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Abstract

Quantum Key Distribution (QKD) is a method for producing secure keys between two
parties whose security does not rely on computational assumptions potentially breakable
by quantum computers. However, physical constraints, such as noise, imperfect devices,
and the necessity of finite resources, limit the rate at which experimental implementations
of QKD can produce key, and in some cases prevent the generation of secure key altogether.
Determination of key generation rate is facilitated by a numerical framework for general
QKD protocols [1], upon which we propose improvements. With protocols used in actual
QKD experiments as examples, we present and demonstrate various methods for improv-
ing key rate calculations in the regime of a finite number of signals sent. Our methods
include a block diagonal optimization for the state shared by the two parties, modifying
constraints on acceptance of candidate states, optimizing security parameter distribution,
and optimizing the grouping of data into blocks for time-binned data. Through these im-
provements, we are able to both reduce the computational cost of key rate calculations
in our numerical framework and improve key rates in the case of a finite number of sent
signals.
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Chapter 1

Introduction

Modern computer security is a topic of ever-increasing importance in the information age.
The field of cryptography focuses on techniques for encrypting and decrypting information
such that two parties can communicate in secret. Cryptographic algorithms currently in
use rely on computational security, which assumes that certain problems are inherently
sufficiently difficult to solve that an attacker performing an optimal attack would require
an infeasible amount of time to break the encryption. However, in 1994, it was shown that
this assumption may not be true—at least for certain computationally difficult problems—
when a quantum algorithm for solving the problems of discrete logarithms and integer
factoring was discovered [2]. Although modern quantum computers have too few qubits
and experience too much noise to run this algorithm and break cryptosystems of the
size used in secure digital communication, a complete breach of RSA-2048, a standard
cryptographic algorithm, within 10 years is likely [3].

Quantum key distribution (QKD) is the field of research dedicated to establishing
secret communication between two parties through the use of quantum systems. QKD
offers provable security that is not reliant on obfuscation or computational complexity, as
it exploits properties of quantum mechanics that allow for the detection of an eavesdropper.
It also only relies on the assumption that the eavesdropper must obey the laws of physics,
which is an improvement over computational security as it allows for security even in the
presence of an eavesdropper with arbitrary computational power. It requires the use of a
quantum channel, over which quantum state are exchanged, and a classical channel that is
authenticated, meaning the identity of the sender and their message may not be altered.
Another advantage of QKD is that the keys generated enjoy time-independent security.
Secure communications protected by a classical cryptosystem today can be stored by an
adversary for years, during which the adversary can attempt various attacks. Given enough
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time, the constantly increasing availability of computational power, algorithm development,
and perhaps some luck, the adversary can break the encryption and decrypt the stored
communication. On the other hand, once a key has been generated through a QKD
protocol, no attack can be made on the key can be attempted—until it’s used, the security
of a key does not change.

QKD has been realized experimentally using a variety of protocols, at large distances,
and in the presence of various imperfections and noise sources. Examples include free-space
communication using the Ekert protocol over 144km between two islands [4]; communi-
cation over 148km of optical fiber with the BB84 protocol [5]; communication between a
ground station and an aircraft using a six-four protocol [6]; and intercontinental communi-
cation facilitated by a satellite in orbit using a decoy-state BB84 protocol [7]. However, in
these experiments, rates of bit transfer are low, and, for example, in [4], a provably secure
framework for QKD was not used, so the generated key may be insecure.

It is generally true that as we increase the requirements on the security of the key (i.e.,
reduce the probability of the protocol being executed despite the key being insecure), imper-
fections from experimental challenges, such as imperfect devices, noisy quantum channels,
and statistical fluctuations have the effect of reducing key rate, sometimes eliminating the
possibility of any key generation at all. QKD theory, which develops protocol security, is
simplest in the case of ideal devices, so extension to imperfect devices necessarily introduces
complications. With imperfect devices, we face the problem of implementation security,
where improperly characterized devices can spoil the security of a valid QKD protocol.
Decoy state analysis [8, 9, 10] is one extension to QKD theory that has eliminated a need
for single photon sources, as it makes secure communication in QKD using simple laser
sources very viable, offering better loss scaling than a simple weak coherent pulse protocol.
However, there are still strict requirements on devices used for QKD; in particular, we
need reliable and fast single-photon detectors, which is an area of continuing research and
development that needs more work before reliable quantum networks can become a reality
[11].

In this work, we intend to describe challenges that arise in the interface between exper-
imental results and computing key rates under the proper framework of a security proof.
This is an important topic because loss and error rate allowances can vary greatly between
QKD protocols. We will provide several methods of increasing key rates in the finite-size
regime, which is the relevant regime in experimental QKD. We focus on two particular
protocols, the four-six protocol and the three-state protocol, that have been used in QKD
experiments and show how our improvements apply to key rate calculations for those pro-
tocols. In doing so, we hope to provide a general pathway for the key rate calculator to
maximize the key rate obtained from the results of QKD experiment while staying within
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a proper security framework.

In Chapter 2, we provide the theoretical background to build up quantum key dis-
tribution. Namely, we first build up from the foundation of linear algebra and use it as
the backbone for the mathematics of quantum information. We then describe quantum
key distribution, explaining the security proof and applying it to a simple BB84 protocol.
Finally, we give a brief introduction to quantum optics and describe important states and
devices for use in QKD.

Chapter 3 moves from generality to specificity, introducing decoy state analysis, a tech-
nique we rely on heavily in the protocols we study. We then give mathematical descriptions
of the four-six and three-state protocols as well as possible experimental setups. We close
the chapter by describing the numerical framework we use for key rate calculations in
QKD, which forms the base for where our optimizations will come into play.

In Chapter 4, we delve into our techniques for improving key rate calculations. We
first introduce the block diagonal solver and explain how it can reduce space and time
complexity of the semidefinite program that facilitates key rate calculation. We then show
how choosing entrywise constraints can improve key rate over 1-norm constraints that
have been used in previous works, including examples demonstrating the improvement.
Following that, we then present results relating to intelligently distributing sub-security
parameters for the key rate calculation. We show that introducing a bias in the distribution
can improve key rate and calculate an optimal distribution. Finally, we consider the case of
time-binned data from simulated satellite data. We describe the tradeoff between time bin
block length and channel similarity, then we present several different options for maximizing
the total amount of key bit throughput given an example quantum channel that varies over
time.

Finally, in Chapter 5, we give summarize the work, give concluding remarks, and suggest
ideas for future research.
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Chapter 2

Background

In this chapter, we introduce the concepts that are important for understanding quantum
information. We build up quantum key distribution and the security framework behind it.
Finally, we provide an introduction to the field of quantum optics and describe important
states and devices that are used in optical quantum key distribution.

2.1 Quantum Information Theory

To begin, we will discuss the mathematics that build up to quantum mechanics, focusing on
those topics most relevant to QKD. Much of this discussion follows definitions in common
textbooks on quantum information [12, 13] and mathematical physics [14].

2.1.1 Complex Euclidean Spaces

The language of quantum information theory is linear algebra, so we first establish neces-
sary definitions. A vector is a collection of complex numbers indexed by an alphabet Σ,
which is a finite, nonempty set. For a member j ∈ Σ, we can denote the complex number
at index j in the vector v by vj.

Definition 2.1.1 (Vector Space). A vector space V is a set of vectors with the following
properties:

1. For any vectors u, v ∈ V , the vector u+v, defined by (u+v)j = uj+vj, is an element
of V .

4



2. For any scalar α ∈ C and vector u ∈ V , the vector αu defined by (αu)j = αuj, is an
element of V

We can denote the vector space of all vectors indexed by Σ with CΣ. This kind of
vector space is known as a complex Euclidean space.

If a vector u ∈ RΣ has entries that satisfy 0 ≤ ui ≤ 1 for all i ∈ Σ and
∑

i ui = 1,
we call u a probability distribution. The set of probability distributions on Σ is denoted
P(Σ).

We can augment this space with an inner product, which provides a measure of simi-
larity between vectors in the space.

Definition 2.1.2 (Inner Product). Let CΣ be a complex Euclidean space. The inner
product ⟨u, v⟩ of two vectors u, v ∈ CΣ is defined as

⟨u, v⟩ =
∑

j∈Σ

u∗jvj

An inner product satisfies the following properties:

1. Linearity in the second argument:

For all u, v, w ∈ CΣ and α, β ∈ C,

⟨u, αv + βw⟩ = α ⟨u, v⟩+ β ⟨u,w⟩ .

2. Conjugate symmetry:

For all u, v ∈ CΣ,
⟨u, v⟩ = ⟨v, u⟩∗ .

3. Positive definiteness:

For all u ∈ CΣ,
⟨u, u⟩ ≥ 0,

with ⟨u, u⟩ = 0 if and only if u = 0.

We assign an inner product space the norm ||u|| =
√

⟨u|u⟩ and the Euclidean distance
metric d(u, v) = ||u− v||.
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Definition 2.1.3 (Inner Product Space). An inner product space is a complex Euclidean
space equipped with an inner product.

Complex Euclidean spaces can be combined using a tensor product. The tensor product
of a collection of complex Euclidean spaces CΣ1 , · · · ,CΣn is the complex Euclidean space

CΣ1 ⊗ · · · ⊗ CΣn = CΣ1×···×Σn ,

where × is the Cartesian product acting on sets. We can also consider the tensor product
of vectors, defined for vectors u(1) ∈ CΣ1 , · · · , u(n) ∈ CΣn using

(u(1) ⊗ · · · ⊗ u(n))j1,··· ,jn = u
(1)
j1

· · ·u(n)jn

A related operation is the direct sum of two spaces. Given a collection of complex
Euclidean spaces CΣ1 , · · · ,CΣn , their direct sum is the complex Euclidean space

CΣ1 ⊕ · · · ⊕ CΣn = CΩ,

where Ω = Σ1 ∪ · · · ∪ Σn.

2.1.2 Linear Operators

Given complex Euclidean spaces U = CΣ1 and V = CΣ2 , we can consider mappings that
transform vectors in U into vectors in V . We denote the set of such mappings with L(U ,V).
When the input and output spaces are both U , we simply write L(U) to denote L(U ,U).
These mappings are referred to as operators. This set forms a vector space with the
following operations:

1. For operators X, Y ∈ L(U ,V), we define the operator X + Y ∈ L(U ,V) by

(X + Y )u = Xu+ Y u

for all u ∈ U .

2. For an operator X ∈ L(U ,V) and a scalar α ∈ C, we define the operator αX by

(αX)u = α(Xu)

for all u ∈ U .
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Each operator has a corresponding matrix, which is a mapping of the form

M : Σ1 × Σ2 → C

for alphabets Σ1 and Σ2. For a ∈ Σ1 and b ∈ Σ2, we write Ma,b to refer to the entry
M(a, b).

In the case where V = C, we have an operator known as a linear functional, which
is a mapping from a higher-dimensional complex Euclidean space to a one-dimensional
complex Euclidean space, or scalar. The set of linear functionals L(U ,C) is denoted U∗

and is known as the dual space of U . Elements in this space correspond to row vectors,
which are matrices with a single row.

The identity operator I of a space X maps all vectors in X to themself, i.e. Ix = x
for all x ∈ X . If the context does not make it clear which space the identity operator
corresponds to, we write IX with a subscript to denote the space.

The standard basis in a complex Euclidean space CΣ is the orthonormal basis given by
{e(a) : a ∈ Σ}, where e(a)b = 1 if a = b and e

(a)
b = 0 otherwise.

Definition 2.1.4 (Trace). The trace of an operator X ∈ L(CΣ) is the sum of the diagonal
entries of its corresponding matrix

Tr (X) =
∑

a∈Σ

Xa,a =
∑

a∈Σ

⟨e(a), Xe(a)⟩ .

Definition 2.1.5 (Adjoint). For each operator X ∈ L(U ,V) we define an adjoint operator
X† ∈ L(V ,U), which is uniquely defined by the equation

⟨v,Xu⟩ = ⟨X†v, u⟩

for all u ∈ U and v ∈ V . Note that (X†)† = X.

Similar to vectors, it can be useful to define norms for operators. Though there are
many ways to define norms for operators, we will only define the trace norm in this work,
as we will not need any other norms.

Definition 2.1.6 (Trace Norm). For an operatorX ∈ L(U), the trace norm ofX is defined
as

∥X∥1 = Tr (|A|) .

It is useful to define several types of linear operators that are useful for the purposes of
quantum information. All of the following definitions apply to a square operatorX ∈ L(U).
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Definition 2.1.7 (Classification of Linear Operators).

Normal operators commute with their adjoint. That is, X is normal if X†X = XX†.

Hermitian operators are self-adjoint. That is, X is Hermitian if X = X†. All
Hermitian operators are normal.

Positive semidefinite operators satisfy ⟨u,Xu⟩ ≥ 0 for all u ∈ U . If ⟨u,Xu⟩ > 0 for
all u ∈ U , we say X is positive definite. The set of positive semidefinite operators
on a space U is denoted by Pos(U).

Unitary operators satisfy X−1 = X†, or, equivalently, XX† = X†X = I.

Density operators are positive semidefinite operators with unit trace. That is, X
is a density operator if ⟨u,Xu⟩ ≥ 0 for all u ∈ U and Tr (X) = 1. We denote the set
of all such operators with D(U).

Projection operators project vectors onto smaller subspaces of a larger vector
space. They are defined by the equation X2 = X.

2.1.3 Quantum Mechanics

Quantum mechanics gives a framework in which we can describe the interaction and evo-
lution of quantum states and operations.

Quantum States

Isolated physical systems have an associated complex Euclidean space known as the state
space of the system. We will denote vectors in complex Euclidean spaces associated with
quantum systems using a ket, such as |ψ⟩. Functionals belonging to the corresponding
dual space will be denoted with a bra: ⟨ψ|. We can represent an inner product between
two vectors with a braket ⟨ϕ|ψ⟩.

Definition 2.1.8 (Quantum state). A quantum state is a density operator ρ ∈ D(X ),
where X is the state space of the system.

States can be mixed or pure. Pure states satisfy Tr (ρ2) = 1 and are rank 1 operators.
A state ρ ∈ D(X ) is pure if and only if there is a vector |u⟩ ∈ X such that

ρ = |u⟩ ⟨u|
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Mixed states are probabilistic mixtures of pure states, and they take the form

ρ =
∑

a∈Γ

p(a)ρa, (2.1)

for an alphabet Γ, where p(a) ∈ P(Γ) is a probability vector and each ρa is a density
matrix. Mixed states satisfy Tr (ρ2) < 1.

Definition 2.1.9 (Classical state). A quantum state ρ ∈ D(CΣ) is classical in a given
basis if its matrix representation is diagonal in that basis. In this case, the diagonal entries
of ρ form a probability vector in CΣ.

It is also important to consider the composite state of multiple systems, known as
multipartite systems. This can be established through the use of tensor products.

Definition 2.1.10. A state ρ in a space D(U), where U = U1⊗ · · ·⊗Un, is a product state
if it takes the form

ρ = σ1 ⊗ · · · ⊗ σn

for σ1 ∈ D(U1), · · · , σn ∈ D(U1).

If ρ is a product state, then the subsystems that make up ρ are independent. Multi-
partite systems that are not product states are said to be entangled.

This leads us to the definition of partial trace, which allows for subsystems of a multi-
partite system to be isolated.

Definition 2.1.11 (Partial trace). Given a bipartite density operator ρAB ∈ D(U), where
U = A⊗B for state spaces A and B, the partial trace of ρAB over system B is the density
operator obtained by computing the trace of the portion of the state in the space B and
considering the remainder of the state:

TrB(ρ) =
∑

b∈ΣB

(IA ⊗ ⟨b|)ρAB(IA ⊗ |b⟩).

Here ΣB denotes the alphabet of the state space B, and |b⟩ is shorthand for the standard
basis vector |e(b)⟩.

This definition extends simply to the partial trace of a multipartite space over any
number of subsystems.
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At times, it is useful to consider a state to be a subsystem of a larger system. This is
important because a subsystem in a mixed state can be a component of a supersystem in
an entangled state. Such a situation can be realized mathematically with a purification.

Definition 2.1.12 (Purification). Let U and V be complex Euclidean spaces, and let
ρ ∈ D(U) be a density operator. Let |x⟩ ∈ U ⊗ V be a vector. The vector |x⟩ is a
purification of ρ if

TrV (|x⟩ ⟨x|) = ρ. (2.2)

Quantum Channels

Quantum states can be transformed through the action of quantum channels, which are
maps from operators to operators.

Definition 2.1.13 (Quantum channel). Given complex Euclidean spaces U and V , a quan-
tum channel is a linear map Φ : L(U) → L(V) that satisfies the following properties:

1. Φ is completely positive, meaning the map Φ⊗IW maps positive semidefinite operators
in U ⊗ W to positive semidefinite operators in V ⊗ W , for any complex Euclidean
space W .

2. Φ is trace preserving, meaning Tr (Φ(X)) = Tr (X) for all X ∈ L(U).

Each quantum channel Φ : L(U) → L(V) has an adjoint channel Φ† : L(V) → L(U) that
satisfies

⟨Φ†(Y ), X⟩ = ⟨Y,Φ(X)⟩
for all X ∈ L(U) and Y ∈ L(V).

We denote the set of quantum channels from U to V with C(U ,V). A convenient way to
represent quantum channels mathematically is through the use of Kraus operators, which
we define now.

Definition 2.1.14 (Kraus operators). For every quantum channel Φ ∈ C(U ,V), there exist
an alphabet Σ and a set of operators {Ka : a ∈ Σ}, which is a subset of L(U ,V), such that

Φ(X) =
∑

a∈Σ

KaXK
†
a

for all X ∈ L(U). These operators are known as Kraus operators for Φ. Kraus operators
are not unique.
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A channel represented with Kraus operators has an adjoint that is simple to compute
via

Φ†(Y ) =
∑

a∈Σ

K†
aY Ka,

which holds for all Y ∈ L(V).

Measurement

Measurements provide us with a means to obtain classical information about a quantum
state. Though they are not the only form of measurement, we focus on Positive Operator-
Valued Measures (POVMs), as they are the most general form of measurement and the
only measurement we are concerned with in this work.

Definition 2.1.15 (Positive operator-valued measure (POVM)). Given a complex Eu-
clidean space U and an alphabet Σ (note dim(U) is not necessarily equal to |Σ|!), a POVM
is a set of matrices {Γi}i∈Σ ⊂ Pos(U) such that

∑

i∈Σ

Γi = I.

The probability of obtaining outcome i when measuring a state ρ ∈ D(U) is given by

p(i) = Tr (Γiρ) .

POVMs are useful because the requirements of positivity and summing to identity
guarantee that the set {p(i)}i∈Σ is a probability distribution, as

∑
i∈Σ p(i) = 1 and, for all

i ∈ Σ, 0 ≤ p(i) ≤ 1.

A POVM {Γi}i∈Σ can be written in the form of a quantum-to-classical channel acting
on ρ ∈ D(U) and producing a state σ ∈ D(CΣ). Since each Γi ∈ Pos(U), it has an operator
square root Ei =

√
Γi such that E2

i = Γi and Ei ∈ Pos(U). Then, defining the Kraus
operators

Ki,j = |i⟩ ⟨j|Ei,

for i ∈ Σ and j ∈ {1, · · · , dim(U)}, it holds that

∑

i∈Σ

dim(U)∑

j=1

Ki,jρK
†
i,j =

∑

i∈Σ

dim(U)∑

j=1

|i⟩ ⟨j|EiρEi |j⟩ ⟨i| =
∑

i∈Σ

Tr (EiρEi) |i⟩ ⟨i| =
∑

i∈Σ

Tr (Γiρ) |i⟩ ⟨i| .

The output of this channel is a classical state; as a density matrix, it is a diagonal matrix
with the value p(i) on the ith diagonal.
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Entropies

In information theory, an entropy is a quantity that gives a sense of the amount of ran-
domness or uncertainty in a system. We will find entropies particularly useful for finding
key rate in quantum key distribution protocols, as it is important to know how much
information an adversary could glean from the execution of a protocol.

It is insightful to first define classical entropies and then connect those to the corre-
sponding quantum entropies.

Definition 2.1.16 (Shannon Entropy). Let Σ be an alphabet and let p be a probability
distribution on Σ. The Shannon entropy of p is

H(p) = −
∑

i∈Σ

pi log2(pi),

where, in the case that pi = 0, we make use of the fact that limx→0 x log x = 0.

The Shannon entropy H(u) quantifies the amount of randomness, measured in bits,
of a probability distribution. As an example, consider the probability vectors defined on
Σ = {0, 1}

p0 = 1, p1 = 0

and

q0 =
1

2
, q1 =

1

2
.

Sampling from the probability distribution p gives us the result 0 with no uncertainty, so
correspondingly, H(p) = 0. On the other hand, sampling from the probability distribution
q gives an equal chance of obtaining the outcome 0 or 1, which is maximally uncertain. In
this case, there is one bit of uncertainty, and thus H(q) = 1.

In quantum information theory, we define entropies on density operators instead of
probability vectors. The von Neumann entropy, which extends the concept of classical
Shannon entropy to semidefinite operators, is a quantitative measurement of the expected
amount of randomness in a quantum state.

Definition 2.1.17 (von Neumann Entropy). For a positive semidefinite operator σ in a
complex Euclidean space U , the von Neumann entropy of σ is defined as

H(σ) = −Tr (σ log(σ)) .

12



It is also useful to measure the dissimilarity of two probability distributions. For this
purpose, we define the relative entropy, which measures the information content or “sur-
prise” (defined for an event with probability pi as − log2(pi)) of using a model probability
distribution q when the true distribution is p.

Definition 2.1.18 (Relative Entropy). Let Σ be an alphabet and let p and q be probability
distributions on Σ. The relative entropy of p with respect to the reference distribution q
is defined as

D (p||q) =
∑

i∈Σ

pi log2

(
pi
qi

)
.

In the case that qi = 0 for some i ∈ Σ, we use the fact that 0 log2(0/0) → 0 if pi = 0;
otherwise, we define D (p||q) = ∞, as there are variables in p that q does not predict.

Extending this to density operators gives us a quantitative measure of the dissimilarity
of two quantum states.

Definition 2.1.19 (Quantum Relative Entropy). For two positive semidefinite operators
ρ, σ ∈ Pos(U), the quantum relative entropy of ρ with respect to σ is defined to be

D (ρ||σ) = Tr (ρ log(ρ))− Tr (ρ log(σ)) .

The final entropic quantity we need is the conditional entropy. In classical informa-
tion theory, this quantifies the amount of uncertainty about a random variable P given
knowledge about the state of another random variable Q.

Definition 2.1.20 (Conditional Entropy). For classical variables P and Q with corre-
sponding probability distributions p and q, respectively, the conditional entropy is defined
as

H(P |Q) = H(P,Q)−H(Q).

In this definition, we have made use of the convention that the Shannon entropy of a
variable P is the Shannon entropy of the probability vector corresponding to its state:
H(P ) = H(p). Thus, H(P,Q) denotes the Shannon entropy of the joint probability distri-
bution between variables P and Q.

The corresponding quantity in quantum information theory is the quantum conditional
entropy, which gives a sense of the expected uncertainty in a bipartite state in the case
that we have information about one part of the state. This can also be interpreted as a
measure of how mixed the state is.
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Definition 2.1.21 (Quantum Conditional Entropy). For a bipartite quantum state ρAB ∈
Pos(U), which is made up of two subsystems labeled A and B, the quantum conditional
entropy of ρ given σ is

H(A|B) = H(ρAB)− H(ρB),

where ρB = TrA(ρAB). Note that it is common to write this entropy in terms of the
systems, in which case we omit the subscript on the state as follows:

H(A|B)ρ = H(A,B)ρ − H(B)ρ.

Note that the state is included as a subscript for clarity.

2.2 Quantum Key Distribution

Quantum key distribution (QKD) aims to allow for two parties to establish a shared secret
key. These parties, typically called Alice and Bob, desire to generate a key that is fully
unknown to an eavesdropper, Eve. The quantum nature of QKD allows for Alice and
Bob to detect the interference of such an eavesdropper, as, unlike classical bits, quantum
bits (and quantum systems in general) cannot be duplicated. In order to eavesdrop on
the communication between Alice and Bob, Eve must interact with the quantum states
exchanged between them; however, since interactions with quantum systems necessarily
affect their state, Alice and Bob can use their own measurement results to detect Eve with
high probability and abort communication if necessary.

QKD protocols can be classified as entanglement-based or prepare-and-measure. En-
tanglement based protocols have a third party prepare an entangled state and send half of
the state each to Alice and Bob. Prepare and measure protocols involve Alice preparing
a state at random, taking note of which state she prepared, and then sending the state
to Bob. These classifications are ultimately equivalent by the so-called source replacement
scheme, which will be described later. However, our focus in this work is on prepare-and-
measure protocols.

It is important to consider the resource requirements for QKD. The simplest require-
ment is that Alice and Bob’s systems exist in environments that are private to them; any
violation of this is an obvious source of information leakage. Alice needs a quantum chan-
nel for sending states to Bob, who does not typically need to send quantum states back
to Alice, meaning this channel may be one-way. Alice and Bob also need a shared, two-
way, authenticated classical channel. This channel is allowed to be fully accessible to Eve,
but if Eve is allowed to impersonate Alice or Bob, the protocol’s security is compromised
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(hence the authentication requirement). These first few requirements are often touted as
the only requirements for QKD; however, any realistic implementation of QKD requires
that Alice’s signal sources and Bob’s detectors work well. Specifically, we require that
they are trusted, meaning they cannot be modified by an action of Eve, and they must be
properly characterized, which means they behave according to their quantum mechanical
description. Any incongruency between a device’s quantum mechanical description and its
operation is a source of insecurity for the QKD protocol, either in the form of allowing
Eve to acquire more information or in the form of Alice and Bob simply being unable to
determine a secure shared state.

We note here that device-independent QKD relaxes the assumption of trusted devices,
allowing for provable security even in the case that their devices were created by Eve and
do not behave as Alice and Bob expect [15, 16, 17]. This is accomplished by generating
entangled pairs and using the devices to test Bell inequalities on them, which allows Alice
and Bob to place a bound on the amount of information Eve can obtain from their commu-
nication. Device-independent QKD has been realized experimentally, but the requirements
of generating high-fidelity entangled states and nearly perfect random quantum measure-
ments provides a significant experimental challenge yet unrealized [18]. As a result, the
protocols we are concerned with in this work are not device-independent.

A typical prepare-and-measure QKD protocol has the following structure:

1. Signal Preparation Alice sends a random sequence of signal states to Bob, taking
note of what signal she sent for each state. These states are partitioned into sets
typically defined by a basis choice. The states pass through a quantum channel and
arrive at Bob’s setup.

2. Measurement Bob performs a POVM measurement on Alice’s signal in one of two
bases, chosen randomly. He takes note of the basis used for each measurement as
well as the measurement result, which is a specific signal state.

3. Acceptance Test Alice and Bob choose a subset of the exchanged signals and reveal
all preparation and measurement information on this subset. From this information,
which comes in the form of a joint probability distribution, they can identify if the
signal states were altered during transmission.

4. Public Discussion For each signal that was sent, Alice announces functions of her
local measurements corresponding to the aforementioned partition. Bob does the
same based on his measurement result. Alice and Bob sift out signals based on their
discussion.
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5. Key Map Within each basis choice, Alice assigns a bit value to signals that survived
sifting, determined as a function of her state sent and the public discussion made in
the previous step. This function is known as the key map, and the result is a raw
key.

6. Error Correction Alice sends error correction information over the public commu-
nication channel to Bob, who uses the information to correct errors in his bit string.
This necessarily leaks some information to Eve about the raw key bit strings Alice
and Bob hold.

7. Privacy Amplification Alice and Bob each apply a random two-universal hash
function to their bit strings to obtain a shared secret key. Privacy amplification
reduces the likelihood of Eve determining the secret key from information she has
gleaned through the execution of the protocol.

The result of a QKD protocol is a secure string of l bits that is totally uncorrelated
with Eve and where all possible keys are equally likely. The protocol is allowed to abort,
in which case no secret key is produced. In addition, the key produced is random, not a
particular key chosen by either party; this means that Alice and Bob may freely utilize
randomness in their protocol.

In the ideal case, the state shared by Alice, Bob, and Eve has the form

ρ
(ideal)
ABE =

1

|S|

(∑

s∈S

|s⟩ ⟨s|A ⊗ |s⟩ ⟨s|B

)
⊗ ρE, (2.3)

where S is the set of all possible bit strings of length l and ρE = TrAB(ρABE) is the portion
of the exchanged state that Eve holds, including all classical information. This case is ideal
because of the following properties:

1. Randomness: all possible keys s ∈ S are equally likely, with probability 1
|S| .

2. Correctness: Alice and Bob have the same key s

3. Secrecy: Alice and Bob’s state is completely uncorrelated with Eve’s state (see the
remark after Definition 2.1.10)
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2.2.1 Security Proof for QKD

We utilize the numerical framework developed in [19, 20, 1, 21]. This framework will
allow us to compute the amount of secret key bits Alice and Bob can generate per signal
exchanged, which is a quantity known as key rate.

It is important to be specific about what security means in QKD; to this end, we provide
a definition of security in QKD [22].

Definition 2.2.1 (ε-security). Suppose we perform a QKD protocol that acts on the state
ρAA′ ∈ D(A⊗A′), where A and A′, and E are complex Euclidean spaces corresponding to
Alice’s local and flying systems respectively. Denote by F a map that performs the steps
of acceptance testing through privacy amplification, and let F ideal be a map that outputs
the ideal state of Eqn. 2.3. This protocol is ε-secure if the output state satisfies

1

2

∥∥((F − F ideal)⊗ IE
)
[(IA ⊗ Φ) (ρAA′)]

∥∥
1
≤ ε

for all quantum channels Φ.

Intuitively, this definition says that the actual outcome of the protocol and the ideal
outcome of the protocol are only ε-distinguishable. For sufficiently small ε, the output of
the protocol is nearly indistinguishable from the ideal case. This security definition tells
us that the probability that the protocol produces a key (i.e., it does not abort) and the
produced key is not random, correct, and secure is no larger than ε.

Note that in this section and throughout this work, we assume that Eve is limited
to collective attacks, which represents those attacks where Eve performs the same attack
on each signal. This stands in contrast to coherent attacks, wherein Eve can perform an
attack on the full collection of states Alice sends to Bob. Work has been done in QKD
to allow for protection against coherent attacks, such as the postselection technique [23].
The postselection technique lifts a protocol that is ε′-secure against a collective attack to
a protocol that is ε-secure against general attacks with ε = ε′(N +1)(d

2−1), where N is the
number of signals sent by Alice and d is the dimension of the quantum systems used for
communication (for qubits, d = 2). Thus, in the case of a moderate 109 signals sent by
Alice, a protocol that is ε-secure against general attacks with ε = 10−3 (that is, a protocol
that produces an insecure key 1 in 1000 times) is equivalent to a protocol that is secure
against collective attacks with ε′ = 10−33. This is an extremely tight tolerance, but due
to the logarithmic scaling of security parameters in key rate calculations, this technique is
viable.
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We now briefly summarize the procedure for obtaining the secure key rate of a QKD
protocol. Let A represent Alice’s system (which may be classical) that she keeps and A′

represent the system that she sends to Bob. Let B denote the system Bob receives, and
let E represent Eve’s system, which may be high-dimensional. We consider a prepare-
and-measure protocol. Denote with X and Y the systems that hold the outcomes of the
measurements that Alice and Bob perform on systems A and B, respectively.

Let the set of states Alice uses for the protocol, indexed by the alphabet Σ, be denoted
by {|ϕi : i ∈ Σ⟩}, and let {pi} ∈ RΣ be a probability distribution. In the source replacement
scheme, Alice will prepare state |ϕi⟩ with probability pi and send that state to Bob, keeping
track of the index i that was prepared. Alice’s state at preparation is then

|ψ⟩AA′ =
∑

i∈Σ

√
pi |i⟩A |ϕi⟩A′ . (2.4)

Alice sends the system A′ to Bob via a quantum channel EA′→B. Their shared state after
transmission is

ρAB = (IA ⊗ EA′→B)(|ψ⟩ ⟨ψ|AA′) (2.5)

Note the equivalence to an entanglement-based scheme in the above lines.

Alice and Bob then perform measurements on the systems A and B to obtain measure-
ment results, stored in systems X and Y . After the process of key mapping, Alice obtains
a raw key Z.

In the asymptotic limit, our key rate, in bits per signal sent, is obtained from the
Devetak-Winter key rate formula [24]:

R∞ = ppass

(
min
ρ∈S

H(Z|E)ρ − H(Z|Y )ρ

)
, (2.6)

where ppass denotes the probability that a signal survives sifting in the protocol. The set S
denotes a set of density matrices that match the probability distribution obtained during
the acceptance testing step of the protocol.

The last term in Eqn. 2.6 is the minimum amount of information leaked during error
correction. Since error correction at the minimum is not always posible in practice, we
define a total error correction leakage δleak = fH(Z|Y ), using f ≥ 1 to represent the
efficiency of error correction.

Eqn. 2.6 can be reformulated to be agnostic of Eve’s state if we first define two quantum
channels to describe the measurements, announcements, and key mapping that Alice and
Bob apply to their states.
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1. The map G is a completely positve, trace nonincreasing quantum channel that per-
forms Alice and Bob’s joint measurements and ties those measurements to the cor-
responding announcements. It performs sifting (eliminating the need for ppass in the
key rate formula) based on these announcements, then connects the measurements
to the appropriate key bits via the key map. Mathematically,

G(ρ) =
∑

α,β∈{z,x}

Kα,βρK
†
α,β, (2.7)

where

Kα,β =
∑

x∈{0,1}

|g(x, α, β)⟩R ⊗
√

ΓA
α,x ⊗

√
ΓB
β,x ⊗ |α, β⟩C (2.8)

are the Kraus operators of G. In these equations, the subscripts R and C denote the
key and announcement systems respectively, which are classical; α and β represent
the announcement that Alice and Bob make; x labels the key bit assigned in Alice’s
POVM; and g(x, α, β) is a key map that takes in Alice’s key bit and her and Bob’s
announcements and outputs the corresponding key bit in the final secret key.

2. The map Z is a completely positive, trace preserving quantum channel that projects
onto subspaces of the image of G corresponding to each key bit. It has the form

Z(G(ρ)) =
∑

x∈{0,1}

(|x⟩ ⟨x|R ⊗ IABC)G(ρ) (|x⟩ ⟨x|R ⊗ IABC) . (2.9)

We call this a key projection map because each term in the application of the map
extracts the projection of the input ρ onto the corresponding key bit. Note that the
input G(ρ) includes key bit and announcement registers R and C, which are outputs
of G.

We can then rewrite Eqn. 2.6 as

R∞ = min
ρAB∈S

D(G(ρAB)||Z ◦ G(ρAB))− ppassδleak. (2.10)

Throughout this work, we will define the shorthand function f(ρ) = D (G(ρ)||Z ◦ G(ρ)).
Eqn. 2.10 gives us the asymptotic key rate for a QKD protocol as a function of a

minimization over the subset S of all shared density matrices between Alice and Bob.
This set defines density matrices that satisfy the constraints imposed by the two parties’
measurement results and thus depends on the specific choice of measurement POVM, the
amount of loss in the protocol, and any sources of noise.

19



2.2.2 Qubit-Based BB84

The BB84 protocol is a QKD protocol proposed in 1984 [25] that is relatively simple while
demonstrating all of the important components of a QKD protocol. We use this section to
illustrate the application of each component of a protocol in our mathematical framework.

1. Signal Preparation Alice chooses the following qubit states to send to Bob (note
|D⟩ ≡ 1√

2
(|H⟩+ |V ⟩) and |A⟩ ≡ 1√

2
(|H⟩ − |V ⟩))

{|H⟩ , |V ⟩ , |D⟩ , |A⟩}.

This set is partitioned into two: the z-basis contains the states |H⟩ and |V ⟩, and
the x-basis contains the states |D⟩ and |A⟩. With probability pz, Alice prepares a
random state from the z-basis, and with probability px = 1 − pz, she prepares a
random state from the x-basis. The prepared state is stored in system A′. Alice also
takes a note of which state she sent in her system A, which we take to simply be
the index of the prepared state in the above set. After signal preparation, Alice’s
systems hold the state

|ψ⟩AA′ =

√
pz
2
|1⟩A |H⟩A′ +

√
pz
2
|2⟩A |V ⟩A′ +

√
px
2
|3⟩A |D⟩A′ +

√
px
2
|4⟩A |A⟩A′ .

(2.11)
For completeness, we note here that the POVM that Alice uses to measure her state
is

ΓA = {|1⟩ ⟨1| , |2⟩ ⟨2| , |3⟩ ⟨3| , |4⟩ ⟨4|}

2. Measurement Bob receives the state that he received from Alice into his system B
and uses the POVM

ΓB = {pz |H⟩ ⟨H| , pz |V ⟩ ⟨V | , px |D⟩ ⟨D| , px |A⟩ ⟨A|}

to measure it.

3. Acceptance Test Alice and Bob choose a small subset of their exchanged signals
and reveal measurement information to obtain a joint probability distribution p(a, b)
for a ∈ {1, 2, 3, 4} and b ∈ {H, V,D,A}. From this probability distribution, they
decide whether to abort the protocol or continue to key generation.

4. Public Discussion For the remainder of the signals, Alice and Bob announce the
partition their measurement belonged to, i.e. whether their measured state was in
the x-basis or z-basis. They discard all events where they measured in different bases;
events where they measured in the same basis contribute to key generation.
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5. Key Map Alice assigns the key bit 0 to |H⟩ and |D⟩ signals and the key bit 1 to
|V ⟩ and |A⟩ signals.

6. Error Correction Alice sends error correction information to Bob as described
previously.

7. Privacy Amplification Alice and Bob each implement privacy amplification as
described previously.

In the asymptotic limit, Alice and Bob can test an arbitrarly large number of signals in
the acceptance test step. This allows them to determine the expectation values of the
operators ΓA

i ⊗ ΓB
j for i ∈ {1, 2, 3, 4} and j ∈ {H,V,D,A}, as

γi,j = Tr
(
(ΓA

i ⊗ ΓB
j )ρAB

)
. (2.12)

From this information, they can define the set S, which constrains the optimization in Eqn.
2.10 such that the search space includes only those density matrices that would produce
the statistics observed in their protocol, so

S =
{
ρAB : ∀i, j,Tr

(
(ΓA

i ⊗ ΓB
j )ρAB

)
= γi,j

}
. (2.13)

We use Eqns. 2.7, 2.8, and 2.9 to construct the G and Z maps. In the BB84 protocol,
the announcements are simply the basis choices (“z-basis” or “x-basis”), and the key map
function in G function has a simple form:

g(x, α, β) =

{
x, α = β

⊥, α ̸= β.

Note that ⊥ represents a discarded signal.

Finally, Eqn. 2.10 can be used to determine the rate at which secret key can be
generated per signal exchanged between Alice and Bob.

2.3 Quantum Optics

In order to extend the scope of QKD beyond ideal qubit protocols, we need to utilize
results from quantum optics. In this section, we briefly introduce relevant details quantum
optical theory, based primarily on [26]. For a summary of the foundations of the theory,
see Appenix A.
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2.3.1 Fock States

In Appendix A, we show how the electromagnetic field is quantized into fundamental
excitations known as photons. A quantum state of light is composed of a number of
photons grouped together. States with a definite number of photons are known as Fock
states, and are the conceptually simplest states of light. A Fock state containing exactly
n photons is written as |n⟩.

Fock states can be transformed through the use of conjugate operators â and â†, known
as annihilation and creation operators respectively. These operators obey the commutation
relation of Eqn. A.11 and can be used to add or remove one quanta of energy from a state:

â |n⟩ =
√
n |n− 1⟩ (2.14)

â† |n⟩ =
√
n+ 1 |n+ 1⟩ . (2.15)

As with all quantum states, we can also form superpositions and mixtures of Fock states
to produce more complicated states.

Multimode Light

Assigned to each creation and annihilation operator pair is a mode l, which refers to an
independent property of the light, such as its polarization, time of arrival, or position. In
this work, we are interested in distinguishing light through its polarization. Light states
in separate polarization modes do not interact with each other, which is apparent in the
multimode commutation relations

[âl, âl′ ] = 0 = [â†l , â
†
l′ ] (2.16)

[âl, â
†
l′ ] = iℏδl,l′ (2.17)

(see Eqn. A.34).

For an example of a multimode state, consider the state

1√
2
(|1⟩H |0⟩V + |0⟩H |1⟩V ) ≡

1√
2
(|1, 0⟩HV + |0, 1⟩HV ) =

1√
2

(
â†H + â†V

)
|0, 0⟩ ,

which is a superposition of the state of exactly one horizontally polarized photon and the
state of exactly one vertically polarized photon. We can convert this state to be in the
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diagonal polarization basis DA by converting the annihilation operators in the H and V
modes to the D and A modes via the relations

âD =
1√
2
(âH + âV ) (2.18)

âA =
1√
2
(âH − âV ) . (2.19)

(the creation operators are obtained via a trivial conjugation). We then see that the above
state is simply

1√
2

(
â†H + â†V

)
|0, 0⟩ = â†D |0, 0⟩ = |1, 0⟩DA ,

exactly one photon in the diagonal polarization state.

2.3.2 Coherent States

Though useful and conceptually simple, Fock basis states are highly nonclassical and thus
do not represent states that are easy to produce experimentally. In the discussion of
quantization, we moved from the classical picture to the quantum picture by replacing the
continuous variables p and q in Eqn. A.6 with operators p̂ and q̂ in Eqn. A.8. We now
examine what happens when we reverse this process—instead of replacing a continuous
variable with an operator, we will replace the operator â with a continuous variable α.
One way to make this replacement is to look for eigenvalues of the annihilation operator:

â |α⟩ = α |α⟩ . (2.20)

We can expand the state α in the Fock basis as

|α⟩ =
∞∑

n=0

Cn |n⟩ , (2.21)

for Cn ∈ C. Applying Eqn. 2.20 to Eqn. 2.21 yields a recurrence relation whose solution
is (up to a phase)

Cn =
αn

√
n!
C0, (2.22)

where C0 can be determined by normalization to have the value exp
(
−1

2
|α|2
)
. This yields

states of the form

|α⟩ = e−
1
2
|α|2

∞∑

n=0

αn

√
n!

|n⟩ . (2.23)
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These states are known as coherent states.

Coherent states are defined by the eigenvalue α ∈ C, which is a complex amplitude.
This value is related to the mean number of photons in the pulse, which we denote µ, by

µ = |α|2.

Given a field in a coherent state |α⟩, the probability of detecting n photons is

P (n) = | ⟨n|α⟩ |2 = e−|α|2 |α|2n

n!
= e−µµ

n

n!
≡ Pµ(n), (2.24)

which is a Poissonian distribution with mean µ.

Coherent states are especially useful because they describe the output of a laser source.
Lasers produce coherent light of a particular frequency through spontaneous and stimulated
electronic transitions [27]. As discussed in [28, 29], when a laser is rapidly turned on and
off to send a large number of signals per second, the phase of the coherent light emitted
is effectively random if the period of sending signals is large compared to the period of
oscillation of the light emitted. We will assume that this is the case; see [28] for an
analysis of phase-correlated light in QKD.

With this assumption of random phase, the state emitted from a laser has the form

|ψ⟩ = |√µeiϕ⟩

for a fixed µ ∈ R≥0 and random ϕ ∈ [0, 2π). However, since we have no knowledge about
the value of ϕ, we must consider the mixture of all possible values of ϕ:

ρ =
1

2π

∫ 2π

0

|√µeiϕ⟩ ⟨√µeiϕ| dϕ (2.25)

= e−µ
∑

n

µn

n!
|n⟩ ⟨n| . (2.26)

By considering the quantity ⟨n|ρ|n⟩, we can see that this state follows the same Poissonian
photon number detection distribution as Eqn. 2.24. States of the form in Eqn. 2.26 are
known as weak coherent pulses.

2.3.3 Detectors

For the purposes of QKD, it is also useful to mention measurement of multiphoton states.
For our purposes, we focus on threshold detectors, which are detectors that fire when 1

24



or more photons arrive but do not distinguish the number of photons. The measurement
POVM of a perfect threshold detector for photons in a mode l looks like

Γl = {Γl
vac,Γ

l
click}

where

Γvac = |0⟩ ⟨0|l and Γclick =
∞∑

n=1

|n⟩ ⟨n|l .

A detection event is referred to as a “click”, which simply refers to the case that at least
one photon reached the detector.

In the case of multiple modes, our setup will include a detector for each mode, so we
need to consider the case where photons arrive at multiple detectors at once. For the H
and V modes in the z-basis of the BB84 protocol, the multimode POVM has the form

Γz = {Γz
vac,Γ

z
0,Γ

z
1,Γ

z
double}

where

Γz
vac = |0, 0⟩ ⟨0, 0|HV

Γz
0 =

∞∑

n=1

|n, 0⟩ ⟨n, 0|HV

Γz
1 =

∞∑

n=1

|0, n⟩ ⟨0, n|HV

Γz
double =

∞∑

m,n=1

|n,m⟩ ⟨n,m|HV .

For the x-basis, the POVM Γx is identical if we replace the HV modes with DA modes.
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Chapter 3

Interfacing with QKD Experiments

In this chapter, we delve into specific details of the framework we use to calculate key
rates from the protocols we focus on. We delve first into decoy state analysis, showing how
it allows us to enjoy the simplicity of qubit-based QKD while using easily implementable
sources. We describe the considerations that must be taken into account in the case of a
finite number of signals sent, which is an issue of fundamental importance when working
with real-world protocols. We provide mathematical descriptions for the protocols we focus
on in this work, the four-six protocol and the three-state protocol. Finally, we describe our
numerical framework for computing tight, reliable lower bounds on key rates in quantum
key distribution.

3.1 Decoy State Analysis

Decoy state analysis [8, 9, 10, 30, 31] is a tool of fundamental importance in QKD, as it
allows for the theoretical simplicity of qubit-based QKD to be applied when using simple
attenuated laser sources. Decoy state analysis is a postprocessing technique that provides
protection against an attack known as the photon number splitting (PNS) attack by char-
acterizing the action of Eve’s attack on the quantum channel connecting Alice and Bob.
Though it sacrifices key rate compared to qubit-based protocols, the tradeoff in ease of
implementation far outweighs the reduced key rate, making decoy state analysis widely
used throughout QKD.

26



3.1.1 QKD with WCP

The BB84 protocol can be formulated in terms of weak coherent pulses (WCP) [32, 33],
which improves the ease of implementation [34]. Instead of requiring perfect single photon
sources, these pulses can be simply implemented by attentuating a laser source low enough
that the probability of sending more than one photon is low.

In the WCP regime, the majority of signals sent have either 0 photons or 1 photon,
though the presence of signals with more than 1 photon is an unavoidable consequence of
Poissonian distributions. In the case of 0 photons, Bob measures nothing, so he can map
the corresponding event to the discard symbol ⊥. The case of 1 photon is equivalent to
the qubit BB84 protocol. If the pulse contains 2 or more photons, the signal is vulnerable
to the PNS attack, wherein Eve splits off all but one photon from the multiphoton signal.
With some careful signal discarding, Eve’s interference can acquire a significant amount of
information about the secret key while remaining undetectable to Alice and Bob based on
their measurement statistics alone. Clearly, the PNS attack presents a significant security
risk. Alice and Bob can utilize decoy state analysis to characterize Eve’s attack and detect
a potential PNS attack [9, 30].

Shield Systems

As weak coherent pulses are mixed states, they are inherently vulnerable to being a mixed
subsystem of a larger pure state that Eve has control of. If Eve were to hold a purification
of the state ρAB that Alice and Bob share, she could obtain full knowledge of the secret
key. To preserve the purity of the shared state of Alice and Bob, we introduce a shield
system [35].

A shield system is an extra quantum system, held by Alice and denoted As, that forms
a purification of the state ρAA′ . Following [36], we choose to let the shield system represent
the photon number sent. It is not important that Alice has access to the system As after
she sends the system A′ to Bob, but it must remain outside of Eve’s hands to preserve
the purity of the state. The full state held by Alice after signal preparation, but before
anything is sent to Bob, is

|ψ⟩AAsA′ =
∑

i

√
pi |i⟩A ⊗

∑

n

√
Pµ(n) |n⟩As

|ρi⟩A′ , (3.1)

where we have represented with pi the probability of Alice sending state i and where |ρi⟩
represents the pure state that Alice sends to Bob when she sends state |i⟩. The state ρAA′

is recovered by taking the partial trace over the shield system As.
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The final state ρAAsB is block diagonal in photon number of the shield system, so we
can write

ρAAsB =
∑

n

√
Pµ(n) |n⟩ ⟨n|As

⊗ ρ
(n)
AB, (3.2)

where
ρ
(n)
AB =

(
⟨n|As

⊗ IAB

)
ρAAsB

(
|n⟩As

⊗ IAB

)

is the state Alice and Bob share when n photons are sent. From Eqn. 3.2, we can write
the acceptance set in terms of ρ

(n)
AB as

Sn = {ρ(n)AB : ∀i, j,Tr
(
(ΓA

i ⊗ ΓB
j )
(
ρ
(n)
AB

))
= γ

(n)
i,j },

where the γ
(n)
i,j are the measurement statistics for an n-photon state. We note that these

values are not known to Alice and Bob directly but can be bounded based on their mea-
surements. This will be the subject of decoy analysis in the following section.

As proven in [36], the block diagonal structure of ρAAsB allows us to split the state in
the key rate formula of Eqn. 2.10 on photon number and write it as a sum of minimizations:

R∞ =
∞∑

n=0

min
ρ
(n)
AB∈Sn

Pµ(n)f(ρ
(n)
AB)− ppassδleak. (3.3)

It was previously mentioned that multiphoton pulses are vulnerable to being attacked

by the PNS attack; therefore, the relative entropy f(ρ
(n)
AB) = D

(
G(ρ(n)AB)||Z ◦ G(ρ(n)AB)

)
is

zero for n ≥ 2. Thus, our key rate is

R∞ = min
ρ
(0)
AB∈S0

Pµ(0)f(ρ
(0)
AB) + min

ρ
(1)
AB∈S1

Pµ(1)f(ρ
(1)
AB)− ppassδleak.

The vacuum term corresponding to n = 0 contributes to key rate, but the effect is
miniscule. Any vacuum signal that Alice generates is naturally unknown to Eve, as she
sees no quantum state. The only way for Bob to measure a detection for such a signal
is through dark counts in his detectors; this can contribute to key if Bob’s detector that
experiences a dark count corresponds to the signal state that Alice prepared. Thus, the
vacuum contribution to key rate is on the order of the dark count rate, which must anyways
be low to be useful for QKD.

In practice, it has been found that the zero-photon contribution is not worth the extra
computational time [37, 31]. Decoy analysis is typically the most time-consuming part
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of a key rate calculation, so doing additional analysis to find bounds on the zero-photon
component for a miniscule improvement to key rate is not worthwhile. However, in the
very high loss regime, where key rate is on the order of the dark count rate, including this
additional computation is more worthwhile.

The key rate formula for only the single photon contribution is then

R∞ ≥ Pµ(1) min
ρ
(1)
AB∈S1

f
(
ρ
(1)
AB

)
− ppassδleak. (3.4)

In the following section, we will show how to constrain this set to simplify the optimization.

3.1.2 Decoy State Analysis in QKD

In decoy state analysis, Alice will choose to send her states with the mean photon number
µ randomly selected from a predetermined set {µi}nD

i=1, where nD is the total number of
decoy intensities to use—typically between two and four. It is important to note here that,
while Eve may know the set {µi}, she does not know which i was chosen and thus does
not know the intensity of each sent signal individually. After communication has finished,
Alice and Bob publicly discuss the intensity of each signal sent and sort their detection
events, arriving at a three-dimensional probability distribution for their observed statistics
p(a, b, i). Based on these statistics, Alice and Bob can determine how Eve influenced their
signal, if at all. Though Eve could potentially know the number of photons in the pulse
Alice sends, she has no way to know which intensity was selected by Alice, so she has no
choice but to make an attack independent of intensity.

Let ΣA denote the set of states Alice sends in and ΣB denote the set of Bob’s possible
measurement outcomes. The probability that a signal of intensity µi, sent in polarization
state a ∈ ΣA, is detected by Bob in mode b ∈ ΣB is an important detection probability γµi

a,b.
This value can be determined from the probability Pµi

(n) that Alice sent that n photons
for the intensity µi (see Eqn. 2.24) and the yield Yn(a, b), which is the probability of a
detection given the signal had n photons

Yn(a, b) = Pr(click in detector b | n photons sent in polarization a).

We denote the detection probability γµi

a,b as such because it corresponds to the joint POVM

measurement ΓA
a ⊗ ΓB

b , can be written as

γµi

a,b =
∞∑

n=0

Pµi
(n)Yn(a, b). (3.5)
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The values Yn characterize the attack Eve performs, and they are the only unknowns in
the above equation; γµi

a,b is known from the measurement statistics, and Pµi
(n) is known

from Alice’s source characterization. For signals with n = 1, the state that Bob receives
from Alice is a single photon, which we can treat as a qubit. In this case, we note that the
values

Y1(a, b) = Pr(click in detector b | 1 photon sent in polarization a)

are particularly important, as they describe the subset of signals sent that behave like
qubits for the purposes of QKD.

Eqn. 3.5 is a set of nD equations with an infinite number of unknowns {Yn}∞n=0. We
choose a truncation limit Nph and then utilize the fact that 0 ≤ Yn ≤ 1 for all n to place
bounds on γµi

a,b:

γµi

a,b =
∞∑

n=0

Pµi
(n)Yn(a, b) ≥

Nph∑

n=0

Pµi
(n)Yn(a, b) (3.6)

and

γµi

a,b =
∞∑

n=0

Pµi
(n)Yn(a, b) ≤

Nph∑

n=0

Pµi
(n)Yn(a, b) +

∞∑

n=Nph+1

Pµi
(n) · 1

=

Nph∑

n=0

Pµi
(n)Yn(a, b) +


1−

Nph∑

n=0

Pµi
(n)


 . (3.7)

Armed with the aforementioned nD equations as well as bounds on γµi

a,b, we can use
linear programming to solve for bounds on the single photon tields Y1(a, b) for each a and
b [38]. For each expectation value γa,b, we solve the following linear programs

minimize Y1(a, b)

subject to 0 ≤ Yn ≤ 1 n = 1, . . . , Nph

γµi

a,b ≥
Nph∑

n=0

Pµi
(n)Yn(a, b) (3.8)

γµi

a,b ≤
Nph∑

n=0

Pµi
(n)Yn(a, b)+


1−

Nph∑

n=0

Pµi
(n)


 .
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maximize Y1(a, b)

subject to 0 ≤ Yn ≤ 1 n = 1, . . . , Nph

γµi

a,b ≥
Nph∑

n=0

Pµi
(n)Yn(a, b) (3.9)

γµi

a,b ≤
Nph∑

n=0

Pµi
(n)Yn(a, b)+


1−

Nph∑

n=0

Pµi
(n)


 .

The result of these linear programs are lower bounds Y L
1 (a, b) and upper bounds Y U

1 (a, b),
respectively, on the single photon conditional probability for Alice sending signal a and
Bob measuring outcome b.

With these statistics, we redefine S from Eqn. 2.13 for the case of a single-photon
subspace of a WCP:

S1 =
{
ρAB : ∀a ∈ ΣA, b ∈ ΣB, γ

L
a,b ≤ Tr

(
(ΓA

a ⊗ ΓB
b )ρAB

)
≤ γUa,b

}
. (3.10)

Note that the outcome of the linear programs are conditional probabilities, whereas the
bounds γLa,b and γUa,b must be joint probabilities. To perform this conversion, we must
simply multiply the linear program results by the probability Pr(a) of Alice sending signal
a:

γLa,b = Pr(a)Y L
1 (a, b) γUa,b = Pr(a)Y U

1 (a, b).

With this updated constraining set, we can include it in the key rate formula in Eqn.
3.4:

R∞ = Pµ(1)min
ρ∈S1

f(ρ)− ppassδleak. (3.11)

3.2 Squashing Maps

As a starting point in theoretical analysis, QKD protocols are typically defined with respect
to a finite-dimensional quantum system, such as qubits. However, when dealing with
the implementation of optical QKD protocols, our signals reside in infinite-dimensional
Fock space. This is problematic because, in a key rate calculation, we need to find Eve’s
optimal attack by optimizing over density matrices shared by Alice and Bob, and numerical
optimization over an infinite dimensional space is an intractible problem. This discrepancy
cannot be resolved by näıvely truncating photon number statistics, as this leaves a protocol
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vulnerable to eavesdropping unless a bound can be placed on the amount of information
an eavesdropper could obtain. Through the use of a so-called “squashing” map [39, 40],
we can rigorously convert the infinite-dimensional protocol to a virtual finite-dimensional
protocol whose key rate lower bounds the key rate of the original protocol.

A squashing map is implemented by the composition of a squashing channel Λ to the
quantum channel Φ connecting Alice and Bob; without loss of generality, we assume that
Eve has full control over it. This channel reduces the dimension of the sent state to
finite dimensions. Bob measures this reduced-dimension state and obtains statistics that
reproduce the original statistics of the infinite dimensional state.

Definition 3.2.1 (Squashing Model). Let ΓU be a finite POVM describing the measure-
ment outcomes of a physical device acting on states in the infinite dimensional complex
Euclidean space U , and let ΓV be the corresponing outcomes for a measurement on states
in the finite dimensional complex Eucliean space V . If there exists a completely positive
map Λ : D(U) → D(V) such that, for any state ρ ∈ D(U),

Tr
(
ΓU
k ρ
)
= Tr

(
ΓV
k Λ[ρ]

)

for all k, then Λ is a squashing map.

The squashing maps defined in [40] accomplish this task through random reassignment
of multi-detector click events to single click events, which introduces an artificial qubit
error rate. In addition, these squashing maps do not exist for the case of asymmetric basis
choice probabilities, which can be a difficult requirement for experimental implementations
of QKD. Instead, we implement the flag state squasher of [41, 42], which does not suffer
from either of these drawbacks. However, the flag state squasher does have the drawback
of requiring a bound on the population of a subspace of the total Fock space.

The flag-state squasher works by splitting the infinite-dimensional Fock basis into lower
and upper subspaces based on a photon number cutoff. Any signal in the upper subspace
is assumed to be fully known by Eve. Though this cutoff number may be chosen freely,
in this work we focus on the flag-state squasher in the case of reducing down to the single
photon subspace.

Definition 3.2.2 (Flag-state Squasher). Let the set {ΓU
k } be a POVM on a space U

whose K elements commute with the projection operators Π≤1,Π>1, which project onto
the orthogonal n ≤ 1 photon and n > 1 photon subspaces of U , respectively. Suppose also
that ρ ∈ D(U) is block diagonal in total photon number, so we can write ρ =

⊕∞
n=0 pnρn.
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For each k, define Γ≤1
k to be the restriction of ΓU

k to the n ≤ 1 subspace. There exists a
completely positive, trace preserving flag-state squashing map

Λ : U≤1 ⊕ U>1 7→ U≤1 ⊕ Uf ,

where Uf is a classical system of so-called “flags”, such that

Tr (Γkρ) = Tr
(
Γ≤1
k Λ(ρ)

)

for all ρ ∈ D(U). This is accomplished by defining a new POVM

Γ̃k = Γ≤1
k ⊕ |k⟩ ⟨k| =

[
Γ≤1
k 0
0 |k⟩ ⟨k|

]
, (3.12)

where |k⟩ ∈ CK . The resulting POVM {Γ̃k} has three dimensions corresponding to the
n ≤ 1 photon subspace, inherited from Γ≤1

k , as well as an extra dimension for each outcome
k labeling the POVM {Γk}.

To avoid the issue of Eve flooding the channel with signals outside of the n ≤ 1 photon
subspace, we must obtain an estimate of the population of the n > 1 subspace. The
following reasoning is based on work presented in [42, 43]. Given an observable A which is
block diagonal in the total photon number, suppose its expectation value ⟨A⟩ = Tr (ρA) is
known. Then, defining an = Tr (ρnAn), we can write

⟨A⟩ =
∞∑

n=0

pnTr (ρnAn) =
∞∑

n=0

pnan.

In our case, we choose the observable

A = 1− Γvac −
1∑

i=0

∑

α

Γα
i , (3.13)

where we have used the notation of Section 2.3.3 and used α to index measurement basis
choice. This observable represents the situation in which multiple detectors click simulta-
neously, which can only happen when Bob receives multiple photons (Note, however, that
this does not cover all multiphoton events; receiving multiple photons in one detector is
still a possibility).

If there exist bounds ā≤1 and ā>1 such that ā>1 > ā≤1,

an > ā>1 for n > 1
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and
an > ā≤1 for n ≤ 1,

then the population in the n ≤ 1 subspace is lower bounded by

P≤1 ≥
ā>1 − ⟨A⟩
ā>1 − ā≤1

. (3.14)

In our case, we obtain ⟨A⟩ from the statistics corresponding to any combination of
multiple detectors clicking; trivially, we know ā≤1 = 0, and

ā>1 = 1−
∑

α

p2α, (3.15)

where pa is the probability that Bob measures in basis α. This lower bound, which is a
result from Theorem 1 of [44], is valid for the n ≤ 1 subspace of the flag state squasher in
the case of perfect 4 or 6 state receivers with threshold detectors.

Inserting these bounds into 3.14 yields the lower bound

P≤1 = 1− ⟨A⟩
1−

∑
α p

2
α

, (3.16)

where ⟨A⟩ is determined from the observations γa,b corresponding to the POVM elements
in Eqn. 3.13.

3.3 Finite Size Effects

Thus far, we have only discussed key rates in the asymptotic limit of infinite signals sent.
This is overly optimistic, as unlimited signals means the testing rounds can exactly re-
produce expectation values of POVM measurements while leaving an unlimited amount of
signals for key generation. However, in real QKD experiments, we do not have access to
an unlimited number of signals.

To consider the finite number of signals sent, we must make a slight modification to
the signal preparation step of our QKD protocol. When the signal is prepared, Alice also
randomly decides to denote it as a test round or a generation round. Test rounds, which
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occur with probability p(test), are used for the acceptance test step, whereas generation
rounds, which occur with probability p(g) = 1− p(test), are used for key generation.1

In our security framework, the intermediate steps of acceptance testing, error correc-
tion, and privacy amplification all contribute to the security of the protocol [45]. We denote
these contributions with the corresponding symbols εAT , εEC , and εPA. These values repre-
sent the probability that the respective step in the protocol proceeds without aborting and
the state shared by Alice and Bob is not secure from Eve. We also include a “smoothing”
parameter ε̄, which describes the extent to which we include similar states in an interme-
diate entropy calculation leading up to the Devetak-Winter formula in Eqn. 2.6. In total,
a QKD protocol is ε-sound if it is εcor = εEC correct and εsec = max{εAT , εPA+2ε̄} secure.
This maximization results from the fact that we have two cases for achieving εsec-security:
either Alice and Bob communicate and the statistics are unacceptable, in which case there
is a probability εAT that the acceptance test step fails to cause an abortion; or the statis-
tics were acceptable and Alice and Bob can generate a secure key with length determined
by their smoothed entropy calculation and privacy amplification, which process fails with
probability εPA + 2ε̄ [46].

In the regime of finite signals sent, sampling error results in an inevitable deviation
between the statistics observed γi,j and the expectation values Tr

(
(ΓA

i ⊗ ΓB
j )ρAB

)
on the

shared state between Alice and Bob. Because of this, we need to define a reference frequency
distribution F̄ to which the observed statistics γi,j must be close in order for the protocol
to proceed at all. We use Q to denote the set of collections of observed statistics that are
sufficiently close to this reference distribution

Q =
{
{γi,j} ∈ P(Σ) : ∀i, j, |F̄i,j − γi,j| ≤ t

}
, (3.17)

where t is the finite acceptance parameter. A larger finite acceptance parameter results
in an increased likelihood of acceptance but reduces key rate. This is because a larger
acceptance set means a larger tolerance for Eve’s interference in the protocol. Ideally, t
should be chosen to be as small as possible while still allowing the protocol to accept.

With Q defined, we can update the constraint set in Eqn. 2.13 to include only those
density matrices whose calculated expectation values are sufficiently close to the observed
statistics:

Sµe =
{
ρAB : ∃{γi,j} ∈ Q s.t. ∀i, j, |γi,j − Tr

(
(ΓA

i ⊗ ΓB
j )ρAB

)
| ≤ µe

}
, (3.18)

1In principle, for any protocol implementing decoy state analysis, Alice should only randomly choose
the intensity in test rounds, whereas in generation rounds, she should always choose the primary signal
intensity. However, this principle is not necessary for security; failure to follow it does not compromise
security, though it does reduces key rate.
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where µe is an entrywise bound on variation for finite size effects.

Combining this new optimization set with the contributions from our security param-
eters, we arrive at the finite key rate formula

RN =
Pr(s)− t

Pr(s|g)
min
ρ∈Sµe

f(ρ)− Pr(s, g)δleak −
1

N
log

2

εEC

−
√

Pr(s)− t

N
∆(ε̄)− 2

N
log

1

2εPA

,

(3.19)
a result proven in [46]. In this formula, we used the text s to denote the event wherein a
detected signal survives sifting and g to label generation rounds. We also define

∆(ε̄) = 2 log(1 + dim(X))

√
log

2

ε̄2
,

which contributes to lost key rate due to aforementioned smoothing.

3.3.1 Finite Effects in Decoy Analysis

Analysis of the application of finite-size QKD to decoy analysis has been done in the past
[47, 48]. These analyses have relied on techniques that give tighter bounds than we will
find in our work; however, they rely on assumptions that are difficult to overcome in the
case of imperfect sources or detectors. This is particularly problematic in the case of
experimental QKD, as even well-calibrated instruments perform worse than ideal devices
in theory. We instead use the framework developed and proved in [46] to address the issue
of decoy analysis with finite size effects. In this subsection, we merely present the main
results of the framework.

Following the discussion in Section 3.1.2, we define the yields to be

Yn(a, b) = Pr(b|a, g, n), (3.20)

which is the probability Bob measures a click in detector b given that n photons were sent
by Alice in state a in round denoted by g ∈ {test, gen}, referring to testing and generation
rounds, respectively. Since we only know acceptance testing results based on test signals,
these are the signals we use in the decoy analysis. To account for looseness in expectation
values due to the finite number of test signals, the bounds on γµi

a,b in Eqs. 3.6 and 3.7
become

γµi

a,b(test) ≥ Pr(a, µi, test)




Nph∑

n=0

Pµi
(n)Yn(a, b)


− t− µe (3.21)
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and

γµi

a,b(test) ≤ Pr(a, µi, test)




Nph∑

n=0

Pµi
(n)Yn(a, b) + 1−

Nph∑

n=0

Pµi
(n)


+ t+ µe. (3.22)

Here Pr(a, µi, test) is the joint probability that Alice sends signal a with intensity µi in a
test round.

We use the results of decoy analysis to define the quantities

γLa,b = Pr(a|gen)Y L
1 (a, b) and γUa,b = Pr(a|gen)Y L

1 (a, b),

with which we define the set

S(1)
µe

=
{
ρAB : γLa,b(test) ≤ Tr

(
(ΓA

a ⊗ ΓB
b )ρAB

)
≤ γUa,b(test)

}
(3.23)

Our final key rate formula, accounting for finite signals sent and the usage of decoy
state analysis, is

RN =
Pr(s)− t

Pr(s|g)
min
ρ∈S(1)

µe

f(ρ)− Pr(s, g)δleak −
1

N
log

2

εEC

−
√

Pr(s)− t

N
∆(ε̄)− 2

N
log

1

2εPA

.

(3.24)

3.4 Important Protocols in this Work

In this section, we will briefly describe the QKD protocols that will be focused on in this
work.

3.4.1 Four-Six Protocol

The four-six protocol, drawing inspiration from [49], utilizes a four-state sender and a six-
state receiver.2 We present an diagram of an experimental setup that could be used for
this protocol in Figure 3.1. This diagram is not intended to describe all components that
are actually present in a QKD experiment, but serves as a reference point to indicate how
the protocol could be implemented in reality.

2Note that the work cited here uses a four-state receiver and a six-state sender. As noted in the text, a
six-state receiver allows Alice and Bob to counteract misalignment in their quantum channel; by contrast,
the advantage of a six-state sender is that Alice and Bob can generate a secure key regardless of the phase
ϕ in their shared entangled state |Ψ⟩AB = 1√

2

(
|H⟩A |V ⟩B + eiϕ |V ⟩A |H⟩A

)
.
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Figure 3.1: Conceptual diagram of the source and detector setup for the 4-6 protocol. The
“Source” component denotes Alice’s source for weak coherent pulses, and “PR” indicates a
polarization rotator, with which Alice selects the polarization state sent. The labels “BS”
and “PBS” refer to beamsplitters and polarizing beamsplitters, respectively. Beamsplitters
split the input beam into two output beams whose relative intensities are determined by
the reflectance of the beamsplitter; polarizing beamsplitters instead split the horizontal
and vertical polarizations of the incoming light into different paths. The labels “HWP”
and “QWP” indicate half wave plates and quarter wave plates, respectively, which perform
passive polarization rotations; specifically, a half wave plate rotates the D and A polariza-
tions to H and V respectively, and a quarter wave plate rotates R and L polarizations into
H and V respectively. Finally, the half-rounded square shapes indicate detectors dedicated
to measuring incoming light in the basis denoted on the detector.

On Alice’s side, the protocol is identical to BB84: she chooses to send states in the set
{|H⟩ , |V ⟩} with probability pAz and states in the set {|D⟩ , |A⟩} with pAx , where p

A
x +p

A
z = 1.

Bob has a setup that allows him to measure in all three polarization bases, meaning he
measures the states {|H⟩ , |V ⟩} with probability pBz , the states {|D⟩ , |A⟩} with probability
pBx , and the states {|R⟩ , |L⟩} with probability pBy , where p

B
x + pBy + pBz = 1.

The choice to measure in 3 bases addresses the problem of misalignment in the source.
Misalignment by real angle θ occurs when Alice sends the state cos θ |H⟩+sin θ |V ⟩, for some
small θ, instead of the state |H⟩ due to faulty polarization alignment between the source
and detectors. Measuring in all three polarization bases allows the parties to partially
counteract misalignment. This is because a three-basis measurement is tomographically
complete on the polarization qubit space, so the measurement statistics can be used to
find a unitary Rn̂(θ) representing misalignment along axis n̂ by angle θ.

The states that Alice sends lie in an infinite dimensional Fock space, but Bob’s mea-
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surement results need to eventually reduce to the observations γµi

a,b from Eqn. 3.5, which
correspond to the measurement results of a POVM with finite dimensions. Therefore, we
implement the flag-state squashing map described in Section 3.2.

In this framework, part of the work of squashing is done by our threshold detectors,
which map infinite-dimensional fock states to a binary outcome b ∈ {click, noclick}. For
the four-six protocol, we have six detectors, giving a total of 26 = 64 outcomes. We label
these outcomes with the six-digit binary number with a 1 for each detector that clicked
and a 0 for each detector that didn’t click. The order of detectors in this binary string is
ADLRVH. For example, if a multi-photon signal caused the D and H detectors to click
simultaneously, the detection is assigned the label 010001. These detection patterns can
then be binned into four classifications:

• Vacuum: Events where no detector fires, which is only the 000000 event.

• Single clicks: Events where exactly one detector fires. These are the six events
000001, 000010, 000100, 001000, 010000, and 100000.

• Double clicks: Events where both detecors in a basis click simultaneously (and no
other detectors click). These are the events 000011, 001100, and 110000.

• Cross clicks: Every other event, which involves a click in multiple measurement
bases, is classified as a cross click.

We note that this binning of detection events is a specific choice of coarse graining detection
statistics, and that other choices could be made. For example, double clicks and cross clicks
could be binned together as general multiphoton detection events, which would reduce
information about the basis choice. If we were to use the squashing map of [40], this would
be a loss of important information for mapping multiphoton detection events to single
clicks.

Using the flag-state squasher, Bob’s POVM post-squashing contains 11 POVM ele-
ments, labeled according to the vacuum event ⊥; single clicks D, A, R, L, H, and V ;
the double clicks DA, RL, and HV ; and cross clicks CC. With one flag for each POVM
element as well as the n ≤ 1 qubit subspace Γ≤1

k (note we have combined the zero-photon
subspace with its flag ⊥), these POVM elements are 13× 13.

We use the observable A in Eqn. 3.13 for subspace estimation; its expectation value is
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computed as the sum of the statistics corresponding to DA, RL, HV , and CC events.

Γ̃B
k =




Γ≤1
k 0

⊥
D

A
R

L
0 H

V
DA

RL
HV

CC




Implicitly, each symbol in the lower-right block of Γ̃≤1
k is the quantity δs,k, where s is the

specific POVM label, i.e. A = δA,k. The n ≤ 1 photon subspace POVM takes the form

Γ≤1
k = {pBx |D⟩ ⟨D| , pBx |A⟩ ⟨A| , pBy |R⟩ ⟨R| , pBy |L⟩ ⟨L| , pBz |H⟩ ⟨H| , pBz |V ⟩ ⟨V |}.

On the other hand, Alice’s POVM is simply

ΓA = {pAx |D⟩ ⟨D| , pAx |A⟩ ⟨A| , pAz |H⟩ ⟨H| , pAz |V ⟩ ⟨V |}.

Alice’s POVM elements have been reduced to two dimensions via a Schmidt decomposition.

With these POVMs defined, we can use Eqn. 2.7 to construct G and Eqn. 2.9 to
construct Z, the two maps necessary for key rate calculation.

3.4.2 3-state Protocol

The 3-state protocol we use in this work is based on [50]. A diagram of an experimental
setup for this protocol is presented in Figure 3.2. In this protocol, Alice only chooses from
three signal states to communicate with Bob, two in the same basis and one in a different
basis. Bob measures in all four modes corresponding to the two bases Alice sends in. In
our case, Alice chooses states from the set {|R⟩ , |L⟩} with probability pAy and sends |H⟩
with probability pAz = 1 − pAy . Bob measures the y-basis states |R⟩ , |L⟩ with probability
pBy and the z-basis states |H⟩ , |V ⟩ with probability pBz = 1− pBy .
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Figure 3.2: Conceptual diagram of the source and detector setup of the 3-state protocol.
See the caption of Fig. 3.1 for component descriptions.

Similar to the 4-6 protocol, we must account for and squash the detector measurements;
however, in the case of only four detectors, we have 24 = 16 outcomes, and our detector
order is LRHV. In this case, using the flag state squasher gives Bob POVM elements of
the form

Γ̃B
k =




Γ≤1
k 0

⊥
R

L
0 H

V
RL

HV
CC




,

where
Γ≤1
k = {pBy |R⟩ ⟨R| , pBy |L⟩ ⟨L| , pBz |H⟩ ⟨H| , pBz |V ⟩ ⟨V |}.

Alice’s POVM is
ΓA = {|R⟩ ⟨R| , |L⟩ ⟨L| , |H⟩ ⟨H|},

and thus we are able to construct the maps G and Z.

We note here that, in the experiment for which we developed our key rate analysis, the
source used produced thermal states, not weak coherent pulses. The only effect this has on
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our framework is to replace the Poisson distribution Pµi
(n) in Eqn. 3.5 with the probability

distribution corresponding to a thermal state with temperature T (or inverse temperature
β), as in Eqn. B.4. See Appendix B for a summary of thermal states in quantum optics.

3.5 Numerical Framework for QKD

We use the numerical framework derived in [1] for calculation of key rates of general QKD
protocols. This technique takes in a numerical description of a discrete variable protocol
as input and calculates a lower bound on the key rate. We also allow for the inclusion of
parameters, such as loss, misalignment, and depolarization, to alter the effect of quantum
channel between Alice and Bob. In this section, we briefly explain how a protocol is defined
as well as the process for computing key rate.

3.5.1 Input Specification

To facilitate a QKD calculation, a protocol must be specified. Protocols are specified
by describing the POVMs ΓA and ΓB that Alice and Bob have, respectively, with their
corresponding announcements. These specify the signal states Alice uses and the measure-
ment device Bob uses. The user must also define the key map g as well as the G and Z
maps, as these specify the implementation of announcements and key bit generation. This
information is also used for error correction purposes.

However, defining these quantities alone does not suffice for key rate calculation. It is
also necessary to know what the resulting channel statistics are, given Alice’s input state.
To this end, we use a set of statistics {γij} ∈ P(Σ) corresponding to the joint observables
ΓA
i ⊗ ΓB

j , where Σ is the alphabet formed by the Cartesian product of Alice and Bob’s
alphabets. These statistics and observables form constraints on Alice and Bob’s shared
state ρAB:

Tr
((
ΓA
i ⊗ ΓB

j

)
ρAB

)
= γij. (3.25)

These are known as equality constraints. In some cases, such as when finite effects or decoy
state analysis are considered, we instead have a set of bounds, {γUij} and {γLij}, on the
statistics such that

γLij ≤ Tr
((
ΓA
i ⊗ ΓB

j

)
ρAB

)
≤ γUij , (3.26)

which we refer to as inequality constraints. In a typical prepare-and-measure protocol
with decoy analysis or finite effects, there will be some subset ΩA ⊆ ΓA of k observables
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with corresponding equality constraints on Alice’s reduced system, since Eve cannot attack
it, with the remaining observables corresponding to inequality constraints. Due to their
separate treatment, however, we typically define Ω to be the set of observables with equality
constraints ω and use Γ to refer to only those observables cooresponding to inequality
constraints γ.

Simulated quantum channels can include parameters such as loss, misalignment, and
depolarization, and postprocessing maps such as dark counts can be applied to the statis-
tics, allowing us to analyze the performance of QKD protocols in a multitude of noise
scenarios. We are also able to import frequencies obtained from experimental observations
in QKD experiments, allowing for determination of key rate in QKD experiments.

3.5.2 Computing a Reliable Lower Bound

Given the inputs that allow us to compute G and Z, our goal is to find the solution to the
convex optimization problem

α = min
ρ∈S

f(ρ), (3.27)

where S is the appropriate constraint set (as defined, for example, in Eqs. 2.13, 3.10,
and 3.18). This is a convex optimization problem for which we need not an approximate
solution, but a reliable and, ideally, tight lower bound on the solution.

The key rate calculation happens in two steps.

In the first step, we construct an approximate solution to Eqn. 3.27. The SDP in this
case is

minimize f(ρ)

subject to Tr
(
(ΩA

k ⊗ IB)ρAB

)
= ωk ∀k (3.28)

γLij ≤ Tr
(
(ΓA

i ⊗ ΓB
j )ρAB

)
≤ γUij ∀i, j

ρ ⪰ 0.

Conceptually, we are searching for an eavesdropping attack that is close to optimal. This
solution ρ can be found in a number of ways, but our approach uses the Frank-Wolfe
algorithm [51]. We then compute the gradient of the objective function, ∇f(ρ), at this
point, and use it to linearize f .

In the second step, we first construct the linearized SDP, which effectively bounds f
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with a hyperplane, and then compute its dual, which we solve. The dual SDP is

maximize
∑

k

ωku
(eq)
k +

∑

i,j

γ
(U)
i,j + γ

(L)
i,j

2
u
(neq)
i,j −

γ
(U)
i,j − γ

(L)
i,j

2
z
(neq)
i,j

subject to − z
(eq)
k ≤ u

(eq)
k ≤ z

(eq)
k ∀k (3.29)

− z
(neq)
i,j ≤ u

(neq)
i,j ≤ z

(neq)
i,j ∀i, j

∇f(ρ)T ≥
∑

k

u
(eq)
k (Ωk ⊗ IB) +

∑

i,j

u
(neq)
i,j (ΓA

i ⊗ ΓB
j ), (3.30)

where u(eq) and z(eq) are vectors corresponding to equality constraints and u(neq) and z(neq)

correspond to inequality constraints, with each vector being identically indexed to its
corresponding set of observations {ωk} and {γi,j}.

This dual SDP is a maximization, meaning that even a suboptimal solution to the
SDP will be a valid lower bound on key rate. However, this method fails whenever ∇f
does not exist, which can happen when our channel statistics are “too ideal”: if we have
specific channel statistics that are exactly zero (such as γH,V in the case of BB84 with no
error), we are effectively at an edge of S, meaning ∇f may not exist. To ameliorate this,
G is modified to include a slight perturbation that maps points ρ on the boundary of S
to interior points. The work in Appendix C of [52] provides a small improvement to this
process through the use of tighter solver tolerances.
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Chapter 4

Methods for Improving Key Rate
Calculations

4.1 Block Diagonal Solver

Our first technique for optimizing key rate calculations is the block diagonal solver. Using
our framework, it is common for Alice and Bob to have auxiliary dimensions in their
POVMs to accommodate extra information about the signal exchange.

For example, to guarantee that the shared state Alice and Bob is normalized, any
protocol involving transmission loss will add an extra dimension corresponding to events
where a signal was lost. Thus, a qubit protocol with loss represent Bob’s state as a 3x3
block diagonal matrix with a 2x2 block corresponding to the qubit measurement and a 1x1
block corresponding to the extra loss dimension, denoted by ⊥:

ρB =


 σB

0
0

0 0 ⊥




As another example, when using the flag state squasher of Definition 3.2.2, we introduce
several additional dimensions to Bob’s system. In the case of the four-six protocol, using
the flag state squasher increases the size of Bob’s system from 3 to 13, as we include
flags for the single-photon polarization events D, A, R, L, H, and V as well as for the
double click events DA, RL, HV and cross clicks. Without any optimization, even in the
case that Alice’s system is only two-dimensional, our numerical calculations are optimizing
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over 26 × 26 density matrices. This is not an intractable problem, but it can cause the
Frank-Wolfe iteration to experience instability or take longer to converge.

We can improve this situation significantly by informing the underlying SDP solver
about the block diagonal structure of Alice and Bob’s shared state. When dealing with
numerical SDP solvers, when we declare a matrix variable of size m × n, exactly mn
variables are defined. We can place constraints on the matrix to reduce the number of
degrees of freedom in these variables. However, when we know that certain entries of a
matrix variable must be zero, it is inefficient to declare these entries as variables and then
constrain them to be zero; instead, where possible, it is preferable to not declare these
variables at all. This can be realized when the matrix variable is known to have block
diagonal structure.

For a block diagonal matrix A formed by k square blocks of size a1 × a1, a2 × a2, · · · ,
ak × ak, we say that A has block dimensions a⃗ = (a1, a2, · · · , ak). It is often the case
that we find block dimension vectors with a large number of repeated elements. In this
case, we use a superscript to denote the quantity of repeated elements. For example, we
could denote the block dimension vector (3, 2, 2, 1, 1, 1) as (31, 22, 13). If block diagonal

matrices A and B have block dimensions a⃗ and b⃗ respectively, then their tensor product
A⊗B may not, in general, be a block diagonal matrix, and even in cases where it is block
diagonal, the block diagonal structure may not be optimal. This means that there may be
an appropriate permutation of the rows and columns of A ⊗ B to produce an equivalent
block diagonal matrix with block dimensions a⃗⊗ b⃗, which guarantees that no entries that
must be zero are contained within these blocks.

As an example, let A and B be matrices with block dimensions a⃗ = (2, 1) = b⃗. In
the representations that follow, a block labeled with the number n is an n × n block of
possibly nonzero elements, and a block with no numbers is a block of only zeros. We can
symbolically describe the tensor product A⊗B with the following:

A⊗B =


 2

1


⊗


 2

1


 =




2 2

1 1

2 2

1 1

2

1




(4.1)

We note that the resulting matrix has block dimensions (6, 2, 1). In this case, we could
declare three matrix variables with sizes 6 × 6, 2 × 2, and 1 × 1. This would result in
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the declaration of 62 + 22 + 12 = 41 variables. However, within the 6× 6 block, there are
sixteen entries that must be zero, so declaring these entries as variables to optimize over
is inefficient.

With careful rearranging of rows and columns, we can instead convert this matrix into
an equivalent block diagonal matrix with block sizes (41, 22, 11) = (4, 2, 2, 1) = (2, 1) ⊗
(2, 1) = a⃗⊗ b⃗. That is, for some choice of a permutation matrix P , we have

P (A⊗B)PT =




2 2

2 2

2

2

1




, (4.2)

which clearly has block dimensions (4, 2, 2, 1). All potentially nonzero entries are contained
exactly within these blocks, and no entries that are guaranteed to be zero are inside of
any of the blocks, so by declaring four matrix variables one with size 4 × 4, two with
size 2 × 2, and one with size 1 × 1, this arrangement minimizes the number of variables
(42 + 22 + 22 + 1 = 25) we optimize. For this reason, we refer to a matrix of the form in
Eqn. 4.2 as an optimally block diagonal matrix.1

This permutation can be accomplished through the use of commutation matrices, which
commute subsystems in a tensor product.

Definition 4.1.1 (Commutation matrix). Given an m×m matrix A and an n×n matrix
B, the commutation matrix K(m,n) is the matrix that commutes the tensor product A⊗B.
That is,

K(m,n)(A⊗B)KT
(m,n) = B ⊗ A.

We note that this definition depends only on the dimensions of A and B, not on the values
of their entries.

Commutation matrices are commonly applied to quantum information as SWAP oper-
ators; however, our usage of these matrices has no physical effect and is purely a numerical
convenience, so we do not use the SWAP terminology.

1Although our example of an optimally block diagonal matrix has the resulting block dimensions in
descending order, this is not necessary for the purposes of improving numerical calculations.
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To perform a rearrangement such as that taking Eqn. 4.1 to Eqn. 4.2, we must commute
tensor products between each block of A and the entirety of B. This works because, for
matrices C and D, if C is an optimally block diagonal matrix and D is not block diagonal,
then C ⊗D is optimally block diagonal. In the following equation, we present an example
of this fact in the case that C has block dimensions c⃗ = (2, 1):

C ⊗D =




2

1



⊗D =




C1,1D C1,2D

C2,1D C2,2D

C3,3D



. (4.3)

Commuting individual tensor products between blocks in A and all of B guarantees that
the result is optimally block diagonal.

We can construct P through the direct sum of the commutation matrices between each
block of A and B:

P =

|⃗a|⊕

i=1

K(ai,dB), (4.4)

where we note that K(1,n) = In for any n ∈ N. This construction commutates individual
tensor products in each sub-block of A⊗B based on the block dimensions of A.

To apply this to key rate calculation, we first construct P given the block diagonal
structures a⃗ and b⃗ of Alice and Bob. We also compute the optimal block diagonal structure
of the joint state ρAB via c⃗ = a⃗⊗ b⃗. When we define ρ in the SDP for solving Eqn. 3.27, we
construct a ci×ci matrix σi for each i indexing c⃗, then compute the direct sum ρAB =

⊕
i σi.

At this point, ρAB is optimally block diagonal, but the observables ΓA
i ⊗ ΓB

j are not. It
is more computationally efficient to invert the block diagonal structure of ρAB than to
apply the transformation Φ(X) = PXP T to each POVM element. This does not undo
our original computational shortcut, as the reduced number of variables have already been
declared and entries that are known to be zero will not be changed.

In Table 4.1, we present the resulting computation time improvements for the three
protocols that we have discussed in this work: the BB84, Four-six, and 3-state protocols.
We consider both asymptotic and finite size regimes for each of these protocols. The
key rate calculation time is averaged over 30 key rate calculations with different channel
parameters for each calculation. As is expected, a greater reduction in the number of
optimization variables results in a greater speedup in key rate calculation.

We note that the block diagonal solver did not improve key rate in any protocol we
tested. Given a sufficiently large problem, however, the reduction in search space offered
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No Rearrangement Block Diagonal

Protocol Avg. time Variables Avg. time Variables Speedup a⃗ b⃗

Qubit BB84
Asymptotic

0.846 s 36 0.842 s 20 0.5% (21) (21, 11)

Qubit BB84
Finite

1.28 s 36 1.26 s 20 2% (21) (21, 11)

Decoy Four-six
Asymptotic

26.4 s 156 24.7 s 60 6% (21) (21, 111)

Decoy Four-six
Finite

19.6 s 156 18.9 s 60 4% (21) (21, 111)

Decoy 3-state
Asymptotic

11.7 s 900 10.3 s 108 12% (31) (21, 18)

Decoy 3-state
Finite

13.8 s 900 10.9 s 108 21% (31) (21, 18)

Table 4.1: Runtime comparison for the block diagonal solver. The average times are given
as an average over 31 different key rate calculations using different channel parameters
for each calculation. The variables column refers to the number of optimization variables
declared to the SDP solver. The a⃗ and b⃗ columns denote the block dimensons of Alice and
Bob’s respective systems; our block dimension convention is described in the paragraph
preceding Eqn. 4.1. The block diagonal structure of the POVMs for Bob in the four-six
and 3-state protocols can be found in Sections 3.4.1 and 3.4.2 respectively.

by the block diagonal solver can, in practice, improve stability and thereby improve the
numerically computed lower bound on key rate. However, this is purely a numerical result;
with perfect numerical representation and unlimited time, the block diagonal solver does
not improve key rate. This is a result of the fact that the block diagonal solver is merely
a rearrangement of the optimization problem, so it cannot affect the true lower bound on
key rate.

4.2 Constraint Types

In order to calculate key rates of QKD protocols, we construct sets of density operators
on Alice and Bob’s systems that must fall within constraints set by the channel statistics,

49



as explained in Section 3.5.1. The constraints explained there, which are used to define
the sets Q and Sµe in Section 3.3, are known as entrywise constraints, as they are a
set of inequality constraints for each expectation value on an entrywise basis. However,
the original generalized framework for finite size analysis of arbitrary QKD protocols [45]
defines the set Sµ1 as

Sµ1 =
{
ρAB : ∃F ∈ P(Σ) s.t. ∥Φ(ρAB)− F∥1 ≤ µ1 &

∥∥F̄ − F
∥∥
1
≤ t
}
,

where F denotes the set of observed statistics {γi,j} and Φ(X) =
∑

i,j Tr (XΓi,j) |i, j⟩ ⟨i, j|
is a diagonal matrix holding the computed expectation value of the observable Γi,j for each
candidate ρAB. These constraints are referred to as 1-norm constraints, as they make use
of the operator 1-norm for distinguishing probability distributions.

The finite variation bounds µe and µ1 for entrywise and 1-norm constraints, respec-
tively, determine the allowable distance between candidate density matrices found during
optimization and the observed statistics. They are computed as functions of the accep-
tance test security parameter εAT , the number of signals sent N , the expected statistics F̄
and the finite variation threshold t, and the testing probability ptest. We present here the
formulae for computing these bounds, leaving the derivations to their source works ([46]
for µe and [45] for µ1): for µe, we have

µe = min
k,µ′

{
µ′ ∈ [0, 1] : max

{
C↓

k(µ
′), C↑

k(µ
′)
}
= εAT

}
, (4.5)

where

C↓
k(µ) = 1− I1−(F̄k−t−µ)

(
N − ⌊N

(
F̄k − t

)
⌋ − 1, ⌊N

(
F̄k − t

)
⌋
)
, (4.6)

C↑
k(µ) = I1−(F̄k+t+µ)

(
N − ⌊N

(
F̄k + t

)
⌋, ⌊N

(
F̄k + t

)
⌋+ 1

)
(4.7)

and Ix(a, b) is the incomplete beta function; whereas for µ1, we have

µ1 =
√
2

√
ln(1/εAT ) + |Σ| ln(ptestN + 1)

ptestN
. (4.8)

In general, a smaller µ value gives higher key rate, the space Eve has for attacks is
reduced. However, since µ1 bounds a norm on the full statistics whereas µe bounds each
entry individually, their values alone are not comparable.

Instead, we present a plot comparing the loss scaling of key rates for the qubit-based
BB84 protocol using both types of constraints in Figure 4.1. We note that the key rate for
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Figure 4.1: Comparison of calculated key rate for the qubit-based lossy BB84 protocol using
entrywise constraints versus 1-norm constraints from previous works. We also demonstrate
key rate improvement from coarse graining statistics when using 1-norm constraints, which
is an undesirable effect. The set of statistics chosen for coarse graining is given in Eqn.
4.9; the fine statistics category uses the full bipartite statistics from Alice and Bob’s ob-
servations. Physical parameters: depolarization = 0.01, misalignment = 0, pz = 0.5 = px,
testing probability = 0.0288

entrywise constraints approaches the asymptotic limit at smaller N compared to 1-norm
constraints.

In this plot we also demonstrate another advantage of entrywise constraints over 1-norm
constraints, which is in the usage of coarse-grained statistics. Coarse-grained statistics are
statistics that are the result of a postprocessing map, known as a coarse graining map, on
the original statistics. When we do not use a coarse graining map to postprocess statistics,
we say we have fine-grained statistics. Coarse graining maps typically discard parts of
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the data that are less essential to characterizing Eve’s attack. As described in Section
II.B of [45], 1-norm constraints lead to improved key rate in the case of coarse grained
data, which is an undesirable effect. In Figure 4.1, we also demonstrate this effect by
comparing key rates in the situations of full statistics and coarse statistics for entrywise
and 1-norm constraints. In this case, our coarse graining map turns the full bipartite
statistics F = {γi,j}, where i ∈ {H,V,D,A, } and j ∈ {H, V,D,A,⊥}, into a new set of
statistics

F̃ = {γH,H , γH,V , γV,H , γV,V , γD,D, γD,A, γA,D, γA,A}, (4.9)

which are the statistics of the signals where Alice and Bob measure in the same basis.
This coarse graining map discards data, as do all coarse graining maps, so the key rate
improvement indicates a situation wherein less-complete data gives better constraints on
Alice and Bob’s state than complete data would, which is a significant drawback. With
1-norm constraints, optimizing the numerical key rate for a given protocol requires a com-
plicated optimization of coarse graining maps to balance the information loss from coarse
graining with the key rate improvement. As is evident in Figure 4.1, entrywise constraints
lead to an improvement in key rate when full statistics are used, which is the expectation
in the case of more complete information. This also simplifies the task of maximizing key
rate for a given protocol, as no optimal coarse graining map needs to be found.

Overall, we see that entrywise constraints lead to better key rates both by better scaling
as the number of signals sent N increases and by providing tighter bounds as the amount
of data Alice and Bob use increases.

4.3 Intelligent ε-Security Parameters

In determining the security of a QKD protocol, we must choose a small probability ε that
the protocol generates an insecure key. As described in Section 3.3, this parameter is a
combination of security parameters relating to the acceptance test εAT , error correction
εEC , privacy amplification εPA, and entropy smoothing ε̄. The soundness of the protocol
is given by the total security parameter ε = εEC +max{εAT , εPA + 2ε̄}. For a given total
security parameter ε, the individual security parameters may be chosen freely.

A näıve starting point is to choose these parameters uniformly, i.e. εAT = εEC = εPA =
ε̄ = ε/4. However, since εAT directly affects the finite variational bounds µe in Eqn. 4.5
and µ1 in Eqn. 4.8, it is advantageous to give it a larger slice of the ε-pie. Increasing εAT

reduces these bounds, which reduces the space to optimize over in a key rate calculation
and limits Eve’s potential attacks.
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However, arbitrarily weighting the security parameters is not as effective as performing
an optimization, which was done in [46]. We reproduce the derivation here. We first
choose εAT = εPA + 2ε̄, which is its the maximum allowable value with a fixed total
security parameter. Then ε = εEC + εPA+2ε̄. If we then set the key length penalties from
error correction and privacy amplification to be equal, we get (see Eqn. 3.19)

log
2

εEC

= 2 log
1

2εPA

(4.10)

⇐⇒ εEC = 8ε2PA. (4.11)

(Note that this choice is not known to be optimal, but was chosen for a simple relationship
between εEC and εPA) Since ε is fixed, it follows that for ε̄,

ε̄ =
1

2
(ε− εEC − εPA) (4.12)

=
1

2
(ε− 8ε2PA − εPA). (4.13)

We have now written every security parameter in terms of εPA, which allows us to compute
the derivative of Eqn. 3.19 with respect to εPA to find the value that maximizes finite key
rate:

dRN

dεPA

=
4

εPAN ln 2
− (16εPA + 1) log(1 + dim(X))

√
psift − t

ε̄
√
N log

(
2
ε̄2

) . (4.14)

Note that the optimization term in Eqn. 3.19 is independent of εPA, which significantly
simplifies this calculation. Let ε∗PA be the value of εPA satisfying

dRN

dεPA

∣∣∣∣
εPA=ε∗PA

= 0, (4.15)

which we calculate numerically. Finally, we choose the security parameters

εPA = ε∗PA (4.16)

εEC = 8(ε∗PA)
2 (4.17)

ε̄ =
1

2
(ε− ε∗PA(8ε

∗
PA + 1)) (4.18)

εAT = ε∗PA + 2ε̄, (4.19)

which can be tuned by the total security parameter ε alone. This distribution of security
parameters is empirically observed to be a good choice given our assumption about εAT ,
an assumption we give veracity to below.
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Figure 4.2: (a) Demonstration of the effect on key rate of security parameter choice in the
3-state protocol with N = 109 signals sent and using weak coherent pulses and decoy state
analysis. The six dotted lines represent different distributions of the security parameters,
all with the same total security parameter ε = 10−8. We also provide the asymptotic key
rate for this parameter regime, though our intention in this regime is not to approach the
asymptotic key rate. (b) Distribution of the ε-security parameters for the plot in (a).
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In Figure 4.2a we demonstrate the effect of security parameter choice on key rate for the
three-state protocol using weak coherent pulses and decoy state analysis. We have chosen
the number of signals sent N = 109 and focus on the region of greatest tolerable loss, a
regime in which we are far from the asymptotic limit. We note the noisiness of the plot
indicates these key rate calculations experience numerical instability, which is typically
inevitable in any protocol pushed to its limits, but also inherent to the 3-state protocol
due to Alice’s sending of only three states. The security parameters for each line in Figure
4.2a are represented in Figure 4.2b. We see that the total security epsilon is almost entirely
dominated by the contributions from εAT and ε̄.

When the security parameters are chosen optimally, as described above, we see an
improvement in key rate at high loss, and, of all scenarios we tested, the largest maximum
tolerable loss of 33.3 dB. In addition, Figure 4.2a supports our assumption that allowing
εAT to be large has the biggest key rate improvement, as the key rates using a security
parameter distribution biased towards εAT performed better than all other distributions
except for the optimal distribution.

It is interesting to note that at a loss value of 33.1 dB, the line corresponding to the
εAT bias rises above the optimal distribution due to the computed lower bound dropping
at that point for the optimal distribution. We suspect that this is merely a numerical
artifact, and we note that, in our experience, this is a common problem in numerical QKD
when protocols are pushed to their limits. Such a numerical artifact does not indicate a
point where the key rate is unreliable, as our key rate calculation method is guaranteed to
find a lower bound on the key rate. Thus, the erratic behavior is not indicative of the true
key rates, but indicates that the loss tolerance of the protocol is being pushed to its limit.
Evidently, there is gap between the true key rate and our lower bound. This gap could be
tightened through a higher accuracy solver, more run time, and optimizing the problem
input to avoid badly conditioned problems.

Finally, we also see how a suboptimal distribution of security parameters can reduce
key rate compared to a uniform distribution, as biasing towards any security parameter
other than εAT generally reduces key rate compared to the uniform security parameter
distribution.

4.4 Maximizing Key Throughput

In many QKD experiments, including ours utilizing the four-six protocol, Alice and Bob
communicate for a duration of time over which the quantum channel is not constant.
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For example, during a satellite overpass, the channel loss will vary. This is because the
channel loss is dependent on the amount of atmosphere the signal transmits through,
which is largest at the beginning and end of the overpass and smallest in the middle. If the
properties of the channel change during a QKD experiment, Eve’s attack is more difficult
to characterize, and we have to assume the worst case attack for the full block length. In
the case of high loss at the beginning and end of the overpass, this can result in zero secure
key.

If, instead, the data is collected and binned into time steps, then we can partition the
data such that the underlying channel is similar across all time steps within each partition.
We use the statistics obtained within each partition to set up a separate key rate calculation
for that partition. The total key length is then the sum of the key rate in each partition
multiplied by the total number of signals in this partition.

Maximizing the total number of secret key bits requires balancing the effects of partition
size. With a constant quantum channel, key rate is improved for large partitions due to
a smaller finite size effect cost, as we can place a tighter bound on the allowed statistical
fluctuation µe of the measured frequencies. However, the channel characterization can
change more over the course of a larger partition, which can negatively impact key rate
because a varying channel requires a larger acceptance set threshold t. As more time steps
are included in a partition, the key rate changes, increasing with partition size at small
sizes until reaching a maximum, after which point key rate decreases as partition size
increases. However, when we consider the number of key bits generated in a block of data,
the optimal width for bit throughput is much larger.

4.4.1 Channel Description

To demonstrate the benefits of our key throughput maximization approach, we present
results of maximized key for predicted from REFQ collaborations [53], which is building
a QKD source expected to fly on QEYSSAT [54]. We use data produced by researchers
from the University of Strathclyde from a Monte Carlo simulation of a quantum channel
through Earth’s atmosphere linking a satellite to a ground station. This data is binned
into 1-second time bins, which form the basis of our data blocks. A time bin block is
a collection of time bins whose data is averaged over, representing the communication
between the satellite and ground station during that time.

In Figure 4.3, we characterize the quantum channel that signals are sent over during
the satellite overpass by plotting the channel loss and the qubit error rates (QBER) in the
X and Z bases. Defining γa,b as the observed frequency for the event where Alice sends
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Figure 4.3: Characterization of the quantum channel for simulated satellite data.

state a and Bob measures state b, where a, b ∈ {H,V,D,A}, we have

QBERX =
γD,A + γA,D

γD,D + γD,A + γA,D + γA,A

and

QBERZ =
γV,H + γH,V

γH,H + γH,V + γV,H + γV,V
.

Though these quantities do not completely characterize all that is happening to the quan-
tum state, they give a sense of the noisiness of the channel.

4.4.2 Algorithms for Blocking Time Bin Data

We present the results of different optimizations of the time bin block length and key rate
in Figure 4.4. In this discussion, block lengths, which refer to the number of time bins in
a key rate caclulation, are denoted by ℓ, and the key rate computed using statistics from
a block of size ℓ is denoted K(ℓ). For discussion of runtime, we use n to represent the
number of time bin blocks and O(K) to represent the cost of one key rate calculation (i.e.,
the cost of computing the result of Eqn. 3.27). The optimization methods are summarized
below.

A. In Method A, we first choose a block size ℓ that is large enough that key rate can be
generated in the noisier section of the time bin data. Once ℓ is decided, we group every
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ℓ time bins in the overpass into a block for key rate calculation. This method requires
only one optimization to choose ℓ, but produces the fewest number of key bits of all
methods. An example of the results of this process is depicted in Figure 4.4a, which
uses ℓ = 5, giving us time bin blocks of 5 seconds. This method has a runtime of
nO(K).

B. In Method B, we choose a block length multiple m and, starting from the center of
the data, optimize the block size as a multiple of m (up to a limit mmax), i.e. we
compute the key rate of blocks centered on the middle of the data with sizes ℓ = m,
2m, 3m, mmaxm and choose the multiple of m which gives the highest key rate. This
process is repeated for blocks to the left and right of the center. This method can
significantly increase the number of key bits generated compared to Method A but
is more computationally expensive due to the optimization at each step. Figure 4.4b
demonstrates the results of this method on our data with m = 5, mmax = 8. This
method has a runtime of nmmaxO(K).

C. In Method C, we set ℓ = 1 and search for the choice of block size (between 1 and ℓmax)
that maximizes key rate for the given starting point of the data, starting with the
center point of the data. This method is slower than Method B, as it searches a larger
optimization space, but it can also improve key bit throughput significantly. See 4.4c
for the usage of this method on our data with ℓmax = 50. This method has a runtime
of nℓmaxO(K).

D. In Method D, we change the objective function we maximize. Instead of searching for
an ℓ that maximizes key rate, we choose an ℓ that maximizes the number of key bits
contributed by the block, computed as the product ℓK(ℓ). Compared to Method C,
this produces a larger central block size and similarly sized outer blocks. This choice of
optimization further increases the number of key bits generated compared to Method C.
It also is not computationally more complex than Method C, as the same optimization
routine is used with a different objective function. We present the results of Method
D on our data in Figure 4.4d, where ℓmax has been increased to 120. This method also
has a runtime of nℓmaxO(K).

E. Finally, in method E, we begin at the center and choose the block length ℓ that maxi-
mizes ℓK(ℓ), as in Method D. We then proceed outwards from the center by choosing
blocks of equal length on each side of the previously chosen block, combining the statis-
tics. For example, if the central block had a width ℓ0 = 7, combining time steps −3
to 3, the next block would include time steps −4 and 4, −5 and 5, · · · , continuing
on through the data. This method attempts to exploit the fact that the loss and the
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Method n Runtime Limit Parameter Worst Case (s) Throughput (bits)

A 51 nO(K) 2.04× 103 1.67× 106

B 30 nmmaxO(K) mmax = 8 9.60× 103 2.07× 106

C 28 nℓmaxO(K) ℓmax = 50 5.60× 104 2.33× 106

D 25 nℓmaxO(K) ℓmax = 120 1.20× 105 2.58× 106

E 20 nℓmaxO(K) ℓmax = 120 9.60× 104 2.47× 106

Table 4.2: Runtime results of our key throughput optimization methods. In the second
column, n refers to the number of time bin blocks. The values mmax and ℓmax represent
the number of problems solved to optimize each block; they are differentiated by their
relationships to the actual block size as described in the text. In the Worst Case column,
we have calculated the maximum amount of time to compute each method based on the
empirical estimate O(K) ≈ 40 s. In all cases, we used the block diagonal solver, entrywise
constraints, and an optimal ε-security parameter distribution, as described in previous
sections.

QBER in each basis are all symmetric around the central time, meaning time step t
and time step −t have similar noise characterizations. However, as seen in Figure 4.4e,
we found that this method produced fewer key bits compared to Method D despite
having the same runtime.

We found that, when computation time is not a concern, Method D produces the
highest key bit throughput compared to other methods. Interestingly, Method E did not
produce better key bit throughput despite being designed as an improvement to Method
D.

The absolute computation time of these methods depends highly on the protocol, the
implementation of decoy state analysis, and the method used to compute the key rate. In
our case, which we present in Table 4.2, the time to complete one key rate calculation was
found to have an average close to 40 seconds. We see that methods that optimize time bin
block size increase key throughput by up to a factor of about 0.5 at the cost of an increase
in runtime of up to two orders of magnitude.
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Figure 4.4: Results of different optimization strategies for maximizing key bit throughput
on time binned, simulated satellite data using a base block size of 1 second. Each bar
in these figures represents a block and is labeled with a number, which represents the
number of time bins in that block. The axis label for each block is the time step on which
the block is centered. The height of the block represents the key rate calculated on that
block, (a) Method A performs no optimization and simply uses a block of ℓ = 5 time steps
across the time-binned data. (b) Method B begins at the center time step and searches
through blocks of sizes that are multiples of m = 5, choosing the block length giving the
highest key rate and then proceeding similarly forwards and backwards through the data.
(c) Method C is the same as method B, but removes the limitation to block sizes that are
multiples of m = 5. This increases the search time, but also increases the resulting key
rate. (d) Method D chooses the block size that maximizes the bit throughput, calculated
as the product of key rate and block size. (e) Method E combines data into blocks that
are symmetric across time 0. In this figure, all non-central blocks have half of their data
at a positive time and half at a negative time; for example, the two blocks of length 7 on
either side of the central block are grouped together in a key rate calculation with a time
bin block size of 14.
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Chapter 5

Conclusion

In this work, we have presented the necessary background to introduce and justify quantum
key distribution, from the background of quantum mechanics and information theory to a
security proof and example protocols. We also covered the essentials of quantum optics as
is needed for the experimental implementation of QKD; explained important techniques
that are useful for interfacing with QKD experiments, namely decoy analysis and squashing
maps, which allow for simpler physical devices to be used in experiments at the cost of only
a minor increase in theory overhead; and discussed finite size effects in QKD, which must
be accounted for in any physical implementation. Two specific protocols were presented,
with which work has been done to interface between numerical key rate calculations and
experimental data.

We demonstrated an improvement in runtime previous numerical key rate calculation
methods through the form of our block diagonal solver, which reduces computational over-
head. The choice to use entrywise constraints was shown to improve key rate and reduce
undesirable scaling effects, such as improved key rate under coarse-grained statistics. Op-
timizing the distribution of security parameters for a given key rate calculation was also
explored, and it was seen that biasing towards a larger acceptance test security parameter
gives better key rate for a fixed total security parameter. Finally, we presented a number of
methods for maximizing key throughput in the case of data split into time bins, which is a
common experimental result. We saw that maximizing the key rate may be less beneficial
to key throughput compared to a lower key rate with a larger bin of data. However, we
found that the optimization algorithm yielding the largest key throughput also had a much
larger runtime, indicating the presence of a tradeoff based on resource requirements.

There is a great amount of work that remains to done to improve and optimize numerical
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key rate calculations.

Work has been done on adaptive key rate calculations, which allows for secure key rate
generation when the quantum channel Alice sends her state over has time variations, which
is the problem we addressed when attempting to maximize key throughput. Applying
adaptive key rate methods to this problem may allow for larger time bin block widths,
which could further increase key throughput.

Our block diagonal solver improvement is only one step out of a multitude of potential
improvements. Our solver applies block diagonal structure to only ρAB, which only sig-
nificantly affects the complexity of applying constraints including the quantity Tr (ΓρAB).
Further work can be done to apply block diagonal structure to the G map based on Al-
ice and Bob’s announcements, which could significantly reduce the cost of computing
D (G(ρ)||Z(G(ρ))). This would likely have a larger effect than our improvement, as the
map G increases the dimensions of ρ, so a block diagonal reduction will naturally be more
efficient. Vectorization of the construction of the block diagonal ρAB could also improve
the efficiency, as could defining Alice and Bob’s joint POVM in optimal block diagonal
structure to eliminate the need for rearrangement.

Another direction for future optimization is improvements on decoy analysis. This
direction is twofold: first, decoy analysis is oftentimes the primary computational sink for
any protocol that uses it, so a faster way of performing decoy analysis could significantly
reduce time to calculate key rates; and second, more precise decoy methods, such as those
that optimize over channels using Choi matrices, can provide tighter bounds that increase
key rate.
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Appendix A

Field Quantization in Quantum
Optical Theory

In this appendix, we present the foundations of quantum optical theory from the starting
point of classical electromagnetism. Our presentation follows the presentation in [26].

A.1 Field Quantization

From classical electromagnetic theory we get Maxwell’s equations, which describe the dy-
namics of electric and magnetic fields produced by currents and charges.

Consider an electromagnetic excitation inside a one-dimensional cavity with effective
volume V . The cavity has perfectly conducting walls and no currents or charges within.
The resulting electric and magnetic fields must form standing waves in the cavity. In this
case, Maxwell’s equations for E and B, the electric and magnetic fields, respectively, can
be written as

∇× E = −∂B
∂t

∇×B = µ0ϵ0
∂E

∂t
∇ ·B = 0

∇ · E = 0.

In these equations, µ0 and ϵ0 are the permittivity and permeability of free space, respec-
tively.
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A.1.1 Single-mode Fields

If we assume that the cavity extends in the z-direction, then a single-mode solution to the
given equations and boundary conditions has the following form

Ex(z, t) = cωq(t) sin(kz) (A.1)

By(z, t) =
µ0ϵ0
k
cω q̇(t) cos(kz), (A.2)

where cω =
√

2ω2

V ϵ0
is a constant determined by the frequency ω, k is the wave number

k = ω/c, and q(t) is a factor that holds all time-dependence and has dimensions of length.

The classical Hamiltonian can be obtained from the total electromagnetic energy of
this field

H =
1

2

∫ (
ϵ0E

2(r, t) +
1

µ0

B2(r, t)

)
dV (A.3)

=
1

2

∫ (
ϵ0E

2
x(z, t) +

1

µ0

B2
y(z, t)

)
dz (A.4)

=
1

2

(
q̇2 + ω2q2

)
, (A.5)

which we recognize as the Hamiltonian for a harmonic oscillator if we define q̇ ≡ p:

1

2

(
p2 + ω2q2

)
. (A.6)

With appropriate scaling factors, the electric and magnetic fields play the roles of
canonical position and momentum.

Now, to move to the quantum mechanical picture, we appeal to the correspondence
principle to replace the canonical variables p and q with operators p̂ and q̂. By nature
of their conjugate relationship, these operators must satisfy the canonical commutation
relation

[q̂, p̂] = iℏÎ . (A.7)

The Hamiltonian operator is then

Ĥ =
1

2

(
p̂2 + ω2q̂2

)
. (A.8)
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The operators q̂ and p̂ are directly related to the electric and magnetic fields and thus
are observable quantities, meaning they are Hermitian operators. We can introduce non-
Hermitian annihilation and creation operators â and â†, defined as

â =
1√
2ℏω

(ωq̂ + ip̂) (A.9)

â† =
1√
2ℏω

(ωq̂ − ip̂). (A.10)

These operators reveal the discrete, or quantum, nature of this system. Loosely speak-
ing, applying the creation operator â† to a state corresponds to adding a photon to it;
Conversely, applying the annihilation operator â corresponds to removing a photon from
it.

The creation and annihilation operators obey the commutation relation

[â, â†] = Î . (A.11)

We can re-write Eqn. A.8 in terms of these operators as

Ĥ = ℏω
(
â†â+

1

2

)
(A.12)

= ℏω
(
n̂+

1

2

)
, (A.13)

where, in the second equation, we have defined the number operator n̂ ≡ â†â. This is
because, for each integer n ≥ 0, there is an eigenstate |n⟩ of Ĥ which satisfies the equation
Ĥ |n⟩ = En |n⟩ (for eigenenergy En) that is also an eigenstate of n̂ with eigenvalue n.

n̂ |n⟩ = n |n⟩ (A.14)

Combining Eqs. A.13 and A.14 and the eigenvalue equation gives

En = ℏω
(
n+

1

2

)
.

This reveals that a system in the state |n⟩ has a collection of n quanta of energy, each with
energy ℏω, with an additional ℏω/2 of energy regardless of the number of energy quanta

73



present. The operators â and â† respectively remove or add one quanta of energy, as seen
in their behavior when acting on energy eigenstates:

â |n⟩ =
√
n |n− 1⟩ (A.15)

â† |n⟩ =
√
n+ 1 |n+ 1⟩ (A.16)

In an electromagnetic field, these quanta are referred to as photons. This basis is
known as the Fock basis and uses optical states of definite photon number. As a basis, it is
a complete set, meaning any photon state can be expressed as a superposition of number
states

|ψ⟩ =
∑

n

Cn |n⟩

for some set of weights {Ci}∞i=1 ⊂ C.

Note that we can recover operators for the electric and magnetic fields in terms of â
and â†:

Êx(z, t) =

√
ℏω
ϵ0V

(
â+ â†

)
sin(kz) (A.17)

B̂y(z, t) = −i
√

ℏω
ϵ0V

(
â− â†

)
cos(kz). (A.18)

A.1.2 Multi-mode Fields

So far our analysis has only concerned single-mode fields, but extension to multimode fields
is not prohibitively difficult. We can consolidate the electric and magnetic fields through
use of the vector potential A(r, t), as

E(r, t) = −∂A(r, t)

∂t
(A.19)

and
B(r, t) = ∇×A(r, t). (A.20)

Working in the Coulomb gauge, where

∇ ·A(r, t) = 0, (A.21)
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A(r, t) satisfies the wave equation

∇2A =
1

c2
∂2A

∂t2
. (A.22)

The wave equation for A is solved generally by a superposition of plane waves

A(r, t) =
∑

l

el
(
cle

i(kl·r−ωlt) + c∗l e
−i(kl·r+ωlt)

)
, (A.23)

where l indexes independent modes, el is a real polarization vector, and cl is the complex
amplitude of the field. From this equation for A, we can find E and B using Eqs. A.19
and A.20:

E(r, t) = i
∑

l

ωlel
(
cle

i(kl·r−ωlt) − c∗l e
−i(kl·r−ωlt)

)
(A.24)

B(r, t) =
i

c

∑

l

ωl(k̂l × el)
(
cle

i(kl·r−ωlt) − c∗l e
−i(kl·r−ωlt)

)
(A.25)

It can then be shown that the Hamiltonian of this system, using Eqn. A.3, can be
expressed in terms of the amplitudes cl as

H = 2ϵ0V
∑

l

ω2
l |cl|2. (A.26)

In order to quantize this system, we need to introduce canonical variables pl and ql for
each mode, defined by the equations

ql =
√
V ϵ0(cl + c∗l ) (A.27)

pl = −iωl

√
V ϵ0(cl − c∗l ), (A.28)

for which the Hamiltonian takes the form

H =
1

2

∑

l

(p2l + ωlq
2
l ). (A.29)

From this point, we proceed analogously to before, applying the correspondence prin-
ciple to replace classical variables pl and ql with operators p̂l and q̂l, which obey the
commutation relations

[q̂l, q̂l′ ] = 0 = [p̂l, p̂l′ ] (A.30)

[q̂l, p̂l′ ] = iℏδl,l′ . (A.31)
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Note δa,b is the Kronecker delta, defined to be 1 if a = b and 0 otherwise.

We proceed to define creation and annihilation operators for each mode,

âl =
1√
2ℏωl

(ωlq̂l + ip̂l) (A.32)

â†l =
1√
2ℏωl

(ωlq̂l − ip̂l), (A.33)

which satisfy the commutation relations

[âl, âl′ ] = 0 = [â†l , â
†
l′ ] (A.34)

[âl, â
†
l′ ] = iℏδl,l′ . (A.35)

The quantized Hamiltonian can be written in terms of âl and â
†
l as

Ĥ =
∑

l

ℏωl

(
â†l âl +

1

2

)
(A.36)

=
∑

l

ℏωl

(
n̂l +

1

2

)
, (A.37)

where the number of excitations for mode l is given, analogously to before, by the
operator n̂l = â†l âl.

A.1.3 Coherent States

Coherent states are sufficiently useful to QKD that we provide the primary introduction
to them in Section 2.3.2. In this section of the appendix, we simply show that taking the
expectation value of the electric field operator on a coherent state yields

⟨α|Êx(r, t)|α⟩ = i

√
ℏω
2ϵ0V

(
âei(k·r−ωt) − α∗e−i(k·r−ωt)

)
(A.38)

= 2|α|
√

ℏω
2ϵ0V

sin(ωt− k · r− arg(α)), (A.39)

which aligns with what we would expect for the electromagnetic field of classical light in a
cavity (see Eqn. A.1).
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The expectation value of energy for a coherent state is given by

⟨α|Ĥ|α⟩ = ℏω ⟨α|â†â|α⟩ = ℏω|α|2, (A.40)

where we have discarded the constant vacuum contribution ℏω
2
. From this, we define the

mean photon number of a coherent state to be µ = |α|2.
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Appendix B

Thermal States

It is also useful to consider the representation of radiation emitted by a blackbody in
quantum optics. We can model a black body using a cavity at temperature T containing
radiation at thermal equilibrium with the walls, with a small hole in one of the walls. From
statistical mechanics, the probability that the thermal mode is excited to the nth energy
level is

p(n) =
exp(−En/kT )∑
n exp(−En/kT )

,

where k is the Boltzmann constant. This corresponds to the density operator,

ρth =
exp(−Ĥ/kT )

Tr
(
exp(−Ĥ/kT )

) , (B.1)

where Ĥ is the Hamiltonian of Eqn. A.13.

Using the fact that
∑

n |n⟩ ⟨n| = Î, an expression for ρth in terms of Fock states is

ρth =
1− exp(ℏω/kT )
exp(−ℏω/2kT )

∞∑

n=0

exp(−ℏωn/kT ) |n⟩ ⟨n| , (B.2)

which tells us that the probability of finding n photons in a thermal state ρ with termper-
ature T is

PT (n) = (1− exp(−ℏω/kT )) exp(−ℏωn/kT ). (B.3)

With the substitution β = ℏω
kT
, where β functions as an inverse temperature, this simplifies

to
Pβ(n) =

(
1− e−β

)
e−βn. (B.4)
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This distribution has a larger width than the Poisson distribution, meaning that for a
Poisson distribution and a thermal distribution with small mean and similar values of
P (1), the thermal distribution will have a larger number of n ≥ 2 photon number states.

We can still perform decoy analysis and thereby prove security in QKD, however. This
is accomplished by applying the results of Section 3.1.2, replacing instances of the Pois-
son distribution Pµi

(n) with corresponding instances of the thermal state photon number
distribution Pβ(n) from Eqn. B.4.
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