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Abstract

This thesis aims to develop and implement mathematical and numerical techniques
to enable the study of deviations from General Relativity (GR) in the nonlinear regime.
The focus is on studying the nonlinear dynamics of higher derivative Effective Field The-
ory (EFT) extensions to GR and employing innovative methods to address the associated
mathematical and practical challenges. To this end, we utilize two crucial techniques: the
Fixing the Equations method, which controls spurious high frequencies, and the Order re-
duction approach to address challenges related to higher than second order time derivatives
and ghosts.

The research starts with a detailed study of black hole dynamics in a higher deriva-
tive extension of General Relativity described by a dimension-eight operator EFT. A fully
nonlinear/non-perturbative treatment is presented for constructing initial data and study-
ing its dynamical behavior in spherical symmetry when coupled to a massless scalar field.

Subsequently, we extend the previous work to explore the evolution of black holes
merging in quasi-circular orbits within the same higher-derivative EFT extension. This
scenario poses more demanding challenges; a toy model and the single-boosted black hole
scenario are considered to build up to the binary merger case. The effects of modifications
on the dynamics and gravitational wave emission in the binary merger scenario are studied.

The research work culminates with a study of gravitational collapse in Quadratic Grav-
ity, the leading order correction to GR from an EFT perspective in the presence of matter
fields. An Order Reduction approach is used to eliminate additional degrees of freedom
associated with higher order time derivatives. We study the collapse of a massless scalar
field into a black hole in spherical symmetry. We explore the stability of our simulations,
whether the solutions remain within the bounds of EFT, and their deviations from General
Relativity during the collapse.
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Chapter 1

Introduction

The theory of General Relativity (GR), formulated over a hundred years ago, stands as one
of the most remarkable achievements in the history of physics. It certainly revolutionized
our understanding of gravity and its profound influence on the dynamics of our Universe.
To date, backed by an extensive body of experimental evidence [182], GR has consistently
showcased its unparalleled precision in describing the intricate dynamics of gravitational
phenomena. Its predictive power has shown remarkably accurate descriptions at vastly
different scales, from solar system dynamics, the dynamics of compact objects such as
Black Holes and neutron stars inspiraling and merging, to the large cosmic structures of
galaxies in the expanding Universe. One of the most renowned pieces of evidence (and
most relevant for the subject of this thesis) is the detection of gravitational waves (GW)
predicted by the theory. Binary pulsar timing experiments [181], were first able to indi-
rectly confirm that GWs were being emitted, and more recently GWs, thanks to colossal
efforts from experimentalists and theorists, direct detection of the GWs emitted from com-
pact binary mergers is now possible using ground-based gravitational wave interferometers
from the LIGO/Virgo/KAGRA (LVK) collaboration [5, 2]. Recently, NANOGrav [10], by
analyzing 15-year millisecond pulsar-timing data, provided evidence for the existence of
a GW background in the nanohertz regime. The window that GWs opened enables the
observation of the Universe through a different lens, giving us the chance to peer into the
nature of gravity in the highly dynamical and strong regime.

Despite its impressive empirical success, GR confronts profound theoretical obstacles
that indicate it may not serve as the ultimate theory of gravity. GR’s non-renormalizability
[175, 101] raises compatibility issues with Quantum Mechanics and Quantum Field Theory,
compelling the quest for a quantum theory of gravity that has remained a formidable
challenge in theoretical physics for decades. Moreover, the existence of singularities within
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black holes, as predicted by GR, implies its inadequacy to provide accurate predictions
at the largest curvature scales, thereby foreshadowing its own limitations. On a different
front, one regarding large scales, experiments indicate that with our current understanding
of gravity, dark matter and dark energy need to be introduced in our models to account
for all the matter-energy content and the rate of expansion of our Universe. The standard
model of cosmology, backed by its observational success [11], is the ΛCDMmodel. However,
the fundamental origins of some of its constituent pieces are still unknown. The value of the
cosmological constant, which accounts for the rate of expansion of our Universe, presents
a perplexing problem in cosmology (known as the cosmological constant problem), as it
is extremely small compared to theoretical predictions [180, 140]. Unraveling the origin
of dark matter presents a significant challenge, the exceedingly weak interactions of dark
matter particles with ordinary matter make their detection and identification extremely
hard [137]. These reasons have fueled the exploration and proposal of numerous alternative
theories of gravity.

Scenarios falling within the strong-field and highly dynamical regime may have the
potential to exhibit slight departures from GR. In this regime, gravitational fields are
comparable to the system’s mass-energy content, rapid evolution occurs relative to the
system’s characteristic size, and the objects’ velocities approach the speed of light. In this
regime, the detection of GWs originating from the mergers of compact binary systems
represents the most compelling probe to explore the extreme manifestations of gravity and
possible deviations from GR. During its first three observing runs (currently on its fourth),
the LVK collaboration has successfully detected a significant number of events. These
events have been attributed to the merger of various astrophysical systems, including pairs
of black holes, pairs of neutron stars, and the merger between a black hole and a neutron
star. To date, analysis [6] of these events have not revealed any significant deviations from
GR. This outcome suggests that if there are any deviations present in this regime, they
must be small in nature. The quality and quantity of collected data are bound to improve
with the future advancement in sensitivity of our current detectors and the deployment of
new detectors such as the Laser Interferometer Space Antenna (LISA) [21, 167] and of 3rd
generation ground base interferometers like Einstein’s Telescope [139].

However, the level of scrutiny to which we will be able to test GR is not solely de-
termined by the precision and reach of our detectors. It also hinges on the quality of our
predictions, both within the framework of GR and potential extensions. The detection and
characterization of GW events rely heavily on the accuracy of waveform templates that are
matched against the observed data. So far, most GW tests of GR have been conducted
as self-consistency tests. This approach involves analyzing the data assuming that GR
describes GW events utilizing waveform templates derived from GR to search for incon-
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sistencies that may indicate deviations from the theory, see, for example, [99]. However,
this task presents considerable challenges. As the precision of GW detectors increases,
they become sensitive to a greater number of effects predicted by GR. Consequently, dis-
tinguishing potential deviations from GR amidst the increasing complexity of GR itself
becomes an increasingly demanding task. In most cases, when deviations from GR are
considered in the models, this is done through parameterized deviations, for example, by
considering deviations [9] to the Post-Newtonian (PN) [35] parameters. The drawback to
this approach is that the way these parameters are modified lacks a direct link to physi-
cally motivated extensions to GR. This can make the constraints from such an approach
weaker and harder to translate into alternative theories, even rendering them physically
non-informative.

An alternative to this approach is directly matching against waveforms generated from
specific modified theories. This task comes with both practical (and technical) challenges.
Most proposed beyond GR theories have, at a formal level, mathematical pathologies,
making their understanding in general scenarios difficult. Such pathologies may include
loss of uniqueness, a dynamical change of character in the equations of motion (e.g., from
hyperbolic to elliptic), or, even worse, having equations of motion (EOMs) of unknown
mathematical type [153, 161, 74, 86]. Combined with the need to use computational sim-
ulations to study the (nonlinear/dynamical) regime of interest, this becomes a challenging
scenario. There are now several instances [58, 66, 19, 32, 24, 83, 87, 116] where full nonlin-
ear numerical simulations of compact binary coalescence have been achieved in modified
gravity candidate theories. Obtaining waveforms by solving the complete nonlinear prob-
lem is not only crucial for accurately predicting the physics in the highly nonlinear regime,
but also highly valuable for assessing the strengths, weaknesses, and accuracy of the ana-
lytical techniques used to model the inspiral and ringdown phases of the waveforms. Since
such techniques are rooted in perturbation theory, results from the nonlinear theory can
help us identify when a given approximation is insufficient and higher-order terms in the
expansions may be required.

Aside from these technical difficulties, there is the issue of which particular theory di-
rect our efforts to. A whole myriad of theories have been proposed with widely different
motivations and implications. For example1, some theories modify GR by introducing new
scalar degrees of freedom, such as Horndeski gravity [118] and dynamical Cherns-Simons
gravity (dCS) [13]. Others introduce new vector degrees of freedom like Einstein-Aether
gravity [82], new tensor degrees of freedom like massive gravity [68], and some introduce,
scalar, vector, and tensor degrees of freedom like MOG [144]. In contrast, some theories

1This is by no means an extensive list; see [85] for a (more) extensive list.
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include no new degrees of freedom, but generalize Einstein-Hilbert action to have higher-
order curvature invariants like f(R) gravity. The choice of theory to be explored can be
guided by requiring it to have the desirable mathematical properties, such as being able
to define a well-posed initial value problem, having second order in derivatives evolution
equations, and being free of pathologies. However, this can be significantly restraining; the
number of theories in which such properties are satisfied is quite limited. Horndeski theo-
ries are a stellar example in that regard; they constitute the sole class of theory which, by
introducing a non-minimally coupled scalar field, retains second-order equations of motion.
These theories, however, can suffer from pathologies that can render the problem ill-posed
[161, 29, 86]. In those cases, after significant theoretical effort, appropriate new gauges
were formulated [129, 128] that, in the small coupling limit, ameliorate these issues to the
point where nonlinear studies of compact binary mergers are possible [81, 66, 19, 79]. An
alternative perspective on this matter arises when considering that theories of interest (and
GR itself) may serve as effective descriptions [44, 77] of gravitational phenomena only up to
a certain energy or curvature scale. Pathologies and the challenges in defining a well-posed
initial value problem could be attributed to the inherent incompleteness of the theory.
However, a method capable of alleviating these pathologies and enabling accurate predic-
tions within the desired regime and scales would expand the realm of testable theories.
Exploring and pursuing such a method serve as a central objective of this thesis, and we
will delve deeper into this aspect in subsequent sections. In this context and aligning with
the aforementioned mindset, the Effective Field Theory (EFT) framework emerges as an
ideal formalism for constructing extensions to GR [84, 71, 162]. The construction of such
theories involves the addition of terms to the Einstein-Hilbert action, which are formed
from powers of curvature invariants and conform to all the symmetries and assumptions of
the desired theory. These additional terms are then appropriately suppressed by powers of
a chosen cutoff scale Λ, resulting in a perturbative expansion that avoids introducing new
light degrees of freedom and that can capture the underlying theory’s physics below the
cutoff. This methodology provides a comprehensive approach to testing modifications to
GR in a general manner. If gravity is modified at the scale Λ, such that departures from
GR can be detected through gravitational wave experiments, and the EFT remains valid
in this regime, this methodology can be employed to model and detect these deviations.
Furthermore, the knowledge gained from such detections can guide theoretical efforts in
the search for a fundamental theory of gravity. One of the drawbacks of working with
such theories is that the field equations obtained from them generally possess fourth-order
spacetime derivatives of the metric and, therefore, can give rise to the previously discussed
ill-posedness problems.

The primary objective of this thesis is to develop and implement mathematical and
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numerical techniques to study deviations from GR in the nonlinear regime. To test these
methodologies, we will implement them to investigate the nonlinear dynamics of higher
derivative EFT extensions to GR. We will employ innovative techniques to address the
mathematical and practical challenges associated with these extensions. Specifically, we
will utilize the Fixing the Equations method (refer to section 3.1) to effectively manage
spurious higher frequencies and use an approach known as Order reduction (refer to section
3.2) to handle higher time derivatives in the equations. These novel techniques will enable
us to tackle challenging scenarios involving the dynamics of BH spacetimes. Initially, we
will work in simplified scenarios such as spherical symmetry, and subsequently, we will
extend our work to confront the binary BH merger case.

The following notation is adopted throughout the thesis: The beginning of the Latin
alphabet (a, b, c, d, ...) will be used to denote full spacetime indices, while the Latin letters
(i, j, k, l...) will be used to indicate spatial ones. The metric (−,+,+,+) signature is
used, and geometric units are adopted, where the speed of light is set to c = 1 and the
gravitational constant is set to G = 1.

1.1 Outline

Chapter 2 will provide a comprehensive review of essential background material and fun-
damental concepts that play a crucial role throughout this thesis. We will start with a
concise overview of Einstein’s theory of GR, including a discussion of Einstein’s field equa-
tions. Subsequently, we will introduce the concept of a well-posed initial value problem
and establish its significance in the numerical evolution of GR. This will be followed by an
introduction to EFT as a powerful tool for constructing theories beyond GR. The chapter
will finish by discussing results concerning black hole (BH) solutions and constraints on
couplings within such theories.

Chapter 3 will introduce some of the mathematical and numerical techniques we imple-
ment to enable nonlinear studies in modified gravity theories. First, an introduction and
motivation to the Fixing the equations methodology will be presented. The chapter will
culminate with the introduction of a technique called Order reduction to address challenges
related to higher derivatives and ghosts.

Chapter 4 covers a study of black hole dynamics in a higher derivative extension to
General Relativity and presents a fully nonlinear/non- perturbative treatment to construct
initial data and study its dynamical behavior in spherical symmetry when coupled to a
massless scalar field. For initial data, we compare the obtained solutions with those from
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alternative treatments that rely on a perturbative (or iterative) approach. For the future
evolution of such data, we implement an approach that addresses mathematical pathologies
brought in by the higher derivatives. Our solutions demonstrate the presence of unexpected
phenomena—when seen from the lens of General Relativity, as well as departures from
General Relativity in the quasi-normal mode behavior of the scalar field scattering off the
black hole.

Chapter 5 covers a follow-up work to Chapter 4. In this instance, we treat the evolution
of black holes merging in quasi-circular orbits for the same higher-derivative EFT extension
to GR treated in Chapter 4. This more general and demanding scenario requires further
considerations not arising in the simplified regimes explored in Chapter 4. To build up to
the binary scenario, we first study a simplified prototypical example as well as the single-
boosted BH scenario. With these new considerations, we are able to carry out simulations
in the binary merger scenario and study the effects of modifications on the dynamics and
the GW emission.

Chapter 6 covers a study of gravitational collapse in Quadratic gravity, which in the
presence of matter fields, is the leading order correction to GR from an EFT point of
view. The matter content of the spacetime is that of a massless scalar field, which is set
to collapse into a BH in spherical symmetry. The additional degrees of freedom associated
with the higher derivatives in this theory are removed by an Order Reduction approach,
where the truncated expansion nature of the theory is exploited. Through simulations,
we study whether solutions remain within the bounds of the EFT and look for significant
deviations from General Relativity during the collapse. Limitations of the approach taken,
the EFT approximation, and the appearance of instabilities are also discussed.

The thesis finishes in Chapter 7 with an outlook and future directions.
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Chapter 2

Background Material

2.1 General Relativity

Newtown’s theory of gravitation was inconsistent with Einstein’s new theory of Special
Relativity since it contains instantaneous influence between bodies. This incompatibility
and some key ideas and observations led Einstein to develop GR. The first of these ideas
was the equivalence principle, which states that all bodies are influenced by gravity and
that all bodies fall precisely the same way in a gravitational field. In Newtown’s gravity,
this idea manifests in the fact that the gravitational force on a body is proportional to
its inertial mass. Freely falling bodies define a set of preferred curves in spacetime, just
as geodesics of the flat metric did in Special Relativity. This resonates with the idea that
freely falling bodies describe the geodesics of spacetime which deviate from the flat ones
in the presence of matter. The presence of matter ties in perfectly with the second idea
that motivated GR; this is Mach’s principle which proposes that the distribution of all
matter in the universe influences the inertial properties of matter. In other words, Mach’s
principle stated that the concept of a non-accelerating or non-rotating has no meaning in
a universe without matter. Guided by these ideas, Einstein postulated that spacetime is a
four-dimensional manifold with a metric of Lorentzian signature gab and that the curvature
of gab is related to the matter distribution in spacetime through Einstein’s field equations,
which read,

Gab ≡ Rab −
1

2
Rgab = 8πTab, (2.1)
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where Gab is the Einstein tensor, Rab and R are the Ricci tensor and scalar, which are
derived from the Riemann curvature tensor defined as,

R d
abc =

∂

∂xb
Γdac −

∂

∂xa
Γdbc + ΓeacΓ

d
eb − ΓebcΓ

d
ea, (2.2)

Rab = Rc
acb, (2.3)

R = Ra
a, (2.4)

where Γcab are the Christoffel symbols defined as,

Γcab =
1

2
gcd (∂agbd + ∂bgad − ∂dgab) , (2.5)

which is in turn associated with the covariant derivative operator ∇a and the coordinate
system used to define the partial derivative ∂a. For example, the covariant derivative acting
on a vector can be written as,

∇av
b = ∂av

b + Γbacv
c. (2.6)

Geodesics in a curved spacetime are the equivalent of straight lines of flat spacetime,
and free particles follow them in accordance with the geodesics equation. For a particle
with a spacetime velocity ua = ∂xa/∂t at spacetime coordinates xa(t) the geodesic equation
reads,

d2xa

dt2
+ Γabc

dxb

dt

dxc

dt
= 0. (2.7)

Einstein’s Field equations relate the curvature of spacetime to the energy-momentum
tensor Tab of the matter fields. The structure and dynamics of spacetime are directly
intertwined with the presence and dynamics of matter in the universe, which is reminiscent
of Mach’s idea of the relevance of matter in the very notion of states of motion.

Through the contracted Bianchi identity, namely,∇aGab = 0, we obtain that∇aTab = 0.
This last equation dictates the dynamics of matter fields in spacetime, which reduces to
the geodesics equation when this matter is described by sufficiently small bodies whose
self-gravity is weak enough.

It is pertinent (especially for what comes in section 2.2) to highlight the mathematical
essence of Einstein’s equations (2.1). Choosing coordinates and expressing everything in
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terms of the metric gab, Einstein’s equations are equivalent to a nonlinear second-order
partial differential system of equations for the metric components of gab. Solutions to the
linearized Einstein’s equations, which describe wave-like solutions of perturbations on flat
spacetime, are known as gravitational waves.

2.1.1 Gravitational waves

Gravitational waves are solutions to the linearized Einstein’s equations around a flat back-
ground spacetime. In this section, we will shortly review a derivation of such solutions.
Perturbations to the flat metric can be incorporated at linear order by considering the
perturbed metric (and its inverse),

gab = ηab + hab, gab = ηab − hab, (2.8)

where ηab is the flat metric, and hab the perturbation. To linear order in hab, the Einstein
tensor Gab can be written as,

G
(1)
ab = ∂c∂(aha)c −

1

2
∂c∂

chab −
1

2
∂a∂bh− 1

2
ηab
(
∂c∂dhcd − ∂cch

)
, (2.9)

where h = h a
a . Defining h̄ab ≡ hab − 1/2ηabh and replacing it on (2.9) simplifies the

linearization of Einstein’s equations to,

G
(1)
ab =

1

2
∂c∂ch̄ab + ∂c∂(bh̄a)c −

1

2
ηab∂

c∂dh̄cd = 8πTab. (2.10)

Thanks to the diffeomorphism invariance of GR, two metric perturbations h̃ab and hab
represent the same physical perturbation as long as they are related by,

h̃ab = hab − ∂aζb + ∂bζa, (2.11)

where ζa is the vector field generating the infinitesimal diffeomorphism (e.i, change or
coordinates) x̃a = xa + ζa. This sets the gauge freedom of the linearized perturbation.
This gauge freedom can be used to impose the Lorentz gauge condition

∂ah̄
ab = 0. (2.12)

This choice further simplifies (2.10) to
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∂a∂ch̄ab = −16πTab. (2.13)

There is, however, residual gauge freedom, transformations satisfying ∂b∂
bζa = 0 will

still satisfy the Lorentz gauge. Solutions of the source-free (Tab = 0) linearized Einstein’s
equations ∂a∂ch̄ab = 0 can be found without loss of generality, as plane waves,

h̄ab = Aabe
ikcxc + c.c., (2.14)

where Aab is a constant polarization tensor, the wavevector ka satisfies kaka = 0 (e.i. a null-
vector), and c.c. is the complex conjugate of the first term. Considering for concreteness
that ka = (1, 0, 0, 1), using the gauge freedoms previously discussed and some algebra, it
can be shown that the polarization tensor Aab (in the traceless-transverse gauge) takes the
form,

Aab =




0 0 0 0
0 h+ hx 0
0 hx −h+ 0
0 0 0 0


 , (2.15)

where h+ and hx are the two independent transverse polarizations. With this, we can
conclude that gravitational waves propagating in flat spacetime have only two propagating
degrees of freedom.

The generation, rather than propagation, of gravitational waves from matter sources
can be described by the famous quadrupole formula, which in the traceless transverse gauge
is

hTTij =
2G

c4r
P kl
ij Q̈kl, (2.16)

where Qij is the quadrupole tensor defined as,

Qij = Iij −
1

3
Ikkδij, Iij =

∫
d3x′T ttx′ix′i, (2.17)

and P kl
ij ≡ P k

i P l
k − 1

2
PijP

kl. This result shows that the dominant contribution to gravi-
tational radiation comes from the rate of change of the quadrupole moment of the source.
Sources like compact binary mergers generate GWs, and interferometers from the LVK
collaboration were designed to be able to detect them in the 10Hz to 10kHz frequency
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regime. These signals are buried in noise; a way to detect them is by matching the data
to GW templates of binary merger events. To obtain such templates, perturbation theory
can be used to describe the inspiral regime, where velocities are small, and the objects are
far apart, as well as the ringdown part, which comes after the merger where the solution
can be described by oscillations of a perturbed BH. However, in the merger, when pertur-
bation theory is not valid, and the full nonlinear problem needs to be solved, we resort
to numerical simulations. In the following sections, we will discuss important aspects of
solving Einstein’s equations numerically.

2.2 Well-posedness and formulations of GR

In classical theories of physics, the behavior of the relevant fields is governed by systems
of differential equations. If a theory can be formulated in a way in which appropriate
initial data (which could be subject to the satisfaction of constraint equations) can be
prescribed, and appropriate boundary data if needed, then the theory can be said to
possess an initial boundary value formulation. A fundamental property that any desirable
physical theory should have is to be able to be formulated as a well-posed initial value
problem. The concept of well-posedness is crucial in various fields, including mathematics,
physics, and numerical analysis, as it provides a solid mathematical foundation for studying
and simulating dynamical systems. It ensures the stability and predictability of solutions,
allowing for accurate and meaningful results in the analysis of physical phenomena. A well-
posed problem is characterized by three key aspects: existence, uniqueness, and continuous
dependence on the initial conditions. This last condition implies that small changes in the
initial data result in correspondingly small changes in the solution. If these conditions
were not met, given that our ability to specify initial conditions in an experiment and
even numerically is limited, then it would be virtually impossible to make any meaningful
physical prediction.

The condition of continuity on the initial data can be presented in a more mathematical
and concrete way as Hadamard first presented in [109], where the continuity of a solution
u(t, x) on its initial data: u0(t, x) ≡ u(t0, x), where t0 is the initial time, can be expressed
as:

||u|| ≤ α exp(βt)||u0||, (2.18)

where ||u|| is a Sobolev-type norm, and α and β are constants that are independent of u0.

11



2.2.1 Hyperbolicity and classification

In classical physics, the behavior and dynamics of the relevant fields of a system are for-
mulated in terms of systems of partial differential equations (PDEs). Many of the most
relevant systems in physics can be formulated (sometimes through introducing new vari-
ables) as a first-order linear system of PDEs. Given this, the classification of hyperbolic
systems in this section will be written for this type of system1. First-order systems can be
written in the following form,

∂u

∂t
= Aj ∂u

∂xj
+Bu (2.19)

where, u is an m-dimensional vector of variables, xj are real coordinates from j = 1..N ,
Aj from j = 1..N and B are m×m matrices, and do not depend on derivatives of u.

In Fourier space equation 2.19 can be written as,

∂ũ

∂t
= P (ik)u ≡ P0(ik) +B, (2.20)

where P0 = ikjA
j is called the principal symbol. The principal symbol will dominate in

the high-frequency regime, where |k| is large, and one can discard B in the well-posedness
studies. The system can be then classified by studying the decomposition of the charac-
teristic matrix defined as P = Ajnj (here nj is an arbitrary unit vector) into eigenvalues
and eigenvectors. The first-order system is called :

• Weakly hyperbolic if, for all arbitrary nj, P has all real eigenvalues but lacks a
complete set of eigenvectors.

• Strongly hyperbolic if, for all arbitrary nj, P is diagonalizable with real eigenvalues
and the maxtix Tn that diagonalizes it and its inverse T−1

n depend smoothly on nj.

• Symmetric Hyperbolic if there exists a Hermitian, positive definite matrix H such
that HP is Hermitian for any arbitrary nj and that H is independent of nj.

This classification is enough to give necessary and sufficient conditions for well-posedness.
Strong and symmetric hyperbolicity systems give rise to a well-posed initial value prob-
lem. The initial value problem from weakly hyperbolic systems is typically ill-posed in the
presence of the lower order terms B.

1Hyperbolicity classifications of second-order PDEs are also possible; for details, see [107].
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2.2.2 Formulations of GR

The importance of defining a well-posed initial value problem was alluded to in the previous
section. A huge roadblock that the numerical relativity community suffered in perform-
ing complex numerical simulations of highly dynamical systems in full generality, such as
evolving BH binary for many orbits until the merger, was that the formulations used were
not well-posed ones. The Arnotwitt-Deser-Misner (ADM) formulation [20] is one of them.
The ADM formulation relies on a 3 + 1 decomposition of Einstein’s equations 2. The 3+1
decomposition consists of splitting the four-dimensional spacetime into space and time by
choosing a particular coordinate time t with which we label the different space-like hyper-
surfaces that will foliate the four-dimensional spacetime. As displayed in Figure 2.1 the
normal vector to each one of these surfaces is na defined as:

na = (−α, 0, 0, 0), (2.21)

where α is denoted the lapse function, it can be a function of both the label t and the spatial
coordinates {xi} in the hypersurfaces and guarantees that nan

a = −1. The proper time
between two hypersurfaces of labels t and t+dt measured by an observer that moves along
this normal direction (also known as Eulerian observers) is dτ = αdt. The coordinates
{xi} are not necessarily carried from hypersurface to hypersurface by the normal vector
n. The relative velocity between the Eulerian observer and the lines that correspond to
constant spatial coordinates is denoted βi and called the shift vector.

The three-dimensional metric induced in the spatial hypersurfaces is denoted by γij,
and the line element for the four-dimensional spacetime metric in adapted coordinates can
be written as:

ds2 = (−α2 + βiβi)dt
2 + 2βidtdx

i + γijdx
idxj. (2.22)

Another key ingredient in the 3+1 decomposition is the extrinsic curvature Kij. In
contrast to the intrinsic curvature given by the three-dimensional Riemann tensor defined
in terms of the three-metric γij, the extrinsic curvature encodes the information on how
the vector na is parallel transported along a space-like hypersurface from one point to
another. In other words, the extrinsic curvature Kij gives a notion of how each one of
these space-like hypersurfaces is “bent” inside the 4-dimensional spacetime by giving us
a measure of the change of the normal vector under the parallel transport. The extrinsic
curvature can be defined as:

2See [102] for an extended review on the subject.
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Figure 2.1: Spacetime is foliated by space-like hypersurfaces labeled with coordinate time
t and with their corresponding set of spatial coordinates xi. Image taken from [102]

.

Kij := −P a
iP

b
j∇anb = −(∇inj + nin

c∇cnj), (2.23)

where P a
i is a projector operator onto the spatial hypersurfaces defined as,

P a
i := δai + nani. (2.24)

The extrinsic curvature Kij can be related to evolution equations of the spatial metric
γij as:

∂tγij = −2αKij +Diβj +Djβi, (2.25)

where Di is the covariant derivative associated to the spatial metric γij.

This set of equations will be part of the evolution equations that determine the evolution
of the system. It’s important to notice that these equations have no information whatsoever
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about the field equations. To get a set of evolution and constraint equations, we must
perform projections on Einstein’s equations 2.1 onto the spatial hypersurfaces and the
direction orthogonal to them. Let us now perform these projections to Einstein’s equation
when matter described by the tensor Tab is present :

• The normal projection gives us the Hamiltonian constraint:

nanb(Gab − 8πTab) = 0. (2.26)

• The mixed projection gives us the Momentum constraints:

P b
an

c(Gcb − 8πTcb) = 0. (2.27)

• The projection onto the hypersurface gives us the evolution equations :

P c
aP

d
b(Gcd − 8πTcd) = 0. (2.28)

Equations (2.26 - 2.27) are together the 4 constraints equations of the theory; it becomes
clear that no time derivatives are involved in these equations after writing them in terms
of the 3+1 variables (e.i α, β,γij and Kij) and using the Gauss-Codazzi relations to write
projections of the Riemann tensor. On the other hand, equations (2.28) correspond to six
evolution equations, namely the evolution equations of the six independent components of
the extrinsic curvature tensor Kij. Equations (2.28) and (2.25) constitute together a set
of twelve evolution equations known as the ADM equations; in the Smarr and York form
[187, 172] they can be written as

∂⊥γij = −2αKij (2.29a)

∂⊥Kij = α
[
R

(3)
ij − 2KikK

k
j +KKij

]
−DiDjα− 8πGα [Sij − γij(S − ρ)/2] (2.29b)

were the derivative operator ∂⊥ is defined as ∂⊥ = ∂t − Lβ, where Lβ is the Lie derivative
along the shift vector βi. K is the trace of the extrinsic curvature defined as K = γijKij,
while Sij, S and ρ are the matter variables constructed from the energy-momentum tensor
Tab as, Sij = P a

iP
b
jTab, it’s trace S = γijSij and ρ = nanbT

ab.

It turns out that, as shown in [145], the set of equations (2.29a-2.29b) together with the
corresponding constraint equations is not well-posed since they are only weakly hyperbolic.
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Formulations were developed to overcome such limitations. Among the most successful
ones, there are those that have strong hyperbolicity properties, such as the Baumgarte-
Shapiro-Shibata-Nakamura-Oohara-Kojima (BSSNOK) formulation [168, 25, 146] and the
CCZ4 formulation [14, 15, 36, 37], and those which are symmetric hyperbolic such as the
Generalized Harmonic (GH) formulation [91, 157, 135].

In this thesis, we use two of these formulations. In chapters 4 and 6, we implement a
GH formulation, and in Chapter 5, we use a CCZ4 formulation. In what follows, we will
review these formulations and their corresponding properties.

Generalized harmonic formulation

The GH formulation is a formulation that extends the original Harmonic formulation,
which casts Einstein’s equations into a system of wave equations when the gauge is fixed
such that it satisfies the condition,

∇a∇axb = −gacΓbac = 0. (2.30)

The generalization in the GH formulation is introduced by generalizing the wave equa-
tion that the coordinates have to satisfy into an inhomogeneous wave equation,

∇a∇axb = −gacΓbac = Hb(x, g), (2.31)

where Ha(x, g) is the gauge source vector, whose components are arbitrary functions of the
coordinates xa and the spacetime metric gab. Its value can be prescribed to impose gauge
conditions suitable for the evolution of, for example, dynamical BH spacetimes. Then
satisfying the GH gauge is equivalent to satisfying,

Ca ≡ Ha(x, g) + Γa = 0, (2.32)

We define also Γa := gbcΓabc is the trace of the Christoffel symbols Γabc. The generalized
harmonic equations take the form,

Rab −∇(aCb) = −κ
[
n(aCb) − gabn

cCc/2
]
+ 8πG [Tab − gabT

c
c/2] . (2.33)

These equations are equivalent to Einstein’s equations when the constraint defined by
equation (2.32) Ca = 0 is satisfied. Ensuring that this constraint is under control is
essential. From the contracted Bianchi identities, it can be shown that C satisfies the
following wave-like equation,
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∇a∇aCb = −Rb
aCa − 16πG∇aT

ab. (2.34)

Since the energy-momentum tensor is covariantly conserved (e.i. ∇aT
ab = 0), this im-

plies that if initial data is prescribed such that Ca = ∂tCa = 0 initially, then Ca = 0 for
all t. These conditions are equivalent to giving initial data such that Ca = 0, and the
Hamiltonian (2.26) and Momentum (2.27) constraints are satisfied initially. Due to nu-
merical limitations, it is impossible to prescribe initial data in which such conditions are
met exactly. Furthermore, numerical truncation can trigger growth in constraint violations
during the evolution. The first term on the right-hand side has been introduced to deal
with those issues; it is a constraint-damping term [40, 108, 156] whose job is to damp vio-
lations of the constraint Ca = 0. When these equations are written in terms of the metric
components, the principal part of the equation (second derivatives in this case) is a set of
wave-like equations, and then, given reasonable gauge conditions, the system is symmetric
hyperbolic.

CCZ4 formulation

The CCZ4 (Conformal covariant of the Z4) formulation is a formulation that combines
the advantages of conformal decompositions such as BSSNOK and the advantages of for-
mulations where constraints are damped. Starting from the damped version of the Z4
formulation [108], Einstein’s equations can be written as,

Rab +∇aZb +∇bZa + κ1 [naZb + nbZa − (1 + κ2)gabncZ
c)] = 8π

(
Tab −

1

2
Tgab

)
. (2.35)

Here, the usual constraints of GR are transformed into algebraic conditions for the new
four-vector Za. Satisfaction of the constraints Za = 0 amounts to the usual Hamiltonian
and Momentum constraints being satisfied, as well as equations (2.35) being equivalent
to Einsteins’ equations. The κi parameters determine the characteristic time of the expo-
nential damping of constraint violations. In the 3+1 decomposition of (2.35) the CCZ4
formulation also performs conformal decompositions of the relevant fields as done in the
BSSNOK formulation. The spatial metric γij is decomposed into conformal metric γ̃ij,
with unit determinant, and its conformal factor χ,

γ̃ij = χγij. (2.36)
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The extrinsic curvature first is decomposed into its traceless part Aij and its trace K, and
these are subsequently conformally decomposed as,

Kij = χ−1

(
Ãij +

1

3
γ̃ijK

)
, (2.37)

where Ãij = χAij. Furthermore, the Za are decomposed into its normal and spatial
components to define to following variables,

Θ ≡ −naZa, (2.38)

Γ̂i ≡ Γ̃i + 2γ̃ijZj, (2.39)

where, Γ̃i ≡ γ̃jkΓ̃i jk = γ̃ij γ̃kl∂lγ̃jk. The resulting system is a strongly hyperbolic one. With
these definitions, the evolution equations written in first-order form are,

∂tγ̃ij = −2αÃij + 2γ̃k(i∂j) β
k − 2

3
γ̃ij∂k β

k + βk∂kγ̃ij , (2.40)

∂tÃij = χ [−∇i∇jα + α (Rij +∇iZj +∇jZi − 8πSij)]
TF + αÃij (K − 2Θ)

−2αÃilÃ
l
j + 2Ãk(i∂j) β

k − 2

3
Ãij∂k β

k + βk∂kÃij , (2.41)

∂tχ =
2

3
χ
(
αK − ∂iβ

i
)
+ βk∂kχ, (2.42)

∂tK = −∇i∇iα + α
(
R + 2∇iZ

i +K2 − 2ΘK
)
+ βj∂jK − 3ακ1 (1 + κ2)Θ

+4πα (S − 3ρ) , (2.43)

∂tΘ =
1

2
α

(
R + 2∇iZ

i − ÃijÃ
ij +

2

3
K2 − 2ΘK

)
− Zi∂iα + βk∂kΘ

−ακ1 (2 + κ2)Θ− 8πα ρ , (2.44)

∂tΓ̂
i = 2α

(
Γ̃ijkÃ

jk − 3

2
Ãij

∂jχ

χ
− 2

3
γ̃ij∂jK

)
+ 2γ̃ki

(
α∂kΘ−Θ∂kα− 2

3
αKZk

)
− 2Ãij∂jα

+γ̃kl∂k∂lβ
i +

1

3
γ̃ik∂k∂lβ

l +
2

3
Γ̃i∂kβ

k − Γ̃k∂kβ
i + 2κ3

(
2

3
γ̃ijZj∂kβ

k − γ̃jkZj∂kβ
i

)

+βk∂kΓ̂
i − 2ακ1γ̃

ijZj − 16παγ̃ijSj, (2.45)

where the term proportional to κ3 is an additional damping term. The constraints are,
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Za = 0, (2.46)

det(γ̃ij) = 1, (2.47)

tr(Ãij) = 0. (2.48)

The gauge conditions for α and βi are still unspecified. The prescription of adequate
gauge conditions is essential for achieving controlled long evolutions in dynamical space-
times, particularly in the presence of BHs. Conditions on the lapse function α are called
slicing conditions; among the most popular ones, there is the called 1 +log slicing, along
with others in the Bona-Masso family on conditions [38]. This type of slicing condition
achieves a collapse of the lapse function, which forces the lapse function to approach zero
close to singularities; this slows the “clocks” of observers approaching the singularity, hence
avoiding the fall of such observers into them, since if this were to happen it would be catas-
trophic for the simulations. Conditions on the shift βi are called shift conditions; one of
the most popular choices for such conditions is the Gamma-driver shift condition [12],
which solves the problem of “slice stretching” due to the difference in the value of the lapse
function in regions close to BHs and the far regions.

2.3 Effective Field Theory in gravitational physics

As mentioned in the introduction, EFT can be used as a guiding principle for constructing
extensions to GR. In general terms, EFT is a framework used to systematically describe
physical phenomena by incorporating the effects of higher-energy scales via introducing
a tower of local operators built from the lower-energy theory operators. This technique
comes in two flavors. The first one is commonly denoted “Top-down ”approach, in which
the high-energy theory is known, and the “heavy” fields are integrated out in favor of
operators built from the “light” fields to have a simpler description of the physics at low
energies 3. The second one is called the “Bottom-up” approach, in which the high-energy
theory is unknown, and the low-energy degrees of freedom of the theory are used to con-
struct an effective action that contains the effects of the heavy fields as a collection of
operators of increasing dimensionality which are adequately suppressed by a cut-off scale.
The “bottom-up” approach is particularly useful because it allows exploring new physics
without requiring a complete and detailed understanding of the underlying fundamental

3This approach has gained traction in the computation of gravitational radiation in the spiral of compact
objects within GR, these are commonly denoted Worldline Effective Theories [154, 100].

19



theory. In the context of extensions to GR relativity, the “bottom-up” approach can allow
us to construct the most general extensions to GR under a desired set of assumptions.
In gravity, the operators added to the Einstein-Hilbert action are terms formed from cur-
vature invariants. Depending on the number of derivatives of the metric they contain
(usually denoted dimensionality), they will be suppressed by the corresponding power of
the lengthscale cut-off Λ−1. As EFT describes a perturbative approach, there is a hierar-
chy of these terms, where the lower dimensionality terms dominate over terms with larger
dimensionality. The leading order corrections to GR should then be encoded on Riemann
squared terms, called the dimension-four operators, in the following way,

Seff =
1

16πG

∫
d4x

√−g
(
R +

a1
Λ2
RabR

ab +
a2
Λ2
R2 +

a3
Λ2
RabcdR

abcd + · · ·
)
. (2.49)

These are the same operators that are used to construct the well-known Gauss-Bonnet
invariant, G = R2 − 4RabR

ab + RabcdR
abcd. If the spacetime dimension is D = 4, G is a

total derivative and hence topological and does not contribute to the field equations. This
fact can be used to essentially remove one of the dimension-four terms from the definition
of the effective action (2.49). For reasons that will become evident in just a moment, the
term proportional to a3 will be eliminated, giving then,

Seff =
1

16πG

∫
d4x

√−g
(
R +

ã1
Λ2
RabR

ab +
ã2
Λ2
R2 + · · ·

)
. (2.50)

If the spacetime of interest is absent of matter fields, then one can show that these terms
will not contribute to the field equations. This can be shown using a field redefinition given
by:

gab → gab +
ã1
Λ2

(
Rab −

1

2
Rgab

)
− ã2

Λ2
Rgab (2.51)

which changes (2.50) to,

Seff =
1

16πG

∫
d4x

√−g
(
R +

ã1
Λ2
RabR

ab +
ã2
Λ2
R2 −Rab

(
ã1
Λ2
Rab +

ã2
Λ2
Rgab

)
+ · · ·

)

=
1

16πG

∫
d4x

√−g (R + · · · ) ,
(2.52)
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hence no modification to GR enters through dimension-four operators in vacuum scenar-
ios. This can also be seen explicitly by varying the action (2.50) and computing the
field equations. All terms modifying Einstein’s equations are proportional to Rab and R.
Schematically,

Rab −
1

2
gabR =

1

Λ2
M(Rab, R), (2.53)

where M(Rab, R) are the terms modifying Einstein’s equations and are proportional to at
least Rab or R. From this we can clearly read that Rab = R = 0 +O(Λ−2). Then one uses
this to replace the Ricci terms on the RHS of (2.53) to give,

Rab −
1

2
gabR =

1

Λ4
M̃(Rab, R) +O(Λ−6). (2.54)

This process can then be iterated to show that contributions to the field equations from
4-dimensional operators can always be pushed to a higher order in the perturbative expan-
sion.

The story changes when matter is present; the field redefinition (2.51) can not eliminate
modifications to GR. Instead, field redefinitions would introduce terms mixing the energy-
momentum tensor of the matter field Tab and the Ricci tensor/scalar. This would then
modify GR by including non-minimally coupled matter fields. In chapter 6, when we
work with spacetimes where matter is present, these terms represent the leading order
corrections. Constraints of Λ−1 ≲ 1 km [18, 73] for these theories can be obtained through
neutron stars observations and study of the mass-radius relations within the modified
theory.

In chapters 4 and 5, we will work in vacuum spacetimes. In such cases, using the fact
that all Ricci terms can be eliminated through field redefinitions, the most general effective
action can be written as,

Seff =
1

16πG

∫
d4x

√−g
(
R +

b1
Λ4
R ef
ab RabcdRcdef +

b2
Λ4
R ef
ab RabcdR̃cdef+

+c1
1

Λ6
C2 + c2

1

Λ6
C̃2 + c3

1

Λ6
CC̃ + · · ·

)
,

(2.55)

where C ≡ RabcdR
abcd and C̃ ≡ RabcdR̃

abcd, with R̃abcd = ϵ ef
ab Refcd. Here the terms propor-

tional to Λ−4 are dimension six-operators, which are the leading corrections in the effective
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action in the vacuum case. The next to leading order terms are given by the dimension-
eight operators4, which are proportional to Λ−6. The terms proportional to b2 and c3 are
parity violating terms.

In this thesis, we will focus mainly on the dimension-eight operators. The reason for
not pursuing studies for the leading order dimension-six operators is historical and prac-
tical. Starting with the historical side of things, when we first started working with these
theories, there were some suggestions that dimension-six operators were disfavored from
causality arguments. The consensus at the moment is that 6-dimensional operators are not
disfavored, and they should be considered in the effective action. On the practical side, the
field equations from the dimensional-eight operator theory are simpler than those from the
dimension-six one. The former introduces higher-order metric derivatives only through a
second covariant derivative of scalar quantity, namely C. In contrast, the latter introduces
them through covariant derivatives of the Riemann tensor. This fact is helpful in treating
the dimension-eight theory in chapter 5. However, we acknowledge that in this EFT pre-
scription, dimension-six operators are the leading contributions and naturally should be
the first deviations to look for. We will apply what we learned from the dimension-eight
operator theory to future studies we will conduct on the dimension-six operator theory.

2.3.1 Black hole solutions and corrections

It is possible to find BH solutions for this EFT extension of GR. In [54] approximate (valid
to first order in Λ−6) solutions are found for the dimension-eight theory. BH solutions
to the dimension-six theory can also be found in [69]. In this section, we will focus on
the spherically symmetric solutions. Slowly rotating solutions have also been derived in
[54, 53]. Following [54], we will review the process of finding such solutions and their phys-
ical implications. In spherical symmetry and for static solutions, the only non-vanishing
contributions come from the c1 proportional term in (2.55). Consequently, in what follows,
we will only consider the theory coming from dimension-eight operators and c1 = −1 and
c2 = c3 = 0. In that setting, the field equations obtained from variation of the action are
given by.

Gab =
1

Λ6

(
4 C R cde

a Rbcde −
1

2
gabC2 + 8R c d

a b ∇d∇cC
)
, (2.56)

4These types of operators are known to emerge in low-energy EFT expansions of string theories, see
[143] for dimension-six operators, and [124, 123, 104, 103, 26] for dimension-eight operators.
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Taking the following metric ansatz for the line element,

ds2 = −
(
1− 2M

r
+

ft(r)

Λ6M6

)
dt2 +

(
1− 2M

r
+

fr(r)

Λ6M6

)−1

dr2 + r2
(
dθ2 + sin2θdϕ2

)

(2.57)
and plugin it in (2.56) and truncating after first order in (ΛM)−6 leads to a system of
ordinary differential equations for ft(r) and fr(r). The solution of such a system is given
by,

ft(r) = −128

(
8
M9

r9
− 11

M10

r10

)
, (2.58)

fr(r) = −128

(
36
M9

r9
− 67

M10

r10

)
. (2.59)

These solutions describe a BH spacetime. The event horizon of this BH is located at
the radius,

rH = 2M

(
1 +

5

8
(ΛM)−6

)
, (2.60)

and M is the gravitational mass of the spacetime.

As shown in (2.58) and (2.59), corrections to the metric enter with large inverse powers
of r, making modifications to weaken strongly as the distance to the BH increases. For
example, the radius of the innermost stable circular orbit (ISCO) is also modified to,

rISCO = 6M

(
1 +

1871

157464
(ΛM)−6

)
, (2.61)

which is ≈ 60 times weaker than the effect on the horizon. The new ISCO will also have
a different frequency ΩISCO associated with it, and its given by,

MΩISCO =
1

6
√
6

(
1− 5291

314928
(ΛM)−6

)
. (2.62)

which is smaller than the GR value since rISCO is larger for this choice of sign on c1,
naturally the opposite happens for the opposite sign of c1.
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Quantities such as ΩISCO can provide valuable insights in the context of binary mergers.
This quantity, in the small mass-ratio limit, (e.i., m2/m1 → 0), determines the frequency
at which the binary system can no longer sustain orbits and undergoes a final plunge. If
the plunge occurs at a lower(higher) frequency, it indicates that a smaller(larger) amount
of the orbital angular momentum has been emitted through GWs, resulting in a final black
hole with a higher(lower) angular momentum5.

Another important characteristic of BHs is their quasinormal modes (QNMs) [126, 31].
QNMs are the solutions to the equations [176] that describe perturbations in the spacetime
geometry of a BH. When a BH is perturbed, it emits gravitational waves to overtime settle
into a stationary solution. A combination of damped oscillations can describe the emission
of these GWs; the decay rate of such oscillations is determined by the imaginary part of the
QNM frequency, while the real part determines the oscillatory part. In particular, QNMs
can be used to describe the GW emission in the ringdown part of a BH binary coalescence
waveform, where the BH remnant settles to a stationary configuration. The BH predicted
by this EFT extension to GR has QNMs that differ from the ones predicted by GR. These
modifications to the QNMs have been computed for spherically symmetric BHs and for
slowly rotating ones in [54, 52]. For example, the QNM frequencies of the fundamental
mode for an even l = 2 perturbation differ from GR as follows,

ωR = ωGRR
(
1 + 0.45(ΛM)−6

)
, (2.63)

ωI = ωGRI
(
1− 2.75(ΛM)−6

)
, (2.64)

(2.65)

where ωR and ωI are the real and imaginary parts of the frequency of the fundamental
mode, respectively, and ωGRR and ωGRI are such frequencies for the GR BH. Naturally, the
signs of these modifications are opposite with the opposite sign of c1.

Another exciting feature of BHs in this EFT is regarding their Tidal Love Numbers
(TLNs)[34, 67]. Tidal love numbers quantify how an object is deformed when placed in an
external gravitational field, and an exciting result for GR BH is that their TLNs vanish.
However, BHs in this theory possess non-vanishing love numbers [54], given by

5Following strategies such as [43] can help estimate the final dimensionless spin in BH coalescence in
GR
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κE =
1008

25
(ΛM)−6 , (2.66)

κB =
3072

175
(ΛM)−6 , (2.67)

where κE and κB are the electric and magnetic quadrupolar TLNs respectively.

The presence of non-vanishing TLNs impacts the GW radiation during the inspiral
phase of compact binary mergers. In particular, the internal structure of neutron stars
influences the phase of GWs during that regime, and such dependence is encoded in their
TLNs. Detection of such signatures in the inspiral of NS waveforms can help constrain the
nuclear equation of state. Furthermore, if signatures of non-vanishing TLNs are detected on
objects believed to be BHs can help constrain the relevant parameters (like Λ) that modify
GR. The dephasing in the waveforms of a compact binary merger with constituents that
possess non-zero TLNs with respect to one in which the TLNs are vanishing is given by
[89],

δΨ(f) = − 9

16

v5

µM4
T

[(
11
m1

m2

+
MT

m1

)
λ1 + 1 ↔ 2

]
, (2.68)

where Ψ(f) is the phase of the Fourier transform of the GW signal at a common frequency
f , v = (πMTf)

1/3 is the orbital velocity, MT is the total mass of the binary, µ = m1m2

m1+m2

is the reduced mass, with m1 and m2 being the component masses. Here λ1 is related
to the TLN of the object with mass m1. This relationship is given by, λ = 2

3
R5G−1κE,

where R is the radius of the object. This is a 5PN correction to the phase of the waveform,
although, in the case of NS, it tends to be numerically larger (by ≈ (R/M)5 ≈ 105) than
the point-particle 5PN corrections. In the case of BHs with non-vanishing TLDs, we can
not expect the same to play out since R ≈ 2M +O (ΛM)−6.

Other PN corrections to the GW phase have been computed for the dimension-eight
EFT of gravity 6. Using the results from [84], a subsequent work [165] is able to compute
the leading order (excluding finite-size effects) of the phase corrections to the waveform.
This correction is given by,

δΨ(f) =
3

128νv5

(
234240

11
− 522240

11
ν

)
(ΛMT )

−6 v16, (2.69)

6For results in the dimension-six operator EFT see [8].
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where ν = m1m2/M
2
T is the symmetric mass ratio. The authors emphasize that this

8PN correction is numerically a 2PN correction when v2 ≈ MTΛ which happens when
rorbitΛ

−1 ≈ 1. This last argument is motivated by the author’s choice of assuming a soft
UV completion of the theory takes place in the case where Λ−1 > rs, where rs is the
Schwarzschild radius of the smallest BH. When Λ−1 > rs the EFT makes no sense at the
scales pertinent to the BH, a soft UV completion here implies the theory reduces back
to GR (or sufficiently close to it) at those scales. When that assumption is in place, the
relevant scale of the system to compare Λ−1 to is the radius of the orbit rorbit. Such
EFT will only be valid until Λ−1 > rorbit, and corrections in the spiral can become strong
(numerically as 2PN) in the regimes where rorbitΛ

−1 is below but close to 1. If the soft
UV completion does not take place, then the EFT is only valid for Λ−1 < rs and in such
case, the dominant PN corrections come from the 5PN contributions from tidal effects as
in (2.68).

Notice how all the discussed effects from modifying the theory are strongly enhanced
as the mass of the BHs M decreases. This is expected since modifications in this theory
come in as curvature operators, and the curvature at the horizon for BHs decreases with
their mass. This generally tells us that for a given fundamental scale Λ, the strongest effects
would be observed (provided that our experiments are sensitive to such regimes/frequencies)
for the smallest BHs. In what follows, we will present the current constraints on the EFTs
described by (2.55) in addition to some other theories where the corrections enter at a scale
Λ and where corrections are suppressed by Λ−p with p = 4, 6.

2.3.2 Current constraints

Let’s start with the constraints on Λ for the dimension-eight operator EFT through the
analysis of GW waves in the inspiral regime of the waveform. This analysis was performed
in [165] by constructing waveforms considering the deviations to GR coming from (2.69)
and performing Bayesian model selection using the data for two binary black hole events,
GW151226 and GW170608 (which at the time were the lowest mass binaries reported
LIGO-Virgo collaboration). The results from this work show that lengthscales Λ−1 between
70 and 200 km are strongly disfavored by the data. The predicted mass of the smallest
component BH of these events was reported to be m = 7.5M⊙ ± 2.3M⊙; hence its radius
would be rs ⪅ 30 km. Knowing this, disfavoring Λ−1 between 70 and 200 km is not a
striking result. The authors emphasize that they focus on the Λ−1 > rs regime (under the
assumption of a soft UV completion), where the dominant effects come from the dephasing
corresponding to 2.69. Without a soft UV completion, the sort of couplings excluded by
their analysis would strongly modify the BHs, and the EFT would no longer be valid. For
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such cases, we could expect waveforms to be wildly different from GR ones, which is not
what we are observing.

We will continue by reporting constraints obtained using the ringdown part of GW data.
The study conducted in [170] includes in the waveform model the quasinormal frequencies
on a theory-by-theory basis. The theories considered include the six and dimension-eight
EFTs of gravity and dynamical Chern-Simons (dCS) theory. The aforementioned waveform
model is used to measure the ringdown properties of, at the time, the loudest signal-to-
noise ratio events; GW150914 and GW200129. Their findings show for the dimension-eight
EFT, the constraint is Λ−1 ≤ 51.3 km and for the dimension-six theory Λ−1 ≤ 38.2 km.
For the relevant scale entering in dCS, they constraint Λ−1

dCS ≤ 38.7 km. Since beyond GR,
effects are included in the ringdown of the waveforms, the relevant scale to compare Λ−1

to is the radius of the remnant BH. For both events, the final mass is M ≈ 60M⊙, giving
a radius of rs ≈ 180 km. In contrast to the study conducted for the inspiral, in this case,
the EFTs are still applicable (even for the component masses) for the constrained values of
Λ−1, which improve the ones obtained in [165]. A previous work [55] performed a similar
analysis without a theory-by-theory incorporation of modifications to the ringdown portion
of the waveform. In contrast, this work only assumes that the changes to the QNM’s
are proportional to (ΛM)−p, where M is the mass of the remnant BH. By performing
their analysis with a total of 17 GW events, the following constraints were drawn, for
p = 6 (corresponding to the dimension-eight operator EFT) Λ−1 ≲ 42 km, and for p=4
(corresponding to the dimension-six operator EFT and dCS) they constrain Λ−1 ≲ 35 km.

These upper bounds on Λ−1 ≲ 40 km are still quite large, considering that the smallest
BH candidates observed by GW have components masses consistent with m ≈ 5M⊙, which
would have a radius of rs ≈ 15 km. These observed events do not seem to show considerable
deviations from GR, which would be expected if the fundamental scale at which corrections
to GR arise was ≈ 40 km. Placing constraints using the ringdown part of the signal for
events with lower masses is not doable given the current detectors’ sensitivity on that
higher frequency regime and inferred binary BH distribution.

Causality constraints

There are theoretical arguments regarding causality that can be used to put constraints
on the value of Λ. Most of these come as positivity bounds, which are constraints on
the signs of the couplings in the effective action (2.55). Such constraints can be derived
from different theoretical considerations. Under requirements of UV completions of the
EFT to respect unitarity, causality, Lorentz invariance, and causality, through analyticity
arguments on the scattering amplitudes of gravitons [27, 28] constrain c1 and c2 in (2.55)
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Operator Inspiral Ringdown Causality

Dimension-6 - Λ−1 ≲ 38.2 km [170], Λ−1 ≲ 35 km [55] b1 > 0
Dimension-8 Λ−1 ≲ 150 km Λ−1 ≲ 51.3 km [170], Λ−1 ≲ 42 km [55] c1, c2 > 0, Λ−1 ≲ 4 km

Table 2.1: Summary on constraints of Λ−1 and its sign, derived from GW data from the
inspiral and the ringdown portions of the signal, as well constraints drawn from causality
arguments.

to be positive. Demanding that the group velocity of GW’s to not be superluminal, these
coefficients were also constrained [105] to be positive. More recently, these constraints
were refined in [72] to c1 > 0 and (ΛM)−6 ≲ 0.04 by studying the scattering of GWs in a
spherically symmetric BH (of mass M) background (2.57). The causality requirements on
this work demand that the contribution of the EFT modifications to the time delay to be
positive, schematically for

T (ω) = TGR(ω) + δT (ω), (2.70)

where T is the total time delay, TGR(ω) is the time delay for the GR case, δT (ω) is
the contribution from the EFT modification to the time delay, and ω is the frequency of
the scattered wave. In addition to demanding δT (ω) > 0, notions of infrared causality
[70, 60] were also used in the requirements for preserving causality. In short, the EFT’s
contribution to the time advance should be resolvable within the valid EFT regime. This
is, −δT (ω) ≳ 1/ω to be considered acausal, where a bound on ω is also set by requiring
that the scattering process should remain in the EFT’s regime of validity.

Considering that the theory should remain causal in the description of physical phe-
nomena, and considering that we have observed BHs of conservatively M ≈ 5M⊙

7. The
bound (ΛM)−6 < 0.04 would then imply that Λ−1 ≲ 4.3 km.

Table 2.3.2 summarizes the constraints discussed in this section on the lengthscale Λ−1

at which modifications to GR are incorporated through dimension-six and dimension-eight
operators.

As we have just reviewed, the current constraints are in the order of Λ ≈ km−1. How-
ever, one might wonder how modifications at these length scales have not been ruled out
by experiments that probed GR in way shorter length scales. Effects from these types of

7There is some evidence [178, 4, 125] for candidate BHs in the M ≈ 3M⊙ range, putting the constraint
at Λ−1 ≲ 2.6 km
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operators should be measurable at energies of E ≈ 10−2eV (Λ/km−1)4/5 in the lab. The key
difference between the experiments that can probe gravity at such length scales/energies
and those of GWs is that in the latter the curvature is large. The assumption is then that
the UV completion of these theories is such that if the curvature is sufficiently small then
the modifications to GR are also small at length scales shorter than Λ−1.

To end this section, it is important to remark that none of these studies has been able
to draw constraints using the full inspiral, merger, and ringdown waveform. This is mainly
because such waveforms are not available for this type of higher derivative EFT theory.
The goal of the works in this thesis is to push forward in enabling the nonlinear studies
necessary to generate these waveforms. The availability of full waveforms could not only
help to improve constraints on relevant parameters like Λ−1 through direct use of these
waveforms in data analysis studies. These waveforms could also be used to understand
where and in what fashion possible deviations arise in GWwaveforms from higher derivative
theories. This would help in the construction of phenomenological models used in tests of
violations of GR. Furthermore, such waveforms can be used to identify the limitations of
solutions obtained in the linear regime, for example, to attest whether a given order in a
PN expansion captures all the relevant effects. Additionally, the QNMs extracted from the
ringdown portion of such waveforms can fill holes in the parameter space due to the lack
of rapidly rotating BH8 solutions in these theories.

8Rapidly rotating solutions can be obtained as the end state of BH binary merger simulations.
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Chapter 3

Dealing with Pathologies: Fixing the
Equations and Order Reduction

3.1 Fixing the equations

In the previous chapter, we have alluded to the importance of defining a well-posed initial
value problem if we intend to obtain reliable predictions from a theory. For the theories
discussed in section 2.3, achieving a formulation with such properties becomes exception-
ally challenging. In general, gravitational theories formulated from effective Lagrangians,
including high-order terms in curvature operators, tend to possess field equations involv-
ing higher derivatives of the metric (for example, equation (2.56)), which are in general of
unknown mathematical type. Nonlinearities in derivatives are also of common appearance
in such theories, and in addition to higher-order derivatives, can result in a handful of
pathologies that can make their initial value problem ill-posed; among them, the appear-
ance of ghost degrees of freedom due to higher-order time derivatives, loss of uniqueness,
and dynamical change of character of the equations, for example, from hyperbolic to ellip-
tic, (see [74, 153, 161, 29, 151, 86, 95]). Furthermore, some of those pathologies materialize
as an uncontrolled growth of high-frequency modes, rendering any perturbative expansion
in derivatives outside its applicability regime. It is important to note that the standard
mathematical approach to analyze PDEs [1] –where the high-frequency limit is examined–
creates tension with EFT. Such a regime is incompatible with the very assumptions of the
EFT to build extensions to GR. Different techniques can be applied to deal with these
issues at the linear regime, and as we have seen in section 2.3.1, predictions are readily
available. However, these issues pose significant roadblocks in obtaining predictions in the
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nonlinear regime, where numerical simulations are necessary and techniques used at the
linearized level are not applicable. In such circumstances, the need for a practical ap-
proach to deal with these shortcomings becomes of maximum importance. In this section,
we will introduce the alternatives proposed to deal with these issues: The Perturbative
Order Reduction and the Fixing the Equations techniques.

The Perturbative Order Reduction technique deals with higher derivatives and prob-
lematic terms by effectively transforming them into sources. These sources are computed
by evaluating such terms on the solutions of the “unmodified” equations. Schematically
the procedure can be summarized as follows, starting from the full equations,

G(g) = ϵM(g), (3.1)

where G(g) are the unmodified part of the equations ( for example, the Einstein tensor),
and ϵM(g) contains the modifications to the theory, which might include higher-derivatives
and problematic nonlinearities on the lower-order derivatives. By solving the unmodified
equations G(g0) = 0 (for example, solving for the metric in the evolution of binary BHs
merging), the solution g0 is obtained. Then this solution can be used to evaluate the
modifying terms to define a source S(g0) = ϵM(g0), and then solve,

G(g1) = S(g0), (3.2)

where now solving for g1 is equivalent to solving the original problem with the presence of
a source S(g0). In principle, such a procedure can be iterated until the solution reaches
some convergence threshold. In practice, such iterations could become increasingly costly;
furthermore, if the assumption is that the theory and equations are valid to order ϵ, then the
g1 solution should also be valid to that order, and further iterations would be unnecessary.
This has been the approach several works took in performing the evolution of BH binary
mergers for higher derivative theories like dCS [149, 151, 150], massive dCS [160], and
Hordenski-type theories like EsGB [184, 171] and EdGB [148]. It is relevant to mention that
in the cases where corrections to the GW emission were computed, this was done by solving
linearized perturbations of the metric in the background described by the uncorrected
solution g0

1. Schematically, this would be equivalent to solving,

G0(h1) = ϵS(g0), (3.3)

where h1 is the perturbation, and G
0 is the linearized operator around the g0 background.

Since the equations being solved are linear, solving for one value of ϵ is enough to know

1In these works, corrections to the metric enter at order ϵ2. These corrections are proportional to ϵϕ,
where ϕ is the extra scalar field present in these theories, and ϕ is of order ϵ.
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the result for any value of ϵ. This approach does not come without shortcomings. The
existence of secular growth in the amplitude of the GW corrections is quite apparent in
their results. Such growth gets aggravated the earlier in the inspiral the corrections are
turned on. There is also the problem of the lack of back-reaction in the orbit of the BHs;
due to corrections, the system is expected to radiate at a different rate than the unmodified
theory, hence tightening the orbit at a faster/slower rate. This approach can not capture
this. These issues are consequences of the linear nature of this approach, which is ultimately
not self-consistent. Given this, the corrections to the GW should not be trusted unless a
method is devised which can account for and correct the secular growth, see [94] for such
a proposal using a renormalization-group-based approach.

The Fixing the Equations approach was proposed in [56] as an alternative to the meth-
ods presented above. This approach introduces a suitable modification to an original
truncated theory in favor of a fixed theory, where the mathematical pathologies have been
dealt with, and nonlinear studies are possible. A guiding principle of this methodology
is that physical phenomena should be unmodified at the scales the truncated theory is
deemed valid. This is achieved by effectively controlling and dampening the spurious high
frequencies that would otherwise be sourced and grow uncontrollably. The failure to con-
trol a strong energy flow into smaller scales would take the relevant system away from
the validity regime of any truncated expansion in derivatives. The inspiration of [56] to
treat ill-posedness in modified gravity theories comes from Israel-Stewart’s formulation of
relativistic viscous hydrodynamics [122, 120, 121]. The usual formulation for studying
relativistic fluids relies on a gradient expansion on the fluid variables up to second order,
i.e., a truncated theory. This approach has pathologies when dissipation is included in
the model; well-posedness is lost, acausal propagation takes place, the system undergoes
a runaway energy transfer to shorter wavelengths, and the theory leaves the regime of
applicability since higher-order gradients are relevant. In essence, Israel-Stewart’s solution
to this issue consists of restoring hyperbolicity by promoting all the contributions (let’s
call them M) to the equations that do not correspond to the perfect fluid and contain the
problematic nonlinearities, to new dynamical variables. These new variables are evolved
with ad-hoc evolution equations that guarantee their values asymptote the value of M .
The timescale at which the new variables are dampened to M is controlled by a parameter
that sets a scale, let’s call it τ . This parameter also determines the wavelengths at which
the new formulation strongly dissipates energy. This dissipation prevents the system from
having significant energy runaways to high-frequency modes, forcing the nonlinear terms
to remain subleading. The system is kept in the long-wavelength regime, where the gradi-
ent expansion is valid; this is both an assumption and a consequence. It is important to
remark that this procedure is consistent with the desired physics only if the system of con-
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sideration possesses the feature that energy does not preferably flow to higher frequencies.
This happens to be the case for viscous relativistic hydrodynamics in 2+1 dimensions. In
such case, a semi-conserved quantity called enstrophy [130] guarantees a preferential flow
of energy to lower frequency modes. Then for the 2+1 case, the Israel-Stewart formulation
is valid to provide solutions that truly represent the physical scenario of interest and that
capture features of the underlying non-truncated theory.

Schematically, [56] proposes the following methodology. Starting from (3.1), M(g) are
promoted to new dynamical variables Π and are given evolution equations as follows,

G(g) = ϵΠ, (3.4)

σS(Π) + τ∂tΠ = −(Π−M(g)), (3.5)

where σ and τ are the fixing parameters and are related to the damping scales of the
system. Here S(Π) represents some operators, which could be, for example, differential
operators, which could or not be necessary to guarantee a controlled evolution of the
system. In the absence of S(Π), it is clear that deviations of Π away from M(g) are
dampened at a timescale set by τ . As remarked earlier, the success of an approach like
this depends on the assurance that the long wavelength properties of the system remain
unaltered. Studying the dependence of the solution to variations in the values of τ and σ,
and the choice of S(Π), can serve to attest whether physics is being spoiled in the process.
There should be a range in the parameter space of fixing parameters, likely where the
timescales set by such parameters are smaller or comparable to the lengthscales modifying
the theory, where the solutions should be independent or very weakly dependent on the
value of such parameters. The failure to achieve such independence would indicate that the
system is naturally sourcing higher frequencies and that the approach is dissipating them
at different rates, altering relevant physical phenomena in the process. This would be the
case in some gravitational scenarios; in critical gravitational collapse, shorter and shorter
wavelengths arise as the collapsing fields get arbitrarily focused, and gradients become
extremely large. In such conditions, an approach like Fixing the Equations would not be
able to describe the relevant physics accurately; in such scenarios, any effective description
relying on a truncated expansion in derivatives would be inapplicable. However, it is not
far-fetched to believe that scenarios like BH binary mergers could be scenarios where these
techniques would be applicable. Simulations on GR do not show a significant transfer of
energy to higher frequencies, not even in the highly nonlinear regime of the merger itself.
Furthermore, GW events do not show signs of strong energy cascades into the UV, which
suggests that the underlying gravity theory governing such events disfavors such processes.

Some implementations of the Fixing the Equations method were studied in [56]. In
particular, they studied such implementation at the linearized level on equations with
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common pathologies to the ones encountered in modified gravity theories. We review
a slightly modified version of one of these examples in Appendix A. In particular, [56]
shows how this technique successfully removes blowing-up modes in the original equations
while preserving the physics at the long wavelength regime. A follow-up work [16] further
studied the numerical implementation of this technique in the context of a particular EFT
[46] that stood as a truncation of a know UV complete theory. In particular, [16] studied
the effectiveness of mimicking the solutions of the UV theory by the implementation of the
Perturbative Order Reduction and Fixing on the pathological truncated theory, task for
which the latter method showed more concrete results.

Chapter 4 of this thesis is based on our work applying the Fixing the Equations for the
first time in a theory of modified gravity and performing simulations of highly dynamical
scenarios in spherical symmetry. Chapter 5 is based on the work extending the work
discussed in Chapter 4 to simulations of the dimension-eight EFT of gravity for BH binary
mergers.

3.2 Order reduction

When the equations of motion of a theory are higher than second-order time derivatives,
it is almost universal that its Hamiltonian is unbounded from below. This leads to an
instability and, nonphysical solutions, known as the Ostrogradski instability [152]. In the
context of particle physics, this is not an unusual scenario when considering EFTs, where
higher-order derivatives are common. A completely healthy UV complete theory does not
imply that its corresponding EFT will be free of these instabilities [46]. Furthermore, the
extra degrees of freedom that come from the higher derivatives and cause the instabilities
(ghosts) are usually unphysical from the EFT perspective. This is the case if the mass of
such fields is above or around the energy cut-off of the EFT. These are good arguments
against discarding EFTs with such pathologies and, instead, attempting to find a way to
extract physical and well-behaved solutions from them. In [173], similar arguments are
presented to defend the idea that it is not necessary to restrict to second order in time
theories of the Lovelock[138] and Horndeski[118] type as proposals for modified gravity. In
particular, [173] demonstrates how higher-derivative operators can be cast into a lower-
derivative form by applying EFT techniques. A simple and illustrative example of how to
use one of these techniques is presented in [173]. This example is instructive enough to be
repeated in the thesis in appendix B. In particular, example B shows how sometimes the
space of solutions of a higher order theory is larger than expected, requiring then extra
initial conditions which can be associated with solutions that do not represent solutions
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of the UV complete theory. The example also presents the implementation of a technique
called Order reduction (not to confuse with the Perturbative Order Reduction discussed
in the previous section) that helps to recast the problem into second order in derivatives.
In this thesis, we will use an order reduction technique to deal with higher-than-second
derivatives in the equations. This technique is applied in conjunction with the Fixing the
Equations approach in Chapters 4 and 5, and on its own as done in Chapter 6.
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Chapter 4

Single black hole nonlinear dynamics
in Effective Field Theory extension
to GR

4.1 Introduction

In the introduction, we discussed how extracting predictions in the nonlinear regime faces
multiple formal and practical challenges for most candidate alternatives to GR. On the
formal side, there is uncertainty on whether different theories can define a well-defined ini-
tial value problem in the regimes of interest (nonlinear, strongly gravitating, and possibly
highly dynamical). At the practical level, the desire to discern possible signatures with
complex theories requires involved (and typically costly) numerical simulations, a problem
that is exacerbated—and in many cases rendered formally impossible— due to the mathe-
matical challenge alluded to above. In section 3.1, the Fixing the Equations was introduced
as a possible methodology to deal with the aforementioned difficulties. The benefits of this
approach have been demonstrated in a few simplified model problems [56, 16] and we now
explore its application within the context of a challenging extension to GR inspired by EFT
considerations [84], which also explicitly unearths several delicate issues. In this chapter,
adopting spherical symmetry for simplicity, we illustrate the application of the method and
address a number of required steps. In particular, we discuss the construction of initial
data consistent with the theory (and in passing also contrast with the Perturbative Order
Reduction approach), the evolution of the system, and the impact of modifications to GR.

This chapter is organized as follows. In section 4.2, following [84], we briefly discuss the
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theory adopted considering, in our case, also a minimally coupled self-gravitating scalar
field in the theory. We also present the steps involved in considering equations of motions
governed by second order in time derivatives (but general spatial derivatives). Section4.4
describes the construction of initial data, deferring to section 4.6 the results obtained and
potential implications in section 4.7. We include in the appendices C convergence results.
Lastly, we employ geometrized units (G = c = 1), use early Latin letters in the alphabet to
denote spacetime indices and use the latter part of the Latin alphabet for spatial indices.

4.2 Model

4.2.1 EFT and field equations

To fix ideas and adopt a sufficiently challenging model, we here take an extension to GR
constructed from an EFT point of view. In such an approach, one introduces no new degrees
of freedom in the theory—as they are integrated out—and parameterizes new physics
through a suitable low-energy/long-distance expansion. New physics enters through local
interactions organized in terms of powers that depend on some given scale [47]. Here, we
consider the extension presented in [84], which we defined in section 2.3 as the dimension-
eight operator theory. In this work, we include a minimally coupled scalar field to endow
the target system (as we consider spherical symmetry) with non-trivial dynamics 1. We
note that [84] builds the action for the EFT, requiring that the theory respects unitarity,
causality, and locality and includes no new light degrees of freedom. These requirements
are consistent with writing the most general Lagrangian by adding to the Einstein Hilbert
action’s terms constructed out of the Riemann tensor and suppressing them by a curvature
scale comparable to the scale probed by gravitational wave observations. The action for
this EFT reads,

Seff =
1

16πG

∫
d4x

√−g
(
R− C2

Λ6
− C̃2

Λ̃6
− CC̃

Λ6
−
+ . . .

)
, (4.1)

where C ≡ RabcdR
abcd and C̃ ≡ RabcdR̃

abcd, with R̃abef = ϵab cdR
cdef , and the + . . . corre-

spond to sub-leading contributions.

Notice, however, that the EFT built this way starts with correction at Λ−6 as it is
restricted to the vacuum. More generally, in principle, other orders could be present

1As argued in 2.3 in the non-vacuum case, interactions would give rise to corrections at Λ−2.
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depending on assumptions made. For concreteness, however, we here stick to the model
in [84] so as to work in a highly demanding (i.e., with respect to the order of derivatives to
deal with) setting to stress our approach. To simplify somewhat the computational cost,

we will also restrict to the case Λ̃−6 = Λ−6
− = 0.

We thus consider the action above and include a minimally coupled scalar field to obtain
non-trivial dynamics. The equations of motion are,

Gab = 8πTab +
1

Λ6

(
− 8CR c

a Rbc + 8 C RcdRacbd + 4 C R cde
a Rbcde −

1

2
gabC2 − 4C∇a∇bR

− 32Rdefg∇(aR
c
b)∇cRdefg + 8C∇c∇cRab + 32Rdefg∇cRdefg∇cRab + 8R c d

a b ∇d∇cC
)
,

(4.2)

∇aTab = 0. (4.3)

with Gab the Einstein tensor and Tab the standard scalar field stress-energy tensor with
no potential. Besides the presence of Tab, the main difference between the field equa-
tions (4.2) with those in [84] is the appearance of terms with involving Rab and R, which
vanish in their case. Modifications to GR in this theory are governed by involved higher-
derivative/nonlinear terms on the right-hand side of Einstein’s field equations. Demon-
strating that our proposed method is capable of handling these equations is a central goal
of this work.

4.2.2 3+1 splitting

We now discuss how we express our equations in a way amenable to numerical integration.
To this end, we must face three particular issues: (i) define a 3+1 initial value problem by
a suitable spacetime decomposition, (ii) address the problem of higher than second-time
derivatives in the resulting equations, (iii) address the related problem of higher-order
spatial derivatives and the issue of well-posedness.

To start, we adopt the standard spacetime decomposition of spacetime in 3+1 form
by introducing a spacelike foliation, with intrinsic metric γij, extrinsic curvature Kij, and
auxiliary lapse/shift variables {α, βi}. Further, we adopt the (symmetric hyperbolic for-
mulation, in the absence of corrections) “Generalized Harmonic” (GH) formulation of
GR[91, 157, 135]. The full set of equations can be expressed as:

Gab = 8πTab + ϵMab, (4.4)
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where we have also replaced Λ−6 for ϵ.

Then the full system can be written as,

∂⊥γij =− 2αKij, (4.5a)

∂⊥Kij =α
[
R

(3)
ij − 2KikK

k
j − π̃Kij

]
−DiDjα− αD(iCj) − καγijCT/2

− 8πGα [Sij − γij(S − ρ)/2]− ϵα
[
SMij − γij(S

M − ρM)/2
]
,

(4.5b)

∂⊥α =α2π̃ − α2HT , (4.5c)

∂tβ
i =βjD̄jβ

i + α2ρi − αDiα + α2H i, (4.5d)

∂⊥π̃ =− αKijK
ij +DiD

iα + CiDiα− καCT/2− 4πGα(ρ+ S)− ϵ

2
α(ρM + SM),

(4.5e)

∂⊥ρ
i =γkℓD̄kD̄ℓβ

i + αDiπ̃ − π̃Diα− 2KijDjα + 2αKjk∆Γijk + καCi

− 16πGαji − 2ϵαjiM ,
(4.5f)

∇aTba =0, (4.5g)

with the constraints,

CT ≡ π̃ +K, (4.6a)

Ci ≡ −ρi +∆Γijkγ
jk, (4.6b)

H ≡ K2 −KijK
ij +R− 16πGρ− 2ϵρM , (4.6c)

Mi ≡ DjK
j
i −DiK − 8πGji − ϵjMi , (4.6d)

where K ≡ γijKij, Di and D̄i are the covariant derivatives for the three-metric γij and the
background 3-metric γ̄ij respectively. The derivative operator ∂⊥ is defined as ∂⊥ = ∂t−Lβ,
where Lβ is the Lie derivative along the shift vector βi. We define ∆Γijk :=

(3) Γijk−(3) Γ̄ijk,
where these are the Christoffel symbols for the induced metric and background metric
(flat in spherical coordinates) respectively. We also define HT := Hana, where na is the
normal vector to the spatial hypersurfaces defined by the spacetime foliation (note, for
completeness sake we include the gauge source vector Ha for reference but in our studies
it was sufficient to adopt Ha = 0). We also introduce new dynamical variables π̃ and ρi

through equations (4.5c-4.5d) to make the system (ignoring the extensions to gravity) first
order in time derivatives. Sij, S, ρ and ji are the matter variables constructed from the
Energy-Momentum tensor Tab as, Sij = P a

i P
b
j Tab, its trace S = γijSij, ρ = nanbT

ab, and
ji = −P ianbTab. Here the definitions for SMij ,S

M , ρM and jiM are analogous to the ones
for the matter sources, but instead of using Tab, we use Mab. In addition, we now have
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also included now equation (4.5g) that determines the evolution for the matter degrees of
freedom.

Let us now analyze the nature of the additional terms Mab we have incorporated into
Einstein’s equations. All these terms contain nonlinear combinations of derivatives of
metric components with a combined scaling of λ−8 (with λ the local wavelength). In
particular, terms contain derivatives of order as high as fourth. Thus, such terms are
present for the effective sources SMij , S

M , ρM and jMi (4.5). Well-posedness has now clearly
gone out the window. Both the presence of high-order time derivatives—which bring forth
so-called Ostrogradsky’s instability[152]— as well as higher order spatial derivatives (of
both even and odd orders) doom prospects of defining well-posed problems for general cases.
However, restriction of the initial data considered and control of potential pathologies
introduced might enable obtaining well-posedness. In what follows, we describe how these
issues are addressed.

4.2.3 Time derivative order reduction of the modified equations

We now turn our attention now to dealing with higher-than-second-order time derivatives.
To do so, we follow an order reduction approach (e.g. [173]) whereby higher time derivatives
are expressed in terms of spatial derivatives by repeated use of the field equations.

For presentation clarity, we illustrate this approach schematically and ignore con-
tributions from the matter terms. First we rewrite system (4.5) in terms of variables
ga = {γij, α, β} by means of equations (4.5a),(4.5c), and (4.5d). Then equations (4.5b),
(4.5e) and (4.5f) can be cast as,

∂2ga

∂t2
= ∆a(g, ∂bg, ∂

2
i g) + ϵMa(g, ∂bg, ∂

2
b g, ∂

3
b g, ∂

4
b g) +O(ϵ2), (4.7)

where ∆a represents the contributions of GR that, as (g, ∂bg, ∂
2
i g) indicates, depend only

on the variables ga, their first spacetime derivatives, and their second spatial derivatives.
The symbol Ma encodes the contributions of extensions to GR’s equations which depend
on the variables ga, their first, second, third and fourth spacetime derivatives. Now, take
equations (4.7) to O(ϵ),

∂2ga

∂t2
= ∆a(g, ∂bg, ∂

2
i g) +O(ϵ), (4.8)

and define higher time derivatives of the ga variables by suitable derivatives of (4.8). For
instance, the third time derivative would be given to this order by,

∂3ga

∂t3
=
∂t∆

a

∂t
(g, ∂bg, ∂

2
b g, ∂b∂

2
i g) +O(ϵ). (4.9)
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Notice the right-hand side of (4.9) depends on second-time derivatives of the ga variables,
which can be re-expressed through (4.8). This procedure can be repeated to express all
higher than second-order time derivatives appearing on the right-hand-side in terms of
spatial derivatives (of high order) while keeping time derivatives to at most first order.

Armed with these definitions, and replacing in Mab → M̃ab, one has

M̃ab =Mab +O(ϵ), (4.10)

and can re-express the Ma terms in equations (4.7) to yield the “time reduced” evolution
equations which are unchanged to O(ϵ),

∂2ga

∂t2
= ∆a(g, ∂bg, ∂

2
i g) + ϵM̃a(g, ∂bg, ∂b∂ig, ∂b∂

2
i g, ∂b∂

3
i g) +O(ϵ2), (4.11)

Finally, we reintroduce variables ua = {Kij, π̃, ρ
i} (through (4.5a),(4.5c), and (4.5d)) to

present the system in first order in time form for the whole set of variables va = {ga, ua},
∂ua

∂t
= ∆a(v, ∂iv, ∂

2
i g) + ϵM̃a(v, ∂iv, ∂

2
i v, ∂

3
i v, ∂

4
i g) +O(ϵ2). (4.12)

Equations (4.5) and (4.6) are modified solely by replacing SMij , S
M , ρM and jiM by SM̃ij ,

SM̃ , ρM̃ and ji
M̃
, constructed using the tensor M̃µν instead of the tensor Mµν . The only

time derivatives are on the left-hand side of the equations, while the right-hand side has
up to third-order spatial derivatives for the {ua} variables, and up to fourth order spatial
derivatives for the {ga} variables. Later on, we will use a similar strategy to deal with the
constraint equations when constructing consistent initial data.

Before moving on, we note that in the case of spherical symmetry, there is yet another
step we can take. One can make use of the constraint equations (and their spatial deriva-
tives) (4.6c) and (4.6d) to replace high-order spatial derivatives of metric variables in Mµν

in terms of (higher) derivatives of the scalar field. For convenience, we do so here, and, as
a result, our equations of motion will not display derivatives of higher than second order
in the metric. Instead, there will be non-linear combinations of derivatives up to order two
in the metric and higher derivatives of the scalar field.

4.2.4 Fixing the equation

Having removed all higher order time derivatives, we are not done, as even without potential
Ostrogradsky instabilities, there is a long road ahead to ensure the well-posedness of an
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initial value problem. The existence of higher order derivatives (in this case of the scalar
field), and nonlinear terms describing products of up to second-order spatial derivatives
(of the metric variables) are responsible for a variety of problems preventing the definition
of a well-posed problem (at the analytical and, therefore, numerical levels). For instance,
in [56], several examples of simple toy models illustrate the problematic behavior that
higher derivatives can bring. Clearly, a suitable approach must be devised even to aspire
to explore the theory of interest. As mentioned, at present two options are being explored
to address this issue: (i) “Reduction of order” procedure2 and (ii) “Fixing the Equations”.
In this work, we choose the latter approach. We will devote this section to giving details
on the implementation of this technique. Further details and motivations for this approach
can be found in [56, 16]. At its core, such an approach introduces an evolution prescription
to the higher-order terms to ensure high-frequency modes are controlled.

To this end, we introduce a new dynamical tensor Πab with an evolution prescription
to dynamically constrain it to M̃ab (and with initial data Πab = M̃ab). We write system
(4.12) (omitting the O(ϵ2) symbol) as,

∂ua

∂t
= ∆̃a(v, ∂iv, ∂

2
i g) + ϵΠa, (4.13)

τ
∂Πab

∂t
= −(Πab − M̃ab(v, ∂iv, ∂

2
i v, ∂

3
i v, ∂

4
i g)), (4.14)

where now Πa is computed using the tensor Πab instead of the tensor M̃ab. Equations (4.14)

are ad-hoc equations introduced to control Πab to approach M̃ab in a timescale given by the
free parameter τ . (Note, τ has dimensions of time; throughout this work, specific values
will be given to it with respect to the total massM of scenarios considered.) The particular
form of equation (4.14) is not unique though it should not be crucial as long as the solution
remains well-behaved and within the domain of applicability of the EFT. In such a scenario,
the physics obtained would be independent of the choice of equation and the value of the
damping timescale τ . This approach controls the behavior of short wavelength modes in
the original equations while preserving the physics at the long wavelength regime.

We thus arrive at the final form of the equations that are now ready for numerical
implementation. Notice that in equations (4.5) and (4.6) one replaces SMij ,S

M , ρM and
jiM by SΠ

ij ,S
Π, ρΠ and jiΠ, which are constructed with Πµν instead Mab. Additionally, one

incorporates equations (4.14) for the evolution of the new dynamical variables Πµν .

2While related, this is not to be mistaken with the time reduction of order used in the previous section.
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4.3 Target problem

We study a simple case that is dynamic and in which non-linearities become relevant. To
this end, we consider the dynamics of a spherically symmetric spacetime minimally coupled
to a scalar field that induces non-trivial dynamics in the problem. The line element for
our problem is,

ds2 = (−α2 + grrβ
2)dt2 + 2βgrrdrdt+ grrdr

2 + r2gT (dθ
2 + sin2 θdφ2). (4.15)

In these coordinates the general form of the tensor M̃µν encoding the extension to GR
takes the form,

M̃ab =




M̃tt M̃tr 0 0

M̃tr M̃rr 0 0

0 0 M̃T 0

0 0 0 M̃T sin
2 θ


 , (4.16)

with four independent components. The structure Πµν is also of the form of (4.16).

The equation of motion for the massless scalar field (4.3) is,

∇a∇aϕ = 0, (4.17)

and we introduce the new variable Σ defined by,

Σ :=
1

α
(β∂rϕ− ∂tϕ), (4.18)

to also express the scalar field evolution equations in terms of first order in time derivatives.

4.4 Initial Data & implementation

We next discuss how to construct initial data that is consistent with the modified theory
we are working with. The procedure is similar to the one usually followed in GR, but there
are certain unique aspects to be treated carefully.

We start with the usual conformal decomposition of the spatial metric,

γij = ψ4γij, (4.19)
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where ψ is the conformal factor and γij is a given background metric which we take to be
the flat metric in spherical coordinates. With this choice, the extension to the Hamiltonian
Constraint takes the form,

8∇2
flatψ + ψ5(AijA

ij − 2

3
K2) + 16πψ5ρ+ 2ϵψ5ρM̃ = 0, (4.20)

where Aij is the traceless part of the extrinsic curvature tensor Kij and now the additional

term 2ψ5ρM̃ contains the modifications to GR. Notice that the effective energy density
defined by extension to GR is now directly constructed using the time reduced tensor M̃µν .

The extension to the Momentum Constraint takes the form,

∇jA
ij − 2

3
∇iK − 8πji − ϵji

M̃
= 0, (4.21)

which includes the additional current-like term −ϵji
M̃
. We aim to define initial data with

traceless extrinsic curvature Kij (i.e. K = 0), so we adopt the following ansatz for Aij,

Aij =



Krr 0 0
0 −r2Krr

2
0

0 0 −r2Krr sin2 θ
2


 . (4.22)

The resulting (extended) Hamiltonian and Momentum constraints are,

∂2ψ

∂r2
= −2

r

∂ψ

∂r
− 3

16

K2
rr

ψ3
−πψ

(
∂ϕ

∂r

)2

−πψ5Σ2+ ϵ
ψ5

α2

(
−β

2

4
M̃rr +

β

2
M̃tr −

1

4
M̃tt

)
, (4.23)

∂Krr

∂r
= −2ψ−1Krr

∂ψ

∂r
− 3

r
Krr + 8πψ4Σ

∂ϕ

∂r
+ ϵ

ψ4

α

(
βM̃rr − M̃tr

)
, (4.24)

respectively.

For ϵ = 0, these are familiar forms in GR, and given appropriate boundary values, and
initial data for the scalar field, a unique solution can be found. Notice, these equations
do not depend on the gauge variables {α, βi}. However, when ϵ ̸= 0 the modifications to
gravity add terms with high order spatial derivatives, highly nonlinear terms, and even a
dependency on the gauge variables. To date, a thorough mathematical analysis for these
types of equations in general cases is still lacking. Notice, in particular, the presence of
higher derivatives require additional boundary conditions—either explicitly or implicitly
given. We have explored two ways of constructing initial data consistent with this system.
The first one involves a procedure similar to the one we used for the time order reduction in
section 4.2.3—so as to express higher derivatives in terms of lower ones—and a second one
which is essentially the iterative approach (i) mentioned in the introduction. For clarity,
we will refer to them as order reduced and iterative methods.
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4.4.1 Order-reduced direct integration (ORDI)

In this approach, one replaces high-order spatial derivatives on the tensor M̃µν by means
of equations (4.23) and (4.24) to the order desired. Schematically, to first order in ϵ, we
can write equations (4.23) and (4.24) as,

∂2ψ

∂r2
= Ψ(χ, ∂rψ) + ϵM̃ψ(χ, ∂rχ, ∂

2
rχ, ∂

3
rχ, ∂

4
rψ), (4.25)

∂Krr

∂r
= K(χ, ∂rψ) + ϵM̃K(χ, ∂rχ, ∂

2
rχ, ∂

3
rχ, ∂

4
rψ), (4.26)

were χ = {ψ,Krr} and we omit (in the presentation) the matter variables since their initial
values are chosen freely. By neglecting O(ϵ) terms in equations (4.25) and (4.26) then the
expressions,

∂2ψ

∂r2
= Ψ(ψ, ∂rψ,Krr) +O(ϵ),

∂Krr

∂r
= K(ψ, ∂rψ,Krr) +O(ϵ), (4.27)

∂3ψ

∂r3
=
∂Ψ

∂r
(χ, ∂rχ, ∂

2
rψ) +O(ϵ),

∂2Krr

∂r2
=
∂K
∂r

(χ, ∂rχ, ∂
2
rψ) +O(ϵ), (4.28)

∂4ψ

∂r4
=
∂2Ψ

∂r2
(χ, ∂rχ, ∂

2
rχ, ∂

3
rψ) +O(ϵ),

∂3Krr

∂r3
=
∂2K
∂r2

(χ, ∂rχ, ∂
2
rχ, ∂

3
rψ) +O(ϵ), (4.29)

can be used to redefine M̃ψ and M̃ψ in terms of only {ψ, ∂rψ,Krr}, so that,

Mψ(ψ, ∂rψ,Krr) = M̃ψ(χ, ∂rχ, ∂
2
rχ, ∂

3
rχ, ∂

4
rψ) +O(ϵ),

MK(ψ, ∂rψ,Krr) = M̃K(χ, ∂rχ, ∂
2
rχ, ∂

3
rχ, ∂

4
rψ) +O(ϵ). (4.30)

Finally the system of equations (4.25) and (4.26) can be redefined as,

∂2ψ

∂r2
= Ψ(ψ, ∂rψ,Krr) + ϵMψ(ψ, ∂rψ,Krr), (4.31)
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∂Krr

∂r
= K(ψ, ∂rψ,Krr) + ϵMK(ψ, ∂rψ,Krr), (4.32)

which now contains no higher-order derivatives on the right-hand side. Higher order deriva-
tives are replaced by an expansion in ϵ of lower order derivatives, and the equations are
now, in principle, solvable. For concreteness, we have restricted to first order in ϵ. For the
numerical implementation, we employ finite difference approximations, and we numerically
integrate through a Runge-Kutta 4th order. To obtain solutions, we perform a shooting
procedure in which the value of the fields on the inner boundary is found by the implemen-
tation of a Newton-Rapson method to ensure that the solutions satisfy the outer boundary
conditions (4.39) and (4.40).

4.4.2 Iterative method, full system (FSII) or order-reduced (ORII)

The procedure for constructing an iterative solution relies on constructing a solution in
terms of an expansion in ϵ where corrections are evaluated with respect to previous it-
erations. One can choose to solve for the system of equations (4.23) and (4.24)—which
involve higher derivatives. We refer to this as the full system and study its iterative (or
perturbative) integration (FSII). Alternatively, one can adopt the order-reduced form of
the equations (4.31), (4.32) and solve it iteratively (ORII). We describe the order-reduced
case (and an analogous method is employed for the FSII case).

First find solutions ψ(0) and Krr(0) for the GR equivalent (4.27). Then with this zeroth

order solution all the components of M̃µν can be evaluated to an approximation M̃µν(0).
Next one can find solutions ψ(1) and Krr(1) for,

∂2ψ(1)

∂r2
= −2

r

∂ψ(1)

∂r
− 3

16

K2
rr(1)

ψ3
(1)

− πψ(1)

(
∂ϕ

∂r

)2

− πψ5
(1)Σ

2

+ ϵ
ψ5
(0)

α2

(
−β

2

4
M̃rr(0) +

β

2
M̃tr(0) −

1

4
M̃tt(0)

)
,

(4.33)

∂Krr(1)

∂r
= −2ψ−1

(1)Krr(1)

∂ψ(1)

∂r
− 3

r
Krr(1) + 8πψ4

(1)Σ
∂ϕ

∂r

+ ϵ
ψ4
(0)

α

(
βM̃rr(0) − M̃tr(0)

)
.

(4.34)

This way the terms proportional to ϵ on (4.33) and (4.34) act simply as source terms in
the equations. This procedure can of course be iterated to obtain ψ(j) and Krr(j).
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4.4.3 Matter source

We adopt a largely in-falling scalar field pulse towards a black hole,

ϕ(t, r) =
Φ(u ≡ r + t)

r
, (4.35)

with,

Φ(u) = Au2 exp

(
−(u− rc)

2

σ2

)
, (4.36)

where A, rc and σ are the pulse amplitude, center, and width, respectively. Thus, the
matter source variables take the following initial values,

ϕ0 = Ar exp

(
−(r − rc)

2

σ2

)
, (4.37)

Σ0 =
ϕ0

α

(
β

(
1

r
− 2(r − rc)

σ2

)
−
(
2

r
− 2(r − rc)

σ2

))
. (4.38)

and as many spatial derivatives of ϕ0 as required.

4.4.4 Boundary conditions

To solve the initial data equations boundary conditions must be specified. In principle,
given the high (fourth) order in derivatives of the original equations (4.23) and (4.24), then
up to second derivatives or third derivatives should also be prescribed at the boundaries.
However, we have modified these equations via either the iterative or the order-reduced
approaches to eliminate these high-order derivatives. As a result, one is implicitly speci-
fying these derivatives. In particular, in the order-reduced options high order derivatives
are expressed in terms of lower order ones as in equations (4.27), (4.28) and (4.29). In the
full system iterative integration approach these boundary conditions are redefined at each
iteration by means of the previous iteration solution’s derivatives.

We explicitly prescribe,

ψ|rout = 1 +
M

2rout
, (4.39)

∂ψ

∂r

∣∣∣∣
rout

= − M

2r2out
, (4.40)

Krr|rin = 0 (4.41)
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Also, for simplicity, we choose the initial values of the gauge variables to be α(t = 0) =
1 and β(t = 0) = 0. This choice simplifies (4.23), since β = 0 removes, except the

term proportional to M̃tt, all other modifications to GR. Furthermore, the only non-zero
modification term in equation (4.24) is the one proportional to M̃tr, which vanishes for
Krr = 0. Consequently, since Krr = 0 on the inner boundary, Krr(r < R) ≃ 0 with r = R
the radius at which the scalar field source is not trivially small.

4.5 Evolution equations & implementation

Having presented the evolution equations (4.13), (4.14) and (4.17) (reduced to first-order
form via (4.18) for convenience) we implement them numerically in the following way. We
adopt a method of lines to integrate in time through a Runge-Kutta 4th order which CFL
coefficient set as dt = 0.2 dx, where dt denotes the time step and dx the spatial (uniform)
grid spacing. Our uniform grid extends from ri = 0.2M to ri = 240M , and our typical
resolution for production runs is dx = 0.019M . Spatial derivatives are discretized via Finite
Differences operators satisfying summation by parts (SBP) (see e.g. [48, 49, 142, 141]), of
6th order for inner points and 3rd order at the boundaries, and we excise the black hole
interior. We implement Kreiss-Oliger dissipation with operators that are 5th order at the
boundary and 6th order at the interior points [76].

4.6 Results

4.6.1 Initial data

We now obtain solutions with the three methods described for different values and discuss
their salient features.

Order-reduced & full system solutions

To quantify the performance of the different methods ORDI, ORII, and FSII we monitor
the residual of the original equations (4.23) and (4.24) (which requires evaluating up to
fourth-order derivatives of the metric) or their order reduced version (containing up to
second-order derivatives of the metric). We focus first on results obtained with ORDI
and ORII. For this set of simulations, we take the initial scalar field to have amplitude
A = 1× 10−3, to be centered at rc = 20M and of width σ = 1.
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Figure 4.1: Residuals of equation (4.23) for the iterative solutions as a function of the
iteration step. The constant horizontal lines represent the residuals from the ORDI solu-
tions for comparison purposes. The different resolutions used are dx = 0.018M , dx/2 and
dx/10. The residuals of the iterative solutions approach those of the ORDI solutions after
a sufficient number of iteration steps. (We note in passing the convergence order measured
for solutions obtained with the ORDI and the ORII methods—for a sufficient number of
iterations in the latter case—is consistent with the 4th order accuracy of our solver.)

Figure 4.1 displays, for the case ϵ = 0.01, the order reduced residual of the extended
Hamiltonian constraint (eqn. (4.23)) for solutions obtained with the ORDI and ORII
approaches as a function of the number of iterations performed. The figure shows the
results with spatial resolutions dx = 0.018M , dx/2, and dx/10. For the iterated option
(ORII), several iterations are required to converge to the solution, which, in turn, depends
on the spatial resolution. For higher resolutions, a larger number of iterations is required
to achieve such a solution. The ORDI method provides a solution that, from the get-go,
gives a residual consistent with that obtained via the iterative method in the “asymptotic”
(large number of iterations) regime. Figure 4.2 shows the same residual but now for dif-
ferent values of ϵ and a single discretization resolution. As can be appreciated, a higher
number of iterations is required in the ORII method to obtain the solution for larger val-
ues of the coupling. The ORDI method, on the other hand, achieves such a solution at once.
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It is important, however, to also examine the behavior of the FSII. To that end, we
contrast the norm of the extended Hamiltonian residual—in full form, i.e., not the order
reduced one— equation (4.23) evaluated with the solution obtained with the ORDI and
FSII methods. Figure 4.3 shows the residual norm for dx = 0.009M as a function of ϵ.
For small coupling values, the residual obtained with the FSII method converges with a
higher power of ϵ for more iterations, but this behavior degrades as the coupling increases.
This is a consequence of “corrections” to the Hamiltonian in GR becoming too strong and
a related loss of convergence with iteration. The solution provided by the ORDI method
gives an error consistent with the expected ϵ2 behavior as the original Hamiltonian was
reduced to such order (as discussed, this can be formally improved to higher order in a
rather direct fashion).

The behavior of residuals obtained from the extended momentum constraint is simple
for our adopted free data. In this equation, the contributions from the extension are non-
zero only close to the matter sources. Indeed, having chosen an initial scalar field profile
supported far from the black hole, the beyond GR terms are significantly smaller than
the matter terms. As a consequence, the different methods provide solutions of similar
accuracy (the latter with just one iteration) in all cases studied. Of course, this behavior
need not be true for other boundary conditions, gauge choice, or location of matter sources.

From these studies, one can draw that, in broad terms, the different approaches can be
exploited to obtain solutions reaching comparable accuracy. In the ORII iterative method,
a sufficient number of iterations must be however performed. This number is dependent
on truncation error (i.e., governed by dx) and physical (i.e., ϵ) parameters. The ORDI
method, on the other hand, produces a residual only dependent on truncation error (with
respect to the order-reduced form of the constraint). Finally, the FSII approach yields
an increasingly accurate solution in terms of ϵ for sufficiently small couplings, but conver-
gence is lost for stronger ones. We note in passing that these results also provide some
sense of the error magnitude that can accumulate using a perturbative method during the
evolution. Depending on the number of iterations (or the perturbative order kept), an
error of the order seen in figure 4.2 would arguably be introduced, and its accumulation
over the time-length of the simulation can be significant unless the coupling considered is
sufficiently small.

Henceforth, we will adopt the solutions obtained with the ORDI method to study the
behavior of perturbed black holes in this theory.
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Figure 4.2: Residuals of equation (4.23) for the iterative solutions with respect to the
number of iterations and for a range of coupling values for dx = 0.009M . The horizontal
dashed lines represent the residuals from the ORDI solutions.

Solutions’ dependence on the coupling parameter

It is informative to examine the dependence of the apparent horizon on the coupling pa-
rameter ϵ. Figure 4.4 displays the apparent horizon areal radius and its change as the
coupling ϵ increases for our initial data. The figure shows the value of the areal radius of
the apparent horizons found numerically with our solutions as well as with the analytical
(perturbative) solutions found in [54] as a function of ϵM−6. A fit to our numerical data
of the form rHA = 2M + s ϵM−6 + q (ϵM−6)

2
gives s = 1.234 and q = −3.179. This

is in agreement with the expression obtained from the analytical (linear) solution where
sanalytical = 1.25. Recall that while the equations giving rise to the solution of [54], and ours
are linear in ϵ, the solutions will differ at higher orders due to boundary conditions and our
solution with the ORDI method, which, in essence, provides a resummed solution. Thus,
differences at order ϵ2 are expected. Figure 4.4 illustrates both curves; as ϵ increases,
the quadratic contribution leads the numerical solutions peeling off the analytical ones,
with respect to the apparent horizon radius, though the difference is smaller than 3% for
ϵ = 0.05M6.
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Figure 4.3: Full-form Hamiltonian residual norm for ORDI and FSII solutions for dx =
0.009M as a function of ϵ.

To get a sense of the differences (magnitude and radial dependence) introduced by the
correcting terms, figure 4.5 shows the relative difference between the conformal factor ψ
obtained for different values of ϵ and the GR solution (ϵ = 0). Departures from the GR
solution, while very small asymptotically, become larger as the radius decreases, reaching
values above 1%.

4.6.2 Dynamical behavior

We now turn our attention to the dynamical evolution of a (mainly) incoming self-gravitating
scalar field configuration with different choices for its amplitude A together with several
values for the coupling parameter ϵ. The values of dx = 0.019M , σ = 0.018M , and
rc = 20M are fixed for all the results presented in this section.

As the evolution proceeds, a common qualitative behavior is seen in all cases; namely,
much of the scalar field falls towards the black hole interacting with it while a small portion
of the initial scalar field leaves the computational domain in a short time (afterward, the
resulting spacetime has an asymptotic mass Mas = 0.9998 in the domain explored by

52



0.0 0.005 0.01 0.02 0.03 0.04 0.05

ε/Μ
6

2

2.01

2.02

2.03

2.04

2.05

2.06

r A
[M

]

Numerical
Analytical

Fit , Quadratic

0 0.0001 0.0005 0.001
2

2.001

2.0005

2.0015

Figure 4.4: Areal radius of the apparent horizon for different values of the coupling ϵ,
for initial data with A = 0. Black dots correspond to our numerical solutions, the black
dashed line represents the quadratic fit to such data and the red solid line represents the
areal radius of the horizon for the analytical solutions found in [54].

the numerical implementation). To provide a quantitative understanding of the ensuing
dynamics, we focus on the behavior of the: apparent horizon, quasi-normal behavior of the
scalar radiation and suitable geometric invariants.

Apparent horizon

As the scalar field falls into the black hole, the area of the event horizon (an thus its mass)
grows but a closer inspection reveals a subtle and a priori unexpected dependence on ϵ.

Figure 4.6 shows the apparent horizon area (normalized by the initial area in the ϵ = 0
case) as a function of time for different values of the coupling parameter ϵ. All of the
simulations used to make Figure 4.6 present a black hole with initial irreducible mass
Mi = 0.8933 a final mass of Mf = 0.9998, while the initial mass of the full spacetime is
M = 1.0 and the amplitude of the scalar pulse is A = 1× 10−3.
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Figure 4.5: Relative difference (ψϵ=0 − ψϵ)/ψϵ=0 for different values of the coupling param-
eter ϵ as a function of the coordinate radius r. The gray vertical line is included to guide
the eye, indicating the apparent horizon locations( which vary with ϵ) .

The overall behavior for all of these curves is similar; namely, the horizon grows as
scalar field energy is accreted until it reaches an approximately stationary state describing
a black hole with a mass up to ≈ 12% larger. The case with ϵ = 0, as expected, gives rise
to a non-decreasing behavior of the apparent horizon area. However, subtle details can be
seen with ϵ ̸= 0, which are more marked for larger values of the coupling parameter.

First, one observes an initial transient growth in the apparent horizon area even though
no scalar field energy has been accreted. This behavior is not surprising, however, as it
related to the initial data adopted, which is non-stationary. The future development of the
initial data after the transient stage reveals a transition to a new intermediate (i) stage
when the apparent horizon area does not change until the (main) accretion stage ensues. At
late times, the solution is described by an essentially stationary final (f) configuration. The
asymptotic state described by the apparent horizon (and thus an excellent approximation
to the event horizon), can be understood by computing the fraction Aϵ(Mf )/A0(Mf ) of
the black hole and compared it to the fraction Aϵ(Mi)/A0(Mi) at the initial time, or with
the area during the intermediate stage. In figure 4.7 we show these quantities as well as
the one corresponding to the analytical solution from [54] as a function of ϵ. As this figure
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Figure 4.6: Area of the apparent horizon as a function of time for different values of ϵ.
All curves are normalized by the corresponding initial area in GR (i.e., ϵ = 0). The initial
irreducible mass for all cases is Mi = 0.8933, the final Mf = 0.9998, and the total mass of
the spacetime M = 1.0.

shows, the curves for intermediate and late-time solutions match the curve for the analytical
solution at small couplings and for the corresponding masses. Indeed, a quadratic fit of
the form Aϵ/A0 = 1 + s ϵM−6

e + q (ϵM−6
e )

2
to our data to the area gives, si = 1.251 and

sf = 1.252 (here Me is the irreducible mass estimated during the intermediate and final
stages respectively: Me = 0.8933 or Me = 0.9998). These values agree with the analytical
(linear) solution sa = 1.25. Furthermore, the obtained values of qi and qf are also consistent
with each other.

Second, and at first sight surprising, one sees a momentary small decrease in the area
of the apparent horizon as the scalar field interacts with it; this behavior is more marked
for larger values of ϵ. This effect, when seen through the lens of GR can be traced to
the failure of the null convergence condition (NCC). In such cases, the area of the event
horizon—and hence that of the apparent horizon—can decrease in size [110, 111, 22].

To examine the NCC, we monitor R± ≡ Rabk
a
±k

b
±, where k

a
± are the only (up to multi-

plicative factors) future-directed null vectors present in spherical symmetry. Their expres-
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sions are given by:

ka± =

(
1,−β ± α√

grr
, 0, 0

)
(4.42)

Figure 4.8 shows the value of R− evaluated at the apparent horizon as a function of time
for several values of ϵ. Clearly, the NCC is violated at all times for the ϵ ̸= 0 solutions,
and this violation becomes more marked as the coupling ϵ increases.

Figure 4.9 presents a snapshot of R− as a function of coordinate radius r at coordinate
time t = 150M for different values of ϵ. The NCC violations They are not only present in
the vicinity of the apparent horizon but persist in the whole spatial domain.

Similar results are found for R+, for which the NCC is also violated. The violation of
the NCC also stresses that the dynamics within extensions to GR can display surprising
phenomena that must be understood for potential implications on gravitational wave data.
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Figure 4.8: R− evaluated at the apparent horizon as a function of coordinate time t for
several values of ϵ.

Ringing and QNM

In GR, the (linearized) study of perturbed black holes reveals a quasi-normal behavior
where the radiation fields (scalar, vector or tensor modes) are largely described by a set
of exponentially decaying oscillations with decay rate and oscillation frequency tightly
tied to the black hole parameters (mass and angular momentum). While the existence of
analog modes for black holes in generic EFT-motivated theories have not been rigorously
analyzed, at an intuitive level, a similar behavior is expected if black holes in such theories
(and within the EFT regime) are stable3. We here study this behavior for the scalar field
in spherical symmetry (l = m = 0), which we fit to a behavior given by,

ϕ(t, r) =
∞∑

n=0

cn exp(iωn(t− r)), (4.43)

3After all, perturbations are described still by propagating waves in a leaky cavity—losing energy into
the black hole or radiated to infinity—and the spacetime is described by a small set of parameters {M,J, ϵ}
which would determine the decaying/oscillatory behavior.
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gray vertical line is included to guide the eye, indicating the apparent horizon locations.)

where ωn are complex frequencies and n is the overtone index. As expected, a behavior
akin to the familiar quasi-normal ringing is observed, as can be appreciated in figure 4.10
which shows the scalar field behavior at a large distance vs. time. The field is dominated by
the presence of damped oscillations with a subtle dependence on ϵ. This figure also shows
a transition between a QNM behavior and a power-law tail-dominated one. The power
law exponent we observe on these curves is t−3 and is thus consistent with analytical and
numerical predictions for this mode in the GR case.

For a quantitative analysis, we focus on the least damped l = m = n = 0 mode. We
extract the value of the field at an areal radius rA = 60M for three cases defined by initial
amplitudes of the scalar field, a weak one of A = 10−9, and two strong ones with A = 10−3

or A = 1.5 10−3) centered initially at coordinate radius r = 20M and width σ = 1.0M .
In the strong field cases, the final mass of the black hole increases by ≈ 12% and ≈ 32%
respectively after accretion. We extract both the real, ωR, and imaginary ωI frequencies
and focus on their dependence on the coupling parameter ϵ. Figure 4.11 illustrates our
results taking the ratio of the obtained values with respect to the ones for the GR case.
The QNM frequencies values obtained for the GR simulation (ϵ = 0) are ωR = 0.109 and
ωI = 0.104 and are within 1% from the known values predicted by linear perturbation
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Figure 4.10: log(|ϕ|) at areal radius rA = 60M as a function of coordinate (i.e., asymptotic)
time for a wide range of values of ϵ.

theory [132, 31]. As can be appreciated in the figure, there is a somewhat larger deviation
for ωR than for ωI . A general, simple, quadratic fit for both cases is,

ωR = ωRGR(1− 0.54ϵ+ 0.77ϵ2), (4.44)

ωI = ωIGR(1 + 0.45ϵ− 1.33ϵ2). (4.45)

Furthermore, we have observed that this scaling is independent of the initial amplitudes A
of the scalar field and of the timescale τ introduced in equation (4.14). We have found that
this scaling is in good agreement with the analytical study of QNM frequencies for black
holes in higher derivative theories [51] (including the one studied here). In our notation,
their predictions translate to:

ωRanalytical = ωRGR(1− 0.503ϵ), (4.46)

ωIanalytical = ωIGR(1 + 0.484ϵ). (4.47)

The discrepancy in the correcting factor is ≈ 7% between our numerical prediction and
their perturbative, analytical treatment.
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Figure 4.11: Relative QNM frequency for the strong and weak field cases as a function
of ϵ. The solid lines in the plot are quadratic fits to the numerical data. The obtained
parameters are in agreement between the weak and strong field cases.

Curvature invariant

As a final step, we monitor the scalar curvature invariant C ≡ RabcdRabcd to obtain further
insights on the spacetime.

Figure 4.12 shows the value of CN ≡ 4/3 CM4
H (normalized this way as CN = 1 for

a Schwarzschild black hole) evaluated at the apparent horizon as a function of time for
different values of the coupling parameter ϵ (where MH is the irreducible mass of the
apparent horizon, an ϵ-dependent quantity in this theory). Note that the ϵ = 0 curve
departs from 1 only when the black hole is accreting the scalar pulse, and the Schwarzschild
geometry does not describe the local solution. For non-zero coupling values, CN departs
further from 1 as ϵ increases. Since the black hole grows via accretion, the difference
with respect to the value for Schwarzschild decreases after it increases as corrections in the
theory are governed by curvature. Turning our attention to the transient (accreting) stage,
fluctuations induced by accretion vary strongly with ϵ, both in amplitude and functional
dependence. This indicates interactions of the black hole and the scalar field are strongly
modified in this theory. The figure also includes two curves (τ = 0.002 and τ = 0.005)
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Figure 4.12: CN ≡ 4/3 CM4
H evaluated at the apparent horizon as a function of t for

different values of ϵ. The case ϵ = 0.05 is also presented with a longer time scale τ = 0.005.

for the strongest coupling case (ϵ = 0.05) to illustrate our results are independent of the
timescale τ .

Figure 4.13 shows the values of CN (evaluated at the apparent horizon) as a function
of ϵ at two particular times, t = 10M and t = 150M , that describe black holes that are
approximately stationary during the intermediate and final stages. Additionally, we include
the analytical value computed with the black hole solution found on [54] and fits to our
numerical values. The most evident feature of this figure is the apparent departure of our
numerical solutions from the linear result, (which gives by CN = 1−33/4 ϵ(MGR

H )−6 (where
MGR

H is the irreducible mass of the black hole in the ϵ = 0 case.) for large enough values
of ϵ. Performing a cubic fit of the form CN = 1 + s ϵ(Me)

−6 + q (ϵ(Me)
−6)2 + c (ϵ(Me)

−6)3

to our data points, the fitted values of the linear term coefficient for the t = 10M and
t = 150M solutions are s = −8.22 and s = −8.23 respectively. The results for the linear
coefficients are in good agreement with the value s = 8.25 obtained with the analytical
solution. We note that if CN is plotted as a function of ϵ(Me)

−6 then the curves drawn for
t = 10M and t = 150M match to an excellent degree.

In figure 4.14 we show the behavior of of CS ≡ Cr6A/(48M2
e ) as function of the areal

radius rA for t = 150M for a wide range of ϵ values along with the linear analytical
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dotted red lines display the prediction of CN(rH) from the solutions obtained in [54] for
masses of M = 0.9998 and M = 0.8933 respectively.

predictions for this quantity. At far distances from the black hole, all curves approach the
value 1 expected for a Schwarzschild black hole as expected—since corrections decay at a
high rate with distance. The quantity peels off from the Schwarzschild value close to the
black hole, and while such behavior is more marked—inside the black hole—it is non-trivial
in its outer vicinity.

4.7 Discussion

In this chapter, we illustrated the implementation of a method to control the presence of
higher derivative terms in extensions to GR. Using reduction of order techniques, we traded
higher-time derivatives to eliminate Ostrogradsky’s type ghosts and through the use of the
fixing the equations method [56] we controlled higher-spatial derivatives. This combined
approach allows us to treat highly complex non-linear theories with higher derivative con-
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tributions in a non-iterative fashion (which can also be referred to as non-perturbative from
the point of view of how correcting terms are handled. See e.g. [151] for such a perturbative
approach).

We illustrated the benefits of proceeding this way by studying the dynamics of a self-
gravitating scalar field in a spherically symmetric black hole spacetime within a theory
displaying derivatives up to 4th order and corrections to GR (with combined gradient co,
requiringλ−8Λ−6). We described how initial data can be constructed directly integrating
the resulting constraint equations and contrasted the solution with those obtained with
iterated/perturbative approaches. Our results demonstrate that, for sufficiently weak cou-
plings, the solutions agree, but for larger ones there is increasing disagreement, and a
larger number of iterations might be required to achieve a sufficiently small residual. In
particular, this observation gives a sense of the potential size of the error that would be
incurred and accumulated in dynamical studies utilizing an iterated approach restricted to
just the first correction (or treated perturbatively to first order).
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Studying the future development of data describing a scalar field perturbing a black hole
in such theories, we observed the apparent horizon can reduce in size due to the NCC being
violated. The scalar field also displays a QNM behavior reminiscent of that familiar in GR,
but with decaying and frequency rates that differ more strongly for larger couplings. In
particular, we find that the relative differences in decay rate and oscillatory frequency scale
as ≃ 0.5ϵ. These results can help further inform approaches to parameterize deviations
from GR signals by making explicit connections with putative theories.

We note a potential further challenge at a practical level; namely, accurately evaluating
high derivatives requires sufficient precision. Otherwise, a significant loss of accuracy might
ensue. This point can be relevant in deciding the most convenient discretization technique
at the numerical level. Alternatively, it is tempting to employ field redefinitions to (attempt
to) reduce higher derivatives as non-linear combinations of lower order ones (see e.g. [173]).
The extent to which this program would be successful will depend on the particular theory
being explored. Regardless, even if one could reduce all higher derivatives to, at most
second-order ones, one would still face mathematical obstructions (see e.g. [153, 161, 29,
128]). At a practical level, this would require an approach like the one explored in this
work to control them.

Finally, while this study is restricted to a particular theory and within the simpler
setting of spherical symmetry, the robustness, and generalities of the techniques adopted
give strong backing for their use in general scenarios.
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Chapter 5

Black hole binary mergers in
Effective field theory extension to GR

5.1 Introduction

In the previous chapter, we demonstrated how it is possible to conduct studies of highly
nonlinear gravitational spacetimes in the context of an EFT extension to GR. In this
chapter, we go a step further to consider less restrictive (e.i., no symmetry assumptions)
scenarios, which are also extremely relevant from an astrophysical standpoint. This is to
study the evolution of BH binaries in quasi-circular orbits all the way to the merger. This
scenario requires further considerations not arising in the previously simplified regimes;
here, the BHs will move through the grid to reach relativistic speeds, so the strategy we
employ has to be able to properly track this motion. In spirit, the methods used in this
chapter are the same as the ones used in 4, both a Fixing strategy and Order Reduction
will be used to recast the equations in a form we can evolve numerically. However, the
specific implementation of these methods differs to better adapt to the scenario of interest.
To build up to the binary scenario, we first study a simplified prototypical example as well
as the single-boosted BH scenario. With these new considerations, we are able to carry
out simulations in the binary merger scenario and study the effects of modifications on the
dynamics and the GW emission.

The chapter is organized as follows. In section 5.2, we present the theory of interest
and the relevant field equations. Section 5.3 presents a prototypical example of a higher-
derivative wave-like equation. The treatment of this toy model helps to motivate the
proposed treatment of the gravitational system, which is presented in section 5.4. Details
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of the initial data prescription and the evolution scheme are detailed in sections 5.5 and
5.6, respectively. Results for the single boosted BH case are presented in section 5.7, while
results for the binary BH scenario and GW emission are discussed in section 5.8. Sections
5.9 and 5.10 discuss considerations in the choice of fixing parameters and the choice of
fixing equation, respectively. The chapter concludes in section 5.11 with a discussion.
Further details on excision and convergence are presented in Appendix D. Lastly, we employ
geometrized units (G = c = 1), use early Latin letters in the alphabet to denote spacetime
indices, and use the latter part of the Latin alphabet for spatial indices.

5.2 Focusing on a specific theory

While we could take any of a plethora of proposed beyond GR theories –almost all sharing
the problems alluded to earlier–, for definiteness here we consider a specific extension to
GR derived naturally from EFT arguments [84]. In this approach, high energy (i.e., above
the cut-off scale) degrees of freedom are integrated out, and their effects are effectively
accounted for through higher-order operators acting on the lower energy ones. For the
case of gravitational interactions, in vacuum, assuming parity symmetry and accounting
for the simplest contribution, such an approach yields under natural assumptions:1

Ieff =
1

16πG

∫
d4x

√−g{R− 1

Λ6
C2 + · · · }, , (5.1)

where C = RabcdR
abcd and the coupling scale Λ has units of [MS]

−1 for some scale MS. The
equations of motion are Gab = 8 ϵHab, with Gab the Einstein tensor, ϵ ≡ Λ−6 and

Hab = C
(
□Rab −

1

2
∇a∇bR− 1

16
Cgab −RacR

c
b +RcdRacbd +

1

2
RadecR

dec
b

)
(5.2)

+2(∇cC)
(
∇cRab −∇(aRb)c

)
+R c d

a b ∇c∇dC .

Hab is covariantly conserved since it is derived from an action possessing local diffeo-
morphism invariance.

In GR (ϵ = 0) the resulting EOMs can be shown to define a hyperbolic, linearly
degenerate, nonlinear, second order, PDE system of equations with constraints (e.g., [163]).
With suitable coordinate conditions, characteristics are given by the light cones and do not

1Other operators at this (and even lower) orders can be considered, though without loss of generality
with regards to our goals, we ignore them here to not overly complicate the presentation.
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cross –thus shocks or discontinuities cannot arise. The right-hand side (RHS), however,
spoils all these considerations. Derivative operators higher than second order appear –
which render the equations outside formal PDE classifications. How is one to approach
the study of this problem? First, one can simplify the EOMs somewhat by applying an
order reduction and replacing the Ricci tensor and the Ricci scalar. Since in this work we
consider vacuum spacetimes R ∼ O(ϵ), the contribution of the Ricci tensor to the RHS
is O(ϵ2) and we can ignore it at the order that we are considering. We are left with the
following EOMs at O(ϵ):

Gab = ϵ
(
4 CW cde

a Wbcde −
gab
2

C2 + 8W c d
a b ∇c∇dC

)
, (5.3)

whereWabcd is the Weyl tensor since Rabcd = Wabcd+O(ϵ). Then, C = WabcdW
abcd. System

(5.3), containing derivatives up to fourth order of the spacetime metric (in ∇a∇bC), has
no proper classification within PDE theory.

5.3 Prototypical model

For interacting binaries one must deal with strong curvature regions which move and, cru-
cially, merge. A successful general strategy must account for the backreaction of corrections
onto the motion itself. Otherwise, at least secular terms will spoil the accuracy (and hence
usefulness) of the solution [16, 149, 159]. As a preliminary challenge, consider the following
model that captures key aspects of the problem,

□ϕ = −ϵ ∂4t ϕ , (5.4)

with □ denoting the standard d’Alembertian in Cartesian coordinates and a RHS, which
spoils its mathematical character. At an intuitive level, one would regard the RHS as
introducing small modulations on a solution that travels at the speed of light (assuming
both a small parameter ϵ and regarding ϕ described by long-wavelength modes). However,
a straightforward analysis indicates that the higher time derivatives lead to ghost modes
that grow without bound. One can try to address this issue by ‘order reduction’. That is,
replacing: (A) ∂4t ϕ ≈ ∂2tC(ϕ), with C(ϕ) = ∂xxϕ (the RHS of ∂2t ϕ at zeroth order), or even
(B) ∂4t ϕ ≈ ∂4xϕ. Depending on the sign of ϵ, Option (A) leads to high-frequency modes
not propagating or blowing up, while (B) leads to even faster blowing up modes or acausal
propagation. Neither is consistent with the intuition above. Generically, high-frequency
modes are problematic.2 While in linear problems a frequency cut-off could be introduced,

2Recall, numerical implementations continuously feed high-frequency modes through the discretization
employed.
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in nonlinear ones, such a strategy is uncertain due to mode couplings potentially feeding
long wavelengths into short ones, and vice versa. The challenge is to control the equation,
render the problem of interest well posed and achieve a method that incorporates the effect
of corrections contemplated by the theory at long wavelengths while sensibly controlling
short wavelengths; and, doing so without unduly increasing the cost of obtaining trustable
solutions. In particular, it should allow inquiring whether a significant flow to the UV
takes place, which would indicate that the original theory generically abandons the EFT
regime for problems of interest –unless such UV flow takes place hidden behind a stable
horizon. If the opposite is the case, to consistently incorporate the effect of corrections to
the theory. To address this challenge, starting from option (A) above,3 we fix the equation
as

□ϕ = −ϵ ∂2t Ĉ , (5.5)

τ∂0Ĉ + σ(∂2t − 2βi∂ti + βiβj∂ij)Ĉ = C(ϕ)− Ĉ , (5.6)

with ∂0 = ∂t − βi∂i and βi an “advection” vector. The resulting second-order system
determines the evolution of the variable Ĉ that is damped towards the “source” C(ϕ) on
a timescale σ/τ . Notice that a non-trivial stationary solution such that C(ϕ) = Ĉ cannot
be achieved for non-zero values of τ and σ (as the RHS is damped to zero, the left-hand
side would continue to source it otherwise). The difference between Ĉ and its target value
C(ϕ) decreases with τ and σ, and ultimately these parameters should be chosen to minimize
this difference while preserving numerical stability. To demonstrate the effectiveness of Ĉ
accounting for C(ϕ) (which we call “Tracking”) and the numerical stability of the fixed
system, we carried out a parameter exploration of τ and σ. We implement a 1D simulation
in a periodic domain of size L = 200, discretized by a uniform grid, sixth-order accurate
spatial derivatives, Runge-Kutta of fourth order for time stepping, and Kreiss-Oliger dis-
sipation with ∆t/∆x = 1/4. As initial data, we adopt ϕ(0, x) = 10−3 e−

1
2
(x−100)2 , with

Ĉ = ϕ,xx and {ϕ,t = ϕ,x; Ĉ,t = ϕxxx} and fix ϵ = 10−3. We also choose βi = δix, coincident
with the speed of propagation of the main pulse in the uncorrected equation. During the
evolution, beyond the advection of the main ‘pulse’, the solution develops a distinctive long
oscillatory tail as a result of the “correcting term”, without high-frequency modes spoiling
it. We evolve the system until the spatial extent of the tail becomes comparable to the size

of the domain and compute a tracking measure as: T (C, Ĉ) = ||C(ϕ)−Ĉ||2
||C(ϕ)||2 . This is shown

in figure 5.1 for a range of {σ, τ}, overall obtaining good tracking. Notice the existence
of a region where evolutions fail for values of σ < 10−4 as the equations become stiff, but
we checked that a smaller timestep resolves this issue. Second, T improves linearly with

3Which is the most closely associated to our desired problem.
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Figure 5.1: Tracking T for several values of σ and τ for a fixed value of ϵ = 10−3. In red
we display the simulations that failed due to instabilities, and in blue the stable ones.

decreasing σ. Third, there is a linear dependence of T with τ for large values, while it
flattens for smaller ones and T depends only on σ.

5.4 Gravity and Black holes

We turn now to the demanding task of simulating dynamical BH spacetimes (with single
boosted BHs and binaries) in the chosen EFT extension to GR. Motivated by the previous
discussion we fix the system (5.3) by introducing a new independent variable Ĉ in the
following way,

Gab = ϵ
(
4 ĈW cde

a Wbcde −
gab
2

Ĉ2 + 8W c d
a b ∇c∇dĈ

)
(5.7)

(
∂2t − 2βi∂ti + βiβj∂ij

)
Ĉ =

1

σ

(
C − Ĉ − τ∂0Ĉ

)
, (5.8)
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where second-time derivatives of the metric in the RHS are replaced –following a reduction
of order strategy– using the zeroth order Einstein equations. The resulting system of
equations involves at most second-time derivatives and Ĉ is damped to the physical C on
a timescale ≃ σ/τ (for our choices, up to ≃ 10MS, which is shorter than any dynamical
timescales in the system). As a result, beyond a lengthscale ≃ σ1/2 (for our choices, up
to ≃ 0.2MS) the the system reduces to the original one, while shorter ones are damped
and controlled, and we can explore even shorter scales through suitable extrapolation of
our results. Notice that the operator ∂0 with the advection vector (corresponding to the
shift vector in the 3+1 decomposition) helps ensuring inflow towards the BH(s). As we
shall see, this is enough to control the whole system. That a single scalar suffices to do so
is related to such scalar encoding the only contribution of higher derivatives. Controlling
it results in an overall effect ensuring high-frequency modes are kept at bay. Depending
on the structure in other theories, one might need to introduce further quantities (see,
e.g., [93]). Nevertheless, the overall strategy remains unchanged.

5.5 Initial data

We define initial data by a single (for the single BH case) or a superposition of boosted
BHs as described in GR and dynamically “turn on” the coupling ϵ, bringing it from 0
to the desired value with a quadratic function in a window t ∈ [10, 30]M . This allows
the coordinate conditions to settle before incorporating deviations from GR, inducing only
smooth constraint violations (which are damped through the now standard use of constraint
damping [40, 108]) and by-passing the solution of initial data problem within the EFT
theory. This task in itself has also received limited formal and numerical attention. Again
the presence of higher derivatives obscures the treatment.4

For initial data in the single BH case, we use a boosted BH solution derived from the
conformal transverse-traceless decomposition [134, 185, 186], which uses an approximate
conformal factor solution to the Hamiltonian constraint, valid for small boosts. For the
binary BHs, we adopt Bowen-York-type-of initial data [39] describing two superposed equal
mass, boosted, non-spinning BHs in a quasi-circular orbit. The individual masses are
mi ≈ 0.5M , i = 1, 2, and the separation is D ∼ 12M (initial orbital frequency ≃ 0.025/M).
The momenta are tuned so this binary is initially in quasi-circular motion, and in GR it
describes 12 orbits before the merger (the initial BHs velocities are similar to those in the
single boosted BH case).

4See [59] for the case of a perturbed BH in spherical symmetry and [127] for the construction of initial
data in scalar-tensor theories of gravity.
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5.6 Evolution

We use the GRChombo code [65, 17] and the CCZ4 formulation of the Einstein equations [14]
(see also [30]) which implements the system (5.7)-(5.8) with a distributed adaptive mesh
refinement capabilities,5 using 6th order finite difference operators for the spatial derivatives
and the method of lines for time integration through a Runge Kutta of 4th order.6 In this
way, we only need to use three ghost cells along each coordinate direction. We adopt a
standard 1+log slicing condition for the lapse α and the Gamma-driver for the shift βi, as
implemented in the public version of the code and adopt Sommerfeld boundary conditions
at the outer boundaries. We redefine the damping parameter κ1 → κ1/α to ensure that it
remains active inside the apparent horizon (AH) [15]; we decrease the damping parameter
in the shift condition as well as increase σ in (5.8) at large distances from the center of
the binary to ensure that no violation of the CFL condition arises due to grids becoming
coarser with our explicit time-stepping strategy (e.g., [164]). Otherwise, the chosen values
for the constraint damping, shift, and lapse conditions are {κ1 = 1, κ2 = −0.8, κ3 = 1, α2 =
α3 = 1, α1 = 2, η1 = 0.75, η2 = 1/M} ([65]). In the code, the additional evolution equation
(5.8) is implemented in the obvious first-order form. We excise a region of the interior of
BHs as in [86], which removes the role of correcting terms, achieving stable evolutions with
unduly high resolution.

With the total ADM mass M of the system setting a scale, our domain for the boosted
BH case corresponds to the quadrant x ∈ [−L,L] and y, z ∈ [0, L] as symmetry allows
for restricting it. We adopt L = 384M with the coarsest grid spacing (for production
runs) ∆ = 2M ; we then add another six levels of refinement. For the BH binary case, the
computational domain, exploiting symmetries, is given by x, y ∈ [−L,L] and z ∈ [0, L]. In
this case, we adopt L = 512M and coarsest grid spacing (for production runs) ∆ = 4M ; we
then add another 8 levels of refinement (for convergence tests we consider up to ∆ = 8/3M
and the same number of refined levels). We extract the gravitational waves at six equally
spaced radii between R = 50M and R = 100M and extrapolate the result to null infinity.
In both cases we use the second (spatial) derivatives of the conformal factor7 χ to estimate
the local numerical error and determine whether a new level of refinement needs to be
added; in addition, we fix the spatial extent of certain refinement levels to ensure that the
resolution at the chosen extraction radii is high enough. Lastly, we choose a scale value
|ϵ| = 10−5M6

S, which implies a coupling scale for new physics beyond GR of Λ ≈ 7/MS ≃
5Here we use a 2:1 mesh refinement ratio.
6We use 6th Kreiss-Oliger dissipation with a dissipation coefficient σdiss = 2 (e.g., [49]).
7Recall that the conformal factor χ is one of the evolution variables in the CCZ4 formulation and it is

related to the induced metric on the spatial slices γij as χ = 1/(det γ)
1
3 .
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5M⊙/MS km−1. Notice for this small scale, correction effects will be undoubtedly subtle,
with consequent high accuracy requirements to capture them. Here we undertake a first
study mainly focused on demonstrating the ability of the method to control the system.
We will concentrate on assessing this and obtaining a qualitative description of observed
consequences. We consider both signs for ϵ, the negative case satisfies the constraints
argued for in [72], and the positive one also provided azimuthal numbers of the solution
are not large, which is our case. We here choose a conservative scale MS = 10M⊙, i.e.,
somewhat below (but comparable) to the curvature scale set by the masses of the individual
BHs for all detected gravitational wave events. Choosing a smaller scale would imply that
the modifications become O(1) during the inspiral [165] with arguably clear imprints on
the observed signal, which is inconsistent with observations. Further, we note that it is
natural to expect the scale to remain fixed, thus the larger the BH mass, the smaller the
effect of corrections are. This observation is particularly relevant as the BHs merge, as
corrections after such regime would naturally become smaller.8 Since for larger masses
corrections would be smaller, we here focus on masses comparable to the length scale MS

we thus adopt individual BH masses mi =MS/2 = 5M⊙.

5.7 Single boosted black holes

We confirmed our strategy’s ability to evolve boosted (and stationary) BHs, with the
solution reaching a steady state behavior shortly after the corrections are fully turned
on. The solution is smooth without inducing growth in high-frequency modes or signs
of instability. Beyond GR effects are naturally larger in the BH region. By comparing
the value of Ĉ and C, we confirm the former tracks the physical one quite well and that
lower values of {σ, τ} improve the tracking behavior. Figure 5.2 shows profiles of C and
Ĉ for a fixed value of τ = 0.005 and different values of σ. Figure 5.3 illustrates the
observed behavior of T (C, Ĉ) for a collection of {σ, τ} values. Importantly, examination
of the relative difference between two values of Ĉ obtained with two different values of σ
(and analogously with C) indicates errors associated to the choice of this parameter do
not severely accumulate, thus the solution is not degraded by strong secular effects (see
Fig. 5.9). For instance, it would take ≈ 106M for the relative error for Kretschmann scalar
with σ = 0.1 and 0.05 to be of order O(1). Numerical instabilities develop for smaller
values of σ around the excision region, well inside the AH; these instabilities are sensitive
to the details of the excision. Other forms of excision could be more robust as σ is decreased

8Data analysis techniques can exploit these observations (e.g., [170, 75]).
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Figure 5.2: C and Ĉ on a line starting from the puncture and trailing the boosted BH –
where differences in tracking are larger– (at t = 75M , when all transients related to gauge
and initial data have passed) for a fixed value of τ = 0.005. The BH has mass M = 0.5
and momentum P x = 0.08M . The vertical dashed black line denotes the location of the
AH and the arrow indicates the direction of motion of the BH.

(e.g., [59]). With a successful handling of correction effects in single, moving BHs, we turn
next to the challenging setting of binary BH mergers.

5.8 Black hole binary mergers

The binary tightens due to the emission of gravitational waves, which radiate energy and
angular momentum from the system. The solution is smooth, without any signs of in-
stability throughout the inspiral, merger, and ringdown. This can be seen in Figure 5.4,
which shows snapshots of Ĉ on the equatorial plane at these different stages. Figure 5.5
shows the gravitational wave strains for different values of ϵ and contrasts them with the
corresponding one in GR. The corrections to GR and their high degree of non-linearity
and higher gradients contributions certainly tax resolution requirements. Our studies here
are not focused on quantitatively sharp answers, but on testing the approach with enough
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Figure 5.3: Bottom: T for a range of {σ, τ} computed over the profile displayed in Figure
5.2 outside the AH up to r = 5M (the results do not change by a larger integration
domain).

resolution for qualitatively informative results and contrasting them with results in GR.
In particular, we see that positive/negative values of ϵ induce a (slight) merger phase de-
lay/advance. This is consistent with expectations, where BHs in this theory have non-zero
tidal effects, encoded to leading order in the Tidal Love Number κ ∝ ϵ [54]. The binary
behavior in the inspiral regime can be captured through a Post-Newtonian analysis which
shows tidal effects induce a phase offset ∝ −κ (hence ∝ −ϵ) [89] (see also [155, 84]) for BHs
with size comparable to MS. Leading order Post-Newtonian estimates for the phase differ-
ence give ≈ ±5× 10−3 radians up to a common gravitational wave frequency (Mf = 0.01)
for negative/positive values of ϵ in Fig. 5.5. Our obtained offsets –extrapolated to σ → 0–
are consistent with the sign, though about 200 times larger (for a related study in Einstein-
Scalar-Gauss Bonnet theory see [66]).

The BHs coalesce, and the resulting peak strain is comparatively similar to that in
GR, and no significant further structure is induced in the multipolar decomposition of
the waveforms, confirming that the solution stays within the EFT regime. Furthermore,
the peak amplitude obtained when the simulation starts with the BHs are initially closer,
so that the merger takes place in only ≈ 200M , agrees with the case taking ≈ 2000M

74



Figure 5.4: Snapshots of the value of Ĉ on the equatorial plane for the EFT theory with
ϵ = 10−5, σ = 0.0625 and τ = 0.005. The black shapes surrounding each black hole’s
center indicate the apparent horizons’ approximate location.

to less than 1% relative difference. Moreover, since the merger gives rise to a BH with
roughly twice the individual masses, corrections are reduced by ≈ 2−6. Thus the final
BH is closer to a GR solution than the initial ones. This can be appreciated as well
in Figure 5.4, where Ĉ is larger for the individual BHs than it is for the BH remnant.
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Figure 5.5: Gravitational waves in GR and in the EFT theory (ϵ = ±10−5) with σ =
0.0625, τ = 0.005. Top: (ℓ,m) = (2, 2) mode of the + polarization h+22, extrapolated to
null infinity as a function of the retarded time u = t− r∗, where r∗ is the tortoise radius.
Bottom: gravitational wave phase of h22.

After the peak amplitude, the system settles quickly into a stationary BH solution. This
transition is described by an exponential, oscillatory behavior described by quasi-normal
modes (QNM). While QNM spectra have only been computed for slowly rotating BHs in
this theory [54, 51], the departure observed in decay rates is consistent with extrapolation
to higher spin values, though this is not the case in the oscillatory frequency. We note,
however, that the extracted values for the case in GR have relative errors ≈ 0.1%; since GR
corrections to the QNMs in the case studied here are subleading by an order of magnitude
such potential discrepancy can be attributed to a need for even higher accuracy to capture
them sharply.

Also, as the system approaches its stationary final state, we confirm it is axisymmetric.
Such symmetry is expected in stationary BH solutions in EFTs of gravity [117]. To assess
the axisymmetry of the final state, we evaluate two scalar quantities, namely the conformal
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angles ϕ at the equator of the common AH formed after the merger at different times
starting from such time at which a first common AH is found (tCAH = 0). The configuration
evolves towards an axisymmetric state.

factor χ on the t = const slices and Ĉ, at the intersection of the common AH with the
equatorial plane and compute their relative differences with the (arbitrary) point ϕ = 0,
where ϕ is the usual azimuthal angle on the AH two-sphere; (see figures 5.6,5.7). As time
progresses, such difference reduces significantly indicating a high degree of axisymmetry,
consistent with the result of [117].

Last, note that the difference in the innermost stable circular orbit frequency between
slowly rotating BHs in this theory and GR goes as δΩISCO ∝ −ϵ. Thus, extrapolating
this observation to general spins, and following the successful strategy to estimate the
final (dimensionless) spin in BH coalescence in GR [43], one can argue that the final BH
spin should be higher/(lower) for positive/(negative) values of ϵ as the final ‘plunge’ takes
place with a higher/(lower) contribution of orbital angular momentum to the final BH.
Cautioning that higher accuracy is required to confirm this expectation, our results are
consistent with it.
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5.9 Impact of ad-hoc parameters

The parameters {σ, τ} appearing in the evolution equation for Ĉ (5.8) are ad-hoc and de-
fine a scale.9 Their role is to control scales shorter (heavier) than theirs, thus controlling
the mathematical pathologies discussed. Naturally, the solution obtained for any set of
values of such parameters can depend on their values. Such dependency will be strong if
the solution displays a significant cascade to the UV, as in such case the system tends to
abandon the EFT regime, and the Fixing strategy would force it to remain in it, damp-
ing energy in high-frequency modes. On the other hand, such dependency could be mild,
not affecting the solution’s behavior qualitatively but might introduce minor variations in
quantitative characteristics. Whenever the Fixing strategy is employed (and arguably any
other strategy) to address the mathematical shortcomings, assessing the solution’s depen-
dency on whichever strategy is paramount. In our case, it means examining dependency
on {σ, τ}.

By varying their values, we do identify a mild dependency on them, which we trace

9The analogous parameters appearing in Israel-Stewart formulations of relativistic viscous hydrody-
namics can be related to transport coefficients of the underlying microscopic theory.
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back to the role of the advection vector βi and the terms it multiplies in (5.8), and not to a
UV cascade taking place outside the BH(s). These terms, which were introduced to ensure
advection into the BH, also affect the tracking, to a small degree, as we have seen. In
particular, the difference between Ĉ and C is linear, and increasing with σ especially where
the curvature is strong. This difference, although small, over long times affects somewhat
physical quantities or observables. One can, nevertheless, extrapolate such difference to
values of τ, σ → 0 (see also [33]). For instance, as displayed in figure 5.8 we perform such
extrapolation to obtain the time of peak amplitude of the strain for σ → 0. This figure
shows that such quantity depends linearly with σ, and the extrapolated time delay for the
peak amplitude is ≈ 30M . This extrapolation is further supported by the weak dependence
on τ and the fact that a linear behavior with σ is present in our toy model until very small
values of this parameter.

Furthermore, we can monitor the difference between values of Ĉ, or C, upon varying σ
as time proceeds. Figure 5.9 illustrates the observed behavior for the single boosted BH
case, illustrating that errors related to the value of σ accumulate slowly. Indeed, it would
take about t ≈ 106M for the relative error for Kretschmann scalar with σ = 0.1 and 0.05
to be O(1).

5.10 Choice of fixing equation

As was mentioned in the last section, we attribute the dependence of the solution on
the fixing parameters {σ, τ} to the contribution of the terms in the fixing equation (5.8)
(which in this section we will refer to as the “Advection” system) that contain factors of
βi. Analyzing (5.8) for a time-independent solution can help see why that is the case. In
that case 5.8 reduces to,

βiβj∂ij Ĉ − τ

σ
βi∂iĈ =

1

σ

(
C − Ĉ

)
. (5.9)

If we were able to perfectly track the time-independent solution of the original system, let
us call it C0, into a time-independent solution of our new variable, let us call it Ĉ0, this
would imply Ĉ0 = C0, and the fixing equation would further simplify to,

σβiβj∂ijC0 − τβi∂iC0 = 0. (5.10)

However, the time-independent solution C0 of the original system need not satisfy (5.10)
(and does not for the spherically symmetric BH). This brings us to a contradiction, and
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Figure 5.8: Retarded time for peak amplitude of h22 of BH binary mergers for a fixed value
of τ = 0.005 and several values of σ (black dots). The dashed green line is a linear fit
to the data given by the black dots. The red cross is a linear extrapolation for the peak
amplitude time for σ = 0, which has a value of tpeakσ→0 = 2247.7M , while the blue diamond
is the peak amplitude time for the GR case and has a value of tpeakGR = 2218.0M .

hence we conclude that Ĉ0 ̸= C0. The degree to which Ĉ0 differs from C0 is determined by

σβiβj∂ij Ĉ0 − τβi∂iĈ0 = C0 − Ĉ0. (5.11)

The difference between C and Ĉ can be reduced by decreasing the value of σ and τ .
However, as we discussed earlier, there is a limit two how small these parameters can be
before the simulations become unstable. A clear solution to this shortcoming would then
be to get rid of all the βi proportional terms in (5.8) and evolve with the following fixing
equation,

∂2t Ĉ =
1

σ

(
C − Ĉ − τ∂tĈ

)
, (5.12)

which we shall call the “time derivatives” system. However, we found that equation (5.12),
lacking the advective capabilities of our choice of equation (5.8), was not able to control
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the appearance of spurious noise in the vicinity of the excision region, which ultimately
grows out of proportion and the simulations crash. We can, however, point out that in the
short time before these simulations crash, the difference between Ĉ and C is considerably
smaller than the advective case.

Besides the two previously discussed fixing equations, we considered a third choice
where the Ĉ is evolved using a □ operator of the spacetime, namely,

−σ□Ĉ = −τ∂tĈ − (Ĉ − C). (5.13)

This system, which we will refer to as the “Box” system, proves to render the system
stable in a wide range of the fixing parameters {σ, τ}, the structure provided by the □
operator forces the noise generated in the excision region to fall deeper into the BH, where
ϵ → 0. However, the same shortcomings discovered for the time-independent solution in
the advection system affect this equation. For the available values of {σ, τ} the difference
between Ĉ and C tend to be considerably larger than the ones obtained for the advection
system. Figure 5.10 shows the Tracking measure T for the three different choices of fixing
equation as a function of time in the scenario of single boosted BHs. The simulations were
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Figure 5.10: Tracking measure T as a function of time for the three different choices of
fixing equation. For the three simulations, the values σ = 0.1, τ = 0.005 and ϵ = 10−5.

run with the same parameters, σ = 0.1, τ = 0.005, and ϵ = 10−5. In green dotted lines,
we show the value T for the “time derivatives” system (5.12), even though it displays
the better Tracking (≈ 1%) out of the three choices, the simulation becomes unstable at
t ≈ 30M . The value of T for the “Box” system (5.13) is displayed in orange dotted lines,
giving a tracking error of ≈ 20%. Lastly, on blue lines, we show the value of T for the
“Advection” system (5.8), the tracking error is ≈ 5% and hence bigger than in the “time
derivatives” case, but this system remains stable through the evolution. From the three
choices of fixing equation that we presented, the best choice is the “Advection” system,
and for this reason we chose it as the system to carry out the binary BH scenario.

Having understood the different limitations of the studied fixing equations, we can now
consider possible improvements. The main issue with the choices of equations that give
rise to stable evolutions, is that they can change physics at scales relevant to the dynamics
of the problem. As we saw in Figure 5.2, there are small but non-negligible changes in the
solutions close to the BH horizons. Having this in mind, let us then see what equation
should Ĉ satisfy to not alter the physics. From Bianchi’s identity, it can be shown that
the Weyl tensor in vacuum (in our case Rab = 0 + O(ϵ)) satisfies the following wave-like
equation,
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□Wabcd = −W ef
ab Wefcd + 2W e f

ac Webdf − 2W f
ead W e

bcf . (5.14)

Contracting equation (5.14) with another Weyl would give rise to the following equation
for C.

□C = 2W abcd
(
4W e f

ac Webdf −W ef
ab Wefcd

)
+ 2∇eW abcd∇eWabcd. (5.15)

With this equation in hand, it is easy to see the pieces “missing” on the right-hand side
of equation (5.13), and incorporating such terms in that equation with result in the fixing
equation,

−σ□Ĉ =− σ
(
2W abcd

(
4W e f

ac Webdf −W ef
ab Wefcd

)
+ 2∇eW abcd∇eWabcd

)

− τ∂tĈ − (Ĉ − C).
(5.16)

If we carried out the same analysis for the time-independent solutions we carried out for the
advection system, we would see that under the assumption that Ĉ0 = C0, the requirement
on C0 would be to satisfy the time-independent version of equation(5.14), which is physical,
unlike (5.10).

Even though such implementation is achievable, it is not practical and potentially
problematic. Equation (5.16) contains terms that are nonlinear in second and third-order
derivatives of the metric. Being able to eliminate higher than second-order derivatives of
the metric easily was the main motivation for using the Ĉ as the new dynamical variable.

Noticing that (5.14) contains on its right-hand side only factors of the Weyl tensor and
no covariant derivatives, the following alternative fixed system becomes appealing,

Gab = ϵ
(
4 Ĉ Ŵ cde

a Ŵbcde −
gab
2

Ĉ2 + 8 Ŵ c d
a b ∇c∇dĈ

)
, (5.17)

−σ□Ŵabcd = −σ
(
−Ŵ ef

ab Ŵefcd + 2Ŵ e f
ac Ŵebdf − 2Ŵ f

ead Ŵ e
bcf

)

−τ∂tŴabcd −
(
Ŵabcd −Wabcd

)
, (5.18)

where Ŵabcd are the new variables introduced to the system, and Ĉ ≡ ŴabcdŴ
abcd. This

system possesses another advantage besides the fact that it would bypass the issues raised
for the previously discussed alternatives. In this system, the first two terms of (5.17) no
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longer belong to the principal part, while for systems using only Ĉ as the sole new dynamical
(see (5.7)), the first of these terms still contains second derivatives of the metric. There is
the obvious disadvantage that instead of having to evolve one extra variable, namely Ĉ, the
evolution of this system involves evolving ten (the Weyl tensor has only ten independent
components) new variables. One can as well, decompose the Weyl tensor into its Electric
and Magnetic components Eij and Bij and write a system in terms of new dynamical

variables Êij and B̂ij, which also evolve through wave-like equations. We do not treat this
case in this thesis since it is still a work in progress. It is relevant to point out that this last
choice of fixing equation is directly applicable to the dimension-six operator case as well,
while the system with only Ĉ was highly tailored to the dimension-eight operator EFT field
equations.

5.11 Discussion

We have demonstrated the ability of the Fixing approach to enable studies beyond GR
theories. This approach, in particular, provides a practical way to explore phenomenology
in the highly nonlinear and dynamical regime of compact binary mergers. Especially
relevant is that it enables assessing whether the solution for cases of interest remains in
the EFT regime and the impact of corrections in gravitational wave observations. From
this first analysis, we conclude the solution remains in this regime for comparable mass,
quasicircular mergers in the observable region, i.e., the BH(s) exterior. Thus, much like in
the case of GR, a strong UV energy flow takes place inside the horizon but not in the outside
region, staying within the valid EFT regime. While in the current work we have focused on
a specific theory and scale, our choice was motivated by stress-testing the approach with
highly demanding challenges –brought by higher than second-order derivatives and in the
context of BH collisions. However, the underlying strategy is also applicable beyond GR
theories with second-order equations that can induce a change of character in the equation
of motion (e.g., [161, 93]). We note that for a particular class of nonlinear theories (with
second-order equations of motion), consistent nonlinear studies have been presented [66, 19,
32]. However, they required significant supporting theoretical efforts to identify appropriate
gauge conditions, and merging BH solutions have been obtained up to some maximum
coupling value. Otherwise, mathematical pathologies arise. Our approach, in principle,
can provide a way to explore beyond such coupling and, in general, study beyond GR
theories self-consistently. Of course, the practical application of the approach described
here should be mindful of checking results upon variations of ad-hoc parameters to ensure,
given a coupling length, scales are sufficiently resolved.
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Chapter 6

Gravitational collapse in Quadratic
Gravity

6.1 Introduction

In the previous chapters, we focused on an EFT extension to GR built using dimension-8
operators in the effective action. In the absence of matter, for example, in a binary merger
of BHs, dimension-six and dimension-eight operators are the leading and next-to-leading
order corrections. When matter is present, the leading order curvature operators in the
EFT construction are dimension-four operators (R2, RabR

ab and RabcdR
abcd). In this con-

text, neutron star (NS) binaries become one of the most relevant scenarios. Modifications
to GR may not only affect the dynamics during the inspiral and merger phases, but the
behavior and signatures of the merger remnant could also be highly altered. Given that
these theories are constructed from powers of curvature invariants, it is natural that the ef-
fects of the modifications grow with the curvature, and small black holes (BHs) would give
rise to the strongest effects. The merger of binary NSs [3] presents an ideal scenario for the
formation of some of the smallest astrophysical black holes, with masses of approximately
3M⊙. The post-merger dynamics of such an object could be one of the best windows to
observe deviations from GR [80]. Exotic formation channels for smaller BHs could result
in scenarios where such BHs interact with NSs in regimes of large spacetime curvature,
where significant corrections could arise from these types of modifications to GR 1.

The theory built from these four-dimensional operators is commonly called Quadratic

1See [78] for a study of a NS being consumed by a much less massive BH residing inside the star.
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Gravity [174], and there has been recent work performing fully nonlinear numerical simula-
tions in spherical symmetry and very recently in the BH binary merger scenario [112, 113].
However, these works have focused on the vacuum scenario, most specifically in the Ricci-
flat case, which, from the perspective of EFT, solutions and dynamics should be indistin-
guishable from GR.

In this chapter, we explore the dynamics of this dimension-four operator EFT extension
to GR in the presence of matter, where modifications should arise. For simplicity, the con-
sidered system has spherical symmetry, and we evolve the collapse of a massless minimally
coupled scalar field into a BH. There are several objectives to this work. First, we want
to present an alternative approach to that presented in [112, 113], as well as incorporate
matter into the system to study gravitational collapse. The second one is to study how
the modifying terms affect the dynamics of the system. And finally, to determine in what
region of the parameter space the system stays within the EFT description, simulations
are well-behaved, and when predictions can be trusted.

This chapter is structured as follows: In section 6.2, the four-dimensional operator
EFT, its action, and its corresponding field equations are presented. In section 6.3, the
evolution and constraint equations are presented, and the “Order Reduction” procedure
is introduced to deal with the higher derivatives in such equations. Section 6.4 contains
detailed information about the target problem and setup, including the prescription for ini-
tial data, the numerical implementation, and relevant monitoring quantities. The paper’s
main results are presented in Section 6.5. A brief discussion on the observed results and
future outlook can be found in Section 6.6. The appendices contain additional information
regarding the convergence test and constraint violations observed in the simulations. The
following notation is adopted: The beginning of the Latin alphabet (a, b, c, d, ...) will be
used to denote full spacetime indices, while the Latin letters (i, j, k, l...) will be used to
indicate spatial ones. The (−,+,+,+) signature is used, and the speed of light is set to
c = 1.

6.2 Leading order EFT, non vacuum equations

The leading order terms in an EFT extension to GR, which introduce no new light degrees of
freedom and satisfy parity symmetry, are the ones built with the dimension-four operator
curvature invariants R2, RabR

ab and RabcdR
abcd. Using the fact that the Gauss-Bonnet

invariant is topological in four spacetime dimensions, one can exclude the Riemann-squared
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term from the effective action. The effective action can be written as:

Seff =
1

16πG

∫
d4x

√−g
(
R− a1

Λ2
RabR

ab +
a2
Λ2
R2 + · · ·

)
, (6.1)

where a1 and a2 are dimensionless coefficients and Λ has units of inverse length and deter-
mines the cut-off of the EFT. Notice that in the vacuum case, since Rab = 0 + O(1/Λ2),
then these terms would be pushed to higher orders of the perturbative scheme, and six-
dimensional operators would dominate. This work includes matter in the form of a mini-
mally coupled scalar field, so these terms are the leading order operators.

Upon variation of this action, the following field equations are obtained,

Rab −
1

2
gabR +

1

2
ϵ1RcdR

cdgab + 2ϵ2RabR− 1

2
ϵ2gabR

2 − 2ϵ1R
cdRacbd

+ (ϵ1 − 2ϵ2)∇b∇aR− ϵ1∇2Rab − gab(
1

2
ϵ1 − 2ϵ2)∇c∇cR = 8πTab,

(6.2)

∇aTab = 0, (6.3)

where ϵ1 = a1/Λ
2, ϵ2 = a2/Λ

2 (which will occasionally be called couplings) and Tab is the
usual energy-momentum tensor defined as,

Tab = ∇aϕ∇bϕ− 1

2
gab∇cϕ∇cϕ. (6.4)

For convenience equation (6.2) will expressed as,

Rab −
1

2
gabR = 8πTab +Mab, (6.5)

where now Mab encompasses all modifications to the equations. The Mab tensor contains
up to 4th-order derivatives of the metric; In general, these sorts of modifications make
the task of formulating the problem as well-posed [109, 163] a challenging one, if not an
impossible one with the standard techniques. 2

2Remarkably, this theory possesses a formulation that allows to define a well-posed initial value problem
[147]. However, as we shall describe in the next section, there exists some tension between such formulation
and the EFT framework.
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6.3 Evolution equations and constraints

Before addressing the issues raised at the end of the previous section, the equations will
be first expressed in a formulation that, in the absence of correcting terms, renders the
problem well-posed. To this end, the Generalized Harmonic formulation [91, 157, 135] that
is written in terms of the usual 3+1 variables [41] is adopted. Under this formulation, the
full set of evolution equations and constraints are expressed as,

∂⊥γij =− 2αKij, (6.6a)

∂⊥Kij =α
[
R

(3)
ij − 2KikK

k
j − π̃Kij

]
−DiDjα− αD(iCj) − καγijCT/2

− 8πGα [Sij − γij(S − ρ)/2]− α
[
SMij − γij(S

M − ρM)/2
]
,

(6.6b)

∂⊥α =α2π̃ − α2HT , (6.6c)

∂tβ
i =βjD̄jβ

i + α2ρi − αDiα + α2H i, (6.6d)

∂⊥π̃ =− αKijK
ij +DiD

iα + CiDiα− καCT/2− 4πGα(ρ+ S)− α

2
(ρM + SM), (6.6e)

∂⊥ρ
i =γkℓD̄kD̄ℓβ

i + αDiπ̃ − π̃Diα− 2KijDjα + 2αKjk∆Γijk + καCi

− 16πGαji − 2αjiM ,
(6.6f)

with the constraints,

CT ≡ π̃ +K, (6.7a)

Ci ≡ −ρi +∆Γijkγ
jk, (6.7b)

H ≡ K2 −KijK
ij +R− 16πGρ− 2ϵρM , (6.7c)

Mi ≡ DjK
j
i −DiK − 8πGji − ϵjMi , (6.7d)

where K ≡ γijKij, Di and D̄i are the covariant derivatives for the three-metric γij and
the background 3-metric γ̄ij respectively. The derivative operator ∂⊥ is defined as ∂⊥ =
∂t − Lβ, where Lβ is the Lie derivative along the shift vector βi. Defining ∆Γijk :=(3)

Γijk−(3) Γ̄ijk, where these are the Christoffel symbols for the induced metric and background
metric (flat in spherical coordinates) respectively. Defining also HT := Hana, where na
is the normal vector to the spatial hypersurfaces defined by the spacetime foliation. The
new dynamical variables π̃ and ρi are introduced through equations (6.6c-6.6d) to make
the system (ignoring the extensions to gravity) first order in time derivatives. Sij, S, ρ
and ji are the matter variables constructed from the energy-momentum tensor Tab as,
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Sij = P a
i P

b
j Tab, its trace S = γijSij, ρ = nanbT

ab, and ji = −P ianbTab. Where P ia is a
projection tensor to the spatial hypersurface. Here the definitions for SMij ,S

M , ρM and jiM
are analogous to the ones for the matter sources, but instead of using Tab, we use Mab.

Let us now analyze the structure of the terms introduced by Mab, which modify Ein-
stein’s equations. These terms contain up to 4th-order time and spatial derivatives of
metric components. In addition, they contain nonlinear combinations of derivatives that
would make the usual hyperbolicity analysis [106] inapplicable. Furthermore, the constraint
equations (6.7c)-(6.7d) contain time derivatives, which are not present in the Hamiltonian
and Momentum constraints in GR. These sorts of issues are not uncommon when deal-
ing with modified gravity theories, even in Horndeski theories, which are second order in
derivatives and incorporate a non-minimally coupled scalar field, suffer from pathologies
that can render the problem of interest ill-posed [161, 29, 86, 177]. In those cases, af-
ter significant theoretical efforts, appropriate new gauges were formulated [129, 128] that
ameliorate these issues to the point where nonlinear studies of compact binary mergers are
possible [81, 66, 19, 79] for some regime of small coupling values. In the case of higher
derivative extensions to GR, fully nonlinear evolution has been performed [58, 59] for an
eight-dimensional operator EFT extension through controlling pathological higher frequen-
cies via a “fixing” method [56, 16, 131, 93] leaving the long wavelength physics unaltered.

Coming back to this paper’s theory of interest works like [112, 113] tackle these issues
by re-writing the theory following the work of Noakes [147], in which the Ricci scalar and
the traceless part of the Ricci tensor can be elevated to massive spin-0 and spin-2 fields
and are evolved with equations derived directly from the field equations of the theory.
With this prescription, they can verify numerical stability in the Ricci-flat subsector and
confirm that it is indistinguishable from GR. However, an opposing view to this method
can be formed from the perspective of EFT. The extra modes that this theory introduces
and that this approach makes explicit have masses that are above the cut-off scale of the
EFT; hence the dynamics of these modes should be irrelevant in the EFT regime [114]
3. Furthermore, depending on the signs and values of ϵ1 and ϵ2, these massive degrees of
freedom can become tachyonic, which would take them outside the regime of applicability
of the EFT. In contrast, this work, taking this intuition from EFT, will actively remove
these extra degrees of freedom by eliminating the higher order time derivatives in the field
equations via an Order Reduction [173] procedure 4. Proceeding as done in [59] (see Section
II-C of that work for more details), one can use the evolution and constraint equations to

3See [42] for a similar argument on the massive degrees of freedom in six-dimensional operators EFT.
4This Order Reduction approach is not to be confused with the Perturbative Order Reduction techniques

used in [149, 148], where order-reducing refers to replacing some problematic terms and solving them
iteratively/perturbatively.
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0th order in ϵ1 and ϵ2 to find expressions of higher order time and spatial derivatives of
the metric components in terms of lower order derivatives.

Schematically,

∂2g

∂t2
= E(g, ∂ag, ∂

2
i g) + ϵM (g, ∂ag, ∂

2
ag, ∂

3
ag, ∂

4
ag) +O(ϵ2), (6.8)

represents the evolution system of equations (6.6) written in terms of the variables g =
{γij, α, β}. Here E represents the GR terms, which depend only up to first time derivatives
and second spatial derivatives of g. M represents the terms from the modified theory,
which depend on up to fourth-order spacetime derivatives. Truncating (6.8) to order O(ϵ0)

∂2g

∂t2
= E(g, ∂ag, ∂

2
i g) +O(ϵ), (6.9)

and taking derivatives of it gives expressions to higher than second-time derivatives of g in
terms of lower order derivatives. This way (6.9) and its derivatives can be used to replace

{∂2ag, ∂3ag, ∂4ag} in M , in favor of M̃ , to obtain redefinitions of (6.8) that are lower in time
derivatives and valid to O(ϵ),

∂2g

∂t2
= E(g, ∂ag, ∂

2
i g) + ϵM̃(g, ∂ag, ∂a∂ig, ∂a∂

2
i g, ∂a∂

3
i g) +O(ϵ2), (6.10)

This way, expressions for SMij , S
M , ρM and jiM , let us call them S̃Mij , S̃

M , ρ̃M and j̃iM
can be obtained, which no longer contain higher derivatives in time and that are valid
to O(ϵ1) and O(ϵ2). Once all undesired time derivatives are eliminated, the constraint
equations, which now only contain spatial derivatives, can be used to find expressions for
some (not all) higher spatial derivative derivatives of the metric components in terms of
lower derivatives. In spherical symmetry, even though not all higher spatial derivatives
expressions are available through an order reduction of the constraints, this procedure is
enough to eliminate all higher-than-second spatial derivatives of the metric components.
During this procedure, one introduces higher-order spatial derivatives (up to third) of the
scalar field ϕ. In some way, all of the higher-order time and spatial derivatives of gravity
variables have been traded for 3rd derivatives of the scalar field. This is seen easily by
noticing that this reduction of order is equivalent to replacing Rab and R through Tab in
all the ϵ proportional terms in (6.2). One could proceed as done in the previous chapters
and control the higher frequencies via the Fixing approach. One of the objectives of this
work is to explore under what circumstances the system is well-behaved after performing
the order reduction without attempting to control the higher frequencies.
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6.4 Target problem and setup

The objective is to study this theory and its equations in dynamical scenarios where non-
linearities are important. We want to explore in which regime of the parameter space one
can carry out numerical evolution without instabilities. If such instabilities do appear, the
objective is to asses whether this happens within the regime of applicability of the EFT.
To this end, we evolve spacetimes consisting of an initial in-falling scalar Gaussian profile,
ultimately collapsing into a BH. This work will avoid treating critical collapse [61], mainly
because the EFT is doomed to be outside of its regime of validity during such a process.

Reducing the problem to spherical symmetry, the line element for this problem is given
by,

ds2 = (−α2 + grrβ
2)dt2 + 2βgrrdrdt+ grrdr

2 + r2gT (dθ
2 + sin2 θdφ2), (6.11)

where α is the lapse function, β is the radial component of the shift vector, and grr and
gT are the radial and angular components of the spatial metric γij.

The equations that arise from this ansatz contain factors of r−p, which lead to diver-
gences at the origin r = 0. Using L’Hopital’s rule, one can carefully redefine the equations
at the origin to avoid these coordinate singularities. This technique is essential when
dealing with the high p exponents that corrections to GR introduce.

6.4.1 Initial data

What determines whether the scalar field collapses into a BH or bounces back to infinity
depends on the properties of the initial profile of the field. All of this will be encoded in the
initial data prescribed. In this section, we discuss how we construct initial data consistent
with the constraints of the modified theory.

Starting from the conformal decomposition of the spatial metric as

γij = ψ4γ̃ij, (6.12)

where ψ is the conformal factor and γ̃ij being the flat metric in spherical coordinates. With
this choice, the Hamiltonian Constraint takes the form,

8∇2
flatψ + ψ5(AijA

ij − 2

3
K2) + 16πψ5ρ+ 2ϵψ5ρ̃M = 0, (6.13)

where Aij is the traceless part of the extrinsic curvature tensor Kij and now the additional

term 2ψ5ρ̃M contains the modifications to GR.
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The Momentum Constraint takes the form,

∇jA
ij − 2

3
∇iK − 8πji − ϵj̃iM = 0, (6.14)

which includes the additional current-like term −ϵj̃iM . We take the extrinsic curvature to
be traceless by setting the ansatz,

Aij =



Krr 0 0
0 −r2Krr

2
0

0 0 −r2Krr sin2 θ
2


 . (6.15)

The expressions of the Hamiltonian and Momentum constraint under such ansatz read,

∂2ψ

∂r2
= −2

r

∂ψ

∂r
− 3

16

K2
rr

ψ3
− πψ

(
∂ϕ

∂r

)2

− πψ5Σ2 − 1

4
ϵψ5ρ̃M , (6.16)

∂Krr

∂r
= −2ψ−1Krr

∂ψ

∂r
− 3

r
Krr + 8πψ4Σ

∂ϕ

∂r
+ ϵψ8j̃rM . (6.17)

Notice that ρ̃M and j̃iM are the order reduced expressions that we obtained after the
order reduction procedure, and when evaluated under this ansatz possess only up to first
order derivatives of ψ and no derivatives of Krr. In this form, these equations can be
integrated directly to find solutions once the scalar field initial data is specified and appro-
priate boundary conditions set. This technique was used in [59], as “order-reduced direct
integration”, to successfully construct BH initial data in spacetimes in the presence of a
scalar field for an eight-dimensional operator EFT of GR.

Scalar field

The initial scalar field is prescribed such that it is initially mostly in-falling towards the
origin, this can be achieved by having a field of the form,

ϕ(t, r) =
Φ(u)

r
, (6.18)

where u ≡ r + t and,

Φ(u) = Au2 exp

(
−(u− rc)

2

σ2

)
, (6.19)
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where A, rc and σ are the amplitude, pulse enter, and width, respectively. Under this
choice, the initial values of scalar field variables are given by,

ϕ0 ≡ ϕ(t = 0, r) = Ar exp

(
−(r − rc)

2

σ2

)
, (6.20)

Σ(t = 0, r) =
ϕ0

α

(
β

(
1

r
− 2(r − rc)

σ2

)
−
(
2

r
− 2(r − rc)

σ2

))
, (6.21)

where Σ is defined as,

Σ(t, r) =
1

α

(
β
∂ϕ

∂r
− ∂ϕ

∂t

)
. (6.22)

Boundary conditions

To construct the initial data, boundary conditions for the fields must be prescribed. Reg-
ularity at the origin imposes Ω(r = 0) ≡ ∂rψ(r = 0) = 0. For convenience, we can set
Krr = 0 at the origin. To determine the remaining condition on the ψ field, we impose
that the exterior boundary conditions should have the following form,

ψ|rout = 1 +
M

2rout
, (6.23)

∂ψ

∂r

∣∣∣∣
rout

= − M

2r2out
, (6.24)

where rout is the exterior grid boundary, andM is the ADM mass (which will depend on the
scalar field initial configuration). A way to achieve this is to perform a shooting procedure
on the value of ψ(r = 0) such that the integrated solution on the outer boundary satisfies,

ψ|rout = 1− rout
∂ψ

∂r

∣∣∣∣
rout

, (6.25)

we achieve this by implementing a Newton-Raphson method.

We impose that the initial values of gauge variables satisfy,

α(t = 0) = 1, (6.26)

β(t = 0) = 0, (6.27)

π̃(t = 0) = 0, (6.28)

ρi(t = 0) = −2ψ−5Ω, (6.29)
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where the last two are required to initially satisfy the constraints (6.7a)-(6.7b).

6.4.2 Numerical implementation

The following numerical scheme is implemented to evolve the system presented in section
6.3. Time is integrated through a 4th-order Runge-Kutta with a CFL coefficient such
that dt = 0.25dx, where dt is the time-step and dx denotes the uniform spatial grid
spacing. Spatial derivatives are discretized via Finite Differences operators, which are 6th-
order accurate in the interior and 3rd-order in the boundaries. Kreiss-Oliger dissipation
is implemented with operators that are 8th-order accurate in the interior and 4th-order in
the boundary. When no BH is present in the simulation, the grid extends from ri = 0 to
rout = 200. During the evolution, the appearance of an apparent horizon is monitored; if
one appears, then the code will excise a portion (including r = 0) of the domain contained
inside this apparent horizon. A damped harmonic gauge [62, 136, 179] is adopted, which
sets the gauge source vector to satisfy: Ha = z(log (

√
grrgTα

−1)na − gabβ
bα−1). We take a

fixed value of z = 0.5.

6.4.3 Monitoring quantities

As previously mentioned, an EFT description of a system involves a truncated expansion
of a tower of curvature operators, and control over this expansion is lost if the curvature
becomes too large. Determining whether the system remains within the regime of appli-
cability of the EFT throughout evolution is a necessary condition 5 to guarantee that the
observed behavior is representative of the true physics of the underlying theory in the low
energy regime.

A reasonable indicator of whether the system is within the regime of applicability of
the EFT is to compare if terms that are higher order in the perturbation scheme remain
subdominant to lower order ones [70, 60]. For example one expects that | R |>| ϵ1RabR

ab |
+ | ϵ2R2 |. Using the fact that Rab = 8π(Tab − 1/2Tgab) +O(ϵ1, ϵ2), (ignoring higher order
terms in ϵ1 and ϵ2) the inequality can be expressed as:

ER ≡ 8π(| ϵ1 | + | ϵ2 |) |
(
−Σ2grr + (∂rϕ)

2
)
| g−1

rr < 1. (6.30)

Another indicator that can be used to discern whether the theory remains in the EFT
regime of applicability is through some curvature invariant that is non-vanishing for vacuum

5Even if the theory is at all times within the EFT’s regime of validity, undesired issues such as secular
effects [149, 148] could emerge and spoil the physics.
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spacetimes, for instance, the Kretschmann scalar C ≡ RabcdR
abcd. Using this invariant, a

natural threshold for the regime of applicability of the EFT is given by Λ−2C > Λ−6C2,
which can be easily rewritten as,

EC ≡ CΛ−4 ≈ Cmax(ϵ21, ϵ
2
2) < 1. (6.31)

During evolution, these two quantities will be monitored to get an idea whether the
system is in the validity regime of the EFT, close to leaving it or outside of it6.

The way the equations have been rewritten after the order reduction is now somewhat
more familiar to the equations we might encounter in GR, where metric components ap-
pear at most as second derivatives, and these second derivatives appear linearly in the
equations. The system’s characteristic speeds are usually evaluated to study hyperbolicity
and, consequently, the well-posedness of an initial value problem. However, the presence
of the third-order derivative of the scalar field in the gravitational equations prevents us
from carrying out this analysis. One can, however, attempt to get some insight out of that
procedure by computing the characteristic speeds by considering solely the gravitational
sector (6.6c-6.6f) and considering the ϕ field as a source7. The characteristic matrix of that
system is diagonalizable and possesses the following eigenvalues (characteristic speeds):

λ1± = β ± α√
grr

, (6.32a)

λ2± = β ± α
√

8π(2ϵ1 − 4ϵ2)(∂rϕ)2 + grr
grr

, (6.32b)

λ3± = β ± α
√

8π(4ϵ1 − 8ϵ2)(Σ2grr − (∂rϕ)2) + grr
grr

. (6.32c)

Notice how all velocities in (6.32) reduce to what one obtains in GR when ϕ = 0, when
ϵ1 = ϵ2 = 0 or when ϵ1 = 2ϵ2. While the two first conditions imply that the theory reduces
to GR, for the last one ϵ1 = 2ϵ2, the equations are still different from GR. When neither
of those conditions is met, these speeds are modified from the GR ones and are real only
under certain conditions. The radicand on λ2±:

χ2 ≡ 8π(2ϵ1 − 4ϵ2)(∂rϕ)
2 + grr, (6.33)

6There are, of course, many other quantities one could check, for example, checking that the six-
dimensional operators should be subdominant to the four-dimensional ones, for example, RabR

abΛ−2 >
R ef

ab RabcdRcdefΛ
−4.

7Note that ϕ evolves with □ϕ = 0, so in a very local sense, its evolution should be well-posed
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can become negative if ϵ1− 2ϵ2 < 0 and grr < −8π(2ϵ1− 4ϵ2)(∂rϕ)
2 which is possible if the

scalar field gradients are large enough. Furthermore, regardless of the sign of (ϵ1−2ϵ2) the
radicand of λ3±:

χ3 ≡ 8π(4ϵ1 − 8ϵ2)(Σ
2grr − (∂rϕ)

2) + grr, (6.34)

can become negative, the factor (Σ2grr − (∂rϕ)
2) does not have definite sign and for

large enough Σ or ∂rϕ then χ3 < 0 is a possibility.

This (simplified) analysis tells us that the system could undergo a character transition
[29] during evolution rendering the problem ill-posed. The appearance of this transition
could depend on the initial data prescribed; for example, a collapsing field would evolve to
have very large gradients and trigger this transition, while a different configuration could
avoid it. In this work, we will explore the evolution of a collapsing scalar field for different
values of the coupling parameters and try to identify if such a transition happens, whether
it triggers instabilities, and whether it occurs inside of the regime of applicability of the
EFT.

6.5 Results

We turn our attention now to the evolution of the in-falling self-gravitating scalar field
with different choices of the coupling parameters {ϵ1, ϵ2}. Whether the incoming pulse
collapses into a BH or bounces back to infinity will depend mostly on the choice of its
initial parameters, amplitude A, width, σ, and position rc. To study the collapse case,
these three parameters will be fixed to A = 0.0023, σ = 1, and rc = 10. For these
values in the initial scalar profile, the ADM mass of the system is MADM = 1.024 when
ϵ1 = ϵ2 = 0. The relevant length scales in the modified theory (|ϵ1|1/2 ≈ |ϵ2|1/2 ≈ Λ−1)
should be then compared to the mass of the system. For reference, when these couplings
are large |ϵ1| = |ϵ2| = 0.1 the difference in MADM is at the sub-percent level. Even though
this work focuses on the collapsing scenario, the non-collapsing scenario was also studied.
The evolution of that scenario in the regime of couplings explored is well-behaved up to
|ϵ| ≈ 10−1. Above such couplings, the system leaves the regime of applicability of the EFT.
The evolution of the collapse scenario is more interesting, as we shall see in this section.

The main objective of these simulations is to explore how the evolution is altered as
we modify the coupling parameters {ϵ1, ϵ2}, such as the behavior of the apparent horizon
and curvature invariants. When couplings are turned off and GR is evolved, the initial
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Figure 6.1: Parameter space of simulations for the collapse scenario. In green dots are
simulations that are stable and collapse into a BH, and in red crosses are simulations that
develop instabilities and crash.

pulse propagates toward the origin until a BH forms. It quickly accretes the scalar field
and settles to its final configuration. The final mass of the formed BH is of MBH ≈ 1.022,
indicating that only a very small portion of the scalar field is not accreted by the BH. To
study how this same scenario would evolve when couplings are non-vanishing, an array of
simulations is run with pairs of ϵ1 and ϵ2 taking values from {0, ϵ̃n±}, with ϵ̃n± = ±ϵ02n
for n = 0..11, with ϵ0 = 10−4.

Figure 6.1 displays whether the evolution for a pair of values {ϵ1, ϵ2} is stable and
collapses into a BH (green dots) or if it develops instabilities and crashes (red crosses).
This figure shows that there are a lot of points in the parameter space which develop
instabilities, mostly when at least one of the couplings is large, especially for large and
positive ϵ1 and large and negative ϵ2.

To better understand what is happening, we will first focus on simulations with ϵ1 = 0
or ϵ2 = 0 to study those terms individually. In Figure 6.2, we plot the maximum value of
the Kretschmann scalar C in space and time for this subset of the parameter space. Here
dots represent simulations that were stable during the evolution and collapsed into BHs,
while the crosses represent simulations that crashed. This figure shows how, relative to
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Figure 6.2: Maximum value of C across space and time for simulations in the collapse
scenario for either ϵ1 ̸= 0 or ϵ2 ̸= 0. Dots indicate simulations that collapsed into BHs and
remained stable; crosses indicate simulations that crashed. The red shaded region indicates
values of C that lie outside of the regime of applicability of the EFT in accordance with
(6.31). Values of C > 108 have been labeled as 108 for convenience.

GR, a positive(negative) value of ϵ1(ϵ2) tends to amplify the maximum value of C achieved
during the evolution. Similarly (for small enough) negative(positive) values of ϵ1(ϵ2) induce
a suppression on the maximum value of C. The magnitude of these amplifications or
suppression grows as the scalar pulse approaches the origin, and corrections to GR become
stronger. In Figure 6.3 we plot several snapshots of the C radial profile close to the collapse
to a BH. Notice however in Figure 6.2 how for ϵ1 ⪅ −10−2 the behavior of C drastically
changes to amplification as opposed to suppression.

An indicator that the evolution for ϵ1 ⪅ −10−2 is pathological and not physical is
its convergence, which we display in Figure E.1. This figure shows how convergence falls
rapidly as the scalar field approaches the origin in cases with ϵ1 < 0 especially losing all
convergence for cases with ϵ1 ⪅ −10−2. Furthermore, one can see that the constraints in
this regime of the couplings, as shown in Figure E.2, show violations above the one percent
level, which indicates one should question the validity of the results.

Figure 6.2 also shows in the red shaded region the values of the Kretschmann scalar C
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Figure 6.3: Snapshots of radial profiles of C at different times close to the collapse into a
BH for different values of ϵ1 and ϵ2.

that would violate the EFT limit for each value of ϵ in accordance with (6.31). Interestingly
a small negative value of ϵ1 shows a suppression of C, which in principle, helps to avoid
the restricted region. However, as ϵ1 becomes more negative at some point, an instability
is triggered, generating an amplification of C, clearly driving the system outside of the
EFT regime of applicability. Here it is important to stress the order of these events. If
an instability was generated once the system was already outside the EFT regime, this
means that physics drove the system there and not pathologies. Suppose the system
naturally explores higher curvatures and numerical instabilities appear after leaving the
regime in which the EFT approach is valid. In that case, we need not worry about these
simulations crashing and acknowledge the inadequacy of the EFT prescription to describe
these scenarios. This seems to be the case for positive(negative) values of ϵ1(ϵ2), which
induce an amplification on C which drives the system outside of the valid EFT regime for
| ϵ |⪆ 10−3 and crash. In contrast, positive values of ϵ2 which induce suppression of C
manage to stay within the regime of applicability of the EFT and stable up to values of
ϵ2 ⪅ 5 × 10−2, beyond this values some instabilities are triggered, the system leaves the
regime of applicability of the EFT and crashes. Both large negative values of ϵ1 and large
positive values of ϵ2 seem to be developing instabilities when they are within the regime of
applicability of the EFT. Perhaps for these regimes, controlling the higher frequencies via
a Fixing approach as in [58, 59] could result in the resolution of the instabilities, but this
is outside the scope of this work.

Similar behavior is observed on the maximum value of the Ricci scalar R, which we show
in Figure 6.4, where we also include the EFT of applicability exclusion region in shaded
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Figure 6.4: Maximum value of the Ricci scalar R across space and time for simulations in
the collapse scenario for either ϵ1 ̸= 0 or ϵ2 ̸= 0. Dots indicate simulations that collapsed
into BHs and remained stable; crosses indicate simulations that crashed. The red shaded
region indicates values of R that lie outside of the regime of applicability of the EFT in
accordance with (6.30).

red as indicated by the relation ER < 1, see eq.(6.30). Interestingly, all of the simulations
that crashed for ϵ2 < 0 do so within the allowed EFT regime dictated by (6.30); however,
they are outside of the valid regime according to (6.31).

Another quantity that we can inspect is the radicand χ3, see eq.(6.34), of the eigenvalue
λ3±, which, as we stated before, if it becomes negative could be related to a character
transition and the breakdown of the initial value problem. Figure 6.5 shows the spatial
minimum value of χ3 as a function of time for simulations ϵ1 < 0 or ϵ2 > 0, which are
the cases in which χ3 decreases towards 0 and negative values. As Figure 6.5 shows for
small(large) enough values of ϵ1(ϵ2) χ3 can become negative. As mentioned, very negative
values of ϵ1 trigger instabilities, losing convergence and leaving the EFT’s applicability
regime. Similar issues are present for large positive values of ϵ2 where also χ3 < 0. However,
such issues manifest before the χ3 < 0 threshold is violated. This suggests that this
violation might not be the root cause of the instabilities but rather serve as a reliable
indicator of their presence. This is not unexpected since this condition was built from
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Figure 6.5: Minimum value of χ3 (the radicand of the eigenvalue λ3±) as a function of
time for simulations in the collapse case for different values of ϵ1 and ϵ2. Once an apparent
horizon is found, the minimum is computed outside the horizon, hiding negative values
inside; this explains the sharp transitions.

an incomplete characteristic analysis in which the scalar field was considered a source,
ignoring the presence of the higher derivatives of the field in the gravitational equations.

A noticeable effect that can be appreciated in Figure 6.5 is that simulations that develop
negative values of χ3 also form an apparent horizon sooner than the χ3 > 0 or GR cases.
Figure 6.6 shows the areal radius rA of the formed horizons as a function of time for different
values of the couplings. The behavior for the GR case is as expected; around t ≈ 8.3, an
apparent horizon is found, and the areal radius quickly grows until all the scalar profile has
been accreted and then relaxes to its final state. This is the same behavior that some of
the curves in the plot, for example, for ϵ1 = −0.0032, ϵ1 = 0.0064, with the only difference
that these curves follow slightly above and below the GR curve respectively. In contrast,
for the ϵ1 = −0.0256, ϵ1 = −0.0512, ϵ2 = 0.0256 cases, also shown in Figure 6.6, the
systems experience premature collapses to smaller BHs, after that rA undergoes a brief
growth, and then a substantial decrease before a new larger horizon (roughly the same size
of the GR horizon) is formed. At this stage, we can see how the rA grows above the GR
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Figure 6.6: Areal radius rA of the apparent horizon as a function of time for different
values of ϵ1 and ϵ2. The dashed curves correspond to simulations that crashed after the
appearance of the apparent horizon.

curve before decreasing8 to join it as the final BH relaxes. Figure 6.6 also shows in dotted
lines (ϵ1 = 0.0128 and ϵ2 = −0.0064 ) a couple of simulations that crashed, these also
display the premature appearance of a small horizon before crashing. It is important to
note that all of the simulations that show this type of exotic horizon behavior evolve away
from the regime of applicability of the EFT defined by (6.31). The late-time behavior of
all simulations, as shown in the plot, is similar; the final BH in all cases is essentially the
same. This is not unexpected; once the scalar field has been accreted by the BH and the
spacetime is essentially vacuum, the equations (6.2) reduce to Einstein’s equation and can
be evolved for very long times.

Having studied the ϵ1 and ϵ2 cases individually, we can outline a few observations.

1. Positive(negative) values of ϵ1(ϵ2) strongly amplify the maximum value of curvature
invariants such as C and R in contrast to GR. Their simulations are well behaved as
long as the system stays within the regime of applicability of the EFT stipulated by

8The decrease of the BH’s areal radius, and hence, decrease of its area is related to violations of the
Null Convergence Condition [110, 111], similar behavior was observed in [59]
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(6.30)-(6.31), beyond that regime simulations tend to crash.

2. Negative(positive) values of ϵ1(ϵ2) strongly suppress the maximum value of curvature
invariants such as C and R in contrast to GR. Even though the suppression of these
curvature invariants would help keep the system within the regime of applicability
of the EFT, for large enough values of the coupling (especially for ϵ1), the solutions
lose convergence, and the suppression becomes an amplification, driving the system
outside of the EFT regime.

3. When the couplings are sufficiently small and within the regime of the EFT, the
behavior of the BH formed is very similar to that of the BH formed in the GR case.
Once the horizon is formed, the high curvature regions are hidden past the horizon,
making modifications extremely small.

4. When the couplings are large enough, the BH formation becomes more exotic. Pre-
mature smaller BHs can form before a horizon similar to the one formed in the GR
case appears. In addition, these smaller BHs can shrink in size during their short
existence. Note, however, that the simulations in these regimes are always outside
of the regime of applicability of the EFT, and hence the relevance of these results
should be questioned.

With these observations, the interpretation of results where both ϵ1 and ϵ2 are non-zero
is more direct. With our definitions of ϵ1 = a1Λ

−2 and ϵ2 = a2Λ
−2, Λ has dimension of

inverse length and both a1 and a2 are dimensionless. For the most part, when one of the
couplings is large and the other small, the behavior of the system is closer to the behavior
of the large coupling, as we observed in the ϵ1 ̸= 0 or ϵ2 ̸= 0. More interesting behavior
is observed when ϵ1 and ϵ2 are of the same order. For example, in the case where both ϵ1
and ϵ2 are positive, there is a competition between suppression and amplification induced
in the curvature invariants, sometimes allowing the system to evolve with larger values
of these couplings (in comparison to the individual cases) and stay within the regime of
applicability of the EFT. This is the case for simulations with ϵ1 ≈ 2ϵ2 as it can be seen
in Figure 6.7 were a snapshot of the radial profile for C is plotted in such configurations.
In the case where the signs of the couplings are opposite, the effects of their terms tend
to push in the same direction and consequently sometimes take the system outside of the
valid regime or trigger instabilities at smaller values of the coupling in comparison to the
individual ϵ1 or ϵ2 cases.

We will not spend a lot of time going through different cases when both couplings
are non-vanishing; however, informative plots are provided showing the different control
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Figure 6.7: Snapshot of radial profile of C at t=8.11 for simulations with pairs of values of
ϵ1 and ϵ2. Notice how the simulation with ϵ1 = 0.0128 and ϵ2 = 0.064 does not achieve the
large values of C that the simulation with only ϵ1 = 0.0128 does.

quantities discussed for the ϵ1 and ϵ2 individual cases. Figure 6.8 shows the space-time
minimum value of the radicand χ2 of the eigenvalue λ2±. In contrast to the previously
observed for the χ3 quantity, when χ2 becomes negative, the couplings are already large
enough to take the system outside the EFT regime. Figure 6.9 shows the minimum space-
time value of χ3 for each simulation. The interpretation of this plot follows directly from
what was observed for the individual coupling cases. As mentioned before we can see that
when ϵ1 ≈ ϵ2 simulations that would have χ3 < 0 if only ϵ2 was turned on, or crash if only
ϵ1 was on, now suffer non of those issues. Similar behavior is observed for the rest of the
relevant quantities. Figure 6.10 displays the maximum value of ER, on it dark red dots
correspond to points where the ER > 1 EFT condition was violated. Figure 6.11 shows the
maximum of EC over time and space; the dark red dots represent points at which the EFT
condition was violated. Finally, Figure 6.12 shows the maximum spacetime value of C.
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Figure 6.8: Minimum value of χ2 over time and space for the collapse scenario with A =
0.0023. Dark blue marks represent simulations where the minimum value of χ2 was at
some point smaller than 0, making the eigenvalue complex, potentially indicating loss of
well-posedness. Here crosses indicate that the simulation crashed.

6.6 Discussion

This study investigates the phenomenon of gravitational collapse in spherical symmetry
within the framework of a dimension-four EFT extension to GR, commonly known as
Quadratic Gravity. Within the EFT perspective, the solutions derived from this theory
are expected to differ from those of GR only in the presence of matter, with the dimension-
four operators representing leading-order corrections to GR within an EFT expansion.

In this particular research, instead of treating the additional degrees of freedom associ-
ated with higher derivatives as massive spin-0 and spin-2 modes, as done in previous studies
such as [113, 112] under Ricci-flat (vacuum) scenarios, an Order Reduction technique [173]
is employed to eliminate these degrees of freedom. Through numerical simulations, this
work is able to dynamically form BHs from the collapse of a scalar field. In addition, we
identify a parameter space regime where the system is well-behaved and remains within
the applicable range of the EFT. However, strong deviations in the dynamics of curvature
invariants during the collapse are observed within this regime. These deviations could
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Figure 6.9: Minimum value of χ3 over time and space for the collapse scenario with A =
0.0023. Dark blue dots represent simulations where the minimum value of χ3 was at some
point smaller than 0, making the eigenvalue complex, potentially indicating loss of well-
posedness. Here crosses indicate that the simulation crashed.

be particularly relevant in astrophysical scenarios like the merger of a pair of neutron
stars, where the altered system dynamics could have discernible effects on the emission of
gravitational radiation.

Additionally, instances were found where simulations, initially showing good behavior,
venture into high-curvature regimes that exceed the limits of the EFT approximation. In
such cases, it becomes necessary to acknowledge the inadequacy of the chosen approach in
describing the system dynamics within those specific scenarios. The specific value of the
couplings ϵ1 and ϵ2 (consequently the value Λ) at which this will be the case is entirely
dependent on the characteristics and relevant scales in the system9. Furthermore, specific
regimes were identified where the system exhibits instabilities before the validity of the EFT
description ceases. In these cases, alternative approaches such as Fixing the Equations may
be implemented to mitigate the emergence of instabilities and control higher frequencies.

9For instance, allowing the scalar pulse to have a larger width, while adjusting the amplitude to keep
the ADM mass fixed, allows to carry out stable simulations that stay within the limits of the EFT for
larger values of ϵ1 and ϵ2.
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Figure 6.10: Maximum value of ER over time and space for the collapse scenario with
A = 0.0023. Dark red dots correspond to simulations where the EFT regime of applicability
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Chapter 7

Outlook and future work

The main objective of this thesis was to develop and implement novel mathematical and
numerical techniques to enable the study of deviations from GR in the nonlinear regime.
The implementation of such methods is directed to theories that contain mathematical
pathologies, which, if left untreated, make the understanding and study of phenomenology
in nonlinear scenarios challenging. To study the implementation of these techniques, we
focused on theories derived from EFT arguments. In these types of theories, modifications
introduce higher than second-order derivatives as well as nonlinear terms in derivatives of
the metric in the equations of motion. These pathologies are common to a broader class
of theories, so a good understanding of handling these issues in the EFTs can be extended
to other theories. In Chapters 4 and 5, we studied an EFT built from dimension-eight
operators, which adds terms quartic in the Riemann tensor to the Einstein-Hilbert action.

In Chapter 4, we studied the dynamics of BHs in this EFT theory in spherical symme-
try. By implementing an Order reduction approach, we eliminated the higher-order time
derivatives in the equations of motion. A Fixing the equations approach was implemented
to control the higher order spatial derivatives and the nonlinear in derivative terms. By
introducing a minimally coupled scalar field into the system, we were able to study the
dynamics of BHs in this theory. The accretion of the scalar pulse into the BH describes a
highly nonlinear and dynamical event that serves as an ideal test bench for the novel meth-
ods we introduced. This study yielded valuable insights into the properties of BHs within
this EFT theory. Firstly, we observed that a violation of the Null Convergence Condition
can lead to a decrease in the area of the apparent horizons over time, a phenomenon not
encountered in GR. Secondly, we established that after the accretion process, the solution
describing the final BH corresponded to the same solution that initially described the BH,
represented by (2.57), albeit with an increased mass of the BH. Lastly, our examination
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of the late-time solutions of the scalar field allowed us to study the QNM behavior of the
field scattering off the BH. We found very good agreement between our results and the
analytical predictions for the frequencies of these oscillations. This study of the spherically
symmetric scenario demonstrated the efficacy of techniques like Fixing the Equations and
Order reduction to deal with a very challenging extension to GR.

Building upon the promising results from Chapter 4, the logical progression in our
research was to address the binary BH scenario within this particular EFT of gravity. In
Chapter 5, we build up to the binary scenario by first considering a toy model that captures
some of the characteristics of our system of interest and motivate a fixed system for the
gravitational theory. Afterward, we tested the fixed system in the scenario of single boosted
BHs to demonstrate the ability of our method to capture the dynamics of BHs moving.
Having learned from the single BH scenario, we then evolve binary BHs in quasi-circular
orbits all the way to the merger. With our methods, we can carry out these simulations for
which solutions show no sign of instabilities. We study the GWs emitted from the system
and contrast them to the solutions obtained in the GR case. For the cases studied, given
the small nature of corrections and the resolution of the simulations, the analysis we carry
out is qualitative rather than quantitative. For example, depending on the coupling ϵ sign,
we can see a delay or an advance in the phase of the gravitational waveforms extracted
from the system. Furthermore, the values of the QNM frequencies can also be studied
and contrasted with perturbation theory results to confirm consistency with the sign of
the modification. To finish Chapter 5, we discuss the dependence of our solutions in the
ad-hoc portions of our model; these are the value of the fixing parameters {σ, τ} and the
choice of fixing equation. We identify a dependence of our solution in the value of these
parameters, but we attribute such dependence to the particular choice of fixing equation.
Given the linear dependence of solutions on the value of σ, we suggest that extrapolations
of the solutions to the σ → 0 case can be a practical way of obtaining results in the “perfect
tracking” case. Furthermore, after demonstrating how such dependence emerges from the
choice of fixing equation, we propose a new system that has the potential to bypass the
limitations of our current implementation. The study of this new system is left for future
work. However, many studies can be carried out with the current implementation and our
current predictions of gravitational waveforms. It is important to assess for what values
of ϵ the waveforms obtained in this theory are distinguishable with respect to waveforms
predicted in GR, considering the noise in signals and possible degeneracy. Such studies
can also help us determine, for a given value of ϵ, the maximum value of the tracking T
required to be able to claim departures from GR waveforms. In this study, we focused on
relatively small values of ϵ, since these are the ones that provided the smallest tracking T
values. Simulations with higher values of ϵ are also possible, showing consequently larger
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corrections, however, this comes at the cost of bigger T values. We will explore more of
those cases in the future. Once the confidence in our waveforms is satisfactory, they can
also be used to complement results obtained in the linear regime. For example, QNMs
frequencies in this theory can only be obtained for slowly rotating BHs. In contrast, our
solutions explore the ringdown with dimensionless spins of a ≈ 0.7, and in principle, other
final configurations can be explored.

Moving forward, we intend to implement the new alternative of fixing system introduced
in (5.17) in search of improving the results obtained in Chapter 5. Furthermore, we will
implement that fixing alternative in the dimension-six EFT, since this methodology is also
adaptable to this theory.

In Chapter 6, we studied gravitational collapse in the context of an EFT of gravity
built from dimension-four operators. The theory studied, often called Quadratic gravity,
represents, in the presence of matter, the leading order corrections to GR from an EFT
perspective. Similar to the dimension-eight operators case, the corrections in this theory
introduce higher-order time derivatives of the metric. In this theory, the extra degrees
of freedom introduced by the higher derivatives can be interpreted as one massive scalar
field and one massive spin-2 field. However, the masses of these fields are above the
EFT cutoff, so their dynamics should be unphysical. Furthermore, depending on the sign
of the coupling, these degrees of freedom can become tachyonic, which would inevitably
take the system outside the regime of applicability of the EFT. For these reasons, we
opted to eliminate these degrees of freedom by means of an Order Reduction. The matter
content in our studies was that of a collapsing massless scalar field. The collapsing scenario
is ideal for testing the limits of the EFT, the efficacy of our approach to evolving this
system, and potential deviations from GR predictions. Through numerical simulations, we
identified a regime of the parameter space where the system is well-behaved and remains
within the applicable range of the EFT, and we are successful in dynamically forming
BHs. Furthermore, strong deviations in the dynamics of curvature invariants during the
collapse are observed within this regime. However, there were regimes of the parameter
space of couplings where numerical instabilities emerged before the system left the EFT
regime of applicability. In such situations, an approach like Fixing the equations could be
implemented as in Chapters 4 and 5 to obtain stable simulations. We leave this study for
future work. Having demonstrated the feasibility of performing nonlinear studies within
this theory, a more exciting and astrophysically relevant scenario to study is when the
matter content comes from the presence of neutron stars. The study of single neutron star
solutions and their dynamics in this theory is a work in progress. Subsequently, combining
the lessons learned from the single neutron stars and the binary simulations of BHs in
Chapter 5, we intend to tackle the binary neutron star merger scenario within this theory.

112



Through the different cases explored in this thesis, we demonstrated the feasibility
of conducting studies of higher derivatives modified theories of gravity in the nonlinear
regime. The methodologies we presented are general enough to address pathologies on a
broader class of theories and will hopefully help the community to push forward in the
search for deviations of GR.
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Appendix A

Prototypical equation, Fixing the
equations

In this appendix, we will explore an example of an equation that contains some of the
pathologies present in the gravitational theory we mean to evolve. This simplified model
allows us to explore a range of alternatives on how to “fix” its equations to obtain insight
into how to proceed in the gravitational sector. The model we considered is described by
the following equation1,

□ϕ = −ϵ∂4t ϕ, (A.1)

where □ is the Laplacian operator in Minkowski’s spacetime. For simplicity, we shall
consider this equation in 1+1 dimensions. The system as presented possesses 4th-order
time derivatives of the field ϕ. As we shall show soon, a straightforward analysis indicates
that the higher time derivatives lead to ghost modes that grow without bound.

In this simple example, we assume that the ϵ proportional term is the leading order term
in some expansion in this parameter that is ultimately truncated. This expansion and the
truncated nature of this equation could be responsible for the appearance of instabilities
that might not be present in the full underlying theory. This section aims to explore ways
one can modify the equations in a way that removes instabilities and reproduces the physics
in the long wavelength regime.

The system we propose as a fixed version is given by:

1This is a slightly modified version of an example considered in [56], where the fourth order derivatives
are of space instead of time.
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□ϕ = −ϵ∂2tΠ (A.2)

□Π = − 1

σ

(
−τ∂tΠ−

(
Π− ∂2t ϕ

))
(A.3)

By means of a “reduction of order” we replace the ∂2t ϕ on the right-hand side of (A.3)
using equation (A.2) to O(0) in ϵ, obtaining,

□Π = − 1

σ

(
−τ∂tΠ−

(
Π− ∂2xϕ

))
(A.4)

The resulting second-order system determines the evolution of the variable Π that is
damped towards the “source” ∂2xϕ on a timescale σ/τ .

We will first study these systems with an analytic approach and point out their differ-
ences.

A.0.1 Analytics

Original system

Here we analyze the behavior of solutions of (A.1) under a Fourier mode ansatz given by,

ϕ(t, x) = esteikx. (A.5)

The dispersion relation for this system has four solutions:

s(±,±) = ±

√
1±

√
1 + 4ϵk2

2ϵ
. (A.6)

For ϵ > 0, two of these solutions are real (s+,+ and s−,+), while the other two are
imaginary. It is then immediate to see that the solution given by s+,+ is unstable for
all values of k. We can see this in Figure A.1 and Figure A.2 for ϵ = 10−3 (notice that
the only scale in the system is given by ϵ). This is a problem even if the S++ is not
initially present; numerically, it will be unavoidably exited and drive the solution into an
exponential instability.
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Figure A.1: Real solutions S++ and S−+ for the dispersion relation of the original system
for a value of ϵ = 10−3. Of these S++ shows to be unstable.

Fixed system

Lets now find the dispersion relation for system (A.2),(A.4) using the anzats,

ϕ(t, x) = esteikx, (A.7)

Π(t, x) = B(s, k)esteikx. (A.8)

By first finding B to be,

B(s, k) = − k2

k2σ + s2σ + τs+ 1
, (A.9)

one then obtains the equation:

s4σ + s3τ − (−1 + (−2σ − ϵ)k2)s2 + k2sτ + k4σ + k2 = 0 (A.10)

This equation also has four solutions (Si, i = 1..4), although not as nice to show in
a closed form as the original system. One can show, nevertheless, that solutions for this
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Figure A.2: Imaginary solutions S+− and S−− for the dispersion relation of the original
system for a value of ϵ = 10−3.

system have non-positive real parts Si(k) for all k. Figure A.3 shows the real part of these
solutions for a fixed value of ϵ = 10−3 and different value pairs for σ and τ . When it
comes to choosing good values for σ and τ , a good guiding principle is to choose them
such that the fixed system reproduces the (stable) solutions from the original system in
the long wavelength regime. In this scenario, the frequency that sets the upper limit at
which we consider the expansion on ϵ to be valid is given by kcutoff = ϵ1/2. So we focus
on the solution for k << kcutoff . In figure A.4 we show the relative difference between the
imaginary part of S+− and the imaginary part of S1 (which is identical to the pair S−− , S2.
). For all the pairs plotted in A.4, this relative error is very small for small k and remains
around the percent level for k ≈ kcutoff . From all these pairs of values, the pair σ = ϵ and
τ =

√
ϵ hold the smallest relative error with respect to the original solution essentially for

all k < kcutoff . The solution has a greater relative error for values either above or below
this threshold. The real part of the original solutions S+− and S−− is zero. In Figure A.5,
we can see that the real part of the solution S1 (equivalently for S2) starts decreasing as
k increases. Even though these solutions do not have an exactly vanishing real part, they
remain small for the frequencies of interest and damp higher frequencies faster. With this
in mind, a good guiding principle for choosing these parameters might be to choose them

133



0 20 40 60 80 100
k

−40

−35

−30

−25

−20

−15

−10

−5

0

R
(S

)

S1, σ = ε, τ =
√
ε

S3, σ = ε, τ =
√
ε

S1, σ = ε/2, τ =
√
ε

S3, σ = ε/2, τ =
√
ε

Figure A.3: Real part of the dispersion relation for the fixed system for ϵ = 10−3 and
different value pairs for σ and τ . The real part for S2 is the same as the one for S1 (same
with S4 and S3) so we omit showing the first one. All of these are negative for all values
of k.

such that the real part of S1 (and S2) are as close to zero as possible. These solutions are
closer to zero as σ increases and as τ decreases.

A.0.2 Numerical implementation and results

Having explored analytically the fixed system, we can now expect numerical simulations
of it to be well-behaved. We want to study how well our new ad-hoc manages to damp
departures of Π from its target value ϕxx as we vary the value of ϵ, σ, and τ . To study this,
we performed a parameter exploration on a 1D simulation of an initial scalar Gaussian
profile advecting to the left in a domain with periodic boundary conditions. The periodic
domain is of size L = 200, discretized in a uniform grid. We use sixth-order accurate
finite difference derivative operators. For the time steps, we implement a fourth-order
Runge-Kutta with ∆t/∆x = 1/4, and Kreiss-Oliger dissipation. The initial data consists

of Gaussian profile given by ϕ(0, x) = 10−3e−
1
2
(x−100)2/α2

, and its time derivative ϕ,t(0, x) =
ϕ,x(0, x). For consistency, the initial data we impose on the new dynamical variable Π is
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given by Π(0, x) = ϕ,xx(0, x) and Π,t(0, x) = ϕ,xxx(0, x).

To study the stability and the capability of our ad-hoc equation to drive Π into ϕxx we
ran this simulation for fixed values of ϵ = 10−3 and ϵ = 10−2 with α = 1 for an array of
values {σ, τ}. In Figure A.6 we show the scalar field profile at t = 0 and at t = 400 (enough
time for the pulse to travel twice throughout the spatial domain) for different values of
ϵ and the fixing parameters. As the system evolves, the initial advecting pulse develops
as an oscillatory tail as the main effect from the terms modifying the wave equation and
does not develop high frequencies rendering a stable evolution. As expected, the effect of
the correction is greater for the larger values of ϵ. The frequency of the oscillatory tail
decreases as ϵ grows.

The system is evolved long enough such that the main “peak” passes through the center
of the grid twice. To quantify how well the variable Π tracks ϕxx, we compute the quantity,
which we will refer to from now on as “Tracking” and denote by T . The “Tracking” between
these two variables is defined as,

T =
||Π− ϕxx||2
||ϕxx||2

, (A.11)
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were || ||2 denotes the l2 norm over the whole domain. The results from these simulations
can be seen in Figure A.7 where we plot the tracking T computed at the final time of the
simulation as a function of the fixing parameters σ and τ . The blue points are simulations
that remain stable throughout the whole evolution. This plot shows that T decreases up
to a relative error of ≈ 10−5 for the best pair of {σ, τ} values. Figure A.7 also shows how
the tracking decreases linearly until saturation as we decrease the value of one of the fixing
parameters while keeping the other one fixed. The red dots in this figure correspond to
points where the simulation was unstable and crashed. These unstable evolutions appear
mostly for small values of σ. They can be associated with the equations becoming “stiff”,
and we have checked that one can obtain stable evolutions for smaller values of σ by using
smaller time steps. It is also important to compare how different solutions with different
{σ, τ} pairs are from each other. Achieving good tracking would be useless if this implies a
non-convergent solution as we vary {σ, τ} to lower the value of T . We corroborate that as
the value of T decreases, the difference between the physical variable ϕ between simulations
with different fixing parameters also decreases. For example, the relative error between
the two curves in Figure A.6 obtained for ϵ = 10−3 have a relative error, computed as
||ϕ1 − ϕ2||2/||ϕ1||2, of ≈ 10−6.
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Figure A.6: Scalar field ϕ profile at t = 0 and at t = 400 for different values of ϵ and the
fixing parameters. The dashed green and red dashed-dotted curves were obtained using
σ = 10−3 and τ = 10−3. Notice there is no discernible difference between the two curves
for ϵ = 10−3.

The effects from the correcting terms in the wave equation will become more important
as the value of ϵ increases. To study how this would affect the fixing procedure, stability,
and tracking, we perform the same parameter exploration for ϵ = 10−2. The results are
displayed in Figure A.8. In contrast to ϵ = 10−3 in this case we are only able (for the
same ∆t/∆x=0.25) to have stable simulations for σ ≈ 10−3 as opposed to ≈ 10−4 and best
achievable tracking is ≈10−4 as opposed to ≈ 10−5.

This simple example shows how the Fixing method allowed us to reformulate the origi-
nal pathological system into a new one free of pathologies. We were able to see analytically
that the solution in the long-wavelength regime reproduces quite well the solution of the
original system in such regime and that no unstable modes are present in the new system.
Furthermore, we corroborated the expectations from the analytical study through numer-
ical simulations. In such simulations, we demonstrated how we achieved stable numerical
evolution and studied the dependence of the solution on the fixing parameters {σ, τ}. We
showed, through computation of the tracking measure T the ability of our system to drive
the new variable Π to its target value ϕxx, and that the obtained solution does not depend
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Figure A.7: Tracking T quantity for simulations with ϵ = 10−3 and α = 1 for a range of
values σ and τ . The red dots correspond to simulations that crashed due to instabilities.
The blue dots show how the tracking improves linearly with τ and σ decrease until satu-
ration is reached for a fixed value of the other fixing parameter.

strongly on {σ, τ}.
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Figure A.8: Tracking T quantity for simulations with ϵ = 10−2 and α = 1 for a range of
values σ and τ . The red dots correspond to simulations that crashed due to instabilities.
The blue dots show how the tracking improves linearly with τ and σ decrease until satu-
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Appendix B

Removing Ostrogradsky’s ghost, an
example.

B.1 One-dimensional point particle example

This appendix will review the order reduction example presented in [173]. Consider a
one-dimensional point particle with the following Lagrangian:

L =
1

2
ẋ− ϵ

1

2
ẍ− 1

2
m2x2 +O(ϵ2), (B.1)

where ϵ is an expansion parameter which we can related to
(

1
Λ6 = ϵ

)
in this thesis. The

equations of motion for this Lagrangian contain fourth-time derivatives,

ẍ+m2x− ϵx(4) = O(ϵ2). (B.2)

Its exact solutions are given by,

x(t) = A+ expk+t+B+ exp−k+t+A− expk−t+B− exp−k−t, (B.3)

where A± and B± are determined by four initial conditions, and k+ and k− are given by,

k2± =
1

2ϵ
(1∓

√
1 + 4ϵm2). (B.4)

Expanding to leading order in ϵ we can see,
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k+ ≈ im+O(ϵ), k− ≈ 1√
ϵ
+O(ϵ0). (B.5)

Thus it is clear that the terms with exponents k+ are oscillatory, while the other two
represent exponentially growing or decaying solutions that are not consistent with the
perturbative expansion and hence considered nonphysical.

The process to avoid having these unhealthy solutions start by first noticing that equa-
tion (B.2) contains in the right-hand side the O(ϵ2) symbol, then we can benefit from the
fact that the equation is only valid to that order. Taking two time derivatives of (B.2),
isolating the fourth time derivative, and considering the equation valid up to order O(ϵ),
we get,

x(4) = −m2ẍ+O(ϵ), (B.6)

which can be substituted in (B.2) to get,

ẍ+ m̃2x = O(ϵ2) , m̃2 ≡ (1− ϵm2)m2. (B.7)

Equation (B.7) has a straightforward solution,

x(t) = A cos (m̃t) +B sin (m̃t), (B.8)

which upon expanding to O(ϵ2) takes the form,

x(t) = A cos(mt) +B sin(mt) +
1

2
ϵm3t(A cos(mt)−B sin(mt)) +O(ϵ2). (B.9)

It can be then checked that (B.9) is the same solution one would obtain by solving (B.2)
by a perturbative expansion method using x = x0 + ϵx1 + O(ϵ2). The solution obtained
then no longer possesses exponentially growing/decaying solutions.
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Appendix C

Appendix for Chapter 3.

C.1 Convergence

To check convergence, we adopt the base uniform grid spacing to be dx = 0.037M and
compute the convergence factor as,

Q ≡ ln

( ||udx − udx/2||2
||udx/2 − udx/4||2

)
/ ln(2), (C.1)

were udx, udx/2 and udx/4 stands for any of the dynamical fields evolved with resolutions
dx, dx/2 and dx/4 respectively. In Figures C.1 and C.2 we present the convergence factor
Q for simulations with a fixed coupling of ϵ = 1× 10−2, τ = 5× 10−3, an initial amplitude
of the scalar field given by A = 1 × 10−3, centered at rc = 20M and of width σ = 1, and
the initial total mass of the spacetime is M = 1. Figure C.1 shows the measured rate for
the “standard” fields (i.e., those that would only be present in GR). The majority of fields
display a rate of around 4th to 6th order, which is consistent with the 4th-order accuracy
of our time integrator or the 6th-order accuracy –at interior points—of our finite difference
derivative operators. The field KT rate is ≃ 3, indicating its behavior is dominated by
the 3rd order accuracy at boundary points of our scheme. Figure C.2 displays the rate for
the new variables Πµν introduced to evolve the modified theory, which converge at order
Q ≈ 3.
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Figure C.1: Convergence factor Q as a function of time. In most cases, the convergence
settles between 4th and 6th order. For KT Q ≈ 3.

C.2 Constraints

We also monitor the behavior of constraints (4.6a), (4.6b),(4.6c) and (4.6d) during evolu-
tion. In particular, Figure C.3 displays the norms of each one as a function of time for our
base resolution of dx = 0.019M , coupling ϵ = 1 × 10−2, τ = 5 × 10−3 and initial scalar
profile with center and width are A = 1 × 10−3, rc = 20M and σ = 1 respectively. To
assess the magnitude of constraint violations, we normalized the norms of every constraint
by the sum of the norms of each term that define it. Such violations remain below ≈ 1%
during evolution.

It is also important to check how effective equations (4.14) are to enforce variables Πµν

approximate M̃µν . To this end, we monitor the quantities given by

Pµν ≡
||Πµν − M̃µν ||2

||M̃µν ||2
. (C.2)

Figure C.4 displays the behavior of Ptt for ϵ = {0.01, 0.05} (two strong coupling val-
ues) and choosing τ = {0.002, 0.005} (two different values of driving timescales). The
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Figure C.2: Convergence factor Q as a function of time for the Πµν variables. The behavior
is consistent with 3rd-order convergence.

difference between Πtt and M̃tt stays small throughout, but it is most pronounced at two
moments during the evolution. One at the beginning of the simulation until the initial
solution rapidly transitions (primarily due to gauge evolution) and a second rise, during
the accreting stage. Both are the regimes with the most marked time dependence. For
the values chosen, the differences are bounded by 2% (0.5%) during the initial (accretion)
stage, but are diminished by decreasing the value of the timescale τ .

It is instructive also to monitor these quantities restricted to the exterior of the apparent
horizon asMtt can be quite large inside and skew the interpretation of difference. Figure C.5
shows that with this restriction, the initial transient transient is significantly reduced but
it is larger during the accretion stage, raising to ≈ 7%. Nevertheless, this can be reduced
by adopting a different value of τ . For instance, it is reduced by about half going from
τ = 0.05 to τ = 0.02. Finally, we note that differences in the other components of Pµν
behave similarly to the one displayed by Ptt.
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Appendix D

Appendix for Chapter 4.

D.1 Excision

The numerical treatment of solutions containing BHs requires dealing with the singular
behavior of its interior. In GR, excising from the computational domains trapped region(s)
(which can be shown to lie within BHs and thus are causally disconnected from their
exterior) or mapping the interior of BHs to other causally disconnected asymptotic regions
are practical and successful techniques to address this issue. With beyond GR theories,
extensions of these ideas can be adopted. Here, we follow a strategy implemented in
[86], where terms beyond GR are “turned off” inside the apparent horizon (AH), thus
allowing one to follow the standard approach in GR and use a puncture gauge to handle
(coordinate) singularities inside BHs. By turning off beyond GR terms well inside the AH,
we are modifying the theory in a region of spacetime that is causally disconnected from
any external observer and where the theory should no longer be a valid EFT anyway.

Since the higher-derivative terms enter the equations of motion as an effective stress-
energy tensor Tab, a measure of the weak field condition is provided by the “size” of the
components of Tab. In the 3+1 decomposition, we have

ρ = nanbTab , Si = −naγ b
i Tab , Sij = γ a

i γ
b
j Tab . (D.1)

Then, a point-wise measure of the weak field condition is captured by the quantity

W =
√
ρ2 + SiSjδij + SijSklδikδjl (D.2)
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This quantity need not be covariant nor anything special, it is just a measure where we
can input a threshold; it is preferred to ρ, which goes to zero at the puncture (even though
it is large in the surrounding region).1

Given an energy-momentum tensor, we damp the “effective source” inside the AH,
and when the weak field condition W is too large by a factor e · Tab where e is a smooth
transition function:

e(χ,W ) = 1− σ(χ; χ̄, ωχ)σ(W ; W̄ ,−ωW ) (D.3)

where, σ(x; x̄, ωx) is defined as,

σ(x; x̄, ωx) =
1

1 + 10
1
ωx
(x
x̄
−1)

, (D.4)

where χ is the conformal factor of the induced metric, χ̄ and W̄ are thresholds for the
excision cutoff region and ωχ and ωW are smoothness widths. With this choice of e(χ,W ),
the source approaches 0 exponentially whenever χ < χ̄ and W > W̄ , and is 1 otherwise.
The parameters ωχ and ωW determine the width of the transition region; we typically
choose them to be ωχ = ωW = 0.1. Since the contours of χ in our working gauge track the
AH very well, we choose a threshold χ̄ that ensures that the excision region is well inside
the AH. In practice, we ended up taking W̄ = 0 so that σ(W ; W̄ ,−ωW ) is always effectively
1, and hence the excision region is solely determined by the value of χ. In practice, for
non-spinning BH binaries, the choice χ̄ = 0.09 ensures that the excision region is well
within the AH [158, 92].

D.2 Convergence

We test convergence by comparing the evolution presented, which used a numerical grid
coarsest spacing of ∆ = 4M and eight further levels of refinement, with two higher resolu-
tions, with spacing ∆ = 32

11
M (medium) and ∆ = frac83M (high). The particular setting

for these simulations has ϵ = 10−5M6
S, σ = 0.1 and τ = 0.005. Figure D.1 shows gravita-

tional strain errors between low, medium, and high resolutions, together with the estimates
for second and fourth-order convergence based on the convergence proportionality factor

Qn =
∆n

Low −∆n
Med

∆n
Med −∆n

High

. (D.5)

This figure indicates approximately fourth-order convergence for the amplitude and the
phase of h+22.

1This is because we turn off the non-GR terms inside BHs, as we explain in the following paragraph.
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Figure D.1: Errors for the amplitude (top) and phase (bottom) of the + polarisation
h+22, extrapolated to null infinity, as a function of retarded time. The dotted lines show
estimates for the error between low and medium resolutions assuming second and fourth-
order convergence. The waves were aligned by their peaks. These figures are consistent
with approximately fourth-order convergence.
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Appendix E

Appendix for Chapter 5.

E.1 Convergence

To check the convergence of the solutions, the base uniform grid spacing dx = 0.04 is
adopted, and the convergence factor is computed as,

Q ≡ ln

( ||udx − udx/2||2
||udx/2 − udx/4||2

)
, (E.1)

here, udx, udx/2 and udx/4 stand for any field evolved with resolutions dx, dx/2 and dx/4
respectively. In Figure E.1 we plot the convergence factor Q for the Krr variable in the
BH collapse scenario : A = 0.0023, σ = 1, rc = 10, z = 0.5, κ = 2. For practical
reasons, we only plot the convergence until an apparent horizon has been detected. The
convergence factor behaves similarly to the other dynamical variables. The black curve in
Figure E.1 shows the convergence factor for the GR case and shows how the convergence is
≈ 4 at the beginning of the simulation and close to the collapse Q quickly climbs to values
between 5 and 6. This is consistent with the 4th-order accuracy of the Runge-Kutta time
integrator and the 6th-order accuracy of finite difference derivative operators. This seems
to be similar for essentially all the ϵ2 ̸= 0 simulations. The result changes drastically for
the ϵ1 ̸= 0 simulations, where we can see the convergence factor does drop to lower values
as the system is close to collapse. Some of these simulations retain acceptable convergence
factors, for example, the cases with ϵ1 = 10−3, ϵ1 = 5 × 10−3 and ϵ1 = −10−3 drop to
convergence factors of values Q ≈ 4, Q ≈ 3 and Q ≈ 2 respectively. However, when the
magnitude of ϵ1 increases, we can see how all convergence is quickly lost. This coincides
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Figure E.1: Convergence factor Q for the Krr variable as a function of time close the time
of collapse for different values of ϵ1 and ϵ2.

mainly with the regime we have identified of simulations leaving the regime of applicability
of the EFT.

E.2 Constraints

Monitoring that the constraints (4.6a), (4.6b), (4.6c), and (4.6d) remain under control is
important to attest to the quality of the performed simulations. In Figure E.2 we plot
the valuer of the l2-norm of Hamiltonian constraint (4.6b) for different values ϵ1 and ϵ2.
Here we have normalized by the l2-norm of the most relevant terms that define it to get
a relative notion of the violation of constraints. The other constraints display similar
behavior, so we omit to show them. The black curve shows our reference GR simulation
using the same parameters used in the convergence test for the dx = 0.02 grid spacing.
The GR case Hamiltonian violation remains extremely small during the evolution, rising
as expected close to the collapse time but never rising above a relative error of 10−8. For
convenience, we only plot the constraint violations until an apparent horizon is formed;
after this apparent horizon forms and excision is applied, the constraint violations naturally
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Figure E.2: l2-norm of the Hamiltonian constraint as a function of time for simulations
with different values of ϵ1 and ϵ2. The horizontal dashed line highlights the 1% error .

become smaller.

The situation changes once either of the couplings is non-vanishing; the constraint
violations remain below the 10−8 relative error for most of the simulation but then quickly
rise as the scalar field profile approaches the center of coordinates. For most cases, the
constraint violation remains below the 1% level throughout the simulation. However,
there are cases in which violations are within a worrying 1% and 10% like for ϵ2 = −10−3

and ϵ1 = −2.5 × 10−2, and cases were the violations > 10% and greater than 1000%
error, for ϵ1 = 5 × 103 and ϵ2 = −2.5 × 103. These larger constraint violations are no
surprise; manipulations in the constraint equations were performed that assume that the
modifying terms remain corrective (i.e., within the applicable regime of the EFT), and these
corrections become greater as the pulse collapses. The cases where constraint violations
are large enough to be unable to trust simulations anymore also belong in the parameter
regime that has shown either through loose or convergence or by leaving the EFT regime
that these solutions can not be trusted.
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