MULTIDIMENSIONAL VINOGRADOV-TYPE ESTIMATES IN
FUNCTION FIELDS

WENTANG KUO, YU-RU LIU, AND XIAOMEI ZHAO

ABSTRACT. Let Fy[t] denote the polynomial ring over the finite field F;. We employ Woo-
ley’s new efficient congruencing method to prove certain multidimensional Vinogradov-
type estimates in F4[t]. These results allow us to apply a variant of the circle method to
obtain asymptotic formulas for a system connected to the problem about linear spaces
lying on hypersurfaces defined over Fy|t].

1. INTRODUCTION

One central problem in number theory is concerned with integral points lying on hy-
persurfaces. In particular, for s,k € N ={0,1,2,...} with £ > 2 and a = (ay,...,as) €
(Z \ {0})®, we could ask how large s should be (in terms of k and independent of a) so
that the hypersurface

awt + -+ awh =0 (1)
contains a non-trivial integral point. Additionally, establishing an asymptotic formula
for the number of such points has become a substantial research area. For P € N, let
M; ; a(P) denote the number of solutions of (1) with w; € [-P,PINZ(1 < j < s).
A celebrated result of Wooley [10] states that, subject to a local solubility hypothesis,
whenever s > klogk + O(kloglogk), we have M, o(P) > P**. His recent ground-
breaking work [12] can also be used to show that whenever s > 2k? + 2k — 3, we can
establish an asymptotic formula for M; i, o(P). In [13], Wooley further improved his result
and showed that if k& > 6, it suffices to take s > 2k? — 2k — 8. In this case, no local
solubility hypothesis is required (except for indefiniteness) since the result of Davenport
and Lewis in [3] shows that k% + 1 variables suffice to satisfy the congruence conditions.

Because of the homogeneity of (1), if a non-trivial integral point lies on (1), then the
hypersurface contains the line through the origin and that point. Thus, the above problem
can be viewed as a question about linear spaces of dimension 1. It is therefore natural
to consider linear spaces of higher dimension. Results concerning the existence of such
spaces date to work by Brauer [2] and Birch [1]. Asymptotic estimates for linear spaces
on the hypersurface (1) were first established by Parsell (see [7] and [8]). More precisely,
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for d € N with d > 2, we find that the linear spaces of dimension d are in correspondence
with solutions of the system

arull ould e dagull Ul =0 (i g = k). (2)
Let Mjk qa(P) denote the number of solutions of (2) with w;; € [-P,PINZ(1 <1 <
d,1<j<s),and let n; = (k”,:d) — 1. A result of Parsell [8] states that, subject to a local
solubility hypothesis, whenever s > 2n1k((2/3)logni + (1/2)log k) + O(nikloglog k), we
can establish an asymptotic formula for Mjj 4a(P). In their recent work, by employing

Wooley’s new efficient congruencing method, Parsell, Prendiville and Wooley [9] have
further improved the above bound to

s> 2n1k +2n71 + 1. (3)

The main result in [9] is indeed applicable to general translation-dilation invariant systems
(for definition, see [9, Section 2]).

Let F,[t] be the ring of polynomials over the finite field F, of ¢ elements whose character-
istic is p. Since there exists remarkable similarity between Z and F,[t], we can formulate the
above questions in function fields. Let k € Nwith p{ k. Forc = (c1,...,¢s) € (Fg[t]\{0})?,
consider the hypersurface defined by

b+ b =0 (4)

For P € N, let Ip be the subset of Fy[t] containing all polynomials of degree < P. Let
Nj k.c(P) denote the number of solutions of (4) with z; € Ip (1 < j <'s). A result of the
second author and Wooley [6] states that, subject to a local solubility hypothesis, whenever
s > (4/3)klogk+ O(kloglog k), we have Ny j c(P) > (qp)sfk. Moreover, under the same
hypothesis, their recent work on Vinogradov’s mean value theorem in function fields can
be used to prove that whenever s > 2nok + 2ny + 1, where 1 < ng = na(k;p) < k, we can
establish an asymptotic formula for N o(P). The Lang-Tsen theory of Cj-fields (see [5,
Theorem 8]) shows that (4) possesses a non-trivial solution whenever s > k% 4+ 1. Thus, if
2nok + 2ny > k2, then the local solubility hypothesis is automatically satisfied.

We now consider linear spaces of higher dimension in function fields. For d € N with
d> 2, let x1,...,xq € Fy[t]® be linearly independent vectors and define

Span{xl, . ,Xd} = {flxl + o+ faXy } fi,--,1qa € Fq(t)}.
Write x; = (xi1, ..., %) (1 < i < d). Then the hypersurface (4) contains the d-dimensional
linear space Span{xy,...,x4} if and only if

ci(hizn + -+ fgra)* + -+ cs(hows + - + fazas)” = 0.

By the multinomial theorem, we see that the above equation is true for every d-tuple
(f1, - -+, fa) € Fy(t)? if and only if x1, ..., x4 simultaneously satisfy the equations

k!

il

" . (clxllll...xd‘il_|_...+csa;11$...a;di):0 <21+"'+Zd:k).

Since the characteristic of I, is p, the above system is equivalent to the system

clxlfl---x3ﬁ+---+csxig-~-x2‘i =0 ((i1,...,17q) € L), (5)
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where the set £ is defined by
. . . . k!
L= {(zl,...,zd) ENd|z1+---+zd:k andpff}.
7,1! cee Zd!

Let N a,c(P) denote the number of solutions of (5) with ;; € Ip(1<1<d, 1< j <s).
For i = (iy,...,1q) € N we write |i| = i1 + - - -+ ig4, and write p {1 if p { 4; for some I with
1 <1< d. We abbreviate a monomial of the shape z7* - - - 2 by x!. For m € N, write m in

base p, say m = ag(m)+a1(m)p+---+ap(m)p?, where a,(m) € [0,p—1]NZ (0 < h < D).
In order to estimate Ny q.c(P), we need to estimate a Vinogradov-type system. Let

Ro={ie€ N4 | 3n € N such that ayn(k) > 1 and ap(i1) + - -+ + ap(ia) < apsn(k) (h € N)}

and
Ry ={ieRo|pti}.
Let Js ,4(P) denote the number of solutions of the system
Xi+-bxy=yi ooyl (i€Ry)
with x;,y; € I4(1 < j < s). Write ¢ = card£, the cardinality of the set £, and
p = cardRj. A result of the third author [16] states that for k& > d + 2, subject to

a local solubility hypothesis, whenever s > 2uk(log(iuk) + loglog(uk) + 10), we can
establish an asymptotic formula for Ny j 4.¢(P).

In this paper, we will employ Wooley’s new efficient congruencing method to improve the
aforementioned result in [16]. In addition to obtaining an upper bound for Js i q4(P), we
will estimate a more general Vinogradov-type system. Our generalisation seems flexible
and could be applied to various Diophantine problems in function fields, including the
multidimensional Waring problem and the Tarry problem. We will return to these projects
in future papers.

Let R be a finite subset of N? satisfying the following property:

Condition*: for each j = (j1,...,ja) € R, if 1 = (I1,...,la) € N¢ with p ¢t
({11) e ({5), then 1 € R.

Let Js(R; P) denote the number of solutions of the system
wtotu=vi4rvl (jeR) (6)

with uj,v; € I4(1 < j < s). We will see in Lemma 3.2 that Condition* implies that
Js(R; P) satisfies a translation invariant property. This condition also plays an important
role in the process of efficient congruencing. Since p is the characteristic of Iy, if there
exist i,j € R with j = p"i for some v € N\ {0}, then we have

I . oo W
St =) = (i —vh))
Jj=1 Jj=1
Thus, the equations in (6) are not always independent. The absence of independence

suggests that Vinogradov-type estimates for integers cannot be adapted directly into a
function field setting. To regain independence, we instead consider

R ={ieN*|pfiand p“i € R for some v € N}. (7)
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Then we see that Js(R; P) also counts the number of solutions of the system
w e tug=videetvy ((€R) (8)

with uj,v; € I% (1 < j < s). By extending Wooley’s efficient congruencing method, we
will prove the following theorem:

Theorem 1.1. Let r = card R, ¢ = maxjer/ |i| and £ = Y ;. [i|. Suppose that d > 2,
¢ > 2 and s > r¢ +r. Then for each € > 0, there exists a positive constant C7 =
Ci(s,d;r, ¢, k;q; €) such that

JS(R, P) S Cl (qP)QSd—H-i-E‘

We notice here that although the equations in (8) are independent, the set R’ is not
necessarily contained in R. This lack of inclusion prevents the transfer of certain congru-
ence relations between R and R’. However, such a transition is necessary to proceed with
efficient congruencing. We address this issue by introducing an alternative set extending
R’ in Section 4. Since the new set satisfies Condition* and contains R’, it allows successful
use of efficient congruencing.

By [16, Lemma A.4], we see that R satisfies Condition*. It also follows from [16,
Lemma 8.1] that

Ry={i€Ro|pti} ={ie N?|pfiandp'i € Ry for some v € N}.

In addition, a straightforward calculation shows that k = maxjcr; [il as p k. Since
Tsie,d(P) = Js(Ro; P), we can derive the following corollary from Theorem 1.1:

Corollary 1.1. Let p be the characteristic of Fq, u = card R{, and K = EieRg li|. Let

s, k,d € N withd > 2, k> 2 withptk and s > pk + p. Then for each € > 0, there exists
a positive constant Co = Cy(s,d; k; q; €) such that

\737k7d(P) < 02 (qP)23d7K+€'

Let Fy(t) be the fraction field of Fy[t]. For a place w € Fy[t], let Fy(t),, denote the
completion of Fy(t) at w. By combining the above corollary with a variant of the Hardy-
Littlewood circle method, we can significantly improve the result in [16, Theorem 1.1] as
follows:

Theorem 1.2. Let p be the characteristic of Fy, « = cardL and p = cardR{,. Let
s, k,d € N withd > 2, k>2 withptk and s > 2uk + 2u+ 1. Suppose that the system
(5) has non-trivial solutions in all completions Fq(t)y, of Fy(t). Then there exist positive
constants Cs = Cs(s,d; k; q;¢) and n = n(d; k; q) such that

Nskdc(P)=Cs (qP)sd—Lk n O((qP)Sd*Lk7n>.

An interested reader can find explicit calculations of ¢ and y in [16, Lemma 12.2, Lemma
12.3]. It is worth remarking that when k is of certain form, both ¢ and p are independent
of k. For example, when k = 1 + p¥ (E € N\ {0}), we have that ¢ = d? and pu = d(d + 1).
In this case, the bound for s in Theorem 1.2 is sharper than its integer analogue in (3).
Moreover, we may save additional variables by employing a new strategy, introduced in
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[12], [13] and [14], for transforming Vinogradov-type estimates to minor arc contributions.
We will pursue this improvement in future work.

2. PRELIMINARIES

We begin this section by introducing the Fourier analysis for function fields. Let A =
F,[t], and let K = F,(t) be the fraction field of A. Let K, = Fy((1/t)) be the completion
of K at co. We may write each element o € Koo in the shape o = >, a;()t" for some
v € Z and a;(a) € F, (i < v). Ifa,(a) # 0, we say that ord @ = v and we write (a) = ¢°*4¢.
We adopt the convention that ord0 = —oo and (0) = 0. It is also convenient to refer to
a_1 as being the residue of a, denoted by res . Given that the characteristic of F, is p,
we are now equipped to define the exponential function on K. Let e(z) denote €27, and
let tr:F, — I, denote the familiar trace map. There is a non-trivial additive character
eq : Fg — C* defined for each a € [, by taking e,(a) = e(tr(a)/p). This character induces
a map e : Koo — C* by defining, for each o € Ko, the value of e(a) to be e4(resa). Let
T = {a € Ky |orda < 0}. Given any Haar measure da on K, we normalise it in such a
manner that [ 1da. The orthogonality relation underlying the Fourier analysis of Fglt],
established in [4, Lemma 1], takes the shape

1, when z =0,
e(ra)da = .
T 0, otherwise.
Thus, for n € N\ {0}, (1, -+ ,2p) € A" and o = (a1, -+ , ) € KL, we have

z 1, whenz;=0(1<1<n),
/ e(rron + -+ + xpay) da = | | /e(xlal) doy = {0 o .l (I<i<n) (9)
n T , otherwise.

Let R be a finite subset of N satisfying Condition*, and let R’ be defined as in (7).

Recall that for i = (iy,...,iq) € N%, we write |i| =41 + --- + ig. We also denote
— card R/, — max i d AT 10
r = car o=maxlil and & ieZR:/I | (10)

For X € R, let X = ¢¥. For P € N, we recall that Ip = {z e Al(z) < 13} Let Js(R; P)
be defined as in (8). For h = (h)ier’ € [[iers Ijjjp, define Js(P;h) to be the number of
solutions of the system

Z(U‘; - v;) =h (eR)

j=1

with u;, Vv S II% (1 < ] < S). Thus, JS(P; h) = JS(R; P) whenever hi — O(i c R,). For
(o) = (v)ierr € KL, write
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By (9), we have
Js(P;h) = [ |f(e; P)|256< -3 aihi> da.
TT

ieR/
Since

Js(P;h) < [ |f(a; P)|*da = Jy(R; P),
TT

it follows that
P < N J(Psh)< Y JJ(R;P) = PrJ(R; P).
hEHiER’ Imp hEHiER’ Imp

Thus, we have

Jo(R; P) > p¥d=x, (11)

For s € N, we say that g is admissible for R if for any ¢ > 0 and P € N sufficiently
large (in terms of s,d,r, ¢, k,q and €), we have Js(R; P) < PAs+e Define A¥ to be the
infimum of the set of exponents A; admissible for R. Thus, for P sufficiently large, we
have

Jo(R; P) < PNe,
Write ns = A — 2sd + k. It follows from (11) that ns > 0.

In the following, we abbreviate Js(R; P) as Js(P). We will focus on estimating Js,(P)
for s = ru with some u € N satisfying u > ¢. Then Theorem 1.1 can be established by
showing that 75+, = 0. Let N € N be sufficiently large (in terms of s,d, r, ¢, k and ¢). Let
0 =N-"12(r/s)N+2 and 6 = (6sN)~N+3), Thus, we have

6 < (25/r)"N0/(6s). (12)

By the infimal definition of A}, ., there exists a sequence of non-negative integers (P, )5o_,
tending to oo, such that

Jore(Pm) > B (m e N\ {0}). (13)

If P,, is sufficiently large (in terms of s,d,r, ¢, k,q and N), then for any @ € N with
8?P,, < Q < P,,, we have

JS—H‘(Q) < Q\)\:+T+6
For N sufficiently large, we have § < (2(s + 7)d)~!. Thus, for 0 < Q < P,,, by the trivial
bound |f(c; P)| < P?, we have

Js—l—r(Q) < P, (s+7) + Q)\5+r+5 < 2P, Q2(5+7")d—n+775+r' (14)

In what follows, we consider a fixed element P = P,, of the sequence (P,,)°_;, which
is sufficiently large (in terms of s,d, 7, ¢, k,q and N). Unless stated otherwise, all implicit
constants below may depend at most on s,d,r, ¢, x,q and N. Since our methods involve
only a finite number of steps, these implicit constants are under control. In addition,
for X € R, we write [X] for the greatest integer not exceeding X. Finally, for a
(a1,...,a,) € A", b = (b1,...,by,) € A" and g € A, we write a = b(modyg) if o
by (modg) (1 <1 < n). Then for a’,b’ € A% we write (a,a’) = (b,b’) (modg) if a
b (modg) and a’ = b’ (mod g).
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We recall that Jgy,(P) counts the number of solutions of the system

T S

Z (y; — z;) = Z (u; — V;) ieR) (15)

=1 j=1

with y;, zi, u;,v; € Ij‘_é, (1<i<r 1<j<s). Let we A be irreducible, and let h,n,v €
N. Let (f) be a system of A many polynomials in Aty,...,t,]. For g1,...,g, € A", let
Jac(f; g;) denote the h x n Jacobian matrix of f evaluated at g; (1 <1 < n). We write
rk Jac(f; g1, ..., 8y;w) for the rank of the h x nv Jacobian matrix

(Jac(f; g1), ..., Jac(f; gv))

over A/(w). In addition, write I*(P;w) for the number of solutions (y;,z;, uj,v;) (1 <
i<r, 1<j<s) counted by Js;,(P) for which

rkJac((xi)ieR/;yl, e ,yr;w) =7
To bound Js4,(P) in terms of I*(P;w), we need the following lemma.
Lemma 2.1. Let v € N with v > r, and let w € A be irreducible. Let S(w) denote the set
of v-tuples (g1,...,8y) with g € (A/(w))d (1 <1< w) such that

rk Jac((xi)iGR’; g1, -, 8v; w) <r.

We have
card S(w) < (w)v@-DFr=1

where the implicit constant depends on v, ¢, r and d.

Proof. This proof can be carried out in the same way as the proof of [16, Lemma 7.3].
To do this, it suffices to replace R, and k in the proof of [16, Lemma 7.3] with R’ and ¢
respectively. O

Lemma 2.2. Let s = ru with u € N and u > ¢, and let M = [0P] + 1. There exists an
irreducible polynomial w € A with (w) = M such that

Jsr(P) < I*(P;w).
Proof. For P sufficiently large, there exists a set P consisting of [§~!] irreducible polyno-

mials of degree [#P] + 1. Let S; denote the number of solutions (y;,zi, uj,v;) (1 < i <
r, 1 <j <'s) counted by Jsi,(P) such that for all w € P,

rkJac((xi)ien/;yl, e Y B, ,zr;w) <.
Let S5 denote the number of remaining solutions, i.e., the solutions for which
rkJac((xi)iGR/; V1o ooy Yy 21y ey 2y} w) =r
for some w € P. Thus, we have
Js4r(P) = S1 + Ss.

There are two cases.
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Case 1: Suppose that So < S;. For every w € P, by taking v = 2r in Lemma 2.1, we see
that the number of (yi1,...,y,,21,...,2,) € (A/(w))%d with

rkJaC((Xi)iER/; Yis-o s ¥ry21, - 2y 'UJ) <r
is O(<w>27'd*r*1). Let p = [[,,cp w. By the Chinese Remainder Theorem, in the solutions

counted by Si, the total number of choices for (yi,...,¥r,21,...,2,) € (A/(p))%d i
O({p)?"¥="=1). For each fixed choice (gi,...,g hi,...,h;) (modp), there are at most

(ﬁ/(p))%d choices for the (y1,...,¥r,2Z1,...,2;) € IZ with (y1,...,¥r, 21,...,2,) =
(g1,---,8rh1,...,h) (modp). Thus, the number of (y1,...,¥r, 21,...,2-) € [&#% under

—~ =1 ~
consideration can be estimated by O(P*%(p)~""'). Since (p) > (P9)9 1= P70 we
have

ﬁQrd<p>—r—1 < ﬁ2rd—(7‘+1)(1—6‘)‘

Thus, we have
Jorr(P) < 28 <« Pra=(r+1)(1=6) j (p),
By Holder’s inequality, we have

s/(s+7)
JS(P) e - |f(a’P)}25da S ( - ‘f(a,P)’2(8+T)da> — Js+r(P)S/(S+T)-

On combining the above two estimates, we see that
Js+r(P) < ﬁQrd—(T—i—l)(l—@) J8+T(P)S/(s+r)7

which implies that
Joir(P) < PAstr)d=(r+D)1=0)(s4r)/r
Notice that s > r¢ > k and

0= N~V2(r /)42 < ¢~ (V42) < (4 4 r)((r+1)(¢+ 1))_1.

Thus, we have
(r+10)A=0)(s+7)/r>r+1)1-0)(p+1)=r¢+d+r+1-0(r+1)(¢+1)>r+1.
It follows that

Joir(P) < pAUsHr)d—r—1
which contradicts the lower bound in (11).

Case 2: Suppose that S; < S5. On noticng that P < 1, we see that there exists w € P
such that

52 < 53(w)7

where S3(w) denotes the number of solutions (y;,z;,u;,v;) (1 <i <7, 1<j <s) counted
by Sy for which

rk Jac((xi)ienx; Viseo s VirrZly .- ,zr;w) =
After rearranging variables, we have
Js1r(P) < S3(w) < I*(P;w).

On combining Cases 1 and 2, the lemma follows. [l
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In what follows, for a sufficiently large P = P,, (in terms of s,d,r, ¢, k,q and N), let
M = [0P] + 1, and let w € A satisfy all conditions in Lemma 2.2. For g € A\ {0}, define

L(g) = {(a1,...,aq) € AY| dega; < degg (1 <i < d)}.

For ¢ € Nand £ € A%, denote by Z.(€; w) the set of r-tuples (£;,...,&,) with §; € L(w!)
and &; = £ (modw®) (1 <14 < r) such that

rk Jac((x))iers; [€1],- .-, € ];w) =7,

where for n = £ (modw®), write [n] = [N]cwe = w™(n —§). Let R = cardR. In the
following sections, we will frequently apply the multinomial theorem stated in Lemma 3.1
to treat certain congruence conditions. Since the system (15) does not necessarily contain
all equations that are needed to use the theorem, we consider instead the equivalent
definition of Jgy,(P) which counts the number of solutions of the system

Y yl-) =) (W-v) (er)

i=1 j=1

with y;, z;,u;j,v; € Ij‘g (1 <i<r1<j<s). Thus, in what follows, we will integrate
over T# instead of T". For o = (aj)jer € K and o € ¥, = {1, -1}", define

felas€) = > e(Zajxj)
xeld jer
x=€ (mod w*)

and
(517“'757‘)655(6;’[0) =1
Let s = ru with € N and u > ¢. For a,b €N, &, € A and o, T € %, define

1P = [ (57 € ieim|da
and
K (Pigom) = [ [57(0 €57 (ca )™ dex

We then define

I,»(P) = max max maxIZ,(P;€,
a,b( ) €eL (1) neL(wb) 7ES, a,b( E 77)

and

Koo(P) = K% (P:€,m).
ap(P) (hax ) max | max ap (P1€,m)

To obtain Theorem 1.1, we will iterate among the mean values Jsi(P), Ioy(P) and
K, p(P). The first step is to estimate Js1,(P) in terms of Ky 1(P) by imposing some ini-
tial efficient congruence conditions to the variables. Then we extract stronger congruence
conditions from Ko ;(P) and estimate it in terms of K, ,(P) for some b > a. On repeating
such a process, we can bound J,,(P) by a sequence of mean values K, ;(P). A major
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difficulty in each stage is to well-condition the variables such that the next efficient con-
gruence can be extracted. We overcome this difficulty by making use of the mean values
Ia,b(P)'

3. THE CONDITIONING PROCESS

For a,b,c € N, the goal of this section is to associate I, ;(P) with K, .(P) in the way
that the variables are well-conditioned in view of the definition of K, (P). In addition,
in Lemma 3.6, we complete the initial step by relating Js1,(P) to Ko 1(P).

Lemma 3.1. Forj= (j1,...,j54) € N¢ and 1 = (..., 1q) € N¢, write
B _ (7. (da
1 I la)’

For j € N4, define

Then for x,y € A%, we have

Proof. This is [16, Lemma 3.2]. O

We remark that Condition™ implies that Ry C R for each j € R. We are now in
a position to deduce a translation invariance of the Diophantine system underlying the
mean value J,,(P).

Lemma 3.2. Let c € N with ¢ < 0~' — 1. Forn € N, we have

2n
max (g dao = J (P —cM).
[ Jiese) (P~ cM)

Proof. We observe first that for ¢ < 7! —1 and M = [#P] + 1, if P is sufficiently large (in
terms of s,7, V), then P — c¢M > 0. For £ € L(w®), by the definition of f.(c; §), we have

fela;€) = > e(Z oj(wy + £)j> .

d .
yEIP—ord w¢ JGR

By (9), the integral [;z ‘fc(a; E)‘Qnda counts the number of solutions of the system

n n

Sy + € = (wa €Y (eR)

i=1 i=1

with y;,z; € I%_Ordwc (1 <i<mn). By Lemma 3.1 and Condition*, we see that the above

system is equivalent to
n n
dvi=> 7 (eR)
i=1 i=1
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On recalling that ord w = M, the lemma follows. O
Lemma 3.3. Let a,b € N with b > a. We have
Lop(P) < Kop(P) + M>W@=D+=11 4 (P),

Proof. For & € L(w?®), n € L(w®) and o € %,, we see from (9) that I7,(P; &, m) counts
the number of solutions of the system

> ailyl-a) =3 (6 -v)) (eRr)

with
yi,zi € 14, y; =&, (modw), z;=¢; (modw®?!) (1<i<r)
for some (&,...,&,),(¢q,-..,¢,) € Eq(&w), and with
u;,v; €I, w;=v;=n(modu’) (1<j<s).
For v = n (modw®), write [y] = w™b(y —n). Let T} denote the number of solutions
(vi:zi, w5, v;) (1 <i < 1<j<s) counted by I, (P; €, n) for which
rk Jac((xi)ieyg/; i, ..., [, [vil, ..., [vs]w) <.
Let T denote the number of remaining solutions, i.e., the solutions for which
rkJac((xi)ieR/; [wil,..., [usl, [val, ... [velsw) =
Thus, we have
I7y(P; &m) =T + 1o

To estimate 17, let

bH) | (¥4, i, uj, v;) counted by Tl}

C= {(ul,...us,vl,...,vs) (modw
and
C'= {([ul], oo sl [vils e [vs]) (modw) | (ay, .. us, Ve, ., V) € C}.
Consider the bijection from C to C’ defined by
(ug,...,us,vi,...,vs) — ([ui], ..., [us], [vi], ..., [vs]).
By the definition of T1, it follows from Lemma 2.1 that
cardC = cardC’ < (w)2s(d-1+r=1,

On considering the underlying Diophantine system, we have

Ty < Z /R ‘33(0435)’2 Hfb+1(a3n;‘)fb+1(—a§77;+s)da.
(e )eC T j=1

By Holder’s inequality, we have

, 2 2s ) ) 1/(2s)
[ 52 @) Tl s (s lda < TT ([, 152 (@i Plinea(ain)dar
=1 j=1

< Ia,b—i—l(P)-
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It follows that
T, < ]\72s(d—1)+r—11a7b+1(P).
We now consider the solutions counted by T5». Since
rkJaC((Xi)ieR’§ [ai], ..., [us], [vi], .. ., [Vs];w) =T
after rearranging variables, we can assume that
rk Jac((xi)ienl; wl,...,[ww)=r

Thus, there exists (1y,...,7,) € Z(n;w) such that v; = n; (modw’*1) (1 <i < r). On
considering the underlying Diophantine system, we see that

Ty < /TR T (a; &) 1°F (s M) (0 m)* "o (— s m) dex,

where 1 = (1,...,1) € X,. On recalling that s = ur, it follows from Hélder’s inequality
that

1/(2u)
Ty < ( /T i ysg<a;s)255(a;n>2“\da) ( /T i rs;'(a;s)?fb(a;n)?ﬂda)

Thus, we have

1-1/(2u)

T2 < (Ka,b(P))l/(QU) (Ia,b(P))l_l/(QU)'

On combining the above upper bounds for 77 and T, we obtain

Lo p(P) < MPED4 1Ly (P) + (Ko (P)) /Y (I

)

1-1/(2
(P)) /( “)’
which implies that
Lop(P) < MWD+ =11 o (P) + Ko p(P).
This completes the proof of the lemma. O

We remark here that by repeated applications of Lemma 3.3, whenever a,b, H € N with
b > a, we have
H-1
Ia,b(P) < Z Mh(QS(d_l)+r_1)Ka,b+h(P) + MH<2$(d_1)+T_1)Ia7b+H(P). (16)
h=0

Lemma 3.4. Let a,b,H e N with0 <b—a< H <6~ !' —1—b. We have
M@= ],y (P) < M2 (P/MP) (P /A=

Proof. For € € L(w®), n € L(w**) and & € %,, by the definition of 17 y(P; €,m), we
see that

(P& < [ [il@3) oo (o)™ o

By Holder’s inequality and Lemma 3.2, we have

) /() , s/(s+7)
o Pi&m < ([ e @Peda) ([ tasn Peda )

& (Josr(P = ad)) T (o (P = (b+ H)M))* HT),
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It follows from (14) that
Ia,b+H(P) < ps ((ﬁ/ﬁay’/(&i—r’) (ﬁ/ﬂb'ﬁ‘H)S/(S'H"))2(5+7‘)d*l€+775+7“
< ﬁ&(ﬁ/ﬂa)%ﬂdf/wrnsﬂ« (ﬁ/ﬁb)QsdT’

where
T = (Mb—a—l-H)Hs/(s—H") ]/\4\—2sdH'

Notice that s > r¢ > k. Since H > b — a, we see that
H(2s(d—1)+7r—1) 4 (b—a+ H)xs/(s + 1) — 2sdH
<H(—-2s+r—1+42krs/(s+7))
=—H+(-2s—r+7r*/s+2k)Hs/(s+ )
<-—-H.

Thus, we have
ﬁ&Z/\ZH(Qs(dfl)Jrrfl)T < ]\/Z’H/Q.

On combining the above estimates, the lemma follows. O

Lemma 3.5. Let a,b, H € N with a < b and H = b — a. Suppose that b+ H < =1 — 1.
Then there exists h € N with h < H such that

Ia,b(P) < ]/w\h(QS(d_l)+r_l)Ka7b+h(P) + ]/\Z—H/Q (ﬁ/ﬁb)%d (ﬁ/ﬁd)?f'd*l{‘i’ns-&-r.

Proof. By (16) and Lemma 3.4, the lemma follows. O
Lemma 3.6. For s = ru with u > ¢, we have

Jsrr(P) < ]\/EQSdKo,l(P).
Proof. For a € K | define
() =[]fo(es0) and  I'(P) = /TR 55 (0 0)F(—a)[fo(x; 0)[“der,
i=1

where 1 = (1,...,1) € 3,. Since the fixed w € A satisfies all conditions in Lemma 2.2, we
have

Jsir(P) < I'(Pyw) = I*(P).
By Cauchy’s inequality, we obtain

1/2 1/2
r(p) < (/TR !s<a>!2!fo(a;0)!28da> : (/TR !33(0;0)}2\’?0(61;0)\2861&) g
It follows from (9) that the first integral above is equal to Js4,(P). Thus, we have
Jsir(P) < I§o(P30,0).
Notice that

fo(a;0) = > fi(a; ).

&eL(w)
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By Holder’s inequality, we have
_ 2 2
I3(P;0,0) < (w)=D " / 36 0)[[f1(e: 6)| " der,
ger(w)’ "

which implies that

0(P:0.0) < fu max | (5@ 0) )t
£€L(w) TR

Since (w) = M, we have

Joir(P) < IEo(P;0,0) < M4y 1 (P).
When a =0 and b =1, we see that H = b — a = 1. Thus, by Lemma 3.5, we have

Io1(P) < Ko (P)+ M~Y2(B/M)* p2r=—rtnsir,
By (12), ¢ is small enough such that MY2 > P21t follows that
Josr(P) < M* Ly 1 (P) < M**' Ky (P) 4 PHetmd=rtnee—2
On the other hand, we see from (13) that
Js+r(P) > ﬁ2(s+r)dfn+ﬂs+r*5'

Thus, we have

Topr(P) < M Ko 1 (P) + P Joir (P),
which implies that

Jorr(P) < M**?Kq,(P).

This completes the proof of the lemma. ([l

4. THE EFFICIENT CONGRUENCING PROCESS

The goal of this section is to provide an iterative relation among the mean values
K, (P). Before proceeding, we need to estimate some auxiliary systems of congruences.

Proposition 4.1. For n,m € N\ {0}, let T1,..., Yy, be polynomials in Alzy,. .., z,| with
degrees ki, ..., km inz = (z1,...,z,) respectively. Let w € A be irreducible. Forl € N\{0}
and a = (a1,...,am) € A™, let Dy n(Y;a;w) denote the set of solutions of the system
of congruences
Yi(z1,...,20) = a; (modw!) (1 <i<m)
with z; € A/(w') (1 <1< n) and vk Jac(X;z;w) = m. Then we have
card Dy, o (Y5 a;w) < C4<wl>"*m,

where Cy = (n!/(m!(n —m)!)) ki -+ kp,.

Proof. 1t follows from similar arguments as in [11, Theorem 1]. For more details, see also
[15, Appendix]. O
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We recall that Js(R; P) counts the number of solutions of the system
wtw =Vt vl (ER)
with u;,v; € I% (1 < j < s). It also represents the number of solutions of the system
wtoul=vit.. 4yl ((eR)
with uj,v; € Ijl) (1 < j < s). Although the second system consists of independent
equations, it does not necessarily contain all equations of certain auxiliary congruences that

are used to well-condition variables. More precisely, since R’ is not necessarily contained
in R, for any g € A\ {0}, the system of congruences

wl o tul = vl vl (modg) (ER)
does not always imply that

w - ul=vit.. 4y (modg) (ieR).
To resolve the difficulty, we consider an alternative system. We recall that ¢ = max;jer/ [i].
Let

S= {p"i|i € R, neNand p"li] < qﬁ}.

We will prove Lemma 4.1 that S satisfies Condition*. In addition, since R’ C S, we
see that the above system of congruence shares the same solutions with the system of
congruences:

up b uy = vy vy (modg) (€ S).
This equivalence is essential in our proof of Lemma 4.2.
Lemma 4.1. For each j = (j1,...,7q4) €S, if 1 = (I1,...,1q) € N® with p { (ﬁ) (g;),
thenle S.

Proof. Let j = (j1,...,74) € S. Then there exist i € R’ and n € N such that j = p"i. Let
1=(l1,...,l3) € N% with p{ (ﬁ) ({3) By Lucas’ criterion, we have

an(l1) < ap(fr), - an(la) < an(ja) (b €N). (17)
Since ap(j1) = =ap(jqg) = 0(0 < h <n —1), we see from (17) that
ap(lhl)=--=ap(lg) =0 (0<h<n-1).

It follows that p"|l1,...,p"|lg, i.e., there exists m = (my, ..., mq) € N? such that 1 = p"m.
Since j = p™i and 1 = p"m, we obtain

antn(d1) = an(i1), - . s anyn(ja) = anlia) (h € N)
and

apin(l1) = ap(my), ... yanen(ly) = an(my) (h € N).
Then it follows from (17) that
ap(my) < ap(in), ... ,ap(mg) < ap(ig) (h €N).

Since i € R/, there exists v € N such that p’i € R. It follows from the above inequalities
that

ap(p'my) < ap(p’in), ... ,an(p’mq) < ap(p’iq) (h €N),
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Uit pYig
pt i e ]
prmi p"mq

In view of the property of R, since p’i € R, we have p’m € R. Thus, there exist u € R’
and ¢ € N such that pm = p®u. Since p { u, we have v < ¢ and m = p“ Yu. This implies
that 1 = p"m = p"*t° Yu. On recalling (17), we have |I| < |j| < ¢ and hence 1 € S. This
completes the proof of the lemma. O

which implies that

Let Rj be defined as in Lemma 3.1. We remark that by Lemma 4.1, we have R; C S
for each j € S.

Lemma 4.2. Let a,b € N with b > a, and let w € A be irreducible. For o € %,,
m = (mi)icrr € A", £ € L(w?) and n € L(w’), let B, (m;&, n;w) denote the set of
solutions of the system of congruences

Zai(zi —n)'=m; (modw!) (ieR)
=1

with z; € L(w®) and z; = §; (modw®') (1 < i < ) for some (&,...,&,) € Za(&;w).
Then we have
card By ,(m; &, m; w) < Ci (w) (r¢d=r)b+(r=rd)a,

where C5 = ((rd)!/(r!(rd — m))) TTier |il-

Proof. Let Di(n) denote the set of solutions of the system of congruences
Z oi(zi —n)' = n; (modw?) (ieR)
i=1

with z; € L(w?) and z; = &, (modw®*) (1 < i < r) for some (&1,...,&,) € Za(&;w).
Define

N ={n= (n)ier' |ni € A, degn; < deg w?® and n; = m; (modwl?) (i e R)}.
By (10), we have

card By ,(m; &, m; w) < Z cardD;(n) < (w) "~ max card D; (n).

e neN
It remains to estimate Di(n). Let (z1,...,2,) € D1(n) and write z; = w®h; +& (1 < i <r).
Since z; = £; (modw®™t) (1 <i < r) for some (£,,...,€,) € Z4(&;w), we see that

w(z; — §) = w (& — §) (modw).
Thus, we have
rk Jac((xi)ieR/; hy,...,h; w) = rkJac((xi)ieR/; &, .-, [&]; w) =r,

where [§;] = w™*(§;—&) (1 <i<r). Let (y1,...,yr) € Di(n) and write y; = wg;+&€ (1 <
i <r). We have

Z oi(w'h; + £ —n)' = Z%(wagi +&—mn)' (modw?) (ieR).

i=1 i=1
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Let S be defined as in Lemma 4.1. We see from the definition of § that the above system
implies that

T T
Y oi(w'hi+&—n) =) oi(w'gi+£—n) (modw?) (jeS).
i=1 i=1
On combining Lemma 3.1 with Lemma 4.1, since R’ C S, the above system implies that
T T
Zaihi = Zoig;‘- (mod w®~ %y (ieR).
i=1 i=1

For u = (uj)ier’ € A", we write Da(u) for the set of solutions of the system of congruences

,
Zoih§ = u; (modw? 1) (ie R
i=1
with h; € L(w?*~%) and rk Jac((x")ier/; hi, ..., hy;w) = 7. Then it follows from the above
argument that there exists some u such that

cardD;(n) < card Dy (u).
Define
V={v=(v)icr |vi €A, deguv; < deg w? ™ and v; = u; (modw?111?) (i e R)}.

For v € V, denote by D3(v) the set of solutions of the system of congruences

Z oihl = v (modw®%) (ieR)
i=1
with h; € L(w®~%) and rk Jac((xi)ieR/; hy,..., hr;w) = r. Thus, we have
card Dy (u) < (w)7e ma&ccardl)g(v).
ve

By Proposition 4.1, we have
card D3(v) < Cs(w?=a)rd="
where Cs = ((rd)!/(r!(rd — 7)!)) [T;e lil- On combining the above estimates we have
card By ,(m; £, m; w) < Ci (w) rO= bt (s=r)at(9b=a)(rd=r) — Cy (4, (réd=r)bta(s—rd)
This completes the proof of the lemma. ([l
Lemma 4.3. Let a,b € N witha < b < §~! —1. We have
Kab(P) < 3 (réd—r)b+a(k—rd) Jf($b—a)dr (Join(P — bM))lfT/s (Ib,(z)b(P))r/s-

Proof. For & € L(w®), n € L(w®) and o, T € %, we see from (9) that KZ;)T(P;ﬁ,n) counts
the number of solutions of the system
T u T
dooilyi=z) =3 mm(u, -vi,) GER) (18)
i=1 1=1 m=1
with
a+1)

Vi, Z; € II%, yi =&; (modw , Zi =Y (modw‘”l) (1<i<r)
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for some (&;,...,&,), (V1s---57y) € Ea(§; w), and with

b—i—l)

Uy, Vim € Ildg, Wom =Ny, (modw’™™), Vi = Vi (modwbH) 1<i<u,1<m<r)

for some (7, 4,...,m,), Wi,1,---,v1r) € Zp(n;w). On combining Lemma 3.1 with Con-
dition™, we see that (18) is equivalent to the system

T

Y oi(lyi—m = (zi—n)) =D m((wm —n) = (Vim —m)) GER).
i=1

=1 m=1

Then by the definition of R’, it follows that

T

Zai((}’i -n)' = (z;—n)') = Z Z T (W — 1) = (Vi —m)') (1€R).

i=1 =1 m=1

Given a solution (yi,2;, W m,Vim)(1 < ¢ < 7,1 <1 < wu,1 < m < r) counted by
K77 (P;€,m), we have u;,, = vy, =1 (modw®). Thus, the above system implies that

a,

Zai(yi —n)i= Zai(zi —n)! (modw!®) (ieR). (19)
i=1 i=1

Let B(m) = BZ,(m; &, n; w) be defined as in Lemma 4.2. Write

67, (o€, m;m) = > T fss(oic: o).
(CrrmCr)EB(m) i=1

Notice that for each m = (mj)iers € A", the integral [1r ‘(’5g’b(a; &, m; m)QSZ’;(a;n)?“‘da
denotes the number of solutions (y;, 2z, Uy m, Vim) (1 < i <71 <1<y 1<m<r)
counted by K7; b "(P;&,n) in which (y1,...,y,) (modw?) and (z1,...,z,) (modw?’) lie in
B(m). Thus, by (19), we have

KJT(Pigm) < ) / (a; €, m;m)*§] (e;m)*"|dex.

deg mi<deg w!il®
(ieR’)
By Lemma 4.2 and Cauchy’s inequality, we have

67, (&, mm)|* <cardBm) > ] [fa(a:¢)|?

(¢15eesCy)EB(mM) i=1

< N(réd—r)b+(r—rd)a Z H e Ci)‘Q
(€156 EB(M) i=1
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It follows that
K77 (Pi&m)

Rt DS > / ( \qub(a;mf)|sz<a;n>\2“da

deg mi<deg wil® (¢1,--,¢, ) EB(m
(ieR’)

< qresem 5[ (H\f@acl *) 87 i) e

¢, EL(w??)
¢i=€ (modw“)
(1<i<r)

By Holder’s inequality, we see that

> Hmb(a;ci)\?—( > \f¢b<a;c>\2>

CE€L(w?) =1 CEL(w?)
¢;=¢ (mod w®) ¢=¢ (mod w®)
(<i<r)
—a)(r— 2r
< ()= N (e €)|
CEL(w?)
¢=¢ (mod w?)

Thus, we have

KséT(P; €, T[) < ]/\Z(r¢dfn)b+(nfrd)aﬁrdwaa) max / }f(j)b(a; C)Qrgg'(a; n)2“|da.
’ CEL(w??) JTR
(20)

On recalling that s = ru, it follows from Hoélder’s inequality that
| enles O 57 (o) < 003

where

vi= [ st e and o= [ (5T (@sm) os(es O do

On considering the underlying Diophantine system, we can deduce from Lemma 3.2 that
U < /TR lfo(c; )| dev < Jyyr (P — DM).

On noticing that Us = IZI@,(P; n, &), we have

/T Fanles 7§ (asm)®|dax < (Juar (P = 600)) " (B (P) "
On combing the above estimate with (20), the lemma follows. O
For a,b € N with a < b, we define the normalised magnitude of K, ,(P) as follows:
([5ap(P)]) = Kap(P)(P/ M) (P /A1),

Lemma 4.4. Let a,b € N witha <b < 6~' —1. We have
[Kas(P)]] < Pt 3 (A",
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Proof. For &€ € L(w®), n € L(w®) and o, T € ,, on considering the underlying Diophan-
tine system, we see from Holder’s inequality that

K7 (P;&m) < /’JFR a0 €)% o (s )| dex

r/(s+r) s/(s+r)
: </ |fa<a;£>\2(””da> </ Ifb<a;n>\2(s”)d°‘> |
TR TR

Since a < b < #~! — 1, by Lemma 3.2, we have
Kap(P) < (Joar(P = ab)) "/ (g (P = b20)) 4.
Thus, it follows from (14) that
([Kan(P)]] = Kap(P)(P/M) 72 (P/M)2r
< p? ((ﬁ/ﬁa)r/(s-&-r) (ﬁ/ﬂb)s/(s-w))2(3+T)d*“+77.s+r (ﬁ/ﬁb)—%d(ﬁ/ﬁu)n—%d
< ﬁns+r+5(]/\4\b—a)ns/(s+r).
This completes the proof of the lemma. Il

Lemma 4.5. Let a,b,H € N with a < b < (2¢0)~" and H = (¢ — 1)b. Then there exists
h € N with h < H such that

[[Ka,b(P)H < (ﬁ/]/\ib) Ns+r M—rH/(Zﬂs) _’_136]/\4\—(25—r+1)hr/s (f)/ﬁb)nerr(l_T/S) [[Kb,d)b—‘rh (P)Hr/s

Proof. 1t follows from Lemma 4.3 that
[Kap(P)]] = Kap(P)(P/M) (P /M)~
< (ﬂb)Qsd(]/\J\a)2rd7ﬁ]/\4\(r¢d7fi)bJr(/ifrd)a]/w-\(d)bfa)dr‘/11—7’/8‘/27“/5

where R ~
V"l _ JS+T(P - bM)PK72(S+7')d and ‘/*2 _ Ib7¢b(P)P,‘-€*2(S+7’)d'
By (14), we see that
Vi < ﬁ(S(M—b)Q(S"FT‘)d—H(ﬁ/Mb)ns+r'

Since H = (¢ — 1)b, we have

ob+H =¢b+ (¢ —1)b < 2¢pb—1 < 61 —1.
It follows from Lemma 3.5 that there exists h € N with h < H such that

Vo < ]\/Ih(Qs(d—l)+r—1)Kb7¢b+h(P)fm—Z(s—i-r)d
+ ]\/Z—H/2 (ﬁ/ﬁbqﬁ)%d (ﬁ/ﬁb)2rdfm+ns+rﬁn—2(s+r)d.

Thus, we have

2rd—k

Ve << (M)A W

where . - o
‘/5)) — Mh(725+7“71) [[Kb,¢b+h (P)]] + M*H/Z (P/Mb)ns+r '
On combining the above upper bounds for [[/K,;(P)]], Vi and V3, we have

[Kap(P)]] < MPP(P/M) (o) (A=r/9)r/s,
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where
Q =b(2sd) + a(2rd — k) + (r¢d — k)b + (k — rd)a + (¢pb — a)dr
+(=b) (2(8 +7)d — m)(l —r/s)+ ( — (¢b)(2sd) — b(2rd — H))(T/S).
A straightforward computation shows that 2 = 0. Thus, we obtain
[Kus(P]) < PP (P/AIY)™* (31 -1/2)")°
4 PONf(=2str—Dhr/s (ﬁ/ﬁb)ns+r(l—r/s) HKWH}L(P)HT/S_
By (12), we have § < §/(6s) and hence D% < MTH/(69) Thus, we have
[[Kap(P)]) << (B/MP)™ M1/
L PO (@s—r+Dhr/s (ﬁ/ﬁb)ns+r(1—r/5)[[Kb@b%(p)“r/s,
This completes the proof of the lemma. O

5. PROOF OF THEOREM 1.1

In this section, we will prove Theorem 1.1. We begin by establishing the following
iterative process:

Lemma 5.1. Let a,b € N with a < b < (2¢0)~'. Suppose that there exist 1) > 0, v > 0
and ¢ > 0 with ¢ < (2s/r)N such that

Prs+r(14+90) ﬁcéﬂfv[[Ka,b(p)H.
Then there exists h € N with h < (¢ — 1)b such that
P00« PN [[K gy (P)]],
where
W= (st (s/r— )b, & =(s/r)ct1), A =(s/rhy+ (@5 —r+Dh,
ad=hb and b = ¢b+ h.

Proof. By Lemma 4.5, there exists h € N with A < (¢ — 1)b such that
HKmb(P)H < ﬁ775+r]/\4\—1/(3s) + f)(F]/\Z—(QS—T—I—l)hr/S (ﬁ/]/\jb)ns-‘rr(l*T/S) [[Kb,q}bJrh(P)]]r/s-

Since § = N~/2(r/s)N+2 by (12), we have ¢§ < 6/(6s) and hence P¥ < MVY/(©) We
also have § < 6/(6s) and hence P < M'/(65)_ Then by the hypothesis on Ps+r(14%0) e
see that

ﬁns+r(1+w9) < ﬁns+r76 + ﬁ(c+1)5]/\27'y7(237r+1)hr/3 (ﬁ/ﬁb)ﬂwr(l—?‘/s) [[Kb d)b—i—h(P)Hr/S'
Thus, we have
ﬁns+r(r/5+(w+(1—r/s)b)0) < ﬁ(c—i—l)éﬁ—v—@s—r—i—l)hr/s[[Kb’(z)bJrh(P)Hr/s’
which implies that
Pretr U0 < PEOM Y ([ g (P)].
This completes the proof of the lemma. O
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We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We recall that to prove the theorem, it suffices to show that for
d>2,¢>2and s >r¢, we have ngy, = 0. By (11), we have ns4, > 0 for s > r¢.

We first consider the cases that s = ru with v € N and u > ¢. Suppose that nsq, > 0.

Define the sequences of non-negative integers (a,)_, and (b,))_, by setting ag = 0 and

bp = 1. Then for 0 < n < N, we fix h,, € N (which will be chosen later) with h,, < (¢—1)b,
and define

Gnt1 = by and bnt1 = dby + hy.

We now define the auxiliary sequences of non-negative real numbers (wn)gzo, (cn)flvzo,

(vn)_, by setting ¥9 =0, co = 1 and 4y = 0. Then for 0 < n < N, we define
Ung1 = (8/1)Un+(s/r=1)bn, g1 =(s/r)(cn+1), g1 = (8/r)m+(2s—r+1)hy.

The above sequences satisfy the following properties:
Claim: (a) ¥, > n(¢ —1)¢" 1 (0 <n < N).
(b) en < (n+1)(s/r)" (0 <n < N).
(©) T > (25— 7+ 1)(by— 6" (0 < n < ),
(d) For N sufficiently large (in terms of s and r), there exists a sequence (h,) such that
for 0 < n < N, we have

by < VN (s/r)" (21)
and —
Pror(Lnd) o Pend N ([, (P)]. (22)

Proof of the Claim. (a) Notice that b, > ¢™ (0 <n < N). Since s > r¢, we have
¢n+1 > ¢wn + (¢ - 1)bn > (Wn + (¢ - 1)¢n'

By induction, the result follows.
(b) The upper bounds follow from a straightforward inductive argument.
(c) Since by 41 = @by, + hy, we see that

Ynt1 = (8/7)m = (25 = 7 4 1)(bny1 — ¢bn).
On recalling that s/r > ¢, we have
Ynt+1 — (28 =7+ Dbyt = (/1) — ¢(2s — r + 1)b, > (;5(’yn —(2s—r+ 1)bn).
Since bg = 1 and 9 = 0, it follows by induction that
Yo > (2s =1+ Dby +¢"(v0— (2s —r+1)bo) = (2s —r + 1) (b, —¢") (0<n < N).

(d) We now apply an inductive argument on (21) and (22) simultaneously. Recall that
ap=0,bp =1, 19 =0, co =1 and 79 = 0. On combining (11) with Lemma 3.6, we have

Pretr < POmAstdR gL (P) < POTASANdER 2 e (P) = PP[Ko1(P)]).

Thus, (22) is true for n = 0. We notice that (21) is also true for n =0 as by = 1. Suppose
that (21) and (22) are true for n with 0 < n < N. By Claim (b), we have ¢, < (2s/r)".
On recalling that § = N~1/2(r/s)N*+2 we see from the hypothesis of (21) that

Pbnf < p(s/r) N < 97! <1/2,
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which implies that b, < (2¢8)~!. Thus, it follows from Lemma 5.1 and the hypothesis of
(22) that there exists h € N with h < (¢ — 1)b,, such that

Prosr(490)  PEONTY ([ Ky (P)]], (23)
where

= (8/7)tn + (/7 — 1)bn, d = (s/r)(en + 1), v = (8/m)yn + (25 —r + 1)h,
a = b, and b = @b, + h.

Notice that ¢’ = ¥p11, ¢ = ¢,y1 and @’ = a,1. By taking h,, = h, we also have 7/ = ~v,11
and b’ = by, 11. Thus, we see from (23) that (22) is true for n + 1. We now consider (21)
for n 41, with h,, = h chosen as above. Suppose that b, 1 > /N (s/r)" L. Since s/r > ¢,
we see from Claim (c) that

Y1 = (8/7)n + (25 =7 + 1) (bpt1 — ¢bn)
> (s/r)((2s =7+ )by — (2s =7+ 1)(s/r)") 4+ (25 — 7+ 1) (bpy1 — (5/7)by)
> (2s —r+1)(bpg1 — (s/r)"“)
> (25 —r+1)(1 —1/VN)bpy1.
Since

bps1 = Pbp +h < 20b, —1 <71 —
it follows from Lemma 4.4 that

(B2 i (P < Pt F (R0 1)
Thus, we see from (23) that
Prstr(14¥n10) o pnstrt(cnt1+1)d (M\bn+1)“’(25’T+l)(1*1/‘/N)_
Since kK < r¢ < s and ¢ > 2, we have
—(2s—r4+1)(1—=1/VN) < s—(2s—r+1)+(25s—r+1)/VN = —s+r—1+(2s—r+1)/VN.
Thus, when N is sufficiently large, we obtain
k—(2s—r+1)(1-1/VN) < —

By Claim (b), we see from (12) that ¢ is small enough such that (¢,+1 + 1) < 0/2 and

hence
ﬁns+r¢n+19 < ﬁ*@bn+1/2'

Since ¥p+1 > 0, 8 > 0 and b, 1 > 0, the above inequality implies that nsy, = 0, which
leads to a contradiction. Thus, we conclude that b,1; < v/N(s/r)"*! and hence (21) is
also true for n 4 1. This completes the proof of Claim (d).

Since § = N~Y2(r/s)N*2 and r/s < 1/¢ < 1/2, by Claim (d), we see that by <
(r/s)?> < 1 —6 and hence by < 6~! — 1. Since by > ¢, it follows from Claim (c) that
vn > 0. By Claim (d) and Lemma 4.4, for N is sufficiently large, we have

ﬁ775+r(1+'¢N‘9) < ﬁ775+r+(CN+1)5]/\4\bN’€ < ]3775+r+7“¢'
By Claim (a), we have

Ns+r <1/ (Un0) <o/ (N (¢ — 1) 10).
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~1/24=N-2

In particular, on taking s = r¢, we see that 6 = N and hence

Mrgr < ¢V 2 /(VN (G = 1)) <rg!/VN.
Since we can take N as large as possible (in terms of s and r), we have 9,44, = 0.

We now consider general s € N with s > r¢. By the trivial bound |f(a; P)| < ﬁd, we
have

Js—i—r(P) < ﬁQ(sfr‘d))d AR \f(a, P)|2(r¢>+7“)dda _ ﬁ2(sfr¢)djr¢+T(P),

which implies that 151, < 9p¢4, for s > r¢. Thus, ns, = 0 for s > r¢. This completes
the proof of the theorem. O

6. PROOF OF THEOREM 1.2

In this section, we will prove Theorem 1.2. Let k € N with p { k, and let £ and R{, be
defined as in Section 1. We write ¢ = card £ and p = card Ry,.

Lemma 6.1. For k > 2, a = (i)iery € Kb and P € N\ {0}, define

F(a; P) = Z e< Z Ozixi>.
x€lg ieR],
For Q € N\ {0} with Q < P, let a,g € A with g monic, ged(a,g) =1 and (g) < QF. For
a fized 1 € L, suppose that (gag —a) < Q™F and that either (gag —a) > QP~F or (g) > Q.
Then we have

|F(a; P)| < (g) P* (@*1(1 + <g>(13/@)fk))1/(2u<k+1)).

Proof. By Corollary 1.1 and [16, Lemma 9.1], the lemma follows on replacing M with Q,
and taking s = pu(k + 1) and Ay =e. O

For ¢ = (c1,...,¢s) € (A\ {0})*, we recall that Ny qc(P) counts the number of the
solutions of the system
axi+-dexi=0 (1€kL)
with x; € I% (1 < j < s). For a = ()1er € K, and P € N\ {0}, define
fi@) = filasP)= 3 e(zcjalxl) 1<j<s)
xeld Vel

By (9), we see that
S
A@kdﬁcp)::j/ 1] fi(e)de
L ]:1

We now apply the Hardy-Littlewood circle method to analyze the above integral. We begin
by dividing T* into the major arcs and the minor arcs as follows: given a = (a))1e, € A,
g € A monic with ged(ay, g) = 1(1 € £), we define the Farey arc 9(g,a) about a/g by

M(g,a) = {a €T | (ga1 — a) < PY2p~F (1¢ L)}
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Write (c) = max {(c;)|1 < j < s}. The set of major arcs M is defined to be the union
of all M(g,a) with a = (a1)1cx € A* and g € A monic, which satisfy ged(aj,g) = 1 and
0 < {(a1) < (g) < (c)PY2 (1 € £). Then we write m = T*\ 9 for the complementary set of
minor arcs. We now estimate the contribution over minor arcs.

Lemma 6.2. Let k > 2. For each j with 1 < j < s, we have
sup | fj(a)| <« PA-1/ (i) +e
acm

Proof. Let o € mand @ = [P/(2:)]. By [4, Lemma 3], for each 1 € £, there exist ) € A and
g1 € A monic, which satisfy ged(ay,g1) =1, 0 < {(a1) < (g1) < Q" and (gicjon —ar) < Q"
Using the same argument as in [16, Lemma 10.1], there exists 1 € £ such that (g) > Q or
(gicjon — ar) > @]3_’“ By Lemma 6.1, we have

fi()] < Pd—1/(dup(k+1))+e
This completes the proof of the lemma. O

Let Ip, 1.q4(P) denote the number of solutions of the system
Xit+ X, =yt Y, (L€L)

with x,,,yn € Ij‘i (1<n<m). Forh= (hi)ig% € Hig% I p, write Jm.k,da(P;h) for the
number of solutions of the system

(Xil'i‘"""xin) — (yi1_|_...+y1in) =h; (ieRyp)
with X,,, ¥y, € I% (1 < n < m). By [16, Lemma A.2], we have £ C R}, and hence

Im,k,d(P) = Z jm,k,d(P> h))
h

where the summation is over h = (hi)ier; € Hig% Ijp with h; = 0 when i € L. Let
K = ZieRg li|. It follows from Corollary 1.1 that for m > pk + p, we have

Ime,d(P) < ﬁK_ijch,d(P) < ﬁK—LkJﬁde—K-f—e _ ﬁde—Lk}+€’ (24)
where the implicit constants depend on m,d, k and gq.

Lemma 6.3. Let k> 2 and s > 2uk +2u+ 1. We have

/ f[ |fj()|daw < Pod=tk=1/ k),
m ;g

Proof. Write mg = uk 4+ pu and sg = 1+ 2mg. By Holder’s inequality, we have

fila)|dae < sup | fi(ex) fi(a)|de
[ It < sup @] | TT |50

S0 om p 1/(2mo)
< j 0 :
< i@/ I ([ el ae)
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On considering the underlying Diophantine equations, by (24), we have
/ |50 det = I oa(P) <€ PHod=e (9.< j < ).
']TL

Thus, we see from Lemma 6.2 that

s0
/H |i(0)|dox < P=1/(unlk+ ) e pamad—kte o Prod—th—1/Eulk+1))

Then by using the trivial bound that |fj(c)| < Pl(sg+1<j<s),it follows that

S S0
/ H |f](a)‘da < ﬁ(sso)d/ H |f](a)‘da < ﬁsdekfl/(BL,LL(k‘+1)).
mj:1 mj:1

This completes the proof of the lemma. O
We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. When s > 2uk+2p+1, it follows from Lemma 6.3 that there exists
n = n(d; k; q) > 0 such that

/ml:[ fila)do = O(ﬁSd_Lk_”).

When s > 2(¢+1)k+1, by [16, Theorem 6.1], subject to a local solubility hypothesis, we
have

/ H fj(a)da _ Cgﬁsd—bk + O(ﬁsd—Lk—n)’
My
where C5 = Cs(s,d; k; g;¢) > 0. Recall that
NowaelP) = [ T]sit@da= [ T] fieda+ [ T] e
T 524 Mmoo m._q
J J J
Since g > ¢+ 1, on combining the above estimates, the theorem follows. O
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