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Abstract. Let Fq[t] denote the polynomial ring over the finite field Fq, and let PR denote the subset of
Fq[t] containing all monic irreducible polynomials of degree R. For non-zero elements r = (r1, r2, r3) of Fq
satisfying r1 + r2 + r3 = 0, let D(PR) = Dr(PR) denote the maximal cardinality of a set AR ⊆ PR which
contains no non-trivial solution of r1x1 + r2x2 + r3x3 = 0 with xi ∈ AR (1 ≤ i ≤ 3). By applying the
polynomial Hardy-Littlewood circle method, we prove that D(PR)�q |PR|/(log log log log |PR|).

1. Introduction

For n ∈ N = {1, 2, · · · }, let D3([1, n]) denote the maximal cardinality of an integer subset of [1, n]
containing no non-trivial 3-term arithmetic progressions. In a fundamental paper, Roth[20] proved that
D3([1, n])� n/ log log n. His result was later improved by Heath-Brown [9], Szemerédi [24], Bourgain [3, 4]
and Sanders [21, 22]. In 2014, Bloom [2] showed that D3([1, n])� n(log log n)4/ log n, which gives the best
upper bound up to date. Szemerédi [23] proved that subsets of the natural numbers with positive upper
density contain arbitrarily long arithmetic progressions, and in 2001, Gowers [5] proved a quantitative
version of Szemerédi’s theorem.

One can consider analogous questions with [1, n] replaced by P [1, n], the set of positive primes up to
n. Let D3(P [1, n]) denote the maximal cardinality of an integer subset of P [1, n] containing no non-trivial
3-term arithmetic progression, and let π(n) denote the cardinality of P [1, n]. In [6], Green proved that

D3(P [1, n])� π(n)

(
log log log log log π(n)

log log log log π(n)

)1/2

.

In [7], Green and Tao proved that subsets of the primes with positive upper density contain arbitrarily
long arithmetic progressions.

Let Fq[t] denote the ring of polynomials over the finite field Fq. For R ∈ N = {1, 2, . . .}, let PR be the
subset of Fq[t] containing all monic irreducible polynomials of degree R. Let r = (r1, r2, r3) be non-zero
elements of Fq satisfying r1+r2+r3 = 0. Let (x1, x2, x3) ∈ Fq[t]3 be a solution of r1x1+r2x2+r3x3 = 0. We
say that (x1, x2, x3) is a trivial solution if x1 = x2 = x3. Otherwise, we say that (x1, x2, x3) is a non-trivial
solution. Let D(PR) = Dr(PR) denote the maximal cardinality of a set AR ⊆ PR for which there is no
non-trivial solution of r1x1 + r2x2 + r3x3 = 0 with xi ∈ AR (1 ≤ i ≤ 3), and let |PR| denote the cardinality
of PR. In this paper, we prove the following theorem.
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Theorem 1. For R ∈ N,

D(PR)�q
|PR|

log log log log |PR|
.

Here the implicit constant depends only on q.

In the special case that r = (1,−2, 1) and gcd(2, q) = 1, the number D(PR) denotes the maximal
cardinality of a set AR ⊆ PR which contains no non-trivial 3-term arithmetic progression. In large part,
this paper will follow the approach of Green. Our improvement over the analogous bound for Z stems from
nice properties of Bohr sets in Fq[t] and the availability of a stronger bound for Roth’s theorem in Fq[t]
(see [14]) than in Z. It is worth noting that when studying equations of the form r1x1 + · · · + rsxs = 0
where r1 + · · ·+ rs = 0 and s ≥ 4, in [14], the authors proved that

D(PR)�q
|PR|

(log |PR|)s−3
,

which provides a strong bound compared to Theorem 1. Also, Lê has proved a function field analogue
of Green and Tao’s theorem on arithmetic progressions of primes (see [11]). While his method provides
results about more general configurations in the irreducible polynomials of Fq[t], the approach of this paper
produces stronger quantitative bounds on D(PR). In addition, several estimates of exponential sums in
this paper are essential to various additive combinatorial problems in function fields, including the results
in [12].

In 2011, the above mentioned bound of Green was improved by Helfgott and de Roton [10] to

|ÃR| � |P̃R|
log log log |P̃R|
(log log |P̃R|)1/3

.

Recently, Naslund [16] showed that for any ε > 0,

|ÃR| � |P̃R|
(

1

log log |P̃R|

)1−ε
.

In future work, we will show how their methods can be implemented over Fq[t] to improve Theorem 1.

Acknowledgement The authors are grateful to Trevor Wooley for many valuable discussions during the
completion of this work and to Frank Thorne for providing a reference to [18]. They also would like to thank
the referee for many valuable comments. This work was completed when the second author visited the
University of Waterloo in 2007 and 2008, and he would like to thank the Department of Pure Mathematics
for their hospitality.

2. Basic Setup

We start this section by introducing the Fourier analysis of Fq[t]. Let K = Fq(t) be the field of fractions
of Fq[t], and let K∞ = Fq((1/t)) be the completion of K at ∞. We may write each element α ∈ K∞ in the
shape α =

∑
i≤r ait

i for some r ∈ Z and ai = ai(α) ∈ Fq (i ≤ r). If ar 6= 0, we define ordα = r and we

write 〈α〉 for qordα. We adopt the conventions that ord 0 = −∞ and 〈0〉 = 0. Also, it is often convenient to
refer to a−1(α) as being the residue of α, an element of Fq that we denote by resα. For a real number R,

we let R̂ denote qR. Hence, for x ∈ Fq[t], 〈x〉 < N̂ if and only if ordx < N . Furthermore, we let T denote
the compact additive subgroup of K∞ defined by T =

{
α ∈ K∞ : 〈α〉 < 1

}
. Given any Haar measure dα
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on K∞, we normalize it in such a manner that
∫
T 1 dα = 1. Thus if N is the subset of K∞ defined by

N =
{
α ∈ K∞ : ordα < −N

}
, then the measure of N, mes(N), is equal to N̂−1.

We are now equipped to define the exponential function on Fq[t]. Suppose that the characteristic of Fq is
p. Let e(z) denote e2πiz and let tr : Fq → Fp denote the familiar trace map. There is a non-trivial additive
character eq : Fq → C× defined for each a ∈ Fq by taking eq(a) = e(tr(a)/p). This character induces a map
e : K∞ → C× by defining, for each element α ∈ K∞, the value of e(α) to be eq(resα). The orthogonality
relation underlying the Fourier analysis of Fq[t], established in [8, Lemma 1], takes the shape∫

T
e(hα) dα =

{
1, when h = 0,

0, when h ∈ Fq[t] \ {0}.

For N ∈ N, let SN denote the subset of Fq[t] containing all monic polynomials of degree N . For
b,m ∈ Fq[t] with m monic, 〈b〉 < 〈m〉 ≤ N and (b,m) = 1, define a set

X = Λb,m,N =
{
n ∈ SN |mn+ b is irreducible

}
(1)

∼=
{
n′ ∈ SN+ordm |n′ is irreducible and n′ ≡ b (modm)

}
.

Thus by the prime number theorem in arithmetic progression in Fq[t] [19, Theorem 4.8],

|X| = N̂〈m〉
(N + ordm)φ(m)

+O

(
N̂1/2〈m〉1/2

N + ordm

)
, (2)

where φ(m) =
∣∣{n ∈ Fq[t] | ordn < ordm and (n,m) = 1)

}∣∣. Define a function λb,m,N : SN → C supported
on X by setting

λb,m,N (n) =

{
(N+ordm)φ(m)

N̂〈m〉
, when n ∈ X,

0, otherwise.

In the following, we will abuse our notation and view λb,m,N as a measure on X. By (2), we have

λb,m,N (X) =
∑
n∈X

λb,m,N (n) = 1 + o(1).

For functions h1, h2 : SN → C, we define an inner product

〈h1, h2〉X =
∑
n∈SN

h1(n)h2(n)λb,m,N (n).

We will use the wedge symbol to denote the Fourier transforms on both T and SN . More precisely, for
f : T→ C and h : SN → C, the functions f∧ : SN → C and h∧ : T→ C are defined by

f∧(n) =

∫
T
f(θ)e(−nθ) dθ and h∧(θ) =

∑
n∈SN

h(n)e(nθ).

Also, we define the convolution of two functions f : T→ C and g : T→ C to be

(f ∗ g) (ρ) =

∫
T
f(θ)g(ρ− θ) dθ.

For any measure space Y , let B(Y ) denote the space of continuous functions on Y and define an operator
T : B(X)→ B(T) by

T : h 7−→ (hλb,m,N )∧.
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A dual operator T ∗ : B(T)→ B(X) of T is defined by

T ∗ : f 7−→ f∧|X .
We have

〈Th, f〉T = 〈h, T ∗f〉X .
Also, the map TT ∗ : B(T)→ B(T) is given by

TT ∗ : f 7−→ f ∗ λ∧b,m,N .
Furthermore, for an operator T and positive numbers a and b, we define

‖T‖a→b = sup
f

‖Tf‖b
‖f‖a

,

where ‖ · ‖a denotes the La norm and f ranges over continuous functions that map to C. A main step in
proving Theorem 1 will be deriving a restriction theorem for monic irreducible polynomials. Namely, we
will prove the following theorem.

Theorem 2. Suppose that δ > 2 is a real number. Then there exists a constant C(q, δ), depending only
on q and δ, such that

‖T‖2→δ ≤ C(q, δ)N̂−1/δ.

As an application of Theorem 2, we are able to derive the Hardy-Littlewood majorant property for
function fields. Namely, we will establish the following theorem.

Theorem 3. Let (ax)x∈PR be any sequence of complex numbers with |ax| ≤ 1 for all x ∈ PR. For a real
number δ ≥ 2, we have ∥∥∥ ∑

x∈PR

axe(xθ)
∥∥∥
δ
≤ C ′(q, δ)

∥∥∥ ∑
x∈PR

e(xθ)
∥∥∥
δ
,

where C ′(q, δ) is a constant depending only on q and δ.

Note that in the special case when δ is an even integer, by considering the underlying Diophantine
equation, one can show that Theorem 3 holds with C ′(q, δ) = 1.

For a real number δ > 1, let δ′ denote the unique real number satisfying 1/δ + 1/δ′ = 1. Since

‖Tf‖δ = sup
‖g‖δ′=1

〈Tf, g〉 = sup
‖g‖δ′=1

〈f, T ∗g〉 ≤ ‖f‖2 sup
‖g‖δ′=1

‖T ∗g‖2

= ‖f‖2 sup
‖g‖δ′=1

〈g, TT ∗g〉1/2 ≤ ‖f‖2‖TT ∗‖1/2δ′→δ,
(3)

to prove Theorem 2, it suffices to bound the quantity

‖TT ∗‖δ′→δ = sup
‖f‖δ′=1

‖f ∗ λ∧b,m,N‖δ. (4)

In this paper, $ will be used to denote a monic irreducible polynomial. For a polynomial x ∈ Fq[t], we say

that x is Q̂-rough if for all monic irreducible polynomials $ with $|x, we have 〈$〉 > Q̂. For Q ∈ N, define

λ
(Q)
b,m,N (n) =


N̂−1

∏
〈$〉≤Q̂
$-m

(
1− 1/〈$〉

)−1
, if n ∈ SN and mn+ b is Q̂-rough,

0, otherwise.
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By a sieve argument, one can show that∑
n∈SN

λ
(Q)
b,m,N (n) = 1 + o(1).

Also, we define λ
(0)
b,m,N (n) = 0 for all n ∈ SN . Let A = 4/(δ− 2). For a positive integer K = [A logqN ] and

1 ≤ Q ≤ K, let

ψQ = λ
(Q)
b,m,N − λ

(Q−1)
b,m,N (1 ≤ Q ≤ K) and ψK+1 = λb,m,N − λ

(K)
b,m,N .

Since
∑K+1

i=1 ψi = λb,m,N , by the triangle inequality, to bound ‖TT ∗‖δ′→δ, it suffices to consider

sup
‖f‖δ′=1

‖f ∗ ψ∧j ‖δ (1 ≤ j ≤ K + 1).

To obtain the above bound, we will apply the Riesz-Thorin interpolation theorem [17, 25] with the following
bounds which we will prove in the next two sections:

‖f ∗ ψ∧Q‖∞ �q,δ Q̂
−1‖f‖1 and ‖f ∗ ψ∧Q‖2 �q,δ NN̂

−1 ‖f‖2.

Notation For k ∈ N, let f(k) and g(k) be functions of k. If g(k) is positive and there exists a constant
c > 0 such that |f(k)| ≤ cg(k), we write f(k) � g(k). In the following, all implicit constants depend at
most on q and δ. In Section 6, while δ is fixed, all implicit constant depends at most on q. Throughout, the
letter ε will denote a sufficiently small positive number. We adopt the convention that whenever ε appears
in a statement, then we are implicitly asserting that for each ε > 0, the statement holds for sufficiently
large values of the main parameter. Note that the “value” of ε may consequently change from statement.

3. An L2-L2 estimate

We first state Merten’s theorem for Fq[t].

Lemma 4. [13, Lemma 2] For Q ∈ N, we have∏
〈$〉≤Q̂

(
1− 1/〈$〉

)−1 � Q.

Lemma 5. For a function f : T→ C and 1 ≤ Q ≤ K,

‖f ∗ ψ∧Q‖2 � QN̂−1 ‖f‖2.

Also, one has

‖f ∗ ψ∧K+1‖2 � NN̂−1 ‖f‖2.

Proof. Note that for 1 ≤ Q ≤ K + 1,

‖f ∗ ψ∧Q‖2 = ‖f∧ψQ‖2 ≤ ‖ψQ‖∞‖f∧‖2 = ‖ψQ‖∞‖f‖2.
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For 1 ≤ Q ≤ K, by Lemma 4,

‖ψQ‖∞ ≤ ‖λ(Q)
b,m,N‖∞ + ‖λ(Q−1)

b,m,N ‖∞

= N̂−1
∏
〈$〉≤Q̂
$-m

(
1− 1/〈$〉

)−1
+ N̂−1

∏
〈$〉≤Q̂−1
$-m

(
1− 1/〈$〉

)−1

� QN̂−1 + (Q− 1)N̂−1 � QN̂−1.

Similarly,

‖ψK+1‖∞ ≤ ‖λb,m,N‖∞ + ‖λ(K)
b,m,N‖∞ �

φ(m)(N + ordm)

N̂〈m〉
+KN̂−1 � NN̂−1.

Thus the lemma follows. �

4. An L1-L∞ estimate

For a function f : T→ C and 1 ≤ Q ≤ K + 1, we have

‖f ∗ ψ∧Q‖∞ ≤ ‖ψ∧Q‖∞‖f‖1.

The goal of this section is to apply the Hardy-Littlewood circle method to establish the following proposi-
tion.

Proposition 6. For 1 ≤ Q ≤ K, we have

‖λ∧b,m,N − λ
(Q)∧

b,m,N‖∞ � Q̂−1.

Note that

‖λ∧b,m,N − λ
(0)∧

b,m,N‖∞ = ‖λ∧b,m,N‖∞ � 1.

Thus by combining Proposition 6 with the triangle inequality, we obtain the following lemma.

Lemma 7. For a function f : T→ C and 1 ≤ Q ≤ K + 1,

‖f ∗ ψ∧Q‖∞ � Q̂−1‖f‖1.

Let B = 2A + 12. Note that for all α ∈ T, by Dirichlet’s theorem for Fq[t] [8, Lemma 3], there exist

a, g ∈ Fq[t] with g monic, (a, g) = 1, 〈α− a/g〉 < NB/(〈g〉N̂) and 〈g〉 ≤ N̂/NB. We define the major arcs
M and the minor arcs m as follow:

M =
⋃

〈g〉≤NB

(a,g)=1
g monic

Ma,g and m = T \M,

where

Ma,g =
{
α ∈ T | 〈α− a/g〉 < NB/〈g〉N̂

}
.

In order to prove Proposition 6, we will separate our analysis into major arc contributions and minor arc
contributions.
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4.1. Major arc estimates. In the following, we consider a function h : SN → C which satisfies the
following condition:

• Condition* Let r, g ∈ Fq[t] with g monic, 〈r〉 < 〈g〉 and 〈g〉 ≤ NB. Let L = N − dB logqNe. For
r′ ∈ SN with r′ ≡ r (mod g), let

Y =
{
r′ + lg | 〈l〉 < L̂

}
⊆ SN .

Then ∑
n∈Y

h(n) =
L̂

N̂

(
γr,g(h) +O(E(h))

)
,

where γr,g(h) is a constant depending on h and E(h) is an error term of size o(1).

Let

%(β) = N̂−1
∑
n∈SN

e(βn).

Lemma 8. Suppose that 〈β〉 < NB/〈g〉N̂ and that r, g ∈ Fq[t] with g monic, 〈r〉 < 〈g〉 and 〈g〉 ≤ NB. For
h : SN → C satisfying Condition*, we have∑

n∈SN
n≡r(mod g)

h(n)e(βn) = 〈g〉−1γr,g(h)%(β) +O
(
〈g〉−1E(h)

)
.

Proof. For n ∈ SN with n ≡ r (mod g), we can write n = g(ytL + l) + r with y monic, 〈y〉 = N̂/〈g〉L̂ and

〈l〉 < L̂. Moreover, for 〈l〉 < L̂, we have

〈β(gl + r)〉 < NB

〈g〉N̂
· 〈g〉 · N̂

q1+dB logq Ne
≤ 1

q
,

which implies that e(β(gl + r)) = 1. Thus by applying Condition* with r′ = gytL + r,∑
n∈SN

n≡r(mod g)

h(n)e(βn) =
∑

〈y〉=N̂/〈g〉L̂
y monic

∑
〈l〉<L̂

h
(
g(ytL + l) + r

)
e
(
β(g(ytL + l) + r)

)

=
∑

〈y〉=N̂/〈g〉L̂
y monic

e(βgytL)
∑
〈l〉<L̂

h
(
gytL + lg + r

)

=
L̂

N̂
γr,g(h)

∑
〈y〉=N̂/〈g〉L̂
y monic

e(βgytL) +O
(
〈g〉−1E(h)

)
.

In addition, for 〈z〉 < 〈gtL〉 = 〈g〉L̂, we have

〈βz〉 < NB

〈g〉N̂
· 〈z〉 ≤ NB

〈g〉N̂
· 〈g〉N̂
q1+dB logq Ne

≤ 1

q
,
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which implies that e(βz) = 1. Thus∑
〈y〉=N̂/〈g〉L̂
y monic

e(βgytL) =
1

〈g〉L̂

∑
〈z〉<〈gtL〉

∑
〈y〉=N̂/〈g〉L̂
y monic

e
(
β(gytL + z)

)
=

1

〈g〉L̂

∑
n∈SN

e(βn) =
N̂

〈g〉L̂
%(β).

By combining the above estimates, we have∑
n∈SN

n≡r(mod g)

h(n)e(βn) = 〈g〉−1γr,g(h)%(β) +O
(
〈g〉−1E(h)

)
.

This completes the proof of the lemma. �

Lemma 9. Let h : SN → C satisfy Condition*. For a, g ∈ Fq[t] with g monic, (a, g) = 1 and 〈g〉 ≤ NB,
define

σa,g(h) =
∑
〈r〉<〈g〉

e

(
ar

g

)
γr,g(h).

Then for α ∈Ma,g,

h∧(α) = 〈g〉−1σa,g(h)%

(
α− a

g

)
+O

(
E(h)

)
.

Proof. Write α = a/g + β with 〈β〉 < NB〈g〉−1N̂−1. Then by Lemma 8,

h∧(α) =
∑
n∈SN

h(n)e(nα)

=
∑
〈r〉<〈g〉

e

(
ra

g

) ∑
n∈SN

n≡r(mod g)

h(n)e(βn)

= 〈g〉−1%(β)
∑
〈r〉<〈g〉

e

(
ra

g

)
γr,g(h) +O

(
〈g〉〈g〉−1E(h)

)
= 〈g〉−1%(β)σa,g(h) +O

(
E(h)

)
.

Thus the lemma follows. �

In the following, we will show that the functions λb,m,N and λ
(Q)
b,m,N (1 ≤ Q ≤ K) satisfy Condition*. We

first recall a result of Rhin.

Lemma 10. (Rhin [18, Theorem 4]) Let c, d ∈ Fq[t] with c monic and (c, d) = 1. For D,M ∈ N, we denote
by N(c, d;M,D) the number of monic irreducible polynomials $ of order M satisfying $ ≡ c (mod d) and
ord ($tord c − ctordm) < −D + ord$ + ord c. Then

N(c, d;M,D) =
M̂

Mφ(d)D̂
+O

(
(ord d+D + 1)M̂1/2

)
.

Lemma 11. Let r, g ∈ Fq[t] with g monic, 〈r〉 < 〈g〉 and 〈g〉 ≤ NB. Then λb,m,N satisfies Condition* with

γr,g(λb,m,N ) =

{
φ(m)〈g〉
φ(mg) , if (mr + b,mg) = 1,

0, otherwise,
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and

E(λb,m,N ) = NB+1+ε〈m〉1/2+εN̂−1/2.

Proof. Recall the definition of X in (1). Let r′ ∈ SN with r′ ≡ r (mod g) and Y =
{
r′+ lg | 〈l〉 < L̂

}
⊆ SN .

For n = r′ + lg ∈ Y , λb,m,N (n) = 0 if and only if mn+ b 6∈ X.

(1) Suppose that (mr + b,mg) 6= 1. We assume that NB < N̂ . Then there exists a monic irreducible
polynomial $ such that $|(mr + b,mg). Write n = r + l′g + lg for some l′ ∈ Fq[t]. Then the polynomial

mn+ b = m(r + l′g + lg) + b = (mr + b) +mg(l + l′)

has a factor $. If mn+ b ∈ X, then $ = mn+ b. Since

〈$〉 ≤ 〈mg〉 ≤ 〈m〉NB < 〈m〉N̂ = 〈mn+ b〉,

we have $ 6= mn+ b. Thus we have mn+ b 6∈ X. It follows that∑
n∈Y

λb,m,N (n) = 0.

Thus the lemma follows in this case.
(2) Suppose that (mr + b,mg) = 1. Consider

Nr′ = Nr′(m, g, L) = #
{
n = r′ + lg | 〈l〉 < L̂ and mn+ b ∈ X

}
,

which is equal to the number of monic irreducible polynomials $ with ord$ = N + ordm, $ ≡ mr′ + b

(mod mg) and 〈$ − (mr′ + b)〉 < L̂〈mg〉. We now apply Lemma 10 with c = mr′ + b, d = mg, M =
N + ordm = ord c and D = N − L− ord g. Since L = N − dlogqN

Be, we have

Nr′ =
N̂〈m〉L̂〈g〉

(N + ordm)φ(mg)N̂
+O

((
(ord g + ordm) + (N − L− ord g) + 1

)
N̂1/2〈m〉1/2

)
=

L̂〈mg〉
(N + ordm)φ(mg)

+O
(
(ordm+ dB logqNe)N̂1/2〈m〉1/2

)
.

It follows that∑
n∈Y

λb,m,N (n) =
φ(m)(N + ordm)

N̂〈m〉

(
L̂〈mg〉

(N + ordm)φ(mg)
+O

(
(ordm+ dB logqNe)N̂1/2〈m〉1/2

))

=
L̂

N̂

(
φ(m)〈g〉
φ(mg)

+O

(
N̂φ(m)(N + ordm)

L̂N̂〈m〉
(ordm+B logqN)N̂1/2〈m〉1/2

))
=
L̂

N̂

(
φ(m)〈g〉
φ(mg)

+O

(
NB+1+ε〈m〉1/2+ε

N̂1/2

))
.

Thus the lemma also follows in this case. �

Lemma 12. Suppose that a, g ∈ Fq[t] with g monic, (a, g) = 1 and 〈g〉 ≤ NB. For σ defined as in Lemma
9, one has

σa,g(λb,m,N ) =

{
〈g〉µ(g)
φ(g) e

(−abm̄
g

)
, if (m, g) = 1,

0, otherwise.

Here, we write m̄ for the multiplicative inverse of m modulo g and µ(·) the Möbius function on Fq[t].
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Proof. By Lemma 11, we have

σa,g(λb,m,N ) =
∑
〈r〉<〈g〉

e

(
ar

g

)
γr,g(λb,m,N ) =

φ(m)〈g〉
φ(mg)

∑
〈r〉<〈g〉

(mr+b,mg)=1

e

(
ar

g

)
=
φ(m)〈g〉
φ(mg)

∑
〈r〉<〈g〉

(mr+b,g)=1

e

(
ar

g

)
.

For z ∈ Z with z ≥ 0, if $z|g and $z+1 - g, we write that $z‖g. Let

g0 =
∏
$

$z‖g,$-m

$z,

and g1 = g/g0. If $|m, then $ - (mr + b). Thus (mr + b,mg) = (mr + b, g0), and∑
〈r〉<〈g〉

(mr+b,g)=1

e

(
ar

g

)
=

∑
〈r〉<〈g〉

(mr+b,g0)=1

e

(
ar

g

)
.

By writing r = ug0 + v with 〈u〉 < 〈g1〉 and 〈v〉 < 〈g0〉, we have∑
〈r〉<〈g〉

(mr+b,g0)=1

e

(
ar

g

)
=

∑
〈v〉<〈g0〉

(mv+b,g0)=1

e

(
av

g

) ∑
〈u〉<〈g1〉

e

(
au

g1

)
.

Since ∑
〈u〉<〈g1〉

e

(
au

g1

)
=

{
1, if 〈g1〉 = 1,

0, otherwise,

it follows that

∑
〈v〉<〈g0〉

(mv+b,g0)=1

e

(
av

g

) ∑
〈u〉<〈g1〉

e

(
au

g1

)
=


∑
〈v〉<〈g〉

(mv+b,g)=1

e

(
av

g

)
, if g1 = 1,

0, otherwise.

One has that (g,m) = 1 if and only if g1 = 1. When (g,m) = 1, we have φ(m)〈g〉
φ(mg) = 〈g〉

φ(g) . Therefore, to

prove the lemma, it is enough to show that when (g,m) = 1, we have∑
〈v〉<〈g〉

(mv+b,g)=1

e

(
av

g

)
= µ(g)e

(
−abm̄
g

)
.

Suppose that (g,m) = 1. Let w = mv+ b. Then (w− b)m̄ ≡ v (mod g). By checking that
∑
〈w〉<〈g〉
(w,g)=1

e

(
awm̄

g

)
is a multiplicative function in g, one can verify that∑

〈w〉<〈g〉
(w,g)=1

e

(
awm̄

g

)
= µ(g).
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Thus ∑
〈v〉<〈g〉

(mv+b,g)=1

e

(
av

g

)
=

∑
〈w〉<〈g〉
(w,g)=1

e

(
a(w − b)m̄

g

)
= e

(
−abm̄
g

) ∑
〈w〉<〈g〉
(w,g)=1

e

(
awm̄

g

)
= µ(g)e

(
−abm̄
g

)
.

This completes the proof of the lemma. �

Lemma 13. Let r, g ∈ Fq[t] with g monic, 〈r〉 < 〈g〉 and 〈g〉 ≤ NB. For 1 ≤ Q ≤ K, the function λ
(Q)
b,m,N

satisfies Condition* with

γr,g(λ
(Q)
b,m,N ) =


∏
〈$〉≤Q̂
$-m

(
1− 1/〈$〉

)−1
∏
〈$〉≤Q̂
$-mg

(
1− 1/〈$〉

)
, if (mr + b,mg) is Q̂-rough,

0, otherwise,

and

E(λ
(Q)
b,m,N ) = N̂−1/(2A)+ε + N̂−1/2+ε,

where A = 4/(δ − 2) is defined as in Section 2.

Proof. Let r′ ∈ SN with r′ ≡ r (mod g) and Y =
{
r′ + lg | 〈l〉 < L̂

}
⊆ SN . Since (b,m) = 1, if $ ∈ Fq[t] is

a monic irreducible polynomial with $|m, then $ - (mn + b). Thus it suffices to consider $ with $ - m.

Let $1, . . . , $R ∈ Fq[t] denote the monic irreducible polynomials with 〈$i〉 ≤ Q̂ and $i - m (1 ≤ i ≤ R).

For n = r′ + lg ∈ Y , λ
(Q)
b,m,N (n) = 0 if and only if $i|(mn+ b) for some 1 ≤ i ≤ R.

(1) Suppose that (mr+b,mg) is not Q̂-rough. Then there exists some $i such that $i|(mr+b,mg). Write
n = r + l′g + lg for some l′ ∈ Fq[t]. Thus the polynomial mn+ b = (mr + b) +mg(l + l′) has a factor $i.

Hence, λ
(Q)
b,m,N (n) = 0 and the lemma follows in this case.

(2) Suppose that (mr + b,mg) is Q̂-rough, i.e., $i - (mr + b,mg) (1 ≤ i ≤ R). Let Xi denote the event

that $i|(mn+ b) for n ∈ Y , and let P(Xi) = |Xi|/L̂ be the probability of Xi occurring. We denote by Xc
i

the complement of Xi. Note that∑
n∈Y

λ
(Q)
b,m,N (n) =

1

N̂

∏
〈$〉≤Q̂
$-m

(
1− 1/〈$〉

)−1 ·
∣∣∣∣ R⋂
i=1

Xc
i

∣∣∣∣ =
L̂

N̂

∏
〈$〉≤Q̂
$-m

(
1− 1/〈$〉

)−1 · V,

where

V = P
( R⋂
i=1

Xc
i

)
.

It remains to estimate V.
(2.1) If $i|g, then mn+ b ≡ mr + b 6≡ 0 (mod $i), i.e., $i - (mn+ b). Thus P(Xi) = 0.

(2.2) Suppose that $i - g. Since $i - m, we have ($i,mg) = 1. If L̂ ≥ 〈$〉, as l varies with 〈l〉 < L̂, then
mn+ b = (mr′ + b) + lmg runs through all residue classes modulo $i. Thus we have P(Xi) = 1/〈$i〉. On

the other hand, if L̂ < 〈$〉, then either 0 or 1 choices of l will give $i|(mn + b). Thus P(Xi) = O(L̂−1).
From the above estimates, we have

P(Xi) =
εi
〈$i〉

+O(L̂−1),
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where

εi =

{
0, if $i|g,
1, otherwise.

By the inclusion-exclusion formula, we have

V =

R∑
s=0

(−1)s
∑

1≤i1<···<is≤R

s∏
j=1

εi1 · · · εis
〈$i1〉 · · · 〈$is〉

+O

(
L̂−1

R∑
s=1

(
R

s

))
.

Note that for any K ′ ∈ N, by considering the even terms of the above alternating sum, we have

V ≤
2K′∑
s=0

(−1)s
∑

1≤i1<···<is≤R

s∏
j=1

εi1 · · · εis
〈$i1〉 · · · 〈$is〉

+O
(
L̂−1

2K′∑
s=1

(
R

s

))

=
R∏
i=1

(
1− εi
〈$i〉

)
+O

( R∑
s=2K′+1

∑
1≤i1<···<is≤R

s∏
j=1

εi1 · · · εis
〈$i1〉 · · · 〈$is〉

)
+O

(
L̂−1

2K′∑
s=1

(
R

s

))
.

Similarly, by considering the odd terms of the alternating sum, we have

V ≥
2K′−1∑
s=0

(−1)s
∑

1≤i1<···<is≤R

s∏
j=1

εi1 · · · εis
〈$i1〉 · · · 〈$is〉

+O

(
L̂−1

2K′−1∑
s=1

(
R

s

))

=
R∏
i=1

(
1− εi
〈$i〉

)
+O

( R∑
s=2K′

∑
1≤i1<···<is≤R

s∏
j=1

εi1 · · · εis
〈$i1〉 · · · 〈$is〉

)
+O

(
L̂−1

2K′−1∑
s=1

(
R

s

))
.

Thus for any J ∈ N, we have

V =
∏
〈$〉≤Q̂
$-mg

(
1− 1/〈$〉) +O

( R∑
s=J

∑
1≤i1<···<is≤R

s∏
j=1

εi1 · · · εis
〈$i1〉 · · · 〈$is〉

)
+O

(
L̂−1

J∑
s=1

(
R

s

))
.

To estimate the error terms, note that

L̂−1
J∑
s=1

(
R

s

)
� L̂−1RJ+1.

Also, for J ≤ s ≤ R,

∑
1≤i1<···<is≤R

s∏
j=1

εi1 · · · εis
〈$i1〉 · · · 〈$is〉

≤ 1

s!

( R∑
i=1

1

〈$i〉

)s
≤ 1

s!

( ∑
〈$〉≤Q̂

1

〈$〉

)s
≤ 1

s!

(
lnQ+ c)s.
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The last inequality follows from Lemma 4 with c some fixed constant. It follows that for J > 3(lnQ+ c),

R∑
s=J

∑
1≤i1<···<is≤R

s∏
j=1

εi1 · · · εis
〈$i1〉 · · · 〈$is〉

≤
R∑
s=J

1

s!
(lnQ+ c)s

≤ (lnQ+ c)J

J !

(
1 +

lnQ+ c

J + 1
+

(lnQ+ c)2

(J + 1)(J + 2)
+ · · ·

)
≤ (lnQ+ c)J

J !
(1 + 1/3 + 1/32 + · · · )

�
(
e ln(ecQ)

J

)J
.

The last inequality follows from Stirling’s formula, namely that J ! =
√

2πJ(J/e)J
(
1 + O(1/J)

)
. Thus we

have

V =
∏
〈$〉≤Q̂
$-mg

(
1− 1/〈$〉

)
+O

((
e ln(ecQ)

J

)J
+ L̂−1RJ+1

)
.

Since R� Q̂� NA, by choosing J = N/(2A logqN), we have(
e ln(ecQ)

J

)J
� N̂−1/(2A)+ε and L̂−1RJ+1 � N̂−1/2+ε.

Thus
V =

∏
〈$〉≤Q̂
$-mg

(
1− 1/〈$〉

)
+O

(
N̂−1/(2A)+ε + N̂−1/2+ε

)
.

By Lemma 4, we have ∏
〈$〉≤Q̂
$-m

(
1− 1/〈$〉

)−1 ≤
∏
〈$〉≤Q̂

(
1− 1/〈$〉

)−1 � Q� logqN.

It follows that∑
n∈Y

λ
(Q)
b,m,N (n) =

L̂

N̂

( ∏
〈$〉≤Q̂
$-m

(
1− 1/〈$〉

)−1
∏
〈$〉≤Q̂
$-mg

(
1− 1/〈$〉

)
+O

(
N̂−1/(2A)+ε + N̂−1/2+ε

))
.

This completes the proof of the lemma. �

For a polynomial x ∈ Fq[t], we say that x is Q̂-smooth if for all monic irreducible polynomials $ with

$|x, we have 〈$〉 ≤ Q̂.

Lemma 14. Suppose that a, g ∈ Fq[t] with g monic, (a, g) = 1 and 〈g〉 ≤ NB. Also, suppose that 1 ≤ Q ≤
K. For σ defined as in Lemma 9, one has

σa,g(λ
(Q)
b,m,N ) =

{
〈g〉µ(g)
φ(g) e

(−abm̄
g

)
, if (m, g) = 1 and g is Q̂-smooth,

0, otherwise,

where m̄ is the multiplicative inverse of m modulo g.
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Proof. By Lemma 13, we have

σa,g(λ
(Q)
b,m,N ) =

∑
〈r〉<〈g〉

e

(
ar

g

)
γr,g(λ

(Q)
b,m,N )

=
∏
〈$〉≤Q̂
$-m

(
1− 1/〈$〉

)−1
∏
〈$〉≤Q̂
$-mg

(
1− 1/〈$〉

) ∑
〈r〉<〈g〉

(mr+b,mg) is Q̂-rough

e

(
ar

g

)
.

Note that if (m, g) = 1 and g is Q̂-smooth, then∏
〈$〉≤Q̂
$-m

(
1− 1/〈$〉

)−1
∏
〈$〉≤Q̂
$-mg

(
1− 1/〈$〉

)
= 〈g〉/φ(g).

Thus to prove the lemma, it is enough to show that∑
〈r〉<〈g〉

(mr+b,mg) is Q̂-rough

e

(
ar

g

)
=

{
µ(g)e

(
−abm̄
g

)
, if (m, g) = 1 and g is Q̂-smooth,

0, otherwise.

Let

g2 =
∏
〈$〉≤Q̂

$z‖g,$-m

$z,

and g3 = g/g2. If $|m, then $ - (mr + b). Thus (mr + b,mg) = (mr + b, g), and∑
〈r〉<〈g〉

(mr+b,mg) is Q̂-rough

e

(
ar

g

)
=

∑
〈r〉<〈g〉

(mr+b,g2)=1

e

(
ar

g

)
.

Note that (m, g) = 1 and that g is Q̂-smooth if and only if g3 = 1. Then using a similar argument as the
one in the proof of Lemma 12 (with g0 replaced by g2 and g1 replaced by g3), we can show that∑

〈r〉<〈g〉
(mr+b,g2)=1

e

(
ar

g

)
=

{
µ(g)e

(
−abm̄
g

)
, if (m, g) = 1 and g is Q̂-smooth,

0, otherwise.

This completes the proof of the lemma. �

We now summarize the major arc contribution to Proposition 6.

Lemma 15. For 1 ≤ Q ≤ K, we have

sup
α∈M
|λ∧b,m,N (α)− λ(Q)∧

b,m,N (α)| � Q̂−1.

Proof. Let α ∈ M. Then there exists a, g ∈ Fq[t] with g monic, (a, g) = 1, 〈α − a/g〉 < NB/
(
〈g〉N̂

)
and

〈g〉 ≤ N̂/NB. By combining Lemmas 9, 11, 12, 13 and 14, if g is Q̂-smooth, we have

|λ∧b,m,N (α)− λ(Q)∧

b,m,N (α)| � NB+1+ε〈m〉1/2+εN̂−1/2 + N̂−1/(2A)+ε + N̂−1/2+ε � Q̂−1.
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If g is not Q̂-smooth, then there exists an irreducible polynomial $ with 〈$〉 > Q̂ and $|g. It follows that

φ(g) ≥ φ($) = 〈$〉 − 1� Q̂. Thus we have

|λ∧b,m,N (α)− λ(Q)∧

b,m,N (α)| ≤ |λ∧b,m,N (α)|+ |λ(Q)∧

b,m,N (α)|

� 1/φ(g) +NB+1+ε〈m〉1/2+εN̂−1/2 + N̂−1/(2A)+ε + N̂−1/2+ε

� Q̂−1.

This completes the proof of the lemma. �

4.2. Minor arc estimates. We will now turn our attention to obtaining a minor arc estimate for
λb,m,N (α). We will obtain the following result.

Lemma 16. Suppose that 〈m〉 ≤ N . One has

sup
α∈m
|λ∧b,m,N (α)| � N6−B/2 = N−A,

where A = 4/(δ − 2) and B = 2A+ 12 are defined as in Sections 2 and 3.

In order to prove this lemma, we need to establish more notation. Whenever a sum has a superscript
+, which will look like

∑+, the sum will be restricted to monic polynomials. Let R ∈ N, and let U be a
parameter with 1 ≤ U < R/2. Define τx by

τx =
∑+

d|x
〈d〉≤Û

µ(d). (5)

Let

Λ(y) =

{
ord$, when y = $l for some monic, irreducible polynomial $ and l ∈ N,
0, otherwise.

We now will present a sequence of lemmas concerning the weighted exponential sum∑+

〈y〉≤R̂
y≡b (modm)

Λ(y)e(αy);

from these lemmas, we will be able to extract Lemma 16. Due to the underlying shape of Dirichlet series
in Fq[t], we are unable to take an approach similar to that in [1]. Instead, we will follow the ideas of [26,
Chapter 3].

Lemma 17. Let υ(x, y) denote a function on Fq[t]2. Then we have∑+

Û<〈y〉≤R̂

υ(1, y) +
∑+

Û<〈x〉≤R̂

∑+

Û<〈y〉≤R̂/〈x〉

τxυ(x, y) =
∑+

〈d〉≤Û

∑+

Û<〈y〉≤R̂/〈d〉

∑+

〈z〉≤R̂/〈yd〉

µ(d)υ(dz, y).
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Proof. By writing x = dz, we have∑+

〈d〉≤Û

∑+

Û<〈y〉≤R̂/〈d〉

∑+

〈z〉≤R̂/〈yd〉

µ(d)υ(dz, y) =
∑+

Û<〈x〉≤R̂

∑+

Û<〈y〉≤R̂/〈x〉

υ(x, y)
∑+

d|x
〈d〉≤Û

µ(d)

+
∑+

〈x〉≤Û

∑+

Û<〈y〉≤R̂/〈x〉

υ(x, y)
∑+

d|x
〈d〉≤Û

µ(d).
(6)

For 〈x〉 ≤ Û , we have ∑+

d|x
〈d〉≤Û

µ(d) =

{
1, when x = 1,

0, otherwise.

Thus ∑+

〈x〉≤Û

∑+

Û<〈y〉≤R̂/〈x〉

υ(x, y)
∑+

d|x
〈d〉≤Û

µ(d) =
∑+

Û<〈y〉≤R̂

υ(1, y). (7)

The lemma now follows from (5), (6) and (7). �

Let

S1(α) =
∑+

〈y〉≤Û
y≡b (modm)

Λ(y)e(αy), S2(α) =
∑+

〈xy〉≤R̂
〈x〉≤Û

xy≡b (modm)

µ(x)(ord y)e(αxy),

S3(α) =
∑+

〈xy〉≤R̂
〈x〉≤Û2

xy≡b (modm)

∑+

x=uv
〈u〉,〈v〉≤Û

µ(u)Λ(v)e(αxy), and S4(α) =
∑+

〈xy〉≤R̂
〈x〉,〈y〉>Û

xy≡b (modm)

τxΛ(y)e(αxy).

Lemma 18. One has ∑+

〈y〉≤R̂
y≡b (modm)

Λ(y)e(αy) = S1(α) + S2(α)− S3(α)− S4(α).

Proof. Let

υ(x, y) =

{
Λ(y)e(αxy), when xy ≡ b (modm),

0, otherwise.

We first notice that ∑+

〈y〉≤R̂
y≡b (modm)

Λ(y)e(αy) = S1(α) +
∑+

Û<〈y〉≤R̂

υ(1, y).

Thus we are left to show that ∑+

Û<〈y〉≤R̂

υ(1, y) + S4(α) = S2(α)− S3(α).
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Applying Lemma 17, we have∑+

Û<〈y〉≤R̂

υ(1, y) + S4(α) =
∑+

〈d〉≤Û

∑+

Û<〈y〉≤R̂/〈d〉

∑+

〈z〉≤R̂/〈yd〉

µ(d)υ(dz, y). (8)

Since

S3(α) =
∑+

〈d〉≤Û

∑+

〈y〉≤Û

∑+

〈z〉≤R̂/〈yd〉

µ(d)υ(dz, y),

by combining this with (8), we find that∑+

Û≤〈y〉≤R̂

υ(1, y) + S4(α) =
∑+

〈d〉≤Û

∑+

〈y〉≤R̂/〈d〉

∑+

〈z〉≤R̂/〈yd〉

µ(d)υ(dz, y)− S3(α)

=
∑+

〈d〉≤Û

∑+

〈y〉≤R̂/〈d〉

∑+

〈z〉≤R̂/〈yd〉
dyz≡b (mod m)

µ(d)Λ(y)e(αdyz)− S3(α)

=
∑+

〈d〉≤Û

∑+

〈w〉≤R̂/〈d〉
dw≡b (mod m)

µ(d)e(αdw)
∑+

v|w

Λ(v)− S3(α)

=
∑+

〈d〉≤Û

∑+

〈w〉≤R̂/〈d〉
dw≡b (mod m)

µ(d)(ordw)e(αdw)− S3(α)

= S2(α)− S3(α).

The lemma now follows. �

We will now obtain upper bounds for the sums S1(α), S2(α), S3(α) and S4(α).

Lemma 19. One has

S1(α)� ÛU.

Proof. By applying the triangle inequality and the trivial bound, we have

S1(α)�
∑+

〈y〉≤Û
y≡b (modm)

Λ(y)� ÛU. �

Lemma 20. Suppose that 〈α− a/g〉 < 〈g〉−2 with (a, g) = 1. Assume that S,R ∈ N with S ≤ R. Then for

any real number T with T ≤ R̂/Ŝ , we have∑+

〈x〉≤Ŝ

∣∣∣∣ ∑+

T<〈y〉≤R̂/〈x〉

e(αxy)

∣∣∣∣� R̂S〈g〉−1 + ŜR+ 〈g〉(RS + ord g).

Proof. By the triangle inequality, we have∑+

〈x〉≤Ŝ

∣∣∣∣ ∑+

T<〈y〉≤R̂/〈x〉

e(αxy)

∣∣∣∣ ≤∑+

〈x〉≤Ŝ

R−ordx∑
W=0

∣∣∣∣ ∑+

〈y〉=Ŵ

e(αxy)

∣∣∣∣. (9)
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Also, it was proved in [8, Lemma 7] that∣∣∣∣ ∑+

〈y〉=Ŵ

e(αxy)

∣∣∣∣ =

{
Ŵ , when 〈‖αx‖〉 < Ŵ−1,

0, otherwise.

Thus we have

∑+

〈x〉≤Ŝ

R−ordx∑
W=0

∣∣∣∣ ∑+

〈y〉=Ŵ

e(αxy)

∣∣∣∣ =
∑+

〈x〉≤Ŝ

min(R−ordx,−ord ‖αx‖−1)∑
W=0

Ŵ

�
∑+

〈x〉≤Ŝ

min
(
R̂/〈x〉, 〈‖αx‖〉−1

)

�
∑+

〈x〉<〈g〉

〈‖αx‖〉−1 +

S∑
W=ord g

∑+

〈x〉=Ŵ

min
(
R̂/〈x〉, 〈‖αx‖〉−1

)
= E1 + E2,

(10)

where

E1 =
∑+

〈x〉<〈g〉

〈‖αx‖〉−1 and E2 =

S∑
W=ord g

∑+

〈x〉=Ŵ

min
(
R̂/〈x〉, 〈‖αx‖〉−1

)
.

We first bound E1. For 〈x〉 < 〈g〉, since 〈α− a/g〉 < 〈g〉−2, we have〈
αx− ax

g

〉
<
〈x〉
〈g〉2

<
1

〈g〉
.

Since 〈‖ax/g‖〉 ≥ 〈g〉−1, we deduce that

〈‖αx‖〉 =
〈∥∥ax

g
+
(
α− a

g

)
x
∥∥〉 =

〈∥∥ax
g

∥∥+
(
α− a

g

)
x
〉

=
〈∥∥ax

g

∥∥〉.
Since (a, g) = 1, we have

E1 ≤
∑
〈x〉<〈g〉

〈‖αx‖〉−1 =
∑
〈x〉<〈g〉

〈∥∥ax
g

∥∥〉−1
=

∑
〈y〉<〈g〉

〈∥∥y
g

∥∥〉−1
�

ord g−1∑
W=0

Ŵ
(〈g〉
Ŵ

)
� 〈g〉(ord g). (11)

We are now left to bound E2. Note that

E2 =

S∑
W=ord g

( ∑+

〈x〉=Ŵ
〈‖αx‖〉−1≥R̂/Ŵ

R̂

Ŵ
+

R−W−1∑
V=0

∑+

〈x〉=Ŵ
〈‖αx‖〉−1=V̂

V̂
)

≤
S∑

W=ord g

R−W∑
V=0

∑+

〈x〉=Ŵ
〈‖αx‖〉−1≥V̂

V̂ ≤
S∑

W=ord g

R−W∑
V=0

∑
〈x〉<qŴ

〈‖αx‖〉<qV̂ −1

V̂ .
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By [8, Lemma 7], we deduce that

E2 �
S∑

W=ord g

R−W∑
V=0

∑
〈x〉<qŴ

∣∣∣ ∑
〈y〉<V̂ q−1

e(αxy)
∣∣∣.

We now apply [15, Lemma 11.1] to get∑
〈x〉<qŴ

∣∣∣ ∑
〈y〉<V̂ q−1

e(αxy)
∣∣∣� Ŵ V̂

(
〈g〉−1 + Ŵ−1 + V̂ −1 + 〈g〉Ŵ−1V̂ −1

)
.

Using this bound, we see that

E2 �
S∑

W=ord g

R−W∑
V=0

Ŵ V̂
(
〈g〉−1 + Ŵ−1 + V̂ −1 + 〈g〉Ŵ−1V̂ −1

)

�
S∑

W=ord g

(
R̂〈g〉−1 + R̂Ŵ−1 + ŴR+ 〈g〉R

)
� R̂S〈g〉−1 + ŜR+ 〈g〉RS.

(12)

The lemma now follows by combining (9)-(12). �

Lemma 21. Suppose that 〈α− a/g〉 < 〈g〉−2 with (a, g) = 1 and ordm < U . Then one has

S2(α)� Û〈m〉R2 + R̂R2〈g〉−1 + 〈g〉R(R2 + ord g).

Proof. Note that

S2(α) =
∑+

〈xy〉≤R̂
〈x〉≤Û

xy≡b (modm)

µ(x)(ord y)e(αxy)

=
∑+

〈x〉≤Û

µ(x)
∑+

〈y〉≤R̂/〈x〉
xy≡b (modm)

e(αxy)

∫ 〈y〉
1

dt

t log q

=
∑+

〈x〉≤Û

µ(x)

∫ R̂/〈x〉

1

( ∑+

t<〈y〉≤R̂/〈x〉
xy≡b (modm)

e(αxy)

)
dt

t log q
.

By two applications of the triangle inequality, we get

S2(α)�
∑+

〈x〉≤Û

∫ R̂/〈x〉

1

∣∣∣∣ ∑+

t<〈y〉≤R̂/〈x〉
xy≡b (modm)

e(αxy)

∣∣∣∣dtt .
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Switching the leftmost sum with the integral in the last expression, we obtain

S2(α)�
∫ R̂

1

∑+

〈x〉≤min(Û ,R̂/t)

∣∣∣∣ ∑+

t<〈y〉≤R̂/〈x〉
xy≡b (modm)

e(αxy)

∣∣∣∣dtt �
∫ R̂

1

∑+

〈x〉≤Û
(x,m)=1

∣∣∣∣ ∑+

t<〈y〉≤R̂/〈x〉
y≡x̄b (modm)

e(αxy)

∣∣∣∣dtt ,

where x̄ is the multiplicative inverse of x modulo m. We now split the sum over y into two sums depending
on whether or not 〈y〉 ≤ 〈m〉. Write y = x̄b+my′ and x′ = mx. Then by the triangle inequality, we have

S2(α)�
∫ R̂

1
Û〈m〉dt

t
+

∫ R̂

1

∑+

〈x〉≤Û
(x,m)=1

∣∣∣∣ ∑+

max(t,〈m〉)<〈y〉≤R̂/〈x〉
y≡x̄b (modm)

e(αxy)

∣∣∣∣dtt
� Û〈m〉R+

∫ R̂

1

∑+

〈x〉≤Û
(x,m)=1

∣∣∣∣ ∑+

max(t/〈m〉,1)<〈y′〉≤R̂/〈mx〉

e(αmxy′)

∣∣∣∣∣∣e(αb)∣∣dtt
� Û〈m〉R+

∫ R̂

1

∑+

〈x′〉≤Û〈m〉

∣∣∣∣ ∑+

max(t/〈m〉,1)<〈y′〉≤R̂/〈x′〉

e(αx′y′)

∣∣∣∣dtt .
Since ordm < U < R, by Lemma 20, we deduce that

S2(α)� Û〈m〉R+

∫ R̂

1

(
R̂(U + ordm)〈g〉−1 + Û〈m〉R+ 〈g〉((U + ordm)R+ ord g)

) dt
t

� Û〈m〉R2 + R̂R2〈g〉−1 + 〈g〉R(R2 + ord g). �

This completes the proof of the lemma.

Lemma 22. Suppose that 〈α− a/g〉 < 〈g〉−2 with (a, g) = 1 and ordm < U . Then one has

S3(α)� R̂R2〈g〉−1 + Û2〈m〉R2 + 〈g〉R(R2 + ord g).

Proof. For any 〈x〉 ≤ Û2, we have

∑+

x=uv
〈u〉,〈v〉≤Û

µ(u)Λ(v)�
∑+

v|x

Λ(v) = ordx� R.
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Write y = x̄b + my′ and x′ = mx, where x̄ is the multiplicative inverse of x modulo m. Then from the
above inequality, we deduce that

S3(α) =
∑+

〈xy〉≤R̂
〈x〉≤Û2

xy≡b (modm)

∑+

x=uv
〈u〉,〈v〉≤Û

µ(u)Λ(v)e(αxy)

�
∑+

〈x〉≤Û2

∣∣∣ ∑+

x=uv
〈u〉,〈v〉≤Û

µ(u)Λ(v)
∣∣∣ · ∣∣∣ ∑+

〈y〉≤R̂/〈x〉
xy≡b (modm)

e(αxy)
∣∣∣

� R
∑+

〈x〉≤Û2

(x,m)=1

∣∣∣ ∑+

〈y〉≤R̂/〈x〉
y≡x̄b (modm)

e(αxy)
∣∣∣

= R
∑+

〈x〉≤Û2

(x,m)=1

∣∣∣ ∑+

〈y′〉≤R̂/〈mx〉

e(αmxy′)
∣∣∣

� R
∑+

〈x′〉≤Û2〈m〉

∣∣∣ ∑+

〈y′〉≤R̂/〈x′〉

e(αx′y′)
∣∣∣.

Since ordm < U < R, by Lemma 20, we obtain that

S3(α)� R
(
R̂(2U + ordm)〈g〉−1 + Û2〈m〉R+ 〈g〉((2U + ordm)R+ ord g)

)
� R̂R2〈g〉−1 + Û2〈m〉R2 + 〈g〉R(R2 + ord g). �

This completes the proof of the lemma.

Lemma 23. Suppose that 〈α− a/g〉 < 〈g〉−2 with (a, g) = 1 and ordm ≤ U . Then one has

S4(α)� R̂R9/2〈m〉1/2〈g〉−1/2 + R̂R9/2〈m〉Û−1/2 + R̂1/2R9/2〈m〉1/2〈g〉1/2.

Proof. By writing x = y1z, z = rs and y1 = uv, we have∑+

〈x〉=V̂
x≡x̃ (modm)

|τx|2 ≤
∑+

〈x〉=V̂

τ2
x ≤

∑+

〈x〉=V̂

(∑+

y|x

1
)2

=
∑+

〈y1〉≤V̂

∑+

〈x〉=V̂
y1|x

∑+

y2|x

1 =
∑+

〈y1〉≤V̂

∑+

〈z〉=V̂ /〈y1〉

∑+

y2|y1z

1

≤
∑+

〈y1〉≤V̂

∑+

d1|y1

∑+

〈z〉=V̂ /〈y1〉

∑+

d2|z

1 =
∑+

〈y1〉≤V̂

∑+

d1|y1

∑+

r,s

〈rs〉=V̂ /〈y1〉

1

� V̂ V
∑+

〈y1〉≤V̂

∑+

d1|y1

〈y1〉−1 = V̂ V
∑+

u,v

〈uv〉≤V̂

〈uv〉−1 � V̂ V 3.

(13)

Note that

S4(α) =
∑+

〈xy〉≤R̂
〈x〉,〈y〉>Û

xy≡b (modm)

τxΛ(y)e(αxy) =
∑

U<V,W<R−U
V+W≤R

∑
x̃,ỹ

x̃ỹ≡b (modm)

∑+

〈x〉=V̂
x≡x̃ (modm)

τx
∑+

〈y〉=Ŵ
y≡ỹ (modm)

Λ(y)e(αxy).
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Applying the Cauchy-Schwarz inequality and (13), we obtain that

S4(α)�
∑

U<V,W<R−U
V+W≤R

∑
x̃,ỹ

x̃ỹ≡b (modm)

( ∑+

〈x〉=V̂
x≡x̃ (modm)

|τx|2
)1/2( ∑+

〈x〉=V̂
x≡x̃ (modm)

∣∣∣ ∑+

〈y〉=Ŵ
y≡ỹ (modm)

Λ(y)e(αxy)
∣∣∣2)1/2

�
∑

U<V,W<R−U
V+W≤R

∑
x̃,ỹ

x̃ỹ≡b (modm)

V̂ 1/2V 3/2

( ∑+

〈x〉=V̂
x≡x̃ (modm)

∣∣∣ ∑+

〈y〉=Ŵ
y≡ỹ (modm)

Λ(y)e(αxy)
∣∣∣2)1/2

.

(14)

One has

∑+

〈x〉=V̂
x≡x̃ (modm)

∣∣∣ ∑+

〈y〉=Ŵ
y≡ỹ (modm)

Λ(y)e(αxy)
∣∣∣2 =

∑+

〈x〉=V̂
x≡x̃ (modm)

∑+

〈y1〉=〈y2〉=Ŵ
y1≡y2≡ỹ (modm)

Λ(y1)Λ(y2)e(αx(y1 − y2))

=
∑+

〈y〉=Ŵ
y≡ỹ (modm)

∑
〈h〉<Ŵ

h≡0 (modm)

Λ(y)Λ(y + h)
∑+

〈x〉=V̂
x≡x̃ (modm)

e(αxh).
(15)

For (x̃,m) = (ỹ,m) = 1, V + W ≤ R and 〈m〉 ≤ min(V̂ , Ŵ ), since |Λ(z)| ≤ ord z, by writing h = mh′,
x = x̃+mx′ and h′′ = m2h′, we have

∑+

〈y〉=Ŵ
y≡ỹ (modm)

∑
〈h〉<Ŵ

h≡0 (modm)

Λ(y)Λ(y + h)
∑+

〈x〉=V̂
x≡x̃ (modm)

e(αxh)�W 2
∑+

〈y〉=Ŵ
y≡ỹ (modm)

∑
〈h〉<Ŵ

h≡0 (modm)

∣∣∣ ∑+

〈x〉=V̂
x≡x̃ (modm)

e(αxh)
∣∣∣

=
ŴW 2

〈m〉
∑

〈h′〉<Ŵ/〈m〉

∣∣∣ ∑+

〈x′〉=V̂ /〈m〉

e(αm2x′h′)
∣∣∣

� ŴW 2

〈m〉
∑

〈h′′〉<Ŵ 〈m〉

∣∣∣ ∑+

〈x′〉=V̂ /〈m〉

e(αx′h′′)
∣∣∣.

(16)

When V +W ≤ R and U ≤ min(V,W ), it follows from [15, Lemma 11.1] that

∑
〈h′′〉<Ŵ 〈m〉

∣∣∣ ∑+

〈x′〉=V̂ /〈m〉

e(αx′h′′)
∣∣∣ ≤ ∑

〈h′′〉<Ŵ 〈m〉

∣∣∣ ∑
〈x′〉<qV̂ /〈m〉

e(αx′h′′)
∣∣∣

� Ŵ V̂
(
〈g〉−1 + Ŵ−1〈m〉−1 + V̂ −1〈m〉+ 〈g〉(Ŵ V̂ )−1

)
� R̂〈g〉−1 + R̂〈m〉Û−1 + 〈g〉.

(17)
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Upon combining (14)-(17), we have

S4(α)�
∑

U<V,W<R−U
V+W≤R

∑
x̃,ỹ

x̃ỹ≡b (modm)

V̂ 1/2V 3/2Ŵ 1/2W 〈m〉−1/2
(
R̂〈g〉−1 + R̂〈m〉Û−1 + 〈g〉

)1/2
�

∑
U<V,W<R−U
V+W≤R

R̂1/2R5/2〈m〉1/2
(
R̂〈g〉−1 + R̂〈m〉Û−1 + 〈g〉

)1/2
� R̂R9/2〈m〉1/2〈g〉−1/2 + R̂R9/2〈m〉Û−1/2 + R̂1/2R9/2〈m〉1/2〈g〉1/2. �

Lemma 24. Suppose that 〈m〉 ≤ R̂2/5R, 〈g〉 < R̂〈m〉 and 〈α−a/g〉 < 〈g〉−2 with (a, g) = 1. Then one has∑+

〈y〉≤R̂
y≡b (modm)

Λ(y)e(αy)� R̂4/5〈m〉R4 + 〈g〉R3 + R̂R9/2〈m〉1/2〈g〉−1/2 + R̂1/2R9/2〈m〉1/2〈g〉1/2.

Proof. We deduce from Lemmas 18, 19, 21, 22 and 23 that when ordm ≤ U , we have∑+

〈y〉≤R̂
y≡b (modm)

Λ(y)e(αy)� Û2〈m〉R2 + 〈g〉R(R2 + ord g) + R̂R9/2〈m〉1/2〈g〉−1/2

+ R̂R9/2〈m〉Û−1/2 + R̂1/2R9/2〈m〉1/2〈g〉1/2.

The lemma now follows by setting Û = R̂2/5R. �

We will now derive Lemma 16 from Lemma 24.

Proof. (of Lemma 16) Note that

λ∧b,m,N (α) =
(N + ordm)φ(m)

N̂〈m〉

∑+

〈n〉=N̂
mn+b irred

e(αn)

=
φ(m)

N̂〈m〉

∑+

〈n〉=N̂

Λ(mn+ b)e(αn) +O

(
N + ordm

N̂

( ∑+

〈$〉=(N̂〈m〉)1/2
$ irred

1

2
+

∑+

〈$〉=(N̂〈m〉)1/3
$ irred

1

3
+ · · ·

))

=
φ(m)

N̂〈m〉

∑+

〈n〉=N̂

Λ(mn+ b)e(αn) +O
(
N̂−1/2〈m〉1/2

)
.

By writing x = mn+ b, we have

λ∧b,m,N (α) =
φ(m)e(−αb/m)

N̂〈m〉

∑+

〈x〉=N̂〈m〉
x≡b (modm)

Λ(x)e(αx/m) +O
(
N̂−1/2〈m〉1/2

)
.

By the triangle inequality, we deduce that

λ∧b,m,N (α)� N̂−1

(∣∣∣∣ ∑+

〈x〉≤N̂〈m〉
x≡b (modm)

Λ(x)e(αx/m)

∣∣∣∣+

∣∣∣∣ ∑+

〈x〉≤q−1N̂〈m〉
x≡b (modm)

Λ(x)e(αx/m)

∣∣∣∣)+ N̂−1/2〈m〉1/2.
(18)



24 YU-RU LIU AND CRAIG V. SPENCER

Let α ∈ m. By Dirichlet’s approximation theorem, there exist a, g ∈ Fq[t] with g monic, 〈g〉 ≤ N̂〈m〉/NB,

(a, g) = 1 and 〈α/m− a/g〉 < NB/(〈mg〉N̂) ≤ 〈g〉−2. Let d = (g,m). Then

〈
α− am/d

g/d

〉
<

NB

〈g〉N̂
≤ NB

〈g/d〉N̂
.

Since α ∈ m, we must have 〈g/d〉 > NB, which implies that 〈g〉 > NB〈d〉 ≥ NB. By Lemma 24 and (18),
we have

λ∧b,m,N (α)� N̂−1
(
N̂4/5〈m〉9/5N4 + 〈g〉N3 + N̂N9/2〈m〉3/2〈g〉−1/2 + N̂1/2N9/2〈m〉〈g〉1/2

)
+ N̂−1/2〈m〉1/2

� N̂−1/5N29/5 +N4−B +N6−B/2 + N̂−1/2N1/2 � N6−B/2 = N−A.
�

This completes the proof of the lemma.

We will next prove a minor arc estimate for λ
(Q)∧

b,m,N (α).

Lemma 25. Let 1 ≤ Q ≤ K and 〈m〉 ≤ N . Suppose that 〈α− a/g〉 < 〈g〉−2 with (a, g) = 1. Then one has

|λ(Q)∧

b,m,N (α)| � logqN
(
N〈g〉−1 + N̂−1〈g〉(N2 + ord g) + N̂−1/(3A)N

)
.

Proof. Let {$1, . . . , $R} denote the set of monic, irreducible polynomials $ with 〈$〉 ≤ Q̂ and $ - m. By
the inclusion-exclusion principle, we have

λ
(Q)∧

b,m,N (α) =
∑
n∈SN

λ
(Q)
b,m,N (n)e(αn) = N̂−1

R∏
i=1

(1− 1/〈$i〉)−1h(α), (19)

where

h(α) =
R∑
s=0

(−1)s
∑

1≤i1<···<is≤R

∑+

〈y〉=N̂〈m〉/〈$1···$s〉
$i1 ···$isy≡b (modm)

e

(
α
($i1 · · ·$isy − b

m

))
. (20)

By Lemma 4, we have

R∏
i=1

(
1− 1/〈$i〉

)−1 � Q� logqN. (21)

Let J = N/(2A logqN). If 0 ≤ s ≤ J , since 〈$i〉 ≤ Q̂ ≤ NA, we have

s∏
j=1

〈$ij 〉 ≤ NAN/(2A logq N) = NN/(2 logq N) = N̂1/2.
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Therefore, by writing y = x̄b + my′, where x̄ is the multiplicative inverse of x modulo m, it follow from
Lemma 20 that ∑

0≤s≤J
(−1)s

∑
1≤i1<···<is≤R

∑+

〈y〉=N̂〈m〉/〈$1···$s〉
$i1 ···$isy≡b (modm)

e

(
α
($i1 · · ·$isy − b

m

))

�
∑+

〈x〉≤N̂1/2

(x,m)=1

∣∣∣∣ ∑+

〈y〉=N̂〈m〉/〈x〉
xy≡b (modm)

e

(
αxy

m

)∣∣∣∣� ∑+

〈x〉≤N̂1/2

∣∣∣∣ ∑+

〈y′〉=N̂/〈x〉

e
(
αxy′

)∣∣∣∣
� N̂N〈g〉−1 + N̂1/2N + 〈g〉(N2 + ord g).

(22)

For s > J , we have ∑
J<s≤R

(−1)s
∑

1≤i1<···<is≤R

∑+

〈y〉=N̂〈m〉/〈$1···$s〉
$i1 ···$isy≡b (modm)

e

(
α
($i1 · · ·$isy − b

m

))

�
∑

J<s≤R

∑
1≤i1<···<is≤R

N̂〈m〉/〈$i1 · · ·$is〉

� N̂〈m〉
∑

J<s≤R
(s!)−1

(
〈$1〉−1 + · · ·+ 〈$R〉−1

)s
� N̂〈m〉

∑
J<s≤R

(s!)−1(C1 logq logqN)s,

(23)

where the last inequality follows from Lemma 4. By Stirling’s formula, we have s! =
√

2πs
(
s
e

)s(
1+O

(
1
s

))
.

Thus for s > J = N/2A logqN , we have∑
J<s≤R

(s!)−1(C1 log logN)s �
∑

J<s≤R
s−1/2

(
C1e logq logqN

s

)s
�

∑
J<s≤R

(2A logqN

N

)1/2
(

2C1Ae logqN logq logqN

N

)s
�
( logqN

N

)1/2 ∑
J<s≤R

N s
(
−1+o(1)

)
�
( logqN

N

)1/2
N

(
−1+o(1)

)
N/(2A logq N)

�
( logqN

N

)1/2
N̂−1/(2A)+o(1) � N̂−1/(3A).

(24)

By combining (19)-(24), we deduce that

|λ(Q)∧

b,m,N (α)| � N̂−1 logqN
(
N̂N〈g〉−1 + N̂1/2N + 〈g〉(N2 + ord g) + N̂1−1/(3A)〈m〉

)
� logqN

(
N〈g〉−1 + N̂−1〈g〉(N2 + ord g) + N̂−1/(3A)N

)
. �
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Lemma 26. Let 1 ≤ Q ≤ K and 〈m〉 ≤ N . One has

sup
α∈m
|λ(Q)∧

b,m,N (α)| � N2−B logqN � N−A.

Proof. Let α ∈ m. By Dirichlet’s approximation theorem, there exist a, g ∈ Fq[t] with g monic, 〈g〉 ≤
N̂/NB, (a, g) = 1 and 〈α− a/g〉 < NB/(〈g〉N̂) ≤ 〈g〉−2. Since α ∈ m, we have 〈g〉 > NB. By Lemma 25,

|λ(Q)∧

b,m,N (α)| � logqN
(
N〈g〉−1 + N̂−1〈g〉(N2 + ord g) + N̂−1/(3A)N

)
� N2−B logqN � N−A. �

We now summarize the minor arc contribution in Proposition 6.

Lemma 27. For 1 ≤ Q ≤ K, we have

sup
α∈m

∣∣λ∧b,m,N (α)− λ(Q)∧

b,m,N (α)
∣∣� N−A � Q̂−1.

Proof. The lemma follows by combining Lemmas 16 and 26 and noting that

N−A � K̂−1 � Q̂−1. �

Note that by combining Lemmas 15 and 27, we obtain Proposition 6.

5. Proofs of Theorems 2 and 3

We will first prove Theorem 2.

Proof. (of Theorem 2) By Lemmas 5 and 7, for 1 ≤ Q ≤ K, we have

‖f ∗ ψ∧Q‖∞ � Q̂−1‖f‖1 and ‖f ∗ ψ∧Q‖2 � QN̂−1 ‖f‖2.
By the Riesz-Thorin interpolation theorem [17, 25], we interpolate between these two bounds to find that
for δ ≥ 2, we have

‖f ∗ ψ∧Q‖δ � Q̂−1+2/δQ2/δN̂−2/δ‖f‖δ′ .
Similarly, since

‖f ∗ ψ∧K+1‖∞ � ̂(K + 1)
−1
‖f‖1 � N−A‖f‖1 and ‖f ∗ ψ∧K+1‖2 � NN̂−1 ‖f‖2,

for δ > 2, we have

‖f ∗ ψ∧K+1‖δ � NA(−1+2/δ)+2/δN̂−2/δ‖f‖δ′ .
Upon recalling that A = 4/(δ − 2), we have

‖f ∗ ψ∧K+1‖δ � N−2/δN̂−2/δ‖f‖δ′ .
By the triangle inequality,

‖f ∗ λ∧b,m,N‖δ �
K+1∑
Q=1

‖f ∗ ψ∧Q‖δ � N̂−2/δ‖f‖δ′ .

Therefore, by (3) and (4), we have

‖T‖2→δ ≤ sup
‖f‖δ′=1

‖f ∗ λ∧b,m,N‖
1/2
δ � N̂−1/δ.
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This completes the proof of the theorem. �

We will now deduce Theorem 3 from Theorem 2.

Proof. (of Theorem 3) When δ = 2, the theorem follows from Parseval’s inequality. Hence, we assume that
δ > 2. Let (ax)x∈PR be a sequence of complex numbers with |ax| ≤ 1 for x ∈ PR. Let

f(x) =

{
ax, if x ∈ PR,
0, otherwise.

Then, by setting λb,m,N = λ0,1,R, it follows from Theorem 2 that(∫
T

∣∣∣ ∑
x∈PR

ax
R

R̂
e(αx)

∣∣∣δdα)1/δ

= ‖Tf‖δ � R̂−1/δ‖f‖2 = R̂−1/δ

( ∑
x∈PR

|ax|2
R

R̂

)1/2

� R̂−1/δ.

Thus ∥∥∥ ∑
x∈PR

axe(xθ)
∥∥∥
δ

=

(∫
T

∣∣∣ ∑
x∈PR

axe(αx)
∣∣∣δdα)1/δ

� R̂1−1/δR−1. (25)

Also, for 〈β〉 < q−1R̂−1 and x ∈ PR, we have 〈βx〉 < q−1, implying that∥∥∥ ∑
x∈PR

e(xθ)
∥∥∥
δ

=

(∫
T

∣∣∣ ∑
x∈PR

e(αx)
∣∣∣δdα)1/δ

≥
(∫
〈β〉<q−1R̂−1

∣∣∣ ∑
x∈PR

e(βx)
∣∣∣δdβ)1/δ

�
(∫
〈β〉<q−1R̂−1

R̂δR−δdβ

)1/δ

� R̂1−1/δR−1.

(26)

The theorem now follows by combining (25) and (26). �

6. Proof of Theorem 1

To prove Theorem 1, we will employ the W -trick (see [7] for a discussion of the method). Namely,
we will pass to an arithmetic progression with common difference equal to a product of small irreducible
polynomials and this will allow us to avoid some obstacles modulo small irreducible polynomials. It is
worth noting that if one is able to avoid using the W -trick, the resulting bound in Theorem 1 could be
improved to Dr(PR)� |PR|/ logq |PR|.

Lemma 28. Let r1, r2, r3 ∈ Fq with r1 +r2 +r3 = 0. Suppose that AR ⊆ PR and that there is no non-trivial

solution to r1x1 + r2x2 + r3x3 = 0 with x1, x2, x3 ∈ AR. Suppose also that |AR| > ηR̂/R for some η ∈ R
with η > 0. Let

W =
[

logq

( logq R

4

)]
and m =

∏
〈$〉≤Ŵ

$.

Set N̂ = R̂/〈m〉. Then for N sufficiently large, there exists A ⊆ SN such that

• There is no non-trivial solution to r1x1 + r2x2 + r3x3 = 0 with x1, x2, x3 ∈ A,
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• There exists some b ∈ Fq[t] with (b,m) = 1 and λb,m,N (A) ≥ η.

Proof. Let 1AR denote the characteristic function of the set AR. We have∑
〈b〉<〈m〉
(b,m)=1

∑
x∈SR

x≡b (modm)

1AR(x) ≥ ηR̂/R.

By the pigeonhole principle, there exists b ∈ Fq[t] with 〈b〉 < 〈m〉 and (b,m) = 1 such that∑
x∈SR

x≡b (modm)

1AR(x) ≥ ηR̂

φ(m)R
.

Let A = {n ∈ SN |mn+ b ∈ AR}. Thus

λb,m,N (A) =
(N + ordm)φ(m)

N̂〈m〉

∑
n∈SN

1AR(mn+ b) ≥ η.

Since r1 + r2 + r3 = 0 and there is no non-trivial solution to r1x1 + r2x2 + r3x3 = 0 with x1, x2, x3 ∈ AR, it
follows that there is no non-trivial solutions to r1x1 + r2x2 + r3x3 = 0 with x1, x2, x3 ∈ A. This completes
the proof of the lemma. �

In order to apply Lemma 28 with the earlier work in this paper, we need to bound 〈m〉 in terms of N .
Note that

ordm =
∑
〈$〉≤Ŵ

ord$ =

W∑
K=1

K
(
K̂/K +O(K̂1/2/K)

)
= q(q − 1)−1Ŵ +O(Ŵ 1/2).

Since W =
[

logq
( logq R

4

)]
, for R sufficiently large in terms of q, we have

ordm ∈
[ logq R

4.1q
,
logq R

1.9

]
;

from which we derive that
N̂ = R̂/〈m〉 ∈

[
R̂R−1/1.9, R̂R−1/(4.1q)

]
.

In addition, we have 〈m〉 ≤ R1/1.9 ≤ N and W � logq logqN.

For a set A ⊆ SN and a monic irreducible polynomial $ of degree N , we embed A into Fq[t]/$Fq[t] via
the bijection x → x (mod$). Also, we define Fourier analysis for Fq[t]/$Fq[t]: if f, g : Fq[t]/$Fq[t] → C
and r ∈ Fq[t]/$Fq[t], we write

f̃(r) =
∑
〈x〉<〈$〉

f(x)e(rx/$) and (f ∗ g)(r) =
∑
〈x〉<〈$〉

f(x)g(r − x).

We define functions κ, λ : Fq[t]/$Fq[t]→ C by

κ(x) =

{
1, if there exists y ∈ A such that x ≡ y (mod$),

0, otherwise,

and λ(x) = λb,m,N (y), where y is the unique element of SN with x ≡ y (mod$). We also define a function

a : Fq[t]/$Fq[t]→ C by a(x) = κ(x)λ(x). First, we estimate the function λ̃.
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In what follows, we will fix δ = 5/2. Thus all implicit constants below depend at most on q.

Lemma 29. We have
sup

z 6≡0 (mod$)
|λ̃(z)| � (logqN)−1.

Proof. Note that λ̃(z) = λ∧b,m,N (z/$). For z/$ ∈ m, by Lemma 16, we have

λ̃(z)� N−A � (logqN)−1.

Thus we are left to prove the lemma for the case that z/$ ∈ Ma,g ⊆ M. By Lemmas 9, 11 and 12, we
have

λ̃(z) =


µ(g)
φ(g)e

(−abm̄
g

)
%
(
z
$ −

a
g

)
+O

(
NB+1+ε〈m〉1/2+ε

N̂1/2

)
, if (g,m) = 1,

O
(
NB+1+ε〈m〉1/2+ε

N̂1/2

)
, otherwise.

Because
NB+1+ε〈m〉1/2+ε

N̂1/2
� (logqN)−1,

it is enough to show that when (g,m) = 1, we have

φ(g)−1%
( z
$
− a

g

)
� (logqN)−1.

For 〈g〉 = 1, since z 6≡ 0 (mod$),

φ(g)−1%
( z
$
− a

g

)
= %(z/$) = N̂−1

∑
x∈SN

e(zx/$) = 0.

For 〈g〉 > 1, note that |%(α)| ≤ 1 for all α ∈ T. When 〈g〉 > 1 and (g,m) = 1, by the definition of m, there

exists a monic irreducible polynomial $′ with $′|g and 〈$′〉 > Ŵ . Thus

φ(g)−1 ≤ φ($′)−1 � Ŵ−1 � (logqN)−1.

This completes the proof of the lemma. �

We now prove a discrete version of the majorant property with δ = 5/2. Note that the proof below can
be adapted to give a discrete majorant property for any δ > 2.

Lemma 30. There exists an absolute constant C ′′(q) such that∑
〈z〉<〈$〉

|ã(z)|5/2 ≤ C ′′(q).

Proof. For 〈$〉 = N̂ > 1, x ∈ SN and 〈θ〉 < 1, we have e
(x(z+θ)

$

)
= e
(
xz
$

)
e
(
tNθ
$

)
. Thus for all 〈α〉 < N̂ , by

writing α = z + θ with z ∈ SN−1 and θ ∈ T, we have∑
〈z〉<〈$〉

|ã(z)|5/2 =
∑
〈z〉<〈$〉

∣∣∣ ∑
x∈SN

κ(x)λ(x)e(zx/$)
∣∣∣5/2 =

∫
〈α〉<N̂

∣∣∣ ∑
x∈SN

κ(x)λ(x)e(αx/$)
∣∣∣5/2 dα. (27)

By writing α = $γ, we deduce that∫
〈α〉<N̂

∣∣∣ ∑
x∈SN

κ(x)λ(x)e(αx/$)
∣∣5/2 dα = N̂

∫
T

∣∣∣ ∑
x∈SN

κ(x)λb,m,N (x)e(γx)
∣∣5/2 dγ. (28)
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By Theorem 2,(∫
T

∣∣∣ ∑
x∈SN

κ(x)λb,m,N (x)e(γx)
∣∣∣5/2 dγ)2/5

= ‖Tκ‖5/2 � N̂−2/5‖κ‖2

= N̂−5/2
( ∑
x∈SN

|κ(x)|2λb,m,N (x)
)1/2

� N̂−5/2.

(29)

By combining (27)-(29), we find that ∑
〈z〉<〈$〉

|ã(z)|5/2 � 1.

This completes the proof of the lemma. �

Let ς be a real parameter satisfying 0 ≤ ς ≤ 1 and define

Z = Z(ς) =
{
z ∈ Fq[t]/$Fq[t]

∣∣ |ã(z)| ≥ ς
}
.

Let k = |Z| and write Z = {z1, . . . , zk}. We now are able to define a Bohr set

B = B(Z) =
{
x ∈ Fq[t]/$Fq[t]

∣∣∣ 〈∥∥∥xzi
$

∥∥∥〉 < q−1 (1 ≤ i ≤ k)
}
.

Define a function β : Fq[t]/$Fq[t]→ C by

β(x) =

{
|B|−1, if x ∈ B,

0, otherwise.

We define a function a1 : Fq[t]/$Fq[t]→ C by a1(x) = (a ∗ β ∗ β)(x).

Lemma 31. There exists a positive constant C2(q) such that whenever k ≤ logq logqN, we have have

‖a1‖∞ ≤ C2(q)N̂−1.

Proof. From the definition of a1 and Lemma 29, we have

a1(x) =
(
a ∗ β ∗ β

)
(x) ≤

(
λ ∗ β ∗ β

)
(x) = N̂−1

∑
〈y〉<〈$〉

λ̃(y)β̃(y)2e
(
− xy/$

)
≤ N̂−1λ̃(0)β̃(0)2 + N̂−1

∑
〈y〉<〈$〉
y 6=0

λ̃(y)β̃(y)2e
(
− xy/$

)
� N̂−1 + N̂−1 sup

y 6≡0 (mod$)
|λ̃(y)|

∑
〈y〉<〈$〉

|β̃(y)|2

� N̂−1 + (logqN)−1|B|−1.

Recall that Z = {z1, . . . , zk}. Consider the mapping Γ : Fq[t]/$Fq[t]→ Tk defined by

Γ(x) =
(
‖xz1/$‖, . . . , ‖xzk/$‖

)
.

Let
G =

{
(α1, . . . , αk) ∈ Tk | 〈αi〉 < q−1 (1 ≤ i ≤ k)

}
.

By the pigeonhole principle, there exists an element (v1, . . . , vk) ∈ Fkq where

H = {x (mod$) |Γ(x)− (v1, . . . , vk) ∈ G}
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contains at least N̂q−k elements. Let y ∈ H. Then for any y′ ∈ H, we have Γ(y − y′) ∈ G. Hence,

|B| ≥ N̂q−k, implying that

|a1(x)| � N̂−1 + (logqN)−1N̂−1qk � N̂−1. �

We will now prove upper and lower bounds for the sum

N̂−1
∑
〈z〉<〈$〉

ã1(r1z)ã1(r2z)ã1(r3z),

and we will then deduce Theorem 1 by comparing these upper and lower bounds.

Lemma 32. Suppose that there is no non-trivial solution to r1x1 +r2x2 +r3x3 = 0 with xi ∈ A (1 ≤ i ≤ 3).
Then

N̂−1
∑
〈z〉<〈$〉

ã1(r1z)ã1(r2z)ã1(r3z)� N̂−2N2 + N̂−1ς1/2.

Proof. Since there is no non-trivial solution to r1x1 + r2x2 + r3x3 = 0 with xi ∈ A (1 ≤ i ≤ 3), we have

N̂−1
∑
〈z〉<〈$〉

ã(r1z)ã(r2z)ã(r3z) =
∑

〈x1〉<〈$〉

∑
〈x2〉<〈$〉

a(x1)a(x2)a(−r1r
−1
3 x1 − r2r

−1
3 x2)

=
∑
〈x〉<〈$〉

a(x)3 ≤
∑
y∈SN

λb,m,N (y)3

� (N + ordm)2φ(m)2

N̂2〈m〉2
� N2N̂−2.

Since ã1 = ãβ̃2, it follows that

N̂−1
∑
〈z〉<〈$〉

ã1(r1z)ã1(r2z)ã1(r3z) = N̂−1
∑
〈z〉<〈$〉

(
ã1(r1z)ã1(r2z)ã1(r3z)− ã(r1z)ã(r2z)ã(r3z)

)
+O(N2N̂−2)

= N̂−1
∑
〈z〉<〈$〉

ã(r1z)ã(r2z)ã(r3z)
(
β̃(r1)2β̃(r2)2β̃(r3)2 − 1

)
+O(N2N̂−2).

(30)

Note that when z ∈ Z and r ∈ Fq, since 〈‖rzx/$‖〉 < q−1 for all x ∈ B, we have

β̃(rz) = |B|−1
∑
x∈B

e(rzx/$) = 1.

Thus ∑
z∈Z

ã(r1z)ã(r2z)ã(r3z)
(
β̃(r1z)

2β̃(r2z)
2β̃(r3z)

2 − 1
)

= 0. (31)

Note that for all z (mod$), ∣∣β̃(r1z)
2β̃(r2z)

2β̃(r3z)
2 − 1

∣∣ ≤ 2.
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By combining Hölder’s inequality with Lemma 30, we have∑
〈z〉<〈$〉
z /∈Z

ã(r1z)ã(r2z)ã(r3z)
(
β̃(r1z)

2β̃(r2z)
2β̃(r3z)

2 − 1
)
� sup
〈z〉<〈$〉
z /∈Z

|ã(z)|1/2
∑
〈z〉<〈$〉

|ã(z)|5/2 � ς1/2.
(32)

The lemma now follows by combining (30)-(32). �

Lemma 33. Suppose that k ≤ logq logqN. Then there exists a positive constant C5 = C5(q) such that

N̂−1
∑
〈z〉<〈$〉

ã1(r1z)ã1(r2z)ã1(r3z)� η4N̂−1q−C5/η.

Proof. Let

A′ =
{
x ∈ Fq[t]/$Fq[t]

∣∣ a1(x) ≥ η

2N̂

}
.

By Lemma 31, there exists a constant C2 = C2(q) > 1 such that ‖a1‖∞ ≤ C2N̂
−1. Thus by Lemma 28,

|A′|C2

N̂
+ (N̂ − |A′|) η

2N̂
≥

∑
〈x〉<〈$〉

a1(x)

=
∑
〈x〉<〈$〉

(a ∗ β ∗ β)(x)

=
∑
〈y〉<〈$〉

β(y)
∑
〈z〉<〈$〉

β(z − y)
∑
〈x〉<〈$〉

a(x− z)

≥ η
∑
〈y〉<〈$〉

β(y)
∑
〈z〉<〈$〉

β(z − y) = η.

Hence, we have

|A′| ≥ ηN̂/(2C2 − η) ≥ C3ηN̂,

where C3 = 1/(2C2) ∈ (0, 1). Let S denote the number of non-trivial solutions to r1x1 + r2x2 + r3x3 = 0
with xi ∈ A′ (1 ≤ i ≤ 3). Then one has

N̂−1
∑
〈z〉<〈$〉

ã1(r1z)ã1(r2z)ã1(r3z) ≥
C3

3η
3S

N̂3
. (33)

Let M ∈ N. By [14, Theorem 1], there exists a positive constant C4 = C4(q) such that if M ≥ C4/η,
then any subset of SM of density at least C3η/2 contains a non-trivial solution to r1x1 + r2x2 + r3x2 = 0.
Furthermore, since ri ∈ Fq (1 ≤ i ≤ 3), the same is true for any space isomorphic to SM as a vector space

over Fq. Now, let M < N . There are N̂(N̂ − 1) choices of (u, v) where u ∈ SN and 0 < 〈v〉 < N̂ . Consider

arithmetic progressions of the form Wu,v = {u+vl | 〈l〉 < M̂} ⊂ Fq[t]/$Fq[t]. Let U = {(u, v)
∣∣ |Wu,v∩A′| >

C3ηM̂/2}. Note that |Wu,v ∩ A′| ≤ M̂ for all u and v. Upon noting that every element x ∈ A′ lies inside

exactly (N̂ − 1)M̂ sets Wu,v, we have

|U|M̂ +
(
N̂(N̂ − 1)− |U|

)
C3ηM̂/2 ≥ (N̂ − 1)M̂ |A′| ≥ C3ηN̂(N̂ − 1)M̂.

It follows that

|U| ≥ C3ηN̂(N̂ − 1)/(2− C3η) ≥ C3ηN̂(N̂ − 1)/2.
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Thus there are at least C3ηN̂(N̂ − 1)/2 sets Wu,v for which A′∩Wu,v has density at least C3η/2. Provided
that C4/η ≤M < N , each set Wu,v with (u, v) ∈ U contains a non-trivial solution to r1x1 +r2x2 +r3x3 = 0.

Note that for any non-trivial solution r1x1 +r2x2 +r3x3 = 0 with xi ∈ A′ (1 ≤ i ≤ 3), there are at most M̂2

choices of (u, v) so that (x1, x2, x3) ∈W 3
u,v. Therefore, provided that dC4/ηe < N , by setting M = dC4/ηe,

we have

S ≥ C3ηN̂(N̂ − 1)

2M̂2
� ηN̂2q−2C4/η. (34)

The lemma follows by combining (33) and (34) and setting C5 = 2C4. �

We are now in a position to prove Theorem 1.

Proof. (of Theorem 1) Let η, AR, A, N and R be defined as in Lemma 28, where R is sufficiently large in
terms of q. Suppose that there is no non-trivial solutions to r1x1 +r2x2 +r3x3 = 0 with xi ∈ A (1 ≤ i ≤ 3).
Recall that k = |Z| =

∣∣{〈z〉 < 〈$〉 ∣∣ |ã(z)| ≥ ς}
∣∣. By Lemma 30,

kς5/2 ≤
∑
〈x〉<〈$〉

|ã(x)|5/2 � 1.

Since k � ς−5/2, there exists a positive constant C6 = C6(q) such that, upon setting ς = C6(logq logqN)−2/5,
we have k ≤ logq logqN. By Lemmas 32 and 33,

η4N̂−1q−C5/η � N̂−1
∑
〈z〉<〈$〉

ã1(r1z)ã1(r2z)ã1(r3z)

� N̂−2N2 + N̂−1ς1/2

� N̂−2N2 + N̂−1(logq logqN)−1/5

� N̂−1(logq logqN)−1/5.

Thus η4q−C5/η � (logq logqN)−1/5, which implies that

logq logq logqN � − logq η +
1

η
� 1

η
.

From the above inequality, we can deduce that η � (logq logq logqN)−1. Therefore, we have

|AR|
|PR|

� 1

logq logq logqN
� 1

logq logq logq R
� 1

logq logq logq logq |PR|
.

Theorem 1 now follows. �

References

[1] A. Balog and A. Perelli, Exponential sums over primes in an arithmetic progression, Proc. Amer. Math. Soc. 93 (1985),
578–582.

[2] T. F. Bloom, Translation invariant equations and the method of Sanders, Bull. London Math. Soc. 44 (2012), 1050–1067.
[3] J. Bourgain, Roth’s theorem on progressions revisited, J. Anal. Math. 104 (2008), 155–206.
[4] J. Bourgain, On triples in arithmetic progression, Geom. Funct. Anal. 9 (1999), 968–984.
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