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Abstract. Let A be an ellipsephic set which satisfies digital restrictions in

a given base. Using the method developed by Hughes and Wooley, we bound

the number of integer solutions to the system of equations

2∑
i=1

(
x3i − y3i

)
=

5∑
i=3

(
x3i − y3i

)
2∑

i=1

(xi − yi) =

5∑
i=3

(xi − yi),

with x,y ∈ A5. The fact that ellipsephic sets with small digit sumsets have

fewer solutions of linear equations allows us to improve the general bounds ob-

tained by Hughes and Wooley and also the corresponding efficient congruencing

estimates. We also generalize our result from the curve (x, x3) to (x, φ(x)),

where φ is a polynomial with integer coefficients and deg(φ) ≥ 3.

1. introduction

The discrete restriction conjecture has recently been of wide interest for re-

searchers in both harmonic analysis and number theory (for example, see [8], [9]

2020 Mathematics Subject Classification. 11L07, 42B05, 35Q53.

Key words and phrases. mean value estimates, ellipsephic sets, KdV-like equations.

T. C. Anderson was supported by an NSF DMS Grant in analysis and number theory.

Y.-R. Liu was supported by an NSERC Discovery Grant.

The authors would like to thank K. Biggs and T. Wooley for helpful discussions related to

the project. They also thank the referee for providing helpful comments.

1



2 THERESA C. ANDERSON, BINGYANG HU, YU-RU LIU, AND ALAN TALMAGE

and [10]). To recall the conjecture for the cuve (x, x3), let a = {a(n)}n∈Z and

Ea (α, β) :=
∑
|n|≤N

a(n)e
(
αn3 + βn

)
with α, β ∈ R.

A weaker version of the conjecture can be stated as follows.

Conjecture 1.1. For each p ∈ [1,∞] and ε > 0, there exists a constant

Cp,ε > 0, such that for all N ∈ N and all sequence a = {a(n)}n∈Z ∈ `2(Z), one has

‖Ea‖Lp(T2) ≤ Cp,εN
ε
(

1 +N
1
2−

4
p

)
‖a‖`2(Z).

By proving the bound for p = 6, Bourgain [5] established Conjecture 1.1 for the

cases 1 ≤ p ≤ 6. Little further progress was made before Hu and Li [8] proved the

case p = 14. Lai and Ding [10] extended the range to p ≥ 12. Recently, Hughes and

Wooley [9] proved the bound for p = 10 and hence established the conjecture for

p ≥ 10. For more details about the discrete restriction conjecture and its relation

to KdV equations, we refer interested readers to [8], [9] and [10].

Given a set S ⊂ Z, let S(N) = S ∩ [−N,N ] and S = |S(N)|. For s ∈

N = {1, 2, · · · }, we denote by Js(S(N)) the number of solutions to the system of

equations

s∑
i=1

(
x3i − y3i

)
= 0

s∑
i=1

(xi − yi) = 0,

with x,y ∈ S(N)s. In order to prove Conjecture 1.1 with p = 10, Hughes and

Wooley studied in [9] the quantity J5(S(N)) for any set S. In particular, they

proved that there exists a positive constant κ such that

J5(S(N))� N exp

(
κ

logN

log logN

)
S5.

The bound for J5(S(N)) can be improved if additional structures are employed on

the set S. In this paper, we consider the cases of ellipsephic sets.

The term ellipsephic set was introduced by Biggs in [3] and [4]. She used

the terminology to mimic the word ellipséphique used in the French mathematical
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literature to denote integers with missing digits (for example, see [1] and [2]). Let

` be a positive integer and A` ⊂ {0, 1, · · · , ` − 1} with 2 ≤ |A`| ≤ ` − 1. In other

words, A` contains at least two elements of {0, 1, · · · , ` − 1}, but at most (` − 1)

elements from the set. We say A is an ellipsephic set in the base ` if for any n ∈ A,

n =
∑
i

ai`
i with ai ∈ A`.

An ellipsephic set A is said to be with small digit sumsets if there exists some

constantK > 0, such that |A`+A`| ≤ K|A`|. For example, if ` ≥ 3 andA` = {0, 1},

then A` +A` ∈ {0, 1, 2} and we have K = 3/2. In this paper, we will show that if

A is an ellipsephic set with small digit sumsets, then we can obtain the following

bound for J5(A(N)).

Theorem 1.2. Let A be an ellipsephic set with A` = A ∩ [0, ` − 1]. Write

A(N) = A ∩ [−N,N ] with A = |A(N)|. Suppose that |A` +A`| ≤ K|A`| for some

constant K > 0. Then there exists a positive constant κ such that

J5(A(N))� K4N4 log`K exp

(
κ

logN

log logN

)
A6.

We recall that for a general set S(N) with S = |S(N)|, Hughes and Wooley

proved in [9, Theorem 2.1] that

J5(S(N))� N exp

(
κ

logN

log logN

)
S5.

To compare the above result with Theorem 1.2, we first notice that the set S (S`

and S, respectively) in [9] plays the role of A (A` and A, respectively) in our setting.

Write r for both |S`| and |A`| with 2 ≤ r ≤ `− 1. Then A ≤ rlog`N+1 = rN log` r.

It follows that if 4 log`K + log` r < 1, i.e., K4r < `, then

K4N4 log`KA ≤ rK4N4 log`K+log` r = or,K(N).

Hence the bound for ellipsephic sets in Theorem 1.2 is sharper in this case. The

condition K4r < ` is often satisfied. For example, if ` ≥ 3 and A` ∈ {0, 1}, then

r = 2 and K = 3/2. In this case, K4r < ` provided that ` > 2 · (3/2)4, i.e., ` ≥ 11.
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Using his efficient congruencing method, Wooley proved in [14] that for a gen-

eral set S,

J3(S(N))� N εS3

for any ε > 0. By trivially bounding the additional four variables by S4, this gives

us

J5(S(N))� N εS7.

Let r = |S`|. Then S ≤ rN log` r. We notice that the above bound is stronger

than the N1+εS5 bound in [9, Theorem 2.1] provided that S2 = o(N), which holds

if 2 log` r < 1, i.e., r2 < `. By noticing the set S (S` and S, respectively) here

plays the role of A (A` and A, respectively) in Theorem 1.2, we can also compare

the nested efficient congruencing bound N εS7 with the K4N4 log`K+εA6 bound in

Theorem 1.2. We see that if 4 log`K < log` r, i.e., K4 < r, then

K4N4 log`K = o(rN log` r),

so K4N4 log`K = o(S). Hence the bound in Theorem 1.2 is sharper in this case. The

conditions K4 < r and r2 < ` are often satisfied. For example, if A = {0, 1, · · · , 13},

then A+A ∈ {0, 1, · · · , 26}. We have K = 27/14 and r = 14. By taking ` > 142,

we have K4 < r < `1/2.

Let φ(x) be a polynomial with integer coefficients and deg(φ) ≥ 3. We can

generalize Theorem 1.2 from the curve (x, x3) to the curve (x, φ(x)). Let J5,φ(A(N))

denote the number of solutions to the system of equations

5∑
i=1

(φ(xi)− φ(yi)) = 0

5∑
i=1

(xi − yi) = 0,

with x,y ∈ A(N)5. We will prove the following result.

Theorem 1.3. Let A be an ellipsephic set with A` = A ∩ [0, ` − 1]. Write

A(N) = A∩ [−N,N ] with A = |A(N)|. Suppose that |A` +A`| ≤ K|A`|. Then for
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any ε > 0, we have

J5,φ(A(N))� K4N4 log`K+εA6.

We assume here and throughout that the implicit constant in the symbol �

may depend on ε, s, k, and the coefficients of φ.

Let |A`| = r with 2 ≤ r ≤ ` − 1. Similar to the remarks after Theorem

1.2, the result in Theorem 1.3 is sharper than the general bounds in [2, Theorem

3.4] and the corresponding nested efficient congruencing estimates, provided that

K4 < r < `1/2.

We now restrict our attention to the case when ` is a prime. A subset R ⊂

N ∪ {0} is called a E∗2 -set if for any n ∈ N, we have

(1.1) #
{

(a1, a2) ∈ R2 : a1 + a2 = n
}
� nε

for any ε > 0. Let R` = R ∩ [0, `− 1] and suppose that 2 ≤ |R`| ≤ `− 1. Given a

prime ` and a E∗2 -set R, a set E = ER` is called a (`, 2)∗-ellipsephic set if

E =

{
n =

∑
i

ai`
i : ai ∈ R` for all i

}
.

In this setting, Biggs [4, Theorem 1.2] proved that

J5,φ(E(N))� N εE5,

where E = |E(N)|. Her bound is essentially optimal as we get J5,φ(E(N)) � E5

from the diagonal solutions. She also obtained similar bounds for general E∗t -sets

with t ≥ 2.

The optimal result of Biggs and Theorem 1.3 are applied to sets of different

nature. To illustrate their difference, we first notice that the set E (E` and E,

respectively) in [4] plays the role of A (A` and A, respectively) in our setting. In

[11], Landau proved that the set of squares satisfies the condition (1.1). Write r

for both |E`| and |A`|. Since the set of squares is sparse, the set E` + E` could

be of size r2 for sufficiently large `. On the other hand, if an ellipsephic set A

satisfies |A` +A`| < Kr, then Theorem 1.3 provides meaningful improvement only
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if K4 < r. This condition K < r1/4 is not always satisfied for large r if we take an

ellipsephic set E with square digits since E` + E` could be of size r2. Thus one can

say the result of Biggs provides useful estimates for “large K,” while Theorem 1.3

is meaningful for “small K.”

We will prove Theorem 1.2 in Section 2 and Theorem 1.3 in Section 3. The key

idea of our paper is to make use of the fact that ellipsephic sets with small digit

sumsets have fewer solutions of linear equations. More precisely, we can bound

elements of the form 2A− 2A for ellipsephic sets A with small digit sumsets more

efficiently than general sets (see Lemma 2.1). We will highlight this idea with vari-

ations of Theorem 1.3 at the end of the paper.

2. Proof of Theorem 1.2

To prove Theorem 1.2, we need the following lemma.

Lemma 2.1. Let A be an ellipsephic set with A` = A∩ [0, `−1]. Write A(N) =

A ∩ [−N,N ] with A = |A(N)|. Suppose that |A` +A`| ≤ K|A`|. Then

|2A− 2A| � K4N4 log`KA.

Proof: Since A` ⊂ [0, `−1], by viewing A` as a subset of the abelian group Z4`−3 =

{2 − 2`, · · · ,−1, 0, 1, · · · , 2` − 2}, we have A` + A` ⊂ Z4`−3. By the Plünnecke-

Ruzsa inequality [12], [13], we have |2A` − 2A`| ≤ K4|A`|. Since A ⊂ [−N,N ],

each element of A is formed of ≤ log`N + 1 digits, each of which is in A`. Hence,

each element of 2A−2A corresponds to at least one element of (2A`−2A`)log`N+1.

Thus we have

|2A− 2A| ≤ |2A` − 2A`|log`N+1

≤ K4(log`N+1)|A`|log`N+1

= K4N4 log`KA.

�
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Remark Let A be an ellipsephic set satisfying the conditions in Lemma 2.1. For

m,n ∈ N, using the same argument as the above proof, we can show that

|mA− nA| � Km+nN (m+n) log`KA.

Let

E11A(N)(α, β) :=
∑

n∈A(N)

e
(
αn3 + βn

)
.

By the orthogonal relation of the exponential function, we see that

J5(A(N)) =

�
T2

∣∣E11A(N)(α, β)
∣∣10 dαdβ,

where T = [0, 1). Hence to prove Theorem 1, it is equivalent to show that there

exists a positive constant κ such that

�
T2

∣∣E11A(N)(α, β)
∣∣10 dαdβ � K4N4 log`K exp

(
κ

logN

log logN

)
A6.

Proof of Theorem 1.2 Write a = 11A(N). The tenth moment ‖Ea‖1010 counts the

number of solutions to the system of equations

2∑
i=1

(
x3i − y3i

)
=

5∑
i=3

(
x3i − y3i

)
2∑
i=1

(xi − yi) =

5∑
i=3

(xi − yi),

with x,y ∈ A(N)5. By the second equation above, we let

h := x1 − y1 + x2 − y2 = x3 − y3 + x4 − y4 + x5 − y5 ∈ 2A− 2A.

We now write ‖Ea‖1010 as∑
h∈2A−2A

�
T

�
T
|Ea(α1, α2)|4 e(−α2h)dα2

�
T
|Ea(α1, α3)|6 e(−α3h)dα3dα1.

By the triangle inequality and Lemma 2.1, this gives

(2.1) ‖Ea‖1010 ≤ K4N4 log`KA

�
T3

|Ea(α1, α2)|4 |Ea(α1, α3)|6 dα1dα2dα3.

Let ct(k) denote the number of solutions of the simultaneous equations

t∑
i=1

(x3i − y3i ) = k and

t∑
i=1

(xi − yi) = 0.
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In the proof of [9, Theorem 2.1], Hughes and Wooley proved that

�
T3

|Ea(α1, α2)|4 |Ea(α1, α3)|6 dα1dα2dα3 �
∑

|k|≤4N3

c2(k)c3(k)

� exp

(
κ

logN

log logN

)
A5.

It follows that

‖Ea‖1010 � K4N4 log`KA exp

(
κ

logN

log logN

)
A5

� K4N4 log`K exp

(
κ

logN

log logN

)
A6.

�

Remark We see in Section 1 a remark after Theorem 1.2 that if K4 < r = |A`|,

then the bound of Theorem 1.2 is sharper than the bound derived from the efficient

congruencing method. One can find examples to satisfy Km < r for all m ∈ N,

provided that r is sufficiently large. For example, for a large `, if A = {0, 1, · · · , q}

with 2q < `, then A+A ∈ {0, 1, · · · , 2q}. We have

K = (2q + 1)/(q + 1) = 2− 1/(q + 1) < 2.

Hence by taking q = 2m − 1, we get Km < r = q + 1.

3. Proof of Theorem 1.3

Let φ(x) be a polynomial with integer coefficients and deg(φ) ≥ 3. Let

F11A(N)(α, β) :=
∑

n∈A(N)

e (αφ(n) + βn) .

By the orthogonal relation of the exponential function, we see that

J5,φ(A(N)) =

�
T2

∣∣F11A(N)(α, β)
∣∣10 dαdβ.

Hence to prove Theorem 1.3, it is equivalent to show that for any ε > 0, we have

�
T2

∣∣F11A(N)(α, β)
∣∣10 dαdβ � K4N4 log`K+εA6.
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Proof of Theorem 1.3 Write a = 11A(N). The tenth moment ‖Fa‖1010 counts the

number of solutions to the system of equations

2∑
i=1

(φ(xi)− φ(yi)) =

5∑
i=3

(φ(xi)− φ(yi))

2∑
i=1

(xi − yi) =

5∑
i=3

(xi − yi),

with x,y ∈ A(N)5. Using the same argument as the one in Theorem 1.2, we get

(3.1) ‖Fa‖1010 ≤ K4N4 log`KA

�
T3

|Fa(α1, α2)|4 |Fa(α1, α3)|6 dα1dα2dα3.

Let ct(k) counts the number of solutions of the simultaneous equations

t∑
i=1

(φ(xi)− φ(yi)) = k and

t∑
i=1

(xi − yi) = 0,

with x,y ∈ At. In the proof of [9, Theorem 3.4], Hughes and Wooley proved that

there exists a constant C, depending on φ, such that

�
T3

|Fa(α1, α2)|4 |Fa(α1, α3)|6 dα1dα2dα3 ≤
∑

|k|≤CNk

c2(k)c3(k)

� N εA5.

It follows that

‖Fa‖1010 � K4N4 log`KAN εA5 � K4N4 log`K+εA6.

�

The improved bounds in Theorem 1.2 and Theorem 1.3 come from the fact

that we can bound elements of the form 2A− 2A for ellipsephic sets A with small

digit sumsets more efficiently than general sets. To highlight the idea, we consider

a variation of Theorem 1.3.

Given a set S ⊂ Z, let S(N) = S ∩ [−N,N ] and S = |S(N)|. Suppose that

|2S(N)− 2S(N)| ≤ P (S) for some function P of S. Let φ(x) be a polynomial with

integer coefficients and deg(φ) ≥ 3. Following the proof of Theorem 1.3, we have
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Theorem 3.1. Let S(N) ⊂ Z ∩ [−N,N ] with |S(N)| = S. Suppose that

|2S(N) − 2S(N)| ≤ P (S) for some function P of S. Then for any ε > 0, we

have

J5,φ(S(N))� P (S)N εS5.

For a set S(N) ⊂ Z∩[−N,N ], suppose that |S(N)+S(N)| ≤ KS for some con-

stant K (by Freiman’s theorem [6] [7], sets satisfying this condition are contained

in a generalized arithmetic progression). By the Plünnecke-Ruzsa inequality [12],

[13], we have |2S(N)− 2S(N)| ≤ K4S. Hence as a direct consequence of Theorem

3.1, we have

Corollary 3.2. Let S(N) ⊂ Z ∩ [−N,N ] with |S(N)| = S. Suppose that

|S(N) + S(N)| ≤ KS for some constant K. Then for any ε > 0, we have

J5,φ(S(N))� K4N εS6.
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