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ABSTRACT 

This article is the second part in our machine learning series. Part 1 provided a general overview of machine 

learning in nuclear medicine. Part 2 focuses on neural networks. We start with an example illustrating how 

neural networks work and a discussion of potential applications. Recognizing there is a spectrum of 

applications, we focus on recent publications in the areas of image reconstruction, low-dose PET, disease 

detection and models used for diagnosis and outcome prediction. Finally, since the way machine learning 

algorithms are reported in the literature is extremely variable, we conclude with a call to arms regarding the 

need for standardized reporting of design and outcome metrics and we propose a basic checklist our 

community might follow going forward. 
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Learning Objectives 

1. Provide an introduction to neural networks. 

2. Discuss potential applications of neural networks with illustrative examples and figures. 

 

Knowledge Acquisition 

Upon review of this paper, the reader should be familiar with neural networks and should have an 

understanding of where they can be helpful in clinical practice.  



INTRODUCTION 

Part 1 in our series on machine learning (ML) in nuclear medicine (1) provided a general 

overview of ML algorithms and their basic components. While applications of ML algorithms such as 

random forests (2-4) and support vector machines (5,6) continue to proliferate, sophisticated ML 

algorithms such as artificial neural networks (ANNs) are becoming ubiquitous. Further, ANNs using 

radiomic data are increasingly common in nuclear medicine applications. Radiomic data typically refers 

to quantitative data from medical images, such as texture values enabling assessment of tumour 

heterogeneity, extracted either manually or using a computer-based approach (7). Part 2 provides an 

expanded explanation of ANNs, one of the most powerful ML models used today. After a brief review of 

ANN concepts introduced in Part 1, we illustrate how ANNs work using an example and follow this with 

a brief discussion of clinical applications.  

 

BRIEF REVIEW FROM PART 1 

ANNs are advanced ML algorithms (Fig. 1) typically used in classification (discrete-output) or 

regression (analog-output) applications. Although ANNs have existed for decades, they have only 

recently become common in medical imaging, in part due to technological advances as well as access to 

large datasets for training. Data input to an ANN is processed in steps, where each step consists of a layer 

of neurons. A neuron is a computational unit that: 1. Produces a weighted summation of input data, 2. 

Applies a bias, and 3. Computes a nonlinear transformation of the result. The output data from each layer 

passes to the next layer until the final layer produces the output result. The architectural design of an 

ANN describes the relationship between the various neurons and layers. ANNs are typically supervised, 

using tagged data to learn weights and biases, and can be simple including only a few layers and one 

output, or complex. More complex ANNs generally have greater capabilities but at higher computational 

cost. Complex ANNs are used for deep learning. Designing an ANN of optimal complexity to solve a 

specific task and obtaining access to sufficient high-quality input data, is challenging. Today, ANNs are 



among the most common ML algorithms used in nuclear medicine and understanding how they work is 

key. 

In this text we try to convey the structure and purpose of an ANN. To illustrate, the next section 

starts with an example of a simple ANN (with one layer) that could detect a handwritten letter from an 

input image. We then discuss more complex ANNs and their applications in nuclear medicine. For 

reference, common ML terms are summarized in Table 1. Further, when we write “nuclear medicine” 

please note we implicitly include PET, PET/CT and PET/MR. 

 

ANNs: UNDERSTANDING BY EXAMPLE 

In this example, we design and train an ANN with only one layer to recognize a handwritten 

image of the letter ‘X’ (Fig. 2). The input to the ANN is an 8x8 (2-dimensional) black-and-white image or 

64-pixel array/vector (a1-a64), where each pixel has value: -1 (white) or 1 (black) (Fig. 2A and Fig. 2B). 

The output (f) is an analog number between 0 and 1 that reflects the likelihood the input is letter ‘X’. For 

example, if the input is an image of ‘X’, the output should be 1; if the input is another letter it should be 0. 

Our ANN is trained using a dataset including several input images that have been tagged as representing 

‘X’ or not (Fig. 2B). The ANN output is calculated by: 1. Multiplying each input by a corresponding 

weight (w1-w64), 2. Adding the products together (assuming all biases are 0), and 3. Passing the result 

through a nonlinear function (here a sigmoid function) called an activation function (Fig. 2C).  

ANNs can have many types of activation functions, including a sigmoid function and a rectified 

linear unit (ReLU) (Fig. 2D). Each activation function constrains the output in some manner, eg. the 

sigmoid function constrains outputs to be between 0 and 1; the ReLU zeroes out negative numbers (Fig. 

2E). These nonlinear functions are key for optimizing ANN performance.  

Before the ANN can process new images, it must learn the values for the weights through 

training. To do this, the algorithm uses a cost (or loss) function that calculates how closely the model 

predicts the output for a particular training case. The ultimate goal of training is to minimize the cost 

function. A common cost function is to compute the error (E) between the trained (ftrain) and desired 



output (f), possibly the absolute difference between them (the square of the difference, and classification 

accuracy, are also common cost functions): 

 

E = |f – ftrain|    (1). 

 

The values of w1-w64 that give the best performance are obtained by iterating through the training cases: 

The weights are initialized, a training case is input to the ANN, the error function is calculated, the 

weights are adjusted to nudge the ANN towards a lower cost, and a new training case is presented to the 

ANN. The process is done iteratively until the learned weights give a satisfactory cost.  

Weight adjustment is often done using a gradient-descent algorithm, such as stochastic gradient 

descent. The gradient of the cost function is calculated, essentially the partial derivative (ie. slope) of the 

cost with respect to each weight. Once the partial derivatives are known, the weights are adjusted in the 

direction of steepest descent. However, there is no guidance as to how much weight adjustment is needed. 

Too little adjustment and little progress is made towards the end-goal; too much adjustment and the 

output might degrade. Consider a function E(x), where we are trying to identify a minimal point (Fig. 3). 

If we start from point A, we should move right. However, a large step (point D) moves us too far.  

For our ANN to detect the letter “X”, we derive the partial derivative of E with respect to each 

weight. First, we express the output f based on the input pixels ai and weights wi: 
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Each partial derivative shows the amount by which its corresponding weight should be adjusted per 

learning iteration. 

We now train the ANN using 24 cases (handwritten samples): 12 of the letter ‘X’ and 12 of other 

letters. After training, the weights look like the 8x8 matrix shown in Fig. 4. The grayscale representation 

of weights in our ANN resembles an ‘X’ (Fig. 4A). This makes intuitive sense: since the weights reflect a 

probability map, an image of the weights resembles what the ANN is trained to detect. 

 

Complex ANNs: Number of Layers and Architecture Design 

ANNs capable of deep learning typically have many layers (8). Consider the processing involved 

with your brain reading this text as an example of this multi-step processing. It might go as follows: 1. 

Input an image through your eyes to your brain, 2. Your brain identifies strokes and puts strokes together 

determining how they form a pattern, 3. You recognize the pattern (or character), 4. You assemble 

neighboring characters and identify words, 5. Words come together into sentences, 6. Meaning is 

extracted from sentences, and 7. You process information and perform an analysis. While a programmer 

interested in deep learning might create a complex ANN, the task done at each layer is often not 

predefined by the programmer. Rather, the ANN operates for all intents and purposes as a “black-box”. 

An ANN with more layers might be able to learn more but would also likely necessitate higher 

computational power possibly using graphics processing units (GPUs) or a remote server over the cloud. 

Some ANNs have over 100 layers, and millions of weights to optimize. The challenge is to build an ANN 

to solve a problem with a small number of operations, through optimizing architectural design. 

 

Convolutional Neural Networks 

Convolutional neural networks (CNNs) are a type of ANN where layers are structured in such a 

way that a convolutional kernel can be applied, which is important for image processing. A convolution is 

a common mathematical function, and a kernel refers to a matrix of weights that can be either pre-set, or 



more commonly learned in the case of a CNN with access to training data. CNNs take a series of medical 

images, often single or multi-modality, as input, perform operations, calculate weights and biases for 

different layers and optimize parameters to minimize cost based on the desired output. Typically, input 

regions of interest (ROI) or features are not required. While simple ML algorithms can process images at 

the pixel level, CNNs have greater capacity for complex decision making and often outperform them, eg. 

in terms of classification accuracy. 

Two common CNN architectural designs are illustrated in Fig. 5. For applications such as image 

reconstruction or segmentation, where the desired output is an image, variations on an encoder-decoder 

architecture are commonly used (Fig. 5A). An encoder reduces input data in a stepwise process to identify 

components or features. This can be accomplished through the use of the concept of stride, defined in 

Table 1 and illustrated in Fig. 6, or pooling defined in Table 1. A decoder then builds the output image 

from the features using a stepwise process, possibly including interpolation or up-sampling to increase 

resolution. Some architectures that follow this style include U-Net (2-dimensional data) and V-Net (3-

dimensional data). For applications such as disease detection where the output is a classification (eg. 

disease present or absent), an ANN might only have an encoder phase where input data is reduced in a 

stepwise process that leads to the output classification (Fig. 5B). Res-Net is one such architecture. 

 

Hardware Aspects 

 ANNs are typically programmed using software languages such as Matlab or Python. However, 

the hardware on which these programs run can significantly affect their speed. Simple ANNs can easily 

run on a standard laptop. However, more complex ANNs often need powerful hardware. GPUs have 

emerged as an effective hardware solution for ANNs since they are capable of performing many simple 

computations simultaneously, which improves speed. Sometimes, GPUs can be so powerful that they can 

perform all of the computations required for a convolution operation simultaneously. When ANNs get to 

be large enough that even a single GPU is insufficient, compute clusters (supercomputers often consisting 

of banks of GPUs) in data centers accessed over the cloud, may be needed. 



   

NEURAL NETWORKS IN NUCLEAR MEDICINE: A SPECTRUM OF APPLICATIONS 

Complex ANNs are used across a spectrum of nuclear medicine applications. A search of 

“machine learning” on PubMed returned 595 papers in 2009, 2402 in 2014, and 11297 in 2019, several 

including the use of ANNs. ANNs can help with image reconstruction or to create standard-dose from 

low dose images, as well as to improve scatter and attenuation correction (9-19). ANNs can also assist 

with disease detection and segmentation (20-27), disease diagnosis and outcome predictions (28-33). In 

this paper we have chosen to focus on a few applications with specific examples.  

 

Neural Networks used for Image Reconstruction and Low-Dose PET 

Signal noise is inherent in nuclear imaging and may be aggravated by using low-dose techniques 

or reducing image acquisition time. CNNs can be used during image reconstruction to generate higher 

quality images compared to conventional techniques and to improve the perceived quality of noisy 

images. An array of architectural designs may be used (and details in the literature are often limited).  

One approach, focussing on image reconstruction is illustrated by Häggström, et al. (11). The 

authors programmed a CNN using an encoder-decoder architecture, similar to that presented in Fig. 5A, 

to reconstruct PET images from data synthesized almost entirely using a combination of phantom, 

simulation and augmentation techniques. The input to the CNN was PET sinogram data represented by a 

288x289x1 matrix; the output was image data represented by a 128x128x1 matrix. The encoder reduced 

the input data through sequential layers applying convolution kernels with decreasing kernel size and 

stride 2, and activation functions including batch normalization and ReLUs. The decoder up-sampled the 

data using sequential layers to apply convolution kernels, increase matrix size, and apply activation 

functions including batch normalization and ReLUs to produce the final PET images. Several design 

modifications were studied, including differing numbers of layers and kernel size, among others. The 

CNN was able to generate PET images with higher quality compared to techniques such as ordered subset 

expectation maximization (OSEM) or filtered back projection (FBP).  



Often the CNN includes several layers with parallel paths (also referred to as parallel channels) to 

apply a host of specific kernels to dissect out certain image features, and then combine feature 

information through a series of layers to generate the noiseless output image. Sometimes the input is a 

noisy image and the CNN is designed to reduce this input data to a series of low-resolution images that 

identify abstract features such as edges, texture, etc., and then progressively reconstruct a noiseless output 

image at the same resolution as the input image. These CNNs typically undergo supervised training using 

pairs of noisy input and noiseless output images. The key is to ascertain no significant information is lost 

or false information added.  

As an illustration Chen, et al. (12) used a CNN with a U-Net architecture, similar to that 

presented in Fig. 5A, to synthesize full-dose 18F-Florbetaben PET/MR images from low-dose images 

obtained using 1% of the raw list-mode PET data. The quality of the synthesized images was subjectively 

evaluated on a 5-point scale by 2 readers, while Bland-Altman plots were used to compare standardized 

uptake value ratios (SUVRs). The authors found the synthesized images showed improved quality metrics 

compared with low-dose images, with high accuracy for amyloid status and similar intrareader 

reproducibility compared with full-dose images. A review of CNN approaches for handling low-dose PET 

is given in (34).  

 

Neural Networks used for Disease Detection and Segmentation 

A common application of neural networks is disease detection and segmentation, for example to 

quantify disease burden. A time-consuming task in practice, essentially, this is a pixel-wise classification 

problem: each pixel must be tagged as normal/abnormal and joined to the region it belongs (e.g., liver, 

spleen…). Typically, the output is an image(s) at the same resolution as the input image(s), with feature 

information extracted by the neural network used to create overlying segmentation images. Similar to 

denoising, input and output images are at the same resolution and training is usually supervised, using 

combinations of raw and segmented images. Several papers have been written on lesion detection and 

segmentation using neural networks (20-26) with differing architectural designs, although often a U-Net.  



As illustration, consider the paper by Zhao et al. (27). The authors created CNNs with the aim of 

automatically segmenting sites of disease on 68Ga-PSMA-11 PET/CT images, to provide a yes-no answer 

as to whether a voxel reflected a lesion. The overall framework consisted of 2 components operating in 

series: 1) 3 parallel CNN paths each designed to detect lesions in one of 3 different planes, and 2) per-

voxel final majority voting based on intermediate decisions from each plane’s CNN. The CNNs had a U-

Net structure consisting of an “encoding stack” followed by a “decoding stack” that fused feature maps 

with original images, similar in structure to Fig. 5A. The encoding stack included 3x3 convolutions, 2x2 

max pooling with stride 2 for down sampling, ReLU and batch normalization. The decoding stack 

synthesized the information using a transposed convolution with kernel size 2x2 and stride 2, a 

concatenation operation and 3x3 convolutions with ReLU and batch normalization. At the last layer of the 

CNN, the sigmoid function helped map features to a segmentation probability map. The Dice similarity 

coefficient (DSC) was used to evaluate the accuracy of anatomic segmentation. 68Ga-PSMA-11 PET/CT 

scans from 193 men with metastatic castration-resistant prostate cancer (mCRPC) were randomly divided 

into 130 training scans and 63 testing scans. All lesions in the pelvis were manually delineated (ie. 1003 

bone lesions and 626 lymph node lesions, among others). A fivefold cross-validation was used for 

optimization. Using the manually annotated images as ground truth, a lesion was considered to be 

correctly detected when the overlap ratio exceeded a threshold of 10%. The detection accuracy, sensitivity 

and F1-score (harmonic mean of accuracy and sensitivity) were 0.99, 0.99, 0.99 for bone lesions 

respectively, and 0.94, 0.90, 0.92 for lymph nodes respectively. The image segmentation accuracy was 

lower than the lesion detection accuracy. The overall model achieved average DSCs (65%, 54%), PPV 

(80%, 67%) and specificity (61%, 55%) for bone and lymph node lesions respectively. 

While the possibility of using ANNs for lesion detection and image segmentation has enormous 

impact for clinical practice, manual assessment is still often used. 

 

Neural Networks used for Disease Diagnosis and Outcome Prediction 



ANNs can assist with disease diagnosis and outcome prediction (28-32). Often, only a small set 

of input images/data are needed and models that input full-resolution images or several data sources 

gradually reduce this to distill a diagnosis or outcome by the final layer. Typically, these are classification 

problems, training is supervised and often a Res-Net architectural design is used, similar to that presented 

in Fig. 5B. While early results are promising, rigorous evidence supporting ML models is lacking. A 

systematic review by Nagendran at al. published this year found 1 randomized clinical trial related to 

breast ultrasound and 2 non-randomized prospective studies investigating intracranial hemorrhage (35). 

The field is young and it is important to remember to temper our claims of imminent clinical impact. 

Mayerhoefer et al. provides an illustration of a neural network use for a predictive application 

(33). Specifically, the authors proposed to determine if radiomic features on 18F-FDG PET/CT alone or in 

combination with clinical, laboratory and biological parameters were predictive of 2-year progression-free 

survival (PFS) in subjects with mantle cell lymphoma (MCL). A multilayer feed-forward neural network 

was used, which relied on a back-propagation learning algorithm (8) in combination with logistic 

regression analysis for feature selection. Few specific details are given, although we are told there was a 

minimum of 1 hidden layer with a minimum of 3 neurons per hidden layer. The input included a guess of 

weights for individual radiomic features and the classification step was repeated 5 times. The data 

consisted of 107 18F-FDG PET/CT scans in treatment-naïve MCL patients with baseline and follow-up 

data to the date of progression, death or a minimum of 2 years. Cases were randomly split into 75 training 

and 32 validation cases for each classification step repetition. A semiautomatic process was used for 

lesion delineation and several parameters were included for analysis: SUVmax, SUVmean, SUVpeak, 

total lesion glycolysis (TLG) and 16 textural features derived from the grey-level co-occurrence matrix 

calculated in 3D. Outcome measures included the area under the receiver operating characteristic (ROC) 

curve (AUC) and classification accuracy. While radiomic features were not significantly correlated with 

absolute PFS (in months), 2-year PFS status correlated with SUVmean (p=0.022) and Entropy (p=0.034) 

in a multi-variate analysis. When SUVmean and Entropy values were input to the neural network, AUCs 

for 2-year PFS prediction were 0.70-0.73 (median 0.72), with classification accuracies 71.0-76.7% 



(median 74.4%) in training and 70.6-86.8% (median 74.3%) in validation cases, improving when 

combined with additional clinical/laboratory/biological data. 

 

Common Themes and a Call to Arms 

Ultimately, we arrive at a few conclusions regarding ANNs in nuclear medicine: 

1. Good performance is often achieved with less than 10 layers. Many papers use data from 

small patient cohorts (~20-200) supplemented with data augmentation techniques to generate 

larger training and/or cross-validation datasets or generate data using simulation software. 

2. The computational cost of a ML algorithm is rarely reported yet should not be ignored as it 

directly impacts reproducibility and clinical practicality. Those papers that do describe the 

algorithm structure, often omit key information making it nearly impossible for a reader to 

recreate the model. FLOPs, the cost metric commonly used by computer scientists and 

engineers, is rarely reported.  

3. There is a lack of well conducted, systematic studies, with few to no randomized clinical 

trials evaluating applications in routine clinical practice.  

 

We are in the early days of the application of ML to nuclear medicine, and it is becoming evident 

there is a need for the community to come together and design standard elements of reporting needed for 

the field’s evolution. This would make it easier to assess algorithm effectiveness, cost and appropriate use. 

If we had the details, we could graph metrics of input, algorithm complexity and output to establish 

algorithms that are most effective for a specific task. As a starting point for discussion, Fig. 7 portrays a 

conceptual graph that could be plotted if standardized details of algorithms were reported, and which 

would provide insight into trends. The graph uses the example of low-dose PET, and plots percentage 

dose versus ML algorithm computational cost. Any paper that reports dose, computational cost, and 

algorithm family, could be included as a point on the graph. As more data becomes available, we would 

see trend lines emerge, such as the dashed lines shown representing constant classification accuracy for 



algorithm family. Bounds on algorithm family capability might be inferred. For example, Minark et al. 

(10) report performance results of a CNN at various image noise levels (analogous to percentage dose). 

While the CNN performs well, the computational cost is not reported, and it difficult to exactly replicate 

what was done. With additional information, we could have plotted several points on our graph, upon 

which to base future work. 

To gather insight into algorithms best suited for a given task, and the computational cost needed 

to achieve a desired output, we advocate our community use a checklist for reporting ML algorithms. 

Table 2 provides our top 5 points to include. We hope this represents a start for further discussion. 

 

CONCLUSIONS 

We are witnessing a potentially phenomenal development in clinical nuclear medicine. While 

ANNs are becoming ever more common in nuclear medicine, new families of algorithms are being 

developed. Further, as databases of shared images continue to be created, there will be expanding datasets 

useful for training, validation and testing purposes. Several issues remain, notably those surrounding 

ethics and privacy of data collection, de-identification and ownership. In some situations, it may prove 

easier to download an algorithm to multiple sites instead of uploading multi-site data to a communal 

database. Regardless, to understand where we are, a standardized practice for reporting ML algorithm 

metrics would be helpful. We present a list of our top 5 items to include (Table 2) and suggest how data 

could be compiled to generate graphs showing which family of ML algorithms might be best suited for a 

given application. We hope this paper has provided insight into how ANNs work, the spectrum of clinical 

tasks they can help with, and where we might go from here. 
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Figure 1. Venn diagram depicting the relationship of ML, AI and deep learning. Simple ML algorithms 

such as random forests and K-means clustering are shown. Complex ML algorithms such as ANNs 

extend beyond supervised deep learning (where they are primarily used). Algorithms that are neither 

supervised nor unsupervised, e.g., reinforcement learning, are not shown. 

 

Figure 2. A. Input: 8x8 matrix (a1-a64) of pixels where each pixel is -1 (white) or +1 (black). B. Examples 

from a training dataset of handwritten letters mapped to a binary input. C. Single-layer neural network 

with input shown in (A), 64-weights (w1-w64), sigmoid activation function, and one output (f) that is an 

analog number between 0 and 1 reflecting the probability the input is ‘X’. D. Mathematical expressions 

for activation functions. E. Graphs showing sigmoid (blue) and ReLU (red); for the sigmoid the output is 

constrained to be between 0 and 1; for the ReLU, negative inputs are zeroed. 

 

Figure 3. Starting from point (A), we wish to find the lowest point in function E(x), labeled (B). Suppose 

we know the slope of E(x) at point (A), a gradient-based search suggests we move right to a lower point. 

Ideally, we prefer a small step, to (C) rather than a large step, to (D). 

 

Figure 4. A. Greyscale image of the matrix of weights (kernel) following 24 training cases. Darker 

colouring represents pixels with higher weights. Notice the image resembles an ‘X’. B. New examples of 

images of handwritten letters input to the trained ANN show the letter ‘X’ is identified with 92% 

likelihood (ANN output f=0.92) and ‘O’ is not interpreted as ‘X’, with likelihood of 0% (f=0.00). 

 

Figure 5. Illustration of ANN architectures. A. An encoder-decoder design is helpful for image 

segmentation. In the encoder, the input image resolution is reduced while the number of images increases. 

The first layer produces two images, the first by applying a 2x2 kernel using a convolutional operation 

with a stride of 2, and the second by applying a different kernel. Since one image is input, we denote 

these as 1x2x2 kernels. The second layer produces two output images, from two input images that are 



treated as a volume, again using two different kernels, denoted as 2x2x2, with stride of 1. The third layer 

applies four different 2x2x2 kernels with stride of 2, to generate four images that are input to the fourth 

layer. In the decoder, up-sampling creates higher resolution images so the CNN input and output 

resolutions are similar. A feedforward path adds data from earlier layers. The U shape gives rise to the 

name U-Net. B. An encoder design is helpful for disease detection. Over consecutive layers, image 

resolution is decreased, to identify features that are encoded into feature maps. The final layer is often 

fully connected; the two outputs shown each use a weighted sum of every pixel from the preceding layer. 

Res-Nets are an example of this. 

 

Figure 6. Illustration of stride. A. Input 8x8 matrix is processed in a convolutional layer with a 3x3 kernel 

(weights w1-w9). Each pixel in the output 8x8 matrix is calculated by multiplying the 9 nearest neighbors 

to the corresponding input pixel by respective kernel weights. As illustration, the calculation for output 

pixel f45 is shown. B. Using a stride of 2, every second output pixel is calculated in both dimensions, 

resulting in a 4x4 output image. 

 

Figure 7. Conceptual graph showing how classification accuracy (dotted curves) and counts might be 

impacted by ML algorithm computational cost (and ability to learn complex tasks). Such graphs require 

researchers provide specific details about their ML implementations. 

 
  



Table 1. Common Terms Encountered Discussing Neural Networks 
 

Term Explanation Comment 
Fully 
connected 
layer 

Each input to a layer is 
used to compute each 
output from the layer. 

Fig. 1C illustrates a fully connected layer with 64 inputs 
and 1 output. While the number of output data points 
could be smaller than the number of input data points, 
this is not required. 
 

Kernel Matrix of numbers in a 
CNN where the numbers 
are typically learned 
through exposure to a 
training dataset.  

3x3 kernels or 3x3x3 kernels are common. 

Stride A number that represents 
how many pixels a kernel 
skips each time it processes 
an image in a CNN. 

Fig. 5 illustrates stride. The output image has fewer 
pixels than the input image resulting in an output image 
represented by a matrix of lower dimension. 

Pooling 
 

Operation in a CNN that 
reduces image resolution by 
averaging or taking a 
maximum of a local region. 

A pooling layer could have as input an image 
represented by a 128x128 matrix and produce as output 
an image represented by a 64x64 matrix. This could be 
accomplished by dividing the input matrix into 2x2 
blocks and then reducing each block of 4 numbers to one 
number representing the maximum value. 

FLOP FLOP stands for FLOating-
Point operation and 
represents a measure of 
computing power. 

The FLOPs associated with a network typically refer to 
the computing power needed for the network to run after 
it has been trained. Using Fig. 1 as an illustration, there 
are 64 multiplications and 63 pairwise additions, 
representing 127 FLOPs (omitting the sigmoid 
function). A CNN might require billions of FLOPs, 
while a simple ML algorithm such as a random forest or 
support vector machine might require thousands.  

 
 
  



Table 2. Suggested checklist to include for ML-related algorithm reporting 
 

Question  Possible Metric  Comment 
1. ML algorithm? 
 

Family of ML 
algorithms 

ie., CNN, random forest, support vector machine… 

2. Architecture details? 
 

Dependent on 
algorithm 

ie., for a CNN report number of layers, kernel size, 
strides, and show a complete block diagram with 
sufficient detail that the model could be independently 
reconstructed. 

3. Computational cost? Number of 
parameters, 
FLOPs  

ie., while consulting a computing expert, similar to 
consulting a statistician for clinical trials, is suggested, 
authors may generate this themselves. 

4. Data? Training, 
validation, 
testing 

ie., data type, number of validation/testing cases, use of 
cross-validation, data source (algorithms trained with 
data from a single institution might not perform well 
using data from another institution). 

5. Figure of merit? Classification 
accuracy, dose 
reduction… 

ie., key numerical performance results should be given 
such as classification accuracy... ultimately this should 
be standardized for a given application. 
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