NUMBER OF PRIME FACTORS WITH A GIVEN
MULTIPLICITY

ERTAN ELMA AND YU-RU LIU

ABSTRACT. Let k > 1 be a natural number and wy(n) denote the number of
distinct prime factors of a natural number n with multiplicity k. We estimate
the first and the second moments of the functions wy with & > 1. Moreover,
we prove that the function wi(n) has normal order loglogn and the function
(w1(n) — loglogn)/+/loglogn has a normal distribution. Finally, we prove
that the functions wy(n) with £ > 2 do not have normal order F(n) for any
nondecreasing nonnegative function F.

1. INTRODUCTION

Let w(n) be the number of distinct prime factors of a natural number n. Since
the probability that a prime number p < n divides n is considered to be 1/p, the
expected value of w(n) is

>,
p

psn

which is asymptotic to loglogn by Mertens’” Theorem [15, Theorem 2.7(d)]. The
first moment of w(n) can be considered to be a way of verifying this heuristic
on average. Due to the studies of Sathe [18], Selberg [19], Delange [2], [5] and
Saidak [17, Eq. (6)], the behaviour of the function w(n) on average is known by
the estimate

B (1)t @)z x
(1) Zw(n)—xloglogx+bx+z 7 logjac+0 og™ 1

n<e Jj=1
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~o denotes the Euler-Mascheroni constant, the sum , Tuns over all prime numbers
and m is a fixed natural number. Thus the behaviour of w(n) on average is similar to
loglogn and a natural question to ask is how large the deviation |w(n) — loglogn|
on average can be. For this purpose, the concept of normal order is defined as
follows [10]. Let f,F : N — R be two functions such that F' is nondecreasing.
Then f(n) is said to have normal order F(n) if for any € > 0, the number of n < x
that do not satisfy the inequality

(1-€e)F(n) < f(n) < (l+¢e)F(n)

is o(z) as * — oo. The original definition in [10] is given for increasing F', here we
extend this definition in order to include constant functions.
1
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In [10] (see also [11, Section 22.11]), Hardy and Ramanujan proved that w(n)
has normal order loglogn. In [22], Turdn showed that

Z (w(n) —loglogz)? < xloglogx

n<x
from which it follows that the number of 3 < n < x satisfying the inequality

|w(n) — loglogn|

Vl1oglogn

is o(x) as * — oo for any increasing function h(z) — oo as  — oo which again
implies that w(n) has normal order log log n. Moreover, in [8], Erdds and Kac proved

> h(z)

the remarkable result that the function (w(n) — loglogn) / (loglog n)1/2, n > 3, has
a normal distribution. More precisely, for a,b € R with a < b, they proved that

. w(n) — loglogn } 1 b e,
1 — {3§ Kr:a ——————<b/| = — w2 du.
00 1 nsEea loglogn V27 Ja ¢ "

The idea behind Erdos-Kac’s proof was essentially probabilistic. One can find a
probabilistic proof of their result in the paper of Billingsley |1]. One can also see
the approaches using the method of moments in the work of Delange [3|, [4], Vilkas
[23], Misevicius [14], and Granville-Soundararajan [9]. Also, further developments
of probabilistic ideas led Kubilius [13] and Shapiro [20] to prove a generalization
of the Erdds-Kac Theorem independently. Their result is applicable to what are
called strongly additive functions. An interested reader can find a comprehensive
treatment of it in the monograph of Elliott [6], 7].

In this work, we consider some refined versions of the w(.) function through the
following set up. For a prime number p and a natural number n > 1, let v,(n) be
the multiplicity of p in the unique factorization of n, that is, v,(n) is the unique
integer such that p*»(™ | n but p*»(™*! f n. For natural numbers k,n > 1, define

wi(n) == Z 1
Pl
vp(n)=k

which counts the number of prime factors of n with multiplicity k. Note that the
usual w(.) function can be partitioned into the functions wg(.) with k > 1 as

win) =Y wi(n)

k>1

for all n € N. We first prove the following result about the summatory functions of

Theorem 1. Define
1
ok

. (k=2
’ (k>2)

(3) Pk) =7
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where the sum runs over all prime numbers. Let the constant b and the function
G(s) be defined by (@ We have

m ] 1
Zwl( ) ==xloglogz+ (b— P Z G (1) i

log’ =
x
+o (7)
log™ ™ &

for any fixed m € N. Moreover, for k > 2, we have
Z wr(n) = (P(k) — P(k+1)xz+ 0O (x;,%l log® x) :

n<x

nLx

Next, we consider the second moments of the functions wy with k£ > 1 and prove
the following theorem.

Theorem 2. Let P(k) be defined by (@ and define

(4) Cy:=0b-2P2)b+1)+ %2 + P?(2) + 2P(3) — P(4)

and

Cr:=(P(k)— P(k+1))(P(k)—P(k+1)+1)— P(2k) +2P(2k + 1) — P(2k + 2).
We have

Zwl z (loglog ) 4 (14 2b — 2P(2)) zloglog z + Cyx
n<e
) (mloglogx)
log x

and
S wi(n) = Cra+0 (x5 log?x), (k> 2).
n<r

Analogous to the usual w(.) function, we have the following corollary about the
function wy(.) and its normal order.

Corollary 2.1. Let Cy be defined by . We have

Z (wi(n) —loglogn)® = zloglogz + Cyz + O (

n<x

x log logz)
log = ’
Let h(x) be an increasing function such that h(x) — oo as ¢ — oo. Then the
number of natural numbers 3 < n < x such that
‘wl(n) — loglogn| > h((E)
Vloglogn

is o(x) and thus wi(n) has normal order loglogn.

Similar to the Erdés-Kac Theorem, we also prove that the function (wy(n) — loglogn) / (loglog n)l/Q,
n > 3, has a normal distribution.

Theorem 3. Let a,b € R with a < b. We have

. wi(n) —loglogn } 1 /b /o
lim — {3< <zT:a< <bp|l=—== w2 du.
00 T s loglogn V2 Ja ¢ "
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Here we would like to note that since the function wy(.) is not strongly additive,
Theorem |3|is not covered by the aforementioned result of Kubilius and Shapiro.

Recall that the main terms for the summatory functions of w; and w? are
rloglogz and x(loglog z)?, respectively. Since

(5) Z (w1(n) — loglogn)® = Z wi(n)® —2 Z wi(n)loglogn + Z loglogn)?,

n<T n<e n<e n<x

the main terms of the three sums on the right-hand side of (|5|) cancel out by partial
summation and we obtain the first assertion of Corollary 2.1] However, we do not
have such a cancellation for wy with k£ > 2. The average value of wy with k > 2 is
(P(k) — P(k+ 1)) by Theorem |1 and we have

Y (wiln) = (P(k) = P(k+1)))* = (Cx — (P(k) = P(k+ 1))z

n<x
+0 (mﬁ‘k’%l log® x)

by Theorems [I] and [2] Since

Cy — (P(k) — P(k +1)) Z(( k+1)—(;€—p,€1+1)2>7é0,

p

the analogous sum to for wy with & > 2 is > z which is of the same order
of magnitude as the second moment of wy. This makes us wonder whether the
functions wy(n) with k£ > 2 have normal order F'(n) for some nondecreasing function
F : N — Ry( which is the content of the following theorem.

Theorem 4. Let k > 2 be a fized integer. Then the function wi(n) does not have
normal order F(n) for any nondecreasing function F : N — Rxg.

Let ©(n) be the number of prime factors of n counted with multiplicity. Hardy
and Ramanujan [10] and Turédn [22] showed that the function Q(n) has normal
order loglogn. Let Qx(n) be the number of prime factors of n with multiplicity %,
counted with weight k. Then

n) =Y Q(n)

E>1

Since Qy(n) = kwi(n), similar deductions can be made for the function Q(n) by
our results above such as the function §2;(n) has normal order loglogn and the
function (Q;(n) — loglogn) / (loglog n)1/2, n > 3, has a normal distribution. We
can also show that the functions Q(n) with k£ > 2 do not have normal order F'(n)
for any nondecreasing nonnegative function F. Finally, we remark that one can
consider analogous questions for the set of shifted prime numbers instead of the set
of natural numbers. We intend to investigate such prime analogues of our results
on a future occasion.

2. ProOOF oF THEOREM [

The proof of Theorem [1| relies on the following general result.
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Proposition 2.1. Let g : N — C be a function such that |g(p)| < 1 for all prime
numbers p. For a natural number k > 1, define

(6) ag k(n) = Z (14 g(p) + g(p)? + ... + g(p)rrM~C+1)

pln
vp(n)=2k+1

with the convention that empty sum is taken to be zero. Define

1
Cq.k ::Z (o

— *(p—g(p))
Then we have

(7) 3" agr(n) = cgpz + O (275 log?z)

n<x
where the implied constant is absolute.

Proof. Let s =0 +it, 0,t € R, and define

Ay i(s) = Z ag’k(n), (o0 >1).

First we show that

(8) Ai(5) = €)Y e, (o> 1).

—~ P*(p° —9(p))
Note that
glp) , 9()? )_ = by.x(n)
®) XP:W zp:( (’€+1)‘s pk+2)s + p(kt3)s t )= nz::l n
where
by () o= J9@TET i n=pa> k4L,
’ . 0 otherwise.
Since
- bg,k(n) _ - Zd\nbg,k(d)
C(s); pr —n; e
and
vp(n)
Zbg’k Z Z J () = ag,k(n),
dln pln j=k+1

the identity in follows for o > 1. Since the series in @[) is absolutely convergent
for o > 1/(k + 1), by (8) we obtain an analytic continuation of the Dirichlet series
Agi(s) for o > 1/(k +1).

Now, we apply Perron’s formula, [21, Lemma 3.12]. Note that

(10) lagk(n)| < Z (vp(n) — k) < logn

pln
vp(n)2k+1
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and
\a k(1 — 1 B 1 1
vp(n)=2k+1

as 0 — 17. Let # > 2 be half of an odd integer and let T' be a real number with
2 < T < z. By Perron’s formula, we have

I oz T )
1 x® xrlog®x
Z%,k(”):% / Ag,k(S)SdSJFO( T ) :
nsr 1+ T

Tog =

By moving the line of integration above to the left and applying the residue theorem,
we have

1 2
Zag’k(n) =cgrx— (I + 12+ 13)+ O (m 07% x)

n<x

where

1
Cg,k ::Z ol —

— (P —9(p)’
1t ess HiT
xsd
I = — A —
LT om g(5)=5 ds,
1t pop HT
it ess 7
1 s
12 = % Ag,k(s)? dS,
e T
1+¢4T
1 v
I3 = — A —ds.
37 omi / g(8)= ds
k711+lo;1zm_iT
For o > k%rl + loéw, we have
| 5 e < i < (1 ) e
- pre(p® — (k+1)e = 1+1ogT log
For |t| > 2, we know, [12, p. 25], that
1 if o>2,
log |¢ if 1<o<2,
co) < 4 8l Hlsos
\t| “loglt| if 0<o <1,
t|z=7log|t| if o <0.
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Thus we have

1 1+loéz
T1/2(logx )logT 0 logT -
I < / T1/2 do + T / z° do
=t 1
xlog z
—

zlog T

Similarly, we have I3 < . For I, we have

2 1 T

1 1 ml
12<<xkillog:c/‘k+1+ Tog 7 + it dt + ¢ 7T T (logz)(logT) /t : ;dt.
2
Note that
1 *1< L1 -t |
X X 10g X
k+1 logx k+1 logx &
and
’ 1 2 1~ 5T s - 1o
/ 7dt:ﬁ T +2 og x 72 +2 ogw)
5 t 1_?_logz

< T%(l_ﬁ)
where the implied constant is absolute. Thus we have
IPR T log® x + gzl w) log? z < e ra(l-w) log? z.

By combining the bounds for I7, I and I3, we have

1 2
S g (n) = cppz+ O (9” o8 w) £ 0 (a0 10g? ).

T

n<x

Taking T = g equates the error terms above and we obtain

Z ag.k(n) = cgrr+ O (mfﬁ% log2 x)

n<x

where the implied constant is absolute. By (10), adding the single term ag ([ x]+1)
to the left-hand side of the estimate above has contribution < logz and thus
Proposition 2.1] follows. O

Now, we deduce Theorem [I] from Proposition [2:1}

Proof of Theorem |1} Let g(p) = —1 for all prime numbers p. Then, with this
choice of g(.), we have

(11) ) =agum = 3 1
pln
vp(n)=2k+1
vp(n)—k odd
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which counts the number of prime factors of n whose multiplicities are of the form
k + [ for some odd natural number [. By Proposition [2.1, we have

(12) Z arx(n) = cxx + O (a:s%rz? log? x) , (k>1)

n<x

where

1
o Zp’“(erl)'

p
Note that
(13) wi(n) = w(n) —ai(n) — az(n),
we(n) = ag_a(n) — axa(m), (k> 2).
Hence, the desired result in Theorem (1| follows from and . ([l

3. PROOF OoF THEOREM [2

We start with the second moment of w;. We have
2

G 31 D SIN IS DD SIEES) SPTUNID DD SIEt

n<w n<x pln n<e pln, q|n n<z p,q<z n<zT
pzfn p21’n, qz»fn p#q  pln,q|n
p’tn, ¢*n
Let
T T T x
sw=3 > 1= % (][] - () - 7))
2 2 2.2
p,g<T  n<T p,q<x rq pq peq p=q
p#q  pln,qn P#q
p*n, ¢*n
and
T
Si(x) = > 7J,
)
P,q<T
pF#q
T
Sata) = Y |z .
P,q<T P4
PF£q
T
P,g<T
pF#q

Then, by symmetry, we have S(z) = Si(z) — 252(x) + S5(z). Now we consider
S1(x) by closely following the argument in [17] due to Saidak. We have

(14) Si@)=3" %J = (%+0(1)).

p#q p#q
For pg < « and ¢ > 2, we have p < /2 and

Z 1 < loglog x
plog(z/p) log =

p<z/2
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by |16, Exercise 9.4.4]. Thus the contribution of the O(1) term in is

(15) <) D>y, xkl)fgl(;gx.

p<e/2 q<z/p p<w/2 plog( x/p

We have

Y Y =Y -y so( )
pq<T pq<r p<f pq<T P \/5
p#q

and by a result of Saidak, [17, Lemma 3], we have

log logz)

1 2
Z — = (loglog )? + 2bloglog = + T +O<
6 log

Pg<T

Thus

x log logx>

2
S1(z) = x(loglog 2)? + 2bx log log = + (W— +b? — P(Q)) x40 (
6 log x

For S3(x), we have

x x
sw=Y | 5= (Lrom).
pi<e 11 pi<e D1
p#q p#q
The contribution of the O(1) term above is
xlog log
1<
R IREDIEE S e
pg? <z pasT

p#4 P7q

by the estimate in (15)). Thus

2
e pq log x
‘We have
1 1 1
Z@:Z; P(z)—ij
pa?<z p<e/4 >/
Let
L(u) := Z loglogu + b+ R(u)
gsu
where
1
R
() log u
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by |15, Theorem 2.7(d)]. For p < x/4, we have

<
q;\:f /7dL /u2logu (ﬁ)kﬁ;ﬁf?da

<

log (%) |
Thus

—_

Z %: Z - P2 +o0 _

pg?<z p<z/4 log (%)

— po) (ston () 1040 (1)) 0
o

log log x)
logz /°

3

1
p<a/a P108 (%)

P(2)loglogx + bP(2)

Thus we have

S(x) =z (P(2)loglog z + bP(2) — P(3)) + O (%) |

For S3(x), we have

S3(x) =2 Z p%ﬁ + O (Vzloglog )

p’°<=
pF#q
and
1 1 1
Z P2q2 = 22 Z 1
p’¢°<z p’¢°<z p'<z
piq
1 1 1
= Z? P(2)+0 q—Q —P(4)+O<x3/4>
Pgﬁ q>§
=P -Pw+o( Y 1P .0 <i)
- NG 21/2
p<VT
loglogac)
= P%(2)— P4 0( :
(2) - P(4) N
Thus

Ss(z) = (P*(2) — P(4)) z + O (Vzloglogz) .

By using the first moment of wy and the estimates above for Sy (z), Sa(z) and Ss(z),

we obtain the desired result for the second moment of wy (.).
Let k > 2. We have

sz(n): Zwk Z Z 1.

nLx n< Lk n<
pq<f6 vp(n)= vq(n) k
p#q
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For a natural number ¢ > k and distinct prime numbers p and ¢ with pg < 2/*,
define
T x
h&p,q,x ::\‘ J_L J
( ) plgF plghtl
which counts the number of n < z such that p* | n and v,(n) = k. Then
(16) Z Z 1= Z (h(k,p,q,z) — h(k+1,p,q,x)) .
P.q n<z D,q
pqgwl/’C vp(n)=vq(n)=k pqul/k
P#q pFq
Since
z (1 1
h(¢,p,q,x) = o (q7 - W) +0(1),
we have
T 1 1 T 1 1
S r e r Gl s ) o)
pa<a’/* vy (n)=vy(n)=k  pa<z'/*
PFq pFq
1 1 1 1
(17) =z Z (—kfk—) (77T)+O z/*loglogz) .
c \pr o pFt)\gh gttt ( )
pg<a’/*
P#q

For a real number r and a statement S, define

{r if S is true,

1 =
s(r) 0 otherwise.

‘We have

Z ( 1 1 ) < 1 1 )
E pk+l E k1
p p q q
pqul/’“

PFq
1 1 1 1 pF1
- Z (}? N pk+1> (P(k) —Plk+1) - lpglﬁ <ﬁ N pk+1> +0 (x(k—l)/k :
p<at/k
For the contribution of the error term above, we have
1 1 pkt 1 1 loglogz
Z (ﬁ - pk+1) 2 (k=1)/k < 2 (E=1)/k Z ]§<< =Dk

p<al/k pat/k

For the remaining terms, we have

% G ewe) (P00 -1, (55— )

p<at/k

) 1 1 1 \? 1
=(P(k) - P(k+1))"+0 (W) - (]g - pTH) +0 (79&%—1)/(%))
p

= (P(k) — P(k+1))* — P(2k) + 2P(2k +1) — P(2k +2) + O <x(k_1w) :
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By and the estimate above, we have

> > 1=((P(k) = P(k+1))" = P(2k) + 2P(2k + 1) — P(2k +2))
p,q n<x

pg<zt/F vp(n)=vq(n)=k
P#q

(18) +0 (xl/k log log x) .

By , and Theorem |1} we obtain the desired result. O

4. ProoF oF COROLLARY 2.1

The first assertion in Corollary [2.1] follows immediately by the first and the
second moments of wy and partial summation. For the second part, let h(z) be an
increasing function such that h(z) — co as  — oo and let £ be the set of natural
numbers n with @ < n < z such that

w1 (n) — loglogn| > h(z).
V1oglogn
Let |&] be the cardinality of £. Then

Z (w1 (n) — loglogn)® > Z (w1 (n) — loglog n)?

3<n<a nee
> h2(z/log x) Z loglogn
neé
(19) > h2(x/logx) |€|loglog (z/log ) .
By and the fact that the left-hand side of is < xloglog z, we have
€] loglog =

0
x < h?(x/log x)loglog(z/ log x) -

as ¢ — oo since h(z) — 0o as ¢ — oo. This finishes the proof of the second assertion
of Corollary since the remaining set of natural numbers with n < z/logz is
already of size o(x). O

5. PROOF OF THEOREM [3]
For f = w,wn, let 7¢(n) be the ratio

f(n) —loglogn
= LW Z OB 08T ) 5 3y,
rs(n) loglogn " )

and for b € R, let
1
D(f,z,b) := - H3<n<z:rp(n) <b}

be the corresponding density function for sufficiently large z. Since w(n) > wi(n),
we have r,, (n) < ry(n) foralln > 3. Thus {S<n <z :r,(n) <b} C{3<n<
x 1y, (n) < b} and

(20) D(w,z,b) < D(wy,z,b)
for all x > 3. Let
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Then, by (20) and the Erdés-Kac Theorem, we have
(21) ®(b) < liminf D(wy, x,b).
Tr—r 00
Let € > 0 and define the set
w(n) —wi(n) }
Alz, ::{3< o220 el
(z,€) n<x Tog oz €

Let A°(x,€) denote the complement of A(x,¢) inside natural numbers up to =.
Since

wi(n) —w(n)

(M) =Tl + = ogTogn

we have
wi(n) —w(n)
{3<n<x:r,(n {3 n<x: rw(n)—i-\/wgb}
wi(n) —w(n)
{3 n<x:n € Alx,e), Tw(n)—l—\/wéb}
w1(n) —w(n)
U{?) TL xX neA( ),rw(n)—i—\/wéb}
{3 n<o: rw()<b+e}u{3 n<z:ne A%z, e)}.
Thus
(22) D(w1,2,b) < D(w,z,b+¢€) + |{3 n<x:ne Az, €e)}.
Now we show that
(23) zlggo;|{3 n<z:ne A%z, e} =0.

By (1) and Theorem (I)), we have
Z(w(n) —wi(n)) < x.

n<x
Since
Do) —win) = Y (wn) —wi(n)
n<x 10g£<n<z
neA°(z,e)
> € Z v/loglogn
logz SNz
neA°(x,e)
loglog(z/logx) |[{x/logx < n < x:n € A°(x,€e)}],
we have
1
Hz/logz < n < x:ne Az, e)}|<< -
loglog(z/ log x)

which gives since the size of the remaining set {n < xz/logx : n € A°(z,€)} is
already o(z) as x — co. By , and the Erdés-Kac Theorem, we have

(24) limsup D(wy,z,b) < ®(b+ ¢).

T—00
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Since € is arbitrary, by and (24), we have lim,_,o D (w1, z,b) = ®(b) and this
finishes the proof of Theorem ([

6. PROOF OoF THEOREM []

Now, we prove that the functions wy(n) with & > 2 do not have normal order
F(n) for any nondecreasing function F': N — Rx.

First we assume that there exists ng € N such that F(ng) > 0. Then F(n) > 0
for n > ng since F' is nondecreasing. Thus

o Hn <N Py >0}

1.
N—oc0 N

For a natural number N, define the set

Since
)DIRES D5 SRS 3D SRS pE
n<N p n<N P n<N P p
ng¢No(N) p*|n p*|n
PP n
we have

N N pk
Thus
<N:F N
o (100 P00 > 01 GO0
N—oo N N

and the cardinality of the set of n < N for which F(n) > 0 and wi(n) = 0 is not
o(N). Since for such n, the inequality
F(n)

fwln) = Fn)| > =

is satisfied, we deduce that wg(n) does not have normal order F(n).
Now assume that F'(n) =0 for all n € N. Then

lim {n < N : F(n)=0}| _

1.
N—o00 N

Define

NM(N):={n <N :wr(n) =1}
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Since
PICTERED SENNTS SIS DI
n<N n<N n<N
va(n)=k va(n)=~k va(n)=k
vp(n)<k for all p > 3 vp(n)>k for some p > 3
N N
-5~z - T
P23 < N/2F
pFIn
n is odd
S N N N 1
Zok T T2 b
p=>3
we have
. NIV 1 (1 1 1 1
lim inf >l g )zwls 2n
p=3 p>=3
>y (- (5-1-)
2k \ 2 6 4
>0
Thus
lien int ( N N )7t

and the cardinality of the set of n < N for which F(n) = 0 and wi(n) = 1 is not
o(N). Since for such n, the inequality |wg(n) — F(n)| > F(n)/2 is satisfied, we
deduce that wy(n) does not have normal order F(n). O

[{n S N:F(n) =0} IJ\G(N)I)
0
F
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