Induced subgraphs and tree decompositions IV. (Even hole, diamond, pyramid)-free graphs

Tara Abrishami* Maria Chudnovsky*
Program in Applied and Computational Mathematics
Princeton University
Princeton, New Jersey, U.S.A.
\{taraa, mchudnov\}@math.princeton.edu

Sepehr Hajebi Sophie Spirkl ${ }^{\dagger}$
Department of Combinatorics and Optimization
University of Waterloo
Waterloo, Ontario, Canada
\{shajebi,sophie.spirkl\}@uwaterloo.ca

Submitted: Oct 22, 2022; Accepted: May 15, 2023; Published: Jun 16, 2023
(C) The authors. Released under the CC BY license (International 4.0).

Abstract

A hole in a graph G is an induced cycle of length at least four, and an even hole is a hole of even length. The diamond is the graph obtained from the complete graph K_{4} by removing an edge. A pyramid is a graph consisting of a vertex a called the apex and a triangle $\left\{b_{1}, b_{2}, b_{3}\right\}$ called the base, and three paths P_{i} from a to b_{i} for $1 \leqslant i \leqslant 3$, all of length at least one, such that for $i \neq j$, the only edge between $P_{i} \backslash\{a\}$ and $P_{j} \backslash\{a\}$ is $b_{i} b_{j}$, and at most one of P_{1}, P_{2}, and P_{3} has length exactly one. For a family \mathcal{H} of graphs, we say a graph G is \mathcal{H}-free if no induced subgraph of G is isomorphic to a member of \mathcal{H}. Cameron, da Silva, Huang, and Vušković proved that (even hole, triangle)-free graphs have treewidth at most five, which motivates studying the treewidth of even-hole-free graphs of larger clique number. Sintiari and Trotignon provided a construction of (even hole, pyramid, K_{4})-free graphs of arbitrarily large treewidth. Here, we show that for every t, (even hole, pyramid, diamond, K_{t})-free graphs have bounded treewidth. The graphs constructed by Sintiari and Trotignon contain diamonds, so our result is sharp in the sense that it is false if we do not exclude diamonds. Our main result

[^0]is in fact more general, that treewidth is bounded in graphs excluding certain wheels and three-path-configurations, diamonds, and a fixed complete graph. The proof uses "non-crossing decompositions" methods similar to those in previous papers in this series. In previous papers, however, bounded degree was a necessary condition to prove bounded treewidth. The result of this paper is the first to use the method of "non-crossing decompositions" to prove bounded treewidth in a graph class of unbounded maximum degree.
Mathematics Subject Classifications: 05C

1 Introduction

All graphs in this paper are simple. Let $G=(V(G), E(G))$ be a graph. An induced subgraph of G is a subgraph of G formed by deleting vertices. In this paper, we use induced subgraphs and their vertex sets interchangeably. A tree decomposition (T, χ) of G consists of a tree T and a map $\chi: V(T) \rightarrow 2^{V(G)}$ satisfying the following:
(i) For all $v \in V(G)$, there exists $t \in V(T)$ such that $v \in \chi(t)$;
(ii) For all $v_{1} v_{2} \in E(G)$, there exists $t \in V(T)$ such that $v_{1}, v_{2} \in \chi(t)$;
(iii) For all $v \in V(G)$, the subgraph of T induced by $\{t \in V(T)$ s.t. $v \in \chi(t)\}$ is connected.

The width of a tree decomposition (T, χ) of G is $\max _{t \in V(T)}|\chi(t)|-1$. The treewidth of G, denoted $\operatorname{tw}(G)$, is the minimum width of a tree decomposition of G. Treewidth was introduced by Robertson and Seymour in their study of graph minor theory.

Treewidth is roughly a measure of how "complicated" a graph is: forests have treewidth one, and in general, the smaller the treewidth, the more "tree-like" (and thus "uncomplicated") the graph. Graphs with bounded treewidth have nice structural properties, and many classic NP-hard problems can be solved in polynomial time in graphs with bounded treewidth (see [5] for more details). Understanding which graphs have bounded treewidth is an important question in the field of structural graph theory. This question is usually explored by considering substructures of graphs that, when present, cause the treewidth to be large, and when absent, guarantee that the treewidth is small. Robertson and Seymour famously gave a complete answer to this question in the case of subgraphs. By $W_{k \times k}$ we denote the $(k \times k)$-wall; see [2] for a full definition.

Theorem 1 ([14]). There is a function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that every graph of treewidth at least $f(k)$ contains a subdivision of $W_{k \times k}$ as a subgraph.

Recently, the study of which graphs have bounded treewidth has focused on hereditary graph classes; that is, classes of graphs defined by forbidden induced subgraphs. Most conjectures and theorems about the treewidth of hereditary graph classes fall into one of two categories: bounded treewidth in graph classes with bounded maximum degree, and logarithmic treewidth in graph classes with arbitrary maximum degree and bounded clique number. The main open question in the former category was the following:

Conjecture $2([1])$. For all $k, \Delta>0$, there exists $c=c(k, \Delta)$ such that every graph with maximum degree at most Δ and treewidth more than c contains a subdivision of $W_{k \times k}$ or the line graph of a subdivision of $W_{k \times k}$ as an induced subgraph.

In earlier papers in this series, several special cases of Conjecture 2 were resolved (see [2], [4]). Conjecture 2 was recently proven in [11], by a different method. In this paper, we use techniques similar to [2] and [4] to prove that a hereditary graph class of arbitrarily large maximum degree has bounded treewidth.

Before we state our main result, we define several types of graphs. If G is a path or a cycle, the length of G is $|E(G)|$. By P_{k} we denote the path on k vertices. If $P=p_{1}-p_{2} \cdots-p_{k}$, then $P^{*}=P \backslash\left\{p_{1}, p_{k}\right\}$ denotes the interior of the path P. A hole of G is an induced cycle of length at least four. By C_{4} we denote the hole of length four. Let G be a graph and let $v \in V(G)$. The open neighborhood of v in G, denoted $N_{G}(v)$, is the set of vertices of $V(G)$ adjacent to v. The closed neighborhood of v in G, denoted $N_{G}[v]$, is the union of v and $N_{G}(v)$. Let $X \subseteq V(G)$. The open neighborhood of X in G, denoted $N_{G}(X)$, is the set of vertices of $V(G) \backslash X$ with a neighbor in X. The closed neighborhood of X in G, denoted $N_{G}[X]$, is the union of X and $N_{G}(X)$. When the graph G is clear, we omit the subscript G from the open and closed neighborhoods. A wheel (H, w) is a hole H and a vertex $w \in V(G)$ such that w has at least three neighbors in H. We call w the center of the wheel (H, w). An even wheel is a wheel (H, w) such that $|N(w) \cap H|$ is even. A line wheel (H, v) is a hole H and a vertex $v \notin H$ such that $|H \cap N(v)|$ is the union of two disjoint edges. If $X, Y \subseteq V(G)$, we say X is anticomplete to Y if there are no edges with one endpoint in X and one endpoint in Y. We say that X has a neighbor in Y if X is not anticomplete to Y. We say that v is anticomplete to X if $\{v\}$ is anticomplete to X.

A diamond is the graph given by deleting an edge from K_{4}. A theta is a graph consisting of two non-adjacent vertices a and b and three paths P_{1}, P_{2}, P_{3} from a to b of length at least two, such that $P_{1}^{*}, P_{2}^{*}, P_{3}^{*}$ are pairwise disjoint and anticomplete to each other. We say this is a theta between a and b through P_{1}, P_{2}, and P_{3}. A pyramid is a graph consisting of a vertex a, a triangle b_{1}, b_{2}, b_{3}, and three paths P_{1}, P_{2}, P_{3} from a to b_{1}, b_{2}, b_{3}, respectively, such that for $i \neq j$, the only edge between $P_{i} \backslash\{a\}$ and $P_{j} \backslash\{a\}$ is $b_{i} b_{j}$, and at most one of P_{1}, P_{2}, P_{3} has length exactly one. We say a is the apex of the pyramid and $b_{1} b_{2} b_{3}$ is the base of the pyramid. A prism is a graph consisting of two disjoint triangles $a_{1} a_{2} a_{3}$ and $b_{1} b_{2} b_{3}$ and three paths P_{1}, P_{2}, P_{3}, with P_{i} from a_{i} to b_{i}, such that for all distinct $i, j \in\{1,2,3\}$, the only edges between P_{i} and P_{j} are $a_{i} a_{j}$ and $b_{i} b_{j}$. Thetas, pyramids, and prisms are called three-path configurations.

If H is a graph, then by H-free graphs we mean the class of graphs which do not contain H as an induced subgraph. If \mathcal{H} is a set of graphs, then by \mathcal{H}-free graphs we mean the class of graphs which are H-free for every $H \in \mathcal{H}$. Let \mathcal{C} be the class of (C_{4}, diamond, theta, pyramid, prism, even wheel)-free graphs, and let \mathcal{C}_{t} be the class of (C_{4}, diamond, theta, pyramid, prism, even wheel, K_{t})-free graphs. The main result of this paper is the following theorem.

Theorem 3. For all $t>0$ there exists $c_{t} \geqslant 0$ such that $\operatorname{tw}(G) \leqslant c_{t}$ for every $G \in \mathcal{C}_{t}$.

Note that thetas, prisms, and even wheels contain even holes, so (even hole, diamond, pyramid, K_{t})-free graphs are a subclass of \mathcal{C}_{t}. Therefore, Theorem 3 implies the following:

Theorem 4. For all $t>0$ there exists $d_{t} \geqslant 0$ such that $\operatorname{tw}(G) \leqslant d_{t}$ for every (even hole, diamond, pyramid, K_{t})-free graph G.

Theorem 3 is the first result of this series that gives a constant bound on treewidth in a class of graphs with arbitrary maximum degree; the previous results have either obtained a constant bound on treewidth in graph classes with bounded degree ([2], [4]), or given a logarithmic bound on treewidth in graph classes with bounded clique number ([3]). Bounded treewidth results for similar graph classes were also proved in [7].

In [15], Sintiari and Trotignon construct (even hole, pyramid, K_{4})-free graphs of arbitrarily large treewidth. These graphs contain diamonds; therefore, Theorem 4 is sharp in the sense that excluding diamonds is necessary to obtain bounded treewidth. Sintiari and Trotignon also made the following conjecture:

Conjecture 5 ([15]). (Even hole, diamond, K_{4})-free graphs have bounded treewidth.
Theorem 4 is a special case of Conjecture 5. If Conjecture 5 can be proven using techniques similar to those used in this paper and in the previous papers of this series, then Theorem 4 is the base case to prove Conjecture 5. Indeed, we conjecture the following slight generalization of Conjecture 5 .

Conjecture 6. For all $t>0$ there exists $c_{t} \geqslant 0$ such that $\operatorname{tw}(G) \leqslant c_{t}$ for every $\left(C_{4}\right.$, diamond, theta, prism, even wheel, K_{t})-free graph G.

In view of Conjecture 6, when possible, we prove the results of this paper for $\left(C_{4}\right.$, diamond, theta, prism, even wheel, K_{t})-free graphs instead of graphs in \mathcal{C}_{t}. To that end, we define \mathcal{C}_{t}^{*} to be the class of $\left(C_{4}\right.$, diamond, theta, prism, even wheel, $\left.K_{t}\right)$-free graphs with no clique cutset. The ramifications of excluding a diamond on the treewidth of other classes of sparse graphs is still unclear, but it is of significant interest due to the profound impact it has on the behavior of maximal cliques.

1.1 Proof outline

Here, we give a brief outline of the ideas used in the proof of Theorem 3. Many of these ideas, or similar ones, appear in previous papers in this series. One major tool we use is that of balanced separators; a graph has a balanced separator for every normalized weight function on its vertices if and only if it has bounded treewidth.

Let $G \in \mathcal{C}_{t}$. We would like to apply decomposition techniques to G to obtain an induced subgraph β of G such that: (i) the treewidth of β is easy to compute, and (ii) there exists a function f such that if $\operatorname{tw}(\beta) \leqslant c$, then $\operatorname{tw}(G) \leqslant f(c)$. If we can find a decomposition that satisfies these two properties, then we can bound the treewidth of G.

To obtain property (i), we make use of the key result that if a graph $G \in \mathcal{C}_{t}$ is wheelfree, then G has bounded treewidth (by Theorem 26). In view of this result, we would like to guarantee that β is wheel-free. To do this, we consider star cutsets associated
with wheel centers. A star cutset of a graph G is a set $C \subseteq V(G)$ such that $G \backslash C$ is not connected and there exists $v \in V(C)$ such that $C \subseteq N[v]$. We call v the center of the star cutset C. Let (H, v) be a wheel of G. Then, v is the center of a star cutset C of G, and H is not contained in the closed neighborhood of any connected component of $G \backslash C$ (by Lemma 13). Therefore, the star cutset with center v "breaks" the hole H. If β is contained in the closed neighborhood of a connected component of $G \backslash C$, then β does not contain the wheel (H, v). Therefore, star cutsets associated with wheel centers are a promising way to construct an induced subgraph β which is wheel-free, and thus whose treewidth is easy to compute.

To obtain property (ii), we make use of the relationship between treewidth and collections of decompositions with a property called "non-crossing." "Non-crossing decompositions" interact well with treewidth, and provide a way to obtain a function f such that if $\operatorname{tw}(\beta) \leqslant c$, then $\operatorname{tw}(G) \leqslant f(c)$. It turns out that there are natural decompositions corresponding to star cutsets, and in the case of graphs in \mathcal{C}_{t}, these decompositions are "nearly non-crossing" (a slight generalization of non-crossing that also cooperates with treewidth). Because of the way the decompositions corresponding to star cutsets are constructed, we obtain an induced subgraph β of G such that either β is wheel-free or β has a balanced separator. To prove that β has a balanced separator if it is not wheel-free, we use degeneracy to bound the degree of vertices which are wheel centers in β (a similar technique was used in [3]). In either case, β has bounded treewidth, and so, because of the function f obtained by the properties of non-crossing decompositions, G has bounded treewidth.

In previous papers in this series, decompositions corresponding to star cutsets were also used to reduce the problem of bounding the treewidth of G to bounding the treewidth of a "less complicated" induced subgraph β of G. But the collections of decompositions used in previous results were not nearly non-crossing; instead, we used that the graph classes had bounded degree to partition the decompositions into a bounded number of nearly non-crossing collections. In \mathcal{C}_{t}, we were able to slightly modify the star cutsets we consider in order to obtain a single collection of non-crossing decompositions. This eliminated the need for the bounded degree condition required for previous results of this series, and allowed us to prove for the first time that the treewidth of a graph class with unbounded maximum degree is bounded.

1.2 Organization

The remainder of the paper is organized as follows. In Section 2, we define several tools needed to prove that graphs $G \in \mathcal{C}_{t}$ have bounded treewidth. In Section 3, we construct a useful induced subgraph β of G and prove that β has bounded treewidth. Finally, in Section 4, we use that β has bounded treewidth to prove that G has bounded treewidth.

2 Tools

In this section, we describe the tools needed to prove that graphs in \mathcal{C}_{t} have bounded treewidth. These tools fall into four categories: balanced separators, separations, central
bags, and cutsets obtained from wheels.

2.1 Balanced separators

Let G be a graph. A weight function on G is a function $w: V(G) \rightarrow \mathbb{R}$. For $X \subseteq V(G)$, we let $w(X)=\sum_{x \in X} w(x)$. Let G be a graph, let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$, and let $c \in\left[\frac{1}{2}, 1\right)$. A set $X \subseteq V(G)$ is a (w, c)-balanced separator if $w(D) \leqslant c$ for every component D of $G \backslash X$. The next two lemmas state how (w, c) balanced separators relate to treewidth. The first result was originally proven by Harvey and Wood in [10] using different language, and was restated and proved in the language of (w, c)-balanced separators in [2].

Lemma 7 ([2], [10]). Let G be a graph, let $c \in\left[\frac{1}{2}, 1\right)$, and let k be a positive integer. If G has a (w, c)-balanced separator of size at most k for every weight function $w: V(G) \rightarrow$ $[0,1]$ with $w(G)=1$, then $\operatorname{tw}(G) \leqslant \frac{1}{1-c} k$.

Lemma 8 ([8]). Let G be a graph and let k be a positive integer. If $\operatorname{tw}(G) \leqslant k$, then G has a (w, c)-balanced separator of size at most $k+1$ for every $c \in\left[\frac{1}{2}, 1\right)$ and for every weight function $w: V(G) \rightarrow[0,1]$ with $w(G)=1$.

2.2 Separations

A separation of a graph G is a triple (A, C, B), where $A, B, C \subseteq V(G), A \cup C \cup B=V(G)$, A, B, and C are pairwise disjoint, and A is anticomplete to B. If $S=(A, C, B)$ is a separation, we let $A(S)=A, B(S)=B$, and $C(S)=C$. Two separations $\left(A_{1}, C_{1}, B_{1}\right)$ and $\left(A_{2}, C_{2}, B_{2}\right)$ are nearly non-crossing if every component of $A_{1} \cup A_{2}$ is a component of A_{1} or a component of A_{2}. A separation (A, C, B) is a star separation if there exists $v \in C$ such that $C \subseteq N[v]$. Let $S_{1}=\left(A_{1}, C_{1}, B_{1}\right)$ and $S_{2}=\left(A_{2}, C_{2}, B_{2}\right)$ be separations of G. We say S_{1} is a shield for S_{2} if $B_{1} \cup C_{1} \subseteq B_{2} \cup C_{2}$.

Lemma 9. Let G be a (C_{4}, diamond)-free graph with no clique cutset, let $v_{1}, v_{2} \in V(G)$, and let $S_{1}=\left(A_{1}, C_{1}, B_{1}\right)$ and $S_{2}=\left(A_{2}, C_{2}, B_{2}\right)$ be star separations of G such that $v_{i} \subseteq$ $C_{i} \subseteq N\left[v_{i}\right], B_{i}$ is connected, and $N\left(B_{i}\right)=C_{i} \backslash\left\{v_{i}\right\}$ for $i=1,2$. Suppose that $v_{2} \in A_{1}$ and $B_{2} \cap\left(B_{1} \cup\left(C_{1} \backslash\left\{v_{1}\right\}\right)\right) \neq \emptyset$. Then, S_{1} is a shield for S_{2}.

Proof. Since $v_{2} \in A_{1}$ and A_{1} is anticomplete to B_{1}, it follows that $C_{2} \subseteq A_{1} \cup C_{1}$, and thus B_{1} is contained in a connected component of $G \backslash C_{2}$. First, we show that $B_{1} \subseteq B_{2}$. If there exists $x \in B_{1} \cap B_{2}$, then it holds that $B_{1} \subseteq B_{2}$, so we may assume that $B_{1} \cap B_{2}=\emptyset$. Consequently, $B_{1} \subseteq A_{2}$, and so, since $B_{2} \cap\left(B_{1} \cup\left(C_{1} \backslash\left\{v_{1}\right\}\right)\right)=\emptyset$, it follows that there exists $x \in\left(C_{1} \backslash\left\{v_{1}\right\}\right) \cap B_{2}$. But $N\left(B_{1}\right)=C_{1} \backslash\left\{v_{1}\right\}, x \in B_{2}, B_{1} \subseteq A_{2}$, and A_{2} is anticomplete to B_{2}, a contradiction. This proves that $B_{1} \subseteq B_{2}$.

Since every vertex of $C_{1} \backslash\left\{v_{1}\right\}$ has a neighbor in B_{1}, and thus in B_{2}, it follows that $C_{1} \backslash\left\{v_{1}\right\} \subseteq B_{2} \cup C_{2}$. Now consider v_{1}. If there exists $x \in C_{1} \backslash\left\{v_{1}\right\}$ such that $x \in B_{2}$, then v_{1} has a neighbor in B_{2} and so $v_{1} \in B_{2} \cup C_{2}$, as required. Thus we may assume that $C_{1} \backslash\left\{v_{1}\right\} \subseteq C_{2}$, and so (since $\left.v_{2} \in A_{1}\right) v_{2}$ is complete to $C_{1} \backslash\left\{v_{1}\right\}$.

Since G has no clique cutset and $N\left(B_{1}\right)=C_{1}$, there exist $x, y \in C_{1} \backslash\left\{v_{1}\right\}$ such that x and y are non-adjacent. But now $\left\{x, y, v_{1}, v_{2}\right\}$ is either a diamond or a C_{4}, a contradiction.

Let G be a graph and let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$. A vertex $v \in V(G)$ is called balanced if $w(D) \leqslant \frac{1}{2}$ for every component D of $G \backslash N[v]$, and unbalanced otherwise. Let U denote the set of unbalanced vertices of G. Let $v \in U$. The canonical star separation for v, denoted $S_{v}=\left(A_{v}, C_{v}, B_{v}\right)$, is defined as follows: B_{v} is the connected component of $G \backslash N[v]$ with largest weight, $C_{v}=\{v\} \cup\left(N(v) \cap N\left(B_{v}\right)\right)$, and $A_{v}=V(G) \backslash\left(B_{v} \cup C_{v}\right)$. Note that B_{v} is well-defined since $v \in U$.

Let \leqslant_{A} be the relation on U where for $x, y \in U, x \leqslant_{A} y$ if and only if $x=y$ or $y \in A_{x}$.
Lemma 10. Let G be a (C_{4}, diamond)-free graph with no clique cutset, let $w: V(G) \rightarrow$ $[0,1]$ be a weight function on G with $w(G)=1$, let U be the set of unbalanced vertices of G, and let \leqslant_{A} be the relation on U defined above. Then, \leqslant_{A} is a partial order.

Proof. We will show that \leqslant_{A} is reflexive, antisymmetric, and transitive. The relation is reflexive by definition. Let $x, y \in U$ be such that $x \neq y$ and suppose that $x \leqslant_{A} y$. By Lemma 9, it holds that S_{x} is a shield for S_{y}, and so $B_{x} \cup C_{x} \subseteq B_{y} \cup C_{y}$. But $x \in C_{x}$, so $x \notin A_{y}$. Since $x \neq y$, it follows that $y \not \mathbb{X}_{A} x$, and so the relation is antisymmetric.

Finally, suppose that $x, y, z \in U$ such that $x \leqslant_{A} y$ and $y \leqslant_{A} z$, so $y \in A_{x}$ and $z \in A_{y}$. By Lemma 9, it follows that S_{x} is a shield for S_{y}, so $B_{x} \cup C_{x} \subseteq B_{y} \cup C_{y}$. Since $z \in A_{y}$, it follows that $z \notin B_{x} \cup C_{x}$, so $z \in A_{x}$. Therefore, $x \leqslant_{A} z$, and the relation is transitive.

2.3 Central bags

Let G be a graph. We call a collection \mathcal{S} of separations of G smooth if the following hold:
(i) S_{1} and S_{2} are nearly non-crossing for all distinct $S_{1}, S_{2} \in \mathcal{S}$;
(ii) There is a set of unbalanced vertices $v(\mathcal{S}) \subseteq V(G)$ such that there is a bijection f from $v(\mathcal{S})$ to \mathcal{S} with $v \in C(f(v)) \subseteq N[v]$ and $A(f(v)) \subseteq A_{v}$ for all $v \in \nu(\mathcal{S})$;
(iii) $v(\mathcal{S}) \cap A(S)=\emptyset$ for all $S \in \mathcal{S}$.

Let \mathcal{S} be a smooth collection of separations of G. Then, the central bag for \mathcal{S}, denoted $\beta_{\mathcal{S}}$, is defined as follows:

$$
\beta_{\mathcal{S}}=\bigcap_{S \in \mathcal{S}}(B(S) \cup C(S))
$$

Let G be a graph and let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$. Let \mathcal{S} be a smooth collection of separations of G, and let $\beta_{\mathcal{S}}$ be the central bag for \mathcal{S}. By property (iii) of smooth collections of separations, it holds that $v(\mathcal{S}) \subseteq \beta_{\mathcal{S}}$. Also note that $G \backslash \beta_{\mathcal{S}}=\bigcup_{S \in(\mathcal{S})} A(S)$. We now define the inherited weight function $w_{\mathcal{S}}$ on $\beta_{\mathcal{S}}$ as follows. Fix an ordering $\left\{v_{1}, \ldots, v_{k}\right\}$ of $v(\mathcal{S})$. For every $f\left(v_{i}\right) \in \mathcal{S}$, let $A^{*}\left(f\left(v_{i}\right)\right)$ be the union of all connected components D of $\bigcup_{1 \leqslant j \leqslant k} A\left(f\left(v_{j}\right)\right)$ such that $D \subseteq A\left(f\left(v_{i}\right)\right)$ and $D \nsubseteq A\left(f\left(v_{j}\right)\right)$ for every $j<i$. In particular, $\left(A^{*}\left(f\left(v_{1}\right)\right), \ldots, A^{*}\left(f\left(v_{k}\right)\right)\right)$ is a partition of
$\bigcup_{S \in \mathcal{S}} A(S)$. Now, $w_{\mathcal{S}}\left(v_{i}\right)=w\left(v_{i}\right)+w\left(A^{*}\left(f\left(v_{i}\right)\right)\right)$ for all $v_{i} \in v(\mathcal{S})$, and $w_{\mathcal{S}}(v)=w(v)$ for all $v \notin v(\mathcal{S})$.

Lemma 11. Let G be a graph, let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$, and let $c \in\left[\frac{1}{2}, 1\right)$. Let \mathcal{S} be a smooth collection of separations of G, let $\beta_{\mathcal{S}}$ be the central bag for \mathcal{S}, and let $w_{\mathcal{S}}$ be the inherited weight function on $\beta_{\mathcal{S}}$. Suppose that $X \subseteq \beta_{\mathcal{S}}$ is a $\left(w_{\mathcal{S}}, c\right)$-balanced separator of $\beta_{\mathcal{S}}$. Then, $Y=X \cup\left(N_{G}[X \cap v(\mathcal{S})] \cap \beta_{\mathcal{S}}\right)$ is a (w, c)-balanced separator of G.
Proof. Let Q_{1}, \ldots, Q_{m} be the connected components of $\beta_{\mathcal{S}} \backslash X$. Let

$$
A_{i}=\bigcup_{v_{j} \in Q_{i} \cap v(\mathcal{S})} A^{*}\left(f\left(v_{j}\right)\right)
$$

for $1 \leqslant i \leqslant m$. Since $N\left(A^{*}(f(v))\right) \subseteq C_{v}$ and $C_{v} \subseteq N[v]$ for all $v \in v(\mathcal{S})$, it follows that for every connected component D^{\prime} of $G \backslash Y$, either $D^{\prime} \subseteq Q_{i} \cup A_{i}$ or $D^{\prime} \subseteq A^{*}(f(v))$ for some $v \in v(\mathcal{S}) \cap X$. Let D^{\prime} be a component of $G \backslash Y$. Since \mathcal{S} is smooth, it follows that $A^{*}(f(v)) \subseteq A_{v}$, and since v is unbalanced, it follows that $w\left(A_{v}\right) \leqslant \frac{1}{2}$. If $D^{\prime} \subseteq A^{*}(f(v))$ for some $v \in v(\mathcal{S})$, then $w\left(D^{\prime}\right) \leqslant \frac{1}{2} \leqslant c$, so we may assume $D^{\prime} \nsubseteq A^{*}(f(v))$. Therefore, $D^{\prime} \subseteq Q_{i} \cup A_{i}$ for some $1 \leqslant i \leqslant m$. By the definition of $w_{\mathcal{S}}$, it holds that

$$
\begin{aligned}
w_{\mathcal{S}}\left(Q_{i}\right) & =w\left(Q_{i}\right)+\sum_{v \in Q_{i} \cap v(\mathcal{S})} w\left(A^{*}(f(v))\right) \\
& =w\left(Q_{i}\right)+w\left(A_{i}\right) .
\end{aligned}
$$

Since X is a $\left(w_{\mathcal{S}}, c\right)$-balanced separator of $\beta_{\mathcal{S}}$, we have $w_{\mathcal{S}}\left(Q_{i}\right) \leqslant c$, and so $w\left(Q_{i} \cup A_{i}\right) \leqslant c$. Since $D^{\prime} \subseteq Q_{i} \cup A_{i}$, it follows that $w\left(D^{\prime}\right) \leqslant c$ for every connected component D^{\prime} of $G \backslash Y$.

2.4 Wheels

Recall that a wheel (H, w) is a hole H and a vertex $w \in V(G)$ such that w has at least three neighbors in H. If (H, w) is a wheel, a sector of (H, w) is a path $P \subseteq H$ of length at least one such that the ends of P are adjacent to w and P^{*} is anticomplete to w. A sector of (H, w) is long if it has length greater than one.

Lemma 12. Let G be a (theta, even wheel)-free graph, let H be a hole of G, and let $v_{1}, v_{2} \in V(G) \backslash V(H)$ be adjacent vertices each with at least two non-adjacent neighbors in H. Then, v_{1} and v_{2} have a common neighbor in H.

Proof. Suppose that v_{1} and v_{2} have no common neighbors in H. Since $H \cup\left\{v_{1}\right\}$ is not a theta, it follows that $\left(H, v_{1}\right)$ is a wheel. Similarly, $\left(H, v_{2}\right)$ is a wheel. Let $Q \subseteq H$ be a long sector of $\left(H, v_{1}\right)$. Then, $Q \cup\left\{v_{1}\right\}$ is a hole. Since v_{2} is adjacent to v_{1} and G has no even wheel and no theta, it follows that v_{2} has an odd number of neighbors in $Q \cup\left\{v_{1}\right\}$, and thus v_{2} has an even number of neighbors in Q. Since v_{1} and v_{2} have no common neighbors in H, every neighbor of v_{2} in H is in the interior of a sector of $\left(H, v_{1}\right)$. Therefore, v_{2} has an even number of neighbors in H. Since $\left(H, v_{2}\right)$ is a wheel, it follows that $\left(H, v_{2}\right)$ is an even wheel, a contradiction.

A wheel (H, w) is a twin wheel if $N(w) \cap H$ is a path of length two. A wheel (H, w) is a short pyramid if $|N(w) \cap H|=3$ and w has exactly two adjacent neighbors in H. A proper wheel is a wheel that is not a twin wheel or a short pyramid. A wheel (H, w) is a universal wheel if w is complete to H. We will use the following result about wheels and star cutsets. In [9], Lemma 13 is proven for a class of graphs called C_{4}-free odd-signable graphs. It is also shown in [9] that (C_{4}, even wheel, theta, prism)-free graphs are C_{4}-free odd-signable graphs. Since we are interested in (C_{4}, even wheel, theta, prism)-free graphs, we state Lemma 13 about (C_{4}, even wheel, theta, prism)-free graphs.

Lemma 13 ([9]). Let G be a (C_{4}, even wheel, theta, prism)-free graph that contains a proper wheel (H, x) that is not a universal wheel. Let x_{1} and x_{2} be the endpoints of a long sector Q of (H, x). Let W be the set of all vertices $h \in H \cap N(x)$ such that the subpath of $H \backslash\left\{x_{1}\right\}$ from x_{2} to h contains an even number of neighbors of x, and let $Z=H \backslash(Q \cup N(x))$. Let $N^{\prime}=N(x) \backslash W$. Then, $N^{\prime} \cup\{x\}$ is a cutset of G that separates Q^{*} from $W \cup Z$.

In particular, Lemma 13 implies the following.
Lemma 14. Let G be a (C_{4}, even wheel, theta, prism)-free graph and let (H, v) be a proper wheel of G that is not a universal wheel. Let (A, C, B) be a separation of G such that $v \in C \subseteq N[v], B$ is connected, and $N(B)=C \backslash\{v\}$. Then, $H \nsubseteq B \cup C$.

Proof. By Lemma 13, there exist $x, y \in H$ such that there is no path from x to y with interior anticomplete to v. Suppose that $x, y \in B \cup C$. Since B is connected and every vertex of $C \backslash\{v\}$ has a neighbor in B, it follows that there is a path P from x to y with $P^{*} \subseteq B$. But $N(B)=C \backslash\{v\}$, and so v is anticomplete to P^{*}, a contradiction. It follows that $\{x, y\} \nsubseteq B \cup C$, and so $H \nsubseteq B \cup C$.

Finally, note that in a (diamond, pyramid)-free graph, every wheel is a proper wheel that is not a universal wheel.

3 Balanced separators and central bags

In this section, we construct a useful central bag for graphs in \mathcal{C}_{t} and prove that the central bag has bounded treewidth. First, we state the observation that clique cutsets do not affect treewidth (this is a special case of Lemma 3.1 from [6]).

Lemma 15. Let G be a graph. Then, the treewidth of G is equal to the maximum treewidth over all induced subgraphs of G with no clique cutset.

Because of Lemma 15, we often assume that the graphs we work with do not have clique cutsets. The next lemma examines how three vertices can have neighbors in a connected subgraph.

Lemma 16 ([2]). Let x_{1}, x_{2}, x_{3} be three distinct vertices of a graph G. Assume that H is a connected induced subgraph of $G \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$ such that H contains at least one neighbor of each of x_{1}, x_{2}, x_{3}, and that subject to these conditions $V(H)$ is minimal subject to inclusion. Then one of the following holds:
(i) For distinct $i, j, k \in\{1,2,3\}$, there exists P that is either a path from x_{i} to x_{j} or a hole containing the edge $x_{i} x_{j}$ such that

- $H=P \backslash\left\{x_{i}, x_{j}\right\}$, and
- either x_{k} has at least two non-adjacent neighbors in H or x_{k} has exactly two neighbors in H and its neighbors in H are adjacent.
(ii) There exists a vertex $a \in H$ and three paths P_{1}, P_{2}, P_{3}, where P_{i} is from a to x_{i}, such that
- $H=\left(P_{1} \cup P_{2} \cup P_{3}\right) \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$, and
- the sets $P_{1} \backslash\{a\}, P_{2} \backslash\{a\}$ and $P_{3} \backslash\{a\}$ are pairwise disjoint, and
- for distinct $i, j \in\{1,2,3\}$, there are no edges between $P_{i} \backslash\{a\}$ and $P_{j} \backslash\{a\}$, except possibly $x_{i} x_{j}$.
(iii) There exists a triangle $a_{1} a_{2} a_{3}$ in H and three paths P_{1}, P_{2}, P_{3}, where P_{i} is from a_{i} to x_{i}, such that
- $H=\left(P_{1} \cup P_{2} \cup P_{3}\right) \backslash\left\{x_{1}, x_{2}, x_{3}\right\}$, and
- the sets P_{1}, P_{2}, and P_{3} are pairwise disjoint, and
- for distinct $i, j \in\{1,2,3\}$, there are no edges between P_{i} and P_{j}, except $a_{i} a_{j}$ and possibly $x_{i} x_{j}$.

Using Lemma 16, we prove the following theorem, which can also be easily deduced from Lemma 1.1 of [13].
Theorem 17. Let G be a (theta, triangle, wheel)-free graph. Then, $\operatorname{tw}(G) \leqslant 2$.
Proof. By Lemma 15, we may assume G does not have a clique cutset (so in particular, G is connected).
(1) G does not have a star cutset C with $v \in C \subseteq N[v]$ for some $v \in V(G)$.

Suppose that $v \in V(G)$ and G has a star cutset $C \subseteq N[v]$ with $v \in C$. Since G does not have a clique cutset, there exist $x, y \in C \backslash\{v\}$ and two connected components D_{1}, D_{2} of $G \backslash C$ such that $\{x, y\} \subseteq N\left(D_{1}\right) \cap N\left(D_{2}\right)$ (and since G is triangle-free, x and y are non-adjacent). Let P_{1} be a path from x to y with $P_{1}^{*} \subseteq D_{1}$, let P_{2} be a path from x to y with $P_{2}^{*} \subseteq D_{2}$, and let H be the hole given by $P_{1} \cup P_{2}$. Since x and y are non-adjacent, v has at least two non-adjacent neighbors in H. If $N(v) \cap H=\{x, y\}$, then G contains a theta between x and y through $x-v-y, x-P_{1}-y$, and $x-P_{2}-y$, a contradiction, so v has at least three neighbors in H. Since G is triangle-free, the neighbors of v are pairwise non-adjacent. But now (H, v) is a wheel of G, a contradiction. This proves (1).
(2) $\operatorname{deg}(v) \leqslant 2$ for all $v \in V(G)$.

Let $v \in V(G)$ and let $B=G \backslash N[v]$. By (1), B is connected, and since G does not have a clique cutset, it follows that $N(B)=N(v)$. Suppose that $x, y, z \in N(v)$, and
let $H \subseteq B$ be inclusion-wise minimal such that H contains a neighbor of x, y, and z. We apply Lemma 16. If case (ii) holds, then $H \cup\{v, x, y, z\}$ is a theta, a contradiction. Case (iii) does not hold because G is triangle-free. Therefore, case (i) holds. Then, up to symmetry between $x, y, z, H \cup\{x, z\}$ is a path from x to z such that y has two nonadjacent neighbors in H. But now $H^{\prime}=\{v, x, z\} \cup H$ is a hole and y has three pairwise non-adjacent neighbors in H^{\prime}, so $\left(H^{\prime}, v\right)$ is a wheel of G, a contradiction. This proves (2).

By (2), it follows that G is either a path or a cycle, and thus $\operatorname{tw}(G) \leqslant 2$.
Next, we give a simple characterization of the neighborhood of vertices in diamond-free graphs.

Lemma 18. Let G be diamond-free and let $v \in V(G)$. Then, $N(v)$ is the union of disjoint, pairwise anticomplete cliques.

Proof. If $N(v)$ contains P_{3}, then $v \cup N(v)$ contains a diamond, a contradiction. Therefore, $N(v)$ is P_{3}-free, and thus the union of disjoint, pairwise anticomplete cliques.

For $X \subseteq V(G)$, let $\operatorname{Hub}(X)$ denote the set of all vertices $x \in X$ for which there exists a proper wheel (H, x) with $H \subseteq X$.

Lemma 19. Let G be a (theta, diamond)-free graph with no clique cutset and let w : $V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$. Let \mathcal{S} be a smooth collection of separations of G, let $\beta_{\mathcal{S}}$ be the central bag for \mathcal{S}, and let $w_{\mathcal{S}}$ be the inherited weight function on $\beta_{\mathcal{S}}$. Let $v \in \beta_{\mathcal{S}}$ and (by Lemma 18) let $N_{\beta_{\mathcal{S}}}(v) \backslash \operatorname{Hub}\left(\beta_{\mathcal{S}}\right)=K_{1} \cup \cdots \cup K_{t}$, where K_{1}, \ldots, K_{t} are disjoint, pairwise anticomplete cliques. Assume that v is not a pyramid apex in $\beta_{\mathcal{S}}$. Let D be a component of $\beta_{\mathcal{S}} \backslash N[v]$. Then, at most two of K_{1}, \ldots, K_{t} have a neighbor in D.

Proof. Suppose that $\{a, b, c\} \subseteq\{1, \ldots, t\}$ such that K_{a}, K_{b}, K_{c} each have a neighbor in D. Let $x_{1} \in K_{a}, x_{2} \in K_{b}$, and $x_{3} \in K_{c}$ be such that x_{1}, x_{2}, x_{3} have neighbors in D. Note that $\left\{x_{1}, x_{2}, x_{3}\right\}$ is independent. Let $H \subseteq D$ be inclusion-wise minimal such that x_{1}, x_{2}, x_{3} each have a neighbor in H. We apply Lemma 16. If case (ii) holds, then $\left\{v, x_{1}, x_{2}, x_{3}\right\} \cup H$ is a theta, a contradiction. If case (iii) holds, then $\left\{v, x_{2}, x_{2}, x_{3}\right\} \cup H$ is a pyramid of $\beta_{\mathcal{S}}$ with apex v, a contradiction. Therefore, up to symmetry between x_{1}, x_{2}, x_{3}, it holds that that $H \cup\left\{x_{1}, x_{3}\right\}$ is a path from x_{1} to x_{3}. If x_{2} has two non-adjacent neighbors in H, then x_{2} is a proper wheel center for the hole given by $H \cup\{v\}$, a contradiction (since $\left.x_{2} \in N_{\beta_{\mathcal{S}}}(v) \backslash \operatorname{Hub}\left(\beta_{\mathcal{S}}\right)\right)$. Therefore, x_{2} has exactly two adjacent neighbors in H. But now $\left\{v, x_{2}\right\} \cup H$ is a pyramid of $\beta_{\mathcal{S}}$ with apex v, a contradiction.

We next prove a result about balanced separators in central bags with balanced vertices. By $\omega(G)$ we denote the size of the largest clique of G.

Lemma 20. Let G be a (C_{4}, theta, pyramid, prism, diamond)-free graph with no clique cutset, let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$, and let $c \in\left[\frac{1}{2}, 1\right)$. Let \mathcal{S} be a smooth collection of separations of G, let $\beta_{\mathcal{S}}$ be the central bag for \mathcal{S}, and let
$w_{\mathcal{S}}$ be the inherited weight function on $\beta_{\mathcal{S}}$. Suppose that there exists $v \in \beta_{\mathcal{S}}$ such that v is balanced in G, and assume that $\left|N(v) \cap \operatorname{Hub}\left(\beta_{\mathcal{S}}\right)\right|<C$. Then $\beta_{\mathcal{S}}$ has a $\left(w_{\mathcal{S}}, c\right)$-balanced separator of size at most $6 \omega\left(\beta_{\mathcal{S}}\right)+C$.

Proof. Note that since \mathcal{S} is smooth, it follows that $v \in \beta_{\mathcal{S}} \backslash \nu(\mathcal{S})$. Let D_{1}, \ldots, D_{m} be the components of $\beta_{\mathcal{S}} \backslash N[v]$.
(3) $w_{\mathcal{S}}\left(D_{i}\right) \leqslant \frac{1}{2}$ for all $1 \leqslant i \leqslant m$.

Let D^{\prime} be a component of $G \backslash N[v]$, and suppose $s \in v(\mathcal{S}) \cap D^{\prime}$. Since \mathcal{S} is smooth, it follows that $s \in \beta_{\mathcal{S}}$. Suppose that $u \in A(f(s)) \cap N(v)$. Then, since $v \in N(A(f(s)))$, it follows that $v \in A(f(s)) \cup C(f(s))$. But $v \in \beta_{\mathcal{S}}$, so $v \notin A(f(s))$ by the definition of $\beta_{\mathcal{S}}$, and thus $v \in C(f(s))$. But v is not adjacent to s, a contradiction. This proves that $A(f(s)) \cap N(v)=\emptyset$. Now, let $D^{\prime \prime} \neq D^{\prime}$ be a component of $G \backslash N[v]$, and suppose that $D^{\prime \prime} \cap A(f(s)) \neq \emptyset$. Then, since $N(s) \cap D^{\prime \prime}=\emptyset$, it follows that $D^{\prime \prime} \subseteq A(f(s))$ and $N\left(D^{\prime \prime}\right) \subseteq N(v) \cap C(f(s))$. Since G has no clique cutset, it follows that there exist $x, y \in$ $N(v) \cap C(f(s))$ with x and y non-adjacent. But now $\{s, v, x, y\}$ is a C_{4}, a contradiction. This proves that $D^{\prime \prime} \subseteq B(f(s))$.

Let D be a component of $\beta_{\mathcal{S}} \backslash N[v]$ and let D^{\prime} be the component of $G \backslash N[v]$ containing D. Now, for every $s \in v(\mathcal{S}) \cap D$, it holds that $A(f(s)) \subseteq D^{\prime}$. It follows that $w_{\mathcal{S}}(D) \leqslant$ $w\left(D^{\prime}\right)$. Since v is balanced in G, it holds that $w\left(D^{\prime}\right) \leqslant \frac{1}{2}$, and thus (3) follows.

By Lemma 18, let $N_{\beta_{\mathcal{S}}}(v) \backslash \operatorname{Hub}\left(\beta_{\mathcal{S}}\right)=K_{1} \cup \cdots \cup K_{t}$, where K_{i} is a clique for $1 \leqslant i \leqslant t$ and K_{1}, \ldots, K_{t} are disjoint and pairwise anticomplete to each other. Let H be a graph with vertex set $\left\{k_{1}, \ldots, k_{t}, d_{1}, \ldots, d_{m}\right\}$, where H contains an edge between k_{i} and d_{j} if and only if K_{i} has a neighbor in D_{j}.
(4) H is (theta, wheel)-free and bipartite.

By definition of $H,\left(\left\{k_{1}, \ldots, k_{t}\right\},\left\{d_{1}, \ldots, d_{m}\right\}\right)$ is a bipartition of H, so H is bipartite. By Lemma $19, \operatorname{deg}\left(d_{i}\right) \leqslant 2$ for $1 \leqslant i \leqslant m$, so H is wheel-free. Suppose that H contains a theta between x and y (with $x, y \in V(H)$). Since x and y have degree at least three, it follows that $x, y \in\left\{k_{1}, \ldots, k_{t}\right\}$. Let P_{1}, P_{2}, P_{3} be the three paths of a theta between x and y in H. Let Q_{1}, Q_{2}, Q_{3} be paths in $\beta_{\mathcal{S}}$, where Q_{i} has ends x_{i} and y_{i} and is formed from P_{i} by replacing every path $k_{i}-d_{j}-k_{\ell} \subseteq P_{i}$ with a path from K_{i} to K_{ℓ} through D_{j} in $\beta_{\mathcal{S}}$. Note that since $x, y \in\left\{k_{1}, \ldots, k_{t}\right\}$, it follows that $\left\{x_{1}, x_{2}, x_{3}\right\} \subseteq K_{i}$ and $\left\{y_{1}, y_{2}, y_{3}\right\} \subseteq K_{j}$ for some $1 \leqslant i, j \leqslant t$.

Let x_{i}^{\prime} be the neighbor of x_{i} in Q_{i} for $i=1,2,3$. Let H_{1} be an inclusion-wise minimal connected subset of K_{i} such that H_{1} contains neighbors of $x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$. We apply Lemma 16 to $x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$ and H_{1}. (Note that while x_{1}, x_{2}, x_{3} are not necessarily distinct, $x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$ are distinct). Similarly, let y_{i}^{\prime} be the neighbor of y_{i} in Q_{i} for $i=1,2,3$. Let H_{2} be an inclusion-wise minimal connected subset of K_{j} such that H_{2} contains neighbors of $y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}$. We apply Lemma 16 to $y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}$, and H_{2}. Note that $\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right\} \subseteq \bigcup_{1 \leqslant i \leqslant m} D_{i}$ and that $x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$ are each in distinct components D_{i}. Similarly, $\left\{y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\} \subseteq \bigcup_{1 \leqslant i \leqslant m} D_{i}$ and $y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}$ are each in distinct components D_{i}. Therefore, $\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right\}$ are pairwise non-adjacent and $\left\{y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\}$ are pairwise non-adjacent.

Suppose that $\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right\} \cup H_{1}$ satisfies condition (i) of Lemma 16. If $\left\{y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\} \cup H_{2}$ satisfies condition (i), then $H_{1} \cup H_{2} \cup\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\}$ is a prism or a line wheel, a contradiction. If $\left\{y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\} \cup H_{2}$ satisfies condition (ii), then $H_{1} \cup H_{2} \cup\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\}$ is a pyramid, a contradiction. If $\left\{y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\} \cup H_{2}$ satisfies condition (iii), then $H_{1} \cup$ $H_{2} \cup\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\}$ is a prism or a line wheel, a contradiction. Therefore, up to symmetry, neither $\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right\} \cup H_{1}$ nor $\left\{y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\} \cup H_{2}$ satisfy condition (i).

Suppose that $\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right\} \cup H_{1}$ satisfies condition (ii) of Lemma 16. If $\left\{y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\} \cup H_{2}$ satisfies condition (ii), then $H_{1} \cup H_{2} \cup\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\}$ is a theta in $\beta_{\mathcal{S}}$, a contradiction. If $\left\{y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\} \cup H_{2}$ satisfies condition (iii), then $H_{1} \cup H_{2} \cup\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\}$ is a pyramid, a contradiction. Therefore, up to symmetry, neither $\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right\} \cup H_{1}$ nor $\left\{y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\} \cup H_{2}$ satisfy condition (ii).

It follows that $\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right\} \cup H_{1}$ and $\left\{y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\} \cup H_{2}$ satisfy condition (iii). But now $H_{1} \cup H_{2} \cup\left\{x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}, y_{1}^{\prime}, y_{2}^{\prime}, y_{3}^{\prime}\right\}$ is a prism or a line wheel, a contradiction. This proves (4).

Let $w_{H}: V(H) \rightarrow[0,1]$ be a weight function on H defined as follows: $w_{H}\left(k_{i}\right)=w_{\mathcal{S}}\left(K_{i}\right)$ for $1 \leqslant i \leqslant t$, and $w_{H}\left(d_{i}\right)=w_{\mathcal{S}}\left(D_{i}\right)$ for $1 \leqslant i \leqslant m$. Let $\overline{w_{H}}$ be a weight function on H such that $\overline{w_{H}}(u)=\frac{w_{H}(u)}{w_{H}(H)}$ for every $u \in H$. Note that $w_{H}(H) \leqslant 1$, so for all $X \subseteq V(H)$, it holds that $\overline{w_{H}}(X) \geqslant w_{H}(X)$. Note also that $\overline{w_{H}}(H)=1$.
(5) $\beta_{\mathcal{S}}$ has a $\left(w_{\mathcal{S}}, c\right)$-balanced separator of size at most $6 \omega\left(\beta_{\mathcal{S}}\right)+C$.

Since H is (theta, triangle, wheel)-free, it follows from Theorem 17 and Lemma 8 that H has a $\left(\overline{w_{H}}, \frac{1}{2}\right)$-balanced separator X of size at most 3. Let $Y=\{v\} \cup\left(N(v) \cap \operatorname{Hub}\left(\beta_{\mathcal{S}}\right)\right) \cup$ $\left\{K_{i}\right.$ s.t. $\left.X \cap N_{H}\left[k_{i}\right] \neq \emptyset\right\}$. By assumption of the lemma, $N(v) \cap \operatorname{Hub}\left(\beta_{\mathcal{S}}\right)<C$, and by Lemma 19, it holds that $\mid\left\{K_{i}\right.$ s.t. $\left.X \cap N_{H}\left[k_{i}\right] \neq \emptyset\right\}\left|\leqslant 2 \omega\left(\beta_{S}\right)\right| X \mid \leqslant 6 \omega\left(\beta_{\mathcal{S}}\right)$. Therefore, $|Y| \leqslant 6 \omega\left(\beta_{\mathcal{S}}\right)+C$.

We claim that Y is a $\left(w_{\mathcal{S}}, c\right)$-balanced separator of $\beta_{\mathcal{S}}$. Let F be a component of $\beta_{\mathcal{S}} \backslash Y$. Note that by construction of Y, it holds that $F \subseteq \bigcup_{1 \leqslant i \leqslant t} K_{t} \cup \bigcup_{1 \leqslant i \leqslant m} D_{i}$, that if $K_{i} \cap F \neq \emptyset$, then $K_{i} \subseteq F$, and if $D_{i} \cap F \neq \emptyset$, then $D_{i} \subseteq F$. Let $K_{F}=\left\{i\right.$ s.t. $\left.K_{i} \subseteq F\right\}$ and $D_{F}=\left\{i\right.$ s.t. $\left.D_{i} \subseteq F\right\}$. If $F=D_{i}$ for some $1 \leqslant i \leqslant m$, then it follows from (3) that $w_{\mathcal{S}}(F) \leqslant \frac{1}{2}$, so we may assume that $K_{F} \neq \emptyset$. Let $i \in D_{F}$ and suppose that $d_{i} \in X$. Then, $N\left(D_{i}\right) \subseteq Y$, so $K_{F}=\emptyset$, a contradiction. Therefore, $d_{i} \notin X$. Similarly, for $i \in K_{F}$, it holds that $k_{i} \notin X$, since $K_{i} \nsubseteq Y$. Let $Q=\left\{k_{i}\right.$ s.t. $\left.i \in K_{F}\right\} \cup\left\{d_{i}\right.$ s.t. $\left.i \in D_{F}\right\}$. Then, Q is contained in a connected component of $H \backslash X$, so $\overline{w_{H}}(Q) \leqslant \frac{1}{2}$. Finally,

$$
w_{\mathcal{S}}(F)=\sum_{i \in K_{F}} w_{\mathcal{S}}\left(K_{i}\right)+\sum_{i \in D_{F}} w_{\mathcal{S}}\left(D_{i}\right)=w_{H}(Q) \leqslant \overline{w_{H}}(Q) \leqslant \frac{1}{2} .
$$

This proves (5).
Now, Lemma 20 follows from (5).
Recall that \mathcal{C}_{t}^{*} is the class of $\left(C_{4}\right.$, diamond, theta, prism, even wheel, $\left.K_{t}\right)$-free graphs with no clique cutset. Let $G \in \mathcal{C}_{t}^{*}$, let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$, and let U be the set of unbalanced vertices of G. Let $X \subseteq U$. The
X-revised collection of separations, denoted $\tilde{\mathcal{S}}_{X}$, is defined as follows. Let $u \in X$, and let $\tilde{S}_{u}=\left(\tilde{A}_{u}, \tilde{C}_{u}, \tilde{B}_{u}\right)$ be such that \tilde{B}_{u} is the largest weight connected component of $G \backslash N[u], \tilde{C}_{u}=C_{u} \cup \cup_{v \in\left(C_{u} \backslash\{u\}\right) \cap X}(N(u) \cap N(v))$, and $\tilde{A}_{u}=V(G) \backslash\left(\tilde{C}_{u} \cup \tilde{B}_{u}\right)$. Then, $\tilde{\mathcal{S}}_{X}=\left\{\tilde{S}_{u}: u \in X\right\}$. Note that the separations in $\tilde{\mathcal{S}}_{X}$ are closely related to canonical star separations. Specifically, for all $u \in X$, the following hold:
(i) $\tilde{B}_{u}=B_{u}$,
(ii) $C_{u} \subseteq \tilde{C}_{u} \subseteq N[u]$,
(iii) $\tilde{A}_{u} \subseteq A_{u}$,
(iv) $A_{u} \backslash N(u) \subseteq \tilde{A}_{u}$.

Lemma 21. Let $G \in \mathcal{C}_{t}^{*}$, let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$, let U be the set of unbalanced vertices of G, and let $X \subseteq U$ be the set of unbalanced vertices that are minimal under the relation \leqslant_{A}. Let $\tilde{\mathcal{S}}=\overline{\mathcal{S}}_{X}$ be the X-revised collection of separations. Then, \tilde{S}_{u} and \tilde{S}_{v} are nearly non-crossing for all $\tilde{S}_{u}, \tilde{S}_{v} \in \tilde{\mathcal{S}}$.
Proof. Since $\tilde{A}_{x} \subseteq A_{x}$ for all $x \in U$, it follows that either u and v are adjacent, $u \in \tilde{C}_{v}$, and $v \in \tilde{C}_{u}$, or u and v are non-adjacent, $u \in \tilde{B}_{v}$, and $v \in \tilde{B}_{u}$. Suppose first that u and v are non-adjacent. Then, $u \in \tilde{B}_{v}$, and $v \in \tilde{B}_{u}$. Since u is complete to $\tilde{C}_{u} \backslash\{u\}$, it follows that $\tilde{C}_{u} \subseteq \tilde{B}_{v} \cup \tilde{C}_{v}$, so $\tilde{A}_{v} \cap \tilde{C}_{u}=\emptyset$. By symmetry, $\tilde{A}_{u} \cap \tilde{C}_{v}=\emptyset$. It follows that every component of $\tilde{A}_{u} \cup \tilde{A}_{v}$ is a component of \tilde{A}_{u} or a component of \tilde{A}_{v}, so \tilde{S}_{u} and \tilde{S}_{v} are nearly non-crossing.

Now suppose that u and v are adjacent. Then, $u \in \tilde{C}_{v}$, and $v \in \tilde{C}_{u}$. We may assume that there is a component of $\tilde{A}_{u} \cup \tilde{A}_{v}$ that is not a component of \tilde{A}_{u} or a component of \tilde{A}_{v}. Therefore, there exists $u^{\prime} \in \tilde{C}_{u} \cap \tilde{A}_{v}, v^{\prime} \in \tilde{C}_{v} \cap \tilde{A}_{u}$, and a path P from u^{\prime} to v^{\prime} with $P^{*} \subseteq \tilde{A}_{u} \cap \tilde{A}_{v}$. We claim that $u^{\prime} \in C_{u}$ and $v^{\prime} \in C_{v}$. Suppose that $u^{\prime} \in \tilde{C}_{u} \backslash C_{u}$. Then, there exists $x \in X \cap C_{u}$ such that u^{\prime} is complete to $\{u, x\}$. If v is adjacent to u^{\prime}, then $u^{\prime} \in \tilde{C}_{v}$ (since u^{\prime} is a common neighbor of u and v), a contradiction, so v is not adjacent to u^{\prime} and consequently $v \neq x$. Then, since $x \in X$ and x has a neighbor in $\tilde{A}_{v} \subseteq A_{v}$, it follows that $x \in C_{v}$, so x is adjacent to v. But now $u u^{\prime} x v$ is a diamond, a contradiction. This proves that $u^{\prime} \in C_{u}$ and similarly $v^{\prime} \in C_{v}$.

Since $u, v \in U$ and $\tilde{B}_{u}=B_{u}$ and $\tilde{B}_{v}=B_{v}$, it follows that $w\left(\tilde{B}_{u}\right) \geqslant \frac{1}{2}$ and $w\left(\tilde{B}_{v}\right) \geqslant \frac{1}{2}$, and so $\tilde{B}_{u} \cap \tilde{B}_{v} \neq \emptyset$. Let $b \in \tilde{B}_{u} \cap \tilde{B}_{v}$. Since $u^{\prime} \in C_{u}$, there exists a path Q_{1} from u^{\prime} to b with $Q_{1} \backslash\left\{u^{\prime}\right\} \subseteq \tilde{B}_{u}$. Similarly, there exists a path Q_{2} from v^{\prime} to b with $Q_{2} \backslash\left\{v^{\prime}\right\} \subseteq \tilde{B}_{v}$. Now, there exists a path Q from u^{\prime} to v^{\prime} with $Q \subseteq Q_{1} \cup Q_{2}$, so in particular, $Q^{*} \subseteq \tilde{B}_{u} \cup \tilde{B}_{v}$. Note that $Q^{*} \cap\left(C_{v} \cap B_{u}\right) \neq \emptyset$ and $Q^{*} \cap\left(C_{u} \cap B_{v}\right) \neq \emptyset$, so in particular, Q^{*} contains a neighbor of u and a neighbor of v.

Let H be the hole given by $P \cup Q$. Since u is adjacent to u^{\prime} and has a neighbor in Q^{*}, it follows that u has two non-adjacent neighbors in H. Similarly, v has two non-adjacent neighbors in H. Now, u and v are adjacent and each have two non-adjacent neighbors in H, so by Lemma 12, u and v have a common neighbor in H. However, since $u \in \tilde{C}_{v}$ and $v \in \tilde{C}_{u}$, it follows that $N(u) \cap N(v) \subseteq \tilde{C}_{u} \cap \tilde{C}_{v}$. Since $H \cap\left(\tilde{C}_{u} \cap \tilde{C}_{v}\right)=\emptyset$, we get a contradiction.

Next, we show how to construct a useful collection of separations of G. We need a lemma which relies on the following result from [12].

Theorem 22 ([12]). For every graph H and integer s there exists $d=d(H, s)$ such that every graph G of average degree at least d contains either a $K_{s, s}$ as a subgraph or an induced subdivision of H.

Theorem 22 has the following corollary.
Lemma 23. Let G be (theta, K_{t})-free. Then, there is $\delta_{t}>0$ such that G has degeneracy δ_{t}. In particular, there is an ordering $\left(v_{1}, \ldots, v_{n}\right)$ of $V(G)$ such that $\mid N\left(v_{i}\right) \cap$ $\left\{v_{i+1}, \ldots, v_{n}\right\} \mid \leqslant \delta_{t}$ for all $1 \leqslant i \leqslant n-1$.

We call δ_{t} the hub constant for t. Let $G \in \mathcal{C}_{t}$. We apply Lemma 23 to $\operatorname{Hub}(G)$. Let v_{1}, \ldots, v_{k} be an ordering of $\operatorname{Hub}(G)$ such that for all $1 \leqslant i<j \leqslant k$, it holds that $\left|N\left(v_{i}\right) \cap\left\{v_{i+1}, \ldots, v_{k}\right\}\right| \leqslant \delta_{t}$ for all $1 \leqslant i \leqslant k-1$. Let U be the set of unbalanced vertices of G. Let m be defined as follows. If $\operatorname{Hub}(G) \subseteq U$, then $m=k+1$. Otherwise, let m be such that v_{m} is the minimum element of $\operatorname{Hub}(G) \backslash U$. Now, $\left\{v_{1}, \ldots, v_{m-1}\right\} \subseteq U$. Let M be the set of minimal vertices of $\left\{v_{1}, \ldots, v_{m-1}\right\}$ under the relation \leqslant_{A}, and let \tilde{S}_{M} be the M-revised collection of separations. We call $\left(\left\{v_{1}, \ldots, v_{k}\right\}, m, M, \tilde{S}_{M}\right)$ the hub division of G. The next two lemmas describe properties of the hub division.

Lemma 24. Let $G \in \mathcal{C}_{t}^{*}$, let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$, and let $\left(\left\{v_{1}, \ldots, v_{k}\right\}, m, M, \tilde{S}_{M}\right)$ be the hub division of G. Then, \tilde{S}_{M} is a smooth collection of separations of G.

Proof. By Lemma 21, it follows that S_{1} and S_{2} are nearly non-crossing for every distinct $S_{1}, S_{2} \in \mathcal{S}_{M}$. By construction of \tilde{S}_{M}, there exists a set of vertices $v\left(\tilde{S}_{M}\right)=M$ such that there is a bijection f from $v\left(\tilde{S}_{M}\right)$ to \tilde{S}_{M} with $v \in C(f(v)) \subseteq N[v]$, given by $f(x)=\tilde{S}_{x}$ for every $x \in M$. Finally, since M is minimal under the relation \leqslant_{A} and $\tilde{A}_{x} \subseteq A_{x}$ for every $x \in M$, it holds that $M \cap A\left(\tilde{S}_{x}\right)=\emptyset$ for all $x \in M$. Therefore, \tilde{S}_{M} is a smooth collection of separations of G.

By Lemma 24, there is a central bag β_{M} for \tilde{S}_{M} and an inherited weight function w_{M} on β_{M}.

Lemma 25. Let $G \in \mathcal{C}_{t}^{*}$, let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$, and let $\left(\left\{v_{1}, \ldots, v_{k}\right\}, m, M, \tilde{S}_{M}\right)$ be the hub division of G. Let β_{M} be the central bag for \tilde{S}_{M} and let w_{M} be the inherited weight function on β_{M}. Then, for all $1 \leqslant i \leqslant m-1$, v_{i} is not a proper wheel center of β_{M}.

Proof. Let $1 \leqslant i \leqslant m-1$ and suppose that $\left(H, v_{i}\right)$ is a wheel of β_{M}.
(6) $H \cap A_{v_{j}} \neq \emptyset$ for some $v_{j} \in M$.

By Lemma $14, H \nsubseteq B_{v_{i}} \cup C_{v_{i}}$, so $H \cap A_{v_{i}} \neq \emptyset$. If $v_{i} \in M$, then $j=i$ satisfies the statement, so we may assume $v_{i} \notin M$. Then, there exists $v_{j} \in M$ such that $v_{j} \leqslant A v_{i}$, so $v_{i} \in A_{v_{j}}$. Now, by Lemma $9, A_{v_{i}} \subseteq A_{v_{j}}$, and so $H \cap A_{v_{j}} \neq \emptyset$. This proves (6).

By (6), there exists $v_{j} \in M$ such that $A_{v_{j}} \cap H \neq \emptyset$. Let $x \in A_{v_{j}} \cap H$. Since $v_{j} \in M$, it follows that $\beta_{M} \subseteq \tilde{B}_{v_{j}} \cup \tilde{C}_{v_{j}}$, and so $x \in \tilde{C}_{v_{j}}$. Let x^{\prime} and $x^{\prime \prime}$ be the neighbors of x in H. Since $A_{v_{j}}$ is anticomplete to $B_{v_{j}}$ and thus $\tilde{B}_{v_{j}}$, it holds that $x^{\prime}, x^{\prime \prime} \in \tilde{C}_{v_{j}}$. But v_{j} is complete to $\tilde{C}_{v_{j}}$, and so $\left\{v_{j}, x, x^{\prime}, x^{\prime \prime}\right\}$ is a diamond, a contradiction.

Let $R(t, s)$ denote the minimum integer such that every graph on at least $R(t, s)$ vertices contains either a clique of size t or an independent set of size s.

Theorem 26. Let G be a (theta, pyramid, prism, wheel, K_{t})-free graph and let w : $V(G) \rightarrow[0,1]$ be a weight function on G. Then, G has a $\left(w, \frac{1}{2}\right)$-balanced separator of size at most $R(t, 4)$.

Proof. By Theorems 4.4 and 2.3 of [3], it follows that $\operatorname{tw}(G) \leqslant R(t, 4)+|\operatorname{Hub}(G)|-1$. Since G is wheel-free, it follows that $|\operatorname{Hub}(G)|=0$. Therefore, $\operatorname{tw}(G) \leqslant R(t, 4)-1$. By Lemma $8, G$ has a ($w, \frac{1}{2}$)-balanced separator of size at most $R(t, 4)$.

Finally, we prove the main result of this section: that if β_{M} is pyramid-free, then β_{M} has a balanced separator of bounded size.

Theorem 27. Let $G \in \mathcal{C}_{t}^{*}$, let $w: V(G) \rightarrow[0,1]$ be a weight function on G, and let $\left(\left\{v_{1}, \ldots, v_{k}\right\}, m, M, \tilde{S}_{M}\right)$ be the hub division of G. Let β_{M} be the central bag for \tilde{S}_{M} and let w_{M} be the inherited weight function on β_{M}. Assume that β_{M} is pyramid-free. Then, β_{M} has a $\left(w_{M}, \frac{1}{2}\right)$-balanced separator of size at most $\max \left(R(t, 4)+1,6 t+\delta_{t}\right)$.
Proof. First, suppose that $m=k+1$. Then, by Lemma $25, v$ is not a proper wheel center of β_{M} for all $v \in \operatorname{Hub}(G)$. Since $\operatorname{Hub}\left(\beta_{M}\right) \subseteq \operatorname{Hub}(G)$, it follows that β_{M} is wheel-free. By Theorem 26, β_{M} has a ($w_{M}, \frac{1}{2}$)-balanced separator of size at most $R(t, 4)+1$.

Now, assume $m<k+1$. We claim that $v_{m} \in \beta_{M}$. Suppose that $v_{m} \in A_{v_{i}}$ for some $v_{i} \in M$. Then, $N\left[v_{m}\right] \subseteq A_{v_{i}} \cup C_{v_{i}}$, so $B_{v_{i}}$ is contained in a connected component D of $G \backslash N\left[v_{m}\right]$. Since $v_{i} \in M$, it follows that v_{i} is unbalanced, so $w\left(B_{v_{i}}\right) \geqslant \frac{1}{2}$. But now $w(D) \geqslant \frac{1}{2}$, so v_{m} is unbalanced, a contradiction. Therefore, $v_{m} \notin A_{v_{i}}$ for all $v_{i} \in M$. Since for all $v_{i} \in M$ it holds that $\tilde{A}_{v_{i}} \subseteq A_{v_{i}}$, it follows that $v_{m} \in \tilde{B}_{v_{i}} \cup \tilde{C}_{v_{i}}$, and so $v_{m} \in \beta_{M}$.

Next, consider $N\left(v_{m}\right) \cap \operatorname{Hub}\left(\beta_{M}\right)$. By Lemma $25, \operatorname{Hub}\left(\beta_{M}\right) \subseteq\left\{v_{m}, v_{m+1}, \ldots, v_{k}\right\}$. Therefore, $\left|N\left(v_{m}\right) \cap \operatorname{Hub}\left(\beta_{M}\right)\right| \leqslant \delta_{t}$. Finally, by Lemma $24, \tilde{S}_{M}$ is a smooth collection of separations of G. Now, by Lemma 20, β_{M} has a ($w_{M}, \frac{1}{2}$)-balanced separator of size $6 \omega\left(\beta_{M}\right)+\delta_{t}$.

4 Extending balanced separators

In this section, we prove that we can construct a bounded balanced separator of G given a bounded balanced separator of β_{M}. Together with the main result of the previous section, this is sufficient to prove Theorem 3. First, we need the following lemma.

Lemma 28. Let $G \in \mathcal{C}_{t}^{*}$, let $w: V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$, and let $\left(\left\{v_{1}, \ldots, v_{k}\right\}, m, M, \tilde{S}_{M}\right)$ be the hub division of G. Let β_{M} be the central bag for \tilde{S}_{M}. Let $v \in M$ be such that v is not a pyramid apex in β. Then, $\left|N_{\beta_{M}}(v) \backslash \operatorname{Hub}\left(\beta_{M}\right)\right| \leqslant 2 t$.

Proof. By Lemma 18, let $N_{\beta_{M}}(v) \backslash \operatorname{Hub}\left(\beta_{M}\right)=K_{1} \cup \cdots \cup K_{\ell}$, where K_{1}, \ldots, K_{ℓ} are cliques and K_{i} and K_{j} are anticomplete to each other for $1 \leqslant i<j \leqslant \ell$. Recall that B_{v} is connected and $C_{v} \backslash\{v\}=N\left(B_{v}\right)$.
(7) Let $k_{1} \in K_{1} \cap C_{v}$ and $k_{2} \in K_{2} \cap C_{v}$ be chosen such that the path P from k_{1} to k_{2} with interior in B_{v} is as short as possible among choices of $k_{1} \in K_{1}, k_{2} \in K_{2}$. Then, $P^{*} \subseteq \beta_{M} \backslash N[v]$.

Suppose for a contradiction that $P^{*} \nsubseteq \beta_{M}$. Assume that P is chosen such that $P^{*} \backslash \beta_{M}$ is minimal. Then, there exists $v_{i} \in M$ such that $P^{*} \cap \tilde{A}_{v_{i}} \neq \emptyset$. Let a, b be the vertices of $\tilde{C}_{v_{i}} \cap P^{*}$ closest to k_{1}, k_{2}, respectively. Since there is a vertex of $\tilde{A}_{v_{i}}$ on the path from a to b through P^{*}, it follows that a is not adjacent to b. If v_{i} is not adjacent to v, then $P^{\prime}=k_{1}-P-a-v_{i}-b-P-k_{2}$ is a path from k_{1} to k_{2} with $P^{\prime *} \subseteq B_{v}$. Since P is the shortest such path, it follows that the subpath from a to b in P is of length two. Let this subpath be $a-u-b$. But now $\left\{u, v_{i}, a, b\right\}$ is a C_{4} or a diamond, a contradiction. Therefore, v_{i} is adjacent to v. Let H be the hole given by $\{v\} \cup P$. Now, v_{i} has at least three neighbors a, b, v in H. Suppose that v_{i} is adjacent to k_{1}. Then, $v_{i} \in K_{1}$, so v_{i} is not adjacent to k_{2}, and $v_{i}-b-P-k_{2}$ is a shorter path from a vertex of K_{1} to a vertex of K_{2}, a contradiction. It follows that v_{i} is anticomplete to $\left\{k_{1}, k_{2}\right\}$. By Lemma $13,\left\{k_{1}, k_{2}\right\} \cap A_{v_{i}} \neq \emptyset$, and since v_{i} is complete to $\tilde{C}_{v_{i}}$ and anticomplete to $\left\{k_{1}, k_{2}\right\}$, it follows that $\left\{k_{1}, k_{2}\right\} \cap \tilde{A}_{v_{i}} \neq \emptyset$. But $\left\{k_{1}, k_{2}\right\} \subseteq \beta_{M}$, a contradiction. This proves (7).
(8) There is a component D of $\beta_{M} \backslash N[v]$ such that for every $i \in\{1, \ldots, \ell\}$, some vertex of $K_{i} \cap C_{v}$ has a neighbor in D.

Let D be a component of $\beta_{M} \backslash N[v]$ with neighbors in as many cliques K_{i} as possible. Let K_{1}, \ldots, K_{j} be the cliques with a neighbor in D. By the definition of \tilde{C}_{v} and since $N_{\beta_{M}}(v) \subseteq \tilde{C}_{v}$, for every clique K_{i}, it holds that $K_{i} \cap C_{v} \neq \emptyset$. Suppose for a contradiction that $j<\ell$. By (7), there is a path Q from K_{1} to K_{j+1} with interior in $\beta_{M} \backslash N[v]$. Let D^{\prime} be the component of $\beta_{M} \backslash N[v]$ containing Q^{*}, so $D \neq D^{\prime}$. By the maximality of D, we may assume D^{\prime} does not have a neighbor in K_{2}. By (7), there is also a path R from K_{j+1} to K_{2} with interior in $\beta_{M} \backslash N[v]$. Let $D^{\prime \prime}$ be the component of $\beta_{M} \backslash N[v]$ with $R^{*} \subseteq D^{\prime \prime}$. Then $D^{\prime \prime} \neq D, D^{\prime}$. Let P be a path from K_{1} to K_{2} with interior in D. Since P, Q, and R are in distinct components of $\beta_{M} \backslash N[v]$, it follows that $P \cup Q \cup R$ is a hole of β_{M}. Now, $(P+Q+R, v)$ is a wheel in β_{M}, contrary to Lemma 25. This proves (8).
(9) $K_{i} \cap C_{v} \neq \emptyset$ if and only if $K_{i} \cap \tilde{C}_{v} \neq \emptyset$.

Since $C_{v} \subseteq \tilde{C}_{v}$, it holds that if $K_{i} \cap C_{v} \neq \emptyset$, then $K_{i} \cap \tilde{C}_{v} \neq \emptyset$. Suppose that $K_{i} \cap\left(\tilde{C}_{v} \backslash C_{v}\right) \neq \emptyset$ and let $x \in K_{i} \cap\left(\tilde{C}_{v} \backslash C_{v}\right)$. By the definition of \tilde{C}_{v}, it follows that there exists $u \in C_{v} \cap M$ such that $x \in N(u) \cap N(v)$. Recall that $N_{\beta_{M}}(v) \backslash \operatorname{Hub}\left(\beta_{M}\right)=$ $K_{1} \cup \ldots \cup K_{\ell}$, where K_{1}, \ldots, K_{ℓ} are cliques and K_{i} and K_{j} are anticomplete to each other for $1 \leqslant i<j \leqslant \ell$. Also, by Lemma $25, M \subseteq \beta_{M} \backslash \operatorname{Hub}\left(\beta_{M}\right)$. Since u and x are adjacent and $\{u, x\} \subseteq N_{\beta_{M}}(v) \backslash \operatorname{Hub}\left(\beta_{M}\right)$, it follows that $u \in K_{i}$. But now $u \in C_{v} \cap K_{i}$, so $K_{i} \cap C_{v} \neq \emptyset$. This proves (9).

Let $I=\left\{1 \leqslant i \leqslant \ell: K_{i} \cap C_{v} \cap \beta_{M} \neq \emptyset\right\}$. By (8), there exists a component D of $\beta_{M} \backslash N[v]$ such that K_{i} has a neighbor in D for every $i \in I$. By Lemma 19, at most two of K_{1}, \ldots, K_{ℓ} have a neighbor in D. Therefore, $|I| \leqslant 2$. Since G is diamond-free and K_{t}-free, since $N(v) \cap \beta_{M} \subseteq \tilde{C}_{v}$, and by (9), it follows that $\left|N_{\beta_{M}}(v) \backslash \operatorname{Hub}\left(\beta_{M}\right)\right| \leqslant 2 t$. This completes the proof.

Now we prove the main result of this section.
Theorem 29. Let $G \in \mathcal{C}_{t}^{*}$, let $w: V(G) \rightarrow[0,1]$ be a weight function on G, and let $\left(\left\{v_{1}, \ldots, v_{k}\right\}, m, M, \tilde{S}_{M}\right)$ be the hub division of G. Let δ_{t} be the hub constant for t. Let β_{M} be the central bag for \tilde{S}_{M} and let w_{M} be the inherited weight function on β_{M}. Assume that β_{M} has a $\left(w_{M}, \frac{1}{2}\right)$-balanced separator of size C and that no vertex of M is a pyramid apex in β_{M}. Then, G has a $\left(w, \frac{1}{2}\right)$-balanced separator of size $\left(2 t+\delta_{t}+1\right) C$.
Proof. Let X be a $\left(w_{M}, \frac{1}{2}\right)$-balanced separator of β_{M} with $|X| \leqslant C$. By Lemma 11, it follows that $X \cup\left(N[X \cap M] \cap \beta_{M}\right)$ is a ($w, \frac{1}{2}$)-balanced separator of G. Let $u \in X \cap M$. By Lemma 28, it follows that $\left|N_{\beta_{M}}(u) \backslash \operatorname{Hub}\left(\beta_{M}\right)\right| \leqslant 2 t$. By Lemma 25 , $\operatorname{Hub}\left(\beta_{M}\right) \subseteq$ $\left\{v_{m}, v_{m+1}, \ldots, v_{k}\right\}$, so it follows that $\left|N_{\beta_{M}}(u) \cap \operatorname{Hub}\left(\beta_{M}\right)\right| \leqslant \delta_{t}$. Therefore, $\mid X \cup(N[X \cap$ $\left.M] \cap \beta_{M}\right)\left|\leqslant\left(2 t+\delta_{t}+1\right)\right| X \mid$.

Finally, we restate and prove Theorem 3.
Theorem 30. Let $G \in \mathcal{C}_{t}$. Then, $\operatorname{tw}(G) \leqslant\left(4 t+2 \delta_{t}+2\right) \cdot \max \left(R(t, 4)+1,6 t+\delta_{t}\right)$.
Proof. By Lemma 15, we may assume that G has no clique cutset, so $G \in \mathcal{C}_{t}^{*}$. Let w : $V(G) \rightarrow[0,1]$ be a weight function on G with $w(G)=1$, and let $\left(\left\{v_{1}, \ldots, v_{k}\right\}, m, M, \tilde{S}_{M}\right)$ be the hub division of G. Let β_{M} be the central bag for \tilde{S}_{M} and let w_{M} be the inherited weight function on β_{M}. By Theorem 27, β_{M} has a ($w_{M}, \frac{1}{2}$)-balanced separator of size at $\operatorname{most} \max \left(R(t, 4)+1,6 t+\delta_{t}\right)$. Now, by Theorem $29, G$ has a ($w, \frac{1}{2}$)-balanced separator of size $\left(2 t+\delta_{t}+1\right) \cdot \max \left(R(t, 4)+1,6 t+\delta_{t}\right)$. Finally, by Lemma $7, \operatorname{tw}(G) \leqslant\left(4 t+2 \delta_{t}+\right.$ $2) \cdot \max \left(R(t, 4)+1,6 t+\delta_{t}\right)$.

Acknowledgements

The authors thank Kristina Vušković and Bogdan Alecu for their comments, which improved this paper. They also thank the anonymous referees for their helpful feedback.

References

[1] P. Aboulker, I. Adler, E. J. Kim, N. L. D. Sintiari, and N. Trotignon. "On the tree-width of even-hole-free graphs." European Journal of Combinatorics, 98 (2021), 103394.
[2] T. Abrishami, M. Chudnovsky, C. Dibek, S. Hajebi, P. Rzążewski, S. Spirkl, and K. Vušković. "Induced subgraphs and tree decompositions II. Toward walls and their line graphs in graphs of bounded degree." arXiv:2108.01162, 2022.
[3] T. Abrishami, M. Chudnovsky, S. Hajebi, and S. Spirkl. "Induced subgraphs and tree decompositions III. Three-path-configurations and logarithmic treewidth." Advances in Combinatorics, 2022:6, 29pp. https://doi.org/10.19086/aic.2022.6
[4] T. Abrishami, M. Chudnovsky, and K. Vušković. "Induced subgraphs and tree decompositions I. Even-hole-free graphs of bounded degree." Journal of Combinatorial Theory, Series B, 157 (2022), 144-175.
[5] H. L. Bodlaender. "Dynamic programming on graphs with bounded treewidth." Springer, Berlin, Heidelberg, (1988), pp. 105-118.
[6] H. Bodlaender and A. Koster. "Safe separators for treewidth." Discrete Mathematics 306, 3 (2006), 337-350.
[7] K. Cameron, M.V. da Silva, S. Huang, and K. Vušković"'Structure and algorithms for (cap, even hole)-free graphs." Discrete Mathematics 341, 2 (2018), 463-473.
[8] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh. Parameterized algorithms. Springer, (2015).
[9] M. V. da Silva and K. Vušković. "Decomposition of even-hole-free graphs with star cutsets and 2-joins." Journal of Combinatorial Theory, Series B 103, 1 (2013), 144183.
[10] D.J. Harvey and D.R. Wood. "Parameters Tied to Treewidth." Journal of Graph Theory 84 (4) (2017), 364-385.
[11] T. Korhonen, "Grid Induced Minor Theorem for Graphs of Small Degree." Journal of Combinatorial Theory, Series B, 160 (2023), 206-214.
[12] D. Kuhn and D. Osthus. "Induced subgraphs in $K_{s, s}$-free graphs of large average degree." Combinatorica 24 (2004), 287-304
[13] B. Lévéque, F. Maffray and N. Trotignon. "On graphs with no induced subdivision of K_{4}." Journal of Combinatorial Theory, Series B, 102 (4) (2012), 924-947.
[14] N. Robertson and P.D. Seymour. "Graph minors. V. Excluding a planar graph." Journal of Combinatorial Theory, Series B, 41 (1) (1996), 92-114.
[15] N.L.D. Sintiari and N. Trotignon. "(Theta, triangle)-free and (even-hole, K_{4})-free graphs. Part 1: Layered wheels." Journal of Graph Theory 97 (4) (2021), 475-509.

[^0]: *Supported by NSF Grant DMS-1763817 and NSF-EPSRC Grant DMS-2120644.
 ${ }^{\dagger}$ We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), [funding reference number RGPIN-2020-03912]. Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en qénie du Canada (CRSNG), [numéro de référence RGPIN-202003912].

