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Abstract
This paper describes a field-programmable gate array (FPGA) implementation of a fixed-point low-density lattice code 
(LDLC) decoder where the Gaussian mixture messages that are exchanged during the iterative decoding process are approxi-
mated to a single Gaussian. A detailed quantization study is first performed to find the minimum number of bits required 
for the fixed-point decoder to attain a frame error rate (FER) performance similar to floating-point. Then efficient numeri-
cal methods are devised to approximate the required non-linear functions. Finally, the paper presents a comparison of the 
performance of the different decoder architectures as well as a detailed analysis of the resource requirements and through-
put trade-offs of the primary design blocks for the different architectures. A novel pipelined LDLC decoder architecture is 
proposed where resource re-utilization along with pipelining allows for a parallelism equivalent to 50 variable nodes on 
the target FPGA device. The pipelined architecture attains a throughput of 10.5 Msymbols/sec at a distance of 5 dB from 
capacity which is a 1.8× improvement in throughput compared to an implementation with 20 parallel variable nodes without 
pipelining. This implementation also achieves 24× improvement in throughput over a baseline serial decoder.

Keywords  Low-density lattice codes · Gaussian mixture · Fixed-point arithmetic · Serial and parallel FPGA architecture · 
Hardware architecture · Pipelining

1  Introduction

Low-density lattice codes (LDLCs) are a special class of 
lattice codes proposed by Sommer et al. [1], whose con-
struction and intended applications are substantially different 
from that of more familiar error-correcting codes such as 
low-density parity check (LDPC) codes, Polar, and Turbo 
codes. Lattice codes in general have shown great theoreti-
cal promise to exploit interference, possibly leading to sig-
nificantly higher rates between users in multi-user networks. 
Research on LDLCs has concentrated on demonstrating the 
theoretically achievable performance limits of LDLCs, and 

until now there has been no reported hardware implementa-
tion, mainly due to the complexity of message-passing for 
LDLC decoding.

In this paper we investigate a field-programmable gate 
array implementation (FPGA) of a fixed-point decoder for 
low-density lattice codes. LDLCs are lattice codes whose 
construction was shown to allow for iterative decoding via 
message passing.

While linear error-correcting codes, e.g., LDPC and 
Polar codes, are based on finite fields, lattice codes are their 
Euclidean-space analog. In binary linear error-correcting 
codes, bit sequences are encoded into binary codewords 
before modulation, and the modulo-2 sum of any two binary 
codewords is again a binary codeword. In contrast, a lattice 
code directly outputs a point (i.e., lattice point) in Euclidean 
space, and the real-vector sum of two lattice points is again a 
lattice point, i.e., lattice codes have algebraic structure. Lat-
tice codes have been shown to be effective for applications 
such as mitigating multi-user channel interference using the 
compute and- forward framework, and dirty-paper coding, 
by exploiting a code structure that is not present in error 
correcting codes [2–8].
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LDLCs have a sparse (low-density) H matrix (inverse 
generator matrix) that renders iterative decoding (also called 
message-passing) an efficient decoding method for LDLCs 
[1, 9]. Despite this, implementation of the algorithm pre-
sented in [1] is not practical, either in software or hardware. 
This is primarily due to the fact that when the channel is 
additive-white-Gaussian-noise (AWGN), the messages 
exchanged between check and variable nodes in the iterative 
decoding algorithm are continuous functions, i.e., Gaussian 
mixtures. This is in contrast to many decoding algorithms 
for error-control codes, e.g., LDPC decoders, where mes-
sages can readily be reduced to single numbers such as log-
likelihood ratios.

In prior work on LDLCs [1, 10–13], the continuous func-
tions are either sampled and quantized or represented as 
Gaussian mixture messages denoted by parametric lists. In 
[1], each message is quantized to 1024 samples, which pro-
vides good accuracy in decoding but results in large storage 
and computational load. In [10, 12, 13], the messages are 
represented by Gaussian parametric lists of means, variances 
and coefficients. Nevertheless, as the decoding iterations 
progress, the number of components in the Gaussian mix-
tures grows exponentially and the implementation eventually 
has extremely large storage requirements and computational 
cost. To limit the number of components in the mixtures, 
Gaussian reduction algorithms are used to reduce the size of 
the messages after each decoding iteration. These methods 
reduce the message size significantly; however, even with 
all these reduction techniques, LDLC decoding is costly.

The emphasis of the literature to date in [1, 9–17] is on 
demonstrating theoretically achievable performance limits of 
LDLCs; not much work has been done towards a hardware 
implementation of LDLC decoding. Our work contributes 
in this direction with the aim to achieve a hardware imple-
mentation of a decoder for LDLCs. Several approximations 
are required to make this decoder feasible in hardware. How-
ever, these could result in a loss of performance.

In this work, the messages exchanged in iterative decod-
ing are reduced to a single Gaussian using a moment-
matching method in each decoding iteration [14]. Thus, only 
the mean and variance of a single Gaussian is exchanged 
between a check node and a variable node at each itera-
tion. Since integer computations are inherently simpler than 
floating-point operations, a fixed-point arithmetic imple-
mentation is preferred. An important aspect of a fixed-point 
implementation is to determine the minimum number of bits 
for the required range and precision. A detailed quantiza-
tion study is presented to find this minimum word length 
for fixed-point arithmetic. Efficient numerical techniques are 
then applied to approximate the required non-linear func-
tions (division and exponentiation).

Previously we reported a serial LDLC decoder in FPGA, 
and in order to exploit the parallelism of iterative decoding, 

several parallel message computation blocks were included in 
the decoder [18]. Here we present a novel pipelined approach 
to implement the single-Gaussian LDLC decoder. With this 
design we achieve more than ∼ 24× improvement in through-
put over the two-node serial implementation.

The outline of this paper is as follows. Section 2 defines 
lattice codes and LDLCs, and describes the properties and 
constraints for the LDLC H matrix. In Section 3, the itera-
tive decoding algorithm is presented for a single-Gaussian 
decoder. Section 4 presents the implementation details of the 
single-Gaussian LDLC decoder in fixed-point arithmetic. 
Specifically 4.2 provides details of the quantization study 
and simulation results, followed by 4.3, which provides the 
key aspects of the decoder architecture, FPGA hardware 
implementation and results. Conclusions are provided in 
Section 5.

2 � Basic Definitions

Below, we provide a definition of LDLCs and some perfor-
mance limits.

Definition 1  An n-dimensional lattice, Λ ⊂ ℝn , is defined as 
all the integer linear combinations of n given linearly inde-
pendent basis vectors, g

1
,… , g

n
∈ ℝ

n . Taking the basis vec-
tors as the columns of the generator matrix G, (i.e. 
G = (g

1
,… , g

n
)) the lattice Λ is given by

Definition 2  A low-density lattice code is an n-dimensional 
lattice code defined by a non-singular generator matrix that 
satisfies the condition that the constraint matrix, H = G−1 , 
is sparse.

Following [1], the H matrix is chosen to be a regular 
Latin-square matrix, i.e., a matrix where every row and col-
umn has the same degree, d, of non-zero values h̄1, h̄2,… , h̄d 
except for possible sign flips and change of order. The sorted 
sequence of values h̄1 ≥ h̄2 ≥ … ≥ h̄d > 0 is termed as the 
generating sequence.

In [19], Poltyrev suggested a generic definition of capac-
ity for lattice codes with no power restriction. According 
to this, capacity for lattice codes is defined as the maximal 
possible codeword density that can be recovered reliably at 
the receiver. This generalized capacity implied that there 
exists a lattice G of high enough dimension n that enables 
transmission with arbitrarily small error probability, if and 
only if the channel noise variance,

where e = 2.71828... is Euler’s number (also known as the 
natural constant).

(1)Λ = {x ∈ ℝ
n
∶ x = Gb, b ∈ ℤ

n
}.

𝜎
2
<

n
√
� det(G)�2∕2𝜋e,
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Thus the maximal performance limit for the lattice codes 
can be given by �2

=
n
√
� det(G)�2∕2�e.

Since for the designed LDLCs, | det(G)| = 1 , the theoreti-
cal noise (performance) limit is �2

= 1∕2�e . For an AWGN 
channel without power restrictions, it is possible to quantify 
distance from capacity as the distance of the noise variance 
�
2 from 1∕2�e . To compute this, we first take the ratio of 

�
2 and 1∕2�e , i.e., �2

∕(1∕2�e) and then convert the ratio to 
decibels (dB). All decoder frame error rate (FER) perfor-
mance curves in this paper are thus measured with respect 
to the distance from capacity, −10 log10(2�e�2

) (dB).
For this work, an H matrix of degree 3 is generated with 

the sequence {1, 1√
3
,

1√
3
} , and further normalized to obtain 

n
√
� det(H)� = 1 . The H matrix construction follows the algo-

rithm described in [1].

3 � LDLC Iterative Decoding Algorithm

The sparse nature of the bipartite graph corresponding to 
the H matrix makes iterative message passing the preferred 
method for decoding LDLCs [1]. The AWGN channel model 
for LDLCs is given as

where x is the transmitted lattice codeword (i.e., x = Gb ) , y 
is the received noisy message and z is a vector of independ-
ent and identically distributed (i.i.d.) Gaussian noise samples 
with common variance �2.

In the parametric LDLC decoders, lists of means, vari-
ances and coefficients corresponding to the Gaussian mix-
ture messages are exchanged between check nodes and vari-
able nodes during the iterative decoding process [10, 12, 14]. 
For the single-Gaussian LDLC decoder implemented in this 
work the mixture messages are reduced to a single-Gaussian 
and only the mean and variance are exchanged.

A Gaussian mixture, GM(t), with N components is 
defined by

where mk , Vk and ck are, respectively, the mean, the variance, 
and the mixing coefficient/weight of the kth component. A 
Gaussian mixture can then be efficiently represented by a set 
of triples {(m1,V1, c1), … , (mN ,VN , cN)} . If the coefficients 
sum to 1, i.e., 

∑N

k=1
ck = 1 , then the Gaussian mixture is nor-

malized. A single Gaussian is a special case of a Gaussian 
mixture when N = 1 , and can therefore be represented by 
the triple (m, V, c). If the single Gaussian is normalized, 
i.e., c = 1 , then this can be reduced to the mean-variance 
tuple (m, V).

y = x + z,

(2)GM(t) =

N�

k=1

ck√
2�Vk

e
−

(t−mk )
2

2Vk ,

Some intermediate steps in the single-Gaussian LDLC 
decoder generate Gaussian mixtures; however these mixtures 
are reduced to a single normalized Gaussian before message 
passing. Thus only mean-variance pairs are exchanged as mes-
sages between check nodes and variable nodes.

The basic steps of the iterative decoding algorithm for a 
single-Gaussian decoder are summarized below.

3.1 � Initialization

At the start of the decoding process, each variable node xk 
receives the single-Gaussian message from the AWGN chan-
nel given by (yk, �2

) . Here yk is the mean and �2 is the variance 
of the single Gaussian. This initial message is sent along all 
the edges connected to this variable node.

3.2 � Basic Iteration: Check Node Message

Each check node has d input messages coming along the 
edges connected to it with weights hp , p = 1,… , d as shown 
in Fig. 1a where hp is one of the h̄ ’s with a possible sign flip.

The incoming messages are single Gaussians given by 
(m

�
,V

�
) , where � = 1, 2… , d . The mean of the outgoing 

check node message along the edge with weight hp is obtained 
by first multiplying for � ≠ p , the mean of the �th message 
with h�

hp
 , then summing the results over � ≠ p and a sign flip. 

The variance of the outgoing check node message along the 
edge with weight hp is obtained by first multiplying for � ≠ p , 
the variance of the �th message with h

2
�

h2
p

 , then summing the 

results over � ≠ p . The outgoing message is therefore the 
single-Gaussian (mp,Vp) given by,

(3)mp = −

∑

�≠p

h
�
m

�

hp
,

(4)Vp =

∑

�≠p

h2
�
V
�

h2
p

.

(a) Check node message. (b) Variable node message.

Figure. 1   Illustration of all the incoming messages and the outgoing 
message along the edge with weight h3 at (a) check node and (b) vari-
able node.
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3.3 � Basic Iteration: Variable Node Message

As shown in Fig. 1b, each variable node receives d single-
Gaussian messages along its edges denoted by (m

�
,V

�
) for 

� = 1, 2… , d.
There are two primary steps performed at the variable 

nodes, a 1) periodic extension step and a 2) product step. 

1)	 The periodic extension step generates periodic Gauss-
ian mixtures from the incoming messages. In [1], this 
step is performed as a part of check node operations 
and the variable node receives the periodically extended 
Gaussian mixtures. However, in the single Gaussian 
decoder, the messages received from the check nodes 
are single-Gaussian messages and the periodic exten-
sion step occurs at the variable nodes [14]. This signifi-
cantly reduces the storage requirements for the check 
node messages. In the periodic extension step, the mean 
of the incoming check node message along an edge with 
weight hl is first periodically extended as below, 

 where i denotes the ith extension. In principle, the varia-
ble i can take any integer value, but in practice the range is 
restricted so that the Gaussian components are near the chan-
nel message. This restriction is reasonable as the channel 
message is close to zero when evaluated far from its mean.

2)	 The outgoing variable node message along the edge with 
weight hp is computed by taking the product of the chan-
nel message, denoted by (m0,V0) , and all the Gaussian 
mixtures, except the mixture associated on that edge. 
This is then further reduced to a single-Gaussian using 
the second moment-matching-method [20].The prod-
uct of two Gaussian mixtures is calculated by the pair-
wise multiplication of each possible pair of components 
between the two mixtures. The product of two Gauss-
ians is a scaled Gaussian. If two Gaussian components 
with triples (m̃1, Ṽ1, c̃1) and (m̃2, Ṽ2, c̃2) are multiplied, 
the resultant Gaussian is given by the triple (mF,VF, cF) 
calculated as, 

(5)m
�
(i) = m

�
+

i

h
�

,

(6)VF =

Ṽ1Ṽ2

Ṽ1 + Ṽ2

,

(7)mF = VF

( m̃1

Ṽ1
+

m̃2

Ṽ2

)
,

(8)cF =

c̃1c̃2√
2𝜋(Ṽ1 + Ṽ2)

e
−(m̃1−m̃2)

2

2(Ṽ1+Ṽ2) .

3.4 � Final Decision

After every iteration, we estimate the decoded integer vector 
b̂ . To get b̂ , first an estimate ŵk of the transmitted codeword 
element xk for k = 1, 2… , n is computed. The variable, ŵk is 
the mean of the single Gaussian obtained after the multiplica-
tion of the channel message and all the incoming check node 
messages (without omitting any) at each variable node (as 
described in Section 3.3) and the moment matching step [14].

Then b̂ is estimated as

where ⌊⌉ denotes coordinate-wise integer rounding [21].
The decoded integer vector, b̂ , is computed after every 

decoding iteration and the iterative decoding process is termi-
nated as soon as decoding is successful. Early stopping reduces 
the average number of iterations required for decoding and is 
commonly used in iterative decoding [17, 22–25].

4 � LDLC Decoder Implementation

The product-step at the variable node generates a Gaussian 
mixture that must be reduced to a single Gaussian before it can 
be sent along an outgoing edge of the node. The single Gauss-
ian approximation for the Gaussian mixture is computed using 
the second-moment-matching method, now described below.

For a Gaussian mixture message denoted by triples of 
mean, variance and mixing coefficients, i.e., by {(m1,V1, c1), 
… , (mN ,VN , cN)} , the second-moment-matched single Gauss-
ian, (m

��
,V

��
) is obtained by first normalizing the mixture 

according to rk = ck∕(
∑N

k=1
ck) , and then parameters m

��
 and 

V
��

 are calculated as

For improved numerical stability, at the variable nodes, the 
smallest allowable variance is limited to a certain minimum 
value denoted ������ . In the literature a ������ of 0.03�2 
was adopted [12]; however, based on our simulations, ������ 
can be increased to 0.1�2 without any loss in decoder per-
formance, where � is the standard deviation of the received 
Gaussian channel message. In this work, any variance less 
than 0.1�2 is increased back to 0.1�2.

Moreover, all variances in this implementation are meas-
ured relative to the channel noise variance, e.g., for V = 2 in 
the implementation the actual variance is 2�2.

(9)b̂ = ⌊H ⋅ ŵ⌉,

(10)

m
��

=

N∑

k=1

rkmk,

V
��

=

N∑

k=1

(rkVk + rk(mk − m
��

)
2
).
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Simulation results presented for a single-Gaussian 
decoder are for random lattice codewords in the integer 
range b ∈ L

n , where L = {−2, −1, 0, 1, 2}.

4.1 � Number of Decoding Iterations

In [1, 11, 12, 14], the reported performance results for the 
LDLC decoder are for 200 decoding iterations. However, in 
order to obtain reasonable decoding latency as well as limit 
power consumption, fewer decoding iterations are preferred. 
Therefore finding a suitable number of decoding iterations is 
an important step towards a feasible hardware.

Figure 2 shows the decoder performance versus number 
of decoding iterations at a distance from capacity of 3.5 dB 
as well as 5 dB. As the graph suggests, with 20 decoding 
iterations, the decoder can achieve comparable performance 
to 200 decoding iterations, but in significantly less run time.

4.2 � Fixed‑Point Quantization Study

In the design space of this work, a fixed-point arithmetic 
is sufficient to implement the decoder in hardware (dem-
onstrated further in the section). However, a key aspect of 
fixed-point arithmetic is to determine the range and precision 
requirements of the design.

In fixed-point representation, every number has a fixed 
word length of W bits that consists of Wi integer bits, Wf  
fractional bits and a sign bit. In this paper fixed-point repre-
sentations are denoted by Q Wi.Wf  , e.g., Q10.8 indicates 10 
bits to represent the integer range and 8 bits for the fractional 
precision, and one sign bit (19 bits total). 

1)	 Approximation of non-linear functions: The fixed-point 
implementation has two non-trivial non-linear functions: 
division and exponentiation. 

a)	 Approximation of division function using Newton-
Raphson method: A straightforward method to 
approximate division in fixed-point is integer long 
division. However, integer long division computa-
tion, i.e., ����(u, a) = (u ≪ Wf )∕a can be expen-
sive in terms of time and hardware. As an alterna-
tive, ���� can also be implemented as

where ��_����������(a) is the reciprocal of a cal-
culated using the Newton-Raphson (NR) method, 
which is then multiplied with u using the fixed-point 
multiplication function, ����.

	   For the Newton-Raphson method, convergence 
to the correct solution depends critically on a rea-
sonable initial guess. In a fixed-point decoder, 
this initial guess is obtained using a look-up table 
(LUT). To reduce the look-up table size and mini-
mize approximation errors, we do not approximate 
the reciprocal of a, but instead, the fixed-point num-
ber a is written as q × (s ⋅ 2P) where P is an integer, 
q is ±1 and s is a non-negative fixed-point number 
with 1 ≤ s < 2 . The reciprocal of s is then calculated 
using ��_���������� . This reciprocal is multiplied 
with u, scaled back by 2−P and further multiplied 
with q to get the value of u/a.

	   In this method, the reciprocal of s is always in 
the range 0.5 < 1∕s ≤ 1 , which can be represented 
precisely enough with a small number of fractional 
bits.

	   The division function is thus implemented in the 
fixed-point LDLC decoder as (See Fig. 3),

	   Simulations were performed to find an optimal 
LUT size to get a reasonable initial guess for the NR 
approximation and ensure high accuracy of the divi-
sion result with a minimum number of iterations. 
Specifically the performance with LUT sizes of 4, 8 
and 16 entries were computed by numerical simula-
tion using the procedure described below. For LUT 
sizes of 8 and 16 entries, similar FER performance 
is obtained after two NR iterations while one NR 
iteration results in performance loss compared to 
2 iterations. For a LUT size of 4 entries, FER per-
formance is 0.2 dB worse than that of the 8 entry 
LUT even after 2 or more iterations. Based on these 

(11)����(u, a) = ����(u, ��_����������(a)),

(12)
����(u, a) = q × (����(u, ��_����������(s)) ≫ P).

Figure. 2   Frame error rate performance for different number of 
decoding iterations at distance from capacity of 3.5 dB and 5 dB.
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results, we create a LUT with only 8 numerical val-
ues.

	   In order to obtain these 8 initial values, the range 
of s, i.e., 1 to 2, is divided into 8 equal sub-intervals: 
1, 11

8
 , 12

8
 , 13

8
 , 14

8
 , 15

8
 , 16

8
 , 17

8
 , 2. Then, the mid-points 

of these sub-intervals are computed. As we want to 
calculate the reciprocal of s, the mid-points of these 
sub-intervals is obtained by their geometric means. 
For example, the geometric mean of 11

8
 and 12

8
 is 

(1
1

8
× 1

2

8
)
1∕2 . Then we compute the reciprocal of this 

geometric mean, i.e., (11

8
× 1

2

8
)
−1∕2.

	   In a similar fashion, the other entries of the 
look up table are computed, i.e., (1 × 1

1

8
)
−1∕2, 

(1
1

8
× 1

2

8
)
−1∕2,… , (1

7

8
× 2)−1∕2 , and converted to a 

fixed-point representation that is used for the rest of 
the decoder.

	   For a fixed-point number, s, we use the 3 bits after 
the leading 1 (since 1 ≤ s < 2 ) as the index for the 
LUT to obtain the initial guess. The complexity of 
this method is constant time, i.e., O(1) [26].

b)	 Approximation of exponential function using LUTs: 
A direct implementation of the exponential function 
in FPGA has large resource requirements and design 
complexity. However LUT-driven methods make 
an exponential implementation feasible in limited 
FPGA resources.

	   In an LDLC decoder implementation, the expo-
nent is always non-positive. Specifically, we approx-
imate exp(−a∕2) for a ≥ 0 , where the division by 
two accounts for the factor of 1

2
 in the exponent of 

(8).
	   For ease of computation, the exponential function 

exp (−a∕2) is written as the product of three easily 
computable terms.

	   In particular, a is decomposed into 3 parts as

where P0 < P1 < P2 are the positions of the least 
significant bit of each part and I0, I1, I2 are inte-
gers that depend on a such that 0 ≤ I0 < 2P1−P0 , 
0 ≤ I1 < 2P2−P1 and 0 ≤ I2 < 2Wi−P2 . Figure 4 illus-
trates the relationship between a and I0, I1 and I2 . 
Since I0 is comprised of P1 − P0 bits, its range is 
from 0 to 2(P1−P0) − 1 . Likewise I1 is comprised of 
P2 − P1 bits and its range is from 0 to 2(P2−P1) − 1 
and I2 comprises of Wi − P2 bits with its range from 
0 to 2(Wi−P2) − 1.

	   Then the exponential is given as,

	   Decomposing a into three smaller parts thus 
allows for three smaller look-up tables instead of a 
single large lookup table to approximate the expo-
nential.

	   We choose P0 , P1 and P2 carefully, e.g., P0 = −Wf  , 
P2 is the smallest positive integer such that 
exp (−2P2∕2) underflows the fixed-point representa-
tion of the LDLC decoder and P1 = ⌊(P0 + P2)∕2⌋ . 
Due to the choice of P2 , if I2 > 0 then exp (−a∕2) 
is approximated as 0. Otherwise I2 = 0 and thus 
exp (−I22

P2∕2) = 1 and only two small look-up 
tables are sufficient to compute exp (−I12P1∕2) and 
exp (−I02

P0∕2).
	   The first lookup table contains 2(P2−P1) entries to 

approximate exp(−I12P1∕2) for possible I1 values, 
i.e., 0 to 2(P2−P1) − 1 . Likewise, the second lookup 

(13)a = I22
P2 + I12

P1 + I02
P0 ,

(14)

exp (−a∕2) = exp (−I22
P2∕2)

× exp (−I12
P1∕2) exp (−I02

P0∕2).

Figure. 3   Flow-chart for the division function approximation in fixed-
point arithmetic using Newton-Raphson (NR) method, used at the 
variable nodes.

Figure. 4   Diagram to show the relationship between a and I0 , I1 and 
I2 as used in the approximation of the exponential function in fixed-
point arithmetic at the variable nodes (reproduced from [18]).
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table approximates exp(−I02P0∕2) for all possible 
2(P1−P0) values of I0.

2)	 Optimal word length and Newton-Raphson (NR) itera-
tions for fixed-point decoder: In order to find the optimal 
word length for the fixed-point representation, simula-
tions are performed for different values of Wi and Wf  . 
Figure 5 compares the frame error rates for different val-
ues of Wf  while keeping Wi large and varying the number 
of NR iterations for block length n = 1000. Figure 6 
compares decoder performance for different values of 
Wi while Wf  is fixed.

	   A key observation in Fig. 5 is that at 4.5 dB the FER 
for Q14.8 with 2 NR iterations is 0.13 dB better com-
pared to Q14.18.

	   The LDLC decoder is a sub-optimal decoder because 
it is both iterative and parametric in nature. Therefore, 
it is anticipated that some approximations could poten-
tially improve the decoder performance.

	   To understand this behaviour, simulations were per-
formed with a floating-point decoder where the compo-
nents of the Gaussian mixture message at the variable 
node that have coefficients less than a certain threshold, 
denoted ����� �� , are removed from the Gaussian mixture. 
As illustrated in Fig. 7, the FER does not monotonically 
increase with ����� �� , but instead achieves a minimum at 
approximately ����� �� ≈ 0.03 . Based on these simulation 
results, an appropriate choice of Wf  helps the decoder by 
naturally underflowing the fixed-point representation of 

small coefficients. However if Wf  is further reduced, then 
performance deteriorates.

	   A similar trend has previously been seen in pub-
lished fixed-point Turbo decoders, where the quantiza-
tion methodology leads to fixed-point implementations 
where the bit error rate (BER) can be slightly better than 
the BER of floating-point implementation [27].

Figure. 5   Frame error rate for different numbers of fractional bits 
and Newton-Raphson iterations for n = 1000 and Wi = 14 where 
−10 log10 2�e�

2 is distance from the theoretical noise limit [1] (repro-
duced from [18]).

Figure. 6   Frame error rate for different numbers of integer bits and 
two Newton-Raphson iterations with n = 1000 and Wf = 8 (repro-
duced from [18]).

Figure. 7   Effect of removing small coefficients from Gaussian mix-
ture in floating point LDLC decoder at −10 log10 2�e�2 = 4 dB, 
n = 1000 (reproduced from [18]).
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	   Figure 6 plots the effect of a different number of 
integer bits on the decoder performance. The results 
reported here demonstrate that the decoder performance 
degrades with smaller Wi due to the computation errors 
that occur from the saturation in arithmetic operations, 
primarily multiplication.

	   Based on the results in Figs. 5 and 6, a word length of 
21 with 12 integer bits, 8 fractional bits and a sign bit is 
an appropriate choice for a fixed-point representation. 
As seen in Fig. 6 the single-Gaussian, Q12.8 (with 2 NR 
iterations) achieves an FER of 3 ⋅ 10−3 at a distance of 5 
dB from capacity that is slightly better than the floating-
point decoder.

4.3 � LDLC Decoder FPGA Implementation

We now present our FPGA implementation results includ-
ing 3 architectures: A) an architecture with a single check 
node and a single variable node, B) an architecture where 
parallelism and hardware resources are exploited to imple-
ment 20 variable nodes and a single check node and C) an 
architecture with a single check node and with two-stage 
pipelining to achieve an effective parallelism equivalent to 
50 variable nodes.

Architecture A) A single check node and a single vari-
able node: A fully parallel LDLC decoder implementation 
is large and does not fit on the target reconfigurable device. 
However, there are possible approaches to build the com-
plete decoder on a target FPGA device that can fit a few 
check and variable nodes.

To better understand the issues involved in an LDLC 
decoder implementation and make key estimates, e.g., 
resource requirements and performance, as a baseline design 

Fig. 8 presents a serial architecture for the decoder. This 
implementation contains one check node and one variable 
node. The check node and variable node messages gener-
ated during decoding iterations are stored in two separate 
single-ported memory banks. Read-only-memories (ROMs) 
are used to store check node connections to variable nodes 
and vice-versa, according to the H matrix. The edge weights 
of the connections are stored in a separate ROM.

In order to compute the outgoing messages from a check 
node, ck , the message routing network looks up the vari-
able nodes connected to ck and the edge weights associated 
with these connections from the respective ROMs. Then, 
it fetches the corresponding means and variances from the 
variable node message memory and the check node mes-
sage processing block computes the outgoing messages. The 

Figure. 8   Block diagram of a 
two-node serial single-Gaussian 
LDLC decoder with one check 
node and one variable node 
(reproduced from [18]).

Figure. 9   Block diagram for the mean computation of the outgoing 
messages at the check node. The mean is computed by first multiply-
ing each incoming message with its respective edge weight (except 
the one on the outgoing edge), summing the results and further divid-
ing the result of the summation by the outgoing edge weight along 
with a sign flip.
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variable node message processing block receives the check 
node messages and computes the outgoing variable node 
messages in a similar fashion.

Check node message processing block  The check node 
message processing block consists of check node unit that 
performs convolution of the incoming messages according 
to (3) and (4). Figures 9 and 10 show the mean and vari-
ance computations of the outgoing check node messages 
that can be implemented with only a few adaptive logic 
modules (ALMs), digital signal processing (DSP) blocks 
and registers. Figure 11 depicts the timing diagram for the 
check node message processing block in architectures A, 
B, and C.

Variable node message processing block  The variable node 
message processing block consists of a variable node unit, 
��� . As discussed in Section 3.3, at each variable node unit, 
d − 1 periodically extended check node messages and the 
channel message are multiplied and the resulting product is 
reduced to a single-Gaussian using second moment-match-
ing. To compute the variable node message efficiently, a 
forward-backward recursive algorithm is used [10].

The algorithm is initialized with the channel message. 
Let’s denote the periodically extended messages with 
���������

�
 where � = 1, 2… , d and the Gaussian mixture 

reduction of Section 4 (including the normalization step) 
by ���.

The pseudo-code for this forward-backward recursion 
algorithm is given in Algorithm 1. Here “ ⋅ ” denotes product 
of Gaussian mixtures as described in Section 3.3. 

Once the forward-backward messages, FW
�
 and BW

�
 

for � = 1, 2… , d are computed, the outgoing variable node 
messages, i.e., (m

�
,V

�
) for � = 1, 2… , d are obtained as,

The estimate of the transmitted codeword, ŵk is the mean of 
the computation, ���(FW2 ⋅ BW1).

The top-level architecture of the variable node unit is 
presented in Fig. 12. The timing diagram for the variable 
node message processing block in architecture A is shown 
in Fig. 13.

The computation of FWj⋅���������j in Algorithm  1 
computes the product of a single Gaussian ( FWj ) with a 
Gaussian mixture ( ���������j ). The single Gaussian is nor-
malized. Thus, it has a single component of weight ‘1’. The 
Gaussian mixture is obtained by periodically extending a 
normalized single Gaussian. Thus all the weights of the mix-
ture are equal and are also ‘1’. In addition, all the variances 
of the mixture are equal to that of the single Gaussian that 
was periodically extended and hence, are all equal. Therefore, 
the term c̃1 c̃2√

2𝜋(Ṽ1+Ṽ2)

 in (8), which must be computed for each 

component in the product FWj⋅���������j , is the same.
Since the components in the product are explicitly nor-

malized in the Gaussian mixture reduction step that fol-
lows the computation of the product, to reduce complexity, 
for the computation of the product FWj⋅���������j , the 
weights in (8) are instead replaced with

(15)(m
𝓁
,V

𝓁
) = FW

𝓁
⋅ BW

𝓁
.

Figure. 10   Block diagram for the variance computation of the outgo-
ing check node messages.

Figure. 11   Timing diagram 
of the check node message 
processing block in architecture 
A , B and C.



	 Journal of Signal Processing Systems

1 3

Similarly, the weights in (8) are also replaced with (16) for 
the computation of the product BW

(d−j+1) ⋅ ���������(d−j+1).
This serial implementation was designed as a proof-of-

concept for LDLC decoding in hardware. However, more 
than one check node and/or variable node with design 

(16)cF = e
−(m̃1−m̃2)

2

2(Ṽ1+Ṽ2) .
optimizations can provide considerable improvement in 
decoding speed.

Architecture B) A single check node and 20 variable 
nodes: The variable node unit described above requires 
140 clock cycles for message computation while the check 
node takes a single cycle, and thus the variable node limits 
the throughput. Several parallel variable nodes can render 
variable-node message computation faster and boost decoder 
throughput significantly. To exploit the inherent parallelism 
of iterative decoding we implement 20 parallel variable 
nodes with the available resources on the target FPGA (of 
course, a larger FPGA could potentially fit even more vari-
able nodes).

Figure 14 shows the decoder architecture where the check 
node message processing block has a single check node and 
the variable node message processing block contains 20 
parallel variable node units denoted by ���� , with inputs 
�������{�} and outputs, ��������{�} for p = 0, 1, 2… , 19 . 
Figure 15 shows the timing diagram for the variable node 
message processing block in architecture B. The message 
routing network fetches check node messages for one vari-
able node every clock cycle and the incoming messages are 

Figure. 12   High-level archi-
tecture of a variable node unit 
( ��� ) for d = 3 . At a variable 
node, xk , the incoming check 
node messages are periodically 
extended, FW

�
 and BW

�
 for 

� = 1, 2… , d are computed in 
���� computation block and 
finally the outgoing variable 
node messages, (m

�
,V

�
) for 

� = 1, 2… , d and estimate for 
transmitted codeword, ŵk ; is 
obtained in the ���� computa-
tion block.

Figure. 13   Timing diagram of the variable node message processing 
block in architecture A.
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driven to �������{�} for p = 0, 1, 2… , 19 in 20 clock cycles 
sequentially.

Architecture C) A single check node and with two-stage 
pipelining to achieve an effective parallelism equivalent to 
50 variable nodes:

After additional data flow and design optimizations, in 
the variable node unit shown in Fig. 12, the ���� computa-
tion block requires 109 clock cycles while the calculations 
in the ���� computation block take 10 clock cycles. This 
implies that one ���� computation block can be sufficient 
to process the output from 10 ���� computation blocks 
(when pipelined), which could provide significant hardware 
savings.

For efficient variable node message computation, we 
implement a two-stage pipeline in the variable node mes-
sage processing block. The first stage of the pipeline 
consists of 10 ���� computation blocks that compute 

the FW
�
 and BW

�
 messages corresponding to 10 variable 

nodes, xk for k = 0, 1, 2… , 9 , according to Algorithm 1. 
Further, the second stage block reads-in stage 1 output 
and computes outgoing variable node messages accord-
ing to (15) corresponding to a variable node. The design 
components, primarily adders and multipliers, are reused 
in different clock cycles within the two pipeline stages. 
For convenience, this pipelined architecture is termed as 
����������.

The resources on the target FPGA are sufficient to imple-
ment 5 parallel ���������� blocks ( ����������� for 
p = 0, 1, 2… , 4 ), achieving a parallelism equivalent to 50 
variable node units ( ���� ), thus rendering significantly 
reduced computation time for each variable node message 
generation overall. Figure 16 shows the top-level block dia-
gram of the variable node message processing block used in 
architecture C that consists of 5 ���������� blocks.

Figure. 14   Top-level block dia-
gram of the LDLC decoder with 
one check node and 20 parallel 
variable node units (reproduced 
from [18]).

Figure. 15   Timing diagram of 
the variable node message pro-
cessing block in architecture B.
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The sub-blocks of the pipelining inside the ���������� 
blocks are shown specifically for ����������� . Here, 
10 forward-backward message computation blocks, i.e., 
����{�}����������� with inputs, ���{�}����������� and out-
puts, ��{�}����������� for p = 0, 1, 2… , 9 comprise the first 
stage of the pipeline. The second stage consists of the ����� 
computation block with input, ��� and output, ����.

Figure 17 shows the timing diagram for the various sig-
nals used in the two pipelining stages of the ����������� 
block. The resource requirements and throughput of the vari-
able node message processing block used in architectures 
A, B, and C, are provided in Tables 1 and 2 respectively. 
Based on Tables 1 and 2, it is evident that parallelism and 
pipelining boost throughput of the variable node message 
processing block significantly. However, it is achieved at 

extra hardware cost. Figure 18 shows a high-level block dia-
gram for decoder architecture C, that consists of a single 
check node and 5 ���������� blocks.

4.4 � Performance and Resource Usage

Decoder architectures A, B and C are implemented on 
an Intel FPGA (Arria 10, 10AX115N3F45I2SG) and the 
resource usage is provided in Table  3. All three archi-
tectures achieve the frame error rate shown in Fig. 6 at a 
clock frequency of 125 MHz. If the decoder is operated 
at a higher frequency, some critical paths in the design 
may have timing issues. Therefore, 125 MHz is the rec-
ommended fastest clock for our architectures in the target 
technology.

Figure. 16   High-level diagram 
of the variable node mes-
sage processing block used in 
architecture C, that consists 
of 5 ���������� blocks. The 
two stage pipelining used in 
���������� blocks is shown 
specifically for �����������.
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Figure 19 shows the throughput comparison for these 
architectures. Architecture C attains a throughput of 10.5 
Msymbols/sec at a distance of 5 dB from capacity which is a 
24× improvement over the baseline implementation A and a 
1.8× improvement over architecture B. Note that the decoder 
throughput varies over signal-to-noise-ratio (SNR) values 
due to early termination in the iterative decoding process.

To the best of our knowledge, there is no prior work 
on hardware implementation of LDLC decoders, and thus 
no direct comparator other than our previous paper [18]. 
Compared to [18], the work presented here achieves an 
overall improvement of 1.8× in decoding throughput over 
[18].

Figure. 17   Timing diagram of 
���������� block used in vari-
able node message processing 
block of architecture C. The 
waveforms are shown particu-
larly for ����������� block.

Table 1   Resource requirements of the variable node message pro-
cessing block in architecture A, B and C.

Resource Arch. A Arch. B Arch. C

ALM 8151 321128 406281
Dedicated Regs. 6464 146260 229380
DSPs 160 1509 1507

Table 2   Throughput (clock 
cycles/message) of the variable 
node message processing block 
in the architectures A, B and C.

Architecture Throughput 
cycles/mes-
sage

A 140
B 9.2
C 3.9
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The storage requirement for this implementation is 
O(n ⋅ d) and the computational complexity is O(n ⋅ d ⋅ R) 
where n is block length, d is degree for the LDLC design 
and R is number of the periodic extensions.

5 � Conclusion

This paper has described the performance results and design 
strategies used for a fixed-point single-Gaussian LDLC 
decoder implementation in hardware. After developing 
approaches to address the complexities of the hardware 
implementation, e.g., efficient approximations of the non-
linear functions and a comprehensive quantization study, 
we have achieved a successful FPGA implementation of a 
decoder for low-density-lattice codes.

With the detailed knowledge gained from the serial and 
partially parallel single-Gaussian LDLC decoder imple-
mentations, this work can be extended to an LDLC decoder 
where messages exchanged are Gaussian mixtures. As an 
initial FPGA implementation of LDLC decoders, this work 
is key to future hardware implementations (FPGA or ASIC) 
of the LDLC decoders.
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Figure. 18   Top-level architec-
ture for the LDLC decoder with 
a single check node and with 
two-stage pipelining to achieve 
an effective parallelism equiva-
lent to 50 variable nodes.

Table 3   Resource usage of 
different architectures

Resource A 1 check node, 1 var. 
node

B 1 check node, 20 var. 
nodes

C 1 check node, parallelism 
equivalent to 50 var. nodes

ALMs (lut and reg) 12,560 328,490 411,436
Dedicated Registers 11,038 169,843 300,280
DSPs (27x27 mult.) 171 1,518 1,518
BRAMs 30 12 47

Figure. 19   Throughput comparison of different decoder architectures 
for n = 1000 and clock frequency of 125 MHz (modified from [18]).
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