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Abstract. Let k ⩾ 1 be a natural number and ωk(n) denote the number of

distinct prime factors of a natural number n with multiplicity k. We estimate
the first and the second moments of the functions ωk with k ⩾ 1. Moreover,

we prove that the function ω1(n) has normal order log logn and the function
(ω1(n) − log logn)/

√
log logn has a normal distribution. Finally, we prove

that the functions ωk(n) with k ⩾ 2 do not have normal order F (n) for any

nondecreasing nonnegative function F .

1. Introduction

Let ω(n) be the number of distinct prime factors of a natural number n. Since
the probability that a prime number p ⩽ n divides n is considered to be 1/p, the
expected value of ω(n) is ∑

p⩽n

1

p

which is asymptotic to log log n by Mertens’ Theorem [15, Theorem 2.7(d)]. The
first moment of ω(n) can be considered to be a way of verifying this heuristic
on average. Due to the studies of Sathe [18], Selberg [19], Delange [2], [5] and
Saidak [17, Eq. (6)], the behaviour of the function ω(n) on average is known by
the estimate∑

n⩽x

ω(n) = x log log x+ bx+

m∑
j=1

(−1)j−1G(j)(1)

j

x

logj x
+O

Å
x

logm+1 x

ã
(1)

where

b := γ0 −
∑
p

∞∑
j=2

1

jpj
, G(s) :=

(s− 1)ζ(s)

s
,(2)

γ0 denotes the Euler-Mascheroni constant, the sum
∑

p runs over all prime numbers

andm is a fixed natural number. Thus the behaviour of ω(n) on average is similar to
log log n and a natural question to ask is how large the deviation |ω(n)− log log n|
on average can be. For this purpose, the concept of normal order is defined as
follows [10]. Let f, F : N → R⩾0 be two functions such that F is nondecreasing.
Then f(n) is said to have normal order F (n) if for any ϵ > 0, the number of n ⩽ x
that do not satisfy the inequality

(1− ϵ)F (n) < f(n) < (1 + ϵ)F (n)

is o(x) as x → ∞. The original definition in [10] is given for increasing F , here we
extend this definition in order to include constant functions.
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In [10] (see also [11, Section 22.11]), Hardy and Ramanujan proved that ω(n)
has normal order log log n. In [22], Turán showed that∑

n⩽x

(ω(n)− log log x)2 ≪ x log log x

from which it follows that the number of 3 ⩽ n ⩽ x satisfying the inequality

|ω(n)− log log n|√
log log n

> h(x)

is o(x) as x → ∞ for any increasing function h(x) → ∞ as x → ∞ which again
implies that ω(n) has normal order log log n. Moreover, in [8], Erdős and Kac proved

the remarkable result that the function (ω(n)− log log n) / (log log n)
1/2

, n ⩾ 3, has
a normal distribution. More precisely, for a, b ∈ R with a ⩽ b, they proved that

lim
x→∞

1

x

∣∣∣∣ß3 ⩽ n ⩽ x : a ⩽
ω(n)− log log n√

log log n
⩽ b

™∣∣∣∣ = 1√
2π

∫ b

a

e−u2/2 du.

The idea behind Erdős-Kac’s proof was essentially probabilistic. One can find a
probabilistic proof of their result in the paper of Billingsley [1]. One can also see
the approaches using the method of moments in the work of Delange [3], [4], Vilkas
[23], Misevičius [14], and Granville-Soundararajan [9]. Also, further developments
of probabilistic ideas led Kubilius [13] and Shapiro [20] to prove a generalization
of the Erdős-Kac Theorem independently. Their result is applicable to what are
called strongly additive functions. An interested reader can find a comprehensive
treatment of it in the monograph of Elliott [6], [7].

In this work, we consider some refined versions of the ω(.) function through the
following set up. For a prime number p and a natural number n ⩾ 1, let νp(n) be
the multiplicity of p in the unique factorization of n, that is, νp(n) is the unique

integer such that pνp(n) | n but pνp(n)+1 ∤ n. For natural numbers k, n ⩾ 1, define

ωk(n) :=
∑
p|n

νp(n)=k

1

which counts the number of prime factors of n with multiplicity k. Note that the
usual ω(.) function can be partitioned into the functions ωk(.) with k ⩾ 1 as

ω(n) =
∑
k⩾1

ωk(n)

for all n ∈ N. We first prove the following result about the summatory functions of
ωk(.) with k ⩾ 1.

Theorem 1. Define

P (k) :=
∑
p

1

pk
, (k ⩾ 2)(3)
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where the sum runs over all prime numbers. Let the constant b and the function
G(s) be defined by (2). We have∑

n⩽x

ω1(n) = x log log x+ (b− P (2))x+

m∑
j=1

(−1)j−1G(j)(1)

j

x

logj x

+O

Å
x

logm+1 x

ã
for any fixed m ∈ N. Moreover, for k ⩾ 2, we have∑

n⩽x

ωk(n) = (P (k)− P (k + 1))x+O
Ä
x

k+1
3k−1 log2 x

ä
.

Next, we consider the second moments of the functions ωk with k ⩾ 1 and prove
the following theorem.

Theorem 2. Let P (k) be defined by (3) and define

C1 := (b− 2P (2))(b+ 1) +
π2

6
+ P 2(2) + 2P (3)− P (4)(4)

and

Ck := (P (k)− P (k + 1)) (P (k)− P (k + 1) + 1)− P (2k) + 2P (2k + 1)− P (2k + 2).

We have ∑
n⩽x

ω2
1(n) = x (log log x)

2
+ (1 + 2b− 2P (2))x log log x+ C1x

+O

Å
x log log x

log x

ã
and ∑

n⩽x

ω2
k(n) = Ckx+O

Ä
x

k+1
3k−1 log2 x

ä
, (k ⩾ 2).

Analogous to the usual ω(.) function, we have the following corollary about the
function ω1(.) and its normal order.

Corollary 2.1. Let C1 be defined by (4). We have∑
n⩽x

(ω1(n)− log logn)
2
= x log log x+ C1x+O

Å
x log log x

log x

ã
.

Let h(x) be an increasing function such that h(x) → ∞ as x → ∞. Then the
number of natural numbers 3 ⩽ n ⩽ x such that

|ω1(n)− log log n|√
log log n

⩾ h(x)

is o(x) and thus ω1(n) has normal order log log n.

Similar to the Erdős-Kac Theorem, we also prove that the function (ω1(n)− log log n) / (log log n)
1/2

,
n ⩾ 3, has a normal distribution.

Theorem 3. Let a, b ∈ R with a ⩽ b. We have

lim
x→∞

1

x

∣∣∣∣ß3 ⩽ n ⩽ x : a ⩽
ω1(n)− log log n√

log log n
⩽ b

™∣∣∣∣ = 1√
2π

∫ b

a

e−u2/2 du.
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Here we would like to note that since the function ω1(.) is not strongly additive,
Theorem 3 is not covered by the aforementioned result of Kubilius and Shapiro.

Recall that the main terms for the summatory functions of ω1 and ω2
1 are

x log log x and x(log log x)2, respectively. Since∑
n⩽x

(ω1(n)− log log n)
2
=

∑
n⩽x

ω1(n)
2 − 2

∑
n⩽x

ω1(n) log log n+
∑
n⩽x

(log log n)2,(5)

the main terms of the three sums on the right-hand side of (5) cancel out by partial
summation and we obtain the first assertion of Corollary 2.1. However, we do not
have such a cancellation for ωk with k ⩾ 2. The average value of ωk with k ⩾ 2 is
(P (k)− P (k + 1)) by Theorem 1 and we have∑

n⩽x

(ωk(n)− (P (k)− P (k + 1)))
2
=

(
Ck − (P (k)− P (k + 1))2

)
x

+O
Ä
x

k+1
3k−1 log2 x

ä
by Theorems 1 and 2. Since

Ck − (P (k)− P (k + 1))2 =
∑
p

ÇÅ
1

pk
− 1

pk+1

ã
−
Å

1

pk
− 1

pk+1

ã2å
̸= 0,

the analogous sum to (5) for ωk with k ⩾ 2 is ≫ x which is of the same order
of magnitude as the second moment of ωk. This makes us wonder whether the
functions ωk(n) with k ⩾ 2 have normal order F (n) for some nondecreasing function
F : N → R⩾0 which is the content of the following theorem.

Theorem 4. Let k ⩾ 2 be a fixed integer. Then the function ωk(n) does not have
normal order F (n) for any nondecreasing function F : N → R⩾0.

Let Ω(n) be the number of prime factors of n counted with multiplicity. Hardy
and Ramanujan [10] and Turán [22] showed that the function Ω(n) has normal
order log log n. Let Ωk(n) be the number of prime factors of n with multiplicity k,
counted with weight k. Then

Ω(n) =
∑
k⩾1

Ωk(n).

Since Ωk(n) = kωk(n), similar deductions can be made for the function Ωk(n) by
our results above such as the function Ω1(n) has normal order log log n and the

function (Ω1(n)− log logn) / (log log n)
1/2

, n ⩾ 3, has a normal distribution. We
can also show that the functions Ωk(n) with k ⩾ 2 do not have normal order F (n)
for any nondecreasing nonnegative function F . Finally, we remark that one can
consider analogous questions for the set of shifted prime numbers instead of the set
of natural numbers. We intend to investigate such prime analogues of our results
on a future occasion.

2. Proof of Theorem 1

The proof of Theorem 1 relies on the following general result.
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Proposition 2.1. Let g : N → C be a function such that |g(p)| ⩽ 1 for all prime
numbers p. For a natural number k ⩾ 1, define

ag,k(n) :=
∑
p|n

νp(n)⩾k+1

(1 + g(p) + g(p)2 + ...+ g(p)νp(n)−(k+1))(6)

with the convention that empty sum is taken to be zero. Define

cg,k :=
∑
p

1

pk(p− g(p))
.

Then we have ∑
n⩽x

ag,k(n) = cg,kx+O
Ä
x

k+2
3k+2 log2 x

ä
(7)

where the implied constant is absolute.

Proof. Let s = σ + it, σ, t ∈ R, and define

Ag,k(s) :=

∞∑
n=1

ag,k(n)

ns
, (σ > 1).

First we show that

Ag,k(s) = ζ(s)
∑
p

1

pks(ps − g(p))
, (σ > 1).(8)

Note that∑
p

1

pks(ps − g(p))
=

∑
p

Å
1

p(k+1)s
+

g(p)

p(k+2)s
+

g(p)2

p(k+3)s
+ ...

ã
=

∞∑
n=1

bg,k(n)

ns
(9)

where

bg,k(n) :=

®
g(p)α−(k+1) if n = pα, α ⩾ k + 1,

0 otherwise.

Since

ζ(s)

∞∑
n=1

bg,k(n)

ns
=

∞∑
n=1

∑
d|n bg,k(d)

ns

and ∑
d|n

bg,k(d) =
∑
p|n

νp(n)∑
j=k+1

g(p)j−(k+1) = ag,k(n),

the identity in (8) follows for σ > 1. Since the series in (9) is absolutely convergent
for σ > 1/(k + 1), by (8) we obtain an analytic continuation of the Dirichlet series
Ag,k(s) for σ > 1/(k + 1).

Now, we apply Perron’s formula, [21, Lemma 3.12]. Note that

|ag,k(n)| ⩽
∑
p|n

νp(n)⩾k+1

(νp(n)− k) ≪ log n(10)
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and

∞∑
n=1

|ag,k(n)|
nσ

⩽
∞∑

n=1

1

nσ

∑
p|n

νp(n)⩾k+1

(νp(n)− k) = ζ(σ)
∑
p

1

pkσ(pσ − 1)
≪ 1

σ − 1

as σ → 1+. Let x > 2 be half of an odd integer and let T be a real number with
2 ⩽ T ⩽ x. By Perron’s formula, we have

∑
n<x

ag,k(n) =
1

2πi

1+ 1
log x+iT∫

1+ 1
log x−iT

Ag,k(s)
xs

s
ds+O

Ç
x log2 x

T

å
.

By moving the line of integration above to the left and applying the residue theorem,
we have ∑

n<x

ag,k(n) = cg,kx− (I1 + I2 + I3) +O

Ç
x log2 x

T

å
where

cg,k :=
∑
p

1

pk(p− g(p))
,

I1 :=
1

2πi

1
k+1+

1
log x+iT∫

1+ 1
log x+iT

Ag,k(s)
xs

s
ds,

I2 :=
1

2πi

1
k+1+

1
log x−iT∫

1
k+1+

1
log x+iT

Ag,k(s)
xs

s
ds,

I3 :=
1

2πi

1+ 1
log x−iT∫

1
k+1+

1
log x−iT

Ag,k(s)
xs

s
ds.

For σ ⩾ 1
k+1 + 1

log x , we have∣∣∣∣∣∣∑p 1

pks(ps − g(p))

∣∣∣∣∣∣ ≪ ∑
p

1

p(k+1)σ
⩽

∑
p

1

p1+
1

log x

⩽ ζ

Å
1 +

1

log x

ã
≪ log x.

For |t| ⩾ 2, we know, [12, p. 25], that

|ζ(s)| ≪


1 if σ > 2,

log |t| if 1 ⩽ σ ⩽ 2,

|t| 1−σ
2 log |t| if 0 ⩽ σ ⩽ 1,

|t| 12−σ log |t| if σ ⩽ 0.
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Thus we have

I1 ≪ T 1/2(log x) log T

T

1∫
1

k+1+
1

log x

( x

T 1/2

)σ

dσ +
log T

T

1+ 1
log x∫

1

xσ dσ

≪ x log2 x

T
.

Similarly, we have I3 ≪ x log2 x
T . For I2, we have

I2 ≪ x
1

k+1 log x

2∫
0

∣∣∣∣ 1

k + 1
+

1

log x
+ it

∣∣∣∣−1

dt+ x
1

k+1 (log x)(log T )

T∫
2

t
1− 1

k+1
− 1

log x
2

1

t
dt.

Note that ∣∣∣∣ 1

k + 1
+

1

log x
+ it

∣∣∣∣−1

⩽

∣∣∣∣ 1

k + 1
+

1

log x

∣∣∣∣−1

⩽ log x

and

T∫
2

t
1− 1

k+1
− 1

log x
2

1

t
dt =

2

1− 1
k+1 − 1

log x

Å
T

1− 1
k+1

− 1
log x

2 − 2
1− 1

k+1
− 1

log x
2

ã
≪ T

1
2 (1−

1
k+1 )

where the implied constant is absolute. Thus we have

I2 ≪ x
1

k+1 log2 x+ x
1

k+1T
1
2 (1−

1
k+1 ) log2 x ≪ x

1
k+1T

1
2 (1−

1
k+1 ) log2 x.

By combining the bounds for I1, I2 and I3, we have∑
n<x

ag,k(n) = cg,kx+O

Ç
x log2 x

T

å
+O

(
x

1
k+1T

1
2 (1−

1
k+1 ) log2 x

)
.

Taking T = x
2k

3k+2 equates the error terms above and we obtain∑
n<x

ag,k(n) = cg,kx+O
Ä
x

k+2
3k+2 log2 x

ä
where the implied constant is absolute. By (10), adding the single term ag,k(⌊x⌋+1)
to the left-hand side of the estimate above has contribution ≪ log x and thus
Proposition 2.1 follows. □

Now, we deduce Theorem 1 from Proposition 2.1.

Proof of Theorem 1. Let g(p) = −1 for all prime numbers p. Then, with this
choice of g(.), we have

ak(n) := ag,k(n) =
∑
p|n

νp(n)⩾k+1
νp(n)−k odd

1(11)
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which counts the number of prime factors of n whose multiplicities are of the form
k + l for some odd natural number l. By Proposition 2.1, we have∑

n⩽x

ak(n) = ckx+O
Ä
x

k+2
3k+2 log2 x

ä
, (k ⩾ 1)(12)

where

ck :=
∑
p

1

pk(p+ 1)
.

Note that

ω1(n) = ω(n)− a1(n)− a2(n),(13)

ωk(n) = ak−1(n)− ak+1(n), (k ⩾ 2).

Hence, the desired result in Theorem 1 follows from (1) and (12). □

3. Proof of Theorem 2

We start with the second moment of ω1. We have

∑
n⩽x

ω2
1(n) =

∑
n⩽x

á
∑
p|n
p2∤n

1

ë2

=
∑
n⩽x

∑
p|n, q|n

p2∤n, q2∤n

1 =
∑
n⩽x

ω1(n) +
∑
p,q⩽x
p ̸=q

∑
n⩽x

p|n, q|n
p2∤n, q2∤n

1.

Let

S(x) :=
∑
p,q⩽x
p̸=q

∑
n⩽x

p|n, q|n
p2∤n, q2∤n

1 =
∑
p,q⩽x
p ̸=q

Åõ
x

pq

û
−
õ

x

pq2

û
−
Åõ

x

p2q

û
−
õ

x

p2q2

ûãã
and

S1(x) :=
∑
p,q⩽x
p ̸=q

õ
x

pq

û
,

S2(x) :=
∑
p,q⩽x
p ̸=q

õ
x

pq2

û
,

S3(x) :=
∑
p,q⩽x
p ̸=q

õ
x

p2q2

û
.

Then, by symmetry, we have S(x) = S1(x) − 2S2(x) + S3(x). Now we consider
S1(x) by closely following the argument in [17] due to Saidak. We have

S1(x) =
∑
pq⩽x
p ̸=q

õ
x

pq

û
=

∑
pq⩽x
p ̸=q

Å
x

pq
+O(1)

ã
.(14)

For pq ⩽ x and q ⩾ 2, we have p ⩽ x/2 and∑
p⩽x/2

1

p log(x/p)
≪ log log x

log x
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by [16, Exercise 9.4.4]. Thus the contribution of the O(1) term in (14) is

≪
∑

p⩽x/2

∑
q⩽x/p

1 ≪ x
∑

p⩽x/2

1

p log(x/p)
≪ x log log x

log x
.(15)

We have ∑
pq⩽x
p ̸=q

1

pq
=

∑
pq⩽x

1

pq
−

∑
p⩽

√
x

1

p2
=

∑
pq⩽x

1

pq
−

∑
p

1

p2
+O

Å
1√
x

ã
and by a result of Saidak, [17, Lemma 3], we have∑

pq⩽x

1

pq
= (log log x)2 + 2b log log x+

π2

6
+ b2 +O

Å
log log x

log x

ã
.

Thus

S1(x) = x(log log x)2 + 2bx log log x+

Å
π2

6
+ b2 − P (2)

ã
x+O

Å
x log log x

log x

ã
.

For S2(x), we have

S2(x) =
∑

pq2⩽x
p ̸=q

õ
x

pq2

û
=

∑
pq2⩽x
p ̸=q

Å
x

pq2
+O(1)

ã
.

The contribution of the O(1) term above is

≪
∑

pq2⩽x
p ̸=q

1 ⩽
∑
pq⩽x
p ̸=q

1 ≪ x log log x

log x

by the estimate in (15). Thus

S2(x) = x

Ñ ∑
pq2⩽x

1

pq2
− P (3)

é
+O

Å
x log log x

log x

ã
.

We have

∑
pq2⩽x

1

pq2
=

∑
p⩽x/4

1

p

Ö
P (2)−

∑
q>

√
x
p

1

q2

è
.

Let

L(u) :=
∑
q⩽u

1

q
= log log u+ b+R(u)

where

R(u) ≪ 1

log u
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by [15, Theorem 2.7(d)]. For p ⩽ x/4, we have∑
q⩾

√
x
p

1

q2
=

∫ ∞

√
x
p

1

u
dL(u) =

∫ ∞

√
x
p

du

u2 log u
+R

Å…
x

p

ã
1»
x
p

+

∫ ∞

√
x
p

R(u)

u2
du

≪ 1

log
Ä
x
p

ä .
Thus∑

pq2⩽x

1

pq2
=

∑
p⩽x/4

1

p

Ñ
P (2) +O

Ñ
1

log
Ä
x
p

äéé
= P (2)

Å
log log

(x
4

)
+ b+O

Å
1

log x

ãã
+O

Ñ ∑
p⩽x/4

1

p log
Ä
x
p

äé
= P (2) log log x+ bP (2) +O

Å
log log x

log x

ã
.

Thus we have

S2(x) = x (P (2) log log x+ bP (2)− P (3)) +O

Å
x log log x

log x

ã
.

For S3(x), we have

S3(x) = x
∑

p2q2⩽x
p ̸=q

1

p2q2
+O

(√
x log log x

)
and ∑

p2q2⩽x
p ̸=q

1

p2q2
=

∑
p2q2⩽x

1

p2q2
−

∑
p4⩽x

1

p4

=
∑

p⩽
√
x

1

p2

Ö
P (2) +O

Ö ∑
q>

√
x

p

1

q2

èè
− P (4) +O

Å
1

x3/4

ã
= P 2(2)− P (4) +O

Ñ∑
p⩽

√
x

1

p2
p√
x

é
+O

Å
1

x1/2

ã
= P 2(2)− P (4) +O

Å
log log x√

x

ã
.

Thus

S3(x) =
(
P 2(2)− P (4)

)
x+O

(√
x log log x

)
.

By using the first moment of ω1 and the estimates above for S1(x), S2(x) and S3(x),
we obtain the desired result for the second moment of ω1(.).

Let k ⩾ 2. We have∑
n⩽x

ω2
k(n) =

∑
n⩽x

ωk(n) +
∑
p,q

pq⩽x1/k

p ̸=q

∑
n⩽x

νp(n)=νq(n)=k

1.
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For a natural number ℓ ⩾ k and distinct prime numbers p and q with pq ⩽ x1/k,
define

h(ℓ, p, q, x) :=

õ
x

pℓqk

û
−
õ

x

pℓqk+1

û
which counts the number of n ⩽ x such that pℓ | n and νq(n) = k. Then∑

p,q

pq⩽x1/k

p ̸=q

∑
n⩽x

νp(n)=νq(n)=k

1 =
∑
p,q

pq⩽x1/k

p ̸=q

(h(k, p, q, x)− h(k + 1, p, q, x)) .(16)

Since

h(ℓ, p, q, x) =
x

pℓ

Å
1

qk
− 1

qk+1

ã
+O(1),

we have∑
p,q

pq⩽x1/k

p ̸=q

∑
n⩽x

νp(n)=νq(n)=k

1 =
∑
p,q

pq⩽x1/k

p ̸=q

Å
x

pk

Å
1

qk
− 1

qk+1

ã
− x

pk+1

Å
1

qk
− 1

qk+1

ã
+O(1)

ã
= x

∑
p,q

pq⩽x1/k

p ̸=q

Å
1

pk
− 1

pk+1

ãÅ
1

qk
− 1

qk+1

ã
+O
Ä
x1/k log log x

ä
.(17)

For a real number r and a statement S, define

1S(r) :=

®
r if S is true,

0 otherwise.

We have∑
p,q

pq⩽x1/k

p ̸=q

Å
1

pk
− 1

pk+1

ãÅ
1

qk
− 1

qk+1

ã
=

∑
p⩽x1/k

Å
1

pk
− 1

pk+1

ãÇ
P (k)− P (k + 1)− 1

p⩽x
1
2k

Å
1

pk
− 1

pk+1

ã
+O

Ç
pk−1

x(k−1)/k

åå
.

For the contribution of the error term above, we have∑
p⩽x1/k

Å
1

pk
− 1

pk+1

ã
pk−1

x(k−1)/k
≪ 1

x(k−1)/k

∑
p⩽x1/k

1

p
≪ log log x

x(k−1)/k
.

For the remaining terms, we have∑
p⩽x1/k

Å
1

pk
− 1

pk+1

ãÅ
P (k)− P (k + 1)− 1

p⩽x
1
2k

Å
1

pk
− 1

pk+1

ãã
= (P (k)− P (k + 1))

2
+O

Å
1

x(k−1)/k

ã
−
∑
p

Å
1

pk
− 1

pk+1

ã2
+O

Å
1

x(2k−1)/(2k)

ã
= (P (k)− P (k + 1))

2 − P (2k) + 2P (2k + 1)− P (2k + 2) +O

Å
1

x(k−1)/k

ã
.
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By (17) and the estimate above, we have∑
p,q

pq⩽x1/k

p ̸=q

∑
n⩽x

νp(n)=νq(n)=k

1 =
Ä
(P (k)− P (k + 1))

2 − P (2k) + 2P (2k + 1)− P (2k + 2)
ä
x

+O
Ä
x1/k log log x

ä
.(18)

By (16), (18) and Theorem 1, we obtain the desired result. □

4. Proof of Corollary 2.1

The first assertion in Corollary 2.1 follows immediately by the first and the
second moments of ω1 and partial summation. For the second part, let h(x) be an
increasing function such that h(x) → ∞ as x → ∞ and let E be the set of natural
numbers n with x

log x ⩽ n ⩽ x such that

|ω1(n)− log log n|√
log log n

⩾ h(x).

Let |E| be the cardinality of E . Then∑
3⩽n⩽x

(ω1(n)− log log n)
2 ⩾

∑
n∈E

(ω1(n)− log log n)
2

⩾ h2(x/ log x)
∑
n∈E

log log n

⩾ h2(x/ log x) |E| log log (x/ log x) .(19)

By (19) and the fact that the left-hand side of (19) is ≪ x log log x, we have

|E|
x

≪ log log x

h2(x/ log x) log log(x/ log x)
→ 0

as x → ∞ since h(x) → ∞ as x → ∞. This finishes the proof of the second assertion
of Corollary 2.1 since the remaining set of natural numbers with n < x/ log x is
already of size o(x). □

5. Proof of Theorem 3

For f = ω, ω1, let rf (n) be the ratio

rf (n) :=
f(n)− log log n√

log log n
, (n ⩾ 3),

and for b ∈ R, let

D(f, x, b) :=
1

x
|{3 ⩽ n ⩽ x : rf (n) ⩽ b}|

be the corresponding density function for sufficiently large x. Since ω(n) ⩾ ω1(n),
we have rω1

(n) ⩽ rω(n) for all n ⩾ 3. Thus {3 ⩽ n ⩽ x : rω(n) ⩽ b} ⊂ {3 ⩽ n ⩽
x : rω1

(n) ⩽ b} and

D(ω, x, b) ⩽ D(ω1, x, b)(20)

for all x ⩾ 3. Let

Φ(b) :=
1√
2π

∫ b

−∞
e−

u2

2 du.
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Then, by (20) and the Erdős-Kac Theorem, we have

Φ(b) ⩽ lim inf
x→∞

D(ω1, x, b).(21)

Let ϵ > 0 and define the set

A(x, ϵ) :=

ß
3 ⩽ n ⩽ x :

ω(n)− ω1(n)√
log log n

⩽ ϵ

™
.

Let Ac(x, ϵ) denote the complement of A(x, ϵ) inside natural numbers up to x.
Since

rω1
(n) = rω(n) +

ω1(n)− ω(n)√
log log n

,

we have

{3 ⩽ n ⩽ x : rω1
(n) ⩽ b} =

ß
3 ⩽ n ⩽ x : rω(n) +

ω1(n)− ω(n)√
log log n

⩽ b

™
=

ß
3 ⩽ n ⩽ x : n ∈ A(x, ϵ), rω(n) +

ω1(n)− ω(n)√
log log n

⩽ b

™
∪
ß
3 ⩽ n ⩽ x : n ∈ Ac(x, ϵ), rω(n) +

ω1(n)− ω(n)√
log log n

⩽ b

™
⊆
ß
3 ⩽ n ⩽ x : rω(n) ⩽ b+ ϵ

™
∪ {3 ⩽ n ⩽ x : n ∈ Ac(x, ϵ)}.

Thus

D(ω1, x, b) ⩽ D(ω, x, b+ ϵ) +
1

x
|{3 ⩽ n ⩽ x : n ∈ Ac(x, ϵ)}| .(22)

Now we show that

lim
x→∞

1

x
|{3 ⩽ n ⩽ x : n ∈ Ac(x, ϵ)}| = 0.(23)

By (1) and Theorem (1), we have∑
n⩽x

(ω(n)− ω1(n)) ≪ x.

Since∑
n⩽x

(ω(n)− ω1(n)) ⩾
∑

x
log x⩽n⩽x

n∈Ac(x,ϵ)

(ω(n)− ω1(n))

> ϵ
∑

x
log x⩽n⩽x

n∈Ac(x,ϵ)

√
log log n

⩾ ϵ
»
log log(x/ log x) |{x/ log x ⩽ n ⩽ x : n ∈ Ac(x, ϵ)}| ,

we have

|{x/ log x ⩽ n ⩽ x : n ∈ Ac(x, ϵ)}| ≪ 1

ϵ

x√
log log(x/ log x)

which gives (23) since the size of the remaining set {n < x/ log x : n ∈ Ac(x, ϵ)} is
already o(x) as x → ∞. By (22), (23) and the Erdős-Kac Theorem, we have

lim sup
x→∞

D(ω1, x, b) ⩽ Φ(b+ ϵ).(24)
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Since ϵ is arbitrary, by (21) and (24), we have limx→∞ D(ω1, x, b) = Φ(b) and this
finishes the proof of Theorem 3. □

6. Proof of Theorem 4

Now, we prove that the functions ωk(n) with k ⩾ 2 do not have normal order
F (n) for any nondecreasing function F : N → R⩾0.

First we assume that there exists n0 ∈ N such that F (n0) > 0. Then F (n) > 0
for n ⩾ n0 since F is nondecreasing. Thus

lim
N→∞

|{n ⩽ N : F (n) > 0}|
N

= 1.

For a natural number N , define the set

N0(N) := {n ⩽ N : ωk(n) = 0}.

Since ∑
n⩽N

n/∈N0(N)

1 =
∑
p

∑
n⩽N

pk|n
pk+1∤n

1 ⩽
∑
p

∑
n⩽N

pk|n

1 ⩽ N
∑
p

1

pk
,

we have

|N0(N)|
N

⩾
N −N

∑
p

1
pk

N
= 1−

∑
p

1

pk
⩾ 1−

∑
p

1

p2
> 1− (ζ(2)− 1) = 2− π2

6
> 0.

Thus

lim inf
N→∞

Å |{n ⩽ N : F (n) > 0}|
N

+
|N0(N)|

N

ã
> 1

and the cardinality of the set of n ⩽ N for which F (n) > 0 and ωk(n) = 0 is not
o(N). Since for such n, the inequality

|ωk(n)− F (n)| > F (n)

2

is satisfied, we deduce that ωk(n) does not have normal order F (n).
Now assume that F (n) = 0 for all n ∈ N. Then

lim
N→∞

|{n ⩽ N : F (n) = 0}|
N

= 1.

Define

N1(N) := {n ⩽ N : ωk(n) = 1}.
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Since

|N1(N)| ⩾
∑
n⩽N

ν2(n)=k
νp(n)<k for all p ⩾ 3

1 =
∑
n⩽N

ν2(n)=k

1−
∑
n⩽N

ν2(n)=k
νp(n)⩾k for some p ⩾ 3

1

=

õ
N

2k

û
−
õ

N

2k+1

û
−

∑
p⩾3

∑
n⩽N/2k

pk|n
n is odd

1

⩾
N

2k
− N

2k+1
− N

2k

∑
p⩾3

1

pk
− 1,

we have

lim inf
N→∞

|N1(N)|
N

⩾
1

2k

Ñ
1

2
−

∑
p⩾3

1

pk

é
⩾

1

2k

Ñ
1

2
−

∑
p⩾3

1

p2

é
>

1

2k

Å
1

2
−
Å
π2

6
− 1− 1

4

ãã
> 0.

Thus

lim inf
N→∞

Å |{n ⩽ N : F (n) = 0}|
N

+
|N1(N)|

N

ã
> 1

and the cardinality of the set of n ⩽ N for which F (n) = 0 and ωk(n) = 1 is not
o(N). Since for such n, the inequality |ωk(n)− F (n)| > F (n)/2 is satisfied, we
deduce that ωk(n) does not have normal order F (n). □
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[12] A. Ivić, The Riemann zeta-function, Dover Publications, Inc., Mineola, NY (2003), theory

and applications, reprint of the 1985 original Wiley, New York; MR0792089.

[13] J. Kubilius, Probabilistic methods in number theory, Transl. Math. Monogr., 11, Rhode
Island (1964).
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