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Abstract

This thesis hopes to achieve two modest goals. The primary goal is to formulate a
practical theory for generating cat states by employing a resonant or detuned strong drive
on a qubit coupled to a resonator. An incidental outcome of this approach is the ability
to encode a qubit state within a resonator state using cat states. The secondary goal is to
showcase the robustness of this theory in the face of practical implementation challenges,
including decoherence and the existence of more than two levels. In this pursuit, we extend
the theory to include a driven qutrit-resonator system. The theory is aimed at a circuit
QED implementation using a transmon or charge qubit.
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Chapter 1

Introduction

Light-matter interaction resides at the core of the fundamental quest for knowledge, while
simultaneously driving a (potential) technological revolution. From the red light stopping
you at the intersection, to the fiber optics carrying your favorite melodies across oceans,
to the satellites communicating your position, the interactions of light or electromagnetic
(EM) waves with matter underlie most of the functions in our daily life. The power of
harnessing such interactions cannot be overstated.

These interactions, as with everything else, must adhere to the principles of quantum
mechanics. Quantum mechanics is the framework tackling the small constituent objects
forming everything around us. Unfortunately, we are too big for quantum mechanics. The
quantum-mechanical nature of most things around us decoheres at our level. Thus, to
uncover the finer quantum-mechanical nature of light-matter interaction, we must find a
smaller scope than everyday objects.

Cavity quantum electrodynamics (QED) is the branch of physics concerned with study-
ing light-matter interactions in a confined space. In particular, it refers to light confined in
a hollow space surrounded by mirrors – a cavity, with atoms in the midst. By externally
exciting the atoms, we can cause them to emit or absorb photons from the confined EM
field. When done right, these phenomena occur in a coherent and detectable manner via
the transmission and reflection of external signals through the cavity.

While nature gives us atoms and we can confine light in cavities, the coupling between
light and matter is inherently limited in these natural settings. In pursuit of exotic phe-
nomena, we can synthesize ‘artificial atoms’ and confine light on a chip. This enables us to
achieve coupling strengths unimaginable in the natural world. Furthermore, this approach
empowers us to harness quantum effects generated on these chips in a robust, replicable,
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and scalable manner. To engineer these ‘atoms on a chip,’ we use the ultra-low-dissipation
platform provided by superconducting circuits – the field recognized as circuit QED. In
this context, linear circuits, comprising lumped elements or distributed elements, fulfill
the role of cavities by confining light. Meanwhile, nonlinear or ‘anharmonic’ circuits as-
sume the role of artificial atoms. This thesis is focused on developing a practical theory
for generating quantum-mechanical states in a superconducting cavity or resonator using
these artificial atoms. The states of concern exhibit highly nonclassical features and are
known as ‘Schrödinger cat states’. The theory presented aims to account for practical
considerations such as interference of higher energy levels of the atoms, spurious effects of
cross-talk, and decoherence effects.

The structure and main results of the thesis are now outlined. In Ch. 2, the basic
tools of this thesis are introduced. A brief overview of quantum mechanics in closed
and open systems is presented. Classical states within quantum theory and signatures of
nonclassicality are discussed. The simplest model of an atom, whether artificial or real,
is introduced as a two-level system or qubit. Its semiclassical and quantum interactions
with light are explored through the semiclassical and quantum Rabi models. The various
regimes of coupling strength between light and matter are succinctly explored, spanning
from the seminal Jaynes-Cummings model [27] to the exotic deep-strong coupling regime.
Schrödinger cat states in quantum optics are defined and their properties are discussed.
Finally, an overview of the relevant elements of circuit QED are presented. An LC resonator
in its lumped- and distributed-element forms is introduced. The Cooper-pair box in its
charge and transmon regimes is introduced. The capacitive coupling of a Cooper-pair box
and a resonator is discussed. In Ch. 3, a continuously driven qubit coupled to a resonator is
extensively studied, to generate a cat state. The material presented in that chapter serves
as a critical analysis and extension of an existing cavity QED proposal [58]. The strong
driving regime is examined. The rotating-wave-approximation conditions that permit us
to neglect counter-rotating terms are found to be affected by the drive parameters. A
protocol for encoding a qubit state into a resonator via cat states is formulated based on
resonant strong driving. The cat states generated by this protocol are found to be ‘very
fast’ (experimental parameters in Ch. 3 quantify how fast; spoiler alert - between 5 and
50 nanoseconds). The size of the cats generated by this method grows quadratically in
time. The protocol is found to be robust against qubit and resonator decoherence. In
Ch. 4, the system studied is extended to be a three-level system or qutrit with selection
rules conforming to those of a Cooper-pair box, a cascade-type or Ξ-type qutrit. Both
qutrit transitions are considered to be coupled to the drive and resonator. The theory
developed for the qubit is generalized for a weakly-anharmonic qutrit and is found (with
some modifications) to generate cat states. The protocol for encoding a qubit state in a
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resonator is generalized to use a qutrit for that purpose. In the strongly-anharmonic limit,
it is found that the qubit treatment holds for the most part with some perturbations due
to the third state interfering. Finally, a framework is developed for dealing with arbitrarily
anharmonic qutrits. The conditions needed to potentially create superpositions of coherent
states, including the possibility of generating a cat state are discussed. In Ch.5, a brief
conclusion summarizing this work is presented with an outlook on what can be done next.
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Chapter 2

Preliminaries

In this chapter, we cover the basic topics relevant to the material developed later in this
thesis. This chapter should serve as a basic introduction to all the relevant models, tech-
niques and concepts used. Throughout the chapter, we explicitly cite references when a
result is directly quoted from the reference or is deemed to not be commonly known. For
elementary quantum mechanics and open systems, we relied on Refs. [53, 9, 11]. For phase
space methods and Gaussian states, we relied on Refs. [41, 64, 54]. For quantum optics,
we relied on Refs. [22, 32, 34, 23]. For circuit QED, we relied on Refs. [4, 33, 39].

2.1 Basic Quantum Mechanics

In this section, we review the basic elements of quantum mechanics used in this thesis.

The states of a quantum system belong to a Hilbert space, H, which we consider in
two instances: a finite-dimensional (qubit) instance and an infinite-dimensional instance
(harmonic oscillator). A pure state of a system is represented as a vector in the Hilbert
space, |ψ⟩ ∈ H. All states have a norm of 1, | ⟨ψ|ψ⟩ | = 1. When considering experimen-
tal imperfections in state preparation and decoherence effects, a statistical description of
quantum states is employed. This is represented by a density operator or matrix, ρ̂. The
matrix belongs to the space of linear operators acting on H, denoted as ρ̂ ∈ L(H). In
particular, density matrices comprise the set of positive semi-definite matrices acting on
H with a trace of unity, Tr(ρ̂) = 1. The trace unity condition is equivalent to the norm
condition. For a pure state |ψ⟩, the density matrix is given by ρ̂ = |ψ⟩⟨ψ|. If we consider
a set of pure states |ψ1⟩ , |ψ2⟩ , ..., |ψn⟩ with associated probabilities pk, the density matrix
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describing the statistical mixture of these states along with their associated probabilities is
ρ̂ =

∑n
k=1 pk |ψk⟩⟨ψk|. An observable, Â, constitutes a Hermitian or self-adjoint operator,

i.e., Â† = Â, acting on H. This property guarantees that the eigenvalues – the values we
observe in experiments – are indeed real. For two coupled quantum systems with Hilbert
spacesH1 andH2, their joint Hilbert space is the tensor product of the two spaces, H1⊗H2.
A state that can be written as the tensor product of two pure states in the original Hilbert
spaces, |ψ1⟩ ⊗ |ψ2⟩, where |ψ1⟩ ∈ H1 and |ψ2⟩ ∈ H2, is called a product state. Otherwise,
if a state cannot be expressed as a product state, it is an entangled state. In this thesis,
we drop the tensor product (for states and operators), ‘⊗’, and keep it implicit.

The time-evolution of a closed quantum system is generated by the system’s Hamilto-
nian, Ĥ. The dynamics of a pure state are governed by the Schrödinger equation, which
is given by

iℏ
d

dt
|ψ(t)⟩ = Ĥ |ψ(t)⟩ . (2.1)

For a more complete description that accommodates both pure and mixed states, the
evolution of a density matrix is dictated by the von Neumann equation:

iℏ
d

dt
ρ̂ = [Ĥ, ρ̂]. (2.2)

This perspective, where states evolve in time, is known as the Schrödinger picture. An
equivalent viewpoint is the Heisenberg picture, where the states remain fixed while the
operators evolve in time. For an operator Â, the Heisenberg equation of motion is given
by

iℏ
d

dt
Â = −[Ĥ, Â] + iℏ

∂

∂t
Â. (2.3)

The time-evolution of a closed system is unitary, ensuring that the probabilities and norms
of the states are preserved.

Thus far we have only considered closed system dynamics. In practice, a quantum
system is never truly isolated but rather interacts with the environment. In this thesis,
we are working with systems operating near the milliKelvin temperature range. As a
result, we consider our system(s) to interact with a bath of harmonic oscillators at zero
temperature, and we employ the typical Born and Markov approximations to arrive at a
Lindblad master equation [9, 11]

d

dt
ρ̂ = −[Ĥ, ρ̂] +

∑
k

γkD(L̂k)ρ̂, (2.4)
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where D(Ô)ρ̂ = Ôρ̂Ô† − 1
2
{Ô†Ô, ρ̂} is the dissipator for a given operator Ô, γk is a rate

parameter for the kth Lindblad jump operator L̂k describing decoherence effects.

We now define the two quantum systems of interest: the qubit and harmonic oscillator.
We start with the qubit operators and eigenstates. We take the qubit free Hamiltonian
to be Ĥ = ℏωqσ̂z/2 where σ̂z = |e⟩⟨e| − |g⟩⟨g| describes the population difference between
the excited state |e⟩ and the ground state |g⟩ of the qubit and ωq is the qubit transition

frequency. Here, |g⟩ and |e⟩ are eigenstates of Ĥ with the property σ̂z |g⟩ = − |g⟩ and
σ̂z |e⟩ = |e⟩. When we introduce a classical field interacting with the qubit, we will resort
to using σ̂+ = |e⟩⟨g| and σ̂− = σ̂†

+ as the raising and lowering operators of the qubit,
and we define σ̂x = σ̂+ + σ̂−. Meanwhile, the harmonic oscillator free Hamiltonian is
Ĥ = p̂2/2m + mω2q̂2/2. Here, p̂ and q̂ are the (generalized) momentum and position
operators, m is the ‘mass’ of the oscillator and ω is the oscillator’s resonance frequency. We
typically rewrite this Hamiltonian as Ĥ = ℏω(â†â + 1/2), where â and â† are the bosonic
annihilation and creation operators. The usual commutation relation, [â, â†] = Î, holds
true. Henceforth, we drop the constant offset of ℏω/2. The eigenstates of the harmonic
oscillator are the Fock states, |n⟩. They are eigenstates of the number operator, â†â, where
â†â |n⟩ = n |n⟩ . In the case of the harmonic oscillator, the Heisenberg uncertainty principle
states ∆q∆p ≥ ℏ/2, where ∆O = (⟨Ô2⟩ − ⟨Ô⟩2)1/2. Note that the vacuum state saturates
the inequality. Next, we take a look at all the non-trivial states saturating this inequality.

The annihilation operator admits an eigenstate |α⟩, where â |α⟩ = α |α⟩ , α ∈ C. These
states are related to the vacuum state through the displacement operator

|α⟩ = D̂(α) |0⟩ , (2.5)

where

D̂(α) := exp
(
αâ† − α∗â

)
. (2.6)

This state saturates the uncertainty principle and has equal variances in q̂ and p̂, i.e.,
∆q = ∆p =

√
ℏ/2. We can rewrite a coherent state in the Fock basis as

|α⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!

|n⟩ . (2.7)

The coherent states also form a basis for the Hilbert space but it is overcomplete,∫
d2α |α⟩⟨α| = πÎ. (2.8)
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Here, d2α is in the sense of integrating over the real and imaginary parts of α.

One can consider ways to keep the uncertainty principle inequality saturated while
simultaneously altering the variances — increasing one and decreasing the other. This
leads us to squeezed (vacuum) states, which result from applying the squeeze operator on
the vacuum state,

|ζ⟩ = Ŝ(ζ) |0⟩ , (2.9)

where

Ŝ(ζ) := exp
(
(ζ∗â2 − ζâ†2)/2

)
(2.10)

and ζ ∈ C. This state has uneven variances in q̂ and p̂ but the product of the variances
is fixed at ℏ/2. Squeezed states played a crucial role in interferometers used to detect
gravitational waves [12]. Similar to the coherent states, squeezed states can be rewritten
in the Fock basis as

|ζ⟩ = 1√
cosh(r)

∞∑
n=0

√
(2n)!

2nn!
(−eiϕ tanh(r))n |2n⟩ , (2.11)

where r = |ζ| and ϕ = arg(ζ). Coherent and squeezed states together with the vacuum
state are known as (pure) Gaussian states. Their probability distributions, |ψ(q)|2, are
Gaussian distributions. As we will discuss next, these states are widely believed to be the
set of ‘classical’ states within quantum theory1. The notion of classical vs. non-classical
will become more apparent when we next introduce quasiprobability distributions in phase
space.

In classical mechanics, the phase space formulation is an insightful tool to investigate
the dynamics of a system. Typically, the state of a system is a single point, (q, p), on a
deterministic trajectory or curve. In quantum mechanics, a single point is not sufficient
to describe the system, as it could be in a superposition of different states each with an
associated probability. For this purpose we need a distribution over phase space. For a
bosonic mode, we define the Wigner function for a given state ρ̂ as

W (q, p) =
1

2πℏ

∫ ∞

−∞
dx e−ipx/ℏ ⟨q + x/2| ρ̂ |q − x/2⟩ . (2.12)

1Note that classical systems do not possess a ground state. Coherent states, in the limits of the
correspondence principle, behave as one would expect a classical oscillator to. Some controversy still
surrounds squeezed states, as some consider them to be non-classical, despite the demonstration that
classical systems can indeed be squeezed; see Refs. [52, 14, 43].
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This was E.P. Wigner’s attempt to represent a quantum state using a real distribution
over phase space. He wrote this while working on quantum corrections to thermodynamics
equilibrium [65]. The Wigner function satisfies some properties of a probability distribu-
tion and as such it is called a quasiprobability distribution. It integrates to unity, i.e.,∫
dq
∫
dpW (q, p) = 1, but it can have negative values. This means that it cannot be

thought of an actual probability distribution. Its marginals, however, are strictly real and
correspond to the position and momentum distributions of the state. This leads us to an
important result known as Hudson’s theorem [26, 59], which asserts that any pure state
with a nonnegative Wigner function must have a Gaussian function for its Wigner func-
tion. These states precisely correspond to the previously mentioned Gaussian states, and
indeed, the definition is often stated as follows: Gaussian states are those states whose
Wigner functions are Gaussian distributions. Because non-classicality is characterized by
Wigner negativity and Wigner functions that are nonnegative are associated with Gaus-
sian states, this underlies the statement that Gaussian states constitute the class of (pure)
classical states within the framework of quantum theory.

Lastly, we re-express the Wigner function in its ‘coherent-state representation’ as it is
the commonly used form,

W (α, α∗) =
1

4π2ℏ

∫
d2β eβ

∗α−βα∗
Tr
(
D̂(β)ρ̂

)
. (2.13)

For N modes characterized by âk and â†k (for k = 1, ..., N), we generalize the displacement
operator to

D̂(α⃗) = exp

(
N∑
k=1

αlâ
†
k − α∗

kâk

)
=

N∏
k=1

exp
(
αkâ

†
k − α∗

kâ
)

=
N∏
k=1

D̂(αk), (2.14)

where α⃗ = (α1, α2, ..., αN)
T . Using the N -mode displacement operator, we can write the

N -mode Wigner function as

W (α⃗, α⃗∗) =
1

(4π2ℏ)N

∫
d2β1...

∫
d2βN e

β⃗∗·α⃗−β⃗·α⃗∗
Tr
(
D̂(β⃗)ρ̂

)
, (2.15)

where β⃗ = (β1, ..., βN)
T ,‘·’ is to be taken as the dot product between two vectors and ρ̂

is the joint density matrix of the N modes. In this thesis, the Wigner function is used
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to visualize nonclassical resonator states generated by interacting with a driven qubit in
various coupling schemes.

In the next section, we discuss the basic models of light-matter interaction in the
semiclassical approximation followed by a full quantum descripton. As such, we will couple
the qubit and harmonic oscillator and discuss their interaction, which varies according the
coupling strength regime.

2.2 Qubit-resonator system

In this section, we introduce the models of light-matter interaction relevant to this thesis.
We start with the semiclassical Rabi model (SRM) that originated in the study of atoms
2 with nuclear spin interacting with magnetic fields [50]. Then taking into consideration
the quantization of the EM field [15, 18], qubit-field interactions require a full quantum-
mechanical description. This leads us to the simplest model entailing such a description,
the quantum Rabi model (QRM). We discuss the key predictions of the semiclassical and
fully quantum models. We outline the coupling strength regimes of the QRM.

Semiclassical Rabi model

To begin our discussion of light-matter interaction, we consider a one-electron atom placed
in an EM field. The electron with a negative charge −e and the nucleus with a positive
charge e together define an electric dipole d⃗ = er⃗, where r⃗ is the displacement vector from
the nucleus to the electron. We consider the nucleus is fixed at the origin. Typically,
the electron displacement is very small compared to the wavelengths of interest. As a
result, this allows us to make the long-wavelength (dipole) approximation where the field

is spatially uniform, i.e., E⃗(r⃗, t) ≃ E⃗(t), where this is the field near the center of the nucleus.

This results in an interaction Hamiltonian known as the dipole Hamiltonian HI = −d⃗ · E⃗.
Treating the one-electron atom quantum-mechanically, results in the dipole moment being
an operator,

d⃗ 7→ d̂ = eˆ⃗r. (2.16)

2Henceforth, we refer to the atoms in these models as qubits or qudits depending on the context.
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We consider the atom in its simplest case, a two-level system or qubit. The electric dipole
matrix elements are found by

d̂ = Î d̂ Î =
∑
j,k

|j⟩ ⟨j| d̂ |k⟩︸ ︷︷ ︸
djk

⟨k| =
∑
jk

djk |j⟩⟨k|

where

djk = e

∫
d3r ψ∗

j (r⃗)rψj(r⃗)

and ψk(r⃗) = ⟨r⃗|k⟩ is the kth energy eigenstate position wavefunction. Typically, the atom-
field interaction of interest is when a particular atomic transition is close to the field
frequency. When the atomic transition and the field are near resonance, only the population
of the two states involved in this transition are significantly altered by the presence of the
field. In this case, a qubit serves as a good approximation of an atom. Concretely, we
restrict ourseleves to the ground and first excited states, {|g⟩ , |e⟩}, and, as such,

d̂ = deg |e⟩⟨g|+ d∗ge |g⟩⟨e| .

Considering a monochromatic field with frequency ωd, the interaction Hamiltonian
between the qubit and the field is

ĤI = −d̂ · E⃗ ∝ (σ̂+ + σ̂−)︸ ︷︷ ︸
qubit operators

cos(ωdt).

This leads us to the semiclassical Rabi model (SRM), which constitutes the simplest model
of light-matter interaction, where a qubit interacts with a monochromatic classical field.
The full Hamiltonian of this model reads as

ĤR =
ℏωq

2
σ̂z + ℏΩcos(ωdt)σ̂x, (2.17)

where ωq is the qubit transition frequency, ωd is the classical field frequency, and Ω is the
classical field strength. The time-evolution for this Hamiltonian, as it stands, cannot be
solved analytically.

To simplify the problem, we introduce the rotating frame. A driven system’s response
oscillates at the drive frequency. The amplitude of the response is at a maximum when
the system is resonant with the drive. We can think of the rotating frame as a means
to track the response of a system with respect to the drive frequency. This enables us to
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describe the frequency of the system’s response relative to the driving frequency when it is
detuned from the drive. The rotating frame also allows us to resolve the system response
into slow oscillating terms, quasi-resonant with the drive, and fast oscillating terms, far-
detuned from the drive. This is achieved by using a unitary transformation on the system
Hamiltonian.

We now transform to the rotating frame of the classical field by means of the unitary
transformation Ûd = exp (−iωdtσ̂z/2). The Hamiltonian in this frame reads as

ĤRot
R = Û †

dĤRÛd + iℏ ˙̂
U †
dÛd

=
ℏ(

∆︷ ︸︸ ︷
ωq − ωd)

2
σ̂z +

ℏΩ
2
(σ̂+ + σ̂− + e+i2ωdtσ̂+ + e−i2ωdtσ̂−), (2.18)

where ∆ is the detuning between the qubit and the classical field. When the field strength
satisfies Ω/2 ≪ 2ωd, the terms oscillating with e±i2ωdt operate on a much faster and
separated timescale than the other terms. When the amplitude of the prefactor (Ω) is
small compared to the oscillation frequencies, the total effect on the relevant timescales
averages to zero. As a result, we can perform a rotating-wave approximation (RWA) that
neglects the fast-oscillating terms. It is equivalent to time-averaging these terms over the
a period T = 2π/(2ωd). Performing said RWA allows us to obtain the Hamiltonian

ĤRot
R

′ =
ℏ(ωq − ωd)

2
σ̂z +

ℏΩ
2
(σ̂+ + σ̂−) (2.19)

Back in the original ‘lab’ frame, the Hamiltonian now reads as

Ĥ ′
R =

ℏωq

2
σ̂z +

ℏΩ
2
(e−iωdtσ̂+ + e+iωdtσ̂−). (2.20)

Under the resonance condition ∆ = 0, starting in the ground state |ψi⟩ = |g⟩, we time-
evolve in the rotating frame under Eq. (2.19) and obtain the state at time t,

|ψ(t)⟩Rot = cos

(
Ωt

2

)
|g⟩ − i sin

(
Ωt

2

)
|e⟩ . (2.21)

Then, we find the probability of the system being in the excited state at any given time to
be

P|e⟩(t) = | ⟨e|ψ(t)⟩ |2 = sin2

(
Ωt

2

)
. (2.22)
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This probability oscillates with frequency Ω, known as the Rabi frequency, and the oscilla-
tions are commonly referred to as Rabi oscillations.

When ∆ ̸= 0, Rabi oscillations still occur but the probability never reaches unity. This
results in a dressing of the qubit frequency known as the ac-Stark shift. As the strength of
the field grows, the fast-oscillating (counter-rotating) terms become more prominent and
lead to a shift in the qubit resonance frequency. This shift is known as the Bloch-Siegert
shift and is proportional to Ω2/(ωq + ωd) [5, 56, 67].

In the following chapters of this thesis, we shall refer to a classical field of the form
described here as a driving field.

Quantum Rabi model

In the SRM, the qubit serves as a quantized model of matter (first quantized) while the field
is classical. A natural step towards a full quantum-mechanical description of light-matter
interaction is the (second) quantization of the radiation field. We shall avoid discussing the
procedure of second quantization and assume its final result: the modes of the radiation
field behave as a set of independent quantized harmonic oscillators. The Hamiltonian of
the field reads as (ignoring the constant off-set)

ĤF =
∑
k

ℏωkâ
†
kâk, (2.23)

where ωk is the frequency of the kth mode and âk, â
†
k are the usual bosonic creation and

annihilation operators of the kth mode which obey the commutation relations [âj, â
†
k] = δjk.

For the scope of light-matter interactions in a confinement such as cavity QED or circuit
QED, the quantized radiation field is that of a cavity (resonator).

We are typically interested in a single mode interacting with a qubit confined in the
cavity (be it an atom in a cavity or a superconducting qubit coupled to a resonator circuit).
Thus, moving forward when we refer to a resonator we strictly mean a particular mode
of interest in the resonator. As in the the SRM, we work in the dipole approximation.
In a similar argument to the two-level approximation, we usually consider the mode of
interest to be close to the transition frequency of the qubit. As a result, the interaction
with other modes insignifanctly affects the qubit states’ populations. Thus, we also employ
the single-mode approximation (discarding other modes). In this context, the interaction
between a qubit and a resonator originates from the same dipole interaction for a classical
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field but instead the field is quantized,

ĤI = −d̂ · ˆ⃗E ∝ (σ̂+ + σ̂−)︸ ︷︷ ︸
qubit operators

field operators︷ ︸︸ ︷
(â† + â) . (2.24)

We can now describe the qubit interacting with the quantized field of the resonator in what
is known as the QRM. The Hamiltonian of this model reads as

ĤQR =
ℏωq

2
σ̂z + ℏωrâ

†â+ ℏg(σ̂+ + σ̂−)(â
† + â), (2.25)

when ωr is the resonator frequency and g is the strength of the qubit-resonator interaction.
This model serves as a basis for investigating truly quantum-mechanical light-matter in-
teractions. This means that it makes predictions that cannot be recreated by any classical
theory.

The eigenvalue problem for the QRM Hamiltonian, Ĥ |En⟩ = En |En⟩, cannot be solved
analytically3. However, this Hamiltonian can be simplified by making some approxima-
tions. To motivate such approximations, we first transform to the interaction picture.
When the Hamiltonian of a system is composed of two (or more) terms and one of them
is exactly solvable, it is useful to ‘eliminate’ the solvable part and focus on the difficult
or unsolved part. This typically is the case when we consider a problem with composite
Hilbert spaces, where we completely understand how the ‘bare’ (or uncoupled) Hamilto-
nian terms behave and we seek to understand the coupling terms jointly acting on the full
Hilbert space. This is done using a unitary transformation that goes into a frame where
the bare Hamiltonian terms are eliminated and the interaction terms are left (in a form
still accounting for the bare terms).

We now transform to the interaction picture using Û0 = exp
(
−iĤ0t/ℏ

)
, where Ĥ0 =

ℏωqσ̂z/2 + ℏωrâ
†â. Then, the interaction picture Hamiltonian is

Ĥ(I) = Û †
0ĤQRÛ0 + iℏ ˙̂

U †
0 Û0

= ℏg(σ̂+â†ei(ωq+ωr)t + σ̂−âe
−i(ωq+ωr)t︸ ︷︷ ︸

counter-rotating

+

rotating︷ ︸︸ ︷
σ̂+âe

i(ωq−ωr)t + σ̂−â
†e−i(ωq−ωr)t), (2.26)

3It can be solved semi -analytically where the eigenvalues can be found using transcendental equations
[8].

13



where we note two types of terms: rotating terms which oscillate with the detuning ωq−ωr,
and counter-rotating terms which oscillate with the sum of the frequencies ωq + ωr. In the
regime where

|ωq − ωr| ≪ ωq + ωr and g ≪ min(ωq, ωr), (2.27)

we can perform an RWA to neglect the counter-rotating terms and obtain the effective
interaction Hamiltonian

Ĥ(I) ≃ Ĥ
(I)
JC = ℏg(σ̂+â+ σ̂−â

†). (2.28)

Reverting back to the Schrödinger picture, the full Hamiltonian reads as

ĤJC =
ℏωq

2
σ̂z + ℏωrâ

†â+ ℏg(σ̂+â+ σ̂−â
†). (2.29)

This is known as the Jaynes-Cummings model (JCM) and it is the most commonly used
descendant of the QRM. A key feature of the JCM Hamiltonian is the fact that its eigen-
value problem is analytically solvable. This can be traced to the nature of the rotating
terms, as they are excitation-preserving terms. To elaborate on this idea, let us consider
the subspace spanned by {|e⟩ |n⟩ , |g⟩ |n+ 1⟩} for some fixed n. We first note that the free
Hamiltonians of the qubit and resonator leave these states unchanged. Next, we consider
the action of the interaction terms on these states:

σ̂+â |g⟩ |n+ 1⟩ =
√
n+ 1 |e⟩ |n⟩ ,

σ̂−â
† |e⟩ |n⟩ =

√
n+ 1 |g⟩ |n+ 1⟩ ,

and
σ̂+â |e⟩ |n⟩ = σ̂−â

† |g⟩ |n+ 1⟩ = 0.

Due to this, the only allowed transitions in the JCM are |g⟩ |n+ 1⟩ ↔ |e⟩ |n⟩ . Then, the
dynamics are confined in a 2−dimensional subspace for each n. This means that the
Hamiltonian is block-diagonal. For a fixed n, the 2× 2 Hamiltonian can be expressed as

Ĥ(n) =

( ⟨e| ⟨n| ⟨g| ⟨n+ 1|
|e⟩ |n⟩ ℏnωr +

ℏωq

2
ℏg

√
n+ 1

|g⟩ |n+ 1⟩ ℏg
√
n+ 1 ℏ(n+ 1)ωr − ℏωq

2

)
. (2.30)

Then, it is straightforward to find the eigenvalues and eigenstates as

En,± = ℏωr

(
n+

1

2

)
± ℏ

2

√
(ωq − ωr)2 + 4g2(n+ 1), (2.31a)
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|+n⟩ = cos

(
θn
2

)
|e⟩ |n⟩+ sin

(
θn
2

)
|g⟩ |n+ 1⟩ , (2.31b)

|−n⟩ = sin

(
θn
2

)
|e⟩ |n⟩ − cos

(
θn
2

)
|g⟩ |n+ 1⟩ , (2.31c)

where θn = arctan
(
2g
√
n+ 1/(ωq − ωr)

)
is the mixing angle.

Having derived the JCM eigenstates and eigenvalues, we now discuss key phenomena
that can only occur when the field is quantized. The qubit-resonator system exhibits
quantized Rabi oscillations dependent on the photon number, n, and the qubit-resonator
detuning. The frequency at which these oscillations occur is known as the quantum Rabi
frequency

ωn
QR =

√
(ωq − ωr)2 + 4g2(n+ 1).

Increasing the photon number leads to a higher frequency; a predicition requiring a quan-
tized description of the field. When there are initially no photons in the resonator and
the qubit is excited, the swap of photons between the qubit and resonator is know as vac-
uum Rabi oscillations. In addition to vacuum Rabi oscillations, if we probe the resonator
with an ac signal over varying frequencies and measuring the intraresonator photon num-
ber, we observe a splitting at zero frequency known as the vacuum Rabi splitting [61, 63].
These phenomena cannot be explained without a quantized field having a vacuum state
and emitting and absorbing photons.

The qubit-resonator coupling strength, g, is an important parameter that radically
changes the dynamics we observe. To highlight some of the different regimes dictated
by g, we first introduce κ, the resonator photon loss rate or its linewidth. The photon
loss rate introduces an additional constraint on experimental feasibility. To achieve the
JC regime determined by Eq. (2.27), we additionally require being in the strong coupling
(SC) regime, i.e., when g ≫ κ. This ensures that the dynamics are discernible and not
completely dominated by losses.

By increasing g to a value close to the limit of the RWA validity, we need to incorporate
the counter-rotating terms perturbatively. This results in what is known as the Bloch-
Siegert shift, where both the qubit and resonator frequencies experience a frequency shift
proportional to ωBS = g2/(ωq + ωr), and this shift scales up with the number of photons
present in the resonator. This occurs when g/ωr ∼ 0.1 and is known as the ultrastrong
coupling (USC) regime. We can perturbatively describe this regime up to second order in
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g/(ωq + ωr), by the Hamiltonian [51]

ĤUSC ≃ ĤJC + ℏωBS

(
σ̂zâ

†â+
σ̂z
2

− 1

2

)
. (2.32)

The perturbative treatment of the counter-rotating terms breaks down as the cou-
pling strength increases. The USC represents a hallmark of novel light-matter interactions
achieved in circuit QED. Such coupling strengths between qubits and resonators are be-
yond our reach in cavity QED using natural atoms and light. In this regime and as g
gets larger, the qubit-resonator levels become more hybridized, and the interactions with
the environment and other systems require careful considerations [2]. The system can no
longer be thought of as a qubit and resonator interacting and each separately interacting
with other systems (e.g. external drives or environment). Instead, the qubit-resonator
system’s eigenstates are entangled and the system as a whole interacts with other systems.

The regimes of the QRM we have discussed thus far implicitly assume near-resonance
conditions, i.e., ωq ≃ ωr. While the outlined features hold qualitatively for small detunings,
it is worth briefly examining a detuned regime of the QRM with distinct features: the
dispersive regime. This regime occurs when g/(ωq − ωr) ≪ 1. As long as the RWA of
Eq. (2.27) remains valid, the system is described, up to second order in g/(ωq−ωr), by the
Hamiltonian:

Ĥdisp, RWA =
ℏωq

2
σ̂z + ℏωrâ

†â+ ℏωac-S

(
σ̂zâ

†â+
1

2
σ̂z

)
, (2.33)

where ωac-S = g2/(ωq − ωr) represents the ac-Stark shift frequency. The dispersive regime
also extends beyond the RWA of Eq. (2.27). Using only the condition g/(ωq−ωr) ≪ 1, the
dispersive Hamiltonian, up to second order in g/(ωq − ωr) and g/(ωq + ωr), reads as [69]

Ĥdisp =
ℏωq

2
σ̂z + ℏωrâ

†â+
ℏ
2
(ωBS + ωac-S) σ̂z

(
â† + â

)2
, (2.34)

where both, Bloch-Siegert and ac-Stark shifts are present. The dispersive regime allows
for a quantum-non-demolition (QND) measurement of the qubit via the resonator, i.e., the
qubit state is not destroyed in the measurement process. The term σ̂zâ

†â, in the dispersive
Hamiltonians, dresses the resonator frequency with a positive (negative) shift when the
qubit is in the excited (ground) state.
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2.3 Schrödinger cat states

In the early days of quantum theory, properties like entanglement and superposition, along
with their connection to the macroscopic world, underwent intense scrutiny. Early investi-
gations led to the formulation of paradoxes such as the Einstein-Podolsky-Rosen paradox
[16] and Schrödinger’s cat paradox [55]. The cat paradox revolves around a microscopic
object entangled with a macroscopic one, existing in a superposition of two distinct macro-
scopic states. This paradox was formulated to probe issues related to quantum measure-
ment in entangled microscopic-macroscopic systems, as well as the quantum-to-classical
transition.

Beyond the cat paradox, cat states became well defined non-classical states in different
fields of quantum theory. In the field of quantum optics, cat states refer to a specific occur-
rence where an EM field mode is in a superposition of two macroscopically distinguishable
states. In this thesis, we focus on a particular case where the field is in a superposition of
two coherent states with opposite phases. These states have experienced a recent resur-
gence in interest for two main reasons. Firstly, cat states provide a valuable resource for
investigating fundamental aspects of quantum mechanics and pushing the boundaries of
quantum coherence. As the size of the cat state grows, moving from mesoscopic or micro-
scopic to macroscopic physics, it allows for the exploration of foundational questions. This
growth in size, measured by the total number of photons, enables the study of the limits of
quantum coherence [70]. Secondly, cat states have generated interest in the development
of error correction codes for quantum computation. They can be used to encode logical
qubits, making amplitude damping or photon loss errors more easily correctable [30]. In
this section, we define even and odd cat states, their statistical properties and common
methods used to generate them. Note that there are many bosonic codes using cat states
to logically encode a qubit, but we shall avoid discussing error correction schemes as they
are not directly relevant to this thesis. We are strictly interested in the generation of cat
states.

We begin by defining even and odd cat states as

|C+⟩ =
1√N+

(|α⟩+ |−α⟩) , (2.35a)

|C−⟩ =
1√N−

(|α⟩ − |−α⟩) , (2.35b)

where α is some complex number and N± = 2(1± exp(−2|α|2)) is the normalization; when
|α| is large, N± → 2. The terms ‘even’ and ‘odd’ refer to the contributions of Fock states.
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An even cat state comprises a superposition of even Fock states, |2n⟩. Conversely, an odd
cat state is composed of odd Fock states, |2n+ 1⟩. The parity of the state holds significant
importance in specific error correction schemes. The parity of a cat state residing in a
resonator can be measured by using a dispersively coupled qubit, without causing the
resonator state to collapse. This form of measurement has minimal back-action [20].

The parity measurement provides a means to identify and monitor instances of photon
loss, as the loss of a single photon would alter the state’s parity. The parity can also
be visualized through the Wigner function of a cat state. Besides the two lobes in the
Wigner function, the number of negative dips in the interference region signifies the parity;
if it is even (odd), the the cat is even (odd). The Wigner functions of these states along
with their Fock state distributions are shown in Fig. 2.1. When accounting for dissipative
effects, the lobes of the cat state, |±α⟩, evolve to lobes of smaller amplitude, |±αe−κt⟩
[32]. The interference region, however, decays much faster than the lobes. Eventually, the
state converges to a steady state of an incoherent statistical mixture of coherent states
ρ̂ss = (|α⟩⟨α|+ |−α⟩⟨−α|)/2.
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1Figure 2.1: Wigner functions and Fock state distributions of even and odd cat states with
α = 2.

The cat states introduced above are also known as two-component cat states (due to the
contribution of two coherent states). In general anN -component cat state can be defined as
a superposition of N coherent states. In particular, N -component cat states of interest are
those of equal amplitude (|α|) distributed on a circle, i.e, a superposition of coherent states∣∣αei2πk/N〉 for k = 0, 1, ..., N −1. The recent interest in these particular cat states is due to
the rotational symmetry in phase space and its relation to error correction codes [21]. In
Fig. 2.2, the Wigner functions of a three-component cat state, ∝ |α⟩+

∣∣αei2π/3〉+ ∣∣αei4π/3〉,
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1Figure 2.2: Wigner functions of three- and four-component cat states with α = 3.

and a four-component cat state, ∝ |α⟩+
∣∣αei2π/4〉+ ∣∣αei4π/4〉+ ∣∣αei6π/4〉, are shown.

2.4 Circuit QED

The discussions on light-matter interaction presented earlier have been abstracted from
an implementation scheme. This work is purely theoretical; however, its primary moti-
vation lies in presenting a practical and experimentally-feasible theory for a circuit QED
setup. The purpose of this section is to introduce the two main elements in a light-matter
interaction scheme: the resonator—light and the anharmonic circuit behaving as an ‘arti-
ficial atom’—matter. There exists a plethora of superconducting circuits with anharmonic
spectra that can effectively serve as a qubit (or qudit). We will be concerned with an
anharmonic circuit known as the Cooper-pair box. As for the resonator, we are mainly
concerned with a lumped-element resonator and we also briefly discuss two-dimensional
distributed-element resonators.
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1Figure 2.3: Lumped-element LC resonator circuit diagram.

LC resonator

The simplest quantum mechanical circuit is the LC resonator. The LC resonator is defined
by an inductance L and a capacitance C. This gives it a frequency of ωr = 1/

√
LC.

Here, we are interested in a circuit whose spatial dimensions are much smaller than the
wavelengths of its harmonics. In such a case, we can simply treat it as a lumped-element
circuit. Typically, for a resonator with ωr = 2π × 5GHz, the associated wavelength is
∼ 6 cm while its spatial dimensions are on the order of ∼ 100 µm. Thus, it is justified to
reduce it to a lumped-element circuit.

The classical Hamiltonian of an LC resonator is

HLC =
Q2

2C
+

Φ2

2L
=
Q2

2C
+

1

2
Cω2

rΦ
2, (2.36)

where Q is the charge stored in the capacitor and Φ is the flux passing through the inductor.
In dealing with circuits we usually deal with currents, I, and voltages, V , so it is useful to
remember that they are related to the charge and flux through these relations:

Q(t) =

∫ t

−∞
dτI(τ) and Φ(t) =

∫ t

−∞
dτV (τ).
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This Hamiltonian exactly coincides with that of a mechanical harmonic oscillator, with
the charge, Q, playing the role of the momentum and the flux, Φ, playing the role of the
position. In this analogy, the inductive energy is the potential energy and the capacitive
or charging energy is the kinetic energy. Since Φ is the ‘position’, the capacitive energy
is CV 2/2 = CΦ̇2/2. Thus, due to this form we can think of it as the kinetic energy. As
such, the LC resonator plays the role of a quantum harmonic oscillator or a quantized field
mode. For that purpose, we proceed with canonical quantization – promoting the classical
functions Q and Φ to the operators Q̂ and Φ̂ satisfying the canonical commutation relation

[Φ̂, Q̂] = iℏ.

We can then define these operators in term of the creation and annihilation operators as

Φ̂ = Φ0(â
† + â), (2.37a)

Q̂ = iQ0(â
† − â), (2.37b)

where Φ0 =
√

ℏ/2ωrC and Q0 =
√

ℏωrC/2 are the zero-point fluctuation flux and charge
values. Using these definitions, we can arrive at the usual quantum harmonic oscillator
Hamiltonian introduced in Sec. 2.1. When is such a quantum-mechanical description of
an LC resonator appropriate? The energy, ℏωr, needs to be much larger than the thermal
energy kBT , i.e., ℏωr ≫ kBT . Then, for the desired GHz microwave frequency operation
range, the quantum regime can be achieved around ∼ 10mK. For this frequency range, the
inductance and capacitance of an LC resonator need to be on the order of ∼ 0.1 nH and
∼ 10 fF, respectively. With all these conditions, one can cool down a microwave resonator
and prepare it in its ground state, |0⟩, with minimal thermal photons. Henceforth, we
generally assume the quantized nature of the described circuits and proceed assuming they
are already canonically quantized.

The LC resonator is also characterized by its photon loss rate, κ. This parameter is
related to its quality factor by κ = ωr/Qr. This loss rate is due to internal and external
losses. Internal losses can be attributed to dielectric and conductor losses. External loss
can be attributed to coupling and external radiation. The total loss can be quantified by
a total resistance, Rtot = (R−1

int +R
−1
ext)

−1 (see Fig. 2.3). This resistance can then be related
to the photon loss rate by κ = 1/RtotC.

While we introduced the simplest linear superconducting circuit in a lumped-element
format, a resonator can also be two- and three-dimensional. A two-dimensional example
is a coplanar waveguide transmission line (TL) resonator with a set of discretized equally-
spaced field modes depending the boundary conditions (e.g. λ/2 or λ/4). The TL is a
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1Figure 2.4: Lumped-element circuit diagram and schematic of a Josephson Junction.

distributed circuit and, as such, it is chracterized by an inductance per unit length l̃, a
capacitance per unit length c̃ and a length d. Then, the fundamental mode frequency, ωr0,
depends on d, l̃, c̃ and the boundary conditions; ωr0 ∝ 1/d(l̃c̃)1/2. A typical distributed-
element resonator length is around ∼ 1 cm. For a TL with fundamental mode frequency ωr0

and photon loss rate κ0 = ωr0/Qr, the higher modes’ frequencies are multiples (depending
on the boundary condition) of the fundamental mode and the photon loss rate also increases
for higher modes as κm ∝ ωrm, where for the mth mode, κm is the photon loss rate and
ωrm is the mode frequency. In the context of the work done in this thesis, we simply care
about a single mode.

Cooper-pair box: charge and transmon qubits

For the purpose of creating artificial atoms, we would like to address the individual tran-
sitions between states. This is not possible in a resonator as it is harmonic and the energy
levels are equally spaced. We need to introduce some source of nonlinearity (or anhar-
monicity).

All superconducting circuits used as artifical atoms incorporate a nonlinear element
and in most of them it happens to be a Josephson junction (JJ) (possibly multiple). A
JJ is composed of two superconducting slates separated by an insulating layer (or normal
metal) as shown in Fig. 2.4(b). It is based on the Josephson effect, that predicted the
tunnelling of Cooper pairs between superconducting slates across a non-superconducting
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barrier. The JJ can be represented by a nonlinear Jospheson element (thought of as a
nonlinear inductor) LJ and an intrinsic junction capacitance CJ (see Fig. 2.4(a)). The JJ
is characterized by two constitutive relations:

I = Ic sin(φ) (2.38)

and

d

dt
φ =

2π

Φ0

V, (2.39)

where I is the current flowing into the JJ, V is the voltage across the junction, φ is
the superconducting phase across the junction, Ic is the critical current (above which
quasiparticle currents form) and Φ0 is the flux quantum. The phase is related to the flux
through φ = 2πΦ/Φ0. The precise form of Eq. (2.38) prescribes the nonlinear element we
seek for our artifical atoms. The energy associated with the JJ can be found using Joule’s
power law, dE/dt = IV . Using the constitutive relations and then integrating, we find

dEJ

dt
= Ic sin(φ)

Φ0

2π

dφ

dt
→
∫ t

0

Ic sin(φ)
Φ0

2π

dφ

dt
dt

→
∫ φ

φ0

Φ0Ic
2π

sin(φ′)dφ′.

Then, setting φ0 = 0 yields

EJ = EJ0(1− cos(φ)), (2.40)

where EJ0 = Φ0Ic/2π and we usually drop the constant offset of EJ0. Henceforth, we
simply denote EJ0 by EJ . The Josephson inductance, LJ , can be easily derived from the
constitutive relations as

LJ(φ) =
LJ

cos(φ)
=

Φ0

2πIc cos(φ)
. (2.41)

Typically, the JJ has an associated plasma frequency that is far too high, beyond the
microwave regime we are interested in (it can reach ∼ THz). To remedy this problem, we
usually shunt the JJ with a capacitor with much larger capacitance, CS, than the intrinsic
junction capacitance, CJ . The total capacitance is CΣ = CS + CJ . This device described
is known as the Cooper-pair box (CPB). The Hamiltonian of the CPB reads as

ĤCPB =
(Q̂−Qg)

2

2CΣ

− EJ cos

(
2π

Φ0

Φ̂

)
= 4EC(n̂− ng)

2 − EJ cos(φ̂), (2.42)
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1Figure 2.5: Physical schematic of the Cooper-pair box and its circuit diagram. The gate
voltage source, Vg, can be used to pump excitations into the system via the gate electrode.

where Q̂ and Φ̂ are the charge and flux operators of CPB and Qg is an offset gate charge.
The Hamiltonian is then rewritten in terms of the charge number and phase oerators,
n̂ = Q̂/2e and φ̂ = 2πΦ̂/Φ0. Here, EC = e2/2CΣ is the charging energy and ng = Qg/2e is
the offset charge number. The presence of the cosine term in the Hamiltonian ensures the
anharmonicity of the spectra. This means individual transitions can then be addressed by
a drive.

The physical picture of the CPB can be summarized as follows. The relevant physical
degree of freedom for this circuit is the charge. In particular, the excess number of Cooper
pairs present on the superconducting island (see Fig. 2.5) is our quantum variables in
which we can encode our qubit. When a Cooper pair tunnels from the reservoir to the
superconducting island, the total charge on each slab differs and there is a net electric field
across the junction that is the field of a physical dipole. When operating at the sweet spot
in the charge regime, EJ/EC ≤ 1, the first two energy levels are well isolated from higher
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1Figure 2.6: Cooper-pair box spectrum vs. offset charge in the charge (EJ/EC = 1) and
transmon (EJ/EC = 50) regimes. The first three levels are shown (n = 0, 1, 2) and are
rescaled by E01, where Enm = En − Em.

levels, and this allows us to treat the circuit as an effective qubit. Next, we rewrite the
CPB Hamiltonian in the charge basis

ĤCPB = 4EC

∑
nQ

[
(nQ − ng)

2 |nQ⟩⟨nQ| −
EJ

2
(|nQ⟩⟨nQ + 1|+ |nQ + 1⟩⟨nQ|)

]
. (2.43)

Then, we can choose to truncate at two levels, nQ = 0 and nQ = 1, for an effective qubit.
The Hamiltonian is then simplified to

ˆ̃HCPB = 4EC

[
(−ng)

2
∣∣0̃〉〈0̃∣∣+ (1− ng)

2
∣∣1̃〉〈1̃∣∣− EJ

2
(
∣∣0̃〉〈1̃∣∣+ ∣∣1̃〉〈0̃∣∣)]. (2.44)

To represent this Hamiltonian using Pauli matrices, we offset it and rewrite the Hamiltonian
as

ˆ̃HCPB = −4EC(1− 2ng)

2
ˆ̃σz −

EJ

2
ˆ̃σx, (2.45)

where ˆ̃σz =
∣∣0̃〉〈0̃∣∣ − ∣∣1̃〉〈1̃∣∣ and ˆ̃σx =

∣∣0̃〉〈1̃∣∣ + ∣∣1̃〉〈0̃∣∣. This is Hamiltonian is known as the
physical basis Hamiltonian. We can now diagonalize it to obtain the energy representation

Ĥqubit =
ℏωq

2
σ̂z, (2.46)
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1Figure 2.7: Flux-tunable Cooper-pair box circuit diagram.

where ℏωq =
√
E2

J + (4EC(1− 2ng))2 and σ̂z is written in the energy eigenbasis.

In practice, we would like to tune EJ in situ as it determines the effective qubit fre-
quency. For this purpose, we typically place two JJs in parallel to form a superconducting
quantum interference device (SQUID) that can be threaded by external flux. The SQUID
then behaves as an effective tunable JJ. Figure 2.7 shows a circuit diagram of a SQUID in
parallel with a shunting capacitance. The introduction of a flux-tunable junction induces
dephasing due to flux noise, whereas fixed-frequency qubits experience no pure dephasing
(γϕ, the pure dephasing rate, is zero). Thus, any model assuming a tunable qubit must
account for such dephasing noise.

If we consider the distant (at the sweep spot) third level, we would have a strongly
anharmonic qutrit. This is quite relevant for the work presented in this thesis. To the
extent of accounting for higher levels, we now move onto discussing the extraction of
selection rules. Unlike atomic physics, there is no general theory determining the selection
rules between states, rather each anharmonic circuit implementation has its own selection
rules that can be extracted from its Hamiltonian. We now elaborate how to extract the
CPB selection rules in general, and we discuss the relevant nearest-neighbor (nth state to
(n+ 1)st state) allowed selection rules. We rewrite the CPB Hamiltonian in the phase (φ)
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1Figure 2.8: Some of the CPB transition matrix elements and phase wavefunctions. (a)
The solid lines represent exact solutions obtained through Eq. (2.49), and the dashed lines
represent asymptotic solutions obtained through Eq. (2.50). Figure taken from Ref. [33].
(b) First four phase wavefunctions. Figure taken from Ref. [10].

basis using the fact that n̂Q = −i∂/∂φ̂,

ĤCPB = 4EC

(
−i ∂
∂φ̂

− ng

)2

− EJ cos(φ̂). (2.47)

We denote the CPB energy eigenstates as {|Ek⟩}. Then, we represent said states using
the phase representation wavefunction, ψk(φ) = ⟨φ|Ek⟩. The phase basis is restricted to
φ ∈ [−π, π). With this representation, we may now state an eigenvalue problem in terms
of the CPB Hamiltonian[

4EC

(
−i ∂
∂φ

− ng

)2

− EJ cos(φ)

]
ψk(φ) = Ekψk(φ). (2.48)

The statement of this eigenvalue problem exactly matches the Mathieu equation and can
be solve analytically using Mathieu functions [13]. Since we use a capacitvely coupled
external drive to excite the CPB, we seek to find the possible transitions the charge or
number of cooper pairs operator can induce, i.e, energy eigenstate transition matrix el-
ements ⟨Ej| n̂Q |Ek⟩. We now rewrite these transition matrix elements using the phase

28



representation

⟨Ej| n̂Q |Ek⟩ =
∫
dφ

∫
dφ′ ⟨Ej|φ⟩ ⟨φ| n̂Q |φ′⟩ ⟨φ′|Ek⟩

= −i
∫
dφψ∗

j (φ)
∂

∂φ
ψk(φ). (2.49)

This is the general procedure for obtaining CPB selection rules. In Fig. 2.8 some of the first
few transition matrix elements are shown where it is clear that the two-photon transition
matrix element, ⟨E2| n̂Q |E0⟩, is forbidden and the three-photon transition matrix element,
⟨E3| n̂Q |E0⟩, is strongly suppressed and approaches zero at higher EJ/EC ratios. For
nearest-neighbor transitions, we can asymptotically express the matrix elements as [33]

⟨En+1| n̂Q |En⟩ ≃
√
n+ 1

2

(
EJ

8EC

)1/4

, (2.50)

where we can see the harmonic scaling of these transitions, i.e., ∝
√
n+ 1. For our work,

we incorporate the third level into our considerations, approximating the CPB as a three-
level system or qutrit. Based on the outlined selection rules, we have a cascade Ξ-type
qutrit, allowing only nearest neighbor transitions.

The charge qubit suffers from sensitivity to charge noise. This can be interpreted from
Fig. 2.6(a) where slight transaltions in the value of ng change the eigenvalue (hence changing
ωq). This is referred to as charge dispersion. We now explore a different regime of the
CPB known as the transmon regime. This regime is characterized by EJ/EC ≫ 1 where
there is an exponential decrease in the charge dispersion while maintaining anharmonicity.
This is shown in Fig. 2.6(b) where the energy eigenvalues form flat bands for varying ng.
In this regime, the qubit frequency is ωq ≃ √

8EJEC − EC and the third state is much
closer to the second state than in the charge regime. The transmon is commonly referred
to as a ‘weakly anharmonic oscillator’ for this reason. We rewrite the phase and number
of Cooper pair operators in terms of the creation and annihilation operators, following a
similar prescription as in Eq. (2.37),

φ̂ = φ0(â
† + â)

and
n̂Q = inQ0(â

† − â),

where φ0 = (2EC/EJ)
1/4 and nQ0 = (EJ/2EC)

1/4/2. Then, we can expand the cosine term
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to fourth order and obtain the following Hamiltonian

ĤCPB ≃
√

8ECEJ â
†â− EC

12
(â† + â)4

RWA≃
(√

8ECEJ − EC

)
︸ ︷︷ ︸

ℏωq

â†â− EC

2
â†2â2. (2.51)

This Hamiltonian exhibits the form of a weakly anharmonic oscillator where there is a
quartic perturbation. The coefficient of the anharmonic term is EC , so it can be thought of
as a quantifier of anharmonicity. In the transmon regime, E12 := E1−E2 separation is less
than the E01 separation. We define ξ = E12−E01 as the anharmonicity parameter between
the first and second transition. Indeed, EC is related to the anharmonicity via EC = −ξ.
In the charge regime, ξ is positive (operating at the sweet spot, it is negative at other
ng values), whereas in the transmon regime, it is negative. The aforementioned selection
rules of the charge regime apply here. This means that if the third level is included, the
transmon can also be modeled as a Ξ-type qutrit.

Coupling a qubit and a resonator

So far, we separately introduced the main players of a typical circuit QED setup, a linear
circuit – our quantized field (mode) and an anharmonic circuit – our artificial atom. We
now couple these two components.

We consider a capacitve coupling between a transmon and a lumped-element resonator.
Then, the full circuit QED ‘qubit-resonator’ Hamiltonian reads as

ĤcQED =
Q̂2

t

2C̃Σ

− EJ cos

(
2π

Φ0

Φ̂t

)
+
Q̂2

r

2C̃r

+
Φ̂2

r

2Lr

+
Cg

C̄2
Q̂tQ̂r

4, (2.52)

where the subscript ‘t’ refers to the transmon operators and ‘r’ refers to the resonator
operators. Here, C̃Σ is the renormalized transmon capacitance, C̃r is the renormalized
resonator capacitance, Cg is the coupling capacitance and C̄ is the cross-capacitance be-
tween all elements (due to the inversion of the capacitance matrix). When the transmon is
truncated to a qubit, this Hamiltonian effectively acts as a variant of the QRM. Using the
transmon approximation in Eq. (2.51) and the creation and annihilation definitions of the

4The offset charge, Qg, was dropped since we can ignore it in the transmon regime.
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1Figure 2.9: Lumped-element circuit diagram of qubit-resonator system highlighting cross-
talk effects.

operators (b̂, b̂† for the transmon and â, â† for the resonator), the circuit QED Hamiltonian
can be rewritten as

ĤcQED ≃ ℏωqb̂
†b̂− EC

2
b̂†2b̂2 + ℏωrâ

†â− ℏg(b̂† − b̂)(â† − â) (2.53a)

( Two-level
approximation →)≃ℏωq

2
σ̂z + ℏωrâ

†â− ℏg(σ̂+ − σ̂−)(â
† − â), (2.53b)

where g = CgQ0,tQ0,r/ℏC̄2; Q0,t is the transmon zero-point charge and Q0,r is the resonator
zero-point charge. This final form of the Hamiltonian illuminates the clear connection to
the QRM.

In addition to the coupling, we usually drive the qubit (or resonator) to pump some
excitations into the system, perform gates, readout the qubit or resonator, etc. A capacitive
network such as this always leads to cross-talk between different nodes – even when the
parasitic capacitances are minimized5. Typically, this leads to spurious couplings – a
fraction of the coupling between the originally coupled nodes. Figure 2.9 displays a circuit
diagram of a coupled qubit-resonator system and points out the cross-talk between the

5When inverting a capacitance matrix, an entry of zero in the original capacitance matrix can yield
nonzero entries in the inverse matrix.
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qubit drive and resonator. For low power driving, on either subsystem, the effects are
negligible. However, for strong driving driving, like the cases considered in this thesis, the
effects can significantly with the desired outcome. In particular, a spurious drive applied
to the resonator populates it with a coherent state, resulting in a displacement of whatever
state previously existed.

To end this section, Table 2.1 lists typical circuit QED parameters relevant for a qubit-
resonator system. While the work presented in this thesis is theoretical, its motivation is
to propose a practical theory based on experimentally feasible parameter regimes to obtain
a cat state using a qubit or qutrit. In the next chapter, we show that our proposal can be
implemented with worse-than-average parameters and still outperform some methods for
the purpose of generating a cat state.

Parameters Value(s)
ωr/2π ∼ 4− 10 GHz
ωq/2π ∼ 4− 10 GHz
g/2π ∼ 20− 200 MHz

τg = 2π/g ∼ 5− 50 ns
κ (T−1

1r ) < 100 kHz (> 10µs−1)
γ1 (T−1

1 ) < 50 kHz (> 20µs−1)
γϕ

6 < 100 kHz

Table 2.1: Typical circuit QED experimental parameters observed in our group.

2.5 Outline of the analytic calculations

In the previous sections, we covered the basic elements of quantum mechanics used in this
thesis, the relevant light-matter interaction models and the underlying physics of a circuit
QED implementation. In this last preliminary section, we hope to succinctly outline the
reoccurring theme of analytic calculations performed in this thesis.

The starting point—in both the qubit and qutrit chapters— is a driven QRM model in
which the qubit is driven, i.e., the SRM and QRM considered both at once. We proceed in
several steps unravelling different layers of complexity. First, we resort to a rotating frame
(driving frame) to simplify the time-dependence in the Hamiltonian. In the rotating frame,
we derive the requisite rotating-wave approximation (RWA) conditions for eliminating

6γϕ = T−1
2 − (2T1)

−1.
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Analytic results

1Figure 2.10: Outline of the analytic calculations.

counter- or fast-rotating driving and interaction terms. Then, we perform said RWA
and arrive at a simplified Hamiltonian. After which, we find the qubit or qutrit dressed
states and transform to the interaction picture. In the interaction picture, we seek to
distinguish interaction terms arising on different timescales. In particular, we seek to
eliminate interaction terms modulated by the driving strength (Ω or Ω1 and Ω2, defined
later). To eliminate these terms, conditions for a strong driving RWA are formulated. Once
this strong driving RWA is performed, an effective Hamiltonian is arrived at. The effective
Hamiltonian is then used to analytically obtain the time-evolved state for a particular
initial state. Lastly, the analytical results are verified with numerical simulations performed
without any of the approximations used to derive the analytical result. These numerical
simulations also account for decoherence as is outlined in App. A. Figure 2.10 displays a
summary of the steps used in obtaining analytical results.
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Chapter 3

Driven Qubit-Resonator System

The qubit-resonator system embodied by the QRM is a fundamental tool for many quantum-
mechanical foundational investigations and practical technological applications. In this
chapter, we add a periodic drive to the qubit. This approach allows us to explore a dif-
ferent aspect of the qubit-resonator interaction and gain further insights into its behavior.
By adding a drive to the qubit, we arrive at the driven QRM. The drive dresses the qubit
frequency and, as a result, it affects its interaction with the resonator. We carefully explore
the exact conditions required to perform an RWA, as is usually done to obtain the JCM,
and demonstrate how the driving parameters play a crucial role in determining the regimes
of validity for an RWA.

The material presented in this chapter serves as a critical analysis and generalization
of the cavity QED study conducted in the work of Ref. [58]. The structure of the chapter
is as follows. In Sec. 3.1, we begin by stating the system Hamiltonian and establishing
the necessary conditions for implementing an RWA within the framework of qubit-drive
resonant conditions. Then, we delve into the RWA Hamiltonian and explore how a second,
distinct RWA can be imposed under strong driving conditions. Furthermore, we explore
the application of this approach in generating a cat state. In Sec. 3.2, we expand the theory
to cover arbitrary detuning scenarios. We discover that it remains feasible to generate a
cat state, similar to the resonant case, albeit with a reduced number of photons. We verify
the robustness of our predictions by numerically solving a master equation that accounts
for qubit relaxation, dephasing, and resonator relaxation. The qubit-resonator dynamics
and the Wigner functions of the resonator state following a projective measurement on the
qubit are displayed for the different regimes. In Sec. 3.3, we discuss a practical considera-
tion of cross-talk between the qubit drive and the resonator leading to a spurious resonator
drive. We resolve the issue by adding a drive on the resonator with a properly selected
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amplitude and phase for perfect cancellation. In Sec. 3.4, we show how the theory gener-
alizes to a driven qubit coupled simultaneously to many resonators. We demonstrate how
to synthesize multipartite entangled Bell-like cat states. Finally, we compare our proposal
to two commonly used methods for generating cat states in Sec. 3.6.

3.1 Resonant strong driving of the qubit

We start by considering the Hamiltonian associated with the driven QRM that reads as

Ĥ =
ℏωq

2
σ̂z + ℏωrâ

†â+ ℏg(σ̂+ + σ̂−)(â
† + â) + ℏΩcos(ωdt)(σ̂+ + σ̂−), (3.1)

The Hamiltonian of Eq.(3.1) can be written in the frame of the driving field by means of
the unitary transformation Û = exp

[
−iωdt(σ̂z/2 + â†â)

]
,

Ĥd = Û †ĤÛ + iℏ ˙̂
U †Û

=
ℏ∆
2
σ̂z + ℏδâ†â

+ ℏg
(
σ̂+â+ σ̂−â

† + e+i2ωdtσ̂+â
† + e−i2ωdtσ̂−â

)
+

ℏΩ
2

(
σ̂+ + σ̂− + e+i2ωdtσ̂+ + e−2iωdtσ̂−

)
, (3.2)

where ∆ = ωq − ωd, δ = ωr − ωd, and we use the exponential definition of cos(x) =
(eix + e−ix)/2.

The Hamiltonian of Eq. (3.2) can be simplified by imposing a set of RWA conditions
that read as

ωq − ωr ≪ ωq + ωr and g ≪ min(ωq, ωr), (3.3a)

g ≪ 2ωd, and (3.3b)

Ω ≪ 4ωd. (3.3c)

The conditions in Eq. (3.3a) are those used to derive the JCM from the QRM. The other
two conditions allow us to account for the presence of the driving field. The condition in
Eq. (3.3b) is necessary to eliminate the counter-rotating interaction terms g(e+i2ωdtσ̂+â

† +
e−i2ωdtσ̂−â), whereas the condition in Eq. (3.3c) is required to drop the counter-rotating
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driving terms Ω(e+i2ωdtσ̂++e
−i2ωdtσ̂−)/2. Under all these RWA conditions, the Hamiltonian

can be simplified to read as

Ĥd
RWA =

ℏ∆
2
σ̂z + ℏδâ†â+ ℏg(σ̂+â+ σ̂−â

†) +
ℏΩ
2
(σ̂+ + σ̂−). (3.4)

This Hamiltonian, which is free of any time-dependent terms, serves as the basis for the
work presented in this section.

We start by considering the Hamiltonian of Eq.(3.4) under the resonant condition
∆ = 0. To simplify the notation, we define Ĥd

0 = ℏΩ(σ̂+ + σ̂−)/2 + ℏδâ†â and Ĥd
I =

ℏg
(
σ̂+â+ σ̂−â†

)
. We then apply the unitary transformation Û0 = exp

(
−iĤ0t/ℏ

)
, which

allows us to obtain the interaction picture Hamiltonian

Ĥ
(I)
RWA = Û †

0ĤIÛ0 =
ℏg
2

(
|+⟩⟨+| − |−⟩⟨−|+ eiΩt |+⟩⟨−| − e−iΩt |−⟩⟨+|

)
âe−iδt

+H.c.; (3.5)

|±⟩ are the dressed basis qubit eigenstates, with the property that σ̂x |±⟩ = ± |±⟩.
The Hamiltonian of Eq. (3.21) reveals two distinct interactions taking place at different

timescales. In one of them, two terms are modulated by the driving field and exhibit
oscillations with functional dependence e±iΩt. These terms can be neglected by imposing
the strong driving condition,

Ω ≫ |δ|, g. (3.6)

This condition, however, must be considered at the same time as the condition of Eq.(3.3c);
therefore, the complete condition reads as

g, |δ| ≪ Ω ≪ 4ωd. (3.7)

This means that Ω is characterized by a lower bound as well as an upper bound, that is,
it cannot be arbitrarily large1. This assumption makes it possible to obtain the effective
Hamiltonian

Ĥ
(I)
eff =

ℏg
2

(|+⟩⟨+| − |−⟩⟨−|)
(
â†e+iδt + âe−iδt

)
. (3.8)

1The work in Ref. [58] starts with the RWA form of the drive already imposed. The condition in
Eq. (3.7) is the correction needed to make the theory of Ref. [58] work for a driven qubit-resonator in
circuit QED.
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1Figure 3.1: Characterization of cat states under resonance conditions. The parameters used
for the simulations are: Ω = 2π× 2GHz. ∆ = δ = 0. ωq = 2π× 5GHz. g = 2π× 20MHz.
γ1 = κ = 500 kHz. γϕ = 1MHz. (a),(b) P|e⟩ and ⟨â†â⟩ vs. normalized time gt/2π.

The dynamics associated with this Hamiltonian result in a conditional displacement of
the resonator state based on the qubit state. Specifically, if the qubit is in state |+⟩, the
resonator state is displaced in a certain direction. Conversely, if the qubit state is in |−⟩,
the resonator state is displaced in the opposite direction. Thus, if we choose the initial
state to be |ψi⟩ = |g⟩ |0⟩ = (|+⟩ + |−⟩) |0⟩ /

√
2, the time evolution of the system leads, in

the interaction picture, to the state

|ψ(t)⟩(I) = 1√
2
(|+⟩ |α⟩+ |−⟩ |−α⟩)

=
1

2
|g⟩ (|α⟩+ |−α⟩) + 1

2
|e⟩ (|α⟩ − |−α⟩), (3.9)

where α = −g(eiδt − 1)/2δ; when δ → 0, then α = −igt/2.
If the qubit is measured to be in |g⟩, the resonator is left in a state that is proportional

to the superposition of two coherent states, ⟨g|ψ(t)⟩(I) ∝ |α⟩+ |−α⟩; an even cat state. On

the other hand, if the qubit is measured in |e⟩, the resonator is in the state ⟨e|ψ(t)⟩(I) ∝
|α⟩ − |−α⟩; an odd cat state.

Figure 3.1 displays the results of numerical simulations of the complete system Hamil-
tonian of Eq. (3.1), without any approximations. These simulations are performed in
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1Figure 3.2: Wigner function of a resonant cat state. Heatmap of the Wigner function W
of the resonator state after measuring the qubit in |e⟩ at gt/2π = 1. The result is obtained
from the same simulation of Fig 3.1. This choice of time corresponds to an ideal cat state,
accounting for the driving and interaction Bloch-Siegert shifts.

presence of both qubit and resonator decoherence by means of a Lindblad master equa-
tion, as explained in App. A. Figure 3.1 (a) shows the probability of the qubit to be in the
excited state, P|e⟩. This probability shows that as the cat state grows, the qubit population
converges to an equal superposition of |g⟩ and |e⟩. Figure 3.1 (a) indicates that the photon
number n = ⟨â†â⟩ grows quadratically in time. Interestingly, this behaviour persists even
in presence of decoherence. The numerical results closely follow the analytical prediction
|α|2 = g2t2/4.

In order to visualize the cat states, we elect to represent them in phase space by means
of the Wigner function introduced in Sec. 2.1. Here, we use the density matrix of the
resonator after performing a projective measurement on the qubit state. Figure 3.2 shows
W after measuring the qubit for gt/2π = 1.

The numerical simulations based on the Hamiltonian of Eq. (3.1) do not employ the
approximations of Eqs. (3.3) and (3.7). This exact Hamiltonian can be rewritten in the
rotating frame and interaction picture as
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1Figure 3.3: Oscillating cat state lobes due to the Bloch-Siegert shift.

Ĥ(I) =
ℏ
2

(
|+⟩⟨+| − |−⟩⟨−|+ eiΩt |+⟩⟨−| − e−iΩt |−⟩⟨+|

)

×

 Ω

2
ei2ωdt︸ ︷︷ ︸

driving Bloch-Siegert shift

+

interaction Bloch-Siegert shift︷ ︸︸ ︷
gâ†ei(2ωd+δ)t +gâe−iδt

+H.c., (3.10)

which includes the counter-rotating driving and interaction terms. These terms lead to
the driving and interaction Bloch-Siegert shifts, respectively. These two effects combined
together result in the oscillation of the amplitude and weight coefficients of the cat states’
lobes [47]. Except for the oscillations due to the Bloch-Siegert shifts, the numerical and
analytical solutions very closely resemble each other. It is worth noting that these oscilla-
tions can be tracked deterministically, therefore allowing us to measure an ideal cat state.
Figure 3.3 shows different snapshots in the time-evolution of a cat state Wigner function
with the amplitudes of the lobes oscillating in time due to the Bloch-Siegert shift.

As a side note, it is worth noting that a cat state can be achieved even in absence of
any strong drive, i.e., the condition Ω ≫ g, |δ| no longer holds. An example of such state
is shown in Fig. 3.4. This cat state is manifestly deformed. To understand the origin of
the deformation, we group together all the terms dropped to obtain the Hamiltonian of
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W of the resonator state after measuring the qubit in |e⟩ at gt/2π = 1. The cat state
exhibits squeezing of the lobes and interference region and a displacement on the imaginary
axis. The parameters used for the simulations are: Ω = 2π × 200MHz. ∆ = δ = 0.
ωq = 2π × 5GHz. g = 2π × 20MHz. γ1 = κ = 500 kHz. γϕ = 1MHz.

Eq. (3.21) in what we define the deformation Hamiltonian:

Ĥ
(I)
def = Ĥ

(I)
RWA − Ĥ

(I)
eff

=
ℏg
2

(
eiΩt |+⟩⟨−| − e−iΩt |−⟩⟨+|

)
âe−iδt +H.c.

=
iℏg
2

[σ̂y cos(Ωt) + σ̂z sin(Ωt)]
(
e+iδtâ† − e−iδtâ

)
. (3.11)

The dynamics described by the deformation Hamiltonian also exhibit a conditional dis-
placement, similar to Eq. (3.8). However, in this case, the displacement is modulated by
the classical drive and is conditioned on two different qubit operators, σ̂z and σ̂y. Fur-
thermore, the deformation Hamiltonian introduces a displacement in a different direction
in phase space (specifically, on the real axis) compared to the displacement generated by

Eq. (3.8). In the presence of a weak drive, the contributions from Ĥ
(I)
def become nonnegli-

gible. When measuring in the bare basis of the qubit, {|g⟩ , |e⟩} [as required to obtain the
cat state given by Eq. (3.9)], we observe a cat state that exhibits properties resembling
squeezing.
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3.2 Detuned regime

Thus far, our analysis has been confined to the resonance condition where ∆ = 0. However,
to achieve scalability, it is essential to explore the generation of cat states without relying
solely on qubit-drive resonance. One possible application of our theory is the generation
of cat states in multiple driven qubit-resonator systems. In pursuit of this goal, we extend
the theory to the qubit-drive detuned regime, where ∆ ̸= 0.

We consider the Hamiltonian of Eq. (3.10) when ∆ ̸= 0. In this case,

Ĥ
(I)
det =

ℏ
2ε(∆ + ε)

×
[
(∆ + ε)Ω

∣∣+̃〉〈+̃∣∣+ (∆ + ε)2eiεt
∣∣+̃〉〈−̃∣∣

− Ω2e−iεt
∣∣−̃〉〈+̃∣∣− (∆ + ε)Ω

∣∣−̃〉〈−̃∣∣ ]
×
(
Ω

2
ei2ωdt + gâe−iδt + gâ†ei(2ωd+δ)t

)
+H.c.; (3.12)

ε =
√
Ω2 +∆2 and the detuned qubit orthonormal basis is defined as

∣∣+̃〉 = sin (θ/2) |g⟩+
cos (θ/2) |e⟩ and

∣∣−̃〉 = cos (θ/2) |g⟩−sin (θ/2) |e⟩, where the mixing angle θ = arctan(Ω/∆).

Note that, if we set ∆ = 0, we recover the results of Sec. 3.1. If Ω ≫ ∆, then
∣∣+̃〉 ≃ |+⟩

and
∣∣−̃〉 ≃ |−⟩; on the other hand, if ∆ ≫ Ω, we have

∣∣+̃〉 ≃ |e⟩ and
∣∣−̃〉 ≃ |g⟩ .

We now follow a similar procedure as in Sec. 3.1 but in presence of detuning. Assuming
all the conditions of Eq. (3.3) to hold true and additionally imposing the strong driving-
detuning condition

g, |δ| ≪ ε≪ 4ωd, (3.13)

we perform an RWA obtaining the effective Hamiltonian

Ĥ
(I)
det, eff =

ℏgΩ
2ε

(∣∣+̃〉〈+̃∣∣− ∣∣−̃〉〈−̃∣∣) (â†e+iδt + âe−iδt
)
. (3.14)

This Hamiltonian generalizes that of Eq. (3.8) and, thus, it generates a resonator dis-
placement conditioned on

∣∣±̃〉. When initializing the system in state |ψi⟩ = |g⟩ |0⟩ =

(sin (θ/2)
∣∣+̃〉+ cos (θ/2)

∣∣−̃〉) |0⟩, we obtain the time-evolved state
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(a),(b) P|e⟩ and ⟨â†â⟩ vs. normalized time gt/2π.

|ψ(t)⟩(I) =
(
sin

(
θ

2

) ∣∣+̃〉 |α̃⟩+ sin

(
θ

2

) ∣∣−̃〉 |−α̃⟩)
=

[
|g⟩
(
1

2
sin (θ) |α̃⟩+ sin2

(
θ

2

)
|−α̃⟩

)

+ |e⟩
(
1

2
sin (θ) |α̃⟩ − cos2

(
θ

2

)
|−α̃⟩

)]
, (3.15)

where α̃ = −gΩ(eiδt − 1)/2εδ; when δ → 0, then α̃ = −igΩt/2ε. The state described
by Eq. (3.15) exhibits a superposition of coherent states with opposite phases, featuring
distinct weight coefficients. This results in what we refer to as an asymmetrically weighted
cat state. Remarkably, cat states can be generated even when ∆ ̸= 0, without necessarily
requiring the system to be in the strong dispersive regime or resonant qubit-drive regime.
However, it is essential to note that cat states produced in the detuned regime possess
smaller amplitudes compared to those generated resonantly, even when subjected to time-
evolution duration. This amplitude difference arises because |α̃| < |α|.

Under detuning conditions, the Bloch-Siegert shift’s oscillations in the lobes of the cat,
can be harnessed to create an ideal cat state. This happens when the distinct weight
coefficients become identical at specific times, resulting in the formation of the ideal cat
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from the same simulation of Fig 3.5. By selecting this specific time, an ideal cat state is
achieved, characterized by equal weight coefficients. This outcome is attained by leveraging
the oscillations resulting from the Bloch-Siegert shift.

state.

Figure 3.5 displays the results of numerical simulations similar to those in Fig. 3.1 but
under detuned conditions. The photon number behaves similarly to the resonant case,
|α̃|2 = g2Ω2t2/4ε2, growing quadratically in time. This analytical result is validated by
the numerical simulations. Finally, Fig. 3.6 shows a cat state generating under detuning
conditions that is nearly identical to that generated under resonance conditions.

The strong driving in the case of δ = 0 – under both resonant and detuned qubit
driving – mediates a cross-resonance effect as the drive is resonant with the resonator.
This also explains the rapid population of the resonator with photons even if the coupling
strength between the resonator and qubit is much weaker than the drive. This can be seen
as quantum analogy of two weakly coupled pendulua with one of them cross-resonantly
strongly driven.

Thus far, we derived analytics that account for δ ̸= 0, but most of our discussion
has been centered around the case where δ = 0. A typical microwave source in a circuit
QED experiment has a frequency resolution of 0.01Hz, and a state-of-the-art resonator
linewidth is around 10kHz. Thus, the only limiting factor is the intrinsic quality factor of
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the resonator. Formally, the parameter δt satisfies δt ≪ 1 for a detuning on the order of
∼kHz and for a timescale of ∼100ns. Then, performing a Taylor expansion of α and α̃
near δ = 0, to first order, yields

α =
−g((1 + iδt)− 1)

2δ
+O(δ2t2) =

−igt
2

+O(δ2t2)

and

α̃ =
−gΩ((1 + iδt)− 1)

2εδ
+O(δ2t2) =

−igΩt
2ε

+O(δ2t2),

where the results of δ = 0 are recovered. Therefore, we can completely ignore the case of
δ ̸= 0 on the timescales of interest.

3.3 Cancellation of spurious resonator driving

The presentation of our theory until now did not rely on any particular implementation
considerations. In some implementations, applying a drive to the qubit results in an
unintentional spurious driving of the resonator. In this section we consider this practical
issue and a resolution using a drive on the resonator.

The presence of the spurious driving leads to a new system Hamiltonian that read as

Ĥ ′ =
ℏωq

2
σ̂z + ℏωrâ

†â+ ℏg(σ̂+ + σ̂−)(â
† + â) + ℏΩcos(ωdt)(σ̂+ + σ̂−)

+ ℏΩ′ cos(ωdt)(â
† + â), (3.16)

where Ω′ is the spurious driving strength. Typically, Ω′ is merely a fraction of Ω. To
address this, we add a cancellation drive on the resonator with which the Hamiltonian
becomes

Ĥ ′′ =
ℏωq

2
σ̂z + ℏωrâ

†â+ ℏg(σ̂+ + σ̂−)(â
† + â) + ℏΩcos(ωdt)(σ̂+ + σ̂−)

+ ℏ (Ω′ cos(ωdt) + Ω′′ cos(ωdt+ ϕ)) (â† + â); (3.17)

Ω′′ is strength of the cancellation drive and ϕ is its phase. In a first run of an experiment
realizing this system, we can characterize Ω′ by the size of the coherent state displacing the
resonator state. As such, we set the cancellation drive parameters to Ω′′ = Ω′ and ϕ = π.
Since cos(x+ π) = − cos(x), we achieve a total cancellation of the spurious driving. Note
that for simplicity we assumed the spurious driving remains in phase with the original
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drive. Even if the driving phase changes due to the complex electrical network wiring
up the experiment, this phase can be easily characterized by performing an initial run of
the experiment and measuring the resonator state then characterizing the coherent state
offsetting the resonator state. Characterizing the offset coherent state’s amplitude and
phase gives us the spurious drive’s amplitude and phase.

In implementations like circuit QED, it is possible to place the cancellation drive on the
resonator physically far enough that it does not affect the qubit. However, for completeness,
we consider the qubit to be affected by a spurious driving due to the cancellation field.
Under the same conditions for perfect cancellation, Ω′′ = Ω′ and ϕ = π, this effect at the
Hamiltonian level looks like

Ĥ ′′′ =
ℏωq

2
σ̂z + ℏωrâ

†â+ ℏg(σ̂+ + σ̂−)(â
† + â) + ℏ(Ω− Ω′′′) cos(ωdt)(σ̂+ + σ̂−), (3.18)

where Ω′′′ is the strength of the spurious drive on the qubit. Since Ω′ is usually a fraction
of Ω, then Ω′′′ will be a fraction of Ω′′ (= Ω′). Thus, we may simply define Ωeff = Ω−Ω′′′ as
the effective qubit driving strength and proceed with the conditions derived in the previous
sections using Ωeff in place of Ω.

3.4 Multiple resonators

In the previous sections, we fleshed out the theory and practical considerations for a single
driven qubit-resonator system. We now show that, straightforwardly, when you follow
these considerations for a driven qubit coupled simultaneously to N resonators, you can
entangle N cat states in N different resonators.

The full Hamiltonian in the laboratory frame is

Ĥ =
ℏωq

2
σ̂z + ℏΩcos(ωdt)(σ̂+ + σ̂−) +

N∑
k=1

(
ℏωrkâ

†
kâk + ℏgk(σ̂+ + σ̂−)(â

†
k + âk)

)
, (3.19)

where k is the index of the resonators (1 to N). Following the same procedure for the
single resonator case in the driving frame and using the RWA conditions of Eq. (3.3) for
all resonators, we obtain the Hamiltonian

Ĥd
RWA =

ℏ∆
2
σ̂z +

ℏΩ
2
(σ̂+ + σ̂−) +

N∑
k=1

ℏδkâ†kâk + ℏgk(σ̂+âk + σ̂−â
†
k), (3.20)
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where δk = ωrk −ωd. Working under the qubit-drive resonance condition ∆ = 0, we define

Ĥd
0 = ℏΩ(σ̂++ σ̂−)/2+

∑N
k=1 ℏδkâ

†
kâk and Ĥd

I =
∑N

k=1 ℏgk
(
σ̂+âk + σ̂−â

†
k

)
. We then apply

the unitary transformation Û0 = exp
(
−iĤ0t/ℏ

)
, which allows us to obtain the interaction

picture Hamiltonian

Ĥ
(I)
RWA = Û †

0ĤIÛ0 =
N∑
k=1

ℏgk
2

(
|+⟩⟨+| − |−⟩⟨−|+ eiΩt |+⟩⟨−| − e−iΩt |−⟩⟨+|

)
âke

−iδkt

+H.c.. (3.21)

To obtain the cat-state generating Hamiltonian, we work in the strong driving regime of
Eq. (3.7) for all resonators. This allows us to obtain the effective Hamiltonian

Ĥ
(I)
eff =

N∑
k=1

ℏgk
2

(|+⟩⟨+| − |−⟩⟨−|)
(
â†ke

+iδkt + âke
−iδkt

)
. (3.22)

This Hamiltonian generalizes that of Eq. (3.8) to N resonators. Following the same recipe
for the single resonator case, we choose the initial state to be |ψi⟩ = |g⟩ |0⟩1 ... |0⟩N =
(|+⟩ + |−⟩) |0⟩1 ... |0⟩N /

√
2, where |⟩k specifies the state of the kth resonator. The time-

evolution of this initial state yields

|ψ(t)⟩(I) = 1√
2
(|+⟩ |α1⟩1 ... |αN⟩N + |−⟩ |−α1⟩1 ... |−αN⟩N)

=
1

2
|g⟩ (|α1⟩1 ... |αN⟩N + |−α1⟩1 ... |−αN⟩N)

+
1

2
|e⟩ (|α1⟩1 ... |αN⟩N − |−α1⟩1 ... |−αN⟩N), (3.23)

where αk = −gk(eiδkt − 1)/2δk; when δk → 0, then αk = −igkt/2. Measuring the
qubit in |g⟩ leaves the resonator in a Bell-like even superposition of entangled cat states,

⟨g|ψ(t)⟩(I) ∝ |α1⟩1 ... |αN⟩N + |−α1⟩1 ... |−αN⟩N . If the qubit is found in |e⟩, the resonator

state is a Bell-like odd superposition of entangled cat states, ⟨e|ψ(t)⟩(I) ∝ |α1⟩1 ... |αN⟩N −
|−α1⟩1 ... |−αN⟩N 2. Such entangled cat states are valuable resources for generating Bell
states in bosonic encodings [30], and also they can be used to violate of Bell’s inequality
[1].

2In fact for some encodings where the logical qubit states are |0̄⟩ ≃ |α⟩ and |1̄⟩ ≃ |−α⟩, the states
described here are the N -partite GHZ state, (|0̄⟩1 ... |0̄⟩N ± |1̄⟩1 ... |1̄⟩N )/

√
2. This works even if the cat

size in each resonator is different, as long as |α| is large enough such that ⟨α|−α⟩ ≈ 0.
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Similar to the spurious coupling between the drive and the resonator, there will be
a small spurious coupling among the different resonators. This results in an additional
interaction term

Ĥrr = ℏ
N∑
j=1

N∑
k>j

gjk(â
†
k + âk)(â

†
j + âj). (3.24)

When the resonators are near resonance, the interaction is approximately a beamsplitter
type ∝ (â†kâj + âkâ

†
j). This certainly interferes with the protocol presented. While tackling

this problem is outside the scope of this work, we mention that a simple workaround is
to use a tunable coupler between each pair of resonators and set the tunable (typically
flux-tunable) coupling strength, gtunablejk (Φ) = −gjk. This is fairly easy to implement for
the case of two resonators, but as you scale up, you run into various problems such as
cross-talk and the difficulty of achieving all-to-all connectivity.

3.5 Other methods

In this section, we compare our method to the two most commonly used methods for
generating cat states (in circuit QED). First, we introduce each method and then we
compare it to our work.

qcMAP

We start with the ‘qcMAP’ method in Ref. [37], where the system of interest is also a qubit-
resonator system. However, it is operated in the dispersive regime where g ≫ ωq − ωr ̸= 0
(see Eq. (2.33) and Eq. (2.34)). Since the qubit and resonator now dress one another’s
frequency via the term in the Hamiltonian σ̂zâ

†â, an external qubit drive can be conditioned
on the resonator state and an external resonator drive can be conditioned on the qubit state.
In particular, we can perform qubit-conditional displacements (QCD) on the resonator
state and resonator-conditional rotations (RCR) on the qubit state. The QCD operation
is denoted by D̂|g/e⟩(β) and it displaces the resonator state by β if the qubit state matches
its superscript, i.e,

D̂|g⟩(β) |g⟩ |0⟩ = |g⟩ |β⟩
and

D̂|g⟩(β) |e⟩ |0⟩ = |e⟩ |0⟩
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(similarly for D̂|e⟩(β)). The RCR operation is denoted by X̂
|n⟩
θ and it applies an x-axis

rotation to the qubit state if the resonator state matches its superscript, i.e.,

X̂
|n⟩
θ |ψq⟩ |n⟩ = e−iσ̂xθ/2 |ψq⟩ |n⟩

and
X̂

|n⟩
θ |ψq⟩ |m⟩ = |ψq⟩ |m⟩

where |ψq⟩ is the qubit state. The main goal of this method is to encode an arbitrary qubit
state into a resonator cat state via the map:

cg |g⟩+ ce |e⟩ 7−→ cg |α⟩+ ce |−α⟩ .
To achieve this, the system is first initialized in the state |ψi⟩ = (cg |g⟩+ ce |e⟩) |0⟩. Then,
the following operations are applied in succession to obtain the final state:

|ψf⟩ =D̂(−α)X̂ |0⟩
π D̂|g⟩(2α) |ψi⟩

=D̂(−α)X̂ |0⟩
π (cg |g⟩ |2α⟩+ ce |e⟩ |0⟩)

=D̂(−α) |g⟩ (cg |2α⟩+ ce |0⟩)
= |g⟩ (cg |α⟩+ ce |−α⟩). (3.25)

Measuring the qubit state determinstically yields the desired outcome, ∝ cg |α⟩+ ce |−α⟩.
In summary, the qcMAP is exactly the sequence of operations D̂(−α)X̂ |0⟩

π D̂|g⟩(2α) which
allows us to map the qubit state to a resonator state where cg and ce are encoded in different
lobes of a cat state. By employing the introduced operations (QCD and RCR), it is possible
to synthesize more general resonator states, such as three- and four-component cat states
(introduced in Sec. 2.3). However, the quality of these states diminishes significantly
beyond two lobes. The approximate gate time to obtain the desired resonator state is
Tgate ≃ (15 + 2|α|2π)/(2|α|2χqr) where χqr = g2/|ωq − ωr|3. This gate time does not
account for decoherence effects. Lastly, we rewrite the cat size as a function of time,

|αqcMAP(t)|2 ≃ 15/2(χqrt− π). (3.26)

Two-photon driven Kerr-nonlinear resonator

We move on to the two-photon driven Kerr-nonlinear resonator (KNR) methods [42, 35].
This method relies on a Josephson junction (or SQUID) either embedded in the middle of

3It might look like there is a singularity when ωq = ωr but operating in the dispersive regime means
the qubit and resonator are detuned, and, thus, the denominator can never be zero.
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ĤKNR
adiabatic two-photon drive

Ĥ2pKNR

|0⟩ even parity preserved ∝ |α⟩+ |−α⟩

|1⟩ odd parity preserved ∝ |α⟩ − |−α⟩

1Figure 3.7: Adiabatic preparation of cat states using a two-photon driven KNR. When the
KNR is initialized in |0⟩ (in |1⟩), adiabatically ramping a resonant two-photon drive yields
an even cat state (an odd cat state).

a transmission line or shunting its end. The Jospheson junction is threaded with flux to
parametrically excite the transmission line. Typically, the flux threading the junction is
tuned to induce a two-photon drive in the Hamiltonian. The Hamiltonian of a two-photon
driven KNR in the lab frame reads as

Ĥ2pKNR = ℏωrâ
†â

Kerr-nonlinear term︷ ︸︸ ︷
−ℏηâ†2â2 +

two-photon drive︷ ︸︸ ︷
ℏ(Ωpe

−iωpt/2â† + Ω∗
pe

iωpt/2â2) (3.27)

Setting the parametric drive on a two-photon resonance with the resonator (ωp = 2ωr) and

transforming to the rotating frame of the resonator using Ûr = exp
[
−iωrtâ

†â
]
, we obtain

the rotating frame Hamiltonian

Ĥr
2pKNR = Û †

r Ĥ2pKNRÛr + iℏ ˙̂
U †
r Ûr

= −ℏηâ†2â2 + ℏ(Ωpâ
†2 + Ω∗

pâ
2) (3.28a)

= −ℏη
(
â†2 − Ω∗

p

η

)(
â2 − Ωp

η

)
+ ℏ

|Ωp|2
η

, (3.28b)

where η is the strength of the Kerr nonlinearity and Ωp is the amplitude of the two-
photon drive. The second form of the Hamiltonian reveals two degenerate coherent state
eigenstates, |±α⟩ with α =

√
Ωp/η. The advantage of such degenerate eigenstates is

that their even and odd superpositions (cat states), ∝ |α⟩ ± |−α⟩, are also eigenstates.
Next, we describe how to deterministically prepare cat states by leveraging the degenerate
eigenstates of the two-photon driven KNR.

The degenerate eigenstates of the undriven KNR (ĤKNR = ℏωrâ
†â − ℏηâ†2â2) are the

vacuum state, |0⟩ and the first excited Fock state, |1⟩ . Since the cat states are instantaneous
eigenstates of the two-photon driven KNR, the strategy is to adiabatically evolve |0⟩ to
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∝ |α⟩+ |−α⟩ and |1⟩ to ∝ |α⟩−|−α⟩. This is enabled by the slow adiabatic ramping of the
two-photon driving amplitude, Ωp. The parity is preserved by the two-photon drive, and
as such, |0⟩ goes to the even cat and |1⟩ goes to the odd cat. The adiabatic initialization
yields cat states with |α(t)|2 = |Ωp(t)/η|. To satisfy the adiabatic conditions, the drive
envelope Ωp(t) = Ωp0(1 − exp((2πt)4/η4)) is selected with the constant Ωp0 = 4η. This
generates a cat state of |α|2 ∼ 4 in a period of ηt/2π = 6.5. To put these parameters in an
experimental perspective, the Kerr nonlinearity strength, η, is typically a small fraction of
the resonator frequency (a few 10s of MHz when the resonator frequency is around a few
GHz [6]). As an example, taking η ∼ 2π×40MHz, a cat of roughly 4 photons is generated
in ∼ 160 ns.

The adiabatic scheme introduced above can be accelerated using so-called ‘shortcuts
to adiabaticity’. This involves the idea of a ‘transitionless’ or counter-diabatic drive [3].
Given a time-dependent Hamiltonian Ĥ(t) with instantaneous eigenstates {|k(t)⟩} and
instantaneous energies {Ek(t)}, the adiabatic approximation says that the states driven by
Ĥ(t) are

|ψk(t)⟩ = exp

[
− i

ℏ

∫ t

0

dτ Ek(τ)−
∫ t

0

dτ ⟨k(τ)| d
dτ

|k(τ)⟩
]
|k(t)⟩ , (3.29)

with a (usually small) probability of a transition to other states depending on the driving
parameter. The idea of counter-diabatic driving is to add a driving Hamiltonian Ĥcd(t) to
Ĥ(t) such that the adiabatic approximation state of Eq.(3.29) is an instantaneous eigenstate
of this new Hamiltonian, i.e.,

(Ĥ(t) + Ĥcd(t)) |ψn(t)⟩ = Ẽn(t) |ψn(t)⟩
for some Ẽn(t). This means you can evolve to an instantaneous eigenstate of the orig-
inal Hamiltonian in accelerated manner by introducing a specific drive without exciting
unwanted transitions that occur with some probability in an adiabatic evolution.

For the Hamiltonian in Eq. (3.28), an approximate counter-diabatic driving Hamilto-
nian (that drives Ĥ2pKNR instantaneous eigenstates ∝ |α⟩ ± |−α⟩) is

Ĥcd ≃ iℏ
α̇(t)√

2(1− exp(−2|α(t)|2))(1 + 2α(t))
(â†2 − â2). (3.30)

The presence of this counter-diabatic drive significantly reduces the time needed to generate
cat states. For the same size cat as the adiabatic preparation, the counter-diabatic drive
prepares the same cat in a period of ηt/2π = 1.37, a speed up of ∼ 4.74 times. Using
the same example of η ∼ 2π × 40MHz, a 4-photon cat can be generated in ∼ 32 ns.
All time estimates here account for worse-than-average single-photon resonator loss, κ =
η/(250× 2π), which for our example is ∼ 160 kHz (see Table 2.1 for comparison).
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3.6 Comparison with other methods

We now compare our method to the qcMAP method. First, we note that our proposal
allows for a determinstic encoding of a qubit state into a resonator cat state. If we prepare
an intial state |ψi⟩ = (cg |+⟩ + ce |−⟩) |0⟩, then time-evolve it as described in Sec. 3.1, we
obtain a final state

|ψf⟩ =
1

2
|g⟩ (cg |α⟩+ ce |−α⟩) +

1

2
|e⟩ (ce |α⟩ − cg |−α⟩).

Measuring the qubit in its bare basis yields a resonator state ∝ cg |α⟩ ± ce |−α⟩ (± de-
pends on the qubit state). Thus, our method can also deterministically encode a qubit
state into a resonator, but there is a probabilistic phase (parity) which can be accounted
for. Since, in the resonant case, our method yields |α(t)|2 = g2t2/4. Even if we include
resonator decay defined by κ, the size of the cat becomes |α(t)|2 ≃ g2t2e−κt/4, where as
the qcMAP’s cat size is |αqcMAP(t)|2 ≃ 15/2(χqrt−π). This means for similar parameters4,
our proposal outperforms the qcMAP by generating the same size cats in a much shorter
time. In summary, the qcMAP method offers greater flexibility in achieving a wider array
of resonator states. However, when it comes to generating two-component cat states, our
method proves superior. Moreover, similar to the qcMAP, our method allows for encoding
a qubit state into a resonator state with a probabilistic parity dependent on the qubit
measurement outcome.

While the qcMAP relies on a qubit-resonator system with qubit and resonator drives,
the driven two-photon KNR setup is fundamentally different from our proposal. Our
method relies on the qubit-resonator interaction alongside the qubit drive as the source
of nonlinearity needed to generate cat states. In contrast, with this method, where a
two-photon process and a Kerr-type term are leveraged as the source of nonlinearity
and counter-diabatic driving is used to accelerate adiabatic state preparation. While our
method is limited by g, its functional dependence on it is quadratic and, thus, a modest
value of g in the strong coupling regime will suffice. It is easier to get higher values of
g (upto a 100-200 MHz for ωq, ωr ∼ 5 GHz) but this is not the case for η (which even
when increased makes detrimental higher order effects more significant). For the same
time-evolution periods use to generate cat states presented in Ref. [49], we can obtain the
same size (and even much larger) using modest values of g.

In the broader context of cat-state generating schemes, we argue that our proposal
allows for a more rapid generation of cat states compared to other methods. While it does

4The qcMAP operates in the dispersive regime, so either ωr or ωq has to be different than our resonant
case.
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rely on a driven qubit and that opens it to qubit decoherence channels, the timescale for
generating a cat of a size on the order of tens of photons is a small fraction of the qubit’s
T1 and T2 (encoded as γ1 and γϕ in our simulations). The simulations we performed were
using significantly worse-than-average decoherent parameters (compared with Table 2.1),
despite our method performs very well for generating cat states.

With the use of a tunable qubit, our protocol can be executed until the cat’s lobes reach
the desired size; then, the qubit can be measured and decoupled from the resonator (by
detuning it very far from the resonator). For the purpose of encoding a qubit state into
a two-lobed cat, our method deterministically performs the encoding up to a parity. This
parity holds significant importance for bosonic quantum error correction. Once the qubit
is measured, we know the parity of the cat state, and it could be tracked. This approach
works well for encoding one qubit state. However, when it comes to encoding multiple
qubits in different resonators, an issue arises due to differing parities. Differing parities
make it difficult to properly track photon loss events. A possible solution, leveraging the
speed of our method, is to repeat the cat state generation scheme until the desired parity
is achieved.

We believe that a rapid resonant method (or qubit-detuned but resonator-resonant), as
proposed here, presents a valuable tool for all purposes of generating a cat state.
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Chapter 4

Generalization to a Qutrit

In most implementation schemes, the device is rarely truly a two-level system. In practice,
most systems are in fact infinite-dimensional. Depending on how anharmonic a system
is, nearby transitions could be a significant player in the dynamics of the system. In this
chapter, we are interested in extending the work presented on a driven qubit-resonator
system to account for this practicality.

Recall the discussions in Sec. 2.4 on the anharmonicty of a CPB in the charge and trans-
mon regimes. We extend our considerations to a driven (cascade) Ξ-type qutrit (imposed
by the CPB selection rules) interacting with a resonator. We consider both transitions
to be affected by the drive and resonator. The structure of this chapter is as follows. In
Sec. 4.1, we state the system Hamiltonian and derive the necessary RWA conditions for a
weakly-anharmonic qutrit. We show that the cat-state-generating protocol of the previous
chapter can be successfully generalized to a weakly-anharmonic qutrit with some modifi-
cations. In Sec. 4.2, we consider the qutrit to be strongly anharmonic. We show that in
this scenario the qubit considerations hold true with some perturbations due to leakage
and interference of the third state. In Sec. 4.3, we extend our theory to an arbitrarily-
anharmonic qutrit for arbitrary parameters. Throughout the chapter, we corroborate our
analytical results with numerical simulations performed with realistic experimental circuit
QED parameters. Additionally, make connections to the charge and transmon regimes of
the CPB.
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4.1 Extension to a weakly-anharmonic qutrit

We start by generalizing the driven QRM to include a qutrit with two allowed transitions
instead of a qubit. The Hamiltonian for this system reads

Ĥ = Ĥ0 + ĤI + Ĥd, (4.1a)

where

Ĥ0 =
ℏωeg

2
(|e⟩⟨e| − |g⟩⟨g|) + ℏω̃f

2
|f⟩⟨f|+ ℏωrâ

†â, (4.1b)

Ĥd =ℏ cos(ωdt)

[
Ω1(σ̂1+ + σ̂1−) + Ω2(σ̂2+ + σ̂2−)

]
, (4.1c)

and

ĤI =ℏ
[
g1(σ̂1+ + σ̂1−) + g2(σ̂2+ + σ̂2−)

] (
â† + â

)
. (4.1d)

Here, we define ω̃f = 2ωfe+ωeg, σ̂1+ := |e⟩⟨g| (σ̂1− = σ̂†
1+) as the raising (lowering) operator

for the |g⟩ ↔ |e⟩ (first) transition with frequency ωeg and σ̂2+ := |f⟩⟨e| (σ̂2− = σ̂†
2+) as the

raising (lowering) operator for the |e⟩ ↔ |f⟩ (second) transition with frequency ωfe. Also,
Ω1 (g1) is the coupling strength between the drive (resonator) and the first transition, and
Ω2 (g2) is the coupling strength between the drive (resonator) and the second transition.

We can rewrite the Hamiltonian of Eq.(4.1) in a rotating frame by means of the unitary
transformation Û = exp

[
−it

(
ωd (|e⟩⟨e| − |g⟩⟨g|) + ω̃f |f⟩⟨f|+ 2ωdâ

†â
)
/2
]
,

Ĥd =
ℏ∆1

2
(|e⟩⟨e| − |g⟩⟨g|) + ℏδâ†â

+
ℏΩ1

2

(
σ̂1+ + σ̂1− + ei2ωdtσ̂1+ + e−i2ωdtσ̂1−

)
+

ℏΩ2

2

(
eiχ̃t/2σ̂2+ + e−iχ̃t/2σ̂2− + ei(ω̃f+ωd)t/2σ̂2+ + e−i(ω̃f+ωd)t/2σ̂2−

)
+ ℏ
[
g1
(
eiωdtσ̂1+ + e−iωdtσ̂1−

)
+ g2

(
e+i(ω̃f−ωd)t/2σ̂2+ + e−i(ω̃f−ωd)t/2σ̂2−

) ]
×
(
eiωdtâ† + e−iωdtâ

)
, (4.2)
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where ∆1 = ωeg−ωd, δ = ωr−ωd and χ̃ = ω̃f−3ωd. Henceforth, we set ∆1 = 0 so that the
drive is on resonance with the first transition. Typically, ξ = ωfe−ωeg is the anharmonicity
parameter between the first and second transition. Depending on the energy level spacing
of a given circuit, ξ can be negative or positive. When ∆1 = 0, the parameter χ̃ becomes
proportional to the anharmonicity ξ; χ̃ = ω̃f − 3ωeg = 2ωfe − 2ωeg = 2ξ.

For a circuit QED implementation like the transmon, the first and second transition
frequencies are usually close and ξ is negative. Additionally, the transition matrix elements
of a transmon between the nth and (n+1)st state are proportional to

√
n+ 1, as discussed

in Sec. 2.4. Then, it is justified to assume the coupling strengths of higher transitions
scale harmonically. Thus, to simplify the analytical calculations, we assume a perfectly
harmonic qutrit where χ̃ = 0 (identical transition frequencies), g2 =

√
2g1 and Ω2 =

√
2Ω1

(harmonic scaling of coupling strengths). This will serve as a toy model to derive analytic
results, after which numerical simulations, including realistic anharmonicity values, will be
used to validate the results.

Assuming a perfectly harmonic qutrit, we can simplify the Hamiltonian of Eq. (4.2) by
imposing a set of RWA conditions that read as

ωeg − ωr ≪ ωeg + ωr and
√
2g1 ≪ min(ωeg, ωr), (4.3a)

√
2g1 ≪ 2ωd, and (4.3b)

√
2Ω1 ≪ 4ωd. (4.3c)

The intuition behind the conditions is the same as the qubit case in Sec. 3.1. The conditions
of Eq. (4.3a) are the usual conditions needed to arrive at a qutrit JCM Hamiltonian. The
condition in Eq. (4.3b) is necessary to eliminate the counter-rotating interaction terms,
whereas the condition in Eq. (4.3c) is required to drop the counter-rotating driving terms.
Under all these RWA conditions, the Hamiltonian can be simplified to read as

Ĥd
RWA =

ℏΩ1

2

(
σ̂1+ + σ̂1− +

√
2σ̂2+ +

√
2σ̂2−

)
+ ℏδâ†â

+ ℏg1
(
σ̂1+ +

√
2σ̂2+

)
â+ ℏg1

(
σ̂1− +

√
2σ̂2−

)
â†. (4.4)

We now diagonalize the qutrit part of the free Hamiltonian, ℏΩ1(σ̂1+ + σ̂1− +
√
2σ̂2+ +√

2σ̂2−)/2, to find the eigenvalues and eigenstates:

λ0 = 0, |v0⟩ =
1√
3

(
−
√
2 |g⟩+ |f⟩

)
, and (4.5a)
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λ± = ±ℏΩ1

√
3

2
, |v±⟩ =

1√
3

(
1√
2
|g⟩ ±

√
3

2
|e⟩+ |f⟩

)
. (4.5b)

The zero eigenvalue state, |v0⟩, is commonly referred to as a dark state in quantum optics
[57]. A dark state refers to a specific quantum state of a system that does not exhibit any
radiative transitions or absorption. In other words, it is a state that remains unaffected by
the presence of EM radiation. In this system, this means the state does not get populated
by the classical drive nor does it exchange photons with the resonator. This can also
be seen as a mathematical feature of the zero eigenvalue, which makes its time-evolution
stationary and corresponds to its initial population.

Now that we found the dressed qutrit states, we follow the same procedure as in the
qubit case by proceeding to the interaction picture. For that purpose, we define Ĥd

0 =
ℏΩ1

(
σ̂1+ + σ̂1−

√
2σ̂2+ +

√
2σ̂2−

)
/2 + ℏδâ†â and Ĥd

I = ℏg1(σ̂1+ +
√
2σ̂2+)â + ℏg1(σ̂1− +√

2σ̂2−)â†. Then, the interaction picture Hamiltonian reads as

Ĥ(I) =ℏg1

[√
3

2
(|v+⟩⟨v+| − |v−⟩⟨v−|)−

√
3

6
|v+⟩⟨v−| eiΩ1

√
3t +

√
3

6
|v−⟩⟨v+| e−iΩ1

√
3t

−
√
4 |v+⟩⟨v0| eiΩ1

√
3t/2 +

√
4 |v−⟩⟨v0| e−iΩ1

√
3t/2

+
1√
3
|v0⟩⟨v+| e−iΩ1

√
3t/2 − 1√

3
|v0⟩⟨v−| eiΩ1

√
3t/2

]
âe−iδt +H.c.. (4.6)

Similar to the qubit case, the Hamiltonian of Eq. (4.6) comprises two distinct inter-
actions: a time-independent (diagonal) interaction and a time-dependent-drive-modulated
(off-diagonal) interaction. We now impose the strong driving condition, g1, |δ| ≪ Ω1, which
when combined with the driving RWA condition of Eq. (4.3c) becomes

g1, |δ| ≪ Ω1 ≪ 4ωd/
√
21. (4.7)

This allows us to neglect the drive-modulated terms and obtain the effective Hamiltonian

Ĥ
(I)
eff = ℏg1

√
3

2
(|v+⟩⟨v+| − |v−⟩⟨v−|)

(
â†eiδt + âe−iδt

)
. (4.8)

This Hamiltonian generalizes that of Eq. (3.8) for our qutrit case. Interestingly, it generates
displacement in the resonator conditioned on two of the three qutrit dressed basis states,

1Note that the qutrit bound is tighter than the qubit bound in Eq. (3.7).
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|v+⟩ and |v−⟩. This means that for any initial product state between the qutrit and the
resonator, |ψi⟩ = (c0 |v0⟩+c+ |v+⟩+c− |v−⟩) |ψr⟩, the term involving the dark state remains
unchanged in the time-evolved state, |ψ(t)⟩ = Û(t, 0)[(c+ |v+⟩+ c− |v−⟩) |ψr⟩] + c0 |v0⟩ |ψr⟩ ,
where Û(t, 0) is the time-evolution operator. This is not exclusive to product states – even
if the initial state is entangled and has a term involving |v0⟩, the term remains unchanged
in the time-evolved state.

We now analyze the dynamics stemming from the qubit recipe for generating a cat
state, where the initial state is |ψi⟩ = |g⟩ |0⟩. We rewrite the qutrit state using the dressed
basis {|v0⟩ , |v+⟩ , |v−⟩}, and we find that |ψi⟩ = |g⟩ |0⟩ = (cg0 |v0⟩+ cg+ |v+⟩+ cg− |v−⟩) |0⟩ ,
where cg0 = −

√
2/3 and cg± = 1/

√
6. Then, the interaction picture time-evolved state is

|ψ(t)⟩(I) = cg0 |v0⟩ |0⟩+ cg+ |v+⟩ |α⟩+ cg− |v−⟩ |−α⟩

=
1

6
|g⟩ (4 |0⟩+ |α⟩+ |−α⟩)

+
1√
12

|e⟩ (|α⟩ − |−α⟩)

+
1√
18

|f⟩ (2 |0⟩+ |α⟩+ |−α⟩) , (4.9)

where α =
√
3g1(e

iδt − 1)/2δ; when δ → 0, then α = −i
√
3gt/2. As stated earlier, any

term involving the dark state remains unchanged in the time-evolved state. As a result,
we find the resonator vacuum state |0⟩ coupled to |g⟩ and |f⟩ (does not couple to |e⟩, since
⟨e|v0⟩ = 0). This results in another non-classical state within the resonator, which is a
superposition of the vacuum state and a cat state, obtained when measuring the qutrit in
either |g⟩ or |f⟩. This state is intriguing in its own right, exhibiting varying Wigner-negative
regions and interference patterns. Measuring the qutrit in |e⟩ yields an odd cat state in
the resonator, exactly as in the qubit case.

The presence of the dark state prevents us from deterministically encoding a qubit state
in the resonator using cat states. This is because measuring the qutrit in |g⟩ or |f⟩ does
not leave a cat state in the resonator. To maximize the probability of finding a cat state
in the resonator, we seek an alternative recipe. Initializing the qutrit in |e⟩ removes |v0⟩
and its stationary vacuum contribution due to its decoupling from the dark state subspace.
Therefore, we propose a new recipe for a generating a cat state tailored to the qutrit. Let
the system start in an initial state |ψi⟩ = |e⟩ |0⟩ = |ψi⟩ = (|v+⟩ − |v−⟩) |0⟩ /

√
2. Then, the
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interaction picture time-evolved state for this initial state is

|ψ(t)⟩(I) = 1√
2
(|v+⟩ |α⟩ − |v−⟩ |−α⟩)

=

(
1√
12

|g⟩+ 1√
6
|f⟩
)
(|α⟩ − |−α⟩) + 1

2
|e⟩ (|α⟩+ |−α⟩) . (4.10)

We note that a projective measurement on |g⟩ , |e⟩ and |f⟩ leaves a cat state in the resonator.
While the specified initial state deterministically yields a cat state, the parity remains
probabilistic – exactly as in the qubit case. To encode a qubit state, cg |g⟩ + ce |e⟩ , in a
cat state as described in Sec. 3.6, prepare the system in an initial state |ψi⟩ = (cg |v+⟩ +
ce |v−⟩) |0⟩. After time-evolving for the desired period and measuring in the bare basis
{|g⟩ , |e⟩ , |f⟩}, the resonator is left in a state ∝ cg |α⟩±ce |−α⟩. This serves as a generalized
procedure for encoding a qubit state in a resonator using a driven qutrit-resonator system.

The aim of the qutrit extension is to model a weakly anharmonic system, e.g., the
transmon. Up to this point, our work has been based on the assumption of the qutrit’s
perfect harmonicity, which encompasses multiple assumptions. The transition matrix ele-
ments of a transmon between the nth and (n+1)st state are proportional to

√
n+ 1 [33], so

the perfect harmonicity of the coupling strengths is justified. As for the detuning between
the transition frequencies, |ξ|, the typical values are on the order of 100− 300 MHz.

Figures 4.1 and 4.2 display the results of numerical simulations of the complete system
Hamiltonian of Eq. (4.1), without any approximations. These simulations are performed in
presence of both qutrit and resonator decoherence by means of a Lindblad master equation,
as explained in App. A. Figure 4.1(a) shows the occupation probabilities of the qutrit states
when the system is initialized in |g⟩ |0⟩. The probability of finding a cat state depends on
measuring the qutrit in |e⟩, which is low for this initial state. The Wigner functions of
the resonator state after a projective measurement on different qutrit states are shown in
Figs. 4.1 and 4.2. The states shown match the analytical predictions. The anharmonicity
used for the simulations is ξ = −100 MHz2. This anharmonicity is easily achievable by the
transmon. The effect of nonzero anharmoncity can be seen in the pertubed interference
regions in some of the Wigner functions of Fig. ??. Additionally, the lobes of the cat states
get slightly deformed, but this is also due to the terms neglected in the strong driving
RWA.

2We performed simulations using anharmonicity values between 50 MHz and 400 MHz. From 50 MHz
to ∼ 200 MHz, the qualitative predictions of the perfectly harmonic qutrit hold true. See Sec. 4.3 for
considerations regarding arbitrary anharmonicity.
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Starting the system in |g⟩ |0⟩

1Figure 4.1: Dynamics of a weakly-anharmonic qutrit initialized in the ground state. The
parameters used for the simulations are: Ω1 = 2π×1GHz. Ω2 =

√
2Ω1. g1 = 2π×20MHz.

g2 =
√
2g1. ∆1 = δ = 0. ωq = 2π × 5GHz. ξ = −2π × 100MHz. γ1 = κ = 500 kHz.

γ2 = 2γ1. γϕ = 1MHz. The Wigner functions are obtained by projectively measuring the
qutrit after a time-evolution period of g1t/2π = 0.61.
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1Figure 4.2: Dynamics of a weakly-anharmonic qutrit initialized in the first excited state.
The simulation performed is identical to that of Fig. 4.1 with the system initialized in
|e⟩ |0⟩.

For a weakly anharmonic qutrit, the driven qutrit-resonator protocol presented here
generalizes (with some modifications) that of Ch. 3. The perfectly harmonic qutrit model
serves as a very good approximation for weakly anharmonic qutrits, as corroborated by
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1Figure 4.3: Dynamics of a strongly-anharmonic qutrit. The parameters used for the sim-
ulations are: Ω1 = 2π × 1GHz. Ω2 =

√
2Ω1. g1 = 2π × 20MHz. g2 =

√
2g1. ∆1 = δ = 0.

ωq = 2π× 5GHz. ξ = 2π× 2GHz. γ1 = κ = 500 kHz. γ2 = 2γ1. γϕ = 1MHz. The Wigner
functions are obtained by projectively measuring the qutrit in |e⟩ after a time-evolution
period of g1t/2π = 0.61. The results resemble those of a driven qubit-resonator. The cat
state is displaced off-center due to the contributions of the |e⟩ ↔ |f⟩ transition.

the numerical simulations.

4.2 Strongly-anharmonic qutrit limit

In this section, we consider the limit of large anharmonicity |ξ| while maintaining the
perfectly harmonic coupling strengths.

When |ξ| is very large compared to Ω1 and g1, the second transition (|e⟩ ↔ |f⟩) is
very far detuned from the first transition (|g⟩ ↔ |e⟩). As a result, the driving barely
affects the third state and the resonator is either decoupled from or dispersively coupled
to the second transition depending on how far detuned it is. In either case, the effective
dynamics are those of a driven qubit-resonator system with slight perturbations to the
cat state from small third state leakage population. In Fig. 4.3, we show the results of
numerical simulations for such a regime. Figure 4.3(a) shows the occupation probabilities
with the |f⟩ population fluctuating around 0.1 (10%). The arguments presented work for
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large |ξ| in the positive and negative limits. From an analytical point of view, we can
justify these arguments by explicitly performing an RWA that eliminates terms oscillating
with e±iχ̃t in the Hamiltonian of Eq. (4.2) when |ξ| ≫ Ω1, g1.

We can now fit this regime of |ξ| ≫ Ω1, g1 to an experimental implementation context.
When the CPB is operated in the transmon regime the analysis of Sec. 4.1 is applicable.
While, when the CPB operating in the charge regime at the degeneracy point (as discussed
in Sec. 2.4), the anharmonicity between the two transition frequencies fits this very large
anharmonicity regime. In this case, the system for the most part is a driven qubit-resonator.
This can be extrapolated to different circuit implementations such as flux or fluxonium
circuits fitting the anharmonicity to the appropriate regimes3.

4.3 Extension to an arbitrarily-anharmonic qutrit

In this section, we extend our analytical framework to deal with arbitrarily anharmonic
qutrits by carefully selecting an appropriate rotating frame. Additionally, we relax as-
sumptions on coupling strengths and assume arbitrary coupling strengths. However, we
maintain the bare minimum assumption, g1/g2 = Ω1/Ω2. This is because the mechanism
in which the qutrit physically couples to the driving field is the same as it does to the
resonator.

We start by transforming driven qutrit-resonator Hamiltonian of Eq. (4.1) into a dif-
ferent rotating frame. This rotating frame is defined by the unitary transformation Û =
exp
[
−it

(
ωd (|e⟩⟨e| − |g⟩⟨g| − |f⟩⟨f|) + 2ωdâ

†â
)
/2
]
. In this frame, the system Hamiltonian

reads as

Ĥd =
ℏ∆1

2
(|e⟩⟨e| − |g⟩⟨g|) + ℏΣ

2
|f⟩⟨f|+ ℏδâ†â

+
ℏΩ1

2

(
σ̂1+ + σ̂1− + ei2ωdtσ̂1+ + e−i2ωdtσ̂1−

)
+

ℏΩ2

2

(
σ̂2+ + σ̂2− + ei2ωdtσ̂2+ + e−i2ωdtσ̂2−

)
+ ℏ
[
g1
(
eiωdtσ̂1+ + e−iωdtσ̂1−

)
+ g2

(
eiωdtσ̂2+ + e−iωdtσ̂2−

) ]
×
(
eiωdtâ† + e−iωdtâ

)
, (4.11)

3In fact, this can be extrapolated to other implementations when you scale the parameters accordingly;
the analysis presented works with qubits and qutrits in general.

62



where Σ = ω̃f+ωd. The intuition behind this particular frame is that it sets both transitions
on equal footing. The off-diagonal terms have the same form in their time-dependence for
both transitions. This Hamiltonian can be simplified by a set of RWA conditions that read

ωeg − ωr ≪ ωeg + ωr and g1 ≪ min(ωeg, ωr), (4.12a)

g1 ≪ 2ωd, (4.12b)

Ω1 ≪ 4ωd, (4.12c)

ωfe − ωr ≪ ωfe + ωr and g2 ≪ min(ωfe, ωr), (4.12d)

g2 ≪ 2ωd, and (4.12e)

Ω2 ≪ 4ωd. (4.12f)

These conditions generalize those of Eq. (4.3) for arbitrary coupling strengths. Then,
taking all the conditions stated above to hold true allows us to perform an RWA and
obtain the Hamiltonian

Ĥd
RWA =

ℏ∆1

2
(|e⟩⟨e| − |g⟩⟨g|) + ℏΣ

2
|f⟩⟨f|+ ℏδâ†â

+
ℏΩ1

2
(σ̂1+ + σ̂1−) +

ℏΩ2

2
(σ̂2+ + σ̂2−)

+ ℏ (g1σ̂1+ + g2σ̂2+) â+ ℏ (g1σ̂1− + g2σ̂2−) â
†. (4.13)

For simplicity, we only deal with the case where ∆1 = 0. We now diagonalize the qutrit
part of the free Hamiltonian, ℏΣ |f⟩⟨f| /2 + ℏΩ1(σ̂1+ + σ̂1−)/2 + ℏΩ2(σ̂2+ + σ̂2−)/2, to find
the eigenvalues and eigenstates [57]:

λ1 = −1

3
a+

2

3
p cos

(
θ

3

)
, (4.14)

λ2 = −1

3
a− 2

3
p cos

(
θ

3
+
π

3

)
, (4.15)

λ3 = −1

3
a− 2

3
p cos

(
θ

3
− π

3

)
, (4.16)

and

|vk⟩ =
1

Nk

[(
Ω1

(
λk −

Σ

2

))
|g⟩+

(
2λk

(
λk −

Σ

2

))
|e⟩+ Ω2 |f⟩

]
, (4.17)
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where

a = −Σ

2
, (4.18a)

b = −1

4

(
Ω2

1 + Ω2
2

)
, (4.18b)

c =
1

8
ΣΩ2

2, (4.18c)

p =
√
a2 − 3b, (4.18d)

cos θ = −27c+ 2a3 − 9ab

2p3
, (4.18e)

and

Nk =

√
λ2k|Ω2|2 + (4λ2k + |Ω1|2)

(
λk −

Σ

2

)2

(k = 1, 2, 3). (4.18f)

Next, we proceed as done in previous sections by transforming to the interaction picture.
For that purpose, we define Ĥ0 = ℏΣ |f⟩⟨f| /2+ℏδâ†â+ℏΩ1(σ̂1++σ̂1−)/2+ℏΩ2(σ̂2++σ̂2−)/2
and ĤI = ℏ(g1σ̂1++g2σ̂2+)â+ℏ(g1σ̂1−+g2σ̂2−)â†. Then, the interaction picture Hamiltonian
reads as

Ĥ(I) =ℏ
3∑

k=1

[
2λk

(
λk − Σ

2

)
N 2

k

(
g1Ω1

(
λk −

Σ

2

)
+ g2Ω2

)
|vk⟩⟨vk|

+
∑
l ̸=k

(
λl − Σ

2

)
NkNl

(
2g1Ω1λk

(
λk −

Σ

2

)
+ g2Ω2

)
|vk⟩⟨vl| ei∆λklt

]
×
(
â†e+iδt + âe−iδt

)
, (4.19)

where ∆λkl = λk − λl. In this Hamiltonian, there time-independent (diagonal) terms and
time-dependent (off-diagonal) terms. The separation of timescales cannot be assumed a
priori. To achieve a similar Hamiltonian as in the previous sections, we must find the
strong driving-anharmoncity4 regime where

g1, g2, |δ| ≪ |∆λkl|. (4.20)

4The parameters ∆λkl are functions of the driving strengths Ω1 and Ω2, as well as Σ, which can be
directly reformulated in terms of ξ.

64



We note that this has to be satisfied with the RWA conditions of Eq. (4.12). If this regime is
achieved, we can neglect the off-diagonal terms modulated by ∆λkl and obtain the effective
Hamiltonian

Ĥ
(I)
eff =ℏ

3∑
k=1

g̃k |vk⟩⟨vk|
(
â†e+iδt + âe−iδt

)
, (4.21)

where g̃k = 2λk(λk − Σ/2)(g1Ω1(λk − Σ/2) + g2Ω2)/N 2
k . This Hamiltonian generates res-

onator displacements conditioned the dressed qutrit basis {|v1⟩ , |v2⟩ , |v3⟩}. Initializing the
system in |ψi⟩ =

∑3
k=1 ck |vk⟩ |0⟩ with

∑3
k=1 |ck|2 = 1, then time-evolving under the effective

Hamiltonian yields

|ψ(t)⟩(I) =
3∑

k=1

ck |vk⟩ |αk⟩ , (4.22)

where αk = −g̃k(eiδt− 1)/2δ; when δ → 0, then αk = −ig̃kt/2. Similar to the previous sec-
tions, we can create interesting nonclassical states composed of a superposition of coherent
states by rewriting the states in the bare basis and measuring the qutrit. This leaves the
resonator in a nonclassical state dependent on which qutrit state was measured.

The framework presented in this section has been quite general and abstracted away
from a particular circuit implementation. The purpose of this section is to present a general
framework for an arbitrarily anharmonic driven qutrit-resonator that does not conform to
either of the two extremes introduced in the previous two sections. Thus, we outlined a
step-by-step procedure to obtain an effective Hamiltonian similar to the previously derived
results. Additionally, the approach presented here is useful for tailoring parameters to a
particular device (describing a driven qutrit-resonator system). One can use the derived
analytical eigenvalues and eigenstates along with all the given constraints to numerically
optimize for the generation of a cat state or a particular (collinear5) superposition of
coherent states of interest for a set of particular device parameters.

5All the displacements generated are on the same axis.
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Chapter 5

Conclusions and Outlook

In this thesis, we layed out a practical theory for generating cat states using a resonant
continuous drive on a qubit coupled to a resonator. For that purpose, we formulated bounds
on the strong driving regime. We leveraged the Bloch-Siegert shift to allow for a detuned-
driving to generate cat states. We showed how to encode a qubit state into a resonator with
a probablistic phase depending on the measurement outcome. urthermore, we extended the
scheme to encompass a driven qutrit-resonator system with varying anharmonicity. These
considerations are an important step considering potential implementation challenges on a
transmon or charge qubit. Lastly, we showed that our method outperforms two commonly
used methods even when accounting for decoherence effects.

What is the future for this work? Currently, one of my colleagues in my research
group is working on implementing the theory proposed here. Beyond implementing the
theory, this work can be built on in two directions. The first direction is to incorporate
it within the broader context of cat state generation for cat codes. The problems to be
addressed are: 1) resolving the issue of the probabilistic phase, exploring the potential
for deterministic solutions or somehow accommodating it with parity-fluid protocols, and
2) developing a method that, in conjunction with the work presented here, enables the
generation of multi-component cat states, particularly those with three or four compo-
nents. The second direction aims to generalize the driven qubit/qutrit-resonator system to
encompass higher-order interactions, such as a two-photon (or more generally, n-photon)
interaction as proposed in circuit QED [17] and trapped ions [48]. An interaction of the
form σ̂x(â

†2+ â2) (or of higher order) in the presence of a drive could facilitate the creation
of exotic states that are traditionally challenging to synthesize but may offer significant
computational advantages. In fact, due to time constraints, we had to omit some material
related to this analysis.
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[1] Konrad Banaszek and Krzysztof Wódkiewicz. Testing quantum nonlocality in phase
space. Phys. Rev. Lett., 82:2009–2013, Mar 1999.

[2] Félix Beaudoin, Jay M. Gambetta, and A. Blais. Dissipation and ultrastrong coupling
in circuit qed. Phys. Rev. A, 84:043832, Oct 2011.

[3] M V Berry. Transitionless quantum driving. Journal of Physics A: Mathematical and
Theoretical, 42(36):365303, aug 2009.

[4] Alexandre Blais, Arne L. Grimsmo, S. M. Girvin, and Andreas Wallraff. Circuit
quantum electrodynamics. Rev. Mod. Phys., 93:025005, May 2021.

[5] F. Bloch and A. Siegert. Magnetic resonance for nonrotating fields. Phys. Rev.,
57:522–527, Mar 1940.

[6] J. Bourassa, F. Beaudoin, Jay M. Gambetta, and A. Blais. Josephson-junction-
embedded transmission-line resonators: From kerr medium to in-line transmon. Phys.
Rev. A, 86:013814, Jul 2012.

[7] J. Bourassa, F. Beaudoin, Jay M. Gambetta, and A. Blais. Josephson-junction-
embedded transmission-line resonators: From kerr medium to in-line transmon. Phys.
Rev. A, 86:013814, Jul 2012.

[8] D. Braak. Integrability of the rabi model. Phys. Rev. Lett., 107:100401, Aug 2011.

[9] Heinz-Peter Breuer and F. Petruccione. The Theory of Open Quantum Systems. Ox-
ford University Press, 2010.
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Appendix A

Open system

In Sec. 2.1, we introduced the Lindblad master equation for describing Markovian non-
unitary evolution in a zero-temperature environment. Here, we specify the form of the Lind-
blad jump operators, L̂k, along with their rates, γk, for both qubit- and qutrit-resonator
systems.

For the qubit-resonator system, the master equation reads as

d

dt
ρ̂ = − i

ℏ
[Ĥ, ρ̂] + γ1D(σ̂−)ρ̂+

γϕ
2
D(σ̂z)ρ̂+ κD(â)ρ̂, (A.1)

where ρ̂ is the full system density matrix, is the dissipator for a given operator Ô, γ1 and
γϕ are the qubit energy relaxation and dephasing rate, and κ is the resonator photon loss
rate. While for the qutrit-resonator system, the master equation reads as

d

dt
ρ̂ =− i

ℏ
[Ĥ, ρ̂] + γ1D(σ̂1−)ρ̂+ γ2D(σ̂2−)ρ̂

+
γϕ
2
D(σ̂z + 2 |f⟩⟨f|)ρ̂+ κD(â)ρ̂. (A.2)

For the purpose of simulating a qutrit resembling a CPB, we assume γ2 ≃ 2γ1 and that the
dephasing operator is σ̂z + 2 |f⟩⟨f| . Explicitly, this is related to the fact that in a harmonic
oscillator, the nth Fock state has a relaxation rate γn = nγ1, n-times the relaxation rate
of the first excited Fock state [38]. Additionally, experiments testing the coherence times
of a transmons higher levels (even past |f⟩) have confirmed this Fock-state-like scaling of
decay times [46]. These assumptions are fairly reasonable for the CPB in both transmon
and charge regimes. All the numerical simulations of the master equation are performed
with QuTiP [28, 29].
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