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Abstract

We develop the Turan sieve and a ‘simple sieve’in the context of bipartite graphs and apply them to
various problems in combinatorics. More precisely, we provide applications in the cases of characters
of abelian groups, vertex-colourings of graphs, Latin squares, connected graphs, and generators of
groups. In addition, we give a spectral interpretation of the Turan sieve.
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1. A combinatorial Turan sieve

In 1934, Turarj18] gave a very simple proof of a celebrated result of Hardy and Ramanu-
jan[8] that the normal order of distinct prime factors of a natural nunmdsdog logn. If
w(n) denotes the number of distinct prime factorsipTuran proved that

Y (w(n) —loglogx)? < x log logx,

n<x
from which the normal order ab(n) is easily deduced. Turan’s original derivation of the
Hardy—Ramanujan theorem was essentially probabilistic and concealed in it an elementary
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sieve method. This method has appeared in various formulations in several places. Most
notable is the monograph of Erdds and Spefebection 16hnd Lovas12, problem 19,
Section 2] However, the sieve principle seems to be best emphasized in[ddperhere

the authors introduced the Turan sieve method and applied it to probabilistic Galois theory
problems.

In this paper, we formulate the Turan sieve method in a slightly general context, namely
to that of bipartite graphs. Formulating it thus allows us the freedom to search for new
applications of the method. To illustrate, we consider the problem of obtaining a non-trivial
upper bound for the number of proper (vertex) colourings of a graph. We also consider
related examples.

The extension of sieve methods to a combinatorial setting has been attempted before. For
example, Wilsorj19] and Chow{3] have formulated the Selberg sieve in a combinatorial
context (see also Section 2 [d2]). However, due to the fact that the Mdbius function of
a lattice is difficult to compute in the abstract setting, it is not clear how one can apply the
Selberg sieve to general combinatorial problems. This obstruction is somewhat eliminated
by the Turan sieve.

Let X be a bipartite graph with finite partite sets$,(B). Fora € A,b € B, we write
a ~ b ifthere is an edge that joirssandb. Forb € B, we define thelegreeof b to be

degb :=#{a € A, a ~ b}.
Forb1, bo € B, thenumber of common neighbourébs, b) of b1 andb; is defined by
n(by, bp) :=#{a € A,a ~ by anda ~ ba}.

Thus, ifby = bp = b, n(b1, bp) = degb.
For eachu € A, we define

w(a) :=#{b € B,a ~ b} = # of elements imB that joina.

Notice that
Zw(a):ZZl:ZZl:Zdegb.
acA acA beB beB geA beB

a~b a~b

Thus, the ‘expected value’ @f(a) is

where|A| is the cardinality ofA. To measure the difference betweefa) andﬁ Z degb,

beB
we consider the second moment of their difference, namely,

> <a)(a) - % > degb)z.

acA beB
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We have
2
1
anA (w(a) - 1; degb)
- Z w?(a) — 2 Z w(a) < Z degb) + Z ( Zdegb)
acA acA beB acA beB
2
_%ZAw (a) — T (Z eg ) +—(b€ZB degb) .

The last equality follows from the previous calculationE w(a). It now remains to

acA
consider) ~ w?(a). By the definition ofw(a), we have
acA
Y- ¥ 1= X Yim X atwsa.
acA acA b1,boeB b1,b2€B 4cA b1,b2eB
a~by a~by
a~by a~bp

Combining the above results, we obtain the following theorem.

Theorem 1.
1 2
> (w(a) - Zdegb) = > n(buby) - o (Z degb) .
acA | | beB b1,boeB | | beB
Notice that
2
#a € A, w(a) =0} - ( N Zdegb) < Z (w(a) - Zdegb) .
| |beB acA | |beB

Combining this inequality with Theorefy we obtain the following corollary.

Corollary 1 (The Turan sieve

Y. nlbi,b2)
Hae A o@=0<|AP 220 4

(5

beB

Example 1. We can apply Corollarg to obtain an upper bound for the inclusion-exclusion
principle. LetA be a finite set andA1, Ao, ..., A;} be a collection of subsets & We
construct a bipartite graph with consisting of the setd;’s. Fora € A, b = A, € B,
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we will say

a~ Ay if aeA.
Thus,

w(a) =0 ifandonlyif a ¢ A; forall 1<i<k.
Forb, b1, by € B, notice that

degb = |Ap| and n(b1, b2) = |Ap, N Ap,|.

By Corollary 1, we have

k

> 1AiN Al

—=
#aecA:ad¢ A foralli, 1<i <k}<|A|?- ”k— —|A].
> lAiP
i=1

We thus obtain an inequality for the standard inclusion-exclusion principle.

Example 2. From Theoreml, we can derive the classical Turan theorem. bar, €
B, by # by, we assume that

degb; - degb
n(by, by) = % +e(b1, bp),

where we viewe (b1, bo) to be an ‘error term’ if we were to think of the events- 1 and
a ~ by as ‘independent’. Putting it into Theoremwe have

2
degb degb
3 <w<a>_z Tg) =Y et b+ Y ey (1- %),
acA beB | | b1#by beB | |

This example is motivated by the classical number theory setting that inspired Turan’s
theorem stated at the outset of this paper. Indeed\ tenote the set of natural numbers
<x andB the set of primes<x¥/2. Fora € A, b € B, we will say

a~b if bla.
Thus,
w(a) = # of distinct primes divisors of which are<xY?.

Also, we have

> degh< > [%] = xloglogx + O (x),

beB b<J/x
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by a classical theorem of MerteﬁHS]. Moreover, ifby # bo,

n(by, by) = [ﬁ] = b—bz +0()

. degb; - degbz
B Al
so thate(by, b2) = O(1). It follows that

> (w(a) - loglogx)? = O(xloglogx),

a<x

+ 0@,

which is Turan’s theorem as for eaghe A, there is at most 1 prime divisor afwhich is
1/2
X .

Corollary 1 provides an upper bound for the quantity
#a € A, w(a) = 0).
To get a lower bound for it, observe that

{a €A, w(a):O}:A\U{aeA,aNb}.
beB

Since the unioU{a € A, a ~ b} is not necessarily disjoint, by the definition of deg

beB
we have

Proposition 1 (The simple sieye

#a € A, w(a)=0}>|A| - ) degb.
beB

In Sections 2 and 3, we apply Corollatyand Propositior to problems on characters of
abelian groups and vertex-colourings of graphs. In particular, we obtain improvements of
the Rédei Tragheitsaf16,17]for some abelian groups. In Section 4, we apply Corolfary
to obtain an upper bound for the number of Latin squares of arder Sections 5 and 6,
we apply Propositior to get lower bounds for the number of connected graphs and the
number ofn-tuples of elements of a gropwhich generat€&. We conclude this paper by
discussing a spectral interpretation of the Turan sieve method in Section 7.

2. Characters of abelian groups

In this section, we apply Corollaryyand Propositiod to a problem about characters of
abelian groups.

Let G be afinite abelian group andi1, Ho, ..., H;} a collection of subgroups @. For
ann-tupley = (1, x2. - - -, x,) Of characters oB, we sayy distinguishe$H1, Ho, ..., Hi},
if for every H;, there exists a charactgy such thaty; restricted toH; is not the trivial
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character. Thus, if the s€iH1, Ho, ..., H;} contains all non-trivial subgroups @, y
distinguishes all subgroups & except the identity. We are interested in the number of
n-tuples of characters @ which distinguish H1, Ho, ..., Hy}.

Let A be the set of alh-tuplesy = (i1, xo, - - -, x,) Of characters oG andB the set of
all Hi’'s. Fora =y, = (141 Za.2» - - - » Xan) € A, b = Hp € B, we will say

a~b if y,; restricted toH, is trivial for all i.
Thus, we have
o(a) =0 ifandonlyif y, distinguishe§Hy, Ho, ..., Hi}.
Notice that
Al = |G|".

Lethb = H, € B anda = y, ~ b. Sincey, ; restricted toH, is trivial, it can be thought of
as a character of the quotient groGp H,,. Thus,

degb = (IG|/IH,)".

It follows that
k

> degh = (G|"- )

beB j=1

|H;Im

Forby = Hy,, b = Hp, € B, we denote by, Vv Hp,, thejoin of H, and Hp,, which is
the smallest subgroup @ containing bothH,, andHp,. Fora = i, € A, if a ~ b1 and
a ~ by, the charactey,, vanishes at botlif,, and Hj,. Thus, it vanishes atl,, v Hj, and
defines a character of the quotient graup(Hy, v Hp,). It follows that

k
1
2, b =IG ) o
J1 J2

b1,byeB J1.j2=1

Hence, by Corollaryl, we obtain that

Theorem 2. Let{H1, Ho, ..., Hy} be a collection of subgroups of a finite abelian group G.
We denote b (n, H1, Ha, . .., Hr) the numberof n-tuples= (x4, .. ., ,) of characters
of G distinguishing H1, H», ..., H}. We have

k 1

|Hj1 4 Hj2|n
2

J1,j2=1
k

1
2

j=1

D¢ (n, H1, Hp, ..., Hp) <|G|" -
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Also, by Propositiorl, we have

Theorem 3. Let{H1, Ho, ..., H;} be a collection of subgroups of a finite abelian group G.
We denote b (n, H1, Ho, ..., Hy) thenumberof n-tuples= (y;. ..., x,) of characters
of G distinguishind H1, Ho, ..., Hy}. We have

k
DG(n, Hy, Ha, ..., H)>|G|" - {1- >
=1

1
|H;|"

LetL be a lattice with a unique minimal eleméhtAn order functionv onL is a function
defined on pairs of elements y (with x < y) in L such that(x, y) = v(x, 2)v(z, y). We
sayL is locally finiteif for every positive integen, the number of elemenise L such that
v(x, y) = nis finite. TheRédei zeta functioaf a locally finite latticel is defined by

psiL) =" (0. x)v(0, x)7*,

xelL

where ut is the M6bius function oL. By the finiteness assumption, the summation on
the right is well defined as a formal Dirichlet series. Moreover, the zerggsofL) are

very often combinatorially significant invariants. For example, it generalizes the chromatic
polynomial of a graph, the inverse of the Dedekind zeta function of a number field, the
inverse of the Weil zeta function for a variety over a finite field, etc. (For more applications
of the Rédei zeta function, s§i0].)

Consider the latticé& (4, #,,.... m,) SPanned byHi, Hp, ..., Hi}, which is a lattice con-
taining all subgroups of that are generated by some finite subsets ofHfie. Partially
order Ly, m,.... 1) by inclusion as the minimal elemeftis the identity subgroup d&.

Such a lattice is locally finite with the order function

|yl
v(x,y) = m

Thus, the Rédei zeta function associated.{p, #,,.. H,} IS
1
b |HIs’
0<H
whereH runs through all elements @f x4, #,, ... ;3 It was proved irff10, Theorem 10{hat
Dg(n, H1, Ho, ..., H) = |G|" - p(n, H1, Ho, ..., Hy),
from which we can derive that

0<p(n, H1, Ho, ..., H)<1 (1)

sinceDg (n, H1, Ho, ..., Hy) <|G|". This result was first proved by Rédei and is known
as Rédei’s Tragheitsaft6,17]
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Combining Rédei’s result with Theorerisand3, we conclude that

k
1
max 0,1—2 VG < p(n, Hy, Ha, ..., Hy)
=1

1
Hj, v Hj|"
J'l,./'2=1| J1 ja

<min{1l, 5 -1
k

1
Z |Hj|"

j=1

The above inequality provides better upper and lower bounds thé&or (p(n, H1, Ho, . . .,
Hy) in many cases. For example, for all primes: x, consider the abelian gropand its
subgroupg H,, p <x} which are defined as follows:

G = 1_[ Z/pZ H,=Z/pZ forall p<x.

pPsX

In the caser = 1, by Theoren® and Mertens’ theorem, we obtain

1 1
1LH, p<x)< ——— EE-——
P Hp, p<x) log logx + 0 ((Iog Iogx)2>

In the caser > 2, by Theoren8, we have

1
pln, Hy p<x)>1= )" —.

p<x

As

Z i—>0 asn — oo,

n
PSX

we conclude that
pn,H,, p<x) -1 asn — oo.

We can also apply Theoren2sand 3 to vector spaces over a finite field. L6t be a
d-dimensional vector space over afinite figld Let{H;, H,, ..., H;} be the set of all one-
dimensional subspaces@f. Thus kis the number of one-dimensional subspaces’aind

.....

,,,,,

rapidly as the dimension @i’ increases. Thus, it is not easy to compute the value of the
Rédei zeta function in this case. However, from TheoPeme have

(g—D@" -1

/ / /
p(n$H11H23"'7Hk)< qd—l )
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whichis< 1if n<(d — 1). In the case: >d, by TheorenB, we have

@' -1

. )
q'(g—1

p(n, Hi, Hj, ..., H)>1—

Remark. As we can see from the above two examples, it seems that Cordlland
Propositionl are complementary. When Corollatyprovides a non-trivial upper bound,
Propositionl usually fails to give a meaningful lower bound. On the contrary, in the cases
when Proposition is valid, Corollaryl is usually not useful. We will see the same situation
happens again later in Theoresand5.

3. Vertex-colourings of graphs

We now consider a graph colouring problem. Xet= (V, E) be a simple graph, where
V is the vertex set oK andE the edge set. We denote byande the cardinalities o¥/ and
E, respectively. Forl € N, 1>1, suppose we usécolours to colour the vertex s¥tof
X. A A-colouring Ccan be viewed as a map frovito {1, 2, ..., A}. We sayC is properif
no two adjacent vertices have the same value(colour). Our goal is to count the number of
proper colourings oK.
Let A be the set of all colourings of andB the edge set oK. Fora = C, € A, b =
ep € B, we will say

a ~ b if the two vertices joined by, have the same value ,.
Thus,
w(a) =0 ifandonlyif C,isa proper colouring oX.
Notice that
|[A|]=/2" and |B|=ce.
For eachh = ¢, € B, we have
degh = A°71,

since the values of the vertices joineddpyare the same. It follows that

> degh=e- """
beB

Letbhy = ep,, bp =ep, € B. If by = bp = b, then

n(b1, bp) = degb = 'L,
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If b1 # by, there are two possibilities:
(1) ey, andey,, share one vertex; thus those three vertices joineg,pgnde,, have the
same values. In this case,

n(b1, bo) = V2

(2) ep, andey, do not share any vertex; thus the vertices joinedhyhave the same
values and the values of the vertices joinecpyare the same. Thus,

n(by, by) = \V72.
Hence, we conclude that#f # by,
n(by, by) = AV72.
Notice also that
#{(b1, bo) € B%, b1 # by} = € — e.

It follows that

> nlb1,b)= ) n(b1,b2) + ) degh

b1,b2€B b1#b2 beB

—(?—e) W P47

Hence, by Corollaryl, we obtain

Theorem 4. Let X = (V, E) be a simple graph with the vertex set V and the edge set E.
Suppose we usecolours to colour the set V. We have

. A—-1
# of properi-colourings of X <2 - { } ,
e

wherev = |V| ande = |E|.

Notice that since
# of properi-colourings ofX <1°,
Theoremd provides a non-trivial upper bound only if
A-1
e
In the case when > ¢, by Propositiori, we have

<1, e, i<(e+1).

Theorem 5. Let X = (V, E) be a simple graph with the vertex set V and the edge set E.
Suppose we usecolours to colour the set V. We have

# of properi-colourings of X > 2" - [1 — ;] ,

wherev = |V| ande = |E|.
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A graph X’ is called asubgraphof X if it can be obtained by contracting some edges
of X (thus identifying two vertices that are joined by an erased edge). Consider the lattice
Lx spanned by subgraphs Xf Partially orderL y as follows: we say1 < Xz if X1 isa
subgraph ofX». Hence, the maximal elemehtof L y is X.
For 1 € N, suppose we usé colours to colour the vertex s&t(X) of X. The number
of proper-colourings ofX can be expressed in terms of the Mdbius functions of Let
Px () denote the number of proper colouringsXofising A colours. For each colouring
of X, there exists a unique maximal subgraphsuch thaiC is a proper colouring oX’.
Thus, we have

WO =37 Py,

x'<i

where X’ runs through all elements dfy. Applying the Mébius inversion formula, we
obtain

Px(2) = Y w(x', D",

x'<1

which is thechromatic polynomiadf X. In general, it is difficult to estimat®x (1) due to

the fact that the Mobius functigm(X’, 1) is hard to compute. One of the advantages of both
the Turan sieve and the simple sieve is that they eliminate the use of the Mébius function.
Thus, they can provide estimates Bf (1) without knowing u(X’, 1). Indeed, the graph
colouring problem can be viewed a special case of the character problem that we mentioned
in Section 2 (se€l] and[15, Proposition 5.1.2for explanations).

4. Latin squares

A Latin squareof ordernis ann x n matrix with entries fron{1, 2, . . ., n} such that the
entries in each row and the entries in each column are distinct. (stbe the number of
Latin squares of order. Since there are”’ ways of filling in then? positions of the matrix
with entries from{1, 2, ..., n}, we have

L(n) gn”z.

To obtain the number of Latin squarégn) is indeed a special case of the vertex-
colourings of graphs. LeX = K,, x K,,, the graph whose vertex set consists of the points
of ann x n matrix and in which two vertices are adjacent if and only if they lie in the same
row or column. Suppose we usecolours to colour the vertex set &f In this case, the
number of propen-colourings ofX is equal to the number of Latin squares of ordelet
V andE be the vertex set and the edge sekof K, x K, respectively. Notice that

V| =n? and |E|=n’(n—1).
Applying Theoremd, we can improvd. (n) to

L(n)<n’12 . {iz}
n
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The above upper bound can be improved to
L(n)<(n)",

since each entire row is chosen from the set of permutatiori4,& ..., n} and there
aren! permutations. Further improvement of an upper bound @f) can be obtained by
considering derangements{df 2, ..., n}.

A derangementf {1, 2, ..., n} is a permutation of this set which leaves no point fixed.
Letd(n) be the number of derangementgdf2, ..., n}. Using the principle of inclusion-
exclusion, we hav§2, Theorem 5.1.3]

dn)y=ny " (_'1)1.
i=0

i!

One can show that this is the nearest integer! fe.

Consider a Latin square of order The first row of it is simply a permutation of
{1,2,...,n}, and there are! choices for it. Given the first row, we may (by re-labeling)
assume thatitisl, 2, ..., n); then a legitimate second row is precisely a derangement of
{1, 2,...,n}. Similarly, all the rows after the first are derangements of the first one. Thus,
we have

L)< () -dn)" 1,

whichis roughly(n!)" /¢"~1. In the following, we apply the Turan sieve method and improve
this upper bound to

d(n)"~*

n2

L(n)<Cn) -

whereC is a fixed constant.

Given ann x n matrix M, suppose the first row of it is a permutation, say?2, ..., n).
We consider thén — 1) x n submatrixMg of M obtained by deleting the first row o.
ForM to be a Latin square, all the rows &fy must be derangements of the first one. Aet
be the collection of all suchMg’s, i.e., A contains all(n — 1) x n matrices such that each
entire row is chosen from the set of derangementd a, . .., n}. Thus, we have

[A] = d(n)" L.

Fora = M, € A, we denote byM,); ; the(i, j)th entry of the matrix}/,,, where 2<i <n
and 1< j <n.

Let B be the set consisting all distinct paif§, j), (i’, j)} (regardless of their order)
where 2i,i'<n,i # i’, and 1< j <n. There are(”gl) choices for the sefi, i’} andn
choices foij. Thus,

nn—1n -2
> .
For a matrixa = M, € A, an elemenb = {(ip, jp), (i}, jp)} € B, we will say

|B| =

a ~ b |f (Mll)ib’jb = (M“)ié,,/b'
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Thus,
w(a) =0 ifandonlyif M, formsa submatrix of a Latin square
Hence, we have
L(n) = (n!)-#a e A, w) = 0}.
Thus, to get an upper bound faKn), it suffices to obtain an upper bound for
#a € A, w(a) = 0}.

Fix b = {(ip, jb), (i, jb)} € B. SupposeM, = a ~ b. There arei(n) choices of the
ipth row of M,. Fix thei,th row and consider thgth row of M,. Suppos&M.,);,. ;, =
(Ma)i;,,jh = k. Notice thatk # jj, since thei,yth row is a derangement. There are two
possibilities for the, th row:

) If (Ma)iy i # Jbs consider all entries of thigth row excep(Ma);; j,- View the entry
(Ma)i}’),k as(Ma)l-};’jb. Thus, thesgn — 1) entries of the, th row form a derangement of the
set{1,2,...,n}\ {k} and there ard(n — 1) choices of them. Notice that sin(:Ma),-;?,k is
identified With(Ma)ilg,jb. it follows that(Ma)ié,k # jp.

2) If (Ma),';,k = J», consider all entries of thgth row except(Ma)ié,jb and(Ma),é,k.
The remainindn — 2) entries form a derangement of the get2, . . ., n}\ {», k} and there
ared(n — 2) choices of them.

Hence, we have totallyd(n — 1) 4 d(n — 2)) choices of the,th row. Also, there are
d(n) choices of each remaining — 3) rows. Thus, we have

degh =d(n)" 2 (d(n — 1) +d(n — 2)).

It follows that

5" degh — dn)'2 - (d(n — 1+ d(n - 2 W=D =2,

beB

Let b1 = {(ipys Jby)s (ilgl, Jp)} andbz = {(ipy, jby), (ilgz, Jb,)} be two elements oB.
Suppose

by iy} O by ip,}] =71 and  |(y} 0 {n}| = ra.

where 0<r1 <2 and 0< > < 1. We denote by (r1, ) the number of pairgby, by) € B?
such that{iy,, iy, } N {in,. i},,}l = r1.and|{jp, } N {ji,}| = r2. There are six possibilities for
the pair(r1, r2):
(1) Hipy, ii’,l} N {ipy, ii’,z}l = 2 and|{jp,} N {Jjp,}| = 1.
In this caseb; = bo. From the discussion of dégwe have
n(b1,b) =dn)"" % (d(n — 1) +d(n — 2))

and
nn—1)n -2

M2,1) = 5
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(2) Hiby, iy, } N i iy} = Landl{jip,} N o} = 1, S@Yip, = ip,.
There ared(n) choices for the, (= ip,)th row of M, and(d(n — 1) + d(n — 2))2
choices of the',;lth andilgzth rows. Also, there ard(n) choices of each remaining
(n — 4) rows. Thus,

n(b1, b2) =dm)" 3. (dn — 1) +dn — 2))>.

There gre(”;l) ("12) (”13) choices for the sefiy, (= is,), i}, , i;,} andn choices for
Jb1(= /bz)- ThUS,

MA,D)=nn—1(n—2)(n—23).

(3) Wivy. if,} N iy ip 3l = 0 and|{jpy} N {jin,}| = 1.
There ardd(n))? choices of they, th andi,, th rows andd (n — 1) 4d(n — 2))? choices
of theil’,lth andil/)zth rows. Also, there aré(n) choices of each remaining — 5) rows.
Thus,

n(by, b2) =dm)" > (d(n — 1) +d(n - 2))%.
There are(”;l) (";3) choices for the set§is,, i, } and {iy,, i;,,} andn choices for
Jbr (= Jjby)- Thus,
nn—1n—2)(n —3)(n—4)
y )
(4) Wiby, i} N by, iy, 3 = 2 andl{jp,} N L, }| = O, sayip, = i, andiy, =iy, .
There arel(n) choices for théy, (= i5,)th row and(d(n — 2) + 2d (n — 3) + d(n — 4))

choices for the,;l(z il’,z)th row. Also, there aré(n) choices of each remaining — 3)
rows. Thus,

M(@0,1) =

n(b1, bo) =d(n)" 2 (d(n —2)+2d(n — 3) + d(n — 4)).

There are(”;l) choices for the sefiy, (= ip,), i, = (ij,)} andn(n — 1) choices for
Jb, @ndjp, . Thus,

nin —1)2%mn —2)
—

(5) |{ib1, l}/’l} n {ibza l}/)z}| =1 and|{jb1} N {]b2}| = O, Sayibl = ibz-
There arei(n) choices of they, (= ip,)th row and(d(n — 1) + d(n — 2))? choices of
theiglth andigzth rows. Also, there aré(n) choices of each remaining — 4) rows.
Thus,

M(2,0) =

n(b1,b2) =dm)" 3. (dn — 1) +dn — 2))>.

Also, there are(”[l) ("12) (”13) choices for the sefiy, (= in,), iy, - ij,} andn(n — 1)
choices forjp,, and jp,. Thus,

M(L,0) =n(n —1)%n —2)(n — 3).
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(6) I{iny. if, } N {iby. ip,}l = 0 @nd|{jy} N {js,}| = 0.
There arei(n)? choices of the, th andiy,th rows andd (n — 1) 4+ d(n — 2))? choices
of thei,’Jlth andilgzth rows. Also, there aré(n) choices of each remaininig — 5) rows.
Thus,

n(b1, b2) =dm)" 2. (dn — 1) +dn — 2))>.

Also, there arg(",")(";°) choices for the setfiy,. ij, } and{ip,. ij,} andn(n — 1)
choices forjp,, andjp,. Thus,
nin—12%mn —2)(n —3)(n — 4)
2 .
Combining all the above information together, we obtain

M@, 1) =

Stn—1)(n—2)(n — 3
4

3 nbr b2 =d@)"3dn - 1) +d(n - )2 -
b1,b2eB
Y2 Ay D= 2) l;(” =2
where

diny=din—21) +nd(n —2)+2(n — d(n — 3) + (n — Dd(n — 4).

Applying the fact that
dmy=n!y" (_i!l) ,
i=0
we obtain
dn—1) +dmn —2) = 2
n—1

From this, we can derive
dn)=dn -1 +dn—2)+ n—1dn —2) +d@n —23))
+(n—Ddn—-3)+dn—4)

Rt NP Ut N
=d(n) - D=2 +dn—2) Tt
Thus, we have
3 degh = anyt. "2
beB
and
> nlbrb)=dmn)" n(n* —5n° + 100* — 101 + 6)
b1,b2€B 4(n — 1)
n(n — 1)2
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Hence, by Corollary, we obtain

#ae A, wa) = 0}<d(n)”_1 ) { 2(n2 —3n+3 2d(n — 2)(n — 1)2 } |

nn —L(n — 2)2 + dmn(n — 2)%2(n — 3)
It follows that

Theorem 6. Let L(n) be the number of Latin squares of order n ah@) the number of
derangements dfl, 2, ..., n}. We have

2n® —3n+3) n 2d(n — 2)(n — 1)2
nin—Dn—-22 dn)ynin—2)2n—-3) )"

Low<om-dmfy{

Thus, we obtain

2(n))"
L(n)< % (14 0(1/n?).

This improves the upper bound b{n) given in[2].

Remark. Computing the asymptotic formula @f(n) is a major open problem. The best
partial result is due to Godsil and McK#y] who obtained an asymptotic formula for the
number ofk x n Latin rectangles wheh = o(n®7).

We can further improve Theore® Given ann x n matrix M, for M to be a Latin
square, the first row and the first columnMfare permutations ofl, 2, ..., n}. Without
loss of generality, we can assume that the first rogli&, ..., n) and the first column is
(1,2,...,n)T.1f Mis a Latin square, the second rowNis a derangement ¢1, 2, ..., n}
with (M)21 = 2. Thus, there aré(n)/(n — 1) many choices for it. Similarly, there are
d(n)/(n — 1) many choices for all the rows & after the first one. Thus, we have

d(n)

n—1

=,

Ln)y<n!-(n—121!- (

Applying the Stirling’s formula
n! =n"e™"V2rn(1+ 0(1)),

we have
N"/2rn — 1)
L < PR D 4y o),

Fix the first row and the first column ®&fl. Consider th&n — 1) x (n — 1) submatrixiy
of M obtained by deleting the first row and the first columrvbfApplying an argument
similar to the proof of Theorer, the Turan sieve method implies that

C'(n)"/n

LS —a,7

whereC’ is a fixed constant, which provides a better upper bound.fap than the one
given in Theoren®.
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5. Connected graphs

Forn € N, let I1(n) be the set of all partitions of,2, ..., n. For examplexr =
{1, 2, 3}{4, 5} is an element ofI(5) and we say{l,AZ, 3} and {4, 5} areblocksof n. A
partial order ofl1(n) is defined by refinements with= {1, 2, ..., n} as the minimal el-

ement. For example, ifl(5), we have{l, 2, 3,4,5} < {1, 2, 3}{4,5} < {1, 2}{3}{4, 5}.
Notice that in the latticdI(n), an elements lies right aboif it contains exactly two
non-empty blocks.

Let G, be the set of all graphs afvertices. To eaclt; € G,, we associate a partition
ng € Il(n) that represents the connected components. dfor example, iiG is a graph
of 5 vertices, suppose the vertice213 are connected, so are 4 and 5, but neither 4 nor 5
connect to any of 12, 3. Then we associate ®the partitionzg = {1, 2, 3}{4, 5}. Notice
thatG is connected if and only it = {1, 2, ..., n}. Our goal is to count the number of
graphs inG, that are connected.

Let A = G, andB the set of all elements dfl(n) that contain exactly two non-empty
blocks. Fora = G, € A, b = 7, € B, we will say

a~b if m=<mng,.
Thus,
w(a) =0 ifandonlyif G, isa connected graph
Since there ar(%) possible edges of a graph m¥ertices, we have
|A] = 22
Forb € B, if the two blocks ofr;, containk and(n — k) elements, respectively, we have
degb = 2(’5)2("5"),

where 1<k < (n—1). Since there is no distinction between the two blocKs, @fithout loss
of generality, we can assume thatk <[7], where[5] is the largest intege« 5. Notice
that for each fixed, we have(Z) many choices for a block dfelements. It follows that

[51
degh = 2(2) . M\ pkk—n)
2 deg ;(z)

beB
Applying Propositionl, we have

1
# of connected graphs i@, >2® - {1 — (”>2k(k—n)

k=1 k
For1l<y < [5], we write

n n n
Zk(k—n) — 2k(k—n) 2k(k—n).
(k) 2 {4 T2 i

k=1 k<y k>y

NS

151 (4]
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A choice ofy will be made later. Notice that*¥ " is a decreasing function df for
1<k <[4]. Also, the maximum value df)) appears whehk = [4] and([’ﬂ;]) <2". Hence,
we have

(51 (51

<">2k<k—n> < 2y(y—n)( ’Z ) 1
\k 1/ &

k=y y
g 2)'()’—11) L
— o =0-Dn

By choosingy = 3, we obtain

(51

Z (Z)Zk(kn) <2,

k>3
Also, we have
Z (’Z) okk=m) <y . 2Ln 4 2 A oy oo
k<3

Hence, it follows that

[ZZI: (Z) kk=m) . 427
k=1

asn — oo. We recover a theorem of Gilbd#].

Theorem 7(Gilbert). Forn € N, let G, be the set of all graphs of n vertices. We have
#G € G,, Gisconnectey>|G,| - {1— e(n)},

wheree(n) — 0asn — oo. Thus almost all graphs are connected.

6. Generators of finite groups

We now consider a problem about generators of groups @ bt a finite group. A
subgroupH C G is calledmaximalif H # G and whenever there exists another subgroup
K such thatH € K C G, then eitherK = H or K = G. Let G" denote the set of all
r-tuples(g1, g2, ..., &) such thatg; € G for all 1<i <r. We are interested in counting
the number of-tuples that generate the full gro@ We use the notatiotgs, g2, ..., &)
to denote the group generated by elemegnigo, ..., g .

Let A be the set containing afttuples (g1, g2, ..., &), i.e., A = G". Let B be the
set of all maximal subgroups @&. Fora = (g4.1, 84.2,--->8ar) € A, b = H, € B,
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we will say

a~b it (841,82 - 8u.r) S Hp.
Thus,

w(a) =0 ifandonlyif (gs1,8:2 ---+8ar) =G.

Notice that

|Al = |G|".
SinceH,, is maximal,

a~b ifandonlyif g,; € Hyforalli.
Hence, we have

degb = |Hp|".

By Propositioni, we have

#((g1. 82, ... 8) € G, (g1, 82, ... &) =G} =2|GI" = ) |Hyl".
beB

For example, a folklore conjecture of Neftb4] predicted that ifA,, is the alternating
group om letters, then the probability, that two randomly chosen elementsdyfgenerate
A, tends to 1 ag — oo. The simple sieve in this context was used by Diféhto prove
this conjecture. It turns out that the maximal subgroupg,ptan be easily classified, and
this in turn, leads to a simple proof of Netto’s conjecture.

7. A spectral interpretation of the Turan sieve method

Let M = M, , be the|A| x | B| incidence matrix of the bipartite gragh= (A, B), i.e.,

1 ifa~b,

Map = { 0 otherwise

For{ = ¢?™/1Al define thgA| x | B| matrix 9i as follows:

|A]
1 .
Map=——= ) M.
VIA| ; !
Let Mg be the(|A|_— 1) x |B| matrix obtained by deleting the last row Bt. Also, we

denote byig := E)th the|B| x (JA| — 1) matrix which is the complex conjugate transpose
of 9330.
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Consider theB| x |B| Hermitian matrix)iy9io. Forby, b2 € B, the (b1, b2)th entry of
MM is
|A]—1
(WSWO)}?L}’Z Z (EDt )bl a(iniO)a bo

1 [Al=1 [ |A] |A]
7k i
STl PSSO | Dl BT
a=1 \k=1 j=1
|| a1
=i M X 00
Jj.k=1 a=1
Notice that
[A]-1 .
Z pali—) _ Al =1 if j =k,
-1 if j #k.
a=1
We obtain
1 |Al [A]
(WigMio)py b, = Al (Al=DY  MjpMjp, — Z My b, Mj b,
j=1 ]k 1
J#k
[A] 1 |Al
- Z Mjp M b, — |A| Z Mi.py M j b,
J.k=1
degbs - degbz
=n(b1, b2) — Al

Thus, we can rewrite Theoretnas

Proposition 2. Defineip andi; as before. We have

2
> (w(a) - % > degb) = > (DM}, -

acA b1,b2eB

Letv = (1,1,..., 1) be a|B| x 1 vector. Let(, -) denote the standard dot product. For
any|B| x |B| matrixT, we have

(Tv,v)= Y Ty,
b1,b2eB

Hence, from propositio@, we have

2
> (a)(a) — Zdegb) = (Tv,v),

acA beB

whereT = M5No.
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The expressmﬁT”—” is known asRayleigh—Ritz ratioLet Amax(T) andAmin(T) be the
maximum and the m|n|mum eigenvalues of the symmetric matnigspectively. Atheorem
of Rayleigh—RitZ9, Theorem 4.2.2%tates that for any non-zero vecigrwe have

(Tv,v) B . (Tv,v)
rpfox .0 = max(T) and vr;llon w0

= Zmin(T).

Combining the above information with Propositidgjwe get
Proposition 3. Let7T = MgNio. We have

2
Amin(T) - |B|<Z(w(a) Tl Zdegb) <dmax(T) - |B.

acA beB

We now recall the following facts about the eigenvalues of Hermitian matrices:
(1) The sets of eigenvalues Bi;Nig andMipMNiy are equal. In particular,

/lmax(ffﬁéfmo) = ;»max(imosmg),

which implies a dual form of our sieve inequality.

(2) Supposd'v = Amax(T)v, wherev = (x1, x2, ..., x|B‘)T. Suppose
| = | max xil #0.

Then we have

|B]
D Torby - Xy = Jmax(T)xy.
bo=1
Thus,
|B| |B|
max( T xby| <Y 1 Toy byl 1xbp| <120y | Y 1Ty -
by=1 bo=1
It follows that
|B|
mad TS D 1 Toybyl.
br=1

Thus, we conclude that

|Bl

[imax(T)| < max D Tyl
bp=1
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Remark. Suppose we assign to each elemert B aweight functionX, € C. Let® be a
twistedw-function with respect t&;,. More precisely,

() = Z Xp.

beB
a~b

Then we have

2
degh
> lo@ =Y Xy =F
acA beB | |
1 2
- Z X Xppn (b1, b2) = — th-degb
b1,b2eB | | beB
1 _
= Z {n(bl,bz)—jdegbldegbz} Xp, Xp,
b1,b2€B | |
= Z (m'ESS‘IRO)bl,bZXblxbzv
b1,b2€B

whereip andi; are defined as before. Lét= (X1, Xo, ..., X‘B|)T. Notice that

2

acA

2
. degb -
CU(“)_ZXb'lTﬂ = (T, D),
beB

whereT = ;M. As in the proof of PropositioB, we have

2

acA

2

gflmax(T) : Z |Xb|2-
beB

- degb
w(a)—ZXb-lT?'

beB

This upper bound is indeed the best one that we can get since thereXgsstich that
the equality holds.

We believe that the combinatorial Turan sieve will have more applications in the future.
The purpose of this paper is mainly to introduce it as a viable tool to deal with questions
of this kind. For instance, is it possible to show that the probab#tiythat two randomly
selected elements of a simple grdBgeneratds tends to 1 agG| — oo? Apparently (see
[4]), this has been resolved in the affirmative using the full classification of finite simple
groups. In another direction, can the Turan sieve be used to count the number of Latin
rectangles in ranges that have not been treated previously? We hope that this will be the
case and relegate to future research the scope of the Turan sieve.
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