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Abstract. Let Fq[t] denote the polynomial ring over the finite field Fq. We employ Woo-
ley’s new efficient congruencing method to prove certain multidimensional Vinogradov-
type estimates in Fq[t]. These results allow us to apply a variant of the circle method to
obtain asymptotic formulas for a system connected to the problem about linear spaces
lying on hypersurfaces defined over Fq[t].

1. Introduction

One central problem in number theory is concerned with integral points lying on hy-
persurfaces. In particular, for s, k ∈ N = {0, 1, 2, . . .} with k ≥ 2 and a = (a1, . . . , as) ∈
(Z \ {0})s, we could ask how large s should be (in terms of k and independent of a) so
that the hypersurface

a1w
k
1 + · · ·+ asw

k
s = 0 (1)

contains a non-trivial integral point. Additionally, establishing an asymptotic formula
for the number of such points has become a substantial research area. For P ∈ N, let
Ms,k,a(P ) denote the number of solutions of (1) with wj ∈ [−P, P ] ∩ Z (1 ≤ j ≤ s).
A celebrated result of Wooley [10] states that, subject to a local solubility hypothesis,
whenever s ≥ k log k + O(k log log k), we have Ms,k,a(P ) � P s−k. His recent ground-
breaking work [12] can also be used to show that whenever s ≥ 2k2 + 2k − 3, we can
establish an asymptotic formula for Ms,k,a(P ). In [13], Wooley further improved his result
and showed that if k ≥ 6, it suffices to take s ≥ 2k2 − 2k − 8. In this case, no local
solubility hypothesis is required (except for indefiniteness) since the result of Davenport
and Lewis in [3] shows that k2 + 1 variables suffice to satisfy the congruence conditions.

Because of the homogeneity of (1), if a non-trivial integral point lies on (1), then the
hypersurface contains the line through the origin and that point. Thus, the above problem
can be viewed as a question about linear spaces of dimension 1. It is therefore natural
to consider linear spaces of higher dimension. Results concerning the existence of such
spaces date to work by Brauer [2] and Birch [1]. Asymptotic estimates for linear spaces
on the hypersurface (1) were first established by Parsell (see [7] and [8]). More precisely,
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for d ∈ N with d ≥ 2, we find that the linear spaces of dimension d are in correspondence
with solutions of the system

a1u
i1
11 · · ·u

id
d1 + · · ·+ asu

i1
1s · · ·u

id
ds = 0 (i1 + · · ·+ id = k). (2)

Let Ms,k,d,a(P ) denote the number of solutions of (2) with ulj ∈ [−P, P ] ∩ Z (1 ≤ l ≤
d, 1 ≤ j ≤ s), and let n1 =

(
k+d
k

)
− 1. A result of Parsell [8] states that, subject to a local

solubility hypothesis, whenever s ≥ 2n1k
(
(2/3) log n1 + (1/2) log k

)
+O(n1k log log k), we

can establish an asymptotic formula for Ms,k,d,a(P ). In their recent work, by employing
Wooley’s new efficient congruencing method, Parsell, Prendiville and Wooley [9] have
further improved the above bound to

s ≥ 2n1k + 2n1 + 1. (3)

The main result in [9] is indeed applicable to general translation-dilation invariant systems
(for definition, see [9, Section 2]).

Let Fq[t] be the ring of polynomials over the finite field Fq of q elements whose character-
istic is p. Since there exists remarkable similarity between Z and Fq[t], we can formulate the
above questions in function fields. Let k ∈ N with p - k. For c = (c1, . . . , cs) ∈ (Fq[t]\{0})s,
consider the hypersurface defined by

c1z
k
1 + · · ·+ csz

k
s = 0. (4)

For P ∈ N, let IP be the subset of Fq[t] containing all polynomials of degree < P . Let
Ns,k,c(P ) denote the number of solutions of (4) with zj ∈ IP (1 ≤ j ≤ s). A result of the
second author and Wooley [6] states that, subject to a local solubility hypothesis, whenever

s ≥ (4/3)k log k+O(k log log k), we have Ns,k,c(P )�
(
qP
)s−k

. Moreover, under the same
hypothesis, their recent work on Vinogradov’s mean value theorem in function fields can
be used to prove that whenever s ≥ 2n2k + 2n2 + 1, where 1 ≤ n2 = n2(k; p) ≤ k, we can
establish an asymptotic formula for Ns,k,c(P ). The Lang-Tsen theory of Ci-fields (see [5,
Theorem 8]) shows that (4) possesses a non-trivial solution whenever s ≥ k2 + 1. Thus, if
2n2k + 2n2 ≥ k2, then the local solubility hypothesis is automatically satisfied.

We now consider linear spaces of higher dimension in function fields. For d ∈ N with
d ≥ 2, let x1, . . . ,xd ∈ Fq[t]s be linearly independent vectors and define

Span{x1, . . . ,xd} =
{
f1x1 + · · ·+ fdxd

∣∣ f1, . . . , fd ∈ Fq(t)
}
.

Write xi = (xi1, . . . , xis) (1 ≤ i ≤ d). Then the hypersurface (4) contains the d-dimensional
linear space Span{x1, . . . ,xd} if and only if

c1(f1x11 + · · ·+ fdxd1)k + · · ·+ cs(f1x1s + · · ·+ fdxds)
k = 0.

By the multinomial theorem, we see that the above equation is true for every d-tuple
(f1, . . . , fd) ∈ Fq(t)d if and only if x1, . . . ,xd simultaneously satisfy the equations

k!

i1! · · · id!
(
c1x

i1
11 · · ·x

id
d1 + · · ·+ csx

i1
1s · · ·x

id
ds

)
= 0 (i1 + · · ·+ id = k).

Since the characteristic of Fq is p, the above system is equivalent to the system

c1x
i1
11 · · ·x

id
d1 + · · ·+ csx

i1
1s · · ·x

id
ds = 0 ((i1, . . . , id) ∈ L), (5)
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where the set L is defined by

L =
{

(i1, . . . , id) ∈ Nd
∣∣ i1 + · · ·+ id = k and p -

k!

i1! · · · id!

}
.

Let Ns,k,d,c(P ) denote the number of solutions of (5) with xlj ∈ IP (1 ≤ l ≤ d, 1 ≤ j ≤ s).
For i = (i1, . . . , id) ∈ Nd, we write |i| = i1 + · · ·+ id, and write p - i if p - il for some l with

1 ≤ l ≤ d. We abbreviate a monomial of the shape xi11 · · ·x
id
d by xi. For m ∈ N, write m in

base p, say m = a0(m)+a1(m)p+ · · ·+aD(m)pD, where ah(m) ∈ [0, p−1]∩Z (0 ≤ h ≤ D).
In order to estimate Ns,k,d,c(P ), we need to estimate a Vinogradov-type system. Let

R0 =
{
i ∈ Nd

∣∣ ∃n ∈ N such that an(k) ≥ 1 and ah(i1) + · · ·+ ah(id) ≤ ah+n(k) (h ∈ N)
}

and
R′0 =

{
i ∈ R0 | p - i

}
.

Let Js,k,d(P ) denote the number of solutions of the system

xi
1 + · · ·+ xi

s = yi
1 + · · ·+ yi

s (i ∈ R′0)

with xj ,yj ∈ IdP (1 ≤ j ≤ s). Write ι = cardL, the cardinality of the set L, and
µ = cardR′0. A result of the third author [16] states that for k ≥ d + 2, subject to
a local solubility hypothesis, whenever s ≥ 2µk

(
log(ιµk) + log log(µk) + 10

)
, we can

establish an asymptotic formula for Ns,k,d,c(P ).

In this paper, we will employ Wooley’s new efficient congruencing method to improve the
aforementioned result in [16]. In addition to obtaining an upper bound for Js,k,d(P ), we
will estimate a more general Vinogradov-type system. Our generalisation seems flexible
and could be applied to various Diophantine problems in function fields, including the
multidimensional Waring problem and the Tarry problem. We will return to these projects
in future papers.

Let R be a finite subset of Nd satisfying the following property:

Condition*: for each j = (j1, . . . , jd) ∈ R, if l = (l1, . . . , ld) ∈ Nd with p -(
j1
l1

)
· · ·
(
jd
ld

)
, then l ∈ R.

Let Js(R;P ) denote the number of solutions of the system

uj
1 + · · ·+ uj

s = vj
1 + · · ·+ vj

s (j ∈ R) (6)

with uj ,vj ∈ IdP (1 ≤ j ≤ s). We will see in Lemma 3.2 that Condition* implies that
Js(R;P ) satisfies a translation invariant property. This condition also plays an important
role in the process of efficient congruencing. Since p is the characteristic of Fq, if there
exist i, j ∈ R with j = pvi for some v ∈ N \ {0}, then we have

s∑
j=1

(uj
j − vj

j) =

( s∑
j=1

(ui
j − vi

j)

)pv
.

Thus, the equations in (6) are not always independent. The absence of independence
suggests that Vinogradov-type estimates for integers cannot be adapted directly into a
function field setting. To regain independence, we instead consider

R′ =
{
i ∈ Nd | p - i and pvi ∈ R for some v ∈ N

}
. (7)
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Then we see that Js(R;P ) also counts the number of solutions of the system

ui
1 + · · ·+ ui

s = vi
1 + · · ·+ vi

s (i ∈ R′) (8)

with uj ,vj ∈ IdP (1 ≤ j ≤ s). By extending Wooley’s efficient congruencing method, we
will prove the following theorem:

Theorem 1.1. Let r = cardR′, φ = maxi∈R′ |i| and κ =
∑

i∈R′ |i|. Suppose that d ≥ 2,
φ ≥ 2 and s ≥ rφ + r. Then for each ε > 0, there exists a positive constant C1 =
C1(s, d; r, φ, κ; q; ε) such that

Js(R;P ) ≤ C1

(
qP
)2sd−κ+ε

.

We notice here that although the equations in (8) are independent, the set R′ is not
necessarily contained in R. This lack of inclusion prevents the transfer of certain congru-
ence relations between R and R′. However, such a transition is necessary to proceed with
efficient congruencing. We address this issue by introducing an alternative set extending
R′ in Section 4. Since the new set satisfies Condition* and contains R′, it allows successful
use of efficient congruencing.

By [16, Lemma A.4], we see that R0 satisfies Condition*. It also follows from [16,
Lemma 8.1] that

R′0 =
{
i ∈ R0 | p - i

}
=
{
i ∈ Nd | p - i and pvi ∈ R0 for some v ∈ N

}
.

In addition, a straightforward calculation shows that k = maxi∈R′0 |i| as p - k. Since

Js,k,d(P ) = Js(R0;P ), we can derive the following corollary from Theorem 1.1:

Corollary 1.1. Let p be the characteristic of Fq, µ = cardR′0 and K =
∑

i∈R′0
|i|. Let

s, k, d ∈ N with d ≥ 2, k ≥ 2 with p - k and s ≥ µk + µ. Then for each ε > 0, there exists
a positive constant C2 = C2(s, d; k; q; ε) such that

Js,k,d(P ) ≤ C2

(
qP
)2sd−K+ε

.

Let Fq(t) be the fraction field of Fq[t]. For a place w ∈ Fq[t], let Fq(t)w denote the
completion of Fq(t) at w. By combining the above corollary with a variant of the Hardy-
Littlewood circle method, we can significantly improve the result in [16, Theorem 1.1] as
follows:

Theorem 1.2. Let p be the characteristic of Fq, ι = cardL and µ = cardR′0. Let
s, k, d ∈ N with d ≥ 2, k ≥ 2 with p - k and s ≥ 2µk + 2µ + 1. Suppose that the system
(5) has non-trivial solutions in all completions Fq(t)w of Fq(t). Then there exist positive
constants C3 = C3(s, d; k; q; c) and η = η(d; k; q) such that

Ns,k,d,c(P ) = C3

(
qP
)sd−ιk

+O
((
qP
)sd−ιk−η)

.

An interested reader can find explicit calculations of ι and µ in [16, Lemma 12.2, Lemma
12.3]. It is worth remarking that when k is of certain form, both ι and µ are independent
of k. For example, when k = 1 + pE (E ∈ N \ {0}), we have that ι = d2 and µ = d(d+ 1).
In this case, the bound for s in Theorem 1.2 is sharper than its integer analogue in (3).
Moreover, we may save additional variables by employing a new strategy, introduced in
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[12], [13] and [14], for transforming Vinogradov-type estimates to minor arc contributions.
We will pursue this improvement in future work.

2. Preliminaries

We begin this section by introducing the Fourier analysis for function fields. Let A =
Fq[t], and let K = Fq(t) be the fraction field of A. Let K∞ = Fq((1/t)) be the completion
of K at ∞. We may write each element α ∈ K∞ in the shape α =

∑
i≤v ai(α)ti for some

v ∈ Z and ai(α) ∈ Fq (i ≤ v). If av(α) 6= 0, we say that ordα = v and we write 〈α〉 = qordα.
We adopt the convention that ord 0 = −∞ and 〈0〉 = 0. It is also convenient to refer to
a−1 as being the residue of α, denoted by resα. Given that the characteristic of Fq is p,
we are now equipped to define the exponential function on K∞. Let e(z) denote e2πiz, and
let tr : Fq → Fp denote the familiar trace map. There is a non-trivial additive character
eq : Fq → C× defined for each a ∈ Fq by taking eq(a) = e(tr(a)/p). This character induces
a map e : K∞ → C× by defining, for each α ∈ K∞, the value of e(α) to be eq(resα). Let
T =

{
α ∈ K∞ | ordα < 0

}
. Given any Haar measure dα on K∞, we normalise it in such a

manner that
∫
T 1 dα. The orthogonality relation underlying the Fourier analysis of Fq[t],

established in [4, Lemma 1], takes the shape∫
T
e(xα) dα =

{
1, when x = 0,

0, otherwise.

Thus, for n ∈ N \ {0}, (x1, · · · , xn) ∈ An and α = (α1, · · · , αn) ∈ Kn
∞, we have∫

Tn
e(x1α1 + · · ·+ xnαn) dα =

n∏
l=1

∫
T
e(xlαl) dαl =

{
1, when xl = 0 (1 ≤ l ≤ n),

0, otherwise.
(9)

Let R be a finite subset of Nd satisfying Condition*, and let R′ be defined as in (7).
Recall that for i = (i1, . . . , id) ∈ Nd, we write |i| = i1 + · · ·+ id. We also denote

r = cardR′, φ = max
i∈R′
|i| and κ =

∑
i∈R′
|i|. (10)

For X ∈ R, let X̂ = qX . For P ∈ N, we recall that IP =
{
x ∈ A | 〈x〉 < P̂

}
. Let Js(R;P )

be defined as in (8). For h = (hi)i∈R′ ∈
∏

i∈R′ I|i|P , define Js(P ; h) to be the number of
solutions of the system

s∑
j=1

(ui
j − vi

j) = hi (i ∈ R′)

with uj ,vj ∈ IdP (1 ≤ j ≤ s). Thus, Js(P ; h) = Js(R;P ) whenever hi = 0 (i ∈ R′). For
(α) = (αi)i∈R′ ∈ Kr

∞, write

f(α;P ) =
∑
x∈IdP

e

(∑
i∈R′

αix
i

)
.
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By (9), we have

Js(P ; h) =

∫
Tr

∣∣f(α;P )
∣∣2se(−∑

i∈R′
αihi

)
dα.

Since

Js(P ; h) ≤
∫
Tr

∣∣f(α;P )
∣∣2sdα = Js(R;P ),

it follows that

P̂ 2sd ≤
∑

h∈
∏

i∈R′ I|i|P

Js(P ; h) ≤
∑

h∈
∏

i∈R′ I|i|P

Js(R;P ) = P̂ κJs(R;P ).

Thus, we have

Js(R;P ) ≥ P̂ 2sd−κ. (11)

For s ∈ N, we say that λs is admissible for R if for any ε > 0 and P ∈ N sufficiently

large (in terms of s, d, r, φ, κ, q and ε), we have Js(R;P ) � P̂ λs+ε. Define λ∗s to be the
infimum of the set of exponents λs admissible for R. Thus, for P sufficiently large, we
have

Js(R;P )� P̂ λ
∗
s+ε.

Write ηs = λ∗s − 2sd+ κ. It follows from (11) that ηs ≥ 0.

In the following, we abbreviate Js(R;P ) as Js(P ). We will focus on estimating Js+r(P )
for s = ru with some u ∈ N satisfying u ≥ φ. Then Theorem 1.1 can be established by
showing that ηs+r = 0. Let N ∈ N be sufficiently large (in terms of s, d, r, φ, κ and q). Let

θ = N−1/2(r/s)N+2 and δ = (6sN)−(2N+3). Thus, we have

δ < (2s/r)−Nθ/(6s). (12)

By the infimal definition of λ∗s+r, there exists a sequence of non-negative integers (Pm)∞m=1,
tending to ∞, such that

Js+r(Pm) > P̂m
λ∗s+r−δ (m ∈ N \ {0}). (13)

If Pm is sufficiently large (in terms of s, d, r, φ, κ, q and N), then for any Q ∈ N with
δ2Pm < Q ≤ Pm, we have

Js+r(Q) < Q̂λ
∗
s+r+δ

For N sufficiently large, we have δ < (2(s+ r)d)−1. Thus, for 0 < Q ≤ Pm, by the trivial

bound |f(α;P )| ≤ P̂ d, we have

Js+r(Q) < P̂m
2(s+r)dδ2

+ Q̂λ
∗
s+r+δ < 2P̂m

δ
Q̂2(s+r)d−κ+ηs+r . (14)

In what follows, we consider a fixed element P = Pm of the sequence (Pm)∞m=1, which
is sufficiently large (in terms of s, d, r, φ, κ, q and N). Unless stated otherwise, all implicit
constants below may depend at most on s, d, r, φ, κ, q and N . Since our methods involve
only a finite number of steps, these implicit constants are under control. In addition,
for X ∈ R, we write [X] for the greatest integer not exceeding X. Finally, for a =
(a1, . . . , an) ∈ An, b = (b1, . . . , bn) ∈ An and g ∈ A, we write a ≡ b (modg) if al ≡
bl (modg) (1 ≤ l ≤ n). Then for a′,b′ ∈ Ad, we write (a,a′) ≡ (b,b′) (modg) if a ≡
b (modg) and a′ ≡ b′ (modg).
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We recall that Js+r(P ) counts the number of solutions of the system

r∑
i=1

(
yi
i − zii

)
=

s∑
j=1

(
ui
j − vi

j

)
(i ∈ R′) (15)

with yi, zi,uj ,vj ∈ IdP (1 ≤ i ≤ r, 1 ≤ j ≤ s). Let w ∈ A be irreducible, and let h, n, v ∈
N. Let (f) be a system of h many polynomials in A[t1, . . . , tn]. For g1, . . . ,gv ∈ An, let
Jac(f ; gl) denote the h × n Jacobian matrix of f evaluated at gl (1 ≤ l ≤ n). We write
rk Jac(f ; g1, . . . ,gv;w) for the rank of the h× nv Jacobian matrix(

Jac(f ; g1), . . . , Jac(f ; gv)
)

over A/(w). In addition, write I∗(P ;w) for the number of solutions (yi, zi,uj ,vj) (1 ≤
i ≤ r, 1 ≤ j ≤ s) counted by Js+r(P ) for which

rk Jac
(
(xi)i∈R′ ; y1, . . . ,yr;w

)
= r.

To bound Js+r(P ) in terms of I∗(P ;w), we need the following lemma.

Lemma 2.1. Let v ∈ N with v ≥ r, and let w ∈ A be irreducible. Let S(w) denote the set

of v-tuples (g1, . . . ,gv) with gl ∈
(
A/(w)

)d
(1 ≤ l ≤ v) such that

rk Jac((xi)i∈R′ ; g1, . . . ,gv;w) < r.

We have

cardS(w)� 〈w〉v(d−1)+r−1,

where the implicit constant depends on v, φ, r and d.

Proof. This proof can be carried out in the same way as the proof of [16, Lemma 7.3].
To do this, it suffices to replace R′0 and k in the proof of [16, Lemma 7.3] with R′ and φ
respectively. �

Lemma 2.2. Let s = ru with u ∈ N and u ≥ φ, and let M = [θP ] + 1. There exists an

irreducible polynomial w ∈ A with 〈w〉 = M̂ such that

Js+r(P )� I∗(P ;w).

Proof. For P sufficiently large, there exists a set P consisting of [θ−1] irreducible polyno-
mials of degree [θP ] + 1. Let S1 denote the number of solutions (yi, zi,uj ,vj) (1 ≤ i ≤
r, 1 ≤ j ≤ s) counted by Js+r(P ) such that for all w ∈ P,

rk Jac
(
(xi)i∈R′ ; y1, . . . ,yr, z1, . . . , zr;w

)
< r.

Let S2 denote the number of remaining solutions, i.e., the solutions for which

rk Jac
(
(xi)i∈R′ ; y1, . . . ,yr, z1, . . . , zr;w

)
= r

for some w ∈ P. Thus, we have

Js+r(P ) = S1 + S2.

There are two cases.
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Case 1: Suppose that S2 ≤ S1. For every w ∈ P, by taking v = 2r in Lemma 2.1, we see

that the number of (y1, . . . ,yr, z1, . . . , zr) ∈
(
A/(w)

)2rd
with

rk Jac
(
(xi)i∈R′ ; y1, . . . ,yr, z1, . . . , zr;w

)
< r

is O
(
〈w〉2rd−r−1

)
. Let ρ =

∏
w∈P w. By the Chinese Remainder Theorem, in the solutions

counted by S1, the total number of choices for (y1, . . . ,yr, z1, . . . , zr) ∈
(
A/(ρ)

)2rd
is

O
(
〈ρ〉2rd−r−1

)
. For each fixed choice (g1, . . . ,gr,h1, . . . ,hr) (modρ), there are at most

(P̂ /〈ρ〉)2rd choices for the (y1, . . . ,yr, z1, . . . , zr) ∈ I2rd
P with (y1, . . . ,yr, z1, . . . , zr) ≡

(g1, . . . ,gr,h1, . . . ,hr) (modρ). Thus, the number of (y1, . . . ,yr, z1, . . . , zr) ∈ I2rd
P under

consideration can be estimated by O
(
P̂ 2rd〈ρ〉−r−1

)
. Since 〈ρ〉 >

(
P̂ θ
)θ−1−1

= P̂ 1−θ, we
have

P̂ 2rd〈ρ〉−r−1 < P̂ 2rd−(r+1)(1−θ).

Thus, we have

Js+r(P ) ≤ 2S1 � P̂ 2rd−(r+1)(1−θ)Js(P ).

By Hölder’s inequality, we have

Js(P ) =

∫
Tr

∣∣f(α;P )
∣∣2sdα ≤ (∫

Tr

∣∣f(α;P )
∣∣2(s+r)

dα

)s/(s+r)
= Js+r(P )s/(s+r).

On combining the above two estimates, we see that

Js+r(P )� P̂ 2rd−(r+1)(1−θ)Js+r(P )s/(s+r),

which implies that

Js+r(P )� P̂ 2(s+r)d−(r+1)(1−θ)(s+r)/r.

Notice that s ≥ rφ ≥ κ and

θ = N−1/2(r/s)N+2 ≤ φ−(N+2) ≤ (φ+ r)
(
(r + 1)(φ+ 1)

)−1
.

Thus, we have

(r+ 1)(1− θ)(s+ r)/r ≥ (r+ 1)(1− θ)(φ+ 1) = rφ+ φ+ r+ 1− θ(r+ 1)(φ+ 1) ≥ κ+ 1.

It follows that

Js+r(P )� P̂ 2(s+r)d−κ−1,

which contradicts the lower bound in (11).

Case 2: Suppose that S1 ≤ S2. On noticng that P � 1, we see that there exists w ∈ P
such that

S2 � S3(w),

where S3(w) denotes the number of solutions (yi, zi,uj ,vj) (1 ≤ i ≤ r, 1 ≤ j ≤ s) counted
by S2 for which

rk Jac
(
(xi)i∈R′ ; y1, . . . ,yr, z1, . . . , zr;w

)
= r.

After rearranging variables, we have

Js+r(P )� S3(w)� I∗(P ;w).

On combining Cases 1 and 2, the lemma follows. �
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In what follows, for a sufficiently large P = Pm (in terms of s, d, r, φ, κ, q and N), let
M = [θP ] + 1, and let w ∈ A satisfy all conditions in Lemma 2.2. For g ∈ A \ {0}, define

L(g) =
{

(a1, . . . , ad) ∈ Ad | deg ai < deg g (1 ≤ i ≤ d)
}
.

For c ∈ N and ξ ∈ Ad, denote by Ξc(ξ;w) the set of r-tuples (ξ1, . . . , ξr) with ξi ∈ L(wc+1)
and ξi ≡ ξ (modwc) (1 ≤ i ≤ r) such that

rk Jac
(
(xi)i∈R′ ; [ξ1], . . . , [ξr];w

)
= r,

where for η ≡ ξ (modwc), write [η] = [η]c,w,ξ = w−c(η − ξ). Let R = cardR. In the
following sections, we will frequently apply the multinomial theorem stated in Lemma 3.1
to treat certain congruence conditions. Since the system (15) does not necessarily contain
all equations that are needed to use the theorem, we consider instead the equivalent
definition of Js+r(P ) which counts the number of solutions of the system

r∑
i=1

(
yj
i − zji

)
=

s∑
j=1

(
uj
j − vj

j

)
(j ∈ R)

with yi, zi,uj ,vj ∈ IdP (1 ≤ i ≤ r, 1 ≤ j ≤ s). Thus, in what follows, we will integrate
over TR instead of Tr. For α = (αj)j∈R ∈ KR

∞ and σ ∈ Σr = {1,−1}r, define

fc(α; ξ) =
∑
x∈IdP

x≡ξ (modwc)

e

(∑
j∈R

αjx
j

)

and

Fσ
c (α; ξ) =

∑
(ξ1,...,ξr)∈Ξc(ξ;w)

r∏
i=1

fc+1(σiα; ξi).

Let s = ru with u ∈ N and u ≥ φ. For a, b ∈ N, ξ,η ∈ Ad and σ, τ ∈ Σr, define

Iσa,b(P ; ξ,η) =

∫
TR

∣∣Fσ
a (α; ξ)2fb(α;η)2s

∣∣dα
and

Kσ,τ
a,b (P ; ξ,η) =

∫
TR

∣∣Fσ
a (α; ξ)2Fτ

b (α;η)2u
∣∣dα.

We then define

Ia,b(P ) = max
ξ∈L(wa)

max
η∈L(wb)

max
σ∈Σr

Iσa,b(P ; ξ,η)

and

Ka,b(P ) = max
ξ∈L(wa)

max
η∈L(wb)

max
σ,τ∈Σr

Kσ,τ
a,b (P ; ξ,η).

To obtain Theorem 1.1, we will iterate among the mean values Js+r(P ), Ia,b(P ) and
Ka,b(P ). The first step is to estimate Js+r(P ) in terms of K0,1(P ) by imposing some ini-
tial efficient congruence conditions to the variables. Then we extract stronger congruence
conditions from K0,1(P ) and estimate it in terms of Ka,b(P ) for some b > a. On repeating
such a process, we can bound Js+r(P ) by a sequence of mean values Ka,b(P ). A major
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difficulty in each stage is to well-condition the variables such that the next efficient con-
gruence can be extracted. We overcome this difficulty by making use of the mean values
Ia,b(P ).

3. The conditioning process

For a, b, c ∈ N, the goal of this section is to associate Ia,b(P ) with Ka,c(P ) in the way
that the variables are well-conditioned in view of the definition of Ka,c(P ). In addition,
in Lemma 3.6, we complete the initial step by relating Js+r(P ) to K0,1(P ).

Lemma 3.1. For j = (j1, . . . , jd) ∈ Nd and l = (l1, . . . , ld) ∈ Nd, write(
j

l

)
=

(
j1
l1

)
· · ·
(
jd
ld

)
.

For j ∈ Nd, define

Rj =
{

l ∈ Nd
∣∣ p - (j

l

)}
.

Then for x,y ∈ Ad, we have

(x + y)j =
∑
l∈Rj

(
j

l

)
xlyj−l.

Proof. This is [16, Lemma 3.2]. �

We remark that Condition* implies that Rj ⊆ R for each j ∈ R. We are now in
a position to deduce a translation invariance of the Diophantine system underlying the
mean value Jn(P ).

Lemma 3.2. Let c ∈ N with c ≤ θ−1 − 1. For n ∈ N, we have

max
ξ∈L(wc)

∫
TR

∣∣fc(α; ξ)
∣∣2ndα = Jn(P − cM).

Proof. We observe first that for c ≤ θ−1−1 and M = [θP ] + 1, if P is sufficiently large (in
terms of s, r,N), then P − cM > 0. For ξ ∈ L(wc), by the definition of fc(α; ξ), we have

fc(α; ξ) =
∑

y∈IdP−ordwc

e

(∑
j∈R

αj(w
cy + ξ)j

)
.

By (9), the integral
∫
TR
∣∣fc(α; ξ)

∣∣2ndα counts the number of solutions of the system

n∑
i=1

(wcyi + ξ)j =
n∑
i=1

(wczi + ξ)j (j ∈ R)

with yi, zi ∈ IdP−ordwc (1 ≤ i ≤ n). By Lemma 3.1 and Condition*, we see that the above
system is equivalent to

n∑
i=1

yj
i =

n∑
i=1

zji (j ∈ R).
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On recalling that ordw = M , the lemma follows. �

Lemma 3.3. Let a, b ∈ N with b > a. We have

Ia,b(P )� Ka,b(P ) + M̂2s(d−1)+r−1Ia,b+1(P ).

Proof. For ξ ∈ L(wa), η ∈ L(wb) and σ ∈ Σr, we see from (9) that Iσa,b(P ; ξ,η) counts
the number of solutions of the system

r∑
i=1

σi
(
yj
i − zji

)
=

s∑
j=1

(
uj
j − vj

j

)
(j ∈ R)

with
yi, zi ∈ IdP , yi ≡ ξi (modwa+1), zi ≡ ζi (modwa+1) (1 ≤ i ≤ r)

for some (ξ1, . . . , ξr), (ζ1, . . . , ζr) ∈ Ξa(ξ;w), and with

uj ,vj ∈ IdP , uj ≡ vj ≡ η (modwb) (1 ≤ j ≤ s).

For γ ≡ η (modwb), write [γ] = w−b(γ − η). Let T1 denote the number of solutions
(yi, zi,uj ,vj) (1 ≤ i ≤ r, 1 ≤ j ≤ s) counted by Iσa,b(P ; ξ,η) for which

rk Jac
(
(xi)i∈R′ ; [u1], . . . , [us], [v1], . . . , [vs];w

)
< r.

Let T2 denote the number of remaining solutions, i.e., the solutions for which

rk Jac
(
(xi)i∈R′ ; [u1], . . . , [us], [v1], . . . , [vs];w

)
= r.

Thus, we have
Iσa,b(P ; ξ,η) = T1 + T2.

To estimate T1, let

C =
{

(u1, . . .us,v1, . . . ,vs) (modwb+1) | (yi, zi,uj ,vj) counted by T1

}
and

C′ =
{

([u1], . . . , [us], [v1], . . . , [vs]) (modw) | (u1, . . . ,us,v1, . . . ,vs) ∈ C
}
.

Consider the bijection from C to C′ defined by

(u1, . . . ,us,v1, . . . ,vs) 7−→ ([u1], . . . , [us], [v1], . . . , [vs]).

By the definition of T1, it follows from Lemma 2.1 that

cardC = cardC′ � 〈w〉2s(d−1)+r−1.

On considering the underlying Diophantine system, we have

T1 ≤
∑

(η′1,...,η
′
2s)∈C

∫
TR
|Fσ
a (α; ξ)|2

s∏
j=1

fb+1(α;η′j)fb+1(−α;η′j+s)dα.

By Hölder’s inequality, we have∫
TR

∣∣Fσ
a (α; ξ)

∣∣2 2s∏
j=1

∣∣fb+1(α;η′j)
∣∣dα ≤ 2s∏

j=1

(∫
TR
|Fσ
a (α; ξ)|2|fb+1(α;η′j)|2sdα

)1/(2s)

≤ Ia,b+1(P ).
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It follows that
T1 � M̂2s(d−1)+r−1Ia,b+1(P ).

We now consider the solutions counted by T2. Since

rk Jac
(
(xi)i∈R′ ; [u1], . . . , [us], [v1], . . . , [vs];w

)
= r,

after rearranging variables, we can assume that

rk Jac
(
(xi)i∈R′ ; [u1], . . . , [ur];w

)
= r.

Thus, there exists (η1, . . . ,ηr) ∈ Ξb(η;w) such that ui ≡ ηi (modwb+1) (1 ≤ i ≤ r). On
considering the underlying Diophantine system, we see that

T2 �
∫
TR
|Fσ
a (α; ξ)|2F1

b (α;η)fb(α;η)s−rfb(−α;η)sdα,

where 1 = (1, . . . , 1) ∈ Σr. On recalling that s = ur, it follows from Hölder’s inequality
that

T2 �
(∫

TR
|Fσ
a (α; ξ)2F1

b (α;η)2u|dα
)1/(2u)(∫

TR
|Fσ
a (α; ξ)2fb(α;η)2s|dα

)1−1/(2u)

.

Thus, we have

T2 �
(
Ka,b(P )

)1/(2u)(
Ia,b(P )

)1−1/(2u)
.

On combining the above upper bounds for T1 and T2, we obtain

Ia,b(P )� M̂2s(d−1)+r−1Ia,b+1(P ) +
(
Ka,b(P )

)1/(2u)(
Ia,b(P )

)1−1/(2u)
,

which implies that

Ia,b(P )� M̂2s(d−1)+r−1Ia,b+1(P ) +Ka,b(P ).

This completes the proof of the lemma. �

We remark here that by repeated applications of Lemma 3.3, whenever a, b,H ∈ N with
b > a, we have

Ia,b(P )�
H−1∑
h=0

M̂h(2s(d−1)+r−1)Ka,b+h(P ) + M̂H(2s(d−1)+r−1)Ia,b+H(P ). (16)

Lemma 3.4. Let a, b,H ∈ N with 0 < b− a ≤ H ≤ θ−1 − 1− b. We have

M̂H(2s(d−1)+r−1)Ia,b+H(P )� M̂−H/2
(
P̂ /M̂ b

)2sd(
P̂ /M̂a

)2rd−κ+ηs+r .

Proof. For ξ ∈ L(wa), η ∈ L(wb+H) and σ ∈ Σr, by the definition of Iσa,b+H(P ; ξ,η), we
see that

Iσa,b+H(P ; ξ,η) ≤
∫
TR
|fa(α; ξ)2rfb+H(α;η)2s|dα.

By Hölder’s inequality and Lemma 3.2, we have

Iσa,b+H(P ; ξ,η) ≤
(∫

TR
|fa(α; ξ)|2(s+r)dα

)r/(s+r)(∫
TR
|fb+H(α;η)|2(s+r)dα

)s/(s+r)
�
(
Js+r(P − aM)

)r/(s+r)(
Js+r(P − (b+H)M)

)s/(s+r)
.
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It follows from (14) that

Ia,b+H(P )� P̂ δ
(
(P̂ /M̂a)r/(s+r)(P̂ /M̂ b+H)s/(s+r)

)2(s+r)d−κ+ηs+r

� P̂ δ(P̂ /M̂a)2rd−κ+ηs+r(P̂ /M̂ b)2sdΥ,

where

Υ = (M̂ b−a+H)κs/(s+r)M̂−2sdH .

Notice that s ≥ rφ ≥ κ. Since H ≥ b− a, we see that

H
(
2s(d− 1) + r − 1

)
+ (b− a+H)κs/(s+ r)− 2sdH

≤H
(
− 2s+ r − 1 + 2κs/(s+ r)

)
=−H + (−2s− r + r2/s+ 2κ)Hs/(s+ r)

≤−H.

Thus, we have

P̂ δM̂H(2s(d−1)+r−1)Υ� M̂−H/2.

On combining the above estimates, the lemma follows. �

Lemma 3.5. Let a, b,H ∈ N with a < b and H = b − a. Suppose that b + H ≤ θ−1 − 1.
Then there exists h ∈ N with h < H such that

Ia,b(P )� M̂h(2s(d−1)+r−1)Ka,b+h(P ) + M̂−H/2
(
P̂ /M̂ b

)2sd(
P̂ /M̂a

)2rd−κ+ηs+r .

Proof. By (16) and Lemma 3.4, the lemma follows. �

Lemma 3.6. For s = ru with u ≥ φ, we have

Js+r(P )� M̂2sdK0,1(P ).

Proof. For α ∈ KR
∞, define

F(α) =

r∏
i=1

f0(α; 0) and I∗(P ) =

∫
TR

F1
0(α; 0)F(−α)

∣∣f0(α; 0)
∣∣2sdα,

where 1 = (1, . . . , 1) ∈ Σr. Since the fixed w ∈ A satisfies all conditions in Lemma 2.2, we
have

Js+r(P )� I∗(P ;w) = I∗(P ).

By Cauchy’s inequality, we obtain

I∗(P ) ≤
(∫

TR

∣∣F(α)
∣∣2∣∣f0(α; 0)

∣∣2sdα)1/2(∫
TR

∣∣F1
0(α; 0)

∣∣2∣∣f0(α; 0)
∣∣2sdα)1/2

.

It follows from (9) that the first integral above is equal to Js+r(P ). Thus, we have

Js+r(P )� I10,0(P ; 0,0).

Notice that

f0(α; 0) =
∑

ξ∈L(w)

f1(α; ξ).
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By Hölder’s inequality, we have

I10,0(P ; 0,0) ≤ 〈w〉d(2s−1)
∑

ξ∈L(w)

∫
TR

∣∣F1
0(α; 0)

∣∣2∣∣f1(α; ξ)
∣∣2sdα,

which implies that

I10,0(P ; 0,0)� 〈w〉2sd max
ξ∈L(w)

∫
TR

∣∣F1
0(α; 0)

∣∣2∣∣f1(α; ξ)
∣∣2sdα.

Since 〈w〉 = M̂ , we have

Js+r(P )� I10,0(P ; 0,0)� M̂2sdI0,1(P ).

When a = 0 and b = 1, we see that H = b− a = 1. Thus, by Lemma 3.5, we have

I0,1(P )� K0,1(P ) + M̂−1/2
(
P̂ /M̂

)2sd
P̂ 2rd−κ+ηs+r .

By (12), δ is small enough such that M̂1/2 > P̂ 2δ. It follows that

Js+r(P )� M̂2sdI0,1(P )� M̂2sdK0,1(P ) + P̂ 2(s+r)d−κ+ηs+r−2δ.

On the other hand, we see from (13) that

Js+r(P ) > P̂ 2(s+r)d−κ+ηs+r−δ.

Thus, we have

Js+r(P )� M̂2sdK0,1(P ) + P̂−δJs+r(P ),

which implies that

Js+r(P )� M̂2sdK0,1(P ).

This completes the proof of the lemma. �

4. The efficient congruencing process

The goal of this section is to provide an iterative relation among the mean values
Ka,b(P ). Before proceeding, we need to estimate some auxiliary systems of congruences.

Proposition 4.1. For n,m ∈ N\{0}, let Υ1, . . . ,Υm be polynomials in A[z1, . . . , zn] with
degrees k1, . . . , km in z = (z1, . . . , zn) respectively. Let w ∈ A be irreducible. For l ∈ N\{0}
and a = (a1, . . . , am) ∈ Am, let Dl,m,n(Υ; a;w) denote the set of solutions of the system
of congruences

Υi(z1, . . . , zn) ≡ ai (modwl) (1 ≤ i ≤ m)

with zl ∈ A/(wl) (1 ≤ l ≤ n) and rk Jac(Υ; z;w) = m. Then we have

cardDl,m,n(Υ; a;w) ≤ C4〈wl〉n−m,

where C4 =
(
n!/(m!(n−m)!)

)
k1 · · · km.

Proof. It follows from similar arguments as in [11, Theorem 1]. For more details, see also
[15, Appendix]. �
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We recall that Js(R;P ) counts the number of solutions of the system

uj
1 + · · ·+ uj

s = vj
1 + · · ·+ vj

s (j ∈ R)

with uj ,vj ∈ IdP (1 ≤ j ≤ s). It also represents the number of solutions of the system

ui
1 + · · ·+ ui

s = vi
1 + · · ·+ vi

s (i ∈ R′)

with uj ,vj ∈ IdP (1 ≤ j ≤ s). Although the second system consists of independent
equations, it does not necessarily contain all equations of certain auxiliary congruences that
are used to well-condition variables. More precisely, since R′ is not necessarily contained
in R, for any g ∈ A \ {0}, the system of congruences

uj
1 + · · ·+ uj

s ≡ vj
1 + · · ·+ vj

s (modg) (j ∈ R)

does not always imply that

ui
1 + · · ·+ ui

s ≡ vi
1 + · · ·+ vi

s (modg) (i ∈ R′).
To resolve the difficulty, we consider an alternative system. We recall that φ = maxi∈R′ |i|.
Let

S =
{
pni | i ∈ R′, n ∈ N and pn|i| ≤ φ

}
.

We will prove Lemma 4.1 that S satisfies Condition*. In addition, since R′ ⊆ S, we
see that the above system of congruence shares the same solutions with the system of
congruences:

uj
1 + · · ·+ uj

s ≡ vj
1 + · · ·+ vj

s (modg) (j ∈ S).

This equivalence is essential in our proof of Lemma 4.2.

Lemma 4.1. For each j = (j1, . . . , jd) ∈ S, if l = (l1, . . . , ld) ∈ Nd with p -
(
j1
l1

)
· · ·
(
jd
ld

)
,

then l ∈ S.

Proof. Let j = (j1, . . . , jd) ∈ S. Then there exist i ∈ R′ and n ∈ N such that j = pni. Let

l = (l1, . . . , ld) ∈ Nd with p -
(
j1
l1

)
· · ·
(
jd
ld

)
. By Lucas’ criterion, we have

ah(l1) ≤ ah(j1), . . . , ah(ld) ≤ ah(jd) (h ∈ N). (17)

Since ah(j1) = · · · = ah(jd) = 0 (0 ≤ h ≤ n− 1), we see from (17) that

ah(l1) = · · · = ah(ld) = 0 (0 ≤ h ≤ n− 1).

It follows that pn|l1, . . . , pn|ld, i.e., there exists m = (m1, . . . ,md) ∈ Nd such that l = pnm.
Since j = pni and l = pnm, we obtain

ah+n(j1) = ah(i1), . . . , ah+n(jd) = ah(id) (h ∈ N)

and

ah+n(l1) = ah(m1), . . . , ah+n(ld) = ah(md) (h ∈ N).

Then it follows from (17) that

ah(m1) ≤ ah(i1), . . . , ah(md) ≤ ah(id) (h ∈ N).

Since i ∈ R′, there exists v ∈ N such that pvi ∈ R. It follows from the above inequalities
that

ah(pvm1) ≤ ah(pvi1), . . . , ah(pvmd) ≤ ah(pvid) (h ∈ N),
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which implies that

p -
(
pvi1
pvm1

)
· · ·
(
pvid
pvmd

)
.

In view of the property of R, since pvi ∈ R, we have pvm ∈ R. Thus, there exist u ∈ R′
and c ∈ N such that pvm = pcu. Since p - u, we have v ≤ c and m = pc−vu. This implies
that l = pnm = pn+c−vu. On recalling (17), we have |l| ≤ |j| ≤ φ and hence l ∈ S. This
completes the proof of the lemma. �

Let Rj be defined as in Lemma 3.1. We remark that by Lemma 4.1, we have Rj ⊆ S
for each j ∈ S.

Lemma 4.2. Let a, b ∈ N with b > a, and let w ∈ A be irreducible. For σ ∈ Σr,
m = (mi)i∈R′ ∈ Ar, ξ ∈ L(wa) and η ∈ L(wb), let Bσa,b(m; ξ,η;w) denote the set of
solutions of the system of congruences

r∑
i=1

σi(zi − η)i ≡ mi (modw|i|b) (i ∈ R′)

with zi ∈ L(wφb) and zi ≡ ξi (modwa+1) (1 ≤ i ≤ r) for some (ξ1, . . . , ξr) ∈ Ξa(ξ;w).
Then we have

cardBσa,b(m; ξ,η;w) ≤ C5〈w〉(rφd−κ)b+(κ−rd)a,

where C5 =
(
(rd)!/(r!(rd− r)!)

)∏
i∈R′ |i|.

Proof. Let D1(n) denote the set of solutions of the system of congruences
r∑
i=1

σi(zi − η)i ≡ ni (modwφb) (i ∈ R′)

with zi ∈ L(wφb) and zi ≡ ξi (modwa+1) (1 ≤ i ≤ r) for some (ξ1, . . . , ξr) ∈ Ξa(ξ;w).
Define

N =
{
n = (ni)i∈R′ |ni ∈ A, deg ni < degwφb and ni ≡ mi (modw|i|b) (i ∈ R′)

}
.

By (10), we have

cardBσa,b(m; ξ,η;w) ≤
∑
n∈N

cardD1(n) ≤ 〈w〉(rφ−κ)b max
n∈N

cardD1(n).

It remains to estimate D1(n). Let (z1, . . . , zr) ∈ D1(n) and write zi = wahi+ξ (1 ≤ i ≤ r).
Since zi ≡ ξi (modwa+1) (1 ≤ i ≤ r) for some (ξ1, . . . , ξr) ∈ Ξa(ξ;w), we see that

w−a(zi − ξ) ≡ w−a(ξi − ξ) (modw).

Thus, we have

rk Jac
(
(xi)i∈R′ ; h1, . . . ,hr;w

)
= rk Jac

(
(xi)i∈R′ ; [ξ1], . . . , [ξr];w

)
= r,

where [ξi] = w−a(ξi−ξ) (1 ≤ i ≤ r). Let (y1, . . . ,yr) ∈ D1(n) and write yi = wagi+ξ (1 ≤
i ≤ r). We have

r∑
i=1

σi(w
ahi + ξ − η)i ≡

r∑
i=1

σi(w
agi + ξ − η)i (modwφb) (i ∈ R′).
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Let S be defined as in Lemma 4.1. We see from the definition of S that the above system
implies that

r∑
i=1

σi(w
ahi + ξ − η)j ≡

r∑
i=1

σi(w
agi + ξ − η)j (modwφb) (j ∈ S).

On combining Lemma 3.1 with Lemma 4.1, since R′ ⊆ S, the above system implies that
r∑
i=1

σih
i
i ≡

r∑
i=1

σig
i
i (modwφb−|i|a) (i ∈ R′).

For u = (ui)i∈R′ ∈ Ar, we write D2(u) for the set of solutions of the system of congruences
r∑
i=1

σih
i
i ≡ ui (modwφb−|i|a) (i ∈ R′)

with hi ∈ L(wφb−a) and rk Jac
(
(xi)i∈R′ ; h1, . . . ,hr;w

)
= r. Then it follows from the above

argument that there exists some u such that

cardD1(n) ≤ cardD2(u).

Define

V =
{
v = (vi)i∈R′ | vi ∈ A, deg vi < degwφb−a and vi ≡ ui (modwφb−|i|a) (i ∈ R′)

}
.

For v ∈ V, denote by D3(v) the set of solutions of the system of congruences
r∑
i=1

σih
i
i ≡ vi (modwφb−a) (i ∈ R′)

with hi ∈ L(wφb−a) and rk Jac
(
(xi)i∈R′ ; h1, . . . ,hr;w

)
= r. Thus, we have

cardD2(u) ≤ 〈w〉(κ−r)a max
v∈V

cardD3(v).

By Proposition 4.1, we have

cardD3(v) ≤ C5〈wφb−a〉rd−r,
where C5 =

(
(rd)!/(r!(rd− r)!)

)∏
i∈R′ |i|. On combining the above estimates we have

cardBσa,b(m; ξ,η;w) ≤ C5〈w〉(rφ−κ)b+(κ−r)a+(φb−a)(rd−r) = C5〈w〉(rφd−κ)b+a(κ−rd).

This completes the proof of the lemma. �

Lemma 4.3. Let a, b ∈ N with a < b ≤ θ−1 − 1. We have

Ka,b(P )� M̂ (rφd−κ)b+a(κ−rd)M̂ (φb−a)dr
(
Js+r(P − bM)

)1−r/s(
Ib,φb(P )

)r/s
.

Proof. For ξ ∈ L(wa), η ∈ L(wb) and σ, τ ∈ Σr, we see from (9) that Kσ,τ
a,b (P ; ξ,η) counts

the number of solutions of the system
r∑
i=1

σi
(
yj
i − zji

)
=

u∑
l=1

r∑
m=1

τm
(
uj
l,m − vj

l,m

)
(j ∈ R) (18)

with
yi, zi ∈ IdP , yi ≡ ξi (modwa+1), zi ≡ γi (modwa+1) (1 ≤ i ≤ r)
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for some (ξ1, . . . , ξr), (γ1, . . . ,γr) ∈ Ξa(ξ;w), and with

ul,m,vl,m ∈ IdP , ul,m ≡ ηl,m (modwb+1), vl,m ≡ νl,m (modwb+1) (1 ≤ l ≤ u, 1 ≤ m ≤ r)

for some (ηl,1, . . . ,ηl,r), (νl,1, . . . ,νl,r) ∈ Ξb(η;w). On combining Lemma 3.1 with Con-
dition*, we see that (18) is equivalent to the system

r∑
i=1

σi
(
(yi − η)j − (zi − η)j

)
=

u∑
l=1

r∑
m=1

τm
(
(ul,m − η)j − (vl,m − η)j

)
(j ∈ R).

Then by the definition of R′, it follows that

r∑
i=1

σi
(
(yi − η)i − (zi − η)i

)
=

u∑
l=1

r∑
m=1

τm
(
(ul,m − η)i − (vl,m − η)i

)
(i ∈ R′).

Given a solution (yi, zi,ul,m,vl,m) (1 ≤ i ≤ r, 1 ≤ l ≤ u, 1 ≤ m ≤ r) counted by

Kσ,τ
a,b (P ; ξ,η), we have ul,m ≡ vl,m ≡ η (modwb). Thus, the above system implies that

r∑
i=1

σi(yi − η)i ≡
r∑
i=1

σi(zi − η)i (modw|i|b) (i ∈ R′). (19)

Let B(m) = Bσa,b(m; ξ,η;w) be defined as in Lemma 4.2. Write

Gσ
a,b(α; ξ,η; m) =

∑
(ζ1,...,ζr)∈B(m)

r∏
i=1

fφb(σiα; ζi).

Notice that for each m = (mi)i∈R′ ∈ Ar, the integral
∫
TR
∣∣Gσ

a,b(α; ξ,η; m)2Fτ
b (α;η)2u

∣∣dα
denotes the number of solutions (yi, zi,ul,m,vl,m) (1 ≤ i ≤ r, 1 ≤ l ≤ u, 1 ≤ m ≤ r)

counted by Kσ,τ
a,b (P ; ξ,η) in which (y1, . . . ,yr) (modwφb) and (z1, . . . , zr) (modwφb) lie in

B(m). Thus, by (19), we have

Kσ,τ
a,b (P ; ξ,η) ≤

∑
degmi<degw|i|b

(i∈R′)

∫
TR

∣∣Gσ
a,b(α; ξ,η; m)2Fτ

b (α;η)2u
∣∣dα.

By Lemma 4.2 and Cauchy’s inequality, we have

∣∣Gσ
a,b(α; ξ,η; m)

∣∣2 ≤ cardB(m)
∑

(ζ1,...,ζr)∈B(m)

r∏
i=1

∣∣fφb(α; ζi)
∣∣2

� M̂ (rφd−κ)b+(κ−rd)a
∑

(ζ1,...,ζr)∈B(m)

r∏
i=1

∣∣fφb(α; ζi)
∣∣2.
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It follows that

Kσ,τ
a,b (P ; ξ,η)

� M̂ (rφd−κ)b+(κ−rd)a
∑

degmi<degw|i|b

(i∈R′)

∑
(ζ1,...,ζr)∈B(m)

∫
TR

( r∏
i=1

∣∣fφb(α; ζi)
∣∣2)∣∣Fτ

b (α;η)
∣∣2udα

� M̂ (rφd−κ)b+(κ−rd)a
∑

ζi∈L(wφb)
ζi≡ξ (modwa)

(1≤i≤r)

∫
TR

( r∏
i=1

∣∣fφb(α; ζi)
∣∣2)∣∣Fτ

b (α;η)
∣∣2udα.

By Hölder’s inequality, we see that∑
ζi∈L(wφb)

ζi≡ξ (modwa)
(1≤i≤r)

r∏
i=1

∣∣fφb(α; ζi)
∣∣2 =

( ∑
ζ∈L(wφb)

ζ≡ξ (modwa)

∣∣fφb(α; ζ)
∣∣2)r

≤ 〈w〉d(φb−a)(r−1)
∑

ζ∈L(wφb)
ζ≡ξ (modwa)

∣∣fφb(α; ζ)
∣∣2r.

Thus, we have

Kσ,τ
a,b (P ; ξ,η)� M̂ (rφd−κ)b+(κ−rd)aM̂ rd(φb−a) max

ζ∈L(wφb)

∫
TR

∣∣fφb(α; ζ)2rFτ
b (α;η)2u

∣∣dα.
(20)

On recalling that s = ru, it follows from Hölder’s inequality that∫
TR

∣∣fφb(α; ζ)2rFτ
b (α;η)2u

∣∣dα ≤ U1−r/s
1 U

r/s
2 ,

where

U1 =

∫
TR

∣∣Fτ
b (α;η)

∣∣2u+2
dα and U2 =

∫
TR

∣∣Fτ
b (α;η)2fφb(α; ζ)2s

∣∣dα.
On considering the underlying Diophantine system, we can deduce from Lemma 3.2 that

U1 ≤
∫
TR

∣∣fb(α;η)
∣∣2s+2r

dα� Js+r(P − bM).

On noticing that U2 = Iτb,φb(P ;η, ξ), we have∫
TR

∣∣fφb(α; ζ)2rFτ
b (α;η)2u

∣∣dα ≤ (Js+r(P − bM)
)1−r/s(

Ib,φb(P )
)r/s

.

On combing the above estimate with (20), the lemma follows. �

For a, b ∈ N with a < b, we define the normalised magnitude of Ka,b(P ) as follows:

[[Ka,b(P )]] = Ka,b(P )(P̂ /M̂ b)−2sd(P̂ /M̂a)κ−2rd.

Lemma 4.4. Let a, b ∈ N with a < b ≤ θ−1 − 1. We have

[[Ka,b(P )]]� P̂ ηs+r+δ(M̂ b−a)κ.
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Proof. For ξ ∈ L(wa), η ∈ L(wb) and σ, τ ∈ Σr, on considering the underlying Diophan-
tine system, we see from Hölder’s inequality that

Kσ,τ
a,b (P ; ξ,η) ≤

∫
TR

∣∣fa(α; ξ)2rfb(α;η)2s
∣∣dα

≤
(∫

TR

∣∣fa(α; ξ)
∣∣2(s+r)

dα

)r/(s+r)(∫
TR

∣∣fb(α;η)
∣∣2(s+r)

dα

)s/(s+r)
.

Since a < b ≤ θ−1 − 1, by Lemma 3.2, we have

Ka,b(P ) ≤
(
Js+r(P − aM)

)r/(s+r)(
Js+r(P − bM)

)s/(s+r)
.

Thus, it follows from (14) that

[[Ka,b(P )]] = Ka,b(P )(P̂ /M̂ b)−2sd(P̂ /M̂a)κ−2rd

� P̂ δ
(
(P̂ /M̂a)r/(s+r)(P̂ /M̂ b)s/(s+r)

)2(s+r)d−κ+ηs+r(P̂ /M̂ b)−2sd(P̂ /M̂a)κ−2rd

� P̂ ηs+r+δ(M̂ b−a)κs/(s+r).

This completes the proof of the lemma. �

Lemma 4.5. Let a, b,H ∈ N with a < b ≤ (2φθ)−1 and H = (φ− 1)b. Then there exists
h ∈ N with h < H such that

[[Ka,b(P )]]�
(
P̂ /M̂ b

)ηs+rM̂−rH/(3s)+P̂ δM̂−(2s−r+1)hr/s
(
P̂ /M̂ b

)ηs+r(1−r/s)[[Kb,φb+h(P )]]r/s.

Proof. It follows from Lemma 4.3 that

[[Ka,b(P )]] = Ka,b(P )(P̂ /M̂ b)−2sd(P̂ /M̂a)κ−2rd

� (M̂ b)2sd(M̂a)2rd−κM̂ (rφd−κ)b+(κ−rd)aM̂ (φb−a)drV
1−r/s

1 V
r/s

2 ,

where

V1 = Js+r(P − bM)P̂ κ−2(s+r)d and V2 = Ib,φb(P )P̂ κ−2(s+r)d.

By (14), we see that

V1 < P̂ δ(M̂−b)2(s+r)d−κ(P̂ /M̂ b)ηs+r .

Since H = (φ− 1)b, we have

φb+H = φb+ (φ− 1)b ≤ 2φb− 1 ≤ θ−1 − 1.

It follows from Lemma 3.5 that there exists h ∈ N with h < H such that

V2 � M̂h(2s(d−1)+r−1)Kb,φb+h(P )P̂ κ−2(s+r)d

+ M̂−H/2
(
P̂ /M̂ bφ

)2sd(
P̂ /M̂ b

)2rd−κ+ηs+r P̂ κ−2(s+r)d.

Thus, we have

V2 �
(
M̂−φb

)2sd(
M̂−b

)2rd−κ
V3,

where

V3 = M̂h(−2s+r−1)[[Kb,φb+h(P )]] + M̂−H/2
(
P̂ /M̂ b

)ηs+r .
On combining the above upper bounds for [[Ka,b(P )]], V1 and V2, we have

[[Ka,b(P )]]� M̂ΩP̂ δ
(
P̂ /M̂ b

)(ηs+r)(1−r/s)V r/s
3 ,
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where

Ω = b(2sd) + a(2rd− κ) + (rφd− κ)b+ (κ− rd)a+ (φb− a)dr

+ (−b)
(
2(s+ r)d− κ

)
(1− r/s) +

(
− (φb)(2sd)− b(2rd− κ)

)
(r/s).

A straightforward computation shows that Ω = 0. Thus, we obtain

[[Ka,b(P )]]� P̂ δ
(
P̂ /M̂ b

)ηs+r(M̂−H/2)r/s
+ P̂ δM̂ (−2s+r−1)hr/s

(
P̂ /M̂ b

)ηs+r(1−r/s)[[Kb,φb+h(P )]]r/s.

By (12), we have δ < θ/(6s) and hence P̂ δ < M̂ rH/(6s). Thus, we have

[[Ka,b(P )]]�
(
P̂ /M̂ b

)ηs+rM̂−rH/(3s)
+ P̂ δM̂−(2s−r+1)hr/s

(
P̂ /M̂ b

)ηs+r(1−r/s)[[Kb,φb+h(P )]]r/s.

This completes the proof of the lemma. �

5. Proof of Theorem 1.1

In this section, we will prove Theorem 1.1. We begin by establishing the following
iterative process:

Lemma 5.1. Let a, b ∈ N with a < b ≤ (2φθ)−1. Suppose that there exist ψ ≥ 0, γ ≥ 0
and c ≥ 0 with c ≤ (2s/r)N such that

P̂ ηs+r(1+ψθ) � P̂ cδM̂−γ [[Ka,b(P )]].

Then there exists h ∈ N with h ≤ (φ− 1)b such that

P̂ ηs+r(1+ψ′θ) � P̂ c
′δM̂−γ

′
[[Ka′,b′(P )]],

where

ψ′ = (s/r)ψ + (s/r − 1)b, c′ = (s/r)(c+ 1), γ′ = (s/r)γ + (2s− r + 1)h,

a′ = b and b′ = φb+ h.

Proof. By Lemma 4.5, there exists h ∈ N with h < (φ− 1)b such that

[[Ka,b(P )]]� P̂ ηs+rM̂−1/(3s) + P̂ δM̂−(2s−r+1)hr/s
(
P̂ /M̂ b

)ηs+r(1−r/s)[[Kb,φb+h(P )]]r/s.

Since θ = N−1/2(r/s)N+2, by (12), we have cδ < θ/(6s) and hence P̂ cδ < M̂1/(6s). We

also have δ < θ/(6s) and hence P̂ δ < M̂1/(6s). Then by the hypothesis on P̂ ηs+r(1+ψθ), we
see that

P̂ ηs+r(1+ψθ) � P̂ ηs+r−δ + P̂ (c+1)δM̂−γ−(2s−r+1)hr/s
(
P̂ /M̂ b

)ηs+r(1−r/s)[[Kb,φb+h(P )]]r/s.

Thus, we have

P̂ ηs+r(r/s+(ψ+(1−r/s)b)θ) � P̂ (c+1)δM̂−γ−(2s−r+1)hr/s[[Kb,φb+h(P )]]r/s,

which implies that

P̂ ηs+r(1+ψ′θ) � P̂ c
′δM̂−γ

′
[[Kb,φb+h(P )]].

This completes the proof of the lemma. �
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We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. We recall that to prove the theorem, it suffices to show that for
d ≥ 2, φ ≥ 2 and s ≥ rφ, we have ηs+r = 0. By (11), we have ηs+r ≥ 0 for s ≥ rφ.

We first consider the cases that s = ru with u ∈ N and u ≥ φ. Suppose that ηs+r > 0.
Define the sequences of non-negative integers (an)Nn=0 and (bn)Nn=0 by setting a0 = 0 and
b0 = 1. Then for 0 ≤ n < N , we fix hn ∈ N (which will be chosen later) with hn ≤ (φ−1)bn
and define

an+1 = bn and bn+1 = φbn + hn.

We now define the auxiliary sequences of non-negative real numbers (ψn)Nn=0, (cn)Nn=0,
(γn)Nn=0 by setting ψ0 = 0, c0 = 1 and γ0 = 0. Then for 0 ≤ n < N , we define

ψn+1 = (s/r)ψn+(s/r−1)bn, cn+1 = (s/r)(cn+1), γn+1 = (s/r)γn+(2s−r+1)hn.

The above sequences satisfy the following properties:
Claim: (a) ψn ≥ n(φ− 1)φn−1 (0 ≤ n ≤ N).
(b) cn ≤ (n+ 1)(s/r)n (0 ≤ n ≤ N).
(c) γn ≥ (2s− r + 1)(bn − φn) (0 ≤ n ≤ N).
(d) For N sufficiently large (in terms of s and r), there exists a sequence (hn) such that
for 0 ≤ n ≤ N , we have

bn <
√
N(s/r)n (21)

and

P̂ ηs+r(1+ψnθ) � P̂ cnδM̂−γn [[Kan,bn(P )]]. (22)

Proof of the Claim. (a) Notice that bn ≥ φn (0 ≤ n ≤ N). Since s ≥ rφ, we have

ψn+1 ≥ φψn + (φ− 1)bn ≥ φψn + (φ− 1)φn.

By induction, the result follows.
(b) The upper bounds follow from a straightforward inductive argument.
(c) Since bn+1 = φbn + hn, we see that

γn+1 − (s/r)γn = (2s− r + 1)(bn+1 − φbn).

On recalling that s/r ≥ φ, we have

γn+1 − (2s− r + 1)bn+1 = (s/r)γn − φ(2s− r + 1)bn ≥ φ
(
γn − (2s− r + 1)bn

)
.

Since b0 = 1 and γ0 = 0, it follows by induction that

γn ≥ (2s− r + 1)bn + φn
(
γ0 − (2s− r + 1)b0

)
= (2s− r + 1)

(
bn − φn

)
(0 ≤ n ≤ N).

(d) We now apply an inductive argument on (21) and (22) simultaneously. Recall that
a0 = 0, b0 = 1, ψ0 = 0, c0 = 1 and γ0 = 0. On combining (11) with Lemma 3.6, we have

P̂ ηs+r < P̂ δ−2(s+r)d+κJs+r(P )� P̂ δ−2(s+r)d+κM̂2sdK0,1(P ) = P̂ δ[[K0,1(P )]].

Thus, (22) is true for n = 0. We notice that (21) is also true for n = 0 as b0 = 1. Suppose
that (21) and (22) are true for n with 0 ≤ n < N . By Claim (b), we have cn < (2s/r)n.

On recalling that θ = N−1/2(r/s)N+2, we see from the hypothesis of (21) that

φbnθ ≤ φ(s/r)−N−2+n < φ−1 ≤ 1/2,
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which implies that bn ≤ (2φθ)−1. Thus, it follows from Lemma 5.1 and the hypothesis of
(22) that there exists h ∈ N with h < (φ− 1)bn such that

P̂ ηs+r(1+ψ′θ) � P̂ c
′δM̂−γ

′
[[Ka′,b′(P )]], (23)

where

ψ′ = (s/r)ψn + (s/r − 1)bn, c′ = (s/r)(cn + 1), γ′ = (s/r)γn + (2s− r + 1)h,

a′ = bn and b′ = φbn + h.

Notice that ψ′ = ψn+1, c′ = cn+1 and a′ = an+1. By taking hn = h, we also have γ′ = γn+1

and b′ = bn+1. Thus, we see from (23) that (22) is true for n + 1. We now consider (21)

for n+1, with hn = h chosen as above. Suppose that bn+1 ≥
√
N(s/r)n+1. Since s/r ≥ φ,

we see from Claim (c) that

γn+1 = (s/r)γn + (2s− r + 1)(bn+1 − φbn)

≥ (s/r)
(
(2s− r + 1)bn − (2s− r + 1)(s/r)n

)
+ (2s− r + 1)

(
bn+1 − (s/r)bn

)
≥ (2s− r + 1)

(
bn+1 − (s/r)n+1

)
≥ (2s− r + 1)(1− 1/

√
N)bn+1.

Since
bn+1 = φbn + h ≤ 2φbn − 1 ≤ θ−1 − 1,

it follows from Lemma 4.4 that

[[Kan+1,bn+1(P )]]� P̂ ηs+r+δ(M̂ bn+1)κ.

Thus, we see from (23) that

P̂ ηs+r(1+ψn+1θ) � P̂ ηs+r+(cn+1+1)δ
(
M̂ bn+1

)κ−(2s−r+1)(1−1/
√
N)
.

Since κ ≤ rφ ≤ s and φ ≥ 2, we have

κ−(2s−r+1)(1−1/
√
N) ≤ s−(2s−r+1)+(2s−r+1)/

√
N = −s+r−1+(2s−r+1)/

√
N.

Thus, when N is sufficiently large, we obtain

κ− (2s− r + 1)(1− 1/
√
N) < −1.

By Claim (b), we see from (12) that δ is small enough such that (cn+1 + 1)δ < θ/2 and
hence

P̂ ηs+rψn+1θ � P̂−θbn+1/2.

Since ψn+1 > 0, θ > 0 and bn+1 > 0, the above inequality implies that ηs+r = 0, which
leads to a contradiction. Thus, we conclude that bn+1 <

√
N(s/r)n+1 and hence (21) is

also true for n+ 1. This completes the proof of Claim (d).

Since θ = N−1/2(r/s)N+2 and r/s ≤ 1/φ ≤ 1/2, by Claim (d), we see that bNθ <
(r/s)2 < 1 − θ and hence bN ≤ θ−1 − 1. Since bN ≥ φN , it follows from Claim (c) that
γN ≥ 0. By Claim (d) and Lemma 4.4, for N is sufficiently large, we have

P̂ ηs+r(1+ψNθ) � P̂ ηs+r+(cN+1)δM̂ bNκ � P̂ ηs+r+rφ.

By Claim (a), we have

ηs+r ≤ rφ/(ψNθ) ≤ rφ/(N(φ− 1)φN−1θ).
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In particular, on taking s = rφ, we see that θ = N−1/2φ−N−2 and hence

ηrφ+r ≤ rφN+3/(
√
N(φ− 1)φN−1) ≤ rφ4/

√
N.

Since we can take N as large as possible (in terms of s and r), we have ηrφ+r = 0.

We now consider general s ∈ N with s ≥ rφ. By the trivial bound |f(α;P )| ≤ P̂ d, we
have

Js+r(P ) ≤ P̂ 2(s−rφ)d

∫
TR
|f(α;P )|2(rφ+r)ddα = P̂ 2(s−rφ)dJrφ+r(P ),

which implies that ηs+r ≤ ηrφ+r for s ≥ rφ. Thus, ηs+r = 0 for s ≥ rφ. This completes
the proof of the theorem. �

6. Proof of Theorem 1.2

In this section, we will prove Theorem 1.2. Let k ∈ N with p - k, and let L and R′0 be
defined as in Section 1. We write ι = cardL and µ = cardR′0.

Lemma 6.1. For k ≥ 2, α = (αi)i∈R′0 ∈ Kµ
∞ and P ∈ N \ {0}, define

F (α;P ) =
∑
x∈IdP

e

( ∑
i∈R′0

αix
i

)
.

For Q ∈ N \ {0} with Q ≤ P , let a, g ∈ A with g monic, gcd(a, g) = 1 and 〈g〉 ≤ Q̂k. For

a fixed l ∈ L, suppose that 〈gαl− a〉 < Q̂−k and that either 〈gαl− a〉 ≥ Q̂P̂−k or 〈g〉 > Q̂.
Then we have ∣∣F (α;P )

∣∣� 〈g〉εP̂ d+ε
(
Q̂−1

(
1 + 〈g〉(P̂ /Q̂)−k

))1/(2µ(k+1))
.

Proof. By Corollary 1.1 and [16, Lemma 9.1], the lemma follows on replacing M with Q,
and taking s = µ(k + 1) and ∆s = ε. �

For c = (c1, . . . , cs) ∈ (A \ {0})s, we recall that Ns,k,d,c(P ) counts the number of the
solutions of the system

c1x
l
1 + · · ·+ csx

l
s = 0 (l ∈ L)

with xj ∈ IdP (1 ≤ j ≤ s). For α = (αl)l∈L ∈ Kι
∞ and P ∈ N \ {0}, define

fj(α) = fj(α;P ) =
∑
x∈IdP

e

(∑
l∈L

cjαlx
l

)
(1 ≤ j ≤ s).

By (9), we see that

Ns,k,d,c(P ) =

∫
Tι

s∏
j=1

fj(α)dα.

We now apply the Hardy-Littlewood circle method to analyze the above integral. We begin
by dividing Tι into the major arcs and the minor arcs as follows: given a = (al)l∈L ∈ Aι,
g ∈ A monic with gcd(al, g) = 1 (l ∈ L), we define the Farey arc M(g,a) about a/g by

M(g,a) =
{
α ∈ Tι

∣∣ 〈gαl − al〉 < P̂ 1/2P̂−k (l ∈ L)
}
.
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Write 〈c〉 = max
{
〈cj〉 | 1 ≤ j ≤ s

}
. The set of major arcs M is defined to be the union

of all M(g,a) with a = (al)l∈L ∈ Aι and g ∈ A monic, which satisfy gcd(al, g) = 1 and

0 ≤ 〈al〉 < 〈g〉 ≤ 〈c〉P̂ 1/2 (l ∈ L). Then we write m = Tι \M for the complementary set of
minor arcs. We now estimate the contribution over minor arcs.

Lemma 6.2. Let k ≥ 2. For each j with 1 ≤ j ≤ s, we have

sup
α∈m
|fj(α)| � P̂ d−1/(4ιµ(k+1))+ε.

Proof. Let α ∈ m andQ = [P/(2ι)]. By [4, Lemma 3], for each l ∈ L, there exist al ∈ A and

gl ∈ A monic, which satisfy gcd(al, gl) = 1, 0 ≤ 〈al〉 < 〈gl〉 ≤ Q̂k and 〈glcjαl − al〉 < Q̂−k.

Using the same argument as in [16, Lemma 10.1], there exists l ∈ L such that 〈gl〉 > Q̂ or

〈glcjαl − al〉 ≥ Q̂P̂−k. By Lemma 6.1, we have

|fj(α)| � P̂ d−1/(4ιµ(k+1))+ε.

This completes the proof of the lemma. �

Let Im,k,d(P ) denote the number of solutions of the system

xl
1 + · · ·+ xl

m = yl
1 + · · ·+ yl

m (l ∈ L)

with xn,yn ∈ IdP (1 ≤ n ≤ m). For h = (hi)i∈R′0 ∈
∏

i∈R′0
I|i|P , write Jm,k,d(P ; h) for the

number of solutions of the system(
xi

1 + · · ·+ xi
m

)
−
(
yi

1 + · · ·+ yi
m

)
= hi (i ∈ R′0)

with xn,yn ∈ IdP (1 ≤ n ≤ m). By [16, Lemma A.2], we have L ⊆ R′0 and hence

Im,k,d(P ) =
∑
h

Jm,k,d(P,h),

where the summation is over h = (hi)i∈R′0 ∈
∏

i∈R′0
I|i|P with hi = 0 when i ∈ L. Let

K =
∑

i∈R′0
|i|. It follows from Corollary 1.1 that for m ≥ µk + µ, we have

Im,k,d(P ) ≤ P̂K−ιkJm,k,d(P )� P̂K−ιkP̂ 2md−K+ε = P̂ 2md−ιk+ε, (24)

where the implicit constants depend on m, d, k and q.

Lemma 6.3. Let k ≥ 2 and s ≥ 2µk + 2µ+ 1. We have∫
m

s∏
j=1

∣∣fj(α)
∣∣dα� P̂ sd−ιk−1/(8ιµ(k+1)).

Proof. Write m0 = µk + µ and s0 = 1 + 2m0. By Hölder’s inequality, we have∫
m

s0∏
j=1

∣∣fj(α)
∣∣dα ≤ sup

α∈m

∣∣f1(α)
∣∣ ∫

Tι

s0∏
j=2

∣∣fj(α)
∣∣dα

≤ sup
α∈m

∣∣f1(α)
∣∣ s0∏
j=2

(∫
Tι

∣∣fj(α)
∣∣2m0dα

)1/(2m0)

.
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On considering the underlying Diophantine equations, by (24), we have∫
Tι

∣∣fj(α)
∣∣2m0dα = Im0,k,d(P )� P̂ 2m0d−ιk+ε (2 ≤ j ≤ s0).

Thus, we see from Lemma 6.2 that∫
m

s0∏
j=1

∣∣fj(α)
∣∣dα� P̂ d−1/(4ιµ(k+1))+εP̂ 2m0d−ιk+ε � P̂ s0d−ιk−1/(8ιµ(k+1)).

Then by using the trivial bound that
∣∣fj(α)

∣∣� P̂ d (s0 + 1 ≤ j ≤ s) , it follows that∫
m

s∏
j=1

∣∣fj(α)
∣∣dα� P̂ (s−s0)d

∫
m

s0∏
j=1

∣∣fj(α)
∣∣dα� P̂ sd−ιk−1/(8ιµ(k+1)).

This completes the proof of the lemma. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. When s ≥ 2µk+2µ+1, it follows from Lemma 6.3 that there exists
η = η(d; k; q) > 0 such that ∫

m

s∏
j=1

fj(α)dα = O
(
P̂ sd−ιk−η

)
.

When s ≥ 2(ι+ 1)k+ 1 , by [16, Theorem 6.1], subject to a local solubility hypothesis, we
have ∫

M

s∏
j=1

fj(α)dα = C3P̂
sd−ιk +O

(
P̂ sd−ιk−η

)
,

where C3 = C3(s, d; k; q; c) > 0. Recall that

Ns,k,d,c(P ) =

∫
Tι

s∏
j=1

fj(α)dα =

∫
M

s∏
j=1

fj(α)dα +

∫
m

s∏
j=1

fj(α)dα.

Since µ ≥ ι+ 1, on combining the above estimates, the theorem follows. �
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