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Abstract

We develop a weighted Turán sieve method and applied it to study the number of distinct
prime divisors of f (p) where p is a prime and f (x) a polynomial with integer coefficients.
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1. Introduction

For n ∈ N, let �(n) denote the number of distinct prime divisors of n. Hardy and
Ramanujan [4] proved in 1917 that the normal order of �(n) is log log n. In other
words, given any � > 0, as x → ∞, we have

#
{
n�x

∣∣ n satisfies |�(n) − log log n| > � log log n
}

= o(x).
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The method they used was rather complicated and involving difficult sieve methods.
In 1934, Turán [15] gave a greatly simplified proof of the Hardy–Ramanujan result by
considering the second moment of �(n). He proved that

∑
n�x

(
�(n) − log log x

)2 � x log log x;

from which the normal order of �(n) is easily deduced. Turán’s original derivation
of the Hardy–Ramanujan Theorem was essentially probabilistic and concealed in it an
elementary sieve method. In [7], the authors introduced the Turán sieve method and
applied it to probabilistic Galois theory problems. In [8], the authors extended this
sieve to a combinatorial setting. More precisely, if X is a finite bipartite graph with
partite sets A and B, then

∑
a∈A

(
deg a − 1

|A|
∑
b∈B

deg b

)2

=
∑

b1,b2∈B

deg(b1, b2) − 1

|A|

(∑
b∈B

deg b

)2

,

where deg x is the degree of the vertex x and deg(b1, b2) is the number of vertices of
A incident with both b1 and b2. This equality was used as a starting point to investigate
a variety of combinatorial questions in [8]. It is clear that a ‘weighted’ version of the
above can be derived in a straightforward way. Indeed, if � : A → C is any function,
one may set

�(A) =
∑
a∈A

�(a)

and show that

∑
a∈A

�(a)

(
deg a − 1

�(A)

∑
b∈B

�(b)

)2

=
∑

b1,b2∈B

�(b1, b2) − 1

�(A)

(∑
b∈B

�(b)

)2

,

where

�(b) =
∑

(a,b)∈X

�(a)

and

�(b1, b2) =
∑

(a,b1)∈X
(a,b2)∈X

�(a).
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The notation (a, b) ∈ X means that a and b are adjacent. We may also consider the
special situation �(a)�0 and �(a)�1 for a in a subset A′ of A. The sum

∑
a∈A′

(
deg a − 1

|A|
∑
b∈B

deg b

)2

is dominated by

∑
a∈A

�(a)

(
deg a − 1

|A|
∑
b∈B

deg b

)2

.

In this way, one can develop an ‘enveloping sieve’. Even in the context of the ‘classical’
Turán sieve as discussed in [7], this is a new perspective. Thus, rather than developing
this idea in full generality as indicated above, we will develop it in the classical setting
using a specific example which we now describe.

Let p be a prime number. In 1935, Erdös [1] proved that the normal order of �(p−1)

is log log p. In 1951, Haselgrove [5] established that the normal order of �(p + a) is
also log log p for any a ∈ Z, a �= 0. Let f (x) ∈ Z[x] be an irreducible polynomial and
f (x) �= cx for some constant c. In 1953, Prachar [12] proved that

∑
p�x

�(f (p)) � �(x) log log x.

His result was improved in 1956 by Halberstam [3] where he showed that the normal
order of �(f (p)) is log log p. More precisely, for any � > 0, as x → ∞, Halberstam
proved that

#
{
p�x

∣∣p satisfies |�(f (p)) − log log p| > � log log p
}

= o
(
�(x)

)
,

where �(x) is the number of primes �x. This provided a generalization of Haselgrove’s
theorem.

The proofs of the above ‘prime analogues’ of the Hardy–Ramanujan theorem were
rather complicated as they followed the original approach of Hardy and Ramanujan
stated at the outset of this paper. Moreover, they involved deep results on primes in
arithmetic progressions. In this paper, by combining the second moment method of
Turán and a technique of Selberg in [13], we develop a weighted Turán sieve method.
The second moment approach allows us to eliminate complicated sieve methods while
Selberg’s technique helps us to transform the question from primes to integers. More
precisely, we show that to consider the normal order of �(f (p)), it suffices to consider
the second moment of �(f (n)) for a natural number n.
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We prove the following theorem.

Theorem 1. Let f (x) ∈ Z[x] be a polynomial with integer coefficients and f (x) �= cxe

for some constants c ∈ Z and e ∈ N. Write

f (x) = f1(x)e1f2(x)e2 · · · fr(x)er ,

where fi(x) ∈ Z[x] are distinct irreducible polynomials. We have

∑
p�x

(
�(f (p)) − r log log x

)2 � �(x) log log x.

From Theorem 1, we can derive the following corollary, which is slightly general
and stronger than Halberstam’s result [3, Theorem 2].

Corollary 1. Define f (x) as in Theorem 1. For any � > 0, we have

#
{
p�x

∣∣p satisfies
∣∣�(f (p)) − r log log p

∣∣ >
(

log log p
)1/2+�

}
� �(x)

(log log x)2� .

From this, we conclude that the normal order of �(f (p)) is r log log p.

2. The lemmas

Let f (x) ∈ Z[x] and f (x) �= cxe for some c ∈ Z, e ∈ N. Write

f (x) = f1(x)e1f2(x)e2 · · · fr(x)er ,

where fi(x)’s are distinct irreducible polynomials in Z[x]. Since �(f (p)) is the number
of distinct prime divisors of f (p), without loss of generality, we can assume e1 = e2 =
· · · = er = 1.

Let d(f ) and c(f ) denote the discriminant and the leading coefficient of f (x),
respectively. For a prime p, define

�̃(f (p)) = #
{
q is a prime

∣∣ q|f (p) and q � c(f )d(f )
}
.

We have

Lemma 1. Let f (x) = f1(x)f2(x) · · · fr(x) ∈ Z[x], where fi(x)’s are distinct irreduc-
ible polynomials. We have

�̃(f (p)) = �̃(f1(p)) + �̃(f2(p)) + · · · + �̃(fr(p)).
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Proof. It suffices to prove that all prime divisors of f1(p), f2(p), . . . , fr (p) are distinct
except the ones dividing c(f )d(f ). Let q be a prime which satisfies

q|fi(p) and q|fj (p), for i �= j.

Since q|fi(p) and q|fj (p), p (mod q) is a double root of the polynomial f̄ (x), the
reduction of f (x) (mod q). In other words, p (mod q) is a common root of f̄ and f̄ ′,
the derivative of f̄ . It follows that the resultant R(f̄ , f̄ ′) vanishes modulo q (see [6,
V, Section 10] for more details). Since

R(f, f ′) = c(f )2d−1d(f ),

where d is the degree of f (x), thus

R(f̄ , f̄ ′) = 0 (mod q) implies that q|c(f )d(f ).

Hence, the prime divisors of fi(p) and fj (p) are distinct unless they divide c(f )d(f ).
From the definition of �̃, we have

�̃(f (p)) = �̃(f1(p)) + �̃(f2(p)) + · · · + �̃(fr(p)).

This completes the proof of Lemma 1. �

The following Lemma tells us that Theorem 1 can be reduced to the case of irre-
ducible polynomials.

Lemma 2. Let f (x) ∈ Z[x] and f (x) �= cxe. Suppose we have

∑
p�x

(
�(g(p)) − log log x

)2 � �(x) log log x,

whenever g(x) ∈ Z[x] is an irreducible polynomial and g(x) is not a multiple of x.
Then,

∑
p�x

(
�(f (p)) − r log log x

)2 � �(x) log log x,

where r is the number of distinct irreducible polynomials dividing f (x).

Proof. Define �̃ as before. Since there are only finitely many primes dividing c(f )d(f ),
we have

�(f (p)) = �̃(f (p)) + O(1).
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Thus,

∑
p�x

(
�(f (p)) − r log log x

)2 =
∑
p�x

(
�̃(f (p)) + O(1) − r log log x

)2

�
∑
p�x

(
�̃(f (p)) − r log log x

)2 + O
(
�(x)

)
.

Similarly, for an irreducible polynomial g(x), we have

∑
p�x

(
�̃(g(p)) − log log x

)2 =
∑
p�x

(
�(g(p)) − log log x

)2 + O
(
�(x)

)
.

Thus, from the assumption of the lemma, we have

∑
p�x

(
�̃(g(p)) − log log x

)2 � �(x) log log x. (1)

Also, to prove this lemma, it suffices to prove

∑
p�x

(
�̃(f (p)) − r log log x

)2 � �(x) log log x.

We have seen in Lemma 1 that

�̃(f (p)) = �̃(f1(p)) + �̃(f2(p)) + · · · + �̃(fr(p)).

Since each fi(x) is irreducible, from Eq. (1), we have

∑
p�x

(
�̃(f (p)) − r log log x

)2

=
∑
p�x

((
�̃(f1(p)) − log log x

)+ · · · + (
�̃(fr(p)) − log log x

))2

�
∑
p�x

(
�̃(f1(p)) − log log x

)2 + · · · +
∑
p�x

(
�̃(fr(p)) − log log x

)2
� �(x) log log x.

This completes the proof of Lemma 2. �
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From Lemma 2, we see that to prove Theorem 1, it suffices to prove

∑
p�x

(
�(f (p)) − log log x

)2 � �(x) log log x,

where f (x) ∈ Z[x] is an irreducible polynomial and f (x) �= cx. In the following
discussion, we will assume f (x) is irreducible.

Consider the constant term f (0) of f (x). Since f (x) �= cx and f (x) is irreducible,
we have f (0) �= 0. Define

�0(f (p)) = #
{
q is a prime

∣∣ q|f (p) and q|f (0)
}
.

Also, for A ∈ N and � ∈ R with 0 < � < 1, define

�1(f (p)) = #
{
q is a prime

∣∣ q|f (p), q �(log x)A, and q � f (0)
}
,

�2(f (p)) = #
{
q is a prime

∣∣ q|f (p), (log x)A < q �x�, and q � f (0)
}

and

�3(f (p)) = #
{
q is a prime

∣∣ q|f (p), q > x�, and q � f (0)
}
.

Thus,

�(f (p)) = �0(f (p)) + �1(f (p)) + �2(f (p)) + �3(f (p)).

Choices of A and � will be made later.

Lemma 3. Let f (x) ∈ Z[x] be irreducible and f (x) �= cx. Suppose we have

∑
p�x

(
�2(f (p)) − log log x

)2 � �(x) log log x.

Then,

∑
p�x

(
�(f (p)) − log log x

)2 � �(x) log log x.

Proof. Notice that f (0) have at most log2 f (0) many divisors. Thus, we have

�0(f (p)) = O(1).
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Also, for p�x, f (p) � xd where d is the degree of f (x). For any integer n�xd ,
there are at most d/� many primes q satisfying q > x� and q|n. Thus, we have

�3(f (p)) = O(1).

It follows that

∑
p�x

(
�(f (p)) − log log x

)2

=
∑
p�x

(
�1(f (p)) + �2(f (p)) + O(1) − log log x

)2

�
∑
p�x

�2
1(f (p)) +

∑
p�x

(
�2(f (p)) − log log x

)2 + O
(
�(x)

)
.

Write

∑
p�x

�2
1(f (p)) =

∑
p�x

∑
q,l � (log x)A

q|f (p),l|f (p)

q � f (0),l � f (0)

1

�
∑

q,l � (log x)A

q �=l

∑
p�x

ql|f (p)

1 +
∑

q � (log x)A

∑
p�x

q|f (p)

1.

Let �f (q) be the number of solutions of

f (a) ≡ 0 (mod q), where 0�a < q.

By Chinese remainder theorem, we have

#
{
p�x

∣∣p satisfies ql|f (p)
}

=
�f (q)�f (l)∑

i=1

∑
p�x

p≡ai (mod ql)

1,

where ai’s are solutions of f (a) ≡ 0 (mod ql) for 0�a < ql. Since the degree of f (x)

is d, thus �f (q)�d . Applying results of Brun–Titchmarsh and Montgomery–Vaughan
[10], [14, pp. 73–76], for primes q and l which are �(log x)A, we have

#
{
p�x

∣∣p satisfies ql|f (p)
} � 2�(x)�f (q)�f (l)

ql
� �(x)

ql
.
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Similarly,

#
{
p�x

∣∣p satisfies q|f (p)
} � 2�(x)�f (q)

q
� �(x)

q
.

Using the classical Mertens theorem [9], we get

∑
p�x

�2
1(f (p)) �

∑
q,l � (log x)A

�(x)

ql
+

∑
q � (log x)A

�(x)

q

� �(x)(log log log x)2.

Combining all the above estimates, by the assumption of the lemma, we have

∑
p�x

(�(f (p)) − log log x)2

�
∑
p�x

(�2(f (p)) − log log x)2 + O
(
�(x)(log log log x)2)

� �(x) log log x.

This completes the proof of Lemma 3. �

We recall that �f (q) is the number of solutions of

f (a) ≡ 0 (mod q) where 0�a < q.

It is well-known that (see, for example [2, Lemma 7]).

Lemma 4. For an irreducible polynomial f (x) ∈ Z[x], we have

∑
q �x

�f (q)

q
= log log x + O(1).

Lemma 5. Define

E(x) =
∑

(log x)A<q �x�

q � f (0)

�f (q)

q
.
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Suppose we have

∑
p�x

(
�2(f (p)) − E(x)

)2 � �(x) log log x.

Then,

∑
p�x

(
�2(f (p)) − log log x

)2 � �(x) log log x.

Proof. From Lemma 4, we have

log log x = E(x) +
∑

q � (log x)A

q � f (0)

�f (q)

q
+

∑
x�<q �x

q � f (0)

�f (q)

q
+

∑
q|f (0)

�f (q)

q
+ O(1).

Thus, ∑
p�x

(
�2(f (p)) − log log x

)2

�
∑
p�x

(
�2(f (p)) − E(x)

)2 +
∑
p�x

⎛
⎝ ∑

q � (log x)A

�f (q)

q

⎞
⎠

2

+
∑
p�x

⎛
⎝ ∑

x�<q �x

�f (q)

q

⎞
⎠

2

+ O
(
�(x)

)
.

Applying Lemma 4, we have

∑
q � (log x)A

�f (q)

q
� log log log x and

∑
x�<q �x

�f (q)

q
= O(1).

Thus,

∑
p�x

(
�2(f (p)) − log log x

)2 �
∑
p�x

(
�2(f (p)) − E(x)

)2 + O
(
�(x)(log log log x)2).

Applying the assumption of the lemma, we obtain

∑
p�x

(
�2(f (p)) − log log x

)2 � �(x) log log x.

This completes the proof of Lemma 5. �
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Lemma 6. Let z = x� with 0 < � < 1. Suppose we have

∑
z<p�x

(
�2(f (p)) − E(x)

)2 � �(x) log log x.

Then,

∑
p�x

(
�2(f (p)) − E(x)

)2 � �(x) log log x.

Proof. Notice that there are at most O(log z) prime divisors of f (p) for p�z. Thus,

∑
p�x

(
�2(f (p)) − E(x)

)2 =
∑

z<p�x

(
�2(f (p)) − E(x)

)2 +
∑
p�z

(
�2(f (p)) − E(x)

)2

=
∑

z<p�x

(
�2(f (p)) − E(x)

)2 + O
(
�(z)(log z)2).

Applying the assumption of the lemma, we obtain

∑
p�x

(
�2(f (p)) − E(x)

)2 � �(x) log log x. �

3. Proof of Theorem 1

Let f (x) ∈ Z[x] be an irreducible polynomial and f (x) �= cx. Define

�2(f (p)) = #
{
q is a prime

∣∣ q|f (p), (log x)A < q �x�, and q � f (0)
}

and

E(x) =
∑

(log x)A<q �x�

q � f (0)

�f (q)

q
.

From Lemmas 2, 3, 5 and 6, we see that to prove Theorem 1, it suffices to prove

∑
z<p�x

(
�2(f (p)) − E(x)

)2 � �(x) log log x,

where z = x� with 0 < � < 1. We will choose the constants A, �, and � later.
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As we stated in the Introduction, we will estimate the quantity

∑
z<p�x

(
�2(f (p)) − E(x)

)2

by first transforming it into

∑
n�x

(
�2(f (n)) − E(x)

)2
,

where n is a natural number. Hence, we can omit the use of deeper theorems concerning
primes in arithmetic progressions. Define

P(z) =
∏
l �z

l is a prime

l.

For d|P(z), let �d be real numbers which satisfy

�1 = 1 and �d = 0 if d > z.

Thus, we have

∑
z<p�x

(
�2(f (p)) − E(x)

)2 �
∑
n�x

(
�2(f (n)) − E(x)

)2 ·
⎧⎨
⎩

∑
d|(n,P (z))

�d

⎫⎬
⎭

2

=
∑

d1,d2 �z
d1,d2|P(z)

�d1�d2 ·

⎧⎪⎪⎨
⎪⎪⎩

∑
n�x

[d1,d2]|n

(
�2(f (n)) − E(x)

)2
⎫⎪⎪⎬
⎪⎪⎭ ,

where [d1, d2] is the least common multiple of d1 and d2. Let
∑′ denote the sum over

all d1, d2 �z with d1, d2 dividing P(z). We have

∑
z<p�x

(
�2(f (p)) − E(x)

)2 �S1 + S2 + S3,

where

S1 =
∑′

�d1�d2

∑
n�x

[d1,d2]|n

�2
2(f (n)),



Y.-R. Liu, M.R. Murty / Journal of Number Theory 116 (2006) 1–20 13

S2 = −2E(x)
∑′

�d1�d2

∑
n�x

[d1,d2]|n

�2(f (n))

and

S3 = (
E(x)

)2 ∑′
�d1�d2

∑
n�x

[d1,d2]|n

1.

Consider S3 first. We have

S3 = (
E(x)

)2 ∑′
�d1�d2

[
x

[d1, d2]
]

= x
(
E(x)

)2 ∑′ �d1�d2

[d1, d2] + O
((

E(x)
)2 ∑′ |�d1�d2 |

)
. (2)

Consider S2 now. For a prime q, we have

∑
n�x

[d1,d2]|n

�2(f (n)) =
∑
n�x

[d1,d2]|n

∑
(log x)A<q �x�

q|f (n),q � f (0)

1 =
∑

(log x)A<q �x�

q � f (0)

∑
n�x[d1,d2]|n

q|f (n)

1.

For q � f (0), let a1, a2, . . . , a�f (q) be solutions of

f (a) ≡ 0 (mod q) where 0�a < q.

For q � [d1, d2], if [d1, d2]|n and q|f (n), this implies that

n ≡ â1, â2, . . . , â�f (q) (mod q[d1, d2]),

where âi ≡ ai (mod q), âi ≡ 0 (mod [d1, d2]), and 0� âi < q[d1, d2].
For q|[d1, d2], if n is an integer with [d1, d2]|n and q|f (n), then q|n and q|f (n).

It follows that q|f (0), which is impossible. Hence, such an n does not exist. To
summarize, for q � f (0), we have

#
{
n�x

∣∣ n satisfies [d1, d2]|n and q |f (n)
}

=
⎧⎨
⎩

0 if q|[d1, d2],
x�f (q)

q[d1, d2] + O
(
�f (q)

)
otherwise.
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Thus, we have

∑
n�x

[d1,d2]|n

�2(f (n)) =
∑

(log x)A<q �x�

q � [d1,d2],q � f (0)

{
x�f (q)

q[d1, d2] + O
(
�f (q)

)}

=
∑

(log x)A<q �x�

q � [d1,d2],q � f (0)

x�f (q)

q[d1, d2] + O
(
�(x�)

)
.

The last equality follows from the fact that �f (q)�d, the degree of f (x). Hence, we
have

S2 = −2E(x)
∑′

�d1 �d2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
(log x)A<q �x�

q � [d1,d2],q � f (0)

x�f (q)

q[d1, d2] + O
(
�(x�)

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= −2xE(x)
∑′ �d1�d2

[d1, d2]
∑

(log x)A<q �x�

q � [d1,d2],q � f (0)

�f (q)

q
+ O

(
�
(
x�)E(x)

∑′ |�d1�d2 |
)
.

(3)

Consider S1. For primes q and l, we have

∑
n�x

[d1,d2]|n

�2
2(f (n)) =

∑
n�x

[d1,d2]|n

⎛
⎜⎜⎜⎝

∑
(log x)A<q �x�

q|f (n),q � f (0)

1

⎞
⎟⎟⎟⎠

2

=
∑

(log x)A<q,l �x�

q �=l,ql � f (0)

∑
n�x[d1,d2]|n

ql|f (n)

1 +
∑

(log x)A<q �x�

q � f (0)

∑
n�x[d1,d2]|n
q|f (n)

1.

Notice that for ql � f (0),

#
{
n�x

∣∣ n satisfies [d1, d2]|n and ql |f (n)
}

=
⎧⎨
⎩

0 if q|[d1, d2] or l|[d1, d2],
x�f (q)�f (l)

ql[d1, d2] + O
(
�f (q)�f (l)

)
otherwise.
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Consider

∑
(log x)A<q,l �x�

q �=l,ql � f (0)

∑
n�x[d1,d2]|n

ql|f (n)

1 =
∑

(log x)A<q,l �x�

q �=l

ql � [d1,d2], ql � f (0)

{
x�f (q)�f (l)

ql[d1, d2] + O
(
�f (q)�f (l)

)}

=
∑

(log x)A<q,l �x�

q �=l

ql � [d1,d2], ql � f (0)

x�f (q)�f (l)

ql[d1, d2] + O
(
(�(x�))2).

Notice that

∑
(log x)A<q,l �x�

q �=l

ql � [d1,d2], ql � f (0)

x�f (q)�q(l)

ql[d1, d2]

=
∑

(log x)A<q,l �x�

q � [d1,d2], l � [d1,d2]
q � f (0), l � f (0)

x�f (q)�f (l)

ql[d1, d2] −
∑

(log x)A<q �x�

q � [d1,d2],q � f (0)

x(�f (q))2

q2[d1, d2]

= x

[d1, d2]

⎛
⎜⎜⎜⎝

∑
(log x)A<q �x�

q � [d1,d2],q � f (0)

�f (q)

q

⎞
⎟⎟⎟⎠

2

+ O

(
x

(log x)A[d1, d2]
)

.

Also, we have seen in the calculation of S2 that

∑
(log x)A<q �x�

q � f (0)

∑
n�x[d1,d2]|n

q|f (n)

1 =
∑

(log x)A<q �x�

q � [d1,d2],q � f (0)

x�f (q)

q[d1, d2] + O
(
�(x�)

)
.

Thus,

S1 = x
∑′ �d1�d2

[d1, d2]

⎛
⎜⎜⎜⎝

∑
(log x)A<q �x�

q � [d1,d2],q � f (0)

�f (q)

q

⎞
⎟⎟⎟⎠

2

+ x
∑′ �d1�d2

[d1, d2]
∑

(log x)A<q �x�,

q � [d1,d2],q � f (0)

�f (q)

q

+O
(
(�(x�))2

∑′ |�d1�d2 |
)

+ O

(
x

(log x)A

∑′ |�d1�d2 |
[d1, d2]

)
. (4)
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Combining Eqs. (2), (3), and (4), we obtain

∑
z<p�x

(�2(f (p)) − E(x))2

�T1 + T2 + O
((

�(x�)
)2 ∑′ |�d1�d2 |

)
+ O

(
x

(log x)A

∑′ |�d1�d2 |
[d1, d2]

)
, (5)

where

T1 = x
∑′ �d1�d2

[d1, d2]

⎛
⎜⎜⎜⎝

∑
(log x)A<q �x�

q � [d1,d2],q � f (0)

�f (q)

q
− E(x)

⎞
⎟⎟⎟⎠

2

= x
∑′ �d1�d2

[d1, d2]

⎛
⎜⎜⎜⎝

∑
(log x)A<q �x�

q|[d1,d2],q � f (0)

�f (q)

q

⎞
⎟⎟⎟⎠

2

(6)

and

T2 = x
∑′ �d1�d2

[d1, d2]
∑

(log x)A<q �x�,

q � [d1,d2],q � f (0)

�f (q)

q
.

We write

T2 = x
∑′ �d1�d2

[d1, d2]

⎛
⎜⎜⎜⎝E(x) −

∑
(log x)A<q �x�,

q|[d1,d2],q � f (0)

�f (q)

q

⎞
⎟⎟⎟⎠

= xE(x)
∑′ �d1�d2

[d1, d2] − x
∑′ �d1�d2

[d1, d2]
∑

(log x)A<q �x�,

q|[d1,d2],q � f (0)

�f (q)

q
. (7)

The term

xE(x)
∑′ �d1�d2

[d1, d2]
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will be the dominant one. Our goal is to minimize this quantity, subject to the condition
that �1 = 1. The analysis of this expression is identical to a similar expression that
occurs in the Selberg upper bound sieve. As the details of this analysis are well-known
(see for example, [11, pp. 140–143]), we will be very brief. Using a technique of
Selberg’s [13], we can choose �d so that

∑′ �d1�d2

[d1, d2] � 1

log x
(8)

and

|�d |�1. (9)

Thus, from Eqs. (6)–(9), we have

T1 � x
∑′ 1

[d1, d2]

⎛
⎜⎜⎜⎝

∑
(log x)A<q �x�

q|[d1,d2],q � f (0)

�f (q)

q

⎞
⎟⎟⎟⎠

2

and

T2 � x log log x

log x
+ x

∑′ 1

[d1, d2]
∑

(log x)A<q �x�

q|[d1,d2],q � f (0)

�f (q)

q
.

Notice that there are at most log2[d1, d2] many prime factors of [d1, d2]. Also, for each
q|[d1, d2], �f (q)�d , the degree of f (x). Hence,

∑
(log x)A<q �x�,

q|[d1,d2],q � f (0)

�f (q)

q
� d log2[d1, d2]

(log x)A
� log z

(log x)A
.

Thus,

x
∑′ 1

[d1, d2]
∑

(log x)A<q �x�,

q|[d1,d2],q � f (0)

�f (q)

q
� x log z

(log x)A
·
∑′ 1

[d1, d2]
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and

x
∑′ 1

[d1, d2]

⎛
⎜⎜⎜⎝

∑
(log x)A<q �x�

q|[d1,d2]

�f (q)

q

⎞
⎟⎟⎟⎠

2

� x(log z)2

(log x)2A
·
∑′ 1

[d1, d2] .

The last sum is easily estimated as follows. Noting that

1

[d1, d2] = (d1, d2)

d1d2
and (d1, d2) =

∑
e|(d1,d2)

�(e),

where (d1, d2) is the greatest common divisor of d1 and d2 and � the Euler function,
we can write

1

[d1, d2] = 1

d1d2

∑
e|d1,d2

�(e).

Inserting this fact into the sum in question, interchanging summations, it is clear that

∑′ 1

[d1, d2] �(log z)3

by standard estimates of elementary number theory. Thus,

T1 � x(log z)5

(log x)2A

and

T2 � �(x) log log x + x(log z)4

(log x)A
.

Combining all the estimates together, from Eq. (5), we obtain

∑
z<p�x

(
�2(f (p)) − E(x)

)2

� �(x) log log x + x(log z)5

(log x)A
+ O

((
�(x�)z

)2)
.
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By choosing A = 7, � = � = 1/6 (note: z = x�), we obtain

∑
z<p�x

(
�2(f (p)) − E(x)

)2 � �(x) log log x.

From Lemmas 3, 5, and 6, it follows that for any irreducible polynomial f (x) ∈ Z[x],
f (x) �= cx, we have

∑
p�x

(�(f (p)) − log log x)2 � �(x) log log x.

Now, let f (x) ∈ Z[x] be a general polynomial which is divisible by r distinct irreduc-
ible polynomials and f (x) �= cxe. From Lemma 2, we conclude that

∑
p�x

(�(f (p)) − r log log x)2 � �(x) log log x.

This completes the proof of Theorem 1.
It will be interesting to see if the methods of this paper can be used to show the

analogue of the Erdös–Kac theorem holds for �(f (p)). More precisely, can one prove
that for f (x) defined as in Theorem 1,

lim
x→∞

1

�(x)
#

{
p�x,

�(f (p)) − r log log p√
r log log p

�	

}
= 1√

2�

∫ 	

−∞
e−t2/2 dt.

The case f (x) is irreducible (r = 1) was first proved by Halberstam [3] using more
difficult methods.

We hope that the techniques here will find wider applications, especially, in the con-
text where strong theorems, such as the Bombieri–Vinogradov theorem are not available.
One may also consider analogues of Theorem 1 for polynomials of several variables.
This investigation we relegate to future work.
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