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Abstract

Quantum field theory (QFT) in curved spacetime focuses on the analysis of quantum
fields—representing fundamental particles and their interactions—within a curved space-
time geometry, accounting for relativistic effects.

Among the prominent subjects in QFT are the Unruh effect and the entanglement
harvesting protocol. The Unruh effect, introduced by G. Unruh [1], posits that a uni-
formly accelerating particle detector undergoes thermality, despite the absence of particles
perceived by an inertial observer. Entanglement harvesting protocol on the other hand
involves two or more Unruh-Dewitt (UDW) detectors within a quantum field. It examines
the amount of entanglement between these detectors after interacting with the field, which
depends on the trajectories of the detectors and the spacetime geometry. Current stud-
ies are expanding into other correlation types, collectively referred to as the correlation
harvesting protocol.

In this thesis, we investigate the effects of uniform acceleration on the correlation har-
vesting protocol, with a particular emphasis on understanding the impact of Unruh tem-
perature on the total correlation harvesting. A prior investigation [2] explored the corre-
lation harvesting protocol for two inertial UDW detectors in a thermal bath. The findings
revealed that high temperatures inhibit entanglement harvesting between the detectors,
while it enhances the total correlation between them. We investigate whether the Unruh
temperature induces a similar impact on correlation harvesting by examining the correla-
tion harvesting protocol of two linearly uniformly accelerating UDW detectors. We then
broaden our investigation to encompass other uniformly accelerating trajectories, initially
defined by Letaw [3], that could induce effects similar to the Unruh effect, but might be
more feasible than linear motion in an experimental setting, This is particularly relevant
in consideration of ongoing experiments aiming for Unruh effect verification[4, 5, 6, 7, 8, 9]

Our findings are as follows: (i) high accelerations(equivalently Unruh temperature) pre-
vent the detectors from acquiring correlations from the field in all trajectories of detectors
that are uniformly accelerating. (ii) Within the framework of uniform acceleration, there
exists small, yet consequential, regions of parameter space where detectors in causal con-
tact may genuinely harvest entanglement. (iii) The Unruh temperature’s effect on total
correlation harvesting diverges from that of thermal bath temperature despite their similar
effect on a single detector.
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Chapter 1

Introduction

Quantum Field Theory (QFT) stands as a vital and rapidly advancing branch in theoretical
physics. It provides the essential framework for the understanding of particle behavior at
both quantum and relativistic levels and has spawned far-reaching implications across
diverse domains such as particle physics, cosmology, and condensed matter physics[10, 11].
The ongoing exploration and growth of QFT is leading to new insights into multiple fields
such as understanding the dynamics of black holes[12, 13] and facilitating more realistic
developments in quantum information with including relativistic effects.

Relativistic quantum information (RQI), is the field that studies the effects of special
and general relativity on quantum information processes. While quantum information
deals with information processing using quantum systems, relativity describes the structure
of space-time and the way objects move within it. By considering them together, RQI
attempts to formulate a better understanding on fundamental questions about the nature of
reality, information, and the structure of the universe. In relativistic quantum information,
it is common to employ a localized qubit model known as Unruh-DeWitt (UDW) particle
detector [1, 14], which interacts with quantum fields in spacetime. By using such a qubit
model, one can examine, for example, the channel capacity of quantum fields [15, 16, 17,
18, 19] and the relativistic quantum teleportation protocol [20, 21].

One of the protocols that utilizes UDW model is the entanglement harvesting protocol
which was first examined by Valentini in 1991[22] and subsequently Renzik et al. in the
early 2000s[23, 24]. The protocol is the following: suppose two observers with a UDW
detector are in a (flat or curved) spacetime on which a quantum field is defined. Assuming
the detectors are initially uncorrelated, by locally interacting with the quantum field, the
detectors become entangled after the interaction. This is true even when the observers are
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causally disconnected because the quantum field is already in an entangled state [25, 26].
More generally, the detectors are extracting correlations from the quantum field, and so
we can refer to the protocol as the correlation harvesting protocol. These correlations can
be entanglement, mutual information, or quantum discord [27, 28, 29, 30]. The amount of
correlation extracted is influenced by the geometry of spacetime [31, 32, 33, 34, 35, 36, 37]
and the states of motion of the detectors [38, 39, 40].

Numerous studies have been conducted of the effects of temperature on correlation
harvesting. The earliest investigation was carried out by Ver Steeg and Menicucci [41].
They found that, while a single detector in de Sitter spacetime responds as if it is in a
thermal bath in Minkowski spacetime, the harvested entanglement between two detectors
differs in de Sitter spacetime and a thermal bath. Since then, the temperature dependence
of correlations in various scenarios has been analyzed. A basic scenario consists of two in-
ertial detectors interacting with a field in a thermal state. In [42, 43] it was found that the
amount of entanglement decreases with temperature whereas quantum mutual informa-
tion increases monotonically. One can also think of two uniformly accelerating detectors in
Minkowski spacetime. For a single particle detector, it is widely known that a detector un-
dergoing uniform acceleration a experiences a thermal bath at temperature TU = ℏa/2πkBc
which is called the Unruh effect [1] as mentioned earlier, and the temperature TU is called
the Unruh temperature. In this case, the field is in the Minkowski vacuum state instead
of a thermal state, but due to its motion the detector responds in the same manner as if
it were in the thermal quantum field. The harvested entanglement by uniformly acceler-
ated detectors, however, shows a different temperature dependence in contrast to that of a
thermal state; entanglement is enhanced at relatively smaller temperatures, then decreases
and drops to 0 as the detectors experience hotter Unruh temperature [44].

One could ask if the behavior induced by acceleration is present in black hole space-
times, since the Rindler metric is similar to the Schwarzschild one near its event horizon.
Investigations of entanglement harvesting outside of black holes, while indicating there are
indeed common features, have also found some surprising results, including the presence
of an entanglement shadow near the horizon [34] and the amplification of harvested entan-
glement for near-extremal rotating black holes [45]. Other kinds of black hole spacetimes
have been shown to exhibit other novel features [46, 47, 48, 45, 49, 50, 51]. In general,
correlations steeply decline whereas excitation responses of detectors tend to increase as
one of the static detectors is placed increasingly close to the horizon, where the black hole
temperature is extremely high. The aforementioned studies (inertial detectors in a thermal
quantum field, uniformly accelerated detectors in Minkowski vacuum, and static detectors
in a black hole spacetime) have one thing in common: a single detector experiences a ther-
mal bath at the corresponding temperature. That is, the response of the detector against
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temperature is the same in all these cases. Yet the entanglement harvested between two
detectors exhibits different temperature dependence, distinguishing the two scenarios from
each other.

Quantum mutual information has been considerably less explored. The importance of
studying quantum mutual information arises from its applications in multiple areas such
as quantum communication [52] and quantum error correction [53]. A recent study [54] ex-
plicitly examined the relationship between quantum mutual information and the Bañados-
Teitelboim-Zanelli (BTZ) black hole temperature. Unlike the case for entanglement har-
vesting, harvested mutual information vanished only when a (static) detector was placed
arbitrarily close to the event horizon. It was the extremity of Hawking and Unruh ef-
fects near the horizon that inhibited the detectors from harvesting. In other words, the
mutual information between two static detectors decreases, vanishing at high black hole
temperatures.

In this thesis, we investigate the effects of uniform acceleration on the correlation har-
vesting protocol across various trajectories, endeavoring to identify more efficient trajecto-
ries suitable for experimental settings. A significant challenge hindering the experimental
verification of the Unruh effect resides in the immense acceleration required to produce
experimentally measurable temperatures. For instance, an acceleration on the order of
magnitude of a ≈ 1020 m/s2 is necessary to reach a temperature of TU ∼ 1 Kelvin. Given
this constraint, the focus is shifting towards the exploration of alternative detector tra-
jectories that may induce phenomena akin to the Unruh effect. As a consequence, we
are particularly interested in how the correlation harvesting protocol is influenced by the
Unruh temperature and other types of acceleration-induced temperature.

In chapter 3 we try to complete the picture of the temperature dependence of correla-
tion harvesting (we illustrate in Fig. 1.1 the qualitative distinctions between the various
scenarios). Specifically we analyze the quantum mutual information harvested between
two uniformly accelerating detectors where we consider three configurations of accelerat-
ing detector pairs – parallel, anti-parallel, and perpendicular [55] – and compare mutual
information harvesting and entanglement harvesting with changing acceleration. We find
that harvested quantum mutual information behaves in a broadly qualitatively similar way
to harvested entanglement. For all three configurations of acceleration, both harvested
mutual information and entanglement are enhanced at low temperatures, but become ex-
tinguished in the high Unruh temperature limit. We will comment on how to understand
differences in the temperature dependence of correlation harvesting illustrated in Fig. 1.1
from the Wightman function perspective.

In Chapter 4 we investigate the correlation harvesting protocol with detectors in four
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entanglement

mutual information

thermal bath black hole acceleration

Tbath TBH TU
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this paper

Figure 1.1: A summary of past results on the temperature dependence of correlation
harvesting. Our results provide the case of mutual information with accelerating detectors
as depicted in the lower-right corner.

classes of uniform acceleration motion categorized by Letaw [3]: linear, catenary, cusped,
and circular trajectories. Unlike the helical case, these motions can all be realized in 2
spatial dimensions, and so are more amenable to experimental testing [4, 5, 6, 7, 8, 9].
In (3 + 1)-dimensional Minkowski spacetime, these trajectories are characterized by three
parameters: two torsions and the magnitude of the proper acceleration. We classify the
configurations for the detectors into two configurations: stationary, in which the Wightman
function is time-translation invariant, and nonstationary, in which the Wightman function
is not time-translation invariant. The Wightman functions for these two scenarios are sim-
ilar, except in nonstationary configurations they possess an additional term that breaks
time-translation invariance. In section 4.2.1 we focus on a single detector following the four
trajectories to examine its transition probability (or response function). We study its de-
pendence on the magnitudes of the acceleration and torsions, and numerically evaluate the
effective temperature of the detector. We then consider the correlation harvesting protocol
in section 4.2.2. Specifically, concurrence of entanglement and quantum mutual informa-
tion – which measures the harvested total correlations – are numerically evaluated. We
find that the stationary and nonstationary configurations behave in a similar manner since
their Wightman functions have terms in common. However, the amount of correlations
extracted by the detectors in the nonstationary configurations differs from those of the sta-
tionary ones due to an additional term in the Wightman function. We also look into the
acceleration dependence of the harvested correlations and conclude that sufficiently high
accelerations prevent any uniformly accelerating detectors from extracting correlations.
This point is consistent with previous papers that focused on linear and circular motions
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[56, 38, 57, 58, 55, 44, 59]. Finally, we show that constant acceleration makes it challenging
to extract ‘genuine entanglement’ (entanglement preexistent in a quantum field that has
no possible assistance from detector communication) in section 4.2.3. In general, genuine
entanglement harvesting can be harvested from causally disconnected spacetime regions
due to microcausality. For inertial detectors with Gaussian switching in Minkowski space-
time, it is shown that a sufficiently large energy gap allows the detectors to extract genuine
entanglement from such regions [31, 60]. While we find that this is generally not the case
for uniformly accelerated detectors, remarkably we find small but non-negligible regions of
parameter space where detectors in causal contact can harvest genuine entanglement. All
the background is included in chapter 2. We also conclude our overall results and include
suggestions for future research in chapter 5.

Throughout this thesis we use the units ℏ = kB = c = 1 and the signature (−, +, +, +),
as well as x := xµ, an event in coordinates xµ.
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Chapter 2

Particle detectors in curved
spacetime

In this chapter we review the theory of Quantum Field (QFT) in curvred spacetime based
on [61][11]

2.1 Quantum Field in curved spacetime

Quantum field theory in curved spacetime is an essential extension of quantum field theory
in flat spacetime, paving the way to investigate quantum effects in the presence of gravity.
In this framework, the underlying spacetime is treated as a fixed curved background, not
subject to quantum fluctuations.

2.1.1 Formulation

The formulation of quantum field theory in curved spacetime requires the incorporation
of the principles of general relativity with quantum mechanics. We will discuss the most
common scenario, namely a scalar field propagating on a curved manifold.

Consider a classical real scalar field (i.e., Klein-Gordon field), ϕ(x), where x is a point
in a manifold: x ∈ M. The action Sϕ[ϕ, g], for this classical scalar field is given by

Sϕ[ϕ, g] = 1
2

√
−g

∫
M

[
∂µϕ(x)∂νϕ(x) − (m2 + ξR(x))ϕ2(x)

]
, (2.1)
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where g is the determinant of the metric gµν of the spacetime where the field exists, m ≥ 0
is the mass of the field, ξ ∈ R is a constant describing a coupling between the field and the
Ricci scalar R(x), which is the trace of Ricci curvature tensor:

Rαβ = ∂ρΓρ
βα − ∂βΓρ

ρα + Γρ
ρλΓλ

βα − Γρ
βλΓλ

ρα (2.2)

where Γλ
µν is the Christoffel symbol given by:

Γλ
µν = 1

2gλρ (∂µgνρ + ∂νgµρ − ∂ρgµν) . (2.3)

The parameter ξ in the given action for the scalar field describes the coupling between
the field and the Ricci scalar R(x). Two particular values of ξ that are often considered in
physics correspond to distinct scenarios:

1. Minimal Coupling: Minimal coupling corresponds to ξ = 0. In this case the scalar
field is not coupled to the curvature of spacetime; the equation of motion for the
scalar field will be the standard Klein-Gordon equation without any extra terms
involving the curvature.

2. Conformally Coupled Case: The conformally coupled case in (n+1)-dimensional
spacetime corresponds to ξ = (n − 1)/4n. This special value leads to a particular
interaction between the field and the curvature that preserves the conformal sym-
metry of the action. In other words, if the metric is rescaled by a conformal factor
(i.e., gµν → Ω2gµν for some positive function Ω), the action for a massless scalar field
remains invariant under this transformation.

Action and Equations of Motion

The equations of motion are obtained from the principle of stationary action, leading to
the Klein-Gordon equation:

(□ − m2 − ξR)ϕ(x) = 0 , (2.4)

where

□ := 1√
−g

∂µ(gµν√
−g∂ν) (2.5)

is the d’Alembert operator. The Klein-Gordon equation mainly depends on the spacetime
geometry.
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2.1.2 Quantization

Mode Expansion

The quantization process starts by expanding the field in terms of modes that satisfy the
curved-space Klein-Gordon equation given in 2.4. These modes uk(x) are chosen to respect
the manifold’s geometry:

ϕ̂(x) =
∫
Rn

dnk
(
âkuk(x) + â†

ku∗
k(x)

)
. (2.6)

where uk(x) ∈ C is the mode function. ak and a†
k are the annihilation and creation operators

satisfying the canonical commutation relations.
[ai, a†

j] = δij and [ai, aj] = [a†
i ; a†

j] = 0
In the Minkowski coordinates (t, x, y, z), the mode function reads

uk(x) = 1√
(2π)32ωk

e−iωkt+ik·x , (2.7)

where ωk =
√

|k|2 + m2 with m being the mass of the scalar field. Therefore, the mode
decomposition is

ϕ̂(x) =
∫
R3

d3k√
(2π)32ωk

(
âke−iωkt+ik·x + â†

keiωkt−ik·x
)

, (2.8)

and the Minkowski vacuum |0M⟩ is defined as âk |0M⟩ = 0 for all k.

Correlation Functions

Let ρϕ be the quantum state of the field, the two point correlation function of this state
(Wightman function) is defined as the following:

W (x, x′) = ⟨ϕ̂(x)ϕ̂(x′)⟩ρϕ
, (2.9)

The Wightman function satisfies the Klein-Gordon equation Eq.2.4

(□ − m2 − ξR)W (x, x′) = 0 , (2.10)
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If the field is in vacuum state, the Wightman function reads
W (x, x′) = ⟨0|ϕ̂(x)ϕ̂(x′)|0⟩

In the case of Minkowski coordinates (t, x, y, z), using the mode decomposition in Eq. 2.8
the Wightman function in the Minkowski vacuum state reads

W (x, x′) = − 1
4π2

1
(t − t′ − iϵ)2 − |x − x′|2

, (2.11)

where ϵ is a UV regulator.
The Wightman function can be decomposed into two parts (commutator, and anti-commutator)
defined as the following:

W (x, x′) = Re[W (x, x′)] + i Im[W (x, x′)] (2.12)

Where

Re[W (x, x′)] = 1
2 ⟨0|{ϕ̂(x), ϕ̂(x′)}|0⟩ , (2.13)

Im[W (x, x′)] = −i
2 [ϕ̂(x), ϕ̂(x′)] . (2.14)

2.1.3 KMS State

The Kubo-Martin-Schwinger (KMS) state [62, 63] is a generalization of Gibbs thermal
state defined as

ρth = 1
Z

e−βĤ , (2.15)

where:
Z = Tr[e−βĤ ], β = 1

T
, and Ĥ is the Hamiltonian of the bath.

This definition presents challenges in the context of quantum fields due to non-separability
of the Hilbert space. Since the basis in the Hilbert space of a field is uncountable, a trace
may be ill-defined. The KMS state generalizes the Gibbs state to non-separable Hilbert
spaces.
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If the field is in the KMS thermal state with respect to time τ at the inverse KMS
temperature βKMS, then the Wightman function satisfies

W (∆τ − iβKMS) = W (−∆τ) , (2.16)

where ∆τ := τ − τ ′. The Wightman function in this case would be time translation
invariant with respect to τ .

2.2 The Unruh Dewitt particle detectors in a quan-
tum field

The Unruh-DeWitt particle detector (UDW), named after physicists William G. Unruh
and Bryce S. DeWitt, is a theoretical construct in quantum field theory. It is used in
the context of thought experiments to investigate the phenomenon of particle detection by
accelerating observers or observers in gravitational fields, taking into account the principles
of quantum field theory. The Unruh effect [1] proposes that an observer who is constantly
accelerating in empty space would perceive the vacuum of that space as being populated
with particles. In other words, this observer would interpret the vacuum as having a non-
zero temperature and emitting particles. The Unruh-DeWitt detector is typically modeled
as a two-level quantum system that can be considered as a qubit locally coupled to a
quantum field. We denote the ground and excited states for detector-j ∈ {A, B} by |gj⟩
and |ej⟩, respectively, with the energy gap Ωj between them in the detector’s reference
frame. The detector can transition between these states when it interacts with a particle
from the field. By studying the transition probabilities and the response of the detector
as it accelerates or is subjected to a gravitational field, we can gain insights into how the
observer’s perception of particles is affected by these conditions.

2.2.1 Single UDW detector

Consider a detector D, with ground and excited states |gD⟩ and |eD⟩, respectively, whose
energy gap is ΩD. These states form an orthonormal basis for the Hilbert space HD ⊗ C2

associated with internal degrees of freedom of the detector. The free evolution of this
detector is governed by the Hamiltonian

H0 = Ω
2 (|e⟩D⟨e|D − |g⟩D⟨g|D) , (2.17)

10



The detector’s interaction with a scalar field ϕ(x) is described by

ĤD,int = λχ(τ)(σ̂+ + σ̂−) ⊗ ϕ̂(x(τ)) (2.18)

where χ(τ) ∈ [0, 1] is the switching function, that controls the duration of the detector’s
interaction with the field, λ is the interaction strength, and σ̂+ ≡ |e⟩⟨g| and σ̂− ≡ |g⟩⟨e| are
the raising and lowering operators, respectively, acting on the Hilbert space of the UDW
detector. ϕ̂(x(τ)) is the field operator along the detector’s trajectory. In this sense, the
detector locally couples to the field at the point where it is located. The time evolution
of the detector and the field during the interaction process,is described by the unitary
operator generated by the interaction Hamiltonian in Eq (2.17)

U := T exp
(

−i
∫

dτ HD(τ)
)

= 1 − i
∫

dτ HD(τ) + (−i)2

2

∫
dτ dτ ′ T HD(τ)HD(τ ′) + O(λ3)

(2.19)
where τ ∈ (−∞; ∞) and T is the time ordering operator defined as

T [A(t)B(t′)] := θ(t − t′)A(t)B(t′) + θ(t′ − t)B(t′)A(t) .

Applying the time evolution operator on the system where the detector and the field
are both prepared in ground state |gD⟩|0⟩, we get the final state of the system after the
interaction as the following:

U |gD⟩|0⟩ =
(

1 − i
∫

dτ HD(τ) − 1
2

∫
dτ dτ ′ T HD(τ)HD(τ ′) + O(λ)

)
|g⟩D|0⟩

= |gD⟩|0⟩ − iλ
∫

dτ χD(τ)eiΩDτ |eD⟩ ⊗ ϕ[xD(τ)]|0⟩

− λ2

2

∫
dτ dτ ′ χD(τ)χD(τ ′)T [σ̂−(τ)σ̂+(τ ′) + σ̂+(τ)σ̂−(τ ′)]|gD⟩

⊗ T ϕ[xD(τ)]ϕ[xD(τ ′)]|g⟩ + O(λ3)

(2.20)

we can get the final state of the detector D by tracing over the field degrees of freedom in
Eq. (2.20):

ρD := trϕ

(
U |0⟩⟨0| ⊗ |gD⟩⟨gD|U †

)
=
(

1 − LD 0
0 LD

)
+ O(λ4). (2.21)

where ρD is the detector’s density matrix in the basis {|gD⟩, |eD⟩} and LD is the probability
that the detector has transitioned from ground to excited state during the interaction given
by

LD = λ2
∫
R

dτ
∫
R

dτ ′ χD(τ)χD(τ ′)e−iΩ(τ−τ ′) × W
(
xD(τ), xD(τ ′)

)
, (2.22)
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and W (x, x′) is the vacuum Wightman function:

W (x, x′) := ⟨0|ϕ(x)ϕ(x′)|0⟩ (2.23)

2.2.2 Two UDW detectors

Let us introduce two UDW particle detectors A and B that interact with a quantum scalar
field ϕ̂. The dynamics of the detectors is governed by a Hamiltonian. Assuming the size
of the detectors is negligible and each detector has its own proper time τj, the interaction
Hamiltonian in the interaction picture is given by

Ĥ
τj

j (τj) = λjχj(τj)µ̂j(τj) ⊗ ϕ̂(xj(τj)) . j ∈ {A, B} (2.24)

The operator µ̂j(τj) is the monopole moment, which describes the internal dynamics of
each detector given by

µ̂j(τj) = |ej⟩ ⟨gj| eiΩjτj + |gj⟩ ⟨ej| e−iΩjτj . (2.25)

The superscript on the Hamiltonian Ĥ
τj

j (τj) indicates that it is the generator of time-
translation with respect to the proper time τj.

The total interaction Hamiltonian, Ĥ t
I (t), that describes both detectors A and B is then

given by

Ĥ t
I (t) = dτA

dt
ĤτA

A

(
τA(t)

)
+ dτB

dt
ĤτB

B

(
τB(t)

)
, (2.26)

where the Hamiltonian Ĥ t
I (t) is now a generator of time-translation with respect to the

common time t (e.g., Minkowski time). Similar to a single detector, the time-evolution
operator ÛI can be written by using a time-ordering symbol Tt with respect to t [64, 65]:

ÛI = Tt exp
(

−i
∫
R

dt Ĥ t
I (t)

)
. (2.27)

Assuming that the coupling strength λ is small, the Dyson series expansion of ÛI reads:

ÛI = 1 + Û
(1)
I + Û

(2)
I + O(λ3) , (2.28a)

Û
(1)
I = −i

∫ ∞

−∞
dt Ĥ t

I (t) , (2.28b)

Û
(2)
I = −

∫ ∞

−∞
dt1

∫ t1

−∞
dt2 Ĥ t

I (t1)Ĥ t
I (t2) . (2.28c)

12



Let us now obtain the density matrix for the detectors up to the second order in λ. We
assume that the initial states of the detectors and the field are in the ground |gA⟩ ⊗ |gB⟩
and vacuum |0⟩ states respectively, and uncorrelated. The rationale for this assumption is
twofold. First, it is a natural assumption to make in the lab, as it is straightforward to
initialize systems to be in their ground states. Second, this assumption allows us to study
harvesting of vacuum correlations without contaminants from other sources. It is certainly
possible to relax the assumption of an initially uncorrelated state, and recently studies of
entanglement harvesting in this context have been carried out [66, 67].

We therefore take the initial state ρ0 of the total system to be

ρ0 = |gA⟩ ⟨gA| ⊗ |gB⟩ ⟨gB| ⊗ |0⟩ ⟨0| . (2.29)

The final total density matrix ρtot after the interaction reads

ρtot = ÛIρ0Û
†
I

= ρ0 + ρ(1,1) + ρ(2,0) + ρ(0,2) + O(λ4) , (2.30)

where ρ(i,j) = Û (i)ρ0Û
(j)†. Note that all the odd-power terms of λ vanish [31], in the

final density matrix of the detectors upon tracing out the field degree of freedom: ρAB =
Trϕ[ρtot]. In the basis {|gAgB⟩ , |gAeB⟩ , |eAgB⟩ , |eAeB⟩}, ρAB is known to be

ρAB =


1 − LAA − LBB 0 0 M∗

0 LBB L∗
AB 0

0 LAB LAA 0
M 0 0 0

+ O(λ4) (2.31)

where

Lij = λ2
∫
R

dτi

∫
R

dτ ′
j χi(τi)χj(τ ′

j)e−iΩ(τi−τ ′
j)W

(
xi(τi), xj(τ ′

j)
)

, (2.32a)

M = −λ2
∫
R

dτA

∫
R

dτB χA(τA)χB(τB)e−iΩ(τA+τB)

×
[
Θ
(
t(τA) − t(τB)

)
W
(
xA(τA), xB(τB)

)
+ Θ

(
t(τB) − t(τA)

)
W
(
xB(τB), xA(τA)

)]
, (2.32b)

where Θ(t) is the Heaviside step function and W (x, y) := ⟨0| ϕ̂(x)ϕ̂(y) |0⟩ is the Wightman
function. The elements Ljj, j ∈ {A, B} are the transition probabilities (or responses) from
the ground |gj⟩ to excited |ej⟩ states. The off-diagonal elements M and LAB contribute to
entanglement and mutual information, respectively.
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2.3 Correlation Harvesting in curved spacetime

We introduce two measures for correlation: concurrence C, and quantum mutual informa-
tion IAB.

2.3.1 Concurrence as a measure of entanglement

Concurrence of entanglement [68, 69] is a measure of entanglement. Let ρAB be the density
matrix of a two-qubit system. We first define a matrix ρ̃AB as

ρ̃AB := (σ̂y ⊗ σ̂y)ρ∗
AB(σ̂y ⊗ σ̂y) , (2.33)

where σ̂y is the Pauli-y operator and ρ∗
AB is a complex conjugate of ρAB. Then by denot-

ing wi ∈ R, (i = 1, 2, 3, 4) as eigenvalues of a Hermitian operator
√√

ρABρ̃AB
√

ρAB, the
concurrence is defined as follows.

C := max{0, w1 − w2 − w3 − w4} , (w1 ≥ w2 ≥ w3 ≥ w4). (2.34)

The concurrence is zero if and only if the state ρAB is separable. In the case of our density
matrix (2.31), the concurrence is known to be

C = 2 max{0, |M| −
√

LAALBB} + O(λ4) . (2.35)

2.3.2 Quantum Mutual information as a measure of total corre-
lation

Quantum mutual information [70] quantifies the amount of total correlation including both
classical and quantum. Mutual information IAB between detectors A and B up to second
order in λ is [31]

IAB = L+ ln L+ + L− ln L− − LAA ln LAA − LBB ln LBB + O(λ4) , (2.36)

where

L± := 1
2

(
LAA + LBB ±

√
(LAA − LBB)2 + 4|LAB|2

)
. (2.37)

and Lij is defined in Eq (2.32a).
Note that, while concurrence (2.35) vanishes when the “noise term”

√
LAALBB exceeds the
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nonlocal element |M|, the mutual information becomes zero when |LAB| = 0. In particular,
from the condition LAALBB ≥ |LAB|2 [32], if one of the transition probabilities satisfies
Ljj = 0 then |LAB| = 0, thereby IAB = 0. In addition, if C = 0 but the mutual information
is nonvanishing, then the extracted correlation by the detectors is either classical correlation
or nondistillable entanglement.
Throughout this thesis, we shall use a Gaussian switching function

χj(τj) = e−τ2
j /2σ2

, (2.38)

which is a particular function in the set of single-peaked rapidly decreasing functions.
This function allows for considerable analytic simplification in the elements of the density
matrix.
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Chapter 3

Correlation Harvesting of uniformly
accelerating particle detectors in
linear motion

In this chapter, we study the mutual information harvesting protocol of two UDW par-
ticle detectors uniformly accelerated in linear motion. Through numerical analysis, we
demonstrate that a single detector exhibits behavior similar to that of being immersed
in a thermal bath. However, when considering the quantum mutual information between
two accelerating detectors, it differs from that observed between two inertial detectors in
a thermal bath. This distinction arises due to the fact that while the Wightman function
along the trajectory of a single uniformly accelerating detector matches that of a detector
in a thermal bath, a pair of detectors in the same respective scenarios exhibit different
Wightman functions. Furthermore, we note a qualitative similarity in the behavior of
harvested quantum mutual information and harvested entanglement. Both measures are
enhanced at lower temperatures but decrease as the Unruh temperature increases.

The chapter is structured as follows. First, we establish the trajectories of the detectors,
considering three configurations of accelerating detector pairs—parallel, anti-parallel, and
perpendicular [55]. Second, we calculate mutual information harvesting and entanglement
harvesting with varying the acceleration. Last, we discuss the results and compare them
to previous studies.
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3.0.1 Detectors’ trajectories

We will focus on uniformly accelerating detectors in (3 + 1)-dimensional Minkowski space-
time. Specifically, we utilize a massless quantum scalar field ϕ̂(x) that obeys the Klein-
Gordon equation Eq. 2.4 and with assuming that the field is minimally coupled. As men-
tioned in 2.1.2:

ϕ̂(x) =
∫ d3k√

(2π)32|k|

(
âke−i|k|t+ik·x + h.c.

)
, (3.1)

with the Minkowski vacuum |0⟩ satisfying âk |0⟩ = 0 for all k. The creation and annihilation
operators obey the canonical commutation relations,

[âk, â†
k′ ] = δ(3)(k − k′) , (3.2a)

[âk, âk′ ] = 0 , [â†
k, â†

k′ ] = 0 . (3.2b)

Then the Wightman function in the Minkowski vacuum state |0⟩ satisfying âk |0⟩ = 0 for
all k is known to be

W (x, x′) = − 1
4π2

1
(t − t′ − iϵ)2 − |x − x′|2

, (3.3)

where ϵ is a UV regulator.
To evaluate the elements in the density matrix ρAB (2.31), one needs to specify the

trajectories of detectors A and B in this Wightman function. In what follows, we will
consider three different acceleration scenarios: parallel, anti-parallel, and perpendicular.

Parallel acceleration

In this scenario, a pair of UDW detectors A and B are accelerating in the same direction
along x axis, with separation L between them at all times, as shown in Fig. 3.1(a). The
detectors’ trajectories can be written as

xA =
{

t = 1
a

sinh(aτA), x = 1
a

[cosh(aτA) − 1] + L

2 , y = z = 0
}

, (3.4)

xB =
{

t = 1
a

sinh(aτB), x = 1
a

[cosh(aτB) − 1] − L

2 , y = z = 0
}

. (3.5)
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Figure 3.1: Three configurations of acceleration: (a) parallel, (b) anti-parallel, and (c)
perpendicular. The red and blue stripes indicate the interaction duration of detectors A
and B, respectively. In all cases, the detectors are separated by L at t = 0, at which their
Gaussian switching peaks. Note that the separation in the parallel configuration is L for
all times.

By substituting these trajectories into the Wightman function (3.3), we can evaluate the
elements in the density matrix (2.31) along the trajectories. The Wightman function
Wa(x, y) becomes

Wa(xj(τj), x′
j(τ ′

j)) = − a2

16π2
1

sinh2[a(τj − τ ′
j)/2 − iϵ]

, j ∈ {A, B} (3.6)

Wa(xA(τA), xB(τB)) = − a2

4π2
1

[sinh(aτA) − sinh(aτB) − iϵ]2 − | cosh(aτA) − cosh(aτB) + aL|2
.

(3.7)

The transition probability Ljj can be simplified to [55]

Ljj = λ2

4π
[e−Ω2σ2 −

√
πΩσerfc(Ωσ)] + λ2aσ

4π3/2

∫ ∞

0
ds

cos(βs)e−αs2(sinh2 s − s2)
s2 sinh2 s

, (3.8)

where β ≡ 2Ω/a and α ≡ 1/(aσ)2. erfc(x) := 1 − erf(x) is the complementary error
function, where

erf(x) := 2√
π

∫ x

0
ds e−s2 (3.9)
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is the error function. The switching function is Gaussian switching (2.38).
Note that the first term in Ljj is the transition probability of a detector at rest in

(3 + 1)-dimensional Minkowski spacetime and the transition rate for the two detectors A
and B is identical as they have the same spatial translation.

Anti-parallel acceleration

The anti-parallel configuration, shown in Fig. 3.1(b), is the case where two detectors ac-
celerate towards each other and after momentarily stopping (at which point the detector
separation is L), they accelerate away. Unlike the parallel acceleration configuration, the
distance between the detectors is not fixed.

The trajectories are given by

xA =
{

t = 1
a

sinh(aτA), x = 1
a

[cosh(aτA) − 1] + L

2 , y = z = 0
}

, (3.10)

xB =
{

t = 1
a

sinh(aτB), x = −1
a

[cosh(aτB) − 1] − L

2 , y = z = 0
}

. (3.11)

This yields the following Wightman function:

Wa(xA(τA), xB(τB)) =

− 1
4π2

1[1
a

sinh aτA − 1
a

sinh aτB − iϵ
]2

−
[1
a

cosh aτA − 1
a

+ L

2 −
(

−1
a

cosh aτB + 1
a

− L

2

)]2

While the Wightman function along both the trajectories, W (xA, xB), differs from (3.7)
and therefore LAB and M in the density matrix also differ from the parallel case (2.31),
the transition probability Ljj is the same as (3.8). Note that the detectors, as long as L is
small, can in general communicate with each other by exchanging field quanta when the
detectors are lightlike separated.

Perpendicular acceleration

As depicted in Fig. 3.1(c), the perpendicular acceleration configuration is similar to the
anti-parallel configuration, but now detectors are traveling along different axes x and y.
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That is, the two detectors accelerate toward and away from each other along linear trajec-
tories at a 90◦ angle. The minimum distance between them at which they stop momentarily
is L. The trajectories are

xA =
{

t = 1
a

sinh(aτA), y = 1
a

[cosh(aτA) − 1], x = z = 0
}

, (3.12)

xB =
{

t = 1
a

sinh(aτB), x = 1
a

[cosh(aτB) − 1] + L, y = z = 0
}

. (3.13)

In this case the Wightman function reads:

Wa(xA(τA), xB(τB)) = a2

4π2
(
(−1 + aL + cosh(aτB))2 + 4 sinh4

(
aτA

2

)) (3.14)

Note again that the transition probability Ljj of each detector is the same as (3.8).

3.1 Results

In this section we explore the mutual information harvesting of the two UDW detectors
based on the specified trajectories. Notably, we find that increased acceleration negatively
affects correlation harvesting. Furthermore, while both the Unruh temperature and the
thermal bath temperature exhibit identical response functions for a single detector, their
influence on mutual information harvesting diverges. This difference is attributed to their
distinct Wightman functions.

3.1.1 Temperature dependence

Figure 3.2 shows the effect of acceleration on mutual information harvesting for each of
the scenarios in Fig. 3.1, plotting mutual information IAB as a function of acceleration
aσ (which is proportional to the Unruh temperature TU = a/2π). The diagrams depict
different energy gaps Ω and detector separations L at t = 0. Figures 3.2(a) and (b) depict
IAB with Ωσ = 0.5 and 2, respectively, when the separation is small (L/σ = 1), whereas
(c) and (d) have a large separation: L/σ = 7 for the same two gaps. Note that the effect of
communication between the two detectors is negligible when L/σ = 7, which suggests that
the harvested mutual information predominantly comes from preexisting entanglement in
the vacuum state of the field.
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We see that high acceleration suppresses mutual information harvesting in all three
acceleration scenarios regardless of the energy gap Ωσ and separation L/σ. This charac-
teristic property of mutual information can be explained as follows. Since the two detectors
have the same transition probabilities, LAA = LBB ≡ P , then L± in (2.37) becomes

L± = P ± |LAB| . (3.15)

The reason that IAB vanishes at high acceleration (or equivalently, high temperatures
TU → ∞) is that the transition probability P monotonically increases with aσ while |LAB|
remains small, which leads to P ≫ |LAB| and so L± ≈ P . Thus, the mutual information
IAB ≈ 0. However for a thermal bath (Fig. 1.1) [43], the mutual information between two
inertial detectors increases with T because both P and |LAB| increase with temperature
T ; consequently the mutual information monotonically increases with T .

By contrast, small acceleration seems to affect mutual information harvesting differ-
ently depending on the type of acceleration, energy gap, and detectors’ separation. In the
case of small energy gap and small detector separation, shown in Fig. 3.2(a), we find that
small acceleration enhances mutual information for anti-parallel and perpendicular con-
figurations with higher harvested mutual information in the anti-parallel scenario, while
harvested mutual information monotonically decreases with aσ in the parallel acceleration
case. Nevertheless, as the energy gap Ωσ changes from 0.5 to 2, the acceleration depen-
dence of IAB changes, as shown in Fig. 3.2(b). In particular, the parallel acceleration case
no longer monotonically decreases with aσ, and smaller acceleration could enhance mutual
information harvesting. This is also true for L/σ = 7 in Figs. 3.2(c) and (d). We also
examine how harvested mutual information changes with the energy gap by plotting IAB
as a function of Ωσ in Fig. 3.3. Here, we fix the value of acceleration to be aσ = 1, and
plot the energy gap dependence when L/σ = 1 and 7 in Figs. 3.3(a) and (b), respectively.
For entanglement harvesting reported in [55], any accelerating detectors (as well as in-
ertial detectors) with small energy gaps cannot extract entanglement when the detector
separation L is large. However, this is not the case for mutual information; we find that
for both L/σ = 1 and 7 in Fig. 3.3, mutual information IAB is nonvanishing near Ω = 0,
which suggests that the harvested correlation with small Ω is either classical correlation or
nondistillable entanglement.

3.1.2 Comparison to previous studies

As we have shown in the previous section, harvested quantum mutual information IAB
behaves in a manner similar to harvested entanglement [55]. From Fig. 1.1, we can now

21



0 2 4 6 8 10
0.00

0.02

0.04

0.06

0 2 4 6 8 10
0.000

0.001

0.002

0.003

0.004

0.005

0 2 4 6 8 10
0

0.00015

0.00025

0 2 4 6 8 10
0.00000

0.00005

0.00010

0.00015

0.00020

0 2 4 6 8 10
0.000000

5.×10-6

0.000010

0.000015

0.000020

L /σ=1, Ωσ=0.5 L /σ=1, Ωσ=2

L /σ=7, Ωσ=0.5 L /σ=7, Ωσ=2

(a) (b)

(c) (d)

Figure 3.2: Mutual Information as a function of acceleration aσ in three acceleration
scenarios (parallel, anti-parallel, and perpendicular). (a) L/σ = 1, Ωσ = 0.5, (b) L/σ =
1, Ωσ = 2, (c) L/σ = 7, Ωσ = 0.5, and (d) L/σ = 7, Ωσ = 2.

discuss how different the temperature dependence among various scenarios is. Here, we
focus on the difference between the accelerating detector scenarios and the thermal bath
scenario in [42, 43].

Let us first review the thermal state of the scalar field. Let ρβ be the KMS state of the
scalar field. The corresponding Wightman function can be written as [43]

Wth(x, x′) = WM(x, x′) + Wβ(x, x′) , (3.16)

where WM(x, x′) is the Wightman function in the Minkowski vacuum given by (3.3) and
Wβ(x, x′) is the contribution coming from the thermality, which reads (for a massless scalar
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Figure 3.3: Mutual Information as a function of energy gap Ωσ in three acceleration
scenarios (parallel, anti-parallel, and perpendicular) with aσ = 1 and (a) L/σ = 1 , (b)
L/σ = 7. The red curve represents the harvested mutual information by two inertial
detectors in the Minkowski vacuum, which corresponds to aσ = 0.

field in (3 + 1)-dimensions)

Wβ(x, x′) =
∫ d3k

(2π)32|k|
e−i|k|(t−t′)+ik·(x−x′) + c.c.

eβ|k| − 1 . (3.17)

where β := T −1 is the inverse temperature.
From this Wightman function, one can calculate the elements in the density matrix.

Let Mth and Lth
ij denote corresponding elements in the density matrix when the detectors

are at rest in a thermal quantum field. Employing the concurrence

Cth
AB := 2 max{0, |Mth| −

√
Lth

AALth
BB} (3.18)

as a measure of entanglement, for temperatures satisfying T1 < T2, one can analytically
show [43] that Cth

AB(T1) > Cth
AB(T2), namely, the amount of entanglement between two

inertial detectors in a thermal bath monotonically decreases with temperature. This is
distinct from the case of uniformly accelerating detectors [55], where entanglement is ei-
ther enhanced before vanishing at high temperature or monotonically decreases, depending
on parameters such as the energy gap Ω. It is difficult to analytically show the behavior
of quantum mutual information due to its logarithmic definition. However one can nu-
merically check that the mutual information in a thermal bath monotonically increases
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with temperature [43]. whereas our result (Fig. 3.2) shows similar behavior to that in the
entanglement harvesting scenario with accelerating detectors [55].

Although an accelerating single detector experiences a thermal bath, two detectors
exhibit remarkably different behavior. This can be explained by looking at their Wightman
functions (3.16) and (3.7). One can examine this difference by, for example, performing a
series expansion around T = 0:

Wth(x, x′) = WM(x, x′) + T 2

12 + O(T 4) , (3.19)

Wa(x, x′) = WM(x, x′) + c1(x, x′)TU + c2(x, x′)T 2
U + O(T 3

U) , (3.20)

where the cj(x, x′) are expansion coefficients that depend on the spacetime points. Note
that Wth(x, x′) has an expansion in even-powers of T for two arbitrary points x and x′,
and thereby along a single detector trajectory. On the other hand, for a single accelerating
detector, these functions become c1(x, x′) = 0 and c2(x, x′) = 1/12, and so Wa(x, x′) reduces
to

Wa(x, x′) = WM(x, x′) + T 2
U

12 + O(T 4
U) , (3.21)

which is equivalent to Wth(x, x′). Apparently, the Wightman functions along two trajecto-
ries differ, whereas the ones on a single trajectory match. It is not so surprising that two
distinct Wightman functions give different correlations. If we specify the state of the field
and the trajectories of the detectors in such a way that two Wightman functions match,
the corresponding quantities such as concurrence or transition probability behave in the
same way, which is the case for a single accelerating detector.

As an application of this observation, consider two UDW detectors in an expanding
universe considered in [41, 71]. The line element of the de Sitter spacetime in the planar
coordinates is

ds2 = −dt2 + e2κt(dx2 + dy2 + dz2) , (3.22)

where κ is the expansion rate of the universe. We employ a conformally coupled, massless
scalar field in the conformal vacuum. In this case, a single inertial detector also sees a
thermal bath at temperature TGH := κ/2π (the Gibbons-Hawking effect [72]). This can be
seen from the Wightman function [61],

WdS(x, x′) = − 1
4π2

1
sinh2(πTGH∆t − iϵ)

π2T 2
GH

− e2πTGH∆+tL2
, (3.23)

(∆t ≡ t − t′, ∆+t ≡ t + t′) ,
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by pulling it back to a single inertial trajectory, L = 0, which yields the same form as (3.6).
Nevertheless, in the case of L ̸= 0, a series expansion of WdS(x, x′) around TGH = 0 reads

WdS(x, x′) = WM(x, x′) + cdS
1 (x, x′)TGH + cdS

2 (x, x′)T 2
GH + O(T 3

GH) , (3.24)

where cdS
i with i ∈ {1, 2, ...} are non-zero coefficients. The explicit expressions are

rather complicated functions of L and t, and are not needed for our purposes so we will
not delve into them.
We can see obviously that WdS(x, x′) differs from Wth(x, x′) in (3.19).
In summary, harvested correlations do not necessarily show the same behavior even if
two scenarios give the same transition probability. This is simply because the Wightman
functions are different in general between distinct spacetime points on different trajectories.
These quantities, including transition probability, show identical features if the Wightman
functions in two scenarios happen to be the same.

3.2 Summary

We have investigated the harvesting protocol for mutual information with two uniformly
accelerating detectors in the Minkowski vacuum. Our main purpose was to fill in the
missing piece of the correlation harvesting protocol for situations in which a single detector
perceives a thermal bath. These include a uniformly accelerating detector, a static detector
in a black hole spacetime, and an inertial detector in de Sitter spacetime.

As with the entanglement harvesting scenario revisited recently [55], we considered
three types of acceleration scenarios: parallel, anti-parallel, and perpendicular. We found
that, as for the entanglement harvesting case, acceleration can enhance mutual information
for certain detector separations and energy gaps. Moreover, it asymptotically vanishes as
the acceleration (equivalently, the Unruh temperature) increases. This is in contrast to
the case of two inertial detectors in a thermal bath [42, 43], where mutual information
monotonically increases with the bath temperature. We have also looked into the energy
gap dependence and found that there is a range of energy gaps in which either classical
correlations or nondistillable entanglement can be extracted from the field.

Our analysis provides a complete picture of correlation harvesting with thermalized
detectors. The take-home lesson is that the temperature dependence of harvested cor-
relations differs among different scenarios even when a single detector responds in the
same manner for each. This is not surprising since the properties of harvested correla-
tions depend on the Wightman function (a two-point correlation function of a quantum
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field) W (x, y) = Tr[ρϕϕ̂(x)ϕ̂(y)], where ρϕ is the state of the field ϕ̂, which is in general
different among different systems. Given the state of the field ρϕ and the trajectories of
detectors, if the functional forms of the Wightman function are different, then one should
expect different results for correlation harvesting. Nevertheless, if the functional forms
of W (x, y) happen to be identical, then the harvested correlations would show the same
behavior. In the case of inertial detectors in a thermal bath in [43] and our uniformly
accelerating detectors in the Minkowski vacuum, their Wightman functions are different,
and so the temperature dependence of entanglement as well as mutual information differs.
However, if we look at a single detector, the functional forms of the Wightman functions
along this trajectory are identical, which is the reason that a single detector undergoing
uniform acceleration experiences thermality as if it is immersed in a thermal bath at tem-
perature TU = a/2π. Beyond the mathematical framework, one may also inquire into the
physical reason underlying the difference in temperature-dependent correlation behavior
between inertial and non-inertial systems. A plausible explanation could be the influence
of the relativistic Doppler shift, which is mediated by time dilation effects. However, this
necessitates further research and investigation for validation.
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Chapter 4

Correlation harvesting between
particle detectors in uniform motion

In this chapter, we extend our study to investigate the correlation harvesting protocol using
two Unruh-DeWitt particle detectors moving along four classes of uniformly accelerated
trajectories categorized by Letaw[3]: linear, catenary, cusped, and circular motions. For
each trajectory, two types of configurations are carried out: one possesses a stationary
(time-translation invariant) Wightman function and the other is nonstationary. We find
that detectors undergoing linear, catenary, and cusped motions gain fewer correlations in
the nonstationary configurations compared to those in stationary configurations. Detectors
in circular motion have similar behavior in both configurations. We discuss the relative
suppression of correlation harvesting due to high acceleration for each case. Remarkably
we find that under certain circumstances detectors in both linear and circular states of
motion can harvest genuine (non-communication assisted) entanglement even though they
are in causal contact.

This study is motivated by the ongoing experiments aimed at verifying the Unruh
effect. A primary obstacle in the verification of Unruh temperature lies in the immense
acceleration needed to generate experimentally measurable temperatures. For instance, an
acceleration on the order of magnitude a ≈ 1020 m/s2 is required to achieve a temperature
of TU ∼ 1 Kelvin. This considerable requirement motivates the exploration of alternative
trajectories that can more easily be implemented in laboratory settings yet still induce
phenomena analogous to the Unruh effect.
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Figure 4.1: Four trajectories characterized by b̄ ≡ b/a.

4.1 Uniform acceleration trajectories

4.1.1 Single detector trajectory classification

The most well-known trajectory for a uniformly accelerating (i.e., a = const.) pointlike
particle is linear accelerated motion that we discussed in last chapter. However, Letaw
pointed out that there are, in fact, five classes of uniformly accelerated trajectories, ex-
cluding the case where a = 0. Along with the linear case, the other classes are circular,
catenary, cusped, and helix. Consider a trajectory in (3+1)-dimensional Minkowski space-
time. Such a trajectory can be characterized by three geometric invariants: the curvature
a(τ), which represents the magnitude of proper acceleration, the first torsion b(τ), and the
second torsion (also known as hypertorsion) ν(τ) of the worldline. The torsions b(τ) and
ν(τ) correspond to the proper angular velocities in a given tetrad frame [3]. Assuming
that these invariants are constants, the trajectory becomes stationary. In a nutshell, these
motions are characterized by the following:

1. linear: a ̸= 0, b = ν = 0

2. catenary: a > b, ν = 0
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3. cusped: a = b, ν = 0

4. circular: a < b, ν = 0

5. helix: ν ̸= 0

In this subsection, we review these trajectories and consider the corresponding vacuum
Wightman functions. We will suppress the UV cutoff ϵ for readability.

Linear motion

The linear acceleration motion of a detector is defined solely by the constant acceleration
a, with all other parameters set to zero. The trajectory reads

x(τ) =
(1

a
sinh(aτ), 1

a
cosh(aτ), 0, 0

)
, (4.1)

and the Wightman function along this trajectory is given by

Wlin(∆τ) = − 1
4π2

1
4
a2 sinh2

(
a∆τ

2

) , (4.2)

where ∆τ := τ − τ ′.

Circular motion

The circular trajectory is defined by a and b satisfying a < b. Let us begin with a commonly
used trajectory

x(τ) = (γτ, R cos(ωγτ), R sin(ωγτ), 0) , (4.3)

where R, ω, and γ are the radius of the circular motion, angular velocity, and the Lorentz
factor defined as γ := 1/

√
1 − v2. Here, v := Rω(≤ 1) is the speed of the detector.

Introducing the acceleration of the detector a = Rω2γ2, these parameters can be related
by

ω =
√

a

(1 + aR)R , (4.4a)

γ =
√

1 + aR , (4.4b)

v =
√

aR

1 + aR
. (4.4c)
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In terms of the acceleration a and the torsion b, we can further express ω and v as

ω = b(1 − a2/b2) v = a/b

respectively. The Wightman function is then

Wcir(∆τ) = − 1
4π2

1
γ2∆τ 2 − 4R2 sin2(ωγ∆τ/2) . (4.5)

Cusped motion

Cusped motion is described by the acceleration and torsion with a = b. The trajectory
reads

x(τ) =
(

τ + 1
6a2τ 3,

1
2aτ 2,

1
6a2τ 3, 0

)
, (4.6)

and the corresponding Wightman function is

Wcus(∆τ) = − 1
4π2

1

∆τ 2 + a2

12∆τ 4
. (4.7)

Catenary motion

Catenary motion can be characterized by a and b with a > b. The trajectory is given by

x(τ) =
(

a

a2 − b2 sinh
(√

a2 − b2 τ
)
,

a

a2 − b2 cosh
(√

a2 − b2 τ
)
,

bτ√
a2 − b2

, 0
)

, (4.8)

and the Wightman function reads

Wcat(∆τ) = − 1
4π2

1

− b2∆τ 2

a2 − b2 + 4a2

(a2 − b2)2 sinh2
(√

a2−b2∆τ
2

) . (4.9)

We immediately see that catenary motion reduces to linear motion as b → 0. Catenary
motion also reduces to cusped motion as b → a after a coordinate transformation consisting
of a Lorentz boost a translation [73].
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Helix motion

Finally, helix motion is a combination of circular and linear acceleration motions charac-
terized by three parameters, a, b, and ν:

x(τ) =
(

P
Γ+

sinh(Γ+τ), P
Γ+

cosh(Γ+τ),

Q
Γ−

cos(Γ−τ), Q
Γ−

sin(Γ−τ)
)

, (4.10)

where P := Ξ/Γ, Q := ab/ΞΓ, and

Ξ2 := 1
2(Γ2 + a2 + b2 + ν2) , (4.11a)

Γ2 := Γ2
+ + Γ2

− , Γ2
± :=

√
A2 + B2 ± A , (4.11b)

A := 1
2(a2 − b2 − ν2) , B := aν . (4.11c)

The Wightman function reads

Whel(∆τ) = − 1
4π2

1
4P2

Γ2
+

sinh2
(

Γ+∆τ
2

)
− 4Q2

Γ2
−

sin2
(

Γ−∆τ
2

) . (4.12)

Note that the trajectory and the corresponding Wightman function reduce to the afore-
mentioned trajectories when ν → 0. In this sense, the helix is the general motion that
contains other motions.

Wightman function at ν = 0

We now turn our attention to the special case where ν = 0. Although the Wightman
functions for linear, circular, catenary, and cusped motions may initially appear to take
different forms, they can actually be expressed in a unified manner. Let b̄ ≡ b/a with
the condition that a ̸= 0. The Wightman functions for all trajectories with ν = 0 can be
written in the following compact form:

Wν=0(∆τ) = − 1
4π2

1

− b̄2

1 − b̄2
∆τ 2 + 4

(1 − b̄2)2a2
sinh2

(√
1−b̄2a∆τ

2

) . (4.13)
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The parameter b̄ serves to specify the particular trajectory, as illustrated in figure 4.1:
linear (b̄ = 0), catenary (0 < b̄ < 1), cusped (b̄ = 1), and circular (b̄ > 1). For circular
motion, we employ the identity sin(ix) = i sinh(x). Note that one obtains the Wightman
function for the cusped motion, as given in (4.7), by performing a series expansion around
b̄ = 1.

The corresponding transition probability Ljj, j ∈ {A, B}, in (2.31) reads

Ljj = λ2σ
√

π
∫
R

du e−u2/4σ2
e−iΩuWν=0(u) . (4.14)

4.1.2 Two detectors in uniform acceleration

We now consider two UDW detectors A and B, both undergoing uniform acceleration
motion. In particular, we categorize the detector configurations into two classes: stationary
(time-translation invariant) and nonstationary scenarios.

Stationary scenario

Consider two detectors undergoing the same uniform acceleration (e.g., both linearly ac-
celerated). The Wightman function can be made time-translation invariant, meaning it
depends only on the time difference ∆τ := τA − τB, by imposing that the angle between
the velocity vector of a detector and the spatial displacement vector from one detector to
the other is time-independent. For example, two linearly accelerating detectors along the
trajectories

xA(τA) =
(1

a
sinh(aτA), 1

a
cosh(aτA), 0, 0

)
, (4.15a)

xB(τB) =
(1

a
sinh(aτB), 1

a
cosh(aτB), L, 0

)
(4.15b)

give the following stationary Wightman function:

Wlin(τA, τB) = − 1
4π2

1
4
a2 sinh2

(
a∆τ

2

)
− L2

(4.16)

where L := |xA − xB| is the spatial separation between the two detectors. As depicted
in figure 4.2 top-left, each velocity vector of the detector is always perpendicular to the
displacement vector xAB := xA − xB throughout the interaction.

32



stationary nonstationary

linear

catenary

cusped

circular

t

y

x

L

x
y

z L

t

y

x

L

x
y

z

L

x

y

z

L

t

y

x

t

y

x

x

y

z

L

t

x

y
x

y

z

L

x

y
z

L

t

y

x

t

y

x

y

z

x

L

t

x

y
x

y

z

L

Figure 4.2: Stationary and nonstationary configurations for four classes of uniformly ac-
celerating detectors. Red and blue strips represent detectors A and B, respectively.
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We can also construct stationary Wightman functions for other motions:

circular:

xA = (γτA, R cos(ωγτA), R sin(ωγτA), 0) , (4.17a)
xB = (γτB, R cos(ωγτB), R sin(ωγτB), L) . (4.17b)

cusped:

xA =
(

τA + 1
6a2τ 3

A,
1
2aτ 2

A,
1
6a2τ 3

A, 0
)

, (4.18a)

xB =
(

τB + 1
6a2τ 3

B,
1
2aτ 2

B,
1
6a2τ 3

B, L
)

, (4.18b)

catenary:

xA =
(

a

a2 − b2 sinh
(√

a2 − b2 τA
)
,

a

a2 − b2 cosh
(√

a2 − b2 τA
)
,

bτA√
a2 − b2

, 0
)

, (4.19a)

xB =
(

a

a2 − b2 sinh
(√

a2 − b2 τB
)
,

a

a2 − b2 cosh
(√

a2 − b2 τB
)
,

bτB√
a2 − b2

, L

)
, (4.19b)

As for a single detector, the Wightman functions along the trajectories given above take
the following compact form:

Ws(τA, τB) ≡ Ws(∆τ) = − 1
4π2

1

− b̄2

1 − b̄2
∆τ 2 + 4

(1 − b̄2)2a2
sinh2

(√
1−b̄2a∆τ

2

)
− L2

, (4.20)

where ∆τ := τA − τB, b̄ ≡ b/a, and the subscript ‘s’ stands for stationary. Since the
Wightman function depends only on ∆τ , the elements in the density matrix (2.31), M
and LAB, can be simplified to single integrals when the Gaussian switching function (2.38)
is used:

M = −2λ2σ
√

πe−Ω2σ2
∫ ∞

0
du e−u2/4σ2

Ws(u) , (4.21a)

LAB = λ2σ
√

π
∫
R

du e−u2/4σ2
e−iΩuWs(u) . (4.21b)

Here, we used the fact that the Heaviside step function in (2.32b) can be written as
Θ(t(τA) − t(τB)) = Θ(τA − τB) for any of the uniform acceleration scenarios mentioned
earlier.

We note that all stationary configurations can only be realized in (3 + 1) dimensions,
with the exception of the linear configuration.
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Nonstationary scenario

One can also consider configurations similar to those in section 4.1.2, where the Wightman
function depends not only on ∆τ but also on ∆+τ := τA + τB. In this case, the Wightman
function is no longer time-translation invariant (hence, nonstationary).

In particular, consider two linearly accelerating UDW detectors whose trajectories are
given by

xA(τA) =
(1

a
sinh(aτA), 1

a
cosh(aτA) + L, 0, 0

)
, (4.22a)

xB(τB) =
(1

a
sinh(aτB), 1

a
cosh(aτB), 0, 0

)
. (4.22b)

The correlation harvesting protocol along these trajectories was examined in [55, 59] and
discussed in last chapter. The corresponding Wightman function reads

Wlin(τA, τB) = − 1
4π2

1
4
a2 sinh2

(
a∆τ

2

)
− L2 − 4L

a
sinh

(
a∆τ

2

)
sinh

(
a∆+τ

2

) . (4.23)

The term ∆+τ comes from the fact that the angle between the velocity vector and the
displacement vector is time-dependent (0◦ or 180◦).

Similarly, other uniformly accelerating trajectories that yield a nonstationary Wight-
man function are

circular:
xA = (γτA, R cos(ωγτA) + L, R sin(ωγτA), 0) , (4.24a)
xB = (γτB, R cos(ωγτB), R sin(ωγτB), 0) . (4.24b)

cusped:

xA =
(

τA + 1
6a2τ 3

A,
1
2aτ 2

A + L,
1
6a2τ 3

A, 0
)

, (4.25a)

xB =
(

τB + 1
6a2τ 3

B,
1
2aτ 2

B,
1
6a2τ 3

B, 0
)

, (4.25b)

catenary:

xA =
(

a

a2 − b2 sinh
(√

a2 − b2 τA
)
,

a

a2 − b2 cosh
(√

a2 − b2 τA
)

+ L,
bτA√

a2 − b2
, 0
)

, (4.26a)

xB =
(

a

a2 − b2 sinh
(√

a2 − b2 τB
)
,

a

a2 − b2 cosh
(√

a2 − b2 τB
)
,

bτB√
a2 − b2

, 0
)

, (4.26b)
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The Wightman function for these nonstationary motions can be compactly expressed as

Wns(τA, τB) =

− 1
4π2

1

− b̄2

1 − b̄2
∆τ 2 + 4

(1 − b̄2)2a2
sinh2

(√
1−b̄2a∆τ

2

)
− L2 − 4L

(1 − b̄2)a
sinh

(√
1−b̄2a∆τ

2

)
sinh

(√
1−b̄2a∆+τ

2

) ,

(4.27)

and possesses an additional term in the denominator compared to the stationary Wightman
function (4.20). Here, the subscript ‘ns’ designates nonstationary. Due to this additional
term, the correlations harvested by nonstationary detectors will exhibit behavior similar
to those of stationary detectors.

Note that the presence of ∆+τ prevents us from reducing the double integrals in (2.32)
into single integrals. Furthermore, all nonstationary configurations can be realized in (2+1)
dimensions, except for the helix case, which we are not considering.

4.2 Numerical results

Here, we numerically compute the concurrence (2.35) and quantum mutual information
(2.36) harvested by two uniformly accelerating detectors by inserting the Wightman func-
tions (4.13), (4.20) and (4.27) into Lij and M given in (2.32). For stationary detectors in
4.1.2, we utilize the expressions given by (4.21).

4.2.1 Transition probability of uniformly accelerating detectors

Let us begin by considering the transition probability Ljj for a uniformly accelerating
detector. We are particularly interested in the cases of linear (b̄ = 0), catenary (0 < b̄ < 1),
cusped (b̄ = 1), and circular (b̄ > 1) motions, and their respective transition probabilities
are given by (4.14). We consider Ljj/λ2 and write the parameters in units of σ, which makes
the transition probability a function of three variables: aσ, b̄, and Ωσ. It is important to
note that LAA = LBB, as we are assuming both detectors are identical.

Figure 4.3 depicts the transition probability Ljj/λ2 as a function of the magnitude of
acceleration aσ for fixed Ω (panel (a)) and log10 b̄ for different values of the acceleration
(panels (b), (c)). In figure 4.3(a), the transition probabilities for a detector with Ωσ = 2 in
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Figure 4.3: (a) Transition probabilities Ljj/λ2 as a function of the magnitude of accelera-
tion aσ with Ωσ = 2. (b) Ljj/λ2 as a function of log10 b̄ with aσ = 1 and (c) with aσ = 6.
(d) The effective temperature Teff as a function of log10 b̄ with aσ = 1.

linear (b̄ = 0), catenary (b̄ = 0.5), cusped (b̄ = 1), and circular (b̄ = 2) motions are shown.
We find that in all these cases, Ljj/λ2 increases with the acceleration aσ.1

However, the relationship between the transition probabilities of detectors in different
uniform motions is highly nontrivial. For instance, when a detector has Ωσ = 2 and aσ ≲ 5,
as depicted in figure 4.3(a), a detector in circular motion with b̄ = 2 shows the largest value
of Ljj/λ2, whereas a detector in linear motion (b̄ = 0) shows the smallest. This relation,

1Ljj/λ2 is not guaranteed to monotonically increase with aσ for a finite interaction duration. For a
detector in the linearly accelerated motion, such a phenomenon is known as the (weak) anti-Unruh effect
[74, 75].
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however, flips for aσ ≳ 5. We will numerically demonstrate that such relationships depend
on the interplay between aσ and Ωσ.

In figure 4.3(b), the magnitude of the acceleration is fixed at aσ = 1, and Ljj/λ2 is
plotted as a function of log10 b̄. Each curve in this figure corresponds to a different value
of Ωσ, with the curve for Ωσ = 2 corresponding to figure 4.3(a) at aσ = 1. For each
value of Ωσ in 4.3(b), the transition probability has a peak for log10 b̄ > 0 (i.e., b̄ > 1),
and then decreases with increasing log10 b̄, becoming smaller than the value for the linear
case (log10 b̄ → −∞). This means that Ljj/λ2 at aσ = 1 in figure 4.3(a) increases with
b̄ until it reaches a maximum and then decreases. We note that the presence of the peak
is contingent on larger values of Ωσ relative to aσ; In fact, the peak does not appear for
smaller energy gaps, in which case the transition probability monotonically decreases with
b̄, as shown in figure 4.3(b). This trend is further illustrated in figure 4.3(c), where aσ = 6
is chosen. In this scenario, the peak is nonexistent for Ωσ = 1 and 1.5 (as well as for
Ωσ < 1), but becomes manifest when Ωσ ≳ 2. Thus we infer that detectors with smaller
energy gaps Ωσ compared to aσ do not have a peak in Ljj(b̄)/λ2.

The behavior of Ljj/λ2 is related to the concept of the “effective temperature” perceived
by a detector. For now, let us denote the transition probability as Ljj(Ω, σ). The effective
temperature, Teff, is defined as

T −1
eff := 1

Ω ln Ljj(−Ω, σ)/λ2σ

Ljj(Ω, σ)/λ2σ
(4.28)

where this formula is derived in the Appendix. We divide Ljj(Ω, σ) by σ so that it is well
defined in the long interaction limit, σ → ∞ [76, 75]. Note that if the Wightman function
obeys the Kubo-Martin-Schwinger (KMS) condition [62, 63], then the effective temperature
converges to the KMS temperature (which is the temperature of the field formally defined
in quantum field theory) in the limit σ → ∞. However, in the case of finite interaction
duration, the effective temperature is an estimator for the actual field temperature. For a
detector in a uniform acceleration motion, the effective temperature for each scenario has
been examined in, e.g., [77, 78, 79, 80, 73, 8, 7].

We plot the effective temperature Teff as a function of log10 b̄ when σ = 1 and aσ = 1
in figure 4.3(d), which corresponds to figure 4.3(b). We see that the locations of the peaks
in Teff align with those of Ljj(Ω) in 4.3(b). This suggests that, for a given acceleration
and energy gap, a detector in circular motion within a certain range of log10 b̄ can register
higher effective temperatures than those in other types of motion. However, as b̄ → ∞,
which corresponds to the speed of a detector in circular motion with vcirc(= b̄−1) → 0, the
temperature becomes colder.
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Figure 4.4: Concurrence (a) and quantum mutual information (b) harvested by stationary
and nonstationary detectors as a function of b̄. For each case, Ωσ = 0.1 and L/σ = 1.
(a-i) and (b-i) are respectively CAB/λ2 and IAB/λ2 when aσ = 1, while (a-ii) and (b-ii) are
respectively CAB/λ2 and IAB/λ2 when aσ = 2.
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4.2.2 Concurrence and quantum mutual information between
uniformly accelerating detectors

We now move on to the correlation harvesting protocol using two uniformly accelerat-
ing detectors, exploring both stationary and nonstationary configurations as described in
section 4.1.2.

We first examine the difference between the stationary and nonstationary configurations
by plotting concurrence CAB/λ2 and quantum mutual information IAB/λ2 as a function of b̄
in figure 4.4. In these plots, we fix Ωσ = 0.1 and L/σ = 1, and consider aσ = 1 and aσ = 2.
We notice two characteristics: (i) In the vicinity of b̄ ≈ 0, stationary detectors consistently
harvest greater correlations than nonstationary detectors, for both concurrence and mutual
information. (ii) As b̄ becomes larger, both plots begin to oscillate with b̄, and the curve
representing correlations harvested by nonstationary detectors oscillates around the curve
for the stationary case. The frequency of the oscillation increases as aσ grows.

These observations can be traced back to the form of the Wightman functions (4.20)
and (4.27). Let us recall that the denominators of these expressions contain sinh(x) when
b̄ ∈ [0, 1) and transform into sin(x) when b̄ > 1. Therefore, within the range b̄ ∈ [0, 1),
the correlations are characterized by an exponential pattern, while for b̄ > 1, an oscil-
latory behavior emerges. These traits explain the observation above. In particular, the
suppression of correlations near b̄ ≈ 0 for nonstationary detectors can be attributed to an
additional term in the denominator of (4.27), which is absent in the stationary Wightman
function (4.20). This extra term diminishes the amount of harvested correlations relative
to the stationary scenario, and simultaneously gives rise to the oscillations noticed in the
nonstationary case around the stationary one.

We next examine the acceleration dependence of concurrence CAB and quantum mu-
tual information IAB as illustrated in figures 4.5(a) and (b), respectively. The stationary
(figure 4.5(a-i) and (b-i)) and nonstationary (figure 4.5(a-ii) and (b-ii)) configurations are
depicted, and all four uniformly accelerated motions, linear (b̄ = 0), catenary (b̄ = 0.5),
cusped (b̄ = 1), and circular (b̄ = 2) are shown in each figure.

As pointed out earlier, the correlations harvested by nonstationary detectors for b̄ ∈
[0, 1) (figure 4.5(a-ii) and (b-ii)) decay with increasing aσ faster than those extracted by
the stationary detectors (figure 4.5(a-i) and (b-i)). Meanwhile, the correlations extracted
by nonstationary detectors in circular motion (b̄ > 1) (figure 4.5(a-ii) and (b-ii)) exhibit
oscillatory behavior around the corresponding stationary curves (figure 4.5(a-i) and (b-i)).

Another observation we make is that, for both stationary and nonstationary config-
urations and for any value of b̄, CAB/λ2 becomes 0 at sufficiently high aσ. This can
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Figure 4.5: Concurrence CAB/λ2 with Ωσ = 0.1, L/σ = 0.5 (a) and quantum mutual infor-
mation IAB/λ2 with Ωσ = 0.1, L/σ = 3 (b) as a function of the magnitude of acceleration
aσ. (a-i) and (b-i) correspond to the stationary configuration while (a-ii) and (b-ii) show
the nonstationary one, and each figure has four curves indicating four different motions.
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Figure 4.6: The boundaries between CAB > 0 and CAB = 0 for the four stationary tra-
jectories as a function of the proper separation L/σ and the energy gap Ωσ. Here, linear
(b̄ = 0), catenary (b̄ = 0.5), cusped (b̄ = 1), and circular (b̄ = 2) with aσ = 1 are depicted.
Concurrence is nonzero in the left region of each curve.

be attributed to the high transition probability at large aσ as shown in figure 4.3(a),
leading to |M| <

√
LAALBB in (2.35). Furthermore, the high accelerations prevent the

detectors from extracting quantum mutual information, as IAB/λ2 → 0 at aσ → ∞ in
figure 4.5(b). This indicates that any correlations cannot be harvested as aσ → ∞ if
the detectors are uniformly accelerated. These findings are consistent with previous re-
sults [56, 38, 57, 58, 55, 44, 59], where linearly and circularly accelerated detectors are
considered. We extended these insights, providing a more general understanding that
encompasses arbitrary uniformly accelerated motion.
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4.2.3 Genuine Harvesting

We finally consider how much of the entanglement comes from the quantum field. We
will call this type of entanglement genuine harvesting, which differs from entanglement
in which the detectors are in causal contact (known as communication-assisted entangle-
ment). As we mentioned in 2.1.2, the Wightman function can be decomposed into two
parts: the anticommutator and the commutator of the field operator. The anticommuta-
tor part ⟨{ϕ̂(x), ϕ̂(x′)}⟩ρϕ

(the Hadamard function), where ⟨·⟩ρϕ
is the expectation value

with respect to the field state ρϕ, depends on the state of the field ρϕ. Conversely, the
commutator part ⟨[ϕ̂(x), ϕ̂(x′)]⟩ρϕ

= [ϕ̂(x), ϕ̂(x′)] ∈ C (the Pauli-Jordan function) is state-
independent. This means that even if the field state is not entangled, the commutator part
in the Wightman function allows detectors to be entangled with each other. Such entangle-
ment does not come from preexisting entanglement in the field; rather it is associated with
communication between the detectors, and thus we cannot say (for an unentangled field
state) that entanglement is ‘extracted’ from the field if the commutator part is the only
contribution [60]. We say that entanglement is harvested if the anticommutator contribu-
tion in the element M is nonzero, and in particular we qualify the harvested entanglement
as being genuine if the commutator part in M is zero. Microcausality tells us that the two
detectors can harvest genuine entanglement if they are causally disconnected. Here, we
explore the circumstances under which two uniformly accelerating detectors can extract
genuine entanglement from the field. Remarkably we find that this can be possible even if
the detectors are in causal contact.

We begin by plotting the concurrence CAB/λ2 as a function of the proper separation
L/σ between the detectors and the energy gap Ωσ in figure 4.6. The respective curves
correspond to linear (b̄ = 0), catenary (b̄ = 0.5), cusped (b̄ = 1), and circular motions
(b̄ = 2) in the stationary configurations depicted in figure 4.2. The left region of each curve
represents the parameters (L/σ, Ωσ) that enable the detectors to become entangled, man-
ifest as CAB/λ2 > 0. Conversely, the right region corresponds to CAB/λ2 = 0. Therefore,
the stationary linear configuration (b̄ = 0) has the broadest parameter space that leads to
CAB/λ2 > 0 compared to any other stationary configurations.

It has been shown [31] that two detectors at rest in Minkowski spacetime with a Gaus-
sian switching function can be entangled with an arbitrary detector separation L/σ if the
energy gap Ωσ is large enough. However, we see that this is not the case for uniformly
accelerating detectors – they can be entangled only when they are close to each other, no
matter how large Ωσ is.

We further ask how much entanglement stems from the anticommutator and commuta-
tor parts in the Wightman function. To see this, let us decompose the Wightman function
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as

W (x, x′) = Re[W (x, x′)] + i Im[W (x, x′)] , (4.29)

where

2Re[W (x, x′)] = ⟨0|{ϕ̂(x), ϕ̂(x′)}|0⟩ , (4.30a)
2Im[W (x, x′)] = −i [ϕ̂(x), ϕ̂(x′)] . (4.30b)

Then the matrix element M can be decomposed into

M = M+ + iM− , (4.31)

where M+ and M− are (2.32b) with the Wightman function being replaced by Re[W (x, x′)]
and Im[W (x, x′)], respectively. M+ contains the information about the genuine entangle-
ment whereas M− is state-independent and does not necessarily exhibit the preexisted
entanglement in the field. For the stationary detectors, these expressions can be simplified
to single integral forms

M+ = −λ2σ
√

πe−Ω2σ2
∫ ∞

0
du e−u2/4σ2

Ws(u) − λ2σ
√

πe−Ω2σ2
∫ ∞

0
du e−u2/4σ2

W ∗
s (u)

= −λ2σ
√

πe−Ω2σ2
∫ ∞

0
du e−u2/4σ2 (Ws(u) + W ∗

s (u)) , (4.32a)

M− = iλ2σ
√

πe−Ω2σ2
∫ ∞

0
du e−u2/4σ2

Ws(u) − iλ2σ
√

πe−Ω2σ2
∫ ∞

0
du e−u2/4σ2

W ∗
s (u)

= iλ2σ
√

πe−Ω2σ2
∫ ∞

0
du e−u2/4σ2 (Ws(u) − W ∗

s (u)) . (4.32b)

We then define harvested concurrence C+
AB and communication-assisted concurrence

C−
AB as [60]

C±
AB := 2 max{0, |M±| −

√
LAALBB} + O(λ4) . (4.33)

We plot C±
AB/λ2 as a function of L/σ in figure 4.7. Here, we specifically choose the

stationary linear (b̄ = 0) and circular (b̄ = 2) cases as a demonstration. We find that
for Ωσ = 1 (figure 4.7(a)), the detectors can harvest entanglement since C+

AB/λ2 > 0.
Most strikingly, it is possible to extract genuine entanglement for L/σ ∈ (1.5, 2.2) since
C+

AB > 0 while C−
AB = 0 in this region. However, this is not always true as one can see
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Figure 4.7: Harvested and communication-assisted concurrence C±
AB/λ2 for the stationary

linear and circular configurations as a function of the detector separation L/σ. (a) When
Ωσ = 1. The linear and circular cases are very similar and the detectors can harvest genuine
entanglement near L/σ = 2. (b) When Ωσ = 2. Although the linear case does not change
much compared to the Ωσ = 1 case, the circular case cannot harvest genuine entanglement
anymore. It is the mixture of the anticommutator and commutator contributions, or in
the worst case C+

AB/λ2 = 0 around L/σ = 1.3.

from figure 4.7(b) when Ωσ = 2. Here, detectors in circular motion can encounter the
case where C+

AB = 0 while C−
AB > 0, which indicates that the generated entanglement

after the interaction is purely coming from the communication and not from the field.
However genuine entanglement can still be extracted in the linear configuration as shown
in Fig 4.7(b).

4.3 Summary

We carried out the correlation harvesting protocol using two uniformly accelerating Unruh-
DeWitt (UDW) detectors in (3+1)-dimensional Minkowski spacetime. According to Letaw
[3], trajectories with constant (nonzero) acceleration can be characterized by the magnitude
of the acceleration and two torsion parameters, resulting in five classes of motion: linear,
catenary, cusped, circular, and helix. The first four of these classes of motion are confined
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to a two-dimensional spatial surface and can be regarded as specific cases of the helix
motion. Since two-dimensional configurations are more amenable to experimental setups,
we employed these four simpler motions for our analysis.

We first examined the transition probability of a single detector following the four
trajectories in section 4.2.1. Utilizing a unified expression for the Wightman functions along
these trajectories, we were able to explore the general characteristics that are common to all
these motions. We found that the transition probabilities of these motions monotonically
increase with the magnitude of acceleration. Moreover, we also evaluated the effective
temperature—an estimator for the temperature as observed by a detector.

We then introduced another UDW detector to consider the correlation harvesting pro-
tocol in Sec. 4.2.2. Two configurations were explored: stationary and nonstationary config-
urations. In the stationary configuration, detectors are separated in the direction perpen-
dicular to their two-dimensional spatial planes of motion. Specifically, the displacement
vector pointing from one detector to the other remains orthogonal to the velocity vectors
of the detectors. In such a case, the Wightman function along the stationary configuration
is time-translation invariant. On the other hand, in the nonstationary configuration, the
displacement vector aligns parallel to the planes of motion. This makes the Wightman
function nonstationary (i.e., not time-translation invariant). Moreover, while this Wight-
man function shares a common term with the stationary configuration, an additional term
appears that specifically characterizes the nonstationary nature of this configuration.

We found that the harvested correlations—entanglement and total correlations—behave
in a distinct manner depending on the motion of the detectors. Specifically, detectors in
linear, catenary, and cusped motions within the nonstationary configuration gain fewer
correlations compared to those in the stationary configuration. On the other hand, in
the circular motion case, both configurations exhibit similar behavior. This difference
can be attributed to the Wightman functions. For linear, catenary, and cusped motions,
the Wightman function contain hyperbolic functions, leading to an exponential alteration
of the results. In contrast, the Wightman function for circular motion is governed by
trigonometric functions.

We also looked into the acceleration dependence of the harvested correlations and con-
cluded (not surprisingly) that high accelerations prevent the detectors from acquiring cor-
relations from the field. This point is consistent with previous papers [56, 38, 57, 58, 55,
44, 59], in which linearly and circularly accelerated detectors are considered. Our paper
generalized these results to any uniformly accelerating detectors on two-dimensional spatial
surfaces.

Finally, we focused on entanglement harvested by the detectors in the stationary con-
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figuration and asked how much of entanglement is coming from the correlations preexisted
in the field. To be precise, the entanglement coming from the commutator part of the
Wightman function is state-independent, which suggests that the detectors can still be
correlated even if the field is not entangled [60]. Thus, it is important to examine how
the anticommutator part of the Wightman function (which is state-dependent) contributes
to the extracted correlations. One way to eliminate the commutator contribution is to
use causally disconnected detectors. However, we found that the existence of acceleration
prohibits extraction of correlations with detectors separated far away, no matter what the
energy gap is. However we also found the striking result that detectors in causal contact
can genuinely harvest entanglement in certain parameter regimes.

Our results have important implications for experiment. Attempts to realize the Un-
ruh effect and correlation harvesting generally rely on using laser pulses to probe what
are effectively two dimensional surfaces. To probe the effects of non-inertial motion on
mutual information and entanglement will therefore involve two detectors (two pulses) in
nonstationary configurations, since only these can be realized in a two-dimensional setting.
Experimental verification of the harvesting of genuine entanglement would be an exciting
confirmation of our understanding of relativistic quantum information.
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Chapter 5

Conclusion

We have studied the correlation harvesting protocol between two UDW detectors uni-
formly accelerating within the Minkowski vacuum. Our aim was to investigate the effects
of uniform acceleration on the correlation harvesting protocol, with a particular emphasis
on understanding the impact of Unruh temperature on total correlation harvesting. This
effect was contrasted with other types of temperature dependencies, such as thermal bath
temperature. Furthermore, in light of ongoing experiments aiming for Unruh effect veri-
fication, we were motivated to broaden our investigation to other uniformly accelerating
trajectories that could induce similar effects to the Unruh effect, but might be more feasible
in an experimental setting. Our main findings are:

• high accelerations(equivalently Unruh temperature) prevent the detectors from ac-
quiring correlations from the field in all trajectories of detectors that are uniformly
accelerating.

• Detectors in causal contact can genuinely harvest entanglement in certain parameter
regimes.

• Unruh temperature affects the total correlation harvesting different than thermal
bath temperature, despite their similar effect on a single detector.

We commenced in Chapter 3 by examining the harvesting protocol for mutual infor-
mation using two uniformly accelerating detectors in linear motion. We considered three
types of acceleration scenarios: parallel, anti-parallel, and perpendicular. Our findings
revealed that acceleration can assist mutual information for specific detector separations
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and energy gaps, while the mutual information asymptotically diminishes as acceleration
(or equivalently, the Unruh temperature) increases. This illustrates that the effect of Un-
ruh temperature on mutual information harvesting contrasts with two inertial detectors
in a thermal bath [42, 43], where mutual information grows with the thermal bath’s tem-
perature. Additionally, we investigated the dependency on the energy gap and identified
specific ranges of energy gaps where either classical correlations or nondistillable entan-
glement can be extracted from the field. The key insight from this study is that the
temperature dependency of harvested correlations varies across different scenarios, even if
a single detector exhibits consistent reactions in each case. This variability is anticipated,
as the harvested correlation properties rely on the Wightman function. If the Wightman
function exhibits differing functional forms given the field’s state and the detectors’ tra-
jectories, diverse outcomes for correlation harvesting should be expected. Conversely, if
the functional forms of Wightman functions are identical, the harvested correlations would
manifest similar behavior.

In Chapter 4, we extended our investigations to consider a broader set of trajectories
with constant (nonzero) acceleration, characterized by the magnitude of the acceleration
and two torsion parameters. This resulted in five classes of uniform motion: linear, cate-
nary, cusped, circular, and helix motions [3]. The first four classes, confined to a two-
dimensional spatial surface, can be regarded as specific cases of helix motion. Since two-
dimensional configurations are more amenable to experimental setups, we utilized these
four simpler motions for our analysis. We examined the transition probability of a single
detector following these trajectories and, utilizing a unified expression for the Wightman
functions, explored the general characteristics common to all these motions.

Our findings indicated that the transition probabilities of these motions monotonically
increase with the magnitude of acceleration. We subsequently studied the correlation har-
vesting protocol of two UDW detectors considering stationary and nonstationary configu-
rations. Our results demonstrated that the harvested correlations—entanglement and total
correlations—behave distinctly depending on the motion of the detectors. Specifically, de-
tectors in linear, catenary, and cusped motions within the nonstationary configuration gain
fewer correlations compared to those in the stationary configuration, while in the circular
motion case, both configurations exhibit similar behavior. This difference is attributed
to the nature of the Wightman functions; in the linear, catenary, and cusped motions,
they contain hyperbolic functions, leading to exponential alteration of the results, while
the Wightman function for circular motion is governed by trigonometric functions. We
have also investigated the effect of acceleration on harvested correlations and concluded
that high accelerations prevent the detectors from acquiring correlations from the field.
This aligns with previous studies [56, 38, 57, 58, 55, 44, 59], with generalizing these re-
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sults to uniformly accelerating detectors on two-dimensional spatial surfaces. Finally, we
examined the presence of genuine entanglement (entanglement preexistent in the field) in
the stationary configuration case, finding that the existence of acceleration prohibits the
extraction of correlations with detectors separated far away, regardless of the energy gap.
However, we also found the striking result that detectors in causal contact can harvest
genuine entanglement in certain parameter regimes.

In view of the ongoing experiments aimed at verifying the Unruh temperature [81, 82,
83], our findings carry significant implications that could provide insights into more efficient
methodologies for conducting such investigations. Potential directions for future research
may include extending the study to investigating the correlation harvesting protocol of
accelerating detectors in curved spacetime, incorporating additional detectors to examine
the consequent alterations in the dynamics of the correlation harvesting protocol, and
exploring the nuanced behavior of genuine entanglement under these expanded conditions.
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[37] Finnian Gray, David Kubizňák, Taillte May, Sydney Timmerman, and Erickson Tjoa.
Quantum imprints of gravitational shockwaves. J. High Energy Phys., 11(2021):054,
2021. doi: https://doi.org/10.1007/JHEP11(2021)054. 2

[38] Grant Salton, Robert B Mann, and Nicolas C Menicucci. Acceleration-assisted en-
tanglement harvesting and rangefinding. New J. Phys., 17(3):035001, mar 2015. doi:
10.1088/1367-2630/17/3/035001. 2, 5, 42, 46, 49

[39] Joshua Foo, Sho Onoe, and Magdalena Zych. Unruh-dewitt detectors in quantum
superpositions of trajectories. Phys. Rev. D, 102:085013, Oct 2020. doi: 10.1103/
PhysRevD.102.085013. URL https://link.aps.org/doi/10.1103/PhysRevD.102.
085013. 2

[40] C. Suryaatmadja, R. B. Mann, and W. Cong. Entanglement harvesting of inertially
moving unruh-dewitt detectors in minkowski spacetime. Phys. Rev. D, 106:076002,
Oct 2022. doi: 10.1103/PhysRevD.106.076002. URL https://link.aps.org/doi/
10.1103/PhysRevD.106.076002. 2

[41] Greg Ver Steeg and Nicolas C. Menicucci. Entangling power of an expanding universe.
Phys. Rev. D, 79:044027, Feb 2009. doi: 10.1103/PhysRevD.79.044027. URL https:
//link.aps.org/doi/10.1103/PhysRevD.79.044027. 2, 24

[42] Eric G. Brown, Eduardo Mart́ın-Mart́ınez, Nicolas C. Menicucci, and Robert B. Mann.
Detectors for probing relativistic quantum physics beyond perturbation theory. Phys.
Rev. D, 87:084062, Apr 2013. doi: 10.1103/PhysRevD.87.084062. URL https://
link.aps.org/doi/10.1103/PhysRevD.87.084062. 2, 22, 25, 49

[43] Petar Simidzija and Eduardo Mart́ın-Mart́ınez. Harvesting correlations from ther-
mal and squeezed coherent states. Phys. Rev. D, 98:085007, Oct 2018. doi: 10.
1103/PhysRevD.98.085007. URL https://link.aps.org/doi/10.1103/PhysRevD.
98.085007. 2, 21, 22, 23, 24, 25, 26, 49

55

https://link.aps.org/doi/10.1103/PhysRevD.98.125005
https://link.aps.org/doi/10.1103/PhysRevD.98.125005
https://doi.org/10.1007/JHEP10(2020)067
https://doi.org/10.1007/JHEP10(2020)067
https://link.aps.org/doi/10.1103/PhysRevD.102.085013
https://link.aps.org/doi/10.1103/PhysRevD.102.085013
https://link.aps.org/doi/10.1103/PhysRevD.106.076002
https://link.aps.org/doi/10.1103/PhysRevD.106.076002
https://link.aps.org/doi/10.1103/PhysRevD.79.044027
https://link.aps.org/doi/10.1103/PhysRevD.79.044027
https://link.aps.org/doi/10.1103/PhysRevD.87.084062
https://link.aps.org/doi/10.1103/PhysRevD.87.084062
https://link.aps.org/doi/10.1103/PhysRevD.98.085007
https://link.aps.org/doi/10.1103/PhysRevD.98.085007


[44] Zhihong Liu, Jialin Zhang, and Hongwei Yu. Entanglement harvesting of acceler-
ated detectors versus static ones in a thermal bath. Phys. Rev. D, 107:045010, Feb
2023. doi: 10.1103/PhysRevD.107.045010. URL https://link.aps.org/doi/10.
1103/PhysRevD.107.045010. 2, 5, 42, 46, 49

[45] Matthew P. G. Robbins, Laura J. Henderson, and Robert B. Mann. Entanglement
amplification from rotating black holes. Classical Quantum Gravity, 39(2):02LT01,
2022. URL https://doi.org/10.1088/1361-6382/ac08a8. 2

[46] Laura J. Henderson, Robie A. Hennigar, Robert B. Mann, Alexander R.H. Smith,
and Jialin Zhang. Anti-hawking phenomena. Physics Letters B, 809:135732, 2020.
ISSN 0370-2693. doi: https://doi.org/10.1016/j.physletb.2020.135732. URL https:
//www.sciencedirect.com/science/article/pii/S0370269320305359. 2

[47] Matthew P. G. Robbins and Robert B. Mann. Anti-hawking phenomena around a
rotating btz black hole. Phys. Rev. D, 106:045018, Aug 2022. doi: 10.1103/PhysRevD.
106.045018. URL https://link.aps.org/doi/10.1103/PhysRevD.106.045018. 2

[48] Laura J. Henderson, Su Yu Ding, and Robert B. Mann. Entanglement harvesting with
a twist. AVS Quantum Sci., 4(1):014402, 2022. doi: 10.1116/5.0078314. 2

[49] Lissa De Souza Campos and Claudio Dappiaggi. The anti-Hawking effect on a BTZ
black hole with Robin boundary conditions. Phys. Lett. B, 816:136198, 2021. doi:
10.1016/j.physletb.2021.136198. 2

[50] Erickson Tjoa and Robert B Mann. Harvesting correlations in Schwarzschild and
collapsing shell spacetimes. J. High Energy Phys., 08(2020):155, 2020. doi: https:
//doi.org/10.1007/JHEP08(2020)155. 2

[51] Kensuke Gallock-Yoshimura, Erickson Tjoa, and Robert B. Mann. Harvesting entan-
glement with detectors freely falling into a black hole. Phys. Rev. D, 104:025001, Jul
2021. doi: 10.1103/PhysRevD.104.025001. URL https://link.aps.org/doi/10.
1103/PhysRevD.104.025001. 2

[52] C.H. Bennett, P.W. Shor, J.A. Smolin, and A.V. Thapliyal. Entanglement-assisted
capacity of a quantum channel and the reverse shannon theorem. IEEE Transactions
on Information Theory, 48(10):2637–2655, 2002. doi: 10.1109/TIT.2002.802612. 3

[53] Tomohiro Ogawa. Perfect quantum error-correcting condition revisited, 2005. URL
https://arxiv.org/abs/quant-ph/0505167. 3

56

https://link.aps.org/doi/10.1103/PhysRevD.107.045010
https://link.aps.org/doi/10.1103/PhysRevD.107.045010
https://doi.org/10.1088/1361-6382/ac08a8
https://www.sciencedirect.com/science/article/pii/S0370269320305359
https://www.sciencedirect.com/science/article/pii/S0370269320305359
https://link.aps.org/doi/10.1103/PhysRevD.106.045018
https://link.aps.org/doi/10.1103/PhysRevD.104.025001
https://link.aps.org/doi/10.1103/PhysRevD.104.025001
https://arxiv.org/abs/quant-ph/0505167


[54] Kendra Bueley, Luosi Huang, Kensuke Gallock-Yoshimura, and Robert B. Mann.
Harvesting mutual information from btz black hole spacetime. Phys. Rev. D, 106:
025010, Jul 2022. doi: 10.1103/PhysRevD.106.025010. URL https://link.aps.
org/doi/10.1103/PhysRevD.106.025010. 3

[55] Zhihong Liu, Jialin Zhang, Robert B. Mann, and Hongwei Yu. Does acceleration
assist entanglement harvesting? Phys. Rev. D, 105(8):085012, 2022. doi: 10.1103/
PhysRevD.105.085012. 3, 5, 16, 18, 21, 23, 24, 25, 35, 42, 46, 49

[56] Jason Doukas and Benedict Carson. Entanglement of two qubits in a relativistic
orbit. Phys. Rev. A, 81:062320, Jun 2010. doi: 10.1103/PhysRevA.81.062320. URL
https://link.aps.org/doi/10.1103/PhysRevA.81.062320. 5, 42, 46, 49

[57] Jialin Zhang and Hongwei Yu. Entanglement harvesting for unruh-dewitt detectors
in circular motion. Phys. Rev. D, 102:065013, Sep 2020. doi: 10.1103/PhysRevD.102.
065013. URL https://link.aps.org/doi/10.1103/PhysRevD.102.065013. 5, 42,
46, 49

[58] Zhihong Liu, Jialin Zhang, and Hongwei Yu. Entanglement harvesting in the presence
of a reflecting boundary. J. High Energy Phys., 08(2021):020, 2021. doi: https:
//doi.org/10.1007/JHEP08(2021)020. 5, 42, 46, 49

[59] Manar Naeem, Kensuke Gallock-Yoshimura, and Robert B. Mann. Mutual informa-
tion harvested by uniformly accelerated particle detectors. Phys. Rev. D, 107:065016,
Mar 2023. doi: 10.1103/PhysRevD.107.065016. URL https://link.aps.org/doi/
10.1103/PhysRevD.107.065016. 5, 35, 42, 46, 49

[60] Erickson Tjoa and Eduardo Mart́ın-Mart́ınez. When entanglement harvesting is not
really harvesting. Phys. Rev. D, 104:125005, Dec 2021. doi: 10.1103/PhysRevD.104.
125005. URL https://link.aps.org/doi/10.1103/PhysRevD.104.125005. 5, 43,
44, 47

[61] N.D. Birrell and P.C.W. Davies. Quantum Fields in Curved Space. Cambridge
Monographs on Mathematical Physics. Cambridge University Press, Cambridge, Eng-
land, 1984. ISBN 9780521278584. URL https://books.google.ca/books?id=
SEnaUnrqzrUC. 6, 24

[62] Ryogo Kubo. Statistical-mechanical theory of irreversible processes. i. general theory
and simple applications to magnetic and conduction problems. Journal of the Physical
Society of Japan, 12(6):570–586, 1957. doi: 10.1143/JPSJ.12.570. URL https://doi.
org/10.1143/JPSJ.12.570. 9, 38, 61

57

https://link.aps.org/doi/10.1103/PhysRevD.106.025010
https://link.aps.org/doi/10.1103/PhysRevD.106.025010
https://link.aps.org/doi/10.1103/PhysRevA.81.062320
https://link.aps.org/doi/10.1103/PhysRevD.102.065013
https://link.aps.org/doi/10.1103/PhysRevD.107.065016
https://link.aps.org/doi/10.1103/PhysRevD.107.065016
https://link.aps.org/doi/10.1103/PhysRevD.104.125005
https://books.google.ca/books?id=SEnaUnrqzrUC
https://books.google.ca/books?id=SEnaUnrqzrUC
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570


[63] Paul C. Martin and Julian Schwinger. Theory of many-particle systems. i. Phys. Rev.,
115:1342–1373, Sep 1959. doi: 10.1103/PhysRev.115.1342. URL https://link.aps.
org/doi/10.1103/PhysRev.115.1342. 9, 38, 61

[64] Eduardo Mart́ın-Mart́ınez and Pablo Rodriguez-Lopez. Relativistic quantum optics:
The relativistic invariance of the light-matter interaction models. Phys. Rev. D, 97:
105026, May 2018. doi: 10.1103/PhysRevD.97.105026. URL https://link.aps.
org/doi/10.1103/PhysRevD.97.105026. 12

[65] Eduardo Mart́ın-Mart́ınez, T. Rick Perche, and Bruno de S. L. Torres. General rela-
tivistic quantum optics: Finite-size particle detector models in curved spacetimes.
Phys. Rev. D, 101:045017, Feb 2020. doi: 10.1103/PhysRevD.101.045017. URL
https://link.aps.org/doi/10.1103/PhysRevD.101.045017. 12

[66] Pratyusha Chowdhury and Bibhas Ranjan Majhi. Fate of entanglement between two
Unruh-DeWitt detectors due to their motion and background temperature. JHEP,
05:025, 2022. doi: 10.1007/JHEP05(2022)025. 13

[67] Dyuman Bhattacharya, Kensuke Gallock-Yoshimura, Laura J. Henderson, and
Robert B. Mann. Extraction of entanglement from quantum fields with entangled
particle detectors, 12 2022. 13

[68] Sam A. Hill and William K. Wootters. Entanglement of a Pair of Quantum Bits.
Phys. Rev. Lett., 78:5022–5025, Jun 1997. doi: 10.1103/PhysRevLett.78.5022. URL
https://link.aps.org/doi/10.1103/PhysRevLett.78.5022. 14

[69] William K. Wootters. Entanglement of formation of an arbitrary state of two qubits.
Phys. Rev. Lett., 80:2245–2248, Mar 1998. doi: 10.1103/PhysRevLett.80.2245. URL
https://link.aps.org/doi/10.1103/PhysRevLett.80.2245. 14

[70] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Informa-
tion. Cambridge Series on Information and the Natural Sciences. Cambridge Uni-
versity Press, Cambridge, England, 2000. ISBN 9780521635035. URL https:
//books.google.ca/books?id=65FqEKQOfP8C. 14

[71] Yasusada Nambu and Yuji Ohsumi. Classical and quantum correlations of scalar
field in the inflationary universe. Phys. Rev. D, 84:044028, Aug 2011. doi: 10.
1103/PhysRevD.84.044028. URL https://link.aps.org/doi/10.1103/PhysRevD.
84.044028. 24

58

https://link.aps.org/doi/10.1103/PhysRev.115.1342
https://link.aps.org/doi/10.1103/PhysRev.115.1342
https://link.aps.org/doi/10.1103/PhysRevD.97.105026
https://link.aps.org/doi/10.1103/PhysRevD.97.105026
https://link.aps.org/doi/10.1103/PhysRevD.101.045017
https://link.aps.org/doi/10.1103/PhysRevLett.78.5022
https://link.aps.org/doi/10.1103/PhysRevLett.80.2245
https://books.google.ca/books?id=65FqEKQOfP8C
https://books.google.ca/books?id=65FqEKQOfP8C
https://link.aps.org/doi/10.1103/PhysRevD.84.044028
https://link.aps.org/doi/10.1103/PhysRevD.84.044028


[72] G. W. Gibbons and S. W. Hawking. Cosmological event horizons, thermodynamics,
and particle creation. Phys. Rev. D, 15:2738–2751, May 1977. doi: 10.1103/PhysRevD.
15.2738. URL https://link.aps.org/doi/10.1103/PhysRevD.15.2738. 24
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Buhmann, and Jérôme Faist. Detection of quantum-vacuum field correlations
outside the light cone. Nature Communications, 13:3383, 2022. doi: 10.1038/
s41467-022-31081-1. URL https://doi.org/10.1038/s41467-022-31081-1. 50
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APPENDICES

.1 Effective temperature

Here, we review the concept of effective temperature Teff and clarify its relation to the
KMS temperature.

Let us first review the KMS temperature. In quantum theory with separable Hilbert
spaces, a trace of an operator, Tr[·] is well defined. This enables us to consider the Gibbs
state at the inverse temperature β, ρ = e−βĤ/Z, where Z := Tr[e−βĤ ] is the partition
function. This is what we consider a thermal state of a system.

However in QFT, a trace is generally not well defined. Instead, we identify the Kubo-
Martin-Schwinger (KMS) state [62, 63] as a thermal state in QFT. Specifically, if the field
is in the KMS thermal state with respect to time τ at the inverse KMS temperature βKMS,
the Wightman function satisfies

W (∆τ − iβKMS) = W (−∆τ) , (1)

where ∆τ := τ − τ ′. The Fourier transform of this equality with respect to ∆τ reads

W̃ (−ω) = eβKMSωW̃ (ω) . (2)

This equality in the Fourier domain is known as the detailed balance condition. Thus, the
thermality of a quantum field is imprinted in these equalities.

The thermality can also be implemented in the transition probability of a UDW detec-
tor. Recall that the transition probability is written as

L = λ2
∫
R

dτ
∫
R

dτ ′ χ(τ)χ(τ ′)e−iΩ(τ−τ ′)W
(
x(τ), x(τ ′)

)
, (3)

where the subscript in Ljj, j ∈ {A, B} is omitted for simplicity. Let us assume that the
switching function, χ(τ), has a characteristic time length σ. In our paper, this is the
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Gaussian width in χ(τ) = e−τ2/2σ2 . It is convenient to introduce a quantity related to the
transition probability known as the response function (divided by the characteristic time
length) F(Ω, σ):

L = λ2σF(Ω, σ) ,

F(Ω, σ) :=
1
σ

∫
R

dτ
∫
R

dτ ′ χ(τ)χ(τ ′)e−iΩ(τ−τ ′)W
(
x(τ), x(τ ′)

)
. (4)

If the field is in the KMS state and the switching function is a rapidly decreasing function
such as a Gaussian function, then the response function in the long interaction limit obeys
the detailed balance relation [76]:

lim
σ→∞

F(−Ω, σ)
F(Ω, σ) = eβKMSΩ . (5)

Note that this relation holds when the long interaction limit is taken. On the other hand,
if σ is not sufficiently long, the ratio of the response function (sometimes known as the
excited-to-deexcited ratio) does not satisfy the detailed balance condition.

From this relation, one can define the effective temperature as

T −1
eff := 1

Ω ln F(−Ω, σ)
F(Ω, σ) . (6)

Note that the effective temperature is not necessarily the KMS temperature. If the field
is in the KMS state and the long interaction limit is taken, then the effective temperature
becomes the KMS temperature. In this sense, the effective temperature is an estimator for
the field’s temperature.

62


	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	Introduction
	Particle detectors in curved spacetime
	Quantum Field in curved spacetime
	Formulation
	Quantization
	KMS State

	The Unruh Dewitt particle detectors in a quantum field
	Single UDW detector
	Two UDW detectors

	Correlation Harvesting in curved spacetime
	Concurrence as a measure of entanglement
	Quantum Mutual information as a measure of total correlation


	Correlation Harvesting of uniformly accelerating particle detectors in linear motion
	Detectors' trajectories
	Results
	Temperature dependence
	Comparison to previous studies

	Summary

	Correlation harvesting between particle detectors in uniform motion
	Uniform acceleration trajectories
	Single detector trajectory classification
	Two detectors in uniform acceleration

	Numerical results
	Transition probability of uniformly accelerating detectors
	Concurrence and quantum mutual information between uniformly accelerating detectors
	Genuine Harvesting

	Summary

	Conclusion
	References
	APPENDICES
	Effective temperature


