and dedicated assistance were crucial in the completion of this thesis.

I would also like to thank Penny Haxell and Joseph Cheriyan for taking the time to
read the thesis and providing me with their insightful comments.

Dedication

This thesis is dedicated to my parents, Hongxing Zhou and Min Zhao, for their love
and support throughout my journey. Also, to my girlfriend, Qiwen Wang, for standing by
me during times of struggle. Your presence has meant a lot.

vi

Table of Contents

Author’s Declaration
Statement of Contributions
Abstract
Acknowledgements
Dedication

1 Introduction

2 Overview of switching-based algorithm
2.1 OVerview e e

2.2 Adaptation

3 Preliminaries and main results

3.1 Configuration Model

4 Initialization
4.1 Generation of Gg

4.2 Running time of PAIRINGGEN and Proof of
Lemma 3.2.

vii

ii

iii

iv

vi

10
10

5 Special case when ¢ =2

5.1 Switchings: theold

5.2 Switchings: thenew L
5.2.1 Switchings to remove crossing double edges between Vi and V5 . . .
5.2.2 Switchings to remove the other types of multiple edges and loops

5.3 JDM.GEN forq=2
5.3.1 Definition
5.3.2 Incremental Relaxation
5.3.3 Uniformity of NODOUBLES;s
5.3.4 Combinatorial interpretation of b(F)
5.3.5 Definiton of JDM_GEN forq=2

5.4 Running time and rejection probabilities
5.4.1 Running time of NODOUBLES12

5.4.2 Proof of Lemma 5.2 and Completion of the Proof for
Claim 5.7. e

5.4.3 Rejection probability of NODOUBLES;s
5.4.4 The remaining phaseso
5.5 Proof of Theorem 3.3 forq=2

6 General case
6.1 Switchings
6.1.1 Switchings to remove crossing double edges between V; and V; . . .
6.1.2 Switchings to remove double edges within each V;
6.1.3 Switchings to remove loops withineach V;
6.2 JDM_GEN
6.3 Parameters Lo
6.3.1 Parameters for NODOUBLES;;

6.3.2 Parameters for NODOUBLES;,

viil

24
25
27
27
29
34
34
36
42
44
48
49
49

52
56
60
61

6.3.3 Parameters for NoLoors;

6.4 Running time and proof of Theorem 3.3
6.5 Proof of Theorem 3.5

7 Future work

References

APPENDICES

A Proofs
A.1 Proof of 4.2

X

78

80

82

83

Chapter 1

Introduction

Research into the generation of random graphs has a rich and varied history with
numerous distinct branches. The most fundamental problem is the uniform generation of a
simple graph with a given degree sequence. Tinhofer presented an approach to address this
problem in [17]. However, the exact runtime of Tinhofer’s algorithm is still undetermined.

Based on the enumeration works of Bender and Canfield [5], Békéssy et al.[1], and Bol-
lobés|[(], some simple algorithms can be designed to uniformly generate random graphs.
These algorithms have a runtime complexity that is linear in the number of vertices, de-
noted by n, but exponential in the average degree. Therefore, these algorithms are only
efficient when the average degree is small.

Using the configuration model presented in [(], one can easily generate multi-graphs
with a given degree sequence. With this, McKay and Wormald [16] introduced switchings,
a novel technique for removing multi-edges and loops from generated multi-graphs. They
also developed a carefully crafted rejection scheme to maintain uniformity. As a result, the
algorithm they designed could efficiently and uniformly generate random graphs even with
a larger average degree. Specifically, when tasked with generating d-regular graphs, the
algorithm can achieve a running time of O(nd®), provided that d = O(n'/3). While this was
a major breakthrough, there was still room for further improvements. Expanding upon this,
Gao and Wormald [10] introduced different classes of switchings and improved the degree
requirements to d = o(n'/?). Subsequently, Arman, Gao, and Wormald [3] introduced the
method of incremental relaxation, which enhanced the rejection scheme used during the
algorithm’s execution. This further improved the running time to O(dn + d*), provided

d = o(n'/?).

Another significant approach to generating random graphs is the utilization of Markov

Chain Monte Carlo (MCMC) methodologies. The core idea behind MCMC-based meth-
ods involves constructing a Markov chain where the states of this chain represent graphs
that satisfy the given degree sequence, along with some auxiliary structures. Transitions
between these states are achieved through random operations, such as the addition or
deletion of edges. Over time, these transitions can lead the system towards a distribution
that is approximately uniform across all states. The time taken to approach this result is
known as the 'mixing time’. Remarkably, for specific degree sequences, the system may
converge to the uniform distribution very quickly. When it only takes polynomially many
steps to achieve this, the phenomenon is referred to as rapid mixing’. Jerrum and Sinclair
[13] introduced a fully polynomial almost uniform generator that achieves 'rapid mixing’
for a particular class of degree sequences, known as the P-stable class. Notably, this class
includes all degree sequences for regular graphs.

Another distinct Markov chain, known as the switch chain, was first introduced by
Kannan, Vempala, and Tetali [14]. In the switch chain, transitions occur by switching
two edges in a specific manner. This method achieved rapid mixing for the generation of
random bipartite regular graphs. Since its introduction, the switch chain has been used to
handle various problems in the field of random graph generation. In [7], Cooper, Dyer, and
Greenhill utilized the switch chain to generate d-regular graphs, achieving a mixing time of
approximately d?*n®logn. Subsequently, Greenhill adapted this approach to non-regular
graphs [11], with the limit of mixing time calculated as A¥M1%log M, where A and M
represent the maximum degree and the degree sum, respectively. As per the recent results
in [12], the current restrictions on A and M have been set as 3 < A < %\/M)

The two methods for generating random graphs discussed above each have their own
strengths. The switching-based algorithms typically offer a more efficient runtime and can
generate results that follow an exact uniform distribution. On the other hand, MCMC-
based algorithms generate results with an approximately uniform distribution, but they
generally have more lenient requirements on the degree sequence.

In this thesis, our research is centered around the generation of graphical realizations
of a given joint degree matrix (JDM). The motivation for studying this particular type
of random graph generation was originally proposed by Mahadevan et al. in [15]. They
argued that, unlike the traditional problem which aims to generate graphs based on a given
degree sequence, generating graphs that satisfy a certain joint degree matrix allows for the
creation of synthetic graphs that more closely resemble real-world network topologies.

The problem we address involves a family of ¢ pairwise disjoint vertex sets denoted
by V = (W,...,V,), where ¢ > 1 is a positive integer, and a sequence of ¢ nonnegative
integers, denoted by d = (dy,...,d,;). Additionally, a joint ¢ x ¢ “degree matrix” M is

given. A graphical realization of the triple (V, M, d) is a simple graph G with vertex set
V' = UL,V such that every vertex u € V; has degree d; for each 1 < i < ¢, and the number
of edges with one end in V; and the other end in Vj is precisely M;; for every 1 <i < j <gq.
Without loss of generality, we may assume that d; > 1 for every 1 <i < g. We may also
assume that

(a) M is symmetric, and
(b) 2M;; + Zj:j;éi M;; = d;|Vi| for every 1 <i < g, and
(c) i, di|Vi| is even,

as otherwise, there is no graphical realization for (V', M, d) (indeed, (a) and (b) above imply
(¢)). The goal of this research is to uniformly generate a graphical realization conforming
to a given (V, M, d).

Following the proposal of the problem, Amanatidis, Green, and Mihail [!] presented a
simple polynomial algorithm that produces a graphical realization of a given joint degree
matrix, although it is not uniformly generated. They also considered the switch chain as a
potential method to solve the problem, but they were uncertain about how to bound the
mixing time. In [9], Erdos, Miklés, and Toroczkai prove a suitable MCMC algorithm is
rapid mixing over a subspace of realizations of a given JDM (namely the space of balanced
realizations). Later, Amanatidis and Kleer [2] demonstrated rapid mixing for strongly
stable degree sequences, which include the cases of 2-degree classes (i.e., ¢ = 2) in the
context of JDM. However, they noted that their proof might not be applicable to cases
with ¢ > 2.

In this thesis, we concentrate on a different approach to graph generation problems,
as discussed earlier, using switching-based methods. Compared to prior work [2], our
method provides better running time and works for any bounded number of degree classes.
However, we do require some additional restrictions on the input parameters (V, M, d).

In the subsequent chapters, we’ll first provide a high-level overview of the switching-
based algorithm developed by McKay and Wormald in [16], while also introducing the
new ideas used in this thesis in Chapter 2. Then we present the essential aspects of the
configuration model and discuss its adaptation for the graphical realizations of a joint
degree matrix in Chapter 3. Following this, we demonstrate the generation of an initial
multi-graph for our problem in Chapter 4. For a comprehensive understanding of our
problem-solving process, we depict the base case with 2-degree classes in Chapter 5. We
introduce new types of switching operations and show their use in removing multi-edges

and loops in the initial graph. In Chapter 6, we extend our problem to a general case,
which mostly aligns with the approach detailed in Chapter 5. Finally, we explore potential
enhancements to our method in Chapter 7.

Chapter 2

Overview of switching-based
algorithm

In this chapter, we provide a general description of the switching-based algorithm de-
signed by McKay and Wormald in [16], along with some improvements made to the al-
gorithm. Subsequently, we will demonstrate how to adapt their algorithm to address our
problem and clarify the new ideas presented in this thesis.

2.1 Overview

The algorithm starts by generating a multigraph G with the given degree sequence
d = {dy,ds,...,d,} by using the configuration model introduced by Bollobas [(]. Here,
we aim for the generated graph G to be in a specific set Gy, where Gy is a predefined set
based on the degree sequence d such that graphs in Gy share the same degree sequence
d and satisfy the following conditions: they do not contain multi-edges of multiplicity
greater than two or loops of multiplicity greater than one. Additionally, they have at most
d double edges and [loops, where the values of d and [are determined by the sequence d.
If G fails to meet these conditions, the algorithm will terminate and reject GG, which we
refer to as an initial rejection. In Section 3.1, we will provide a detailed introduction to
the configuration model and demonstrate how it can be employed to generate multi-graphs
that satisfy any valid degree sequence.

Next, two phases are employed to process the graph G with the goal of removing loops
and double edges from it. The first phase is dedicated to eliminating all loops from G,

while the second phase focuses on the removal of all double edges within GG. In these
phases, two operations designed by McKay and Wormald are utilized. The first operation,
called l-switching, is used to remove loops, while the second, called d-switching, is used to
remove double edges. The general idea behind these switching operations is to eliminate
non-simple structures from the graph by adding and removing edges while preserving the
degree of each vertex. Detailed explanations of these two operations will be provided in
Section 5.1.

Throughout these two phases, specific rejection schemes are designed to ensure that
uniformity is maintained throughout the process. To illustrate the general idea behind
the design of these rejection schemes, we will use the second phase, which is dedicated to
removing double edges from the graph, as an example. Suppose we obtain a graph G after
the first phase. In this graph, there are no loops, and it contains at most d double edges.
We define S, C Gy to be the set of multigraphs containing no loops and exactly k double
edges, where 0 < k < d. Hence, G| € S, for some k. Subsequently, we proceed to perform
d-switching on G; sequentially. Each d-switching reduces the number of double edges in
GG1 by one. In other words, after applying a single d-switching operation to G;, we obtain
a graph in S,_;. After two d-switching operations, we end up with a graph in Sj_5, and so
on. This process continues until we have reduced the number of double edges in the graph
to zero, which means we will end up with a graph in Sj.

If G is uniformly chosen from Sy for some k, then applying a d-switching uniformly
at random to G may result in a graph that is not uniformly distributed in Six_;. This is
because the number of ways to apply a d-switching to each graph in S is different, and
the number of ways to generate each graph in S,_; by a d-switching is also different.

To resolve this issue, two rejection steps are designed. We now briefly introduce these
two steps and show how they preserve uniformity. Suppose Gy is uniformly chosen from
Sy for some k, then we uniformly at random choose some d-switching that can be applied
on (G; and suppose it produces G € Si_1. Let’s define the following parameters:

(a) Let f(G) be the number of ways to perform a d-switching on graph G.

(b) Let b(G) be the number of ways to generate G through a d-switching.

Additionally, two parameters f, and b, are chosen such that for each 1 < k < d,

fr 2 max f(G), by < min b(G).

A simplest choice would be f, = maxges, f(G) and b, = mingeg, b(G). However,
computation of maxges, f(G) and minges, b(G) can take a long time. Instead, we can
specify f, and b, as some function of d and k and prove that they satisfy the conditions
above.

Recall that we perform some d-switching on G; and produce Gj. Next, the f—rejection
rejects with probability 1 — ! J(CG and the b-rejection rejects with probability 1 — E?G/l The
probability that G; = G is the same for every G € S,. For any G' € Sj_;, the event
G| = G occurs, if G; = G for some G € S, and a d-switching S that coverts G to G’ is

selected by the algorithm. Hence,

I _ 1 f(G>l—)k—1
]P)(Gl - G) (GZS) P<G1 G)f(G) Tk b(G’)’

where the summation is over all (G, S) such that S converts G to G’. Note that ﬁ is the

probability that S was selected, f? b(’“é,l) is the probability that S is neither f-rejected,
k

nor b-rejected. Since the number of (G, S) such that S converts G to G’ is equal to b(G’),

and P(G; = G) is a constant, P(G} = G) does not depend on G’. Hence, G is uniform in

Sk—1.

By applying this process inductively, the resulting graph after removing all double edges
from G is uniformly distributed in Sj.

In the process described above, the only term that cannot be computed in constant time
is the calculation of the values of f(G) and b(G"). However, based on the switching selection
strategy, it is shown that there is no need to compute the value of f(G). Consequently,
the only computation left to perform is to determine the value of b(G’). This computation
involves counting specific local structures within G’, which can be efficiently executed.

To improve the algorithm’s running time, Arman, Gao, and Wormald [3] introduced the
technique of incremental relaxation by modifying the b-rejection steps during the phase
of removing double edges and loops from the graph. To briefly explain the concept of
incremental relaxation, let’s consider the example above. As we said, the majority of
running time is spent on computing the value of b(G”) in each iteration. Upon examining the
structure of d-switching, b(G") is the number of two vertex disjoint simple ordered two-paths
uv1W1, U2Vaws in G such that there are no edges between u; and ug, v and vq, as well as w;
and ws. The computation of b(G’) involved enumerating all pairs of simple ordered 2-paths
and verifying their availability, which is a time-consuming process. However, incremental
relaxation breaks down the b-rejection into multiple rejection steps, with each step focusing
on counting simpler structures than those considered in the calculation of b(G’). As a result,

7

this significantly reduces the computation time in each iteration. For a more comprehensive
explanation, readers can refer to Section 3 of [3] for more details.

2.2 Adaptation

The main difference in our problem is that we have a joint degree matrix M, which
regulates the number of edges within and between vertex sets. As a result, we’ve made
specific adjustments to both the initial graph generation and the removal of loops and
double edges for our problem.

For the initial generation, we made slight modifications to the procedure for generating
multigraphs using the configuration model. These modifications ensure that the number of
edges within and between vertex sets satisfies the requirements imposed by the joint degree
matrix M. Similarly, the set Gy is predefined based on the input parameters (V, M,d).
Within Gy, graphs must satisfy all the requirements for being a graphical realization of
(V,M,d), except they may contain loops and multi-edges. Furthermore, the graphs in G
must meet the following requirements:

(a) They should not contain multi-edges of multiplicity greater than two or loops of
multiplicity greater than one.

(b) They should have at most [; loops within V; for i € [q].

(c) They should have at most d;; double edges with one endpoint in V; and the other in
Vifor 1 <i<j<gq.

The values of /;s and d;;s are determined by (V', M, d). The procedure for generating
the initial graph for our problem will be provided in Section 4.1.

After obtaining an initial graph G from §G,, we then remove double edges and loops
from it. For our problem, we divide the process into several phases, each phase is dedicated
to removing double edges or loops within or between particular vertex sets. For example,
we address double edges with one endpoint in V; and the other in V5, double edges with
both endpoints in V3, loops within Vj, etc.

In order to remove loops and double edges from G, the most intuitive idea is to apply the
l-switching and d-switching designed by McKay and Wormald. However, directly applying
these switchings may result in a relatively high rejection probability and lead to poor

algorithm performance. We will provide a detailed explanation of why this can lead to a
high rejection probability in Section 5.1, after introducing the l-switching and d-switching.
To reduce the rejection probability, we draw on ideas from [10] by designing various types
of switchings for each phase. Due to the requirements imposed by the joint degree matrix
M, these switchings not only ensure that the degree of each vertex remains unchanged
before and after the switching but also maintain the same number of edges within or
between any vertex sets. We will provide examples of switchings used for two vertex sets
(i.e. ¢ = 2) in Section 5.2, with the general definitions of the switchings presented in
Section 6.1. Furthermore, similar rejection schemes are designed to maintain uniformity
in each phase.

Chapter 3

Preliminaries and main results

3.1 Configuration Model

The configuration model, also known as the pairing model in the literature, was origi-
nally introduced by Bollobds [6] in order to asymptotically enumerate graphs with a given
degree sequence. Soon it became the indispensable tool for analysing random graphs with
given degree sequences. Given a degree sequence d = {d,ds,...,d,}, the configuration
model creates n cells, denoted by C4,...,C,, where the i-th cell C; contains exactly d;
points. Take a uniformly random matching P over the total > | d; points. Note that for
a graphical degree sequence d, Y . | d; must be even. The matching P is called a paring,
and every pair of points matched by P is called a pair in P. Let G(P) be the (multi)graph
produced by P by representing each cell as a vertex, and each pair in P as an edge (See
Figure 3.1 as an example). It is easy to show, by a simple counting argument, that G(P)
is a uniformly random simple graph, conditioned on that G(P) is simple.

To facilitate the discussion, we introduce the following terminology for graphs and the
configuration model:

1. Cells and Vertices: The term cells is used exclusively in the configuration model,
while vertices is used in the graph. Each cell corresponds to a unique vertex where
the number of points the cell contains is the same as the degree of its corresponding
vertex.

2. Pairs and Edges: The term pairs is used exclusively in the configuration model,
while edges is used in the graph. Each pair corresponds to a unique edge, or part
of a multi-edge, in the graph.

10

Here is an example of the configuration model for the degree sequence {1, 2, 3,2} with
a pairing, along with its corresponding graph:

AN D

Ul - 4 U3

RN,

() —
o

Figure 3.1: Example of the configuration model

As our algorithm will operate on multigraphs, we give a formal definition of it.

Definition 3.1. A multigraph G is defined by a triple-element set (V, £, M) where V is
the set of vertices, £ C (‘2/) UV is the set of multi-edges, and M : E — N\ {0} denotes the
multiplicities of the multi-edges in F. A multi-edge uv contributes M (uv) to the degrees
of u and v respectively. A loop at u contributes 2M (u) to the degree of w.

This definition aligns with that of Diestel [3], if one considers the isomorphism class
of different edge labelings. In Diestel’s definition, each multi-edge uv € F is replaced by
M (uv) distinct edges, all connecting vertices u and v. However, for the purposes of this
thesis, it’s more straightforward to consider a multi-edge as a single entity. Specifically, we
refer to a multi-edge uv with a multiplicity of 2 as a double edge.

Bollobés’ configuration model naturally extends to generate graphs realising (V', M, d)
as follows. Let C;, where 1 < i < ¢, be a set of |V;| cells representing vertices in V;. Each
cell in C; contains exactly d; points. Let ®(V, M, d) be the set of all pairings P on the
set of Y7 | d;|V;| points such that there are exactly M;; pairs with one end contained in a
cell in C; and the other end contained in a cell in C;, for all 1 <7 < j < ¢q. As before, let
G(P) denote the multigraph produced by P for any P € ®(V, M, d). Again, by a simple
counting argument (see the Appendix for a proof), G(P) is a uniformly random graphical
realization for (V', M, d), if P is a uniformly random pairing in ®(V, M, d) conditional on

11

G(P) being simple. Figure 3.2 illustrates an example of the graphical realization (and its

; g) (3,1)), where |Vi| = V3] = 3.

In the pairing on the left-hand side of the figure, cells C through Cg correspond to
vertices v; through vg in the graph on the right-hand side of the figure. Specifically, we
have C; = {C1,Cy, Cs5} and Cy = {C}4,C5,Cs}. Additionally, U; in the figure denotes the
set of points contained within the cells in C;, where U; contains nine points and Us contains
three points.

corresponding pairing) of ((V;, V5), <

Cy 1 o U4

05 U2 o Us

Cs v3 U6

BN

U Uz 41 Va

Figure 3.2: graphical realization and its corresponding pairing

Let P be a uniformly random pairing in ®(V, M, d). If G(P) is simple then we are
done. However, unless each of the d; is relatively small, the probability that G(P) is simple
is very close to zero, and thus, we almost always end up with a multigraph G(P). The
first step of our algorithm is to generate P from a reasonably large subset ®4(V', M, d) of
O(V,M,d). To define ®¢(V, M, d) we need to define a few parameters.

Let G(V,M,d) = {G(P) : P € ®(V,M,d)}. For any G € G(V,M,d), we define
L(G) = (Li(G))ielq), where L;(G) is the number of simple loops in G whose ends are in V;
for ¢ € [¢]. Additionally, define D(G) = (D;;(G))1<i<j<q, Where D;;(G) is the number of

double edges in G that join a vertex in V; and a vertex in V.

Let n; = |V;] for each i € [q] and set L = (L;);eq and D = (D;;)1<i<j<4 where

o 9 2Mii . 2 2MZ,2.
I, =4 forielg; Dy=—9 for1<i<j<q. (3.1)
n; it

12

Let ®,(V,M,d) be the set of pairings P in ®(V, M,d) such that L(G(P)) < L,
D(G(P)) < D, and G(P) has no loops of multiplicities greater than one, or multiple
edges of multiplicity greater than two. The following lemma ensures that ®(V', M, d) is
reasonably large compared to ®(V, M, d).

Lemma 3.2. Let P be a uniformly random pairing in ®(V, M, d). Provided that

M3 A?
ij

2,2

=o(l) forall1 <i<j<gq, (3.2)
then,

Pr(P € &o(V, M, d)) > g +o(1).

The proof of the lemma is a simple first moment argument and is deferred to Section 4.2.

In this thesis, we introduce a new algorithm called JDM_GEN that generates a uni-
formly random graphical realization of (V,M,d). The algorithm starts by repeatedly
generating a uniformly P in ®(V,M,d) until P is in ®o(V,M,d). Lemma 3.2 above
shows that O(1) rounds is necessary in expectation. Let Gy = G(P) where P is the pair-
ing obtained. We know that P is a uniformly random pairing in ®o(V', M, d). Next, our
algorithm starts from Gg, and produces a sequence of multigraphs Gy, Gy, Gs, ... using
some switching operations defined in Section 5.1. These switching operations repeatedly
replace multiple edges and loops with simple edges while maintaining the resulting multi-
graph in G(V', M, d). Once all the multiple edges are removed, the resulting simple graph
is output. However, each application of the switching operations changes the distribution
of Gy slightly from uniform. The central work is to design and combine the use of a set
of switching operations, together with a carefully crafted rejection scheme, to maintain
the uniformity in each step of the algorithm. Whenever a rejection occurs, the algorithm
restarts from the beginning. Thus, in order to control the running time of the algorithm,
it is necessary that the overall rejection probability is not too big. This further imposes
certain constraints on (V', M, d) in our main theorem.

We will discuss the uniformity of Gy in Section 4.1, and examine the running time of
generating G in Section 4.2. In Section 5.3.3, we will explore how uniformity is maintained
during the process of removing multiple edges and loops where we will use a specific phase
that focuses on removing crossing double edges between two vertex sets as an example,
and the time required for this process will be discussed in Section 5.4.1.

The main theorem of this thesis is stated as follows:

13

Theorem 3.3. JDM_GEN generates a uniformly random graphical realization of (V, M, d),
where V.= (Vi,Va, ..., V), M = (M) jecq and d = (di,ds, ..., dy) are given and q > 2
is a fized constant. Provided that

M3 A?
ij

2,2
n;n;

=o(l) forall1 <i<j<g,

where A = max{d; : i € [q|}, and n; = |V;| for i € [q], the expected running time of
JDM_GEN s

i€[q]

Corollary 3.4. JDM_GEN generates a uniformly random graphical realization of (V', M, d),
where V.= (V1,Va, ..., Vy), M = (M;j); jcq and d = (dy,ds, ..., d,) are given and q > 2
is a fizved constant. Provided that all |V;| fori € [q] are of the same asymptotic order n, all
d; fori € [q] are of the same asymptotic order d, and

d® = o(n),
the expected running time of JDM_GEN is

O (nd) .

Furthermore, when all entries of M are of the same asymptotic order, we can improve
the condition stated in the Theorem 3.3, yielding the following result.

Theorem 3.5. JDM_GEN generates a uniformly random graphical realization of (V, M, d),
where V.= (Vi,Va, ..., Vy), M = (M) jelq and d = (di,ds, ..., dy) are given and g > 2 is
a fized constant. Provided that M;; are of the same asymptotic order m for all1 <1 < j <gq
and

mA?

nin;

=o(l) forall1 <1< j<gq,

where A = max{d; : i € [q|}, and n; = |V;| for i € [q], the expected running time of
JDM_GEN is

i€[q]

14

Corollary 3.6. JDM_GEN generates a uniformly random graphical realization of (V', M, d),
where V.= (Vi,Va, ..., Vy), M = (M) jelq and d = (di,ds, ..., dy) are given and g > 2 is
a fized constant. Provided that M;; are of the same asymptotic order for all1 < ¢ < j <gq,
all |Vi| for i € [q] are of the same asymptotic order n, all d; for i € [q] are of the same

asymptotic order d, and
d® = o(n),
the expected running time of JDM_GEN is

O (nd) .

15

Chapter 4

Initialization

In this chapter, we present the details in the procedure for the generation of the initial
graph, denoted as (G, and discuss the distribution of Gj.

4.1 Generation of G

As discussed earlier, the algorithm finds G(P) where P is a uniformly random pairing
in ®5(V, M, d). Recall that C; denotes the set of cells representing the vertices in V;, for
each i € [q]. Let U; denote the set of points in the cells of C;. The procedure for generating
a uniformly random pairing P in ®4(V', M, d) is given below. Recall that when a rejection
occurs, the algorithm restarts from the beginning.

16

procedure PAIRINGGEN(V', M, d)
for each i € [g] do
Uniformly at random partition U; into ¢ parts, denoted by {X;;,j € [q]},
subject to | X;;| = M;; for each j # i
end for
for each 1 <i<j<qgdo
Match the points in X;; to the points in X;; uniformly at random.
end for
for each i € [g] do
Take a uniform random perfect matching over the points in Xj;
end for
Let P be the pairing generated by the above steps; reject P if P ¢ ®&o(V, M, d).
Return (P, G(P))
end procedure

We first verify that the pairing output by PAIRINGGEN is uniformly distributed in
cI)O(‘/’ Mu d)

Lemma 4.1. Each P € ®¢(V, M, d) is output by PAIRINGGEN with equal probability.
Proof. For each i € [q], let
Ni = |U7J| = nldl.

Claim 4.2. Each pairing P € ®¢(V', M, d) is output by PAIRINGGEN with the probability:

q q iy
v A G) W) @
<i=1 (Mil,n-,Miiﬂ,QMii,MiiH,m,Mi)> (1§i<j§q <M7’J)'> (i:l (QM”)!

Since 4.1 only depends on (V, M, d), this completes the proof.]
. . N; .
Proof of Claim 4.2. For each i € [¢], there are (Mi11-~-,Mii—172Mii1Mii+17-~7Mi) different ways to

partition IV; points into g subsets X1, ..., X;, with sizes My, ..., Mi;—1, 2M;;, Myiiq, - .
respectively.

o Mg,

For any 1 <1i < j < ¢, once the partitions X;; and X;; are determined, there are (1;;)!
different perfect matchings that can be created between X;; and Xj;.

17

| X!
[X451 0

Furthermore, for each i € [¢], when the partition X;; is determined, there are ro.
R

(2M;;)!

Qe Ways to create perfect matchings on Xj;.

which simplifies to

Hence, by following the steps in PAIRINGGEN, each P € ®(V, M, d) is generated with
the probability demonstrated by 4.1. Since the procedure rejects P if P ¢ ®y(V, M, d),
each P € ®4(V, M,d) is output by PAIRINGGEN with the probability demonstrated by
4.1.

]

Let G be the G(P) output by PAIRINGGEN. Given that P is uniformly distributed in
O4(V, M,d), it is not true that G(P) is uniformly distributed in {G(P) : P € ®¢(V, M, d)}.
However, we show that G(P) is uniformly distributed in a certain conditional probability
space. We need a few definitions to formalize this. Recall that for any G € G(V', M, d), we
denote L(G) = (Li(G))ic[q as a g-tuple, where L;(G) represents the number of simple loops
whose ends are in V;. Similarly, D(G) = (D;;(G))1<i<j<q has been defined as a ¢*-tuple,
where D;;(G) denotes the number of double edges in G that have one end in V; and the
other end in Vj for 1 <¢ < j <g.

Given L = (Ll, LQ, cery Lq) and D = (Dij)1§i§j§q7 let g()(D, L) denote the set of multi-
graphs in {G(P) : P € ®¢(V,M,d)} such that L(G) = L, D(G) = D. We show that Gy
has uniform distribution after conditioning on L(Gy) and D(Gy).

Lemma 4.3. Conditioning on L(Gy) = L, D(Gy) = D, Gy is uniform in Go(D, L).

Proof. Let (P*, G(P*)) denote the output of the PAIRINGGEN procedure.
For any G € Go(D, L), the probability of obtaining Gy = G is given by:
Pr(Gy=G) = > Pr(P* = P).

Ped(V,M,d),G(P)=G

Each P € ®¢(V, M, d) is generated with the same probability by Lemma 4.1. Therefore,
it suffices to prove that for each G € Gy(D, L), the cardinality of the set {P : P €
®y(V,M,d), G(P) = G} is the same.

Given D = (D;;(G))1 <i,j < qand L = (L;(G))i € [q], it is easy to see that for any
G € g()(D, L)

{P: P edy(V,M,d),G(P) =G} =[[@)"

i=1

q 1\ Ziz1 LitEacicjzq Dis
() (4.2)

18

(We include a proof for (4.2) in Appendix A.) Hence, the size of the set only depends on
L and D, which completes the proof. O

4.2 Running time of PairingGen and Proof of
Lemma 3.2

Recall L and D in (3.1). Given a nonnegative integer ¢, let [z], denote the t-th falling
factorial of x; i.e. [x]; = x(z — 1)...(x — t + 1). Moreover, let

N; = |U;| = nid; for i € [q],
Ny =N;— > My=2M; foriclqg,

j€lal.j#i
and recall that n; = |V;| and A = max{d; : i € [¢]}.
By analogous proofs as [16, Lemma 1] and [16, Lemma 2| we obtain the following

two simple lemmas. We include their proofs for completeness.

Lemma 4.4. Let P be a uniform random pairing in ®(V, M, d).

(a) The probability of t;; given pairs which have one endpoint in U; and another in U;

occurring i P is
M, M;; \ "
w = (1+0(1)) (_ﬂ)
[Ni]tij [Nj]tij NiNj

Zf tij = 0(1 / sz)
(b) The probability of t; given pairs whose both endpoints are in U; occurring in P is

BRIy ()"

7

if ti = o(v/My).

Proof. The precise probability of (a) is

(J\]/\lfzjzi) (J\JJVZJ_—%ZJ) (M5 — tij)! _ [Mij}tz‘j
(J\]/\I[:]) (J\]/\I[f]) - M) [NVilti; (N3l '

19

For the denominator,]QV indicates the number of ways to choose M;; points from Uj,
()
which is the number of possible outcomes of X;; in PAIRINGGEN. Similarly, % indicates
ij
the number of possible outcomes of X;;. And M;;! is the number of possible pairings that

can be created between X;; and X;.

For the numerator, since t;; pairs are already given, it accounts for the number of ways
to choose M;; — t;; points from U;, U; and pair them up.

The precise probability of (b) when i =1 is

(Nfgml) (Nf—§t1—2)m(§)

N;—2t; * 2t * * *
(o, ot) | sy [Nl [NF/20n20 [Np/20u2 (M2t
(2]]\\/[;) (1\;{)(1\]{272)“(3) [Nl]Qtl [Nik]?h [N1]2t1 [N1]2t1
K33 N—

(!

For the first term, it represents the probability that the endpoints of given ¢; pairs are
contained in X;;. The denominator of the second term is the number of all perfect matching
that can be taken over the points in X;;. The numerator of the second term indicates the
number of all perfect matching, which contains ¢; given pairs, that can be taken over the
points in Xj;. O

Lemma 4.5. Let P € ®(V,M,d) be a uniformly random pairing

(a) The pmbabz’glity that G(P) contains at least one triple edge between V; and V; is at

most O (:;IHQ) foralll <i<j<g
i

(b) The probability that G(P) contains at least one triple edge in V; is at most O (f—f)
fori € [q];

(¢) The probability that G(P) contains at least one loop of multiplicity at least two in V;
is at most O <%2—> fori e [q].

Provided that
M} A2

2,2
n;n;

=o(l) forall 1<i<j<g, (4.3)

all the above probabilities are o(1).

20

Proof. By Lemma 4.4 we can compute the expected number of triple edges in G(P) between

Vi, V; as following:
M 5 (d;\ (d; My 5 did] ij

. 1+ o1 . n; = (14 o(1 :

(1+ O(I»(NiNj) 6(3) (3 mny < (140))(NZ-N]-> 0 36 (1+of))6n?n§

Similarly, the expected number of triple edges in G(P) in V; is:
oM\ A\ (s 2M
) -6() (“) < (1+o(1) 5.

1+ (1) (2]13,4) - 6(@)(2) = o) () o(5) (5

Similarly, the expected number of double loops in G(P) in V; is:

(14 0(1) (2]]\‘[42)2 3 (i) ni < (14 0(1))275.

Then, by employing Markov’s Inequality, we can determine three probabilities (a), (b), (¢)
M) = o(1), considering

s ,
as stated previously. It’s evident that O <%> = o(1) and O (nfi
7' i

M) = o(1), we have:

the given assumption. To verify that O (—4 | =
M@% . % CAZ = _MZ?’;AQ
nf’ g n?
2 3 A2
i = (Mnf > = o(1). However,

Let’s consider the case]Z—Z # o(1), then we obtain
o(1). Therefore, the probability that G(P) contains

. . M2 y
if Mii — (1), then —% = () . L =

U2

at least one double loop in V; is also o(1).

Proof of Lemma 3.2. Let P be a uniformly random pairing in ®(V, M, d), we want

to show that
3
Pr(P € &4(V,M,d)) > 3 +o(1),

21

which is equivalent to showing that
5
Pr(P ¢ &o(V,M,d)) < 3 +o(1).

Let [; be the number of loops in V; in G(P) for i € [q], d;; be the number of double edges
in G(P) with one endpoint in V; and the other endpoint in V; for 1 < i < j < ¢. Then if
P ¢ &y(V,M,d), it might be one of the following cases:

(a) G(P) contains triple edges or double loops.
(b) I; > L; for some i € [q].
(c) d;j >5ij for some 1 <i < j<gq.

By Lemma 4.5, we have the probability of case (a) is o(1). Next, we compute the
probability of case (b) and (¢) by employing the similar idea of the proof for Lemma 4.5.

First, we compute the expected value for each [; and d;;, where we have

R

E(l;) < (1+0(1)) <2¥2> : (‘;) n; < (1 +0(1))]\$i for i € [q;

E(dy) < (1+0(1)) (2%)2 : 2(2>Q(Z> < (1+o(1))]\£i for i € [q];

7

M \? _[d)\ [ds M2, o
ij -2 1 1))—= forall 1 < < q.
E(dm)<(1+0(1))<NlN2> (2)(2)n1n2<(+0(1)) s orall1<i<j<gq

Hence we have
Pr(l; > L;) < L + 0(1) for i € [q];
Pr(d; > Dy) < 2%2 + o(1) for i € [qf;
Pr(d;; > D;;) < L +o(l) forall 1 <i<j<gq.

22

Thus, the probability of case (b) or case (c¢) occurs can be bounded as following:

Pr(l; > L; for some i € [q] or di; > D,; for some 1 <i < j < g)

1 1 qg—1) 1
< —_ —_ - . 1
CoptloptT 4q2+0<)
1 -1
= —i-(q)+0(1)
q 8q
1 1
<Z4= 1
q—|—8—|—0()

Together with the probability of case (a) being o(1), we may conclude that
5
PI‘(P ¢ (I)O(Vv M7 d)) < g + 0<1)7

and it completes the proof. O]

Finally, generating P in PAIRINGGEN is equivalent to generating uniform random per-
mutations of points in U;, which can be done in time linear in |U;|. This immediately
implies the following.

Lemma 4.6. Provide that no rejection occurs, the running time of PAIRINGGEN is

O (3:1 n;d;).

During the execution of PAIRINGGEN, we use data structures to store the positions of
multi-edges and loops of each time. This data will be useful in the subsequent phases of
JDM_GEN.

23

Chapter 5

Special case when ¢ = 2

The case ¢ = 1 reduces to the problem of uniform generation of random regular graphs,
which has been studied in [3], [10], and [16]. Thus we may assume that ¢ > 2. For an
easier exposition, we first describe our algorithm JDM_GEN for the special case where
q=2,ie. V = (V,V,). In this case, V| consists of vertices with degree d;, V5 consists of
vertices with degree dy, and the matrix M is a 2 x 2 matrix that specifies the number of
edges between V; and V5 as well as the number of edges within V; and V5. The algorithm
extends naturally to the general case where g > 2 is a fixed integer, which will be discussed
in Chapter 6.

Recall that G is the multigraph output by PAIRINGGEN. By the definition of
®o(V, M, d) and recalling (3.1), Gy does not contain loops of multiplicity greater than one,
or multiple edges with multiplicity greater than two. Moreover, the numbers of loops and
double edges in G are bounded from above by L and D, respectively.

As mentioned earlier, our algorithm JDM_GEN generates a sequence of multigraphs
Go, G4, ..., by repeatedly removing loops and double edges in G, using a set of “switching
operations”. These switchings will be formally defined in Section 5.1. In Section 5.3, we
will define JDM_GEN for the case ¢ = 2 and prove the uniformity of G; for every t > 1.
In Section 5.4, we will analyze the running time of JDM_GEN. Before proceeding to the
definition of the switchings JDM_GEN uses, it is insightful to see how switchings were
used in the literature for the case ¢ = 1. Hence, we start our discussions by reviewing these
switchings.

24

5.1 Switchings: the old

The switching shown in Figure 5.1 demonstrates how a loop can be removed. The
operation shown in the figure replaces the loop on v; and two other simple edges vov3 and
v4v5, by three simple edges, viv9, v1v5, and vzvs. This switching operation preserves the
degree sequence of the graph while reducing the number of loops by 1. Similarly, Figure 5.2
illustrates the elimination of a double edge.

These switchings illustrated in Figure 5.1 and Figure 5.2 were introduced by McKay
and Wormald [16]. As mentioned earlier, each application of the switchings distorts the
distribution of the resulting multigraph slightly from the uniform. This is due to the fact
that some multigraphs permit more number of switchings that can be applied to them than
the others, as well as that some multigraphs can be created in more ways via switchings
than the others. McKay and Wormald [16] designed reject schemes to correct the distortion
of the distribution caused by the application of the switchings, maintaining uniformity
of Gy in each step. More recently, Gao and Wormald [10] introduced the “boosting”
technique, which complements the switchings in Figure 5.1 and Figure 5.2 by a new set of
switchings called “boosters” that are performed only “occasionally”. These boosters boost
the probability of the multigraphs that are otherwise generated less frequently compared
to the others, which would consequently result in a high chance of rejection without the
help of boosters. The introduction of the boosting technique significantly broadened the
family of degree sequences for which the switching-based generation algorithms can work

efficiently.

'U2\ / Vs — » U2¢g ° Us
44444444444444 .- 4

(%] V4 U3 V4

Figure 5.1: l-switching

25

U1 V4 0 Uy

; : —>
UQO Vs (%] Vs

- — 6. g
U3 Ve U3 Vg

Figure 5.2: d-switching

For the problem we study in this thesis, the most intuitive idea would be to use the two
switchings above, with the natural restrictions to maintain the number of edges restricted
by M, to remove the loops and double edges in G,. For instance, if vyvs in Figure 5.2 is a
double edge with both ends in V;, then one would choose the other two edges both lying
entirely in Vi. However, a naive application of switchings like this would result in a high
overall rejection probability, even for rather small d; and ds.

We give an intuitive explanation of the cause of frequent rejections. Suppose Gq has d
double edges with both ends in V;. For simplicity and for exposition purposes we assume
that Gy does not have other types of multiple edges or loops. Suppose that G is uniformly
distributed in the set S; of multigraphs with exactly d double edges lying in V; (and
no other types of multiple edges). Let us consider the multigraphs in S;_;. If G is a
multigraph in S;_1, the number of ways that G can be created is equal to the number
of pairs of vertex-disjoint 2-paths vivevs and v4vsvg lying in Vi such that vyvy, vovs and
v3vg are not edges of G. Let d] denote the number of neighbours of v lying in V; in G
for every v € Vi. Thus, the number of pairs of 2-paths described above is approximately
p(G) = (3, ey, d,(d;,—1))?. This graph parameter is larger for some members in Sy_y, and
smaller for some other members. We have to reject more often for the graphs G with larger
p(G) in order to maintain uniformity. It is not hard to work out the distribution of p(G)
for a uniformly random G in S;_;, and we find that p(G) is not sufficiently concentrated
to guarantee a small rejection probability.

To resolve this problem, our algorithm instead uses a set of switchings including the one
in Figure 5.2, allowing G in S;_1 to be created by different types of switchings. Although
the number of ways that G can be created by the particular type of switching in Figure 5.2
varies significantly for different G in S,;_1, the total number of ways that GG can be created by
any type of switchings the algorithm is permitted to apply will be sufficiently concentrated.

26

This idea is similar to the use of boosters. However, in all previous work, the boosters are
applied very rarely, and they complement a “main type” of switching that is applied almost
always in each step.

In our case, all types of switchings are applied with similar frequencies. This signifies
a notable distinction from the role of boosters from the previous research.

5.2 Switchings: the new

We formally define the set of switchings used in JDM_GEN. For all the switchings
described below, we refer to the operation of transforming a multigraph from the left-hand
side to the right-hand side as a forward switching, while the reverse operation is referred to
as a backward switching. Additionally, given a graph G and some switching S that can be

applied on G, we let S(G) represent the graph that emerges after applying the switching
S to G.

5.2.1 Switchings to remove crossing double edges between V; and
Vs

After the generation of G, our algorithm will repeatedly remove all double edges with
one end in V; and the other end in V5. For convenience, we call these double edges the
crossing double edges. After the removal of all crossing double edges, the algorithm proceeds
to remove the other types of multiple edges, which are treated in a similar manner. Thus,
we start by defining the set of switchings used by the algorithm to remove the crossing
double edges.

There are in total 16 different types of switchings that the algorithm uses to remove
the crossing double edges. We use Di,, 1 < i < 16, to denote the names of the types.
The letter ”D” indicates that these switchings are designed to eliminate double edges. The
subscript 712" signifies that the crossing double edges have one end in Vi and the other
end in V5, and the superscripts 1 to 16 represent the 16 different types.

We define the D3, type switching in detail, and explain how it is illustrated in Figure 5.3.
All the remaining switching types are visually depicted through figures; see Figure 5.5 and
Figure 5.6. We omit the lengthy explanations, as their absence will not lead to confusion,
given the evident visual illustrations in the figures.

27

(R U0 Sl i N T2 uq . 2 Ug
ug P R A ws s - - * 0y

Figure 5.3: D3, switching

To perform a D3, type switching, we choose an ordered set of ten vertices
(U17 V2, U3, V4, Us, Vg, U1, U2, U3, 'LL4)

subject to the following constraints:

(a) vy € V,v5 € Vo and v9v5 induces a crossing double edge;
(b) v1,v3,v4,u1,u3 € Vi, 06, ug, uy € Vo where viuy, v3us, vaus, vguy are all simple edges;

(€) v1vq, Vo3, V4V, V5Vg, Ut Uz, Uzuy are all non-edges.

Then, we remove the edges viuy, v3us, v4us, veuys and the double edge vovs, and add
the edges v1v9, Vou3, V45, V5V, Urus and uzuy. This operation is illustrated in Figure 5.3.
All solid arcs (except for the two arcs between v, and vs) denote simple edges, and all the
dashed arcs indicate non-edges. Vertices belonging to different vertex sets of V' are put
into different square boxes.

It is obvious that the degree sequence and the number of edges between any V; and V;,
i,7 € [2], do not change after the application of the switchings.

All the 16 switchings are similar, with the main distinction being the placement of
v1, U3, U, and vg, each of which can be either in V; or V5. This results in a total of 2* = 16
different switchings.

28

5.2.2 Switchings to remove the other types of multiple edges and
loops

Figure 5.4 illustrates the 4 types of switchings that are used to eliminate loops within
Vi, i€ [2].

Figure 5.7 and Figure 5.8 illustrate the 16 types of switchings that are used to eliminate
the double edges within V;, i € [2].

In the figures, the square box on the left-hand side is the vertex set V.

v 1
x ug
i / 2 uI
V3 '3
Type L}
v1
]
v
Type L}
vy
ug
£ i —
o
vs
Type L{
//1;l /.l
‘Z@:\ 'LljE . ulI
vz)3
Type L}

Figure 5.4: L, switching 1-4

29

Type D%,

uy

d4

Type D,

*uz
uy ! ;
uy /1(2 ;)
. U4
------ T Tttt ug ., N B
ue e Dol A k
v wi vy Vg
vy v vy e w
[e vy #7 I R s
v [
5
Type D7y
uy % " uz
ug LUy
s (N
va vs

Type D,

7
Type Di;

=g
e up . .
UI\ /u2 N ’

Type D},

Figure 5.5: D;5 switching 1-8

Type D},

ug T g uy 7 Tua

Type D{}

Type D{3

uy ? " uz

uz T u4

Type D{3

Type Di§

Type Di3

"t ug u1 % % u2
ug A e T U4 ug ® : T ua
\ da v te e
t vy g De -
R CTETR P SRR s
14
Type Di3
uy % % u2
ug *7; T ua

Type Di§

Figure 5.6: D15 switching 9-16

31

R ug uy ug R ug
"""" S— s
w1 1 vy da | b
¢ — | g e
g 2 Us| g U,
3 Vg va Ve 3 Vg . 6.
------- — 9 [ETTEETE — o
ug ug ug g ug ug ug g
Type Di Type Df
uy ug
*—e
i “eova
1 /.
RS I A
2 Vsl
va Ve
! :
ug g
Type D} Type D}
R ug ug ug
------- — o
1 vy
RS I A
2 Vs
wa .V
ug g
Type D} Type Df

Type D]

Type Df

Figure 5.7: D, switching 1-8

32

Type DY Type Di0
uy uy uy uz
....... o '—4 RN
\ Ttwm va
w1 PR
v2 s vy

Type D{!

Type D{?

."-.vﬁ
3 /‘ g
------- o] —
uz Uug ug Ug
Type D{? Type D{*
uy uz uy uz
....... o [
\ T
kit LTy /
V2T o Us [Tl
l"v v3 l.'- UG \
/‘/. v e
ug ug ug g

Type D{*

Type D{®

Figure 5.8: D; switching 9-16

33

5.3 JDM_GEN for ¢ =2

Recall again that Gj is the multigraph output by PAIRINGGEN. We are ready to
define JDM_GEN. The algorithm consists of three phases. In the first phase, all the
crossing double edges are sequentially removed. Then, the double edges within each V;,
and the loops within each Vj, are sequentially removed in the second and the third phase
respectively. We start with the discussions of the first phase. The general idea of the other
two phases is similar.

5.3.1 Definition

Recall that for any L = (Ly, Ly) € N? and D = (D1, Doy, D13) € N3, the set Go(L, D)
is defined as follows. For any G € Gy(L, D), the following conditions hold:

(a) G has no loops of multiplicity greater than one or multiple edges of multiplicity
greater than two.

(b) The number of simple loops in G in V; and V3 is Ly and Ly respectively.
(¢) The number of double edges in G in V; and V5 is Dy; and Day respectively.

(d) The number of double edges in G between Vi and V3 is Dys.

Suppose we have G € Go(L, D) for some L = (L, Ly) and D = (D11, Das, D15). Recall
the 16 types of switchings demonstrated in Figure 5.5 and Figure 5.6 for the removal of the
crossing double edges. Note that these switchings do not alter the number of double edges
or loops within Vj or V5. Thus, during the whole execusion of the first phase of JDM_GEN,
L1(Gy), La(Gy), D11(Gy) and Doy (Gy) will not change. Hence, for convenience and without
the danger of confusion, we suppress the lengthy notation (L, D), and instead use the
notation H,, to represent the set Go((L1, La), (D11, Do, m)) for 0 < m < Dj, throughout
the discussions of the first phase of JDM_GEN.

For each 7 € {Di, : 1 <1 < 16}, let f,(G) denote the number of switchings of type
7 that can be applied to G. Recall that M is the joint degree matrix. The following are
parameters set by JDM_GEN. Given m € N set fgiz as follows:

34

Foy, = 4mMpM; (5.1a)

T2, = Fpa, = 2mM?, Myy; (5.1b)

7;;12 = 7%2 = 8m My M7, May; (5.1c)

Fpe, = mMi; (5.1d)

For, = Fos, = oo, = Foig = 4mMiy My Mo; (5.1e)
Ty = 16mM7, M; (5.1f)

7731%3 = 75}3 = 2m M, Mas; (5.1g)

Fou = Fpis = 8mMiy My My; (5.1h)

T = 4m M7, M. (5.1i)

_ The parameters F here serve a similar role as f4(m) in [3]. We prove that parameters
I are upper bounds for f,(G) for G € H,p,.
Lemma 5.1. Given m € N, for any graph G € H,, and for each T € {D%, : 1 <i < 16},

—m

f+(G) < [

Proof. We will use the D}, switching as an example to demonstrate that f D§2(G) < fg% =
8mM12M121M22.

Figure 5.9: D2, switching

In the D}, switching, we have m choices for the double edge vyvs, at most My choices
for the edge vyus, at most 2M;; choices for each of the edges vyu; and vgug(order matters),

35

and at most 2Mss choices for the edge vguy. Therefore, without considering the forl)idden
cases such as vertex coincidences or the presence of non-edges, we have at most fg% =

8m My M2, My possible choices for fD?z(G). Hence, we conclude that fD%(G) < 75?2.

By following a similar reasoning, it can be verified that f,(G) < f. for all 7 € {D?, :
1 <i < 16}. O

For each 7 € {Di, : 1 <i < 16}, set

pm = L
2 iene) [i,

This set of parameters will be used by JDM_GEN to probabilistically choose a particular
type of switchings to perform in each step. Note that by definition, Zre{Dizzlgiglﬁ} =1,

and thus (pI"),¢(pi,1<i<16) defines a probability distribution over {Dj, : 1 <14 < 16}.

Now we define NODOUBLES; 5, which is a procedure called by JDM_GEN to eliminate
all the crossing double edges. NODOUBLES;y calls a subprocedure RELAXGRAPH, which
computes the probability of rejecting the switching S selected by NODOUBLES;5, so that
the resulting multigraph maintains uniformity after performing S. RELAXGRAPH is rather
complicated and we will explain the details in the next section.

procedure NODOUBLES12(G)
while G has double edges between Vi, V5 do
Suppose G € H,,
Choose switching type 7 with probability p™, for 7 € {D1,, ..., Di$
Choose a uniform random type 7 switching S that can be applied to G
f-rejection: reject with probability 1 — %
b-rejection: RELAXGRAPH(G, S) ’
G+ S(G)
end while
end procedure

5.3.2 Incremental Relaxation

Now we define RELAXGRAPH, which uses a technique called incremental relazation,
developed by Arman, Gao and Wormald [3]. Before introducing incremental relazation,

36

it is helpful to understand how b-rejection would work without incremental relaxation,
and the advantages of using this technique. Recall NODOUBLES 5. Suppose at step t we
have G; uniformly distributed in H,, for some m. By the definition of NODOUBLES;5, the
probability that a particular type 7 switching S is selected, and is not f-rejected is

AR L) S | S S - 52)
fT(G) fT Zie[lﬁ} fD§2 f‘r Zie[lﬁ] fD{2

Note that the right hand side above is constant for all (G,.S) where G € H,, and S is any
switching that NODOUBLES;> may select. In particular, the quantity does not depend on
7, the type of the switching selected by NODOUBLES;5. Let b(G’) denote the number of
all possible switchings (of any of the 16 types) that can produce G’ for G' € H,,,_1. Given
(G, S) in NODOUBLES;5, let G’ denote the multigraph that S transforms G into. Suppose
we b-reject (G, S) with probability C/b(G") for some constant C' that does not depend on
G’'. Then, the probability that any graph G’ € H,,,_1 is created after a switching step and
is not rejected (either f-rejected or b-rejected) is equal to

—m N
(G,S):S produces G’ |Hm’ Zié[lﬁ] fDliz b(G>

where 1/|H,, | 1s the probability that the multigraph obtained before the switching step is

G, 1/ ichq s pi, is the probability that S is selected and is not f-rejected, and C'/b(G")

is the probablhty that (G,S) is not b-rejected. Note that the right hand side above is

constant since C' is constant and

H{(G,S) : S produces G'}| = b(G"),

by definition of b(G’). Inductively, the resulting multigraph obtained after the switching
step is uniform in H,,_.

This is essentially the idea of rejection schemes used in the literature [16] before the
technique of incremental relaxation. The drawback is that the computation of b(G’) is time
costly. With a brute-force search, it takes O(A%n?) time to compute b(G’) by navigating
through each pair of 2-paths in G’ and checking if they can be created by a d-switching
as in Figure 5.2. The time complexity can be reduced to O(d®n) in the case of a d-regular
degree sequence, by sophisticated counting schemes using inclusion and exclusion, and by
using proper data structure. The time cost will be even higher in our case, as the structures
created by a switching (recalling Figure 5.3) is more complicated than just a pair of 2-paths.

Incremental relaxation is a new rejection scheme that performs b-rejection without
computing b(G’'). We give an intuitive explanation of how it works in NODOUBLESs.

37

After the procedure chooses S, the resulting multigraph G’ produced by S is determined.
Instead of viewing G’ as the output of S, we view the 5-tuple (G', v1v9v3, V4V5V6, U Ug, Uzly)
as the output of S, where each coordinate in the tuple except for G’ signifies a certain
structure in G’ created by S (e.g. v1v9v3 is a 2-path in G’); moreover, these structures
satisfy certain constraints (e.g. all vertices involved are disjoint, ujv; is a non-edge, etc.).
By (5.2), every possible such 5-tuple is generated with equal probability. However, some
G’ produces more such 5-tuple than others. Instead of computing how many 5-tuples there
are with the first coordinate being G’, which is equivalent to computing b(G’), incremental
relaxation computes b(G’, v1v9v3), which is the number of simple 2-paths in G’, and then
b(G', v1vav3, V4UsV6), Which is the number of choices for v4vsvg, given a particular choice of
(G', v1v903), ete. Finally, using these b() values that are computed, incremental relaxation
performs a sequence of b-rejections and sequentially produces (G’ v1v9v3, V4U5Vg, Ut U2),
and then (G, v1v9v3, v4v506), and then (G’,vjv9v3) and finally G’ each time uniformly
distributed in their corresponding probability spaces. The essence of incremental relaxation
is that computing the new b() functions costs much less time than computing b(G’).

Here, we adopt the notation in [3]. For a more detailed explanation of incremental
relaxation, readers are referred to Section 3 of [3]. In the following discussion, we will
explain how incremental relaxation is applied to our problem. We always start with a
general setting as in [3], followed by how it is applied in our particular problem.

Given a finite set F and a positive integer k, we are also provided with multisets S; for
1 <i <k, where each S; consists of subsets of F.

Let Fi be any subset of F x S} X ... x Sk such that for F' = (G,CY,...,Cy) € Fy,
F satisfies G € C, C Cx,—; C ... C C}. For any F = (G,C},...,Cy) € Fi, we define
R(F):(G,Cl,,cz) fOI'lSZSk

For 1 <i <k —1, we define F; = {P,(F): F € F}, and we set Fy = F.

For 1 <i <k let F=(G,C4,...,C;) € F;,. We define P(F) = (G,C4,...C;_1) be the
prefix of F.

For our problem, suppose RELAXGRAPH is called with parameters (S, G) such that
S(G) € Hp,. Then F will be H,,, and k = 4. We define S; in the following way:

Let vy, ..., vs, U, ..., us be distinct vertices. We use Fg(G) to denote the set of simple
edges in graph G.

We define the following sets:

38

Cfvl’”’%) ={G € F : vivy,19v3 € Es(GQ)};
C§) = {G € O™ vyus, v506 € Es(G), vavs € B(G)}
Clrrrem2) — G e Ot sy uy € Bg(G), viug, vaus & E(G) Y
C’ivl""’vﬁ’ul""’u“) = {G € Cl(vl""’vﬁ’ul’m) D UsUy € Es(G),’U?,Ug, Vg Uy gé E(G)}

These sets can be considered as subsets of F.

Now, we define the following sets:

V1,02,V .-
S, = {C’f 1.02:%3) v1, U9, v3 are distinct, vy € Vi };
[..
ng{C’é pets) Ly g are distinet, vy € V4, s € WL}
V1 yeeeyV6,UT U c .
S3 = {C’z,(, LML) gy e g are distinet, vy, uy € Vi, vs, ug € V)

V1 ey UG UL y-e ey s e
Sy = {C’i eV UL). V1, .. n, Vg, UL, - . ., Uy are distinct, vg, ug, ug € Vi, vs, ug, ug € Va}.

We let Fi. = F4 be

Fi= {(G7C,£v1,vz,v3)7 Cévl,u.,va)’ Cévl,...,va,ul,uz)’ Civl,...,ve,ul,...,U4)) Ge Civl,...,vﬁ,ul,...,ml)

Vly..v, Vg, UL, ..., Us are distinct and vy, uy, uz € Vi, vs, ug, ugy € Vol

Let vy,...,vg,uq,...,us be distinct vertices where vy, uy, uz € Vi, vs, us, uy € V5 such
that
_ (v1,02,03) ~(V1,006) (V1,0 06,UL,U2) (V150 V65U)
F—(G701 702 ,C3 ,04)6‘74

Then we have
Py(F) = (G, 0"y € Fy;
Py(F) = (G, O™ of)y e Fy;
Pg(F) _ (G, Cfvl,’vg,vg)’ Cévl,...,vﬁ)’ Cévl,..,,vg,ul,ug)) c f3;

P(G’ C’f’Ul,UQ,’UB)’ C«ém,...,ve), C§v1,...,v6,u1,u2)) — (G’ Cfvl’w’%), 02(1;1,...,1;6));
P(G, C(fvl,UQ,US)’ Oém,...,ve)) _ (G, Cl(vl,vz,%));
P(G,C{""™)) = G,

39

Get back to the general setting, for 0 <i <k —1and F = (G,C},...,C;) € F,
we define b(F) to be the number of F’ € F;;y such that P(F') = F.

Suppose B; (0 < ¢ < k — 1) are numbers specified such that b(F') > B; for all F' € F;
and we assume that B; > 0 for all 0 <7 <k — 1.

For our problem, for 0 < i < 3 and F = (G,C4,...,C;) € F;, b(F) will be the
number of F’ € F;,; such that P(F') = F. For example, let F = (G, C\"*">")) € F;, then
b(F) is the number of F' € F, such that P(F) = (G, C"""***). In other words, b(F) is

a more detailed discussion on b(F) in Section 5.3.4 to give a more specific combinatorial
interpretation of b(F).

Recall that A is the maximum degree, that is A = maz{d;, ds}. We specify parameters
below that correspond to B; mentioned above in the general setup:

32M%d 64MEd 16M41d
B = nydy(dy — 1) — 22 nz- S (5.3a)
nine ny sl
32M?yd 64M3,d 16 Msod
By =madp(dy — 1) - =122 - 22 2R ggy A — d3A, (5.3b)
nine ns N9
16 M3
B2 = My, — —12 _ 10A — 2A%, (5.3¢)
T N9
16 M2
BY = My, — OMi> _1on —an2. (5.3d)
n1No
The parameters Bjs here serve a similar role as b, in [3]. The following lemma verifies

that the above Bgs are indeed lower bounds for b(F') for F' € F;. Its proof is deferred to
Section 5.4.2.

Lemma 5.2. Provided that

M3 A?

— - =o(l) forall1 <i<j<2,

b(F)ZB§9>Of0rallF€}}f0rO§i§3.

Incremental consists of two main procedures: LOOSEN and RELAX.

40

The LOOSEN procedure takes an input F' € F;. It may either reject with a certain
probability or output the prefix P(F') of F.

The RELAX procedure takes an element F' from Fj. It repeatedly calls the LOOSEN
procedure until the value returned is an element from F.

procedure LOOSEN(F)
Suppose F' € F;
Reject with probability 1 — %
Return P(F)

end procedure

procedure RELAX(F')
Suppose F' € F;
1:=k
while ¢ > 1 do
F = LOOSEN(F)
1=1—1
end while
end procedure

The following three lemmas(5.3, 5.4 and 5.5) are proved in [3], which states that if F' is
chosen uniformly from Fy, then the output of the RELAX procedure, denoted as RELAX(F),
is uniform in F if no rejection occurs.

Lemma 5.3. [7, Lemma 5] Assume that i € [k] and B; > 0. Provided that F' € F; is
chosen uniformly at random, the output of LOOSEN(F) is uniformly in F;_1 assuming no
rejection occurs.

Lemma 5.4. [7, Corollary 7] When applied RELAX to (G,C4,...,Cy) € Fy, the algo-

rithm outputs G with probability HZ N bGC?—C), and ends in rejectwn otherwise.

Lemma 5.5. /7, Corollary 6] Assume that for all i € [k], B,_y > 0, and assume F' € F,
is chosen uniformly at random. Then the output of RELAX(F') is uniform in F if there is
no rejection.

41

5.3.3 Uniformity of NoDoubles,

In this section we show that NODOUBLES;, preserves the uniformity under the as-
sumption of B{;) > (0 for 0 <7 < 3. The idea is to apply RELAX to our problem. First,
we define the procedure RELAXGRAPH which is called within NODOUBLES 5. Suppose
RELAXGRAPH(G, S) is called in NODOUBLES;; for some G and S where S involves an or-
dered set of ten vertices (vy, va, v, Vg, Us, Vg, U1, Uz, Us, uyg). We define the following notation
for simplicity:

(a) Vi(S) = (v1, vz, v3);

(b) Va(S) = (v1, v2, v3, V4, V5, Vg);

(c) V5(S) = (v1, v, v3, V4, Vs, Vg, U1, Usg);

(d) Vi(S) = (v1,v2,v3, V4, Vs, Vg, U1, Uz, Uz, Usg).

Then, the procedure RELAXGRAPH is defined as follows:

procedure RELAXGRAPH(G, 5)
Let F = (S(G), Y19, 9, ¢,)
RELAX(F)

end procedure

By employing a similar proof strategy as presented in [3, Corollary 15], we derive the
following lemma.

Lemma 5.6. Provided that Bg) > 0 for 0 <1 < 3, if no rejection occurs during the
execution of NODOUBLES12(Gy), then the resulting G is uniformly distributed in Hy.

Proof. We prove it by induction. Let G, = Gy and G’ be the graph obtained after the
i-th iteration for 1 < ¢ < m where m is the number of crossing double edges in Gq. If no
rejection occurs in the first ¢ iterations, we have G € H,,—;. We will now demonstrate
that G, is uniformly distributed in H,,_;.

When i = 0, we have Gy = G chosen uniformly at random from #,, according to
Lemma 4.3. Suppose no rejection occurs in the first k iterations and G is uniformly
distributed in H,,—; for all i < k. Now, suppose no rejection occurs in the (k + 1)-th
iteration. We will prove that G is uniformly distributed in H,,—(41).-

42

Since G, is uniformly distributed in H,,_j, the probability that G} = G is the same
for all G € H,,_r where we denote this probability as .. Now, consider G € H,,_, and
a type 7 switching S for some 7. The probability that (G, S) is called by RELAXGRAPH
can be expressed as:

m—k
(m—k) 1 fT(G,) _ p7(' :
kp'r fT(G/) 7(771—]{:) kf(m_k) ?

where this probability only depends on m and k.

Hence for each possible (G, .S) pair, the corresponding term F' = (S(G), CF(S), CXS(S),
) o'®)) ¢ Fy is called by RELAX with the same probability.

The remaining task is to show that for every I’ € Fy, there exists G € H,,_ and S such
that the corresponding term of (G, .S) is precise F. By establishing this, we can conclude

that each F' € F, is called by RELAX with the same probability. This allows us to apply
Lemma 5.5.

Suppose F = (G',C\"w2v3) olvnmwe) olvnveuuz) ol vouui)y o 7 for some
graph G' € F = H,,_r+1 and vertices vy, ..., vg, U1, ..., us. We can get a graph G € H,,_s.
by performing a backward switching on G’ with the vertices vy, ..., vg, u1,...,us, which
involves the following steps:

(a) Remove the edges vivy, vov3, V4v5, V5Vg, Uy Usg, Uty from G'.
(b) Add the simple edges vyuq, vsug, vius, veus to G'.

(¢) Add the double edge vovs to G'.

Let S be the switching such that S(G) = G’. It can be observed that the corresponding
term of (G, S) is F.

Hence, each F' € F, is called by RELAX with the same probability. Thus, if no rejec-
tion occurs during the (k + 1)-th iteration, G, is uniformly distributed in H,,—(x+1) by
Lemma 5.5.

By induction, if no rejection occurs in the first m iterations, we can conclude that the
final graph G = G, is uniformly distributed in H,,—,, = Ho. m

43

5.3.4 Combinatorial interpretation of b(F')

Recall that in the b-rejection scheme, we need to compute the value of b(P(F)) when
LOOSEN is called. In this section, we will give a combinatorial description of b(P(F)) in
our problem by interpreting JF; from a different perspective. This will be used to verify
that parameters in (5.3) are lower bounds for the b(F)s, yielding a proof for Lemma 5.2.
It will also be used to design a counting scheme for efficient computation of b(F'). These
will be further discussed in Section 5.4.1.

Suppose RELAXGRAPH is called with parameters (G, S), where G’ = S(G). In RELAX-
GRAPH, RELAX is called with parameters (G, C;*), €3 ¢ cV5)) If no rejection
occurs in RELAX, the following values need to be computed when LOOSEN is processed:

b(P(G, O 0) ety = b(@, ') 0, o), (5.4a)
b(P(G 9 0SBy = p@, ', o), (5.4b)
b(P(G 9 09y = p(@, (5.4¢)
b(P(G, ') = b(G). (5.4d)

Suppose F' € F; for some i. Recall that b(F') represents the number of F’ € F;;; such
that P(F') = F, and F;, = {P,(F) : F' € F,} for 1 <i < 3. Currently, we lack an efficient
method to compute the value of b(F'). Hence, we introduce a different perspective on F;,
which brings a combinatorial meaning of b(F') and hence leads to an efficient approach for
computing b(F).

Define

F = {(G,C")y G e ¢ oL ug be distinet vertices where vo € V4 };

2
v1, ..., v be distinct vertices where vy € Vi, v5 € Vo}
]:-3 o {(G Cvl ,02,03) Cm v6) Cvl V6,U1,U2)) G e C(v1 V6 ,U1,U2)
U1, ..., Vg, U, Uz be distinct vertices where vy, u; € Vi, v5,us € Va}.

Claim 5.7. Provided that BYQ) >0for0<i<3 F=F forl<i<3.

Proof. The proof can be seen as an inductive argument, starting with the case for ¢ = 3
and using the results of F3 = Fj to establish the proof for ¢ = 2. By extending this

44

approach, we can then prove the cases for i = 1 in a similar manner. We start by showing
that .Fg = F é

Suppose F' € F3. Then, there exists F'* € F, such that F' = P3(F*). Let us assume
that
F* — (G, C£v1,v2,vg), 02(111,...,1)6)’ Cévl,...,ve,ul,ug)’ Civ1,...,v5,u1,...,u4))

for some vy, ..., vg, U1, ..., Us.

By definition of Fy, we have that vy, ..., vg, u1, us are distinct, ve, uy € Vi, vs, us € Vs,
and G € C{"rrreta) ¢ olvnevetiz) Cmherefore, we can conclude that

F = Py(F") = (G, O o) ofrrone)y e p

Next, let’s suppose F' € Fj where we assume that
F— (G, Cfvl,w,vs)’ Cévl,...,ve)7 C?Evl,.“,vﬁ,ul,w))

for some distinct vertices vy, ..., vg, U1, Us.

To show that F € F, we need to find (us, us) such that G € C{"r-ro2sm4) 4nq
Cﬁ®1,~~,v6,u1,u2ﬂ3,u4) € S,. Then we have

(G, C£v1,vg7v3)’ Cévl,...,vg), Cévl,...,vg,ul,u2)7 Civl,...,vg,ul,...,m;)) c F4,
and hence we have
Pg(G, Cfvhvz’%), 02(1)1,...,1)6)’ Cévh...,vg,uhuz)’ Oivl,...7v6,u1,...7u4)) _ F,
which shows that F' € F3.

It is equivalent to find (us,u4) that satisfy the following conditions:

(a) uz and wuy are distinct vertices, different from vy, ..., vg, u1, ug,
(b) usz € Vi and uy € V5,

(c) usuy € Eg(G), and vsus, veuy ¢ E(G).

Conditions (a), (b) ensure that C{"""1"2"%4) ¢ g, and condition (c) ensures that
G e C(v1,~~~,vﬁ7u1,U2,U3,U4)
4 .

45

The existence of such (ug,us) will be demonstrated later in Section 5.4.2. This com-
pletes the proof that F3 = Fj.

Next, let’s consider the case for i = 2. The direction of showing F, C FJ is almost the
same as the case for i = 3 and can be considered trivial.

So let’s show the direction of F; C F,. Suppose F' € F such that
F— (G, C}vl,vg,vg)’ Cévl,...,vg))

for some vertices vy, ...,vs. Similarly, if we want to show that F' € F5, we need to find
(V1,00,06,UT .. U4) (V1,...,06,u1,u2) (V1,006 UL .. U4)
(u1,ug,ug,uy) such that G € C; C C , O4 € S, and
C(”1’~--»U6,U1,U2) € Ss
3)

Instead of finding the four-vertex tuple, we first try to find (uy,us2) such that G €
Cévl"”’vﬁ’ul’uz) and Cévl"”’v""ul’“"’) € Ss. This is equivalent to finding (u;,us) that satisfy the
following conditions:

(a) u; and ug are distinct vertices, different from vy, . . ., vg.
(b) u; € V1 and uy € V5.
(¢) wug € Eg(G), and vyuy, vaus ¢ E(G).

Similarly, the existence of such (uy, us) will be demonstrated later in Section 5.4.2.

Once we have such (uq,uy), we have

(G, Cfvhvg,vg)’ Cévh...,vs)’ Cévl,...,vg,ul,ug)) c f-?/) _ JT"3.

Hence, there exists F* € F, such that

Pg(F*) _ (G7 Cl(vl,vg,v;g)’ 02(1)17---71)6)’ Cévl,...,vs,ul,ug))'

Thus, we have
By(F7) = (G0,) = F,

which shows F' € F,, and it completes the proof of F, = FJ.

For the case ¢+ = 1, the approach remains the same. Following a similar idea, we need
to solve the following problem when proving for F| C Fi:

We are given vertices (v1, vg, v3) and we need to find (vy, vs, vg) that satisfy the following
conditions:

46

(a) vy, vs,v6 are distinct vertices, different from vy, vg, vs.
(b) vy € V5.

(C) V4 Vs, UsVg € Es(G), VaUs ¢ E(G)
Similarly, the existence of (v, vs, vg) will be demonstrated in Section 5.4.2. O

Now with the new perspective on F;, let’s explore the combinatorial meaning of the
value (5.4) we need to compute. For example, one of the values we need to compute in

LOOSEN is b(G’, C}*®)), where b(G', C{*'®)) represents the number of F’ € F, such that
P(F") = (G, C;/l(s)). Suppose Vi (S) = (v1,v9,v3), given that

Fo=Fy={(G, ™) of)y G oe of)

and vy, ..., vs are distinct vertices, where vy € V; and vs € V4},
we can express b(G, C’Yl(s)) as the number of tuples (wy, ws,ws) such that wq, wq, w3 are
distinct vertices and different from vy, vy, v3, and wy € Vo, wiwy, wows € FEg(G'), wovy ¢

E(GY).

Next, following a similar approach, we can determine the meaning of b(F’) for each term
in (5.4). To do so, we introduce the following definitions:

Let G' € H,, for some 0 < m < Dj,. Let S be a switching that is used to remove
double edges with one endpoint in V; and the other endpoint in V5 and S produce G'.
Suppose S involves an ordered set of ten vertices (vy,vs, vs, vy, Us, Vg, U1, Uz, Ug, Ug). We

define b@(G’, S) for 1 < i < 4 as follows:
a) Let b\Y G',S) be the number of tuples (wi,ws,ws) in G’ such that wy, wq, w3 are
(a) 12
distinct vertices, and wq € Vi, wiws, wows € Es(G') .

(b) Let b%)(G’, S) be the number of tuples (wy, ws, w3) in G’ such that wy, we, ws are dis-
tinct vertices and different from vy, vy, v3, and we € Vo, wywy, wows € Eg(G'), wove ¢

E(G).

(c) Let bg)(G’, S) be the number of tuples (wy, ws) in G’ such that wy, w, are distinct ver-
tices and different from vy, ..., vg, and wy € Vi, we € Vo, wiwy € Es(G'), wivy, wavy ¢
E(G").

47

(d) Let b%)(G’,S) be the number of tuples (wy,ws) in G’ such that wy,wy are dis-
tinct vertices and different from vq,...,vs, u1,us, and wy; € Vi, wy € Vo, wjwy €

Es(G"), wivs, wove ¢ E(G)

Claim 5.8. For every 0 < m < Dj, and every G’ € H,,. Let S be a switching produce
G’, then we have
b
b
b
b

(G0, 0%,) = b)(G. 9);
(G, O, 032 = PG, 9);

(G,) =bP(G, 9);

(G") = bR(G,9).

Proof. We have already shown that b(G', C} 1(5)) = bg)(G’ ,S) in the above discussion. The
other three equations can be shown in a similar way. O]

Corollary 5.9. For every 0 < m < D1y and every G € H,,. Let S be a switching that can
be applied on G where S(G) = G', then RELAXGRAPH(G, S) rejects with probability

LBy BY B By
b (G,) bR (G, S) b (G, 8) bR (G, S)

Proof. This result follows directly from the definition of LOOSEN and Claim 5.8. n

5.3.5 Definiton of JDM_GEN for ¢ = 2

We are ready to define JDM_GEN for ¢ = 2. Recall that NODOUBLES; is a procedure
that repeatedly removes crossing double edges joining vertices in V; and vertices in V5. The
procedures NODOUBLES;, NODOUBLESy, NOLOOPS;, and NOLOOPS, will be defined in
Chapter 6 to remove the other types of double edges and loops. Our algorithm JDM_GEN
simply calls these procedures in sequence and returns the graph obtained after the last
iteration of NOLOOPS;.

Additionally, we include a step for parameter validation. This step is processed after
generating the initial graph using PAIRINGGEN. Its purpose is to ensure that JDM_GEN
can handle all possible inputs (V, M,d). Specifically, if any of the parameters used in
RELAXGRAPH are not greater than zero, we reject the initial graph if it’s not a simple

48

graph. The parameters for NODOUBLES;, NODOUBLES,, NOLOOPS;, and NOLOOPS, will
be declared in Section 6.3, which can be found in (6.4a)-(6.4d) and (6.6a)—(6.6b).

Algorithm JDM_GEN(V, M, d) for ¢ =2
(P,G) = PAIRINGGEN(V | M, d)
if not (BZ.(JI»C)>Ofor0§k§3forall1§i§j§2and
BZ-(k) >0for 0 <k <1forie[2]) then
Reject if G is not a simple graph
end if
NODOUBLES 5 (G)
NoDOUBLES; (G)
NODOUBLES,(G)
NoLoops; (G)
NoLooPsy(G)
Return G

5.4 Running time and rejection probabilities

In this section, we analyze the overall running time of JDM_GEN. As part of the
analysis, we bound the overall probability that any rejection occurs.

5.4.1 Running time of NoDoubles,

In this section, we first analyze the running time of NODOUBLES;s. We then provide
proof of Lemma 5.2 and complete the proof for Claim 5.7. Finally, we bound the probability
that any rejection occurs during the execution of NODOUBLES5.

Lemma 5.10. If no rejection occurs during the execution of NODOUBLES s, then the
running time of NODOUBLES 3 is O(M%,A? /niny).

Proof. Recall the procedure NODOUBLES, defined in Section 5.3.1.

The time cost of each step of NODOUBLES;2 comes from computing the values of f.(G),
B(GS), bG8 B (¢, S), and b(G, 9).

Computation of f,(G) We show that we can perform f-rejections without computing
f-(G). Consider the case of type D3, as an example, and all the other cases of types are

49

similar. Assume that G has m crossing double edges. Instead of choosing a uniform
random type 7 = D3, switching that can be applied to G and then computing fD?Q(G),
we randomly select a double edge vovs between Vi and V5, a simple edge vzvg between
V1 and V3, two simple edges within V; (namely, v;vy and ujus), and a single simple edge
usuy within V5. Then f-reject if the choice does not produce a valid type 7-switching, i.e.
one that can be applied to G. The total number of choices is exactly 775}2, recalling that

7;}2 = 8mMaM? Msy. The total number of valid choices is [ps,(G). Thus, the rejection
probability is exactly 1 — fps (G) /775?2, as desired.

Computation of bg(G’ ,S) We will prove the following claim.
Claim 5.11. For each 1 <7 <4, b%)(G’, S) can be computed in O(A?) time.

Since G has at most D1y = O(M2,/nin,) crossing double edges by (3.1), NODOUBLES 5
lasts O(MZ, /niny) steps. Multiplying it by O(A?) gives the desired bound for the running
time of NODOUBLES > by Claim 5.11. O

Proof of Claim 5.11. To compute bgiz)(G’, S) for 1 < i < 4, we first define some
parameters. For each vertex v in G, for j € {1,2}, define kY to be the number of
neighbours of v in Vj such that the edge between these neighbours and v is a simple edge.
Additionally, let k, = Y+ k8 for each vertex v. The values of k:qﬂ”, quQ), and k, for all
vertices can be determined in O(nyd; + nady) time once the initial graph Gy is generated.
This step is prepared before we run NODOUBLES;2, so the running time is not included
here. We update the value of /{:1(,1), kf,2), and k, after each switching is applied during the
algorithm. Since each switching involves at most 10 vertices, and we only need to update
kqgl), quQ),and k, for these 10 vertices, it takes O(1) time for updating after each switching
is applied.

Computation of b{})(G",S) By Claim 5.8, b,/(G",S) = 3,y kulky — 1). We
can store the value for Y _.. k,(k, — 1) simultaneously when computing the value for

veVy
kgl), k‘ﬁz),and k, during the preparation. And the update for) k,(k, — 1) can be done

veVy v
in O(1) time after each switching is applied. Hence it takes O(1) time to compute b{)(G’, S)
in each iteration.

Computation of bg)(G’, S) By Claim 5.8, b%)(G', S) <> vev, Kok, —1) since there
are forbidden cases that need to be considered. The value of } . ky(k, — 1) can be
computed and updated similar to Y _,. k,(k, — 1). Hence, the value of bg)(G’, S) can be

velp v
computed by subtracting the number of forbidden cases from ., k,(k, — 1) where the

number of forbidden cases can be computed as follows:

20

Suppose Vi(S) = (v1,v2,v3), set p = 0 to store the data for the number of forbidden

cases.

a) For each neighbour v of v, in G, if v € V5, then we a w(ky — 1) to p.
Fi h hb f G, if V3, th dd k,(k

(b) For each neighbour v of vy in G, if v € V; then:
(i) If v is adjacent to vq, this situation has been accounted for in case (a).
(ii) If v is not adjacent to vy but is adjacent to v, then we add 4k, — 6 to p.

(iii) If v is not adjacent to both vy and vg, then we add 2k, — 2 to p.

(c¢) For each neighbour v of v3 in G, if v € V5 then:

(i) If v is adjacent to ve or vy, these situations have been accounted for in cases (a)
and (b).
(ii) If v is not adjacent to both vy and vy, then we add 2k, — 2 to p.

Once we finish the above process, we have b\ (G, S) =2 vev, Fo(ky — 1) — p. It takes
O(A) time to go through the above process and thus, to compute bg)(G’, S).

Computation of b{)(G’,S) By Claim 5.8, b\ (G', 5) < Mi,. Similarly, we need to
compute the number of forbidden cases, and the process is as follows:

Suppose V5(S) = (v1, va, v3,v4, V5, v6) and there are m crossing double edges in G’. Set
p = 0 to store the data for the number of forbidden cases.
(a) Add 2m to p.
(b) Add k2 + kY to p.
(c) For i€ {1,3,4,6}, if v; € V4, add k2 to p; if v; € Va, add kS to p.

(d) For each edge with both endpoints in {vy,...,vs} and being a crossing edge in G,
subtract 1 from p.

(e) For each neighbour v of vy, if v € V4, and v does not coincide with {vy,...,vs} then:
(i) For each neighbour u of v, if u does not coincide with {vy,..., v}, then add 1
to p.

ol

(f) For each neighbour v of vy, if v € V5, and v does not coincide with {vy, ..., vs} then:

(i) For each neighbour u of v, if u does not coincide with {vy,...,vs} and vu ¢
E(G'"), then add 1 to p.

Case (a) includes forbidden cases of double edges, cases (b), (¢), (d) include the forbidden
cases of vertex coincidence, and cases (e), (f) include forbidden cases of presence non-edges.

Once we finish the above process, we have bg)(G’, S) = My — p. Tt takes O(A?) time
to go through the above process and thus, to compute bg)(G’, S).

Computation of b)(G’,S) The computation for b{5(G’, S) is very similar to
b'3(G", S) and also takes O(A?) time.

Hence, for each 1 <1¢ <4, bg(G', S) can be computed in O(A?) time. O

5.4.2 Proof of Lemma 5.2 and Completion of the Proof for
Claim 5.7.

Next, we proceed with the proof of Lemma 5.2 and fulfill the proof for Claim 5.7.
Initially, we establish the following claim, which is essential to our proof of Claim 5.7.

Recall that we have

32M2%d, 64M3d, 16Mid
Bg) =nydi(dy — 1) - 1271 211 1 11 1;

NNy nj ni
32M%d 64M2,d 16 Myod
BY = nydy(dy — 1) — 21202 20l DI® gg A 2A,
NNy n; no
16 M2
BY) = My, — ——2 —10A — 2A%,
n1no
16M2
BY = My, — OMP _ jon —on2
19

Claim 5.12. Suppose some graph GG appears during the execution of NODOUBLES;5. Let
(U1, ...,06,U1,...,us) be a set of ten vertices such that

(a) v1,...,06,U1,...,us are distinct,

(b) Vg, U1, U3 € ‘/171)5)“27“4 € ‘/27

o2

Then:
(a) Let by be the number of distinct 3-tuple (wy, we, w3) such that we € Vi, wywsy, wows €
Es(GQ).

(b) Let by be the number of distinct 3-tuple (wy, ws,ws) such that wy, we, ws distinct
from (vq,v9,v3), we € Vo, wiwsy, wows € Eg(G), vows ¢ E(G).

(¢) Let b3 be the number of distinct 2-tuple (w;,ws) such that w;,ws distinct from
V1, ..., 06, w1 € Vi, wa € Vo, waws € Eg(G), wivy, wovs ¢ E(G).

(d) Let by be the number of distinct 2-tuple (wi,wsy) such that wi,wy distinct from
Vi, ..., Vg, UL, U, w1 € Vi, wy € Va, wiwy € Eg(G), wivs, wavs ¢ E(G).

We claim

(c Bg) < bg < My

We give detailed proof for by and by where the other two can be proved with similar
ideas.

proof for (b). The value of by is clearly bounded by nads(dy — 1), where ny represents the
number of choices for wy, and do(dy — 1) represents the number of choices for the two
ordered neighbors w; and ws of wy. To compute the lower bound, we need to subtract the
number of following forbidden cases from nody(ds — 1):

1. wyws or wows is a double edge;
2. v, V9, V3, W1, Wy, w3 are not distinct vertices;
3. vowy is present.

For the second case, two subcases could be

93

2.1 {wy, wa, w3} N {v1, v, v3} # 0;

2.11 wq, wy, w3 are not distinct.

For case (1), it has a maximum of 4D 5ds + 8Dgody possible cases.
For case (2.i), it has a maximum of 8dyA possible cases.

For case (2.ii), the equation nydy(ds — 1) ensures that wy and wz do not coincide. If wy
or ws coincides with wy, it implies the existence of a loop at ws, resulting in a maximum
of 2Lsds possible cases.

For case (3), it has a maximum of d3A possible cases.

Hence we have

32M2dy 64MZdy, 16Mayd
by > nody(dy — 1) — 221272 222t TP Qg A — d2A = BY

nins n3 Noy

O

proof for (d). The value of by is clearly bounded by Mj,. To compute the lower bound, we
need to subtract the number of following forbidden cases from My,

1. wyws is a double edge
2. v1,...,0, U, Uz, W1, Wy are not distinct vertices

3. wiv3 Or wavg 1S present

Since wy; € Vi,wy € V5, we don’t need to consider the case of w; = ws in the second
case.

For case (1), it has a maximum of 2D, possible cases.

For case (2), it has a maximum of 12A possible cases.

For case (3), it has a maximum of 2A? possible cases.

Hence we have:
1602,
nin2

b4 Z M12 - - 12A - 2A2 = Bf;)

]

Claim 5.12 fulfill the proof for Claim 5.7. Next, we complete the proof for Lemma 5.2,
where the following claim shows that B%) > (0 for 0 < ¢ < 3 under the assumption of

Lemma 5.2.

54

Claim 5.13. Provided that
M3 A2
ij

2,2

n;n;

=o(l) for 1 <i<j <2 (5.5)

BY>0for0<i<3

Proof. Let’s compute the case of 1 = 1:

8MEdy 48M3hd 12Msod
BY = nydy(dy — 1) — 1202 _ 20T 220l gy A 2
nino ns N9

M? M?2 M. A
= nody(dy — 1) (1= O 12 22 2 —
nada(dz) (<n1n§d2 nids + nidy, = ny

The claim will be verified if n demonstrate that O (22— 4 M 4 Mo | A _
e Cla W € verile we ca. emonstrate a n1n%d2 n%dz ngdz o —

o(1). In fact, a stronger form of this will be demonstrated in Lemma 5.16, where we are
going to show that

2 2 2
O(Mz My Moo A) .0 (—M”) = o(1).

nl’n%dg n%dg n%dg o (ALY

Without loss of generality, we may assume that

as otherwise D15 < 1 by (3.1), in which case, Gy would have no crossing double edges and
NoODOUBLES 5 would not be executed.

Hence we have :f—iz = (1) and it can be concluded that Bg) > (0. An analogous proof
can be applied for i € {0,2, 3}. O

Proof for Lemma 4.2. Claim 5.13 addresses the positivity part of the proof, it remains to
show that b(F) > BYZ) for all ' € F; for 0 < i < 3. We prove for the case of i = 1, the
idea for the remaining three cases is identical.

Suppose F = (G, C§U17U2’v3)) € F, for some vertices vy, vy, v3. b(F) is the number of
F' € Fy = F (by Claim 5.7) such that P(F’) = F, which is equivalent to the number of
(w1, wy, w3) that satisfy the following conditions:

95

(a) wy,ws, ws are distinct vertices, different from vy, vq, vs.
(b) wq € V.

(¢) wiwq, wows € Eg(G) and vowy ¢ E(G).

By Claim 5.12, we may conclude that have b(F) > Bg).

5.4.3 Rejection probability of NoDoubles;,

In this section, we analyze the rejection probabilities of both f-rejections and b-rejections.

Corollary 5.14. For every 0 < m < D1y and every G' € H,,. Let S be a switching
removes crossing double edges between Vi, Vo and produce G', then we have

ng) - (M122 M7, Mll) —1-0 (_2_|_A_2)
b%)(G’,S) = nined; nidy nidy My~ My
b3(ar,S) ninady nidy nidy ny My~ Moy
Bjy >1_O(M12 £>:1_O(A_2)
B3, s) ning Mo M
Bj ~ (12 A_Z) _1-0 (A_Q)
b%)(G’,S) = nine Mis M,

Proof. The initial inequality is derived by Claim 5.12. The subsequent equality is obtained
by USng the fact that Mzz S nzdz and Mij S ledZ]

Lemma 5.15. Let G € H,, for some m < Dyy. For every 7 € {Di, : 1 <i < 16},

_ A A2 A2
where £ = s T it i

o6

Proof. We prove the case that 7 = D}, where the switching is shown in Figure 5.10. The
proof for all the other cases is analogous.

Figure 5.10: D}, switching

Suppose G has m double edges between V1, V2. We showed that the upper bound for
fps,(G) is fps = 8m Mo M Moy by Lemma 5.1. To find the lower bound, we need to
subtract the number of the following forbidden cases:

1. Edge other than vyvs is a double edge.
2. v1,...,Vg,U1, ..., Uy are not distinct.

3. some of the non-edges present

For case (1),
la) If vyuy is a double edge, there are at most O(m?M% Ma,) choices.
1b) If v1u; or vsus is a double edge, there are at most O(mM;, My My D1) choices.

lc) If vguy is a double edge there are at most O(mM3M? Ds) choices.

For case (2),

2a) If some of {vq,v3,u1,us} coincides with other vertices, there are at most
O(mMis M3 MasA) choices. (Please note that the scenario where v; coincides with
uy, or in other words, u; and v; form a loop, is included in this calculation. This

is because there are at most O (lilelMQQAT{_il> such cases. And given that

My < niA, it implies]\2—11 < A).

57

2b) If v, or uy coincide with other vertices, there are at most O(mMZ MasA) choices.

2¢) If vy or ug coincides with other vertices, there are at most O(mM;2M# A) choices.
For case (3), suppose there is some edge xy which should be a non-edge but it presents.

3a) If {z,y} N {v1,u1,v3,uzs} # 0, there are at most O(m Mo My MayA?) choices.
3b) If {z,y} N {ug,vs} # 0, there are at most O(mM37 MapA?) choices.

3c) If {z,y} N {vs,us} # 0, there are at most O(m M, M7 A?) choices.
Hence we have the lower bound for fps (G) is

iD?Q(G) = 8mM12M121M22—O(m2M121M22) — O(lilelMQQE) — mM12M121D_2)

O(
—O(lileQQA) — O(linglMQQA) — O(linglA)
_O(melM22A2) — O(mM12M11M22A2) — O(mM12M31A2)
Recall that D; = 6%2 = O(M—gi),m < Dy = M O(M—IQQ)

i nl ning ning
Hence we have

M? M2
iD%Q(G) :8mM12M121M22 — O(mQMflMQQ) — O(mM12M11M22n_;1) — O(mM12M121n_§2)
1 2

— O(mM7, My A?) — O(mMyp My My A?) — O(m Mo M7 A?)

m My My A? A? A?
=8mMis M* My [1 — O
miVig My IVigg ((M12 + n% + n% + Mo + My, + Moo
_ Myy My My A2 A2 A2
=fps, (1-0(2+ S+ =2 ——+——+
D12 2 2

nine ’I’Ll n2 M12 M11 MQQ

Using the fact that M;; < n;d; and M;; < n;d;, we get

— A? A? A? -
1-0 < G) <
For (120 (3 31 + 1)) = Fo0€) < T,
Using a similar idea, we have the following:

o8

2
foi (1 e, (A—» < fpi (G) < fpi forie {6} (5.6a)

12 M12 12 12
f O At LA G) < fpi fi 1,2,3 (5.6b)

i (1= _— 4 — < fpi < . fori e {l,2, .
For (170 (37 31)) < (6 < Ty, or i€ 12,3}

— A2 A2 —
fpi <1 -0 (— + —)> < fpi (G) < fpi fori e {12,13,16} (5.6¢)

12 M22 ‘]\412 12 12
— A2 A2 —

i - —+ — < fpi < fpi ' .6d
foi, <1 @) (Mu + M22)> < fpi,(G) < fpi, fori e {11} (5.6d)
— A? A? A? —

i — < fpi < i } 14,1
[pi, (1 O (M12 Mo + M22>) < fDlz(G) < fpi, forie {4,5,7,8,9,10, 14,15}

(5.6e)
Hence for 7 € {D%, : 1 <1 < 16}
foré=5A-+45 + 4
[

By employing a similar proof strategy as presented in [3, Lemma 16], we derive the
following lemma.

Lemma 5.16. The probability of an f-rejection or b-rejection occurring in NODOUBLES 2
18

ANy M11n1n2 M22n1n2

Proof. By Corollary 5.14 and Lemma 5.15. The probability that no rejection occurs in a

29

single iteration of NODOUBLES;5 is
A? A? A?
s(1—o(&l A))
b ((M12 My, | My
A2 A2
(i-o(2 4 —))
(<M12 My
0 o)
N1-0(—+—
(<M12 Moy
AZ\\?
10 =
((Mu))

A? A? A?
>exp | —O + +
b= < (Mu My, M22))

Given that the maximum number of double edges between Vi, V5 is Diy = , the
2
NODOUBLES;, algorithm iterates at most i]ﬁf times. Therefore, the probability that no
rejection occurs during the execution of NODOUBLES5 is

8M7, - (O < A2 N A? N A?) 8M122>
ning ex —
b =P My My My) ning

2 2 A2 2 A2
=exp (—O <M12A + MpA + M2 >)

Hence we have

2
8M7,
nin2

ning Miining — Magning
ning Miining — Maaning
Hence, the probability that no rejection occurs during NODOUBLES 5 can be expressed
as

M5 A\? M?2,A? M?2,A?
1-0 (L i e) (5.7)

ning Myning — Maaning
O

5.4.4 The remaining phases

NoDOUBLES; and NoLoopPs; for i = 1, 2 follow exactly the same frame as NODOUBLES 5
defined in Section 5.3.1. To complete the definitions we only need to specify parameters p!",

60

7" and all the BZ-(j) analogous to the Bg) in (5.3a)—(5.3d). These parameters are specified
in Section 6.3 for general q. See (6.4a)—(6.4d) and (6.6a)-(6.6b). The uniformity of the
output after each phase is guaranteed by the call of the subprocedure RELAXGRAPH, and
by Lemma 5.5. The running time in each phase for general ¢ is discussed in Section 6.4.
See Lemma 6.1. We state below the corresponding lemmas for the special case ¢ = 2 so
that we can complete the proof for Theorem 3.3 for the case ¢ = 2.

Lemma 5.17. Suppose that there is no rejection in any of the phases NODOUBLES; and

NoLoops; for v = 1,2. Then, the total running time of these four phases is bounded by
O<M121A2 + M222A2 + M11A2 _'_ M22A2).

TL% n% ni n

Proof. This follows as a corollary of Lemma 6.1.

Lemma 5.18. The probability of any rejection occurring during NODOUBLES; for i €
{1,2} is:

M? A?

5

@)

n

=L

JE{LQ}

Proof. This follows as a corollary of Lemma 6.2.

Lemma 5.19. The probability of any rejection occurring during NoLooPps; fori € {1,2}
18:

M;; A?

O

n; M;;
bojefnzy Y

Proof. This follows as a corollary of Lemma 6.2.

5.5 Proof of Theorem 3.3 for ¢ =2

Without loss of generality, we may assume that D5 > 1 when discussing running time
and rejection probability of NODOUBLES;s, as otherwise, Gy would have no crossing edges
between V, Vo and NODOUBLES 5 would not be executed.

Similarly, we may assume that Dy; > 1 when discussing NODOUBLES; for i € {1,2},
and assume that L; > 1 when discussing NoLoops; for i € {1,2}.

61

Lemma 5.20. Provided that
M; ?”.AQ

o
n;n;

=o(l) forall1 <i<j <2 (5.8)

The probability of an f-rejection or b-rejection occurring in NODOUBLES12, NODOUBLES;,
NoDOUBLESs, NOLOOPS;, and NOLOOPS, is o(1).

Proof. Let’s start with NODOUBLES;5, by Lemma 5.16, it remains to show that % +

M2, A2 MZAZ . M3,A2
i+ 34— = o(1) under the assumption of —12>- = o(1).
M3, A2 2 M3 8M
First, we note that —4g5- = #1287, 202 where we may assume Dqy =] by (3.1).
n1n2 ning n1n nins
M? 2 M3,A2
Hence, —2 = (1), which leads us to the conclusion that 2122~ = O (12) =o(1).
ning ning n1n2
T hat 2 MpA® let’s tak 1
o demonstrate that Viining T Moanis 15 o(1), let’s take m as a example.

. M2,A? M3, A2
We notice that ——2 MMy s . Therefore, if we can show that le‘g” is not

Miining ning n1n2
negligibly small (i.e., M;Llﬂ”” # 0(1)), it follows that Mlifm =0 <M12A2) =o(1).
Before we proceed, let’s first examine the origin of the error term]\f iﬁ;

The error O (> from Lemma 5.15 leads to an error of O (M, A%) in the com-

Miining
putation. Looking 1nt0 the outcome (5.6) from Lemma 5.15, we notice that this error
emerges for all types of switchings require a single edge in V; as the starting graph on
which the switching occurs. Specifically, these switchings correspond to types D, for
i€{1,2,3,4,5,7,8,9,10,11, 14, 15}.

Let’s calculate the probability of choosing these types of switchings in each round and

multiply it by the number of iterations, which is O(%) The probability of choosing
these types of switchings in each round is as follows:

62

Zi€{1,2,3,4,5,7,8,9,10,11,14,15} 7D§2
Yiens) i,

_ Zié{l} TD' 2 | Zie{Z 3} ?D' 2 4 Zi€{4 5} ?D' 2 | Zi6{7 8,9,10} 7D' 2,
Zze 16] fDl Zze 16] fDz Zze 16] fDz Zze 16] fDz
Zz’e{n}fDiz I 216{14,151fD12
Zz’e[lﬁ} fDi2 Zz‘e[w] fDi2

<Zie_{1} 7D§2 n zz‘e{_zs} TD%2 I Zie{_4,5} 7D§2 I Zie{7f,9,10} TD@

f D2, f DS, f D7, / D12
Zie{ll} 7D§2 I Zi€{14,15} 7D§2

+

?D}% TD%S
_477’LM122M121 477’LM§2M11 16mM12M121M22 16mM122M11M22
C2mM3P, My, mM?E, 4mM32, My Mo, 2m M3, Mo,

16mM? M2, . 16m M,y My M3,
8mM12M11M222 4mM122M222

M
0 (11)
M
Thus, by multiplying it by the number of iterations, we derive:
0 (% M122> _0 (M11M12>
M12 niny ninsg

If % = 0(1), the error resulting from these switchings can be disregarded. Conse-

quently, the term MBA® S the rejection probability formula in (5.7) is deemed negligible.

Miinins

On the other hand, if % # o(1), then MpA* 0 (M%M) = o(1), in alignment

Miining ning
with our claim earlier.

M3Z,A?
A similar discussion can be carried out for . Consequently, we can conclude that

Moonins

Mo A2 M7,A% M?,A2
ning Myiining + Maoning 0(1)

during NODOUBLES; is o(1)

. Therefore, the probability of any rejection occurring

63

Next, by Lemma 5.18 the probability of any rejection occurring during NODOUBLES;
for i € {1,2} is

M?2 A2
36{172}

@)

~

Use a similar discussion, such probability is bounded by Mia® o(1) for i € {1,2}.

ng
Next, by Lemma 5.19 the probability of any rejection occurring during NODOUBLES;
for i € {1,2} is

M;; A?

n;

O

. M;;
Jje{1,2}

Use a similar discussion, such probability is bounded by M+§2 for i € {1,2}.

2 3 A2 —
Where we have M+2A2 . % = M;L+4A = o(1). Since we may assume that L; = % > 1,
we have i =)(1). Henc MZ'?Z =o(1) for i € {1,2}. O

Lemma 5.21. Provided that
M3 A?
ij

2,2

=o(l) forall1 <i<j <2 (5.9)

Under the assumption that no rejection occurs, the running time of NODOUBLES12, NODOUBLES,
NODOUBLESs, NOLOOPS;, and NOLOOPSy can be bounded by O(nydy + nads).

Proof. We start with NODOUBLES;5, by Lemma 5.10, the running time of NODOUBLES 5

. MZ,A?
is O(=2-

), where we have

M2ZA? M? M3 A2
12 : 12 — 11 . Mlg = O(Mlg) = 0(7’L1d1)

NNy NiNe nin3

2
My
ninz

= Q(1). We have Aﬁ?nAQ = O(nydy).

Since we may assume that D1y > 1 and hence -

Similarly, we can show that the running time of NODOUBLES; is O(n;d;) for i € {1,2}

64

For NoLoOoOPs;, the running time is O(M;%IAQ) by Lemma 5.17 where we have

M A% M M3, A?
L . ;1 = 114 . M11 = O(Mll) = O(nldl)

Since we may assume that L; > 1 and hence 211 = ()(1). We have M%fz = O(nydy).

ni

Similarly, we can show that the running time of NOLOOPS, is O(nads) O

Proof of Theorem 3.3 for the case ¢ = 2. By the assumption of the theorem, the
probability of any rejection occurring during JDM_GEN is % + o(1) by Lemma 3.2 and
Lemma 5.20. Then by Lemma 4.6 and Lemma 5.21, the running time of JDM_GEN is
O(ni1dy + nady) where the time for the preparation of k,, as discussed in Lemma 5.10, is
also included.

Regarding uniformity, Lemma 4.3 guarantees the uniformity of Gy. Then the call of
the subprocedure RELAXGRAPH in each phase, together with Lemma 5.5, ensures that the
uniformity is preserved throughout the process. O

65

Chapter 6

(General case

In this chapter, we discuss how to extend the algorithm for ¢ = 2 to the general case.
The extension is natural and straightforward, and thus we only briefly describe the main
difference.

Recall that in the general setting we have V' = (V1, V4, ..., V) for some ¢ > 2 that is
a family of ¢ disjoint vertex sets, M is a ¢ X ¢ matrix where M;; specifies the number of
required edges between V; and V; in the graph we aim to generate, and d = (dy, ..., d,)
are positive integers specifying the degrees of the vertices in each vertex set.

JDM_GEN for general ¢ is defined in the same way as for ¢ = 2 in Section 5.3.5.
After calling PAIRINGGEN, it calls a sequence of procedures to remove multiple edges of
different types. l.e., procedures NODOUBLES?j for removing multiple edges crossing V; and
Vj, for 1 <i < j < g, procedures NODOUBLES: for removing multiple edges inside V;, and
NoLooprsi for removing loops inside V;, for 1 < i < q. These procedures follow exactly
the same frame as NODOUBLES12 given in Section 5.3.1. In each of these procedures,
a set of switching types and switching operations will be used, which are similar to the
ones in Section 5.2 for ¢ = 2. In each step, a switching type will be chosen according to
distribution p!’, and then a uniform switching of the selected type will be chosen. If the
switching is not rejected, then a new multigraph is obtained by performing that switching.
To complete the definitions of these procedures, it suffices to define the set of switchings,
and specify the set of parameters p!", 77: and the BZ-(]) used to perform the b-rejections.
In Section 6.1 we explain how to extend the switchings for ¢ = 2 to the switchings for
general ¢. In Section 6.3, we set all parameters required by the algorithm. Finally, in
Section 6.3 we discuss the uniformity and the running time, and complete the proof for
the main theorem in the general case.

66

6.1 Switchings

The set of switchings for general ¢ extends naturally from those for ¢ = 2. We briefly
describe the differences.

6.1.1 Switchings to remove crossing double edges between V; and
Vj

For the case when ¢ = 2, there are 16 different types of switchings to remove double
edges between V; and V5. As shown in the image in Section 5.2.1, the number 16 corre-
sponds to all possible combinations of the vertex sets to which the vertices v, v3, v4, and
vg can belong, where each of these vertices can be in either Vj or V5. Therefore, there are
24 = 16 different types of switchings available.

Now for the general case where there are ¢ vertex sets Vi, V5, ..., V,. If we want to
remove double edges between any two distinct parts V; and V;, there will be ¢* different
types of switchings. Since it is impractical to use images to display all switchings, we will
provide a general definition for all the switching.

Suppose we have a double edge vov5 where vy € V; and vs € V; for ¢ # 5. The switching
that removes this double edge involves an ordered set of ten vertices (vy, vo, v3, vy, Vs, Vg, U1,
Us, Uz, uy) such that

1. vy, v9,v3, V4, U5, Vg, U, U, U3, Uy are distinct vertices

2. uy,u3z € Vi, up,uq € V; are allocated for edge balancing purposes.

3. viuy, v3us, v4Ue, veuy induce four simple edges.

4. V1V92, U2V3, UV4VUs, U5Vg, U1U2, U3U4 ATE NNOIL edges.

The switching replaces the edges mentioned above with vyvs, Vov3, VU5, V5VUg, Ui Us, UsU,.

Indeed, the degree sequence of the 10 vertices involved stays constant. Concerning the
number of edges between distinct vertex sets, the edges viu; and vsus are replaced by vyv9
and vyvs respectively. As vy, uq, and ug all belong to V;, this guarantees that the numbers
of edges between V; and the vertex sets where v; and vs belong remain unchanged. In
a similar manner, the numbers of edges between V; and the vertex sets where v, and vy

67

belong are preserved. Finally, the double edge vyvs5 is removed, and two simple edges u;us
and usuy are added. Hence, the count of edges between V; and V; remains constant.

The type of switchings is determined by the vertex sets to which vy, vs3, v, and vg are
assigned. Each of these vertices may belong to any of the g sets Vi, Vs, ..., V,, leading to ¢*
possible types of switchings.

6.1.2 Switchings to remove double edges within each V;

There are ¢* different types of switchings available to remove double edges within each
V;. Suppose we have a double edge vyvs in V; for some i. The switching that removes this
double edge involves an ordered set of ten vertices (vy,vq, v3, vy, Us, Vg, U1, Us, Ug, Ug) SUch
that

1. vy, v9,v3, V4, U5, Vg, Up, Ug, U3, Uy are distinct vertices

2. uy,us,uz, uy € V; are allocated for edge balancing purposes.

3. viuq, v3us, v4us, vguy induce four simple edges.

4. V1V2, UV2V3, UV4VUs5, U5Vg, U1U2, U3U4 ATE NNOIL edges.

The switching replaces the edges mentioned above with v1vs, Vov3, VU5, Vs, U1 lo, UsU,.

It can be verified that the degree sequence of the vertices remains unchanged, and the
number of edges between any two vertex sets remains unaffected by the switchings.

Similarly, the type of switchings is determined by the vertex sets to which vy, vs, vy,
and vg are assigned.

6.1.3 Switchings to remove loops within each V;

There are ¢* different types of switchings available to remove loops within each V.
Suppose we have a loop at vertex vy € V; for some 7. The switching that removes this loop
involves an ordered set of five vertices (vy, ve, 3, vy, v5) such that

1. vy, v9,v3,v4, v5 are distinct vertices

68

2. vg,v5 €V
3. v1v4, v305 induce two simple edges.

4. v1v9, V9V3, V45 are non edges.

The switching replaces the edges mentioned above with vyvy, vov3, V4v5.

Such switching preserves the degree sequence and maintains the number of edges be-
tween vertex sets, and the type of switchings is determined by the vertex set to which vy, v3
belong.

6.2 JDM GEN

Now, we define the algorithm JDM_GEN for the general case. The parameters used
for validation will be defined in Section 6.3.

Algorithm JDM_GEN(V,M,d)
(P,G) = PAIRINGGEN(V | M, d)
if not (B{Y) >0for 0 <k <3foralll<i<j<gand
B® > 0for0<k<1foriec[g) then

Reject if G is not a simple graph

end if

for each 1 <1< j <gdo
NoODOUBLES;;(G)

end for

for each i € [¢] do
NoODOUBLES;(G)

end for

for each i € [¢] do
NoLoops;(G)

end for

return G

Each procedure called in the algorithm can be defined by replacing the parameters in
NODOUBLES |, with the parameters defined in Section 6.3.

69

By applying the approach we used to derive Corollary 5.9, it is equivalent to define
RELAXGRAPH called in each procedure as follows. The parameters used in them are also
defined in Section 6.3.

For RELAXGRAPH(G, S) called in NODOUBLES;; for some G and S:

procedure RELAXGRAPH(G, S)
© BY B B®
ij ij

(S(G).5) b2 (3(G),S) b (5(G),S) b1 (S(G),S)

Reject with probability: 1 — oD
ij

end procedure

For RELAXGRAPH(G, S) called in NODOUBLES; for some G and S:

procedure RELAXGRAPH(G, 5)
Rei ‘th probabilitv: 1 BY B B BY
eject with probability: 1 — b1 (5(G),5) b2 (5(G),S) b2 (5(G),S) b\ (5(G),S)

end procedure

For RELAXGRAPH(G, S) called in NoLoops; for some G and S:

procedure RELAXGRAPH(G, S)
: : I B B
Reject with probability: 1 — 505 P EE)S)

end procedure

6.3 Parameters

6.3.1 Parameters for NoDoubles;;

Suppose we are removing double edges from some graph G during the execution of
NoODOUBLES;;, where G contains m crossing double edges between V; and V; for some

0 <m < D;;. We use D}j to ng to represent all the types of switchings that are used to
remove the crossing double edges between V; and V.

For each type 7 € {D}; : 1 <k < ¢'}, f-(G) represents the number of type 7 switching
that can be applied on G.

70

Given a specific type 7 € {D}; : 1 < k < ¢"}, where the type 7 switching involves

vertices v, € V,, v3 € V, vy € Vi, and vg € V; for some a, b, ¢, d € [q], we define ?T as the
value

m

[r = mMig My M;e Mg - 2", (6.1a)

where each case where a = i, b = i, ¢ = j, or d = j contributes a value of 1 to the
variable t, otherwise, t = 0.

Then for each 7 € {D}; : 1 < k < ¢'}, we define the probability p* as

—=m

pm — fT
2kelg! Foy,

For the parameters in b-rejection, we define

BZ.(JQ) = n;d;(d; — 1) — 4Dy;d; — 8Dyid; — 2L;d; (6.2a)
By =n;d;(d; — 1) — 4Dy;d; — 8Dy;d; — 2L;d; — 8d;A — d2A; (6.2b)
B = My; — 2D;; — 10A — 2A%; (6.2¢)
BY = My; — 2D;; — 124 — 2A%, (6.2d)

Recall the definitions of bg’;)(G’ ,S) for 1 <k <4 in Section 5.3.4. Similarly, for some S
used in NODOUBLES;; and S produces G', we define bgf)(G’, S) for 1 < k < 4 by replacing
V1, V4 in the definition of bg’;)(G', S) with V;, V.

6.3.2 Parameters for NoDoubles;

Suppose we are removing double edges from some graph G during the execution of
NODOUBLES;, where G contains m double edges within V; for some 0 < m < D;;. We

use D). to Df: to represent all the types of switchings that are used to remove the double
edges within V;.

For each type 7 € {DE : 1 < k < ¢*}, f.(G) represents the number of type 7 switching
can be applied on G.

71

Given a specific type 7 € {DF : 1 < k < ¢*}, where the type 7 switching involves
vertices v, € V,, vg € Vj, v4 € V,, and vg € V; for some a, b, ¢, d € [q], we define fT as the
value

fr = 2mM;o My MMy - 2, (6.3a)

where each case where a = i, b = i, ¢ = i, or d = 7 contributes a value of 1 to the
variable ¢, otherwise, t = 0.

Then for each 7 € {DF : 1 <k < ¢*}, f,(G), we define the probability p™ as

—-m

S L
C o ke ot

Then for the parameters in b-rejection, define

B =nidy(d; — 1) — 8Dyd; — 2Lid; (6.4a)
BYY = nidi(d; — 1) — 8Dyd; — 2Lid; — 9d2 — d; (6.4b)
B = M — 4D;; — L — 10d; — 2d;A; (6.4c)
BY = My — 4Dy — L, — 12d; — 2d;A. (6.4d)

For some S used in NODOUBLES; and S produces G, we define b (G, S) for 1 < k < 4
by replacing Vi, V5 in the definition of bgg)(G’, S) with V;, V;.

6.3.3 Parameters for NoLoops;

Suppose we are removing loops from some graph GG during the execution of NOLOOPS;,
— 2
where G contains m loops within V; for some 0 < m < L;. We use L} to L{ to represent
all the types of switchings that are used to remove the loops within V;.

For each type 7 € {LF :1 <k < ¢*}, f,(G) represents the number of type 7 switching
can be applied on G.

Given a specific type 7 € {LF : 1 < k < ¢*}, where the type 7 switching involves
vertices vy € V,, v3 € V}, for some a,b € [q], we define TT as the value

72

7:_71 = mMmMib . Qt, (65&)

where each case where a = 7, b = i contributes a value of 1 to the variable ¢, otherwise,
t = 0.

Then for each 7 € {L¥: 1 < k < ¢*}, f,(G), we define the probability p™ as

—-m

pm — fT
T ke frr

Then for the parameters in b-rejection, define

BY = M, — L; — 6d; — 2d;A. (6.6b)

Due to the variations between the structures for removing loops and those for removing
double edges, we provide a detailed definition for bf;k)(G’ ,S) for 1 < k < 2 in cases where
S is used in NoLoopPs; and produces G'.

1. bgl)(G’, S) as the number of distinct 3-tuples (wy, we, w3) where wy € V;, wyws, wows €
Es(G") and no loops at ws.

2. bl@)(G’, S) as the number of simple edges wywsy in V; such that {wy, ws, vy, ve,v3} are
distinct vertices, and wqvy, wovs ¢ E(G).

6.4 Running time and proof of Theorem 3.3

In this section, we extend our analysis of running time for ¢ = 2 to general q.

The running time analysis follows the same approach as in Lemma 5.10. Similarly to
the case ¢ = 2, there is no need to compute 7:1 for performing the f-rejection. For the
b-rejection, the computation of b(G’, S) involves counting the number of 2-paths, or edges,
satisfying certain adjacency constraints. Thus all these b functions can be computed in
time O(A?). Thus we obtain the following.

73

Lemma 6.1. Provide that no rejection occurs, the expected running time of JDM_GEN
18

O (p1 + p2 + p3)

where

q
H1 = Z nid;;
i=1

M2A?
_ ij .
H2 = Z (mm)
1<i<j<q
q

—-m

Similarly, by observing that in each phase, f.(G) = (1 + O(€))f., and b*(G’,S) =
(14 O(€))B™, for ¢ given in the lemma below, we immediately obtain the following
lemma.

Lemma 6.2. The probability of any rejection occurring after the call of PAIRINGGEN in
JDM_GEN is O(§), where

M A2 M? A2 M;; A2
_ o o, w,
&= D)ORES vl RO D D ISl R Dieetl DS 7
1<i<j<1 me{i,j}nelq) i€[q) me[q] i€lq] melq]

Proof. The proof follows the same strategy as for Lemma 5.16, applied to each phase of
the general case. O

Lemma 6.3. Provided that
M3 A2
ij

2,,2

=o(l) forall1 <i<j <2 (6.7)

the probability of any rejection occurring after the call of PAIRINGGEN in JDM_GEN s

o(1).

Proof. The proof idea is identical to Lemma 5.20. O

74

Lemma 6.4. Provided that
M3 A?
=o0(1) forall1 <i<j <2 (6.8)
il

under the assumption of no rejection occurs, the running time of all procedures after the

call of PAIRINGGEN in JDM_GEN is O (>°7_, n;d;).
Proof. The proof idea is identical to Lemma 5.21. m

Proof of Theorem 3.3. By the assumption of the theorem, the probability of any re-
jection occurring during JDM_GEN is g + o(1) by Lemma 3.2 and Lemma 6.3. Then by
Lemma 4.6 and Lemma 6.4, the running time of JDM_GEN is O (>_7 | n;d;) where the
time for the preparation of k,, as discussed in Lemma 5.10, is also included.

Regarding uniformity, Lemma 4.3 guarantees the uniformity of GGy. Then the call of
the subprocedure RELAXGRAPH in each phase, together with Lemma 5.5, ensures that the
uniformity is preserved throughout the process. [

6.5 Proof of Theorem 3.5

Lemma 6.5. Provided that M;; are of the same asymptotic order m for all1 << j <gq
and

mA?

nin;

=o(1) forall1 <i<j<q,

the probability of any rejection occurring after the call of PAIRINGGEN in JDM_GEN s

o(1).

Proof. Under this assumption, the probability demonstrated in Lemma 6.2 can be simpli-
fied to O(&) where

M,; A2 M, A2 A? A?
E=). pa +>° o +Zn_i:0(1)+27‘

1<i<j<qg © 0 gl i€[q] i€lg) "

The term %—? is the rejection probability of NoLoops; for i € [g]. Since we may assume

that L; = % > 1, hence i = Q(1). Thus %—% e MTAQ = o(1) implies that
%—j =o(1).
Thus we have o(1) + 37, ﬁ—j = o(1). O

75

Corollary 6.6. Provided that M;; are of the same asymptotic order m for alll <i < j <gq
and

mA?

nin;

=o(1) forall1 <i<j<q,

(k) S (k)
Bij >0for0<k<3foralll <i<j<gq, and B;” >0 for0 <k <1.

Proof. The proof idea is identical to Lemma 5.13 where Lemma 6.5 fulfills the proof. [J

Lemma 6.7. Let P be a uniformly random pairing in ®(V, M, d). Provided that M;; are
of the same asymptotic order m for all 1 <1 < j < q and
mA?

nin;

=o(1) forall1 <i<j<q,

then,
3
Pr(P € &y(V,M,d)) > 3 +o(1).

Proof. Using the idea from the proof for Lemma 3.2, it remains to show that the probability
of G(P) contains triple edges or loops of multiplicity at least two is o(1)

By Lemma 4.5, we need to show that the following hold:

(a) O(M%>:o(1)fora111§i§j§q;

2,2
ninj

(b) O (ﬁf) — o(1) for i € [q].

i

MP - ning A2 MyA? . M3,
For (a), we have —% - m}fﬁ = —“—_ Since M;; < nd; < n;A, we have =% =
ninj ij ning nin].
M;;A?
O (—2_7 :) =o(1).
nin;
M2 . A2 . M2 A2
For (b), we have —# A Mul” - Since M;; < nyd; < n; A, we have —i = O (Mup
) n3 My 2 i 1Ug 1 oy n2
k3 1 k3 1
o(1). O

Lemma 6.8. Provided that M;; are of the same asymptotic order m for all1 <i < j <gq
and

mA?

nin;

= o(1) forall1 <i<j<q,

under the assumption of no rejection occurs, the running time of all procedures after the
call of PAIRINGGEN in JDM_GEN s O (37, n;d;).

76

Proof. By Lemma 6.1, it is equivalent to show the following

MZ?].A2

(@) Trcicses () = O(LL, mid):

(b) Yo, (1) = O(TL, nid).

ng

2 A2

For (a), we have o2 gy - Mud® o(M;;) = O(n,d;) for all 1 <1i < j < gq. Hence,

nin; v nin;
(a) holds.

For (b), we have M%M = n,; - Ml — o(n;) = O(nyd;) for i € [q]. Hence, (b) holds. O

Proof of theorem 3.5. By the assumption of the theorem, the probability of any rejection
occurring during JDM_GEN is §+0(1) by Lemma 6.7 and Lemma 6.5. Then by Lemma 4.6
and Lemma 6.8, the running time of JDM_GEN is O (}_7_, n;d;) where the time for the
preparation of k,, as discussed in Lemma 5.10, is also included.

Regarding uniformity, Lemma 4.3 guarantees the uniformity of GGo. Then the call of
the subprocedure RELAXGRAPH in each phase, together with Lemma 5.5, ensures that the
uniformity is preserved throughout the process. Additionally, Corollary 6.6 ensures that
the process of incremental relaxation is valid during the subprocedure RELAXGRAPH. [

7

Chapter 7

Future work

In this chapter, we discuss possible improvements that can be made to further optimize
our results.

.. 3.2
Currently, the condition Aigjnz = o(1) for 1 <i < j < ¢ is required in Theorem 3.3
i

to guarantee that the rejection probability of NODOUBLES and NOLOOPS is o(1). Let’s
revisit the ¢ = 2 case and investigate possible improvements that could be made.

While establishing Lemma 5.16, we noticed that the probability of any rejections occur-
ring during the execution of NODOUBLES12 is mainly determined by f-rejections, where
the probability of an f-rejection occurring is mainly determined by the count of forbidden
cases involving non-edges, as discussed in Lemma 5.15.

wp b b "y .
£ S 7 U4 ug) . . T ug
o, ") * \[) Q
P . .
" M eaaas R R— "

Figure 7.1: D2, switching

Let’s revisit the type D}, switching as an example. As shown in Figure 7.1, the blue
dotted lines indicate forbidden edges. Using our current approach to count forbidden cases

78

that involve a non-edge being present, for instance, vsv3, we count the number of ways
to choose all edges other than vzuz. This calculation gives us O(mME Moy Mis), where m
represents the number of double edges between V; and V5. We then find a neighbor for vs,
called v3, and then a neighbor for v3, named u3. This gives O(A?) possible choices, leading
to a total of O(mM?% My M;2A?) possible forbidden cases. This then gives the term J@—i
in the rejection probability.

However, when M, is relatively small, this rejection probability can become signifi-
cant. At the same time, with a small M, it becomes less likely for the edge vyvs to be
present. This suggests that the instances where vyv3 appears might be fewer than our cur-
rent estimation of O(mM3? My M3A?). Hence, there’s potential to further improve this
estimate.

The method introduced by [10, Lemma 9] offers an approach to determine the prob-
ability of a specific edge being present, considering particular structures. In our sce-
nario, if we can compute the probability of wvsvs being present, given that the tuple
(v1,...,V6,U1,...,uys) satisfies the requirements for performing a D3, switching, then it
might yield a more accurate estimate than what’s currently available. However, the design
of specific 'subsidiary switchings’ is essential for computation. Given our problem’s com-
plexity, we might have to create various types of these switchings, which makes it more
challenging.

79

References

1]

2]

Georgios Amanatidis, Bradley Green, and Milena Mihail. Graphic realizations of
joint-degree matrices. CoRR, abs/1509.07076, 2015.

Georgios Amanatidis and Pieter Kleer. Rapid mixing of the switch markov chain
for strongly stable degree sequences and 2-class joint degree matrices. In Proceedings
of the 2019 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
966-985.

Andrii Arman, Pu Gao, and Nicholas Wormald. Fast uniform generation of random
graphs with given degree sequences. Random Structures & Algorithms, 59(3):291-314,
2021.

Andras Békéssy. Asymptotic enumeration of regular matrices. Stud. Sci. Math. Hun-
gar., 7:343-353, 1972.

Edward A Bender and E Rodney Canfield. The asymptotic number of labeled graphs
with given degree sequences. Journal of Combinatorial Theory, Series A, 24(3):296—
307, 1978.

Béla Bollobas. A probabilistic proof of an asymptotic formula for the number of
labelled regular graphs. European Journal of Combinatorics, 1(4):311-316, 1980.

Colin Cooper, Martin Dyer, and Catherine Greenhill. Sampling regular graphs and
a peer-to-peer network. Combinatorics, Probability and Computing, 16(4):557-593,
2007.

Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics.
Springer, Heidelberg; New York, fourth edition, 2010.

30

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Péter L Erdos, Istvan Miklés, and Zoltan Toroczkai. A decomposition based proof
for fast mixing of a markov chain over balanced realizations of a joint degree matrix.

SIAM Journal on Discrete Mathematics, 29(1):481-499, 2015.

Pu Gao and Nicholas Wormald. Uniform generation of random regular graphs. SIAM
Journal on Computing, 46(4):1395-1427, 2017.

Catherine Greenhill. The switch markov chain for sampling irregular graphs. In
Proceedings of the twenty-sixth annual acm-siam symposium on discrete algorithms,
pages 1564-1572. STAM, 2014.

Catherine Greenhill and Matteo Sfragara. The switch markov chain for sampling
irregular graphs and digraphs. Theoretical Computer Science, 719:1-20, 2018.

Mark Jerrum and Alistair Sinclair. Fast uniform generation of regular graphs. Theo-
retical Computer Science, 73(1):91-100, 1990.

Ravi Kannan, Prasad Tetali, and Santosh Vempala. Simple markov-chain algorithms
for generating bipartite graphs and tournaments. Random Structures € Algorithms,
14(4):293-308, 1999.

Priya Mahadevan, Dmitri Krioukov, Kevin Fall, and Amin Vahdat. Systematic topol-
ogy analysis and generation using degree correlations. ACM SIGCOMM Computer
Communication Review, 36(4):135-146, 2006.

Brendan D McKay and Nicholas C Wormald. Uniform generation of random regular
graphs of moderate degree. Journal of Algorithms, 11(1):52-67, 1990.

Gottfried Tinhofer. On the generation of random graphs with given properties and
known distribution. Appl. Comput. Sci., Ber. Prakt. Inf, 13:265-297, 1979.

81

APPENDICES

82

Appendix A

Proofs

A.1 Proof of 4.2

Proof. For any G € Go(V', M, d), we prove the equation by giving bijection on sets S and
T. We first define these two sets.

For each vertex v € V(G), let C, denote the cell corresponding to v in the pairing P
associated with the graph G. We define N, as the set containing all points in C,,, and Sy,
as the permutation group on N,. The set T is defined as the Cartesian product over all
Sn,, e, T = HveV(G) Sn,- Therefore, we have:

q

TI= TI ISwl= T (deg(v)t) = J](d:)™.

VeV (G) VeV (G) i=1

Let Po = {P: P € ®(V,M,d),G(P) = G}.

For any P € Py, we define a colored pairing of P as follows:

1. For each pair in P corresponding to a simple edge in GG, the edge is colored red.

2. For each pair in P corresponding to a loop in G, the pair is colored red, and the two
endpoints of the pair are colored with different colors: one is colored red, and the
other is colored blue. Thus, there are two possible ways to color a loop.

83

3. For every two pairs in P corresponding to a double edge in G, the two pairs are
colored with different colors: one is colored red, and the other is colored blue. Hence,
there are two possible ways to color these two pairs.

We define CI(P) as the set of all colored pairings derived from P. Let S := [Up¢p, CI(P),
which represents the set of all colored pairings for the pairings in FPg.

Since the number of loops and double edges in G is given by D and L, for any pairing
P in Pg, we have |CI(P)| = 2X& biticisi<a P Additionally, CI(P) N CI(P') = () for
P # P'. Therefore, we have the following:

|S| = |Pg] - 92 i1 Liticicj<q Dis |

We complete the proof by demonstrating a bijection between S and 7.

To facilitate this bijection, we label the edges of G. For a graph G € Go(V, M, d),

we label the edges in GG arbitrarily with distinct labels from 1 to m = %. Each edge is

assigned a unique label, and every double edge is assigned two consecutive labels.

Here is an example of a labelled graph in Figure A.1:

=

Figure A.1: labelled graph

Let G be the graph shown in Figure A.1. In Figure A.2, the right image represents a
possible pairing P € Pg, where the pairs in P are labelled based on the labelling in the
graph G. The left image is a possible colored pairing belonging to CI(P).

84

Figure A.2: coloured pairing

Note that the method of labeling a graph is not unique. However, for the purpose
of our discussion, we assume that every graph G € Go(V,M,d) has a predetermined
labeling. This means that for each pair in a pairing, we can retrieve the label of the edge
corresponding to that pair.

We define the function f : S — 7. Given a colored pairing from S, its corresponding
element in 7 is well-defined if we can determine the permutation o for each set N,, where

v e V(G).

For any v € V(G), we define the permutation o on N, such that for any i,7 € N,,
o(i) < o(j) if and only if [; < [;, where [; is the label of the edge corresponding to the pair
that contains ¢ as one of its endpoints. Note that for pairs corresponding to a double edge
(i.e., the pair labeled 4 and 5 in Figure A.2), we do not have specific rules on which pair
corresponds to which edge. Therefore, the permutation order for the four points involved
is not determined at this point.

In addition, for the pair (i,j) that corresponds to a loop in G, we have o(i) < o(j) if
and only if 4 is colored red and j is colored blue.

Furthermore, for the pair (i1, j;) and (is, j2) corresponding to a double edge in GG, where
i1 and iy are in the same cell, and j; and jo are in the same cell, we have o(i1) < o(iz) and
0(71) < o(jz2) if and only if (i, j;) is colored red and (i, j2) is colored blue.

Using this approach, the permutation on N, is well-defined, and consequently, f is
well-defined. By applying a similar idea, we can obtain f~!, which maps 7 back to S.
Therefore, f and f~! together form a bijection between S and 7. m

85

	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	Introduction
	Overview of switching-based algorithm
	Overview
	Adaptation

	Preliminaries and main results
	Configuration Model

	Initialization
	Generation of G0
	Running time of PairingGen and Proof of Lemma 3.2

	Special case when q = 2
	Switchings: the old
	Switchings: the new
	Switchings to remove crossing double edges between V1 and V2
	Switchings to remove the other types of multiple edges and loops

	JDM_GEN for q = 2
	Definition
	Incremental Relaxation
	Uniformity of NoDoubles12
	Combinatorial interpretation of b(F)
	Definiton of JDM_GEN for q = 2

	Running time and rejection probabilities
	Running time of NoDoubles12
	Proof of Lemma 5.2 and Completion of the Proof for Claim 5.7.
	Rejection probability of NoDoubles12
	The remaining phases

	Proof of Theorem 3.3 for q=2

	General case
	Switchings
	Switchings to remove crossing double edges between Vi and Vj
	Switchings to remove double edges within each Vi
	Switchings to remove loops within each Vi

	JDM_GEN
	Parameters
	Parameters for NoDoublesij
	Parameters for NoDoublesi
	Parameters for NoLoopsi

	Running time and proof of Theorem 3.3
	Proof of Theorem 3.5

	Future work
	References
	APPENDICES
	Proofs
	Proof of 4.2

