
CYCLICITY OF FINITE DRINFELD MODULES

WENTANG KUO AND YU-RU LIU

Abstract. Let A = Fq[T ] be the polynomial ring over the finite field Fq, k = Fq(T ) the
rational function field, and K a finite extension of k. For a prime P of K, we denote
by OP the valuation ring of P, byMP the maximal ideal of OP, and by FP the residue
field OP/MP. Let φ be a Drinfeld A-module over K of rank r. If φ has good reduction
at P, let φ ⊗ FP denote the reduction of φ at P, and let φ(FP) denote the A-module
(φ⊗ FP)(FP). If φ is of rank 2 with EndK̄(φ) = A, we obtain an asymptotic formula for
the number of primes P of K of degree x for which φ(FP) is cyclic. This result can be
viewed as a Drinfeld module analogue of Serre’s cyclicity result on elliptic curves. We
also show that when φ is of rank r ≥ 3, a similar result follows.

1. Introduction

Let A = Fq[T ] be the polynomial ring over the finite field Fq and k = Fq(T ) the rational
function field. An A-field L is a field L equipped with a morphism ι : A→ L. The prime
ideal w which is the kernel of ι is called the A-characteristic of L. We say that L has
generic A-characteristic if w = (0); otherwise we say L has finite A-characteristic.

Let L be an A-field, and let τ be the Frobenius endomorphism relative to Fq, i.e.,
τ(X) = Xq. In the ring EndL(Ga) of all L-endomorphisms of the additive group scheme
Ga|L, by identifying the element b ∈ L with the endomorphism defined by multiplication
by b, τ generates a subalgebra L{τ}. It is a non-commutative polynomial algebra in τ
subject to the rule τb = bqτ for all b ∈ L. We have two homomorphisms, ε : L → L{τ}
defined by ε(b) = b and D : L{τ} → L defined by D(

∑n
i=0 biτ

i) = b0.

A Drinfeld A-module φ over L is an algebra homomorphism

φ : A −→ L{τ} ⊆ EndL(Ga), a 7→ φa

such that ι = D ◦ φ and φ 6= ε ◦ ι. Let degτ φa denote the degree of φa in τ and deg a the
degree of a in T . There exists a unique positive integer r such that degτ φa = r · deg a for
all a ∈ A with a 6= 0 (see [4, Proposition 2.1]). The integer r is called the rank of φ. Let
B be an L-algebra. Then the composition

A→ EndL(Ga)→ End(Ga(B))

gives B another A-module structure, which we denote by φ(B).
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We now consider an A-field K, which is a finite extension of k of degree d. Let FK
be the constant field of K, which is of degree dK over Fq. Given a prime P of K,
let OP be the valuation ring of P and MP the maximal ideal of OP. Let FP denote
the residue field OP/MP. Throughout this paper, we use “primes” to denote monic
irreducible polynomials of A and “primes” to denote discrete valuations of K.

Let φ be a Drinfeld A-module over K of rank r. For all but finitely many primes P
of K, φ has good reduction at P (see [10, Definition 4.10.1, p88]). Let Pφ be the set of
primes of K at which φ has good reduction. For a prime P ∈ Pφ, we can consider φ⊗FP,
the reduction of φ at P. Then we write φ(FP) to denote the A-module (φ⊗ FP)(FP).

Since φ(FP) is a finite A-module and A is a principal ideal domain, we have

(1) φ(FP) ' A/w1A×A/w2A× · · · ×A/wsA,

where wi ∈ A \ Fq (1 ≤ i ≤ s) satisfy wi|wi−1 (2 ≤ i ≤ s). We call each A/wiA a cyclic
component of φ(FP). The Euler-Poincaré characteristic χφ(P) of φ(FP) is the ideal of A
equal to

χφ(P) = w1w2 · · ·wsA
in this case. In the following, we will abuse notation by using χφ(P) to denote both the
ideal χφ(P) and its monic generator in A.

Given the finite A-module φ(FP), one can consider the number of its cyclic components.
For m ∈ A with m 6= 0, let φP[m] denote the m-division points of φ⊗ FP in the algebraic
closure F̄P of FP. Let p = P ∩A and let p ∈ A be the prime with pA = p. If φ is of rank
r and (m, p) = 1, we have [4, Proposition 2.2]

φP[m] ' (A/mA)r.

Since φ(FP) is finite, there exists a polynomial m ∈ A with m 6= 0 such that φ(FP) ⊆
φP[m]. It follows that s ≤ r in (1).

Consider the special case when K = k and φ = C, the Carlitz A-module over k (i.e.,
φT = Tτ0 + τ and r = 1). For a prime l ∈ A and l = lA, we see from (1) that C(Fl) is
cyclic. One can indeed show that [9, Theorem 5.1]

C(Fl) ' A/(l − 1)A.

Although the structure of C(Fl) is well-understood, for a general φ and a prime P ∈ Pφ,
it is difficult to write down explicitly the cyclic components of φ(FP). In the case that φ
is of rank r = 2, φ(FP) contains at most two cyclic components. One may ask how often
φ(FP) is a cyclic module. Define

f(x, φ) = fK(x, φ) = #
{
P ∈ Pφ

∣∣ degK P = x and φ(FP) is cyclic
}
,

where degK P = [OP/P : FK ]. Note that when there is no ambiguity, we will drop the

superscript K for fK(x, φ) as above. In this paper, we will provide an asymptotic formula
for the quantity f(x, φ).

Our estimate for f(x, φ) can be generalized to any φ of rank r ≥ 2. In general, if φ is of
rank r ≥ 2 and φ(FP) can be decomposed as in (1) with s < r, we say φ(FP) has at most
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(r − 1) cyclic components. For x ∈ N, we consider the quantity

f(x, φ) = #
{
P ∈ Pφ

∣∣ degK P = x and φ(FP) has at most (r − 1) cyclic components
}
.

Let EndK̄(φ) denote the endomorphism ring of φ over the algebraic closure K̄ of K. Let
φ[m] be the m-division points of φ in the algebraic closure K̄ of K. By adjoining to K
the m-division points of φ, we obtain K(φ[m]), the m-division field of φ. We write rm to
denote the degree of the constant field of K(φ[m]) over FK , i.e., rm = [K(φ[m])∩F̄K : FK ],
where F̄K is the algebraic closure of FK . Let πK(x) denote the number of primes of K of
degree x. We will prove that

Theorem 1. Let φ be a Drinfeld A-module over K of rank r ≥ 2 with EndK̄(φ) = A. For
x ∈ N, we have

f(x, φ) = cφ(x)πK(x) +Oφ
(
(qdKx)∆r

)
,

where

(2) ∆r =

{
r2+4r−2
2r2+2r

if r = 2, 3,
r+2
2r if r ≥ 4,

and

(3) cφ(x) = cKφ (x) =
∑
m∈A

m is monic

µq(m) rm(x)

[K(φ[m]) : K]

with µq(·) denoting the Möbius function in A and

rm(x) =

{
rm if rm|x,
0 otherwise.

Note that when there is no ambiguity, we will drop the superscript K for cKφ as above.
As a direct consequence of Theorem 1, we have

Corollary 2. Let φ be a Drinfeld A-module over K of rank r ≥ 2 with EndK̄(φ) = A.
Suppose that all division fields of φ are geometric. For x ∈ N, we have

f(x, φ) = cφ πK(x) +Oφ
(
(qdKx)∆r

)
,

where ∆r is defined as in (2) and

cφ =
∑
m∈A

m is monic

µq(m)

[K(φ[m]) : K]
.

Let E be an elliptic curve of conductor N defined over Q. For a rational prime p with
p - N , let E(Fp) denote the set of rational points on E defined over the finite field Fp.
Define

g(x,E) = #
{
p
∣∣ p ≤ x, p - N, and E(Fp) is cyclic

}
.

Let lix =
∫ x

2
dt

log t and

(4) cE =
∑
n∈N

µ(n)

[Q(E[n]) : Q)]
,
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where µ(·) denotes the Möbius function in Z and Q(E[n]) denotes the n-division field of
E. In [17] (see also [12, Theorem 2]), Serre proved that if E is an elliptic curve without
complex multiplication, assuming the generalized Riemann hypothesis (GRH), we have

g(x,E) = cE lix+ error(x,E),

where
error(x,E) = o

( x

log x

)
.

The error term in Serre’s estimate has recently been improved by Cojocaru and R. Murty
in [2, Theorem 1.1], where they obtained

error(x,E) = OE

(
x5/6 (log x)2/3

)
.

Let φ be a Drinfeld A-module over K of rank 2 with EndK̄(φ) = A. Suppose that all
division fields of φ are geometric. From Corollary 2, we have

f(x, φ) = #
{
P ∈ Pφ

∣∣ degK P = x and φ(FP) is cyclic
}

= cφ πK(x) +Oφ
(
(qdKx)5/6

)
.

Hence, this special case of Theorem 1 provides an unconditional Drinfeld module analogue
of Serre’s cyclicity result on elliptic curves. Due to a better version of the Chebotarev
density theorem for function fields, the above error term is modestly sharper than the
result of Cojocaru and R. Murty

For an elliptic curve E/Q, Serre proved that the constant cE defined in (4) is positive
whenever Q(E[2]) 6= Q (see [2, Section 6]). One could consider the positivity of the
value cφ(x) defined in (3). Since cφ(x) depends on the field K, the number x, and the
division fields of φ, it seems difficult to give a general solution to this problem. However,
in the special case when K = k, the rational function field, and all division fields of φ are
geometric, we have a definite answer to this question.

Theorem 3. Let φ be a Drinfeld A-module over k of rank r ≥ 2 with Endk̄(φ) = A.
Suppose that all division fields of φ are geometric. Let cφ be defined as in Corollary 2.
Then cφ is positive if and only if k(φ[a]) 6= k for all a ∈ A of degree 1.

Despite the similarity amongst elliptic curves and Drinfeld modules, there are still
several intrinsic differences between their structures. For example, an elliptic curve E
over Q corresponds to a Drinfeld A-module φ over k of rank r = 2, whose division fields
are all geometric. Theorem 1 holds for any Drinfeld A-module φ over a finite extension
K of k, φ can be of any rank r ≥ 2, and the division fields of φ are not necessarily
geometric. Thus modifications of the proofs of Serre and Cojocaru-Murty are required
in order to derive this more general result. Furthermore, for an elliptic curve E/Q, to
prove the positivity of the constant cE , one utilizes the relation between division fields
of E and cyclotomic number fields to estimate certain quantities. For a general Drinfeld
A-module φ over K, its associated rank 1 A-module over K is not necessarily the Carlitz
A-module C. Hence we can not apply analogous properties of cyclotomic function fields
(i.e., division fields of C) in our proof. To overcome this difficulty, we axiomatize the proof
of [2, Corollary 6.2] to obtain the result in a more abstract setting (see Lemma 14), and
this allows us to prove Theorem 3.
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In the next section, we state a theorem on the adelic openness for Drinfeld modules
and recall the Chebotarev density theorem for function fields. In Section 3, we prove
some results concerning division fields of φ which are required in the proof of Theorem 1.
We prove Theorem 1 in Section 4, and we conclude this paper by proving Theorem 3 in
Section 5.

In this paper, we only consider a Drinfeld A-module φ over K, where EndK̄(φ) = A
and the A-field K is of generic characteristic. One could also estimate the quantity f(x, φ)
when EndK̄(φ) 6= A or when K is of finite characteristic. Moreover, Serre’s cyclicity result
can be viewed as a subproblem of a conjecture of Lang and Trotter on primitive points
on elliptic curves. Thus one could ask an analogous question for Drinfeld modules. We
intend to return to these matters in future papers.

Notation For x ∈ N, let f(x) and g(x) be functions of x. If g(x) is positive and there
exists a constant c > 0 such that |f(x)| ≤ cg(x), we write either f(x) � g(x) or f(x) =

O(g(x)). If lim
x→∞

f(x)

g(x)
= 0, we write f(x) = o(g(x)). We will take the convention here

that when we write � or O, the implicit constant depends only on the field K. If the
implicit constant also depends on the module φ, then we write �φ or Oφ.

2. Preliminaries

The most important ingredients in our proof are the theorem of Pink and Rütsche on
the adelic openness for Drinfeld modules and the Chebotarev density theorem for function
fields. In this section, we recall some related results.

Let L be an A-field with A-characteristic w, and let φ be a Drinfeld A-module over L of
rank r. For m ∈ A with m 6= 0 and m is coprime to w, we denote by φ[m] the m-division
points of φ in the algebraic closure L̄ of L. By adjoining to L the m-division points, we
obtain L(φ[m]), the m-division field of φ, which is a finite Galois extension of L. We have
[4, Proposition 2.2]

φ[m] ' (A/mA)r.

By choosing a basis, we have a natural injection

Φm : Gal(L(φ[m])/L) ↪→ Aut(φ[m]) ' GLr(A/mA).

For a prime l ∈ A coprime to w, let

φ[l∞] =
⋃
n∈N

φ[ln],

be the direct limit of the ln-division points of φ. Let Al and kl be the completion of A
and k at l respectively. The l-adic Tate module of φ, Tl(φ), is defined to be

Tl(φ) = HomAl(kl/Al, φ[l∞]),

which is a free Al-module of rank r. By choosing a basis, we have the l-adic representation
ρl,φ of φ defined by

ρl,φ : Gal(Lsep/L)→ Aut(Tl(φ)) ' GLr(Al),
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where Lsep is the maximal separable extension of L. By putting together the l-adic repre-
sentations ρl, we obtain a continuous representation

ρφ =
∏
l

ρl,φ : Gal(Lsep/L)→ GLr(Â),

where Â is the profinite completion of A. The following theorem is about the openness
of ρφ. The case r = 2 is proved by Gardeyn and Pink, and the general case is recently
obtained by Pink and Rütsche.

Theorem 4. (Gardeyn[7, Remark 3.15] [8, Remark 1.16], Pink [13, Theorem 0.1], Pink
and Rütsche [14, Theorem 0.1]) Let L be a finitely generated A-field of generic A-characteristic,
and let φ be a Drinfeld A-module over L EndL̄(φ) = A. Then the image of ρφ is open.

Now we come back to our original setting. Let A = Fq[T ] and k = Fq(T ). Consider the
A-field K, which is a finite extension of k of degree d. Let FK be the constant field of K,
which is of degree dK over Fq . Let φ be a Drinfeld A-module over K, and let Pφ be the
set of primes of K at which φ has good reduction.

The following lemma is a direct consequence of Theorem 4.

Proposition 5. Let φ be a Drinfeld A-module over K with EndK̄(φ) = A and of rank
r ≥ 2. There exists B(φ) ∈ A (depending only on φ) such that for every m ∈ A with
(m,B(φ)) = 1, the map Φm is an isomorphism.

For a prime P of K, let p = P ∩A and let p ∈ A be the prime with pA = p. Let l ∈ A
be a prime with (l, p) = 1. By the work of Drinfeld [4] on the theory of good reduction,
which is analogous to the classical result of Ogg-Néron-Shafarevich for elliptic curves, φ
has good reduction at P if and only if K(φ[l∞])/K is unramified at P for all primes l ∈ A
with (l, p) = 1. In this case, let σP be the Artin symbol of P in Gal(K(φ[l∞])/K), and let
φ ⊗ FP be the Drinfeld module over FP which is the reduction of φ at P. Then one can
identify Tl(φ) and Tl(φ ⊗ FP), and the action of σP is the same as that of the Frobenius
of FP. Moreover, the characteristic polynomial of σP on Tl(φ) is independent of l (see [9,
Corollary 3.4] and [19, Theorem 2(b)]), and we denoted it by PP,φ(X).

Proposition 6. ([9, Theorem 5.1]) Let P be a prime in Pφ. Then as ideals of A,

pmP = PP,φ(0)A and χφ(P) = PP,φ(1)A,

where mP = [FP : A/p].

We remark here that by Proposition 6, pmP (resp. χφ(P)) and PP,φ(0) (resp. PP,φ(1))
differ by at most an element of F∗q as polynomials of A. Also, since |φ(FP)|, the cardinality
of φ(FP), is equal to |FP|, degK P = [FP : FK ], and [FK : Fq] = dK , we have

(5) dK degK P = degχφ(P) = degPP,φ(1),

where degχφ(P) and degPP,φ(1) are the degrees of χφ(P) and PP,φ(1) in T , respectively.

We now state the Chebotarev density theorem for function fields. For a finite Galois
extension L/K, we denote by G the Galois group of L/K and by C a union of conjugacy
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classes of G. For x ∈ N, define

πC
(
x, L/K

)
= #

{
P
∣∣ degK P = x, P is a prime unramified in L/K, andσP ⊆ C

}
,

where σP is the Artin symbol of P in Gal(L/K). Let rL = [L ∩ F̄K : FK ].

Theorem 7. ([5, Proposition 6.4.8]) Let L/K be a finite Galois extension with Galois
group G. Let C ⊆ G be a conjugacy class whose restriction to FL is the a-th power of the
Frobenius automorphism of FK . Then for x ∈ N, if x 6≡ a (mod rL), we have

πC(x, L/K) = 0.

If x ≡ a (mod rL), we have∣∣∣∣πC(x, L/K)−rL |C||G| qdKxx
∣∣∣∣

≤ 2|C|
x|G|

(
(|G|+ gLrL)(qdKx)1/2 + |G|(2gK + 1)(qdKx)1/4 + gLrL + |G|d/dK

)
,

where gL and gK are the genus of L and K, respectively.

Let πK(x) denote the number of primes of K of degree x. Applying Theorem 7 with
L = K, we get

πK(x) =
qdKx

x
+O

(
(qdKx)1/2

x

)
.

Moreover, in the special case when C consists only of the identity element in Gal(L/K),
we have a = 0 and πC(x, L/K) counts the number of primes P of K of degree x which
split completely in L. As a direct consequence of Theorem 7, we have

Theorem 8. Given a Drinfeld A-module φ over K, let π1(x, L/K) denote the number of
primes P ∈ Pφ such that degK P = x and P splits completely in L. Then for x ∈ N, if
rL - x, we have

π1(x, L/K) = 0.

If rL|x, we have ∣∣∣∣π1

(
x, L/K

)
− rL

1

|G|
πK(x)

∣∣∣∣� (
gLrL
|G|

+ 1

)
(qdKx)1/2

x
,

where the implicit constant depends only on K.

In order to estimate the error term in Theorem 8 when L = K(φ[m]), we need the
following result.

Proposition 9. ([6, Corollary 7]) There exists a constant D(φ) (depending only on φ)
such that for each m ∈ A \ Fq,

gK(φ[m]) � D(φ) · [K(φ[m]) : K] · degm,

where the implicit constant depends only on the field K.

The following proposition shows that the degrees over FK of the constant fields of
K(φ[m]) are bounded absolutely.
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Proposition 10. ([3, Lemma 3.2]), [10, Remark 7.1.9]) Let φ be a Drinfeld A-module
over K, and let Kφ be the field obtained by adjoining to K all division points of φ. Then
we have

E(φ) = [Kφ ∩ F̄K : FK ] <∞.

We remark that although in [3, Lemma 3.2] Gekeler proved the above result only for
K = k, his argument can be extended to a finite extension K of k without modification.

3. Division fields of φ

Let φ be a Drinfeld A-module over K, and let Pφ be the set of primes of K at which φ
has good reduction. In this section, we prove some properties about division fields of φ.
We will need these results later in our proof of Theorem 1. For a prime P ∈ Pφ, write

φ(FP) ' A/w1A×A/w2A× · · · ×A/wsA,
where wi ∈ A \ Fq (1 ≤ i ≤ s) satisfy wi|wi−1 (2 ≤ i ≤ s). For m ∈ A and n ∈ N with
n ≤ s, if m|wn, then

(A/mA)n × (A/A)s−n ⊆ A/w1A× · · · ×A/wnA×A/wn+1A× · · · ×A/wsA.
In this case, we say that φ(FP) contains an (A/mA)n-type submodule.

Proposition 11. Let K be a finite extension of k of degree d, and let FK be the constant
field of K, which is of degree dK over Fq. Let φ be a Drinfeld A-module over K of rank
r ≥ 2. For a prime P ∈ Pφ, let p = P ∩A and let p ∈ A be the prime with pA = p.
(i) For m ∈ A with (m, p) = 1, the finite A-module φ(FP) contains an (A/mA)r-type
submodule if and only if P splits completely in K(φ[m]).
(ii) The module φ(FP) contains at most (r − 1) cyclic components if and only if P does
not split completely in K(φ[l]) for all primes l ∈ A with l 6= p.
(iii) Let PP,φ(X) be the characteristic polynomial of P with respect to φ. If P splits
completely in K(φ[m]), then mr|PP,φ(1).

Proof: (i) For a prime P ∈ Pφ, let

τP : φ(F̄P) −→ φ(F̄P)

be the Frobenius of FP; thus the kernel ker(τP − 1) = φ(FP). Since (m, p) = 1, we
have φP[m] ' (A/mA)r [4, Proposition 2.2]. Hence φ(FP) contains an (A/mA)r-type
submodule if and only if its m-division points φP[m] are contained in φ(FP) = ker(τP−1).
In other words,

(6) (A/mA)r ⊆ φ(FP) ⇐⇒ τP acts trivially on φP[m].

For a prime P ∈ Pφ with (m, p) = 1, P is unramified in K(φ[m]) and we write σP
to denote the Artin symbol of K(φ[m])/K. From the work of Drinfeld [4] on Drinfeld
module analogues of the classical results of Ogg-Néron-Shafarevich for elliptic curves, τP
acts trivially on φP[m] if and only σP acts trivially on φ[m], i.e.,

(7) τP acts trivially on φP[m] ⇐⇒ P splits completely in K(φ[m]).

Combining (6) and (7), Statement (i) follows.
(ii) Note that the subscheme of p-torsion points is non-reduced, and hence the p-torsion of
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φ(F ) is of rank at most r−1 for any A-field F of characteristic p. Hence, to conclude that
φ(FP) has at most (r− 1) cyclic components, it is equivalent to have (A/lA)r 6⊆ φ(FP) for
all primes l ∈ A with (l, p) = 1. Then (ii) follows from (i).
(iii) From (i), if P splits completely in K(φ[m]), then mr divides χφ(P). By Proposition
6, (iii) follows.

Proposition 12. Let φ be a Drinfeld A-module over K of rank r ≥ 2 with EndK̄(φ) = A,
and let B(φ) be defined as in Proposition 5. For a monic polynomial m ∈ A, we can write
it uniquely as m = m1m2, where m1,m2 ∈ A are monic, m1 composed of primes which
are divisors of B(φ), and m2 composed of primes which are coprime to B(φ). Let n(m)
denote the cardinality of the Galois group Gal(K(φ[m])/K). We have

n(m)� ϕ(m2) q(r2−1) degm2 ,

where ϕ(m2) =
∣∣(A/m2A)∗

∣∣ is the Euler ϕ-function of m2 ∈ A.

Proof: We first note that K(φ[m2]) ⊆ K(φ[m]). Since (m2, B(φ)) = 1, by Proposition 5,
we have n(m2) =

∣∣GLr(A/m2A)
∣∣. Hence we have

n(m) ≥ n(m2) = qr
2 degm2

∏
l|m2

(
1− 1

qdeg l

)(
1− 1

q2 deg l

)
· · ·
(

1− 1

qr deg l

)
= ϕ(m2) q(r2−1) degm2

∏
l|m2

(
1− 1

q2 deg l

)
· · ·
(

1− 1

qr deg l

)
,

where the product is over distinct primes l|m2. Since∏
l|m2

(
1− 1

q2 deg l

)
· · ·
(

1− 1

qr deg l

)
�

∏
l: prime

(
1− 1

q2 deg l

)
· · ·
(

1− 1

qr deg l

)
� 1,

the proposition follows.

4. Proof of Theorem 1

Let K be a finite extension of k of degree d, and let FK be the constant field of K,
which is of degree dK over Fq. Given a Drinfeld A-module φ over K, in this section, we
provide a proof of Theorem 1 for it. Although the error term which we state in Theorem
1 depends on φ, it can be made more precise in our proof. In the following, we will prove:

Theorem 1’. Let φ be a Drinfeld A-module over K of rank r ≥ 2 with EndK̄(φ) = A,
and let B(φ), D(φ), and E(φ) be defined as in Propositions 5, 9, and 10. For x ∈ N, we
have

f(x, φ) = cφ(x)πK(x) + error(x, φ),

where

cφ(x) =
∑
m∈A

m is monic

µq(m) rm(x)

[K(φ[m]) : K]

and

error(x, φ)� D(φ)E(φ)(qdKx)∆r + E(φ)x−1 log x(qdKx)δrqr
2 degB(φ).
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Here, the implicit constant depends only on K, ∆r is defined as in (2), and

δr =

{
−3r2+7r−2

2r if r = 2, 3,
−r2+r+1

r if r ≥ 4.
(8)

Before starting the proof of Theorem 1’, we need to introduce more notation. Let K{τ}
be the non-commutative polynomial algebra in τ defined by τb = bqτ for all b ∈ K. Let
φ be a Drinfeld A-module over K of rank r, and let M(φ) be the A-motive associated to
φ as defined in [18, Definition 2.1]. In [18, Corollary 3.2.3], van der Heiden showed that
there exists an A-module ψφ over K of rank 1 such that as K{τ}[T ]-modules, the exterior
product Λrk[T ]M(φ) is isomorphic to the A-motive M(ψφ). Using the existence of ψφ, he

constructed a “Weil paring” - an r-multilinear map like a determinant object - for φ (see
[18, Section 5]).

For m ∈ A with m 6= 0, by using the Galois-invariance of the Weil pairing, one can
derive from [18, Theorem 5.3] that the m-division field of ψφ, K(ψφ[m]), is contained in
K(φ[m]). Thus, given a Drinfeld A-module φ of rank r, we can associate to it a Drinfeld
A-module ψφ of rank 1 satisfying

K(ψφ[m]) ⊆ K(φ[m])

for all m ∈ A with m 6= 0. As a consequence, if φ has good reduction at a prime P of K,
then ψφ also has good reduction at P. For P ∈ Pφ, we denote by PP,φ(X) and PP,ψφ(X)
the characteristic polynomials of the Frobenius of FP acting on the Tate modules of φ and
ψφ, respectively.

For a finite extension L/K, let

π1

(
x, L/K

)
= #

{
P ∈ Pφ

∣∣ degK P = x and P splits completely in L/K
}

be defined as in Theorem 8. Also, for a monic polynomial m ∈ A, we denote by n(m)
the cardinality of the Galois group Gal(K(φ[m])/K) and by g(m) the genus of the field
K(φ[m]). We recall that if rm = [K(φ[m]) ∩ F̄K : FK ], then

rm(x) =

{
rm if rm|x,
0 otherwise.

Now, we are ready to prove Theorem 1’.

Proof: We recall that [K : k] = d. Let
∑

denote a sum over monic polynomials m of A.
By Proposition 11(ii) and the inclusion-exclusion principle, we have

f(x, φ) =
∑
m∈A

µq(m)π1

(
x,K(φ[m])/K

)
.

By Proposition 11(iii), a prime P splits completely in K(φ[m]) implies that mr|PP,φ(1).
Since degPP,φ(1) = dK degK P = dKx (see (5) in Section 2), it suffices to consider m ∈ A
with degm ≤ dKx/r. Let y = y(x) ∈ N with y ≤ dKx/r (a choice of y will be made later).
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Then we can write

f(x, φ) =
∑

degm≤dKx/r

µq(m)π1

(
x,K(φ[m])/K

)
=

∑
degm≤y

µq(m)π1

(
x,K(φ[m])/K

)
+

∑
y<degm≤dKx/r

µq(m)π1

(
x,K(φ[m])/K

)
= main + error (say).

(9)

The first sum in (9) will be the dominant term. From Theorem 8, we have

main =
∑

degm≤y
µq(m)

(
πK(x) rm(x)

n(m)
+O

((g(m)rm(x)

n(m)
+ 1
) (qdK )x/2

x

))
.

By Propositions 9 and 10, since y < dKx/r � x, we have∑
degm≤y

(
g(m)rm(x)

n(m)
+ 1

)
�

∑
degm≤y

D(φ)E(φ) degm� D(φ)E(φ)x qy.

Hence, it follows that

(10) main = πK(x)

( ∑
degm≤y

µq(m) rm(x)

n(m)

)
+O

(
D(φ)E(φ) q

dKx

2
+y
)
.

We now estimate the error term in (9). Let p = P∩A and let p ∈ A be the prime with
pA = p. By Proposition 6, we have

PP,φ(X) = Xr + ar−1,φ(P)Xr−1 + · · ·+ a1,φ(P)X + uPp
mP

and

PP,ψφ(X) = X + vPp
mP ,

where ai,φ(P) ∈ A (1 ≤ i ≤ r − 1) and uP, vP ∈ F∗q . Let

bφ(P) = ar−1,φ(P) + · · ·+ a1,φ(P).

For a fixed m ∈ A, u, v ∈ F∗q , and b ∈ A, define

Su,v,b(m,x) =
{
P ∈ Pφ

∣∣ degK P = x, uP = u, vP = v, bφ(P) = b,

and P splits completely in K(φ[m])/K
}
.

Since degK P = x and [FK : Fq] = dK , from [9, Theorem 5.1], we have deg bφ(P) ≤
r−1
r dKx. Also, since K(ψφ[m]) ⊆ K(φ[m]), if P splits completely in K(φ[m]), then it also

splits completely inK(ψφ[m]). By Proposition 11(iii), we havemr|PP,φ(1) andm|PP,ψφ(1).
Hence, if P ∈ Su,v,b(m,x), we have mr|(1 + b+ upmP) and m|(1 + vpmP). It follows that

m|(1 + b − uv−1), where v−1 is the inverse of v in F∗q . Let
∑′ denote a sum over monic
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polynomials m of A which are square-free. Then we have

error ≤
∑′

y<degm≤dKx/r

∑
u,v∈F∗q

∑
deg b≤(r−1)dKx/r

#
(
Su,v,b(m,x)

)
≤

∑′

y<degm≤dKx/r

∑
u,v∈F∗q

∑
deg b≤(r−1)dKx/r
m|(1+b−uv−1)

∑
degK P=x

uP=u, vP=v, bφ(P)=b

mr|(1+b+up
mP )

1

≤
∑′

y<degm≤dKx/r

∑
u,v∈F∗q

∑
deg b≤(r−1)dKx/r
m|(1+b−uv−1)
1+b−uv−1 6=0

∑
degK P=x

uP=u, vP=v, bφ(P)=b

mr|(1+b+up
mP )

1

+
∑′

y<degm≤dKx/r

∑
u,v∈F∗q

∑
deg b≤(r−1)dKx/r

1+b−uv−1=0

∑
degK P=x

uP=u, vP=v, bφ(P)=b

mr|(1+b+up
mP )

1

= error 1 + error 2 (say).

Consider the innermost sum in error 1. Since degK(P) = x and mP = [FP : A/p], we

have deg pmP = dKx. For fixed b ∈ A and u ∈ F∗q , there are at most qdKx−r degm primes
p ∈ A of degree dKx such that mr|(1 + b+ upmP). Moreover, for each fixed prime p ∈ A,
there are at most d primes P of K such that P ∩A = p = pA. It follows that∑

degK P=x,
uP=u, vP=v, bφ(P)=b

mr|(1+b+up
mP )

1 ≤ dqdKx−r degm � qdKx−r degm.

Thus we have

error 1�
∑′

y<degm≤dKx/r

∑
u,v∈F∗q

(
q
r−1
r
dKx−degm

)(
qdKx−r degm

)
�

∑′

y<degm≤dKx/r

q
dK (2r−1)

r
x−(r+1) degm

≤ q
dK (2r−1)

r
x

∑
y<n≤dKx/r

q−(r+1)n · qn � q
dK (2r−1)

r
x−ry.

(11)

Also,

error 2 =
∑′

y<degm≤dKx/r

∑
u,v∈F∗q

∑
degK P=x

uP=u, vP=v, bφ(P)=uv−1−1

mr|(uv−1+up
mP )

1

�
∑′

y<degm≤dKx/r

(
qdKx−r degm

)
� qdKx−(r−1)y.

(12)
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Comparing the error terms in (10), (11), and (12), there are two cases:

(i) If r = 2, 3, we choose y such that q
dKx

2
+y = q

dK (2r−1)

r
x−ry, i.e.,

(13) y =
3r − 2

2r(r + 1)
dKx.

(ii) If r ≥ 4, we take

(14) y =
1

r
dKx;

thus the error term in (9) becomes trivial.
Combining (9), (10), (11), and (12) with this choice of y, we obtain

f(x, φ) = πK(x)

( ∑
degm≤y

µq(m) rm(x)

n(m)

)
+O

(
D(φ)E(φ)(qdKx)∆r

)
,(15)

where ∆r is defined as in (2).

To prove the theorem, it remains to consider

(16) πK(x)

( ∑
degm≤y

µq(m) rm(x)

n(m)

)
= cφ(x)πK(x)− πK(x)

( ∑
degm>y

µq(m) rm(x)

n(m)

)
.

For m ∈ A, write m = m1m2 as in Proposition 12. We note that if m is square-free, so is
m1. Applying Propositions 10, 12, and the fact ϕ(m2)� qdegm2/ log degm2, we have∑′

degm>y
m=m1m2

rm(x)

n(m)
�
∑′

m1

∑
degm2>(y−degm1)

E(φ)

ϕ(m2) q(r2−1) degm2

�
∑′

m1

∑
degm2>(y−degm1)

E(φ) log degm2

qr2 degm2
.

Consider the innermost sum in the above expression. We have∑
degm2>(y−degm1)

E(φ) log degm2

qr2 degm2
�

∑
n>(y−degm1)

E(φ) log n

q(r2−1)n

≤ E(φ) log y

q(r2−2)(y−degm1)

∑
n>(y−degm1)

1

qn

� E(φ) log y

q(r2−1)(y−degm1)
.

Combining the above two inequalities, we obtain∑′

degm>y
m=m1m2

rm(x)

n(m)
� E(φ) log y

q(r2−1)y

∑′

m1

q(r2−1) degm1

=
E(φ) log y

q(r2−1)y

∏
l|B(φ)

(
1 + q(r2−1) deg l

)
,
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where the product is over primes l ∈ A with l|B(φ). Note that

1 + q(r2−1) deg l = q(r2−1) deg l
(

1 +
1

q(r2−1) deg l

)
≤ q(r2−1) degB(φ)

(
1 +

1

q(r2−1) deg l

)
.

Thus, using the fact that 1 + y ≤ qy for y > 0, we have∑′

degm>y
m=m1m2

rm(x)

n(m)
≤ E(φ) log y

q(r2−1)y
q(r2−1) degB(φ)

∏
l|B(φ)

(
1 +

1

q(r2−1) deg l

)

� E(φ) log y

q(r2−1)y
q(r2−1) degB(φ) q

∑
l|B(φ) q

−(r2−1) deg l

� E(φ) log y

q(r2−1)y
qr

2 degB(φ).

The last inequality follows from the facts that q−(r2−1) deg l ≤ 1 and the number of primes
l ∈ A with l|B(φ) is bounded by degB(φ). Thus from (16), we have

(17) πK(x)

( ∑
degm≤y

µq(m) rm(x)

n(m)

)
= cφ(x)πK(x) +O

(
E(φ) qdKx log x

x q(r2−1)y
qr

2 degB(φ)

)
.

Plugging the choice of y in (13) or in (14) into the above equation, we obtain

πK(x)

( ∑
degm≤y

µq(m) rm(x)

n(m)

)

= cφ(x)πK(x) +O

(
E(φ)x−1 log x (qdKx

)δr qr2 degB(φ)

)
,

(18)

where δr is defined as in (8). Combining (15) and (18), Theorem 1’ follows.

5. Proof of Theorem 3

In this section, we will prove Theorem 3. We begin by stating a theorem of Poonen,
which is an analogue of Mazur’s result on the torsion subgroup of elliptic curves over Q.

Theorem 13. ([15, Theorem 1 & Theorem 9]) Let K be a finite extension of k and ψ a
Drinfeld A-module over K. Define

ψ(K)tors =
{
α ∈ K |ψa(α) = 0 for some nonzero a ∈ A

}
.

For any fixed positive integer d, there is a uniform bound on #ψ(K)tors as K ranges over
extensions of k with [K : k] ≤ d and ψ ranges over rank 1 Drinfeld A-modules over K. As
a consequence, there exists a positive constant CK (depending only on [K : k]) such that
for all a ∈ A with deg a > CK , K(ψ[a]) 6= K. In the special case when K = k and a are
primes, the constant Ck can be taken to be 1.

The main goal of this section is to prove the following theorem, which is a generalization
of Theorem 3.
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Theorem 3’. Let K be a finite extension of k and φ a Drinfeld A-module over K of rank
r ≥ 2. Let cφ(x) = cKφ (x) be defined as in Theorem 1.

(1) If K(φ[a]) = K for some non-constant a ∈ A, then cφ(x) = 0.
(2) Let CK be defined as in Theorem 13. Suppose that EndK̄(φ) = A and all division
fields of φ are geometric, i.e., do not contain non-trivial constant field extensions. Suppose
further that K(φ[a]) 6= K for all non-constant a ∈ A with deg a ≤ CK . Then cφ(x) is
positive.

Note that if all division fields of φ are geometric, cφ(x) is independent from x. Thus
we can write cφ = cφ(x) as in Corollary 2. In addition, when K = k, we have seen in
Theorem 13 that Ck = 1. Thus Theorem 3 is a direct consequence of Part (2) of Theorem
3’.

In order to prove Theorem 3’, we need the following result from [2, Lemma 6.1]. We
note that although the statement in [2, Lemma 6.1] is for number fields, by making typo-
graphical changes, we can extend that result to the following setting.

Lemma 14. ([2, Lemma 6.1]) Let L and L′ be sets of primes in A with L′ ⊆ L. Let
K = (Kl)l∈L and K′ = (K ′l′)l′∈L′ be two families of finite geometric Galois extensions of K
indexed over primes l ∈ L and l′ ∈ L′, respectively. For monic square-free polynomials m
and m′ composed of primes of L and L′, respectively, let Km and K ′m′ be the compositum
of Kl with l|m and l ∈ L and of K ′l′ with l′|m′ and l′ ∈ L′ respectively. Also, let s(m) =
[Km : K], s′(m′) = [K ′m′ : K],

δ(K) =
∑
m

l|m⇒l∈L

µq(m)

s(m)
, and δ(K′) =

∑
m′

l′|m′⇒l′∈L′

µq(m
′)

s′(m′)
,

where s(1) = s′(1′) = 1. Suppose that
(1) K covers K′, that is, for any l′ ∈ L′, there exists l ∈ L such that K ′l′ ⊆ Kl, and for
any l ∈ L, there exists l′ ∈ L′ such that K ′l′ ⊆ Kl.
(2) We have ∑′

m
l|m ⇒ l∈L

1

s(m)
<∞ and

∑′

m′
l′|m′ ⇒ l′∈L′

1

s′(m′)
<∞,

where
∑′ denotes a sum over monic square-free polynomials in A.

Then it follows that
δ(K) ≥ δ(K′).

In particular, if the fields K ′l′ in K′ are mutually independent (i.e., K ′l′1
∩K ′l′2 = K for any

l′1, l
′
2 ∈ L′ with l′1 6= l′2), then

δ(K) ≥
∏
l′∈L′

(
1− 1

s′(l′)

)
.

To prove Theorem 3’, we also need the following lemma.

Lemma 15. Let L be a set of primes in A, and let K = {Kl}l∈L be a family of non-trivial
finite (geometric) Galois extensions of K. Suppose that all but finitely many fields Kl in K
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are mutually independent. Then there exists a set of primes L′ in A and a corresponding
family K′ = {K ′l′}l′∈L′ of non-trivial finite (geometric) Galois extensions of K such that
L′ ⊆ L, K covers K′, and all fields K ′l′ in K′ are mutually independent.

Proof: Write L = G t E , a disjoint union of G and E , where G is an index set whose
indexed fields are mutually independent and E is the exceptional set. Since all but finitely
many fields Kl in K are mutually independent, without loss of generality, we can assume
that |E|, the cardinality of E , is finite.

We will construct L′ and K′ by induction on the cardinality of E . If |E| = 0, we can
take L′ = L and K′ = K, and then the result follows. Now suppose |E| ≥ 1. For a prime
e ∈ E , there are two possibilities for Ke.
(1) Suppose that Ke is mutually independent from all fields indexed by primes in G. Then

we can write L̃ = G̃ t Ẽ , where G̃ = G ∪ {e} and Ẽ = E\{e}. Since |Ẽ | = |E| − 1, by
induction, there exist L′ and K′ satisfying the required conditions. Thus the result follows.
(2) Suppose that Ke is not mutually independent from all fields indexed by G. Then there
exists a prime g ∈ G such that Ke ∩ Kg 6= K. Note that Ke ∩ Kg is a non-trivial finite
(geometric) Galois extension of k. For h ∈ G \ {g}, since Kg is mutually independent
from Kh, it follows that Ke ∩Kg is mutually independent from Kh. In this case, we take

L̃ = G t Ẽ with Ẽ = E\{e}, and we construct a new family K̃ = (K̃l̃)l̃∈L̃ of non-trivial
finite (geometric) Galois extensions of k as follows:

- Define K̃g = Ke ∩Kg.

- For h ∈ G \ {g}, define K̃h = Kh.

- For i ∈ Ẽ , define K̃i = Ki.
Then all but finitely many K̃l̃ in K̃ are mutually independent. Now, since |Ẽ | = |E| − 1,
it follows by induction that there exist L′ and K′ satisfying the required conditions with
respect to K̃. Since L̃ ⊆ L and K covers K̃, we have L′ ⊆ L and K covers K′. Thus the
lemma follows.

Remark We note that from the above construction, if L = G t E , we can take L′ =
G′ t E1 t E2, where G′ ⊆ G, E1 t E2 = E , and E1 and E2 are the sets of primes from
possibilities (1) and (2) of the proof of Lemma 15, respectively. In particular, the sets E1

and E2 are not canonical; they depend on the choices made in the proof. Now we have
that K ′l′ = Kl′ for l′ ∈ G′, that K ′l′1

= Kl′1
for l′1 ∈ E1, and that K ′l′2

6= K for l′2 ∈ E2. Since

G′ ⊆ G and [K ′l′ : K] ≥ 2 for l′ ∈ E1 t E2, by Lemmas 14 and 15, we have

δ(K) ≥
(1

2

)|E| ∏
l′∈G′

(
1− 1

s′(l′)

)
≥
(1

2

)|E|∏
l∈G

(
1− 1

s(l)

)
.

Now, we are ready to prove Theorem 3’.

Proof: (1) Suppose that K(φ[a]) = K for some non-constant a ∈ A. Since φ[a] ' (A/aA)r

[4, Proposition 2.2], it follows that φ(K)tor contains a subgroup of the form (A/aA)r. Since
φ(K)tor ⊆ φ(FP) for all but finitely many primes P of K, there are only finitely many
φ(FP) which have at most (r − 1) cyclic components. Thus we have cφ(x) = 0.
(2) Suppose that φ satisfies all conditions stated in (2). We recall that since all division
fields of φ are geometric, cφ(x) is independent from x. In the following, we will write cφ =
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cφ(x). To apply Lemma 14, let L be the set of all primes of A and K = (Kl = K(φ[l]))l∈L.
Since the fields K(φ[l]) are finite geometric Galois extensions of K, we have

cφ = δ(K).

Let B(φ) be defined as in Proposition 5 and l1, l2 ∈ L be distinct primes with (l1, B(φ)) =
1 = (l2, B(φ)). By Proposition 5,

[K(φ[l1l2]) : K] =
∣∣GLr(A/l1l2A)

∣∣ =
∣∣GLr(A/l1A)

∣∣ · ∣∣GLr(A/l2A)
∣∣

= [K(φ[l1]) : K] · [K(φ[l2]) : K].

It follows that K(φ[l1l2]) = K(φ[l1], φ[l2]). Thus the division fields K(φ[l]) are mutually
independent for primes l ∈ L with l - B(φ). Also, they are non-trivial extensions of K.

For a prime l ∈ L with l|B(φ), we will now show that K(φ[l]) is also a non-trivial
extension of K. Let ψφ be the rank 1 Drinfeld A-module associated to φ via Weil’s paring.
By Theorem 13, K(ψφ[l]) are non-trivial extensions of K for primes l with deg l > CK .
Since K(ψφ[l]) ⊆ K(φ[l]) and K(φ[a]) 6= K for all non-constant a ∈ A with deg a ≤ CK ,
it follows that K(φ[l]) 6= K for all primes l ∈ L.

Now, we have K = (K(φ[l]))l∈L, a family of non-trivial finite geometric Galois extensions
of K. Since the division fields K(φ[l]) are mutually independent for primes l with l - B(φ),
we can take L = G t E , where

G =
{
l ∈ L

∣∣ l - B(φ)
}

and E =
{
l ∈ L

∣∣ l |B(φ)
}
.

We note that for primes l with l - B(φ),

s(l) = [K(φ[l]) : K] = |GLr(A/lA)| � qr
2 deg l.

Thus we have ∏
l-B(φ)

(
1− 1

s(l)

)
� 1.

Also, for a monic square-free polynomial m ∈ A, we write m = m1m2 as in Proposition
12. Then s(m) ≥ s(m2), and it follows that∑′

m
l|m⇒ l∈L

1

s(m)
≤

∑′

m=m1m2
l|m⇒ l∈L

1

s(m2)
≤
∏
l|B(φ)

(1 + 1)
∏
l-B(φ)

(
1 +

1

s(l)

)
<∞.

Let K′ = (K ′l′)l′∈L′ be the family associated to K as defined in Lemma 15. Since the fields

K ′l′ are mutually independent for primes l′ ∈ L′ and s′(l′) = s(l) � qr
2 deg l for all but

finitely many primes l′, we have∑′

m′
l′|m′⇒ l′∈L′

1

s′(m′)
=
∏
l′∈L′

(
1 +

1

s′(l′)

)
<∞.

Moreover, since |E| ≤ degB(φ), by the remark after Lemma 15, we have

cφ = δ(K) ≥
(1

2

)degB(φ) ∏
l-B(φ)

(
1− 1

s(l)

)
� 1.

This completes the proof of Theorem 3’.
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In the remaining part of the paper, we will discuss the case when division fields of φ
are not all geometric. We need the following proposition to prove our result.

Proposition 16. ([16, Proposition 8.13]) Let K be a finite extension of k and P a prime
of K. Let L be the constant field extension of K with [L : K] = n. Then P splits into
(n,degK P) primes in L. In particular, if n|degK P, then P splits completely in L. In
addition, if P is a prime of L lying over P, then degL P = degK P/(n, degK P).

Theorem 17. Let K be a finite extension of k and let φ be a Drinfeld A-module over
K of rank r ≥ 2 with EndK̄(φ) = A. Let E(φ) be defined as in Proposition 10 and
define E(φ)∗ =

∏
p:prime, p|E(φ) p, the squarefree kernel of E(φ). Let L be the constant field

extension of K with [L : K] = E(φ) and let CL be defined as in Theorem 13. Suppose
that L(φ[a]) 6= L for all non-constant a ∈ A with deg a ≤ CL. Then for all x ∈ N with
(E(φ) · E(φ)∗)|x, cKφ (x) is positive.

Proof: By the construction of L, all of its division fields are geometric. Thus, by Theorem
3’(2), there is a positive constant cLφ such that for any y ∈ N,

fL(y, φ) =
∑
m∈A

µq(m)π1(y, L(φ[m])/L) = cLφπL(y) + o
(
πL(y)

)
,

where π1(y, L(φ[m])/L) is the number of primes of L which are of good reduction, of
degree y, and splitting completely in L(φ[m]).

For every m ∈ A, we have the following diagram.

L(φ[m])

constantgeometric

L K(φ[m])

L ∩K(φ[m])

constant

geometricconstant

K

Consider only the constant field extensions. We have

[L(φ[m]) : K(φ[m])] · [L ∩ (φ[m]) : K] = [L : K] = E(φ).

Claim 1: Let P be a prime of K of degree E(φ)y for some y ∈ N. Then P splits
completely in K(φ[m]) if and only if every prime of L lying over P, which is of degree y,
splits completely in L(φ[m]).

Proof of Claim 1: Since [L∩K(φ[m]) : K] |E(φ), degK P is divisible by [L∩K(φ[m]) : K].
By Proposition 16, P splits completely in L ∩ K(φ[m]), and the primes of L ∩ K(φ[m])
lying above P are of degree E(φ)y/[L∩K(φ[m]) : K]. Similarly, since degK P is divisible
by E(φ), P splits completely in L, and the primes of L lying above P are of degree y.

Suppose that P splits completely in K(φ[m]). Let P̃ be a prime in L∩K(φ[m]) lying above
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P, and P a prime in K(φ[m]) lying above P̃. Since K(φ[m])/L ∩K(φ[m]) is a geometric
extension, we have

degK(φ[m]) P = degL∩K(φ[m]) P̃ = E(φ)y/[L ∩K(φ[m]) : K] = [L(φ[m]) : K(φ[m])] y.

Since degK(φ[m]) P is divisible by [L(φ[m]) : K(φ[m])], by Proposition 16, P splits com-

pletely in L(φ[m]). We now see that P splits completely in K(φ[m]) if and only if P splits
completely in L(φ[m]), if and only if every prime P of L lying over P splits completely in
L(φ[m]). This completes the proof of Claim 1.

Claim 2: Every prime P of L, which is of degree y with E(φ)∗|y, lies over a prime P of K
which is of degree E(φ)y.

Proof of Claim 2: To show that degK P = E(φ)y, by Proposition 16, it suffices to show
that degK P is divisible by E(φ). Let p be a rational prime divisor of E(φ). If the exponent
of p in degK P is less than or equal to that in E(φ), by Proposition 16, y = degL P has
no p factor, which contradicts the fact that E(φ)∗|y. Thus the exponent of p in degK P
must be greater than that in E(φ) and it follows that E(φ)|degK P. This completes the
proof of Claim 2.

Combining the above two claims, for x = E(φ)y with E(φ)∗|y, we have

E(φ) · π1(x,K(φ[m])/K) = π1(y, L(φ[m])/L).

It follows that

fK(x, φ) =
∑
m∈A

µq(m)π1(x,K(φ[m])/K)

=
1

E(φ)

∑
m∈A

µq(m)π1(y, L(φ[m])/L)

=
1

E(φ)
cLφπL(y) + o

(
πL(y)

)
= cKφ πK(x) + o

(
πK(x)

)
.

In particular, cKφ (x) = cLφ/E(φ) is positive. This completes the proof of Theorem 17.
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