
Machine Learning in Nuclear Medicine: Part 2-Neural Networks and Clinical Aspects

Katherine Zukotynski1*, Vincent Gaudet2*, Carlos F. Uribe3, Sulantha Mathotaarachchi4, Kenneth C.

Smith5, Pedro Rosa-Neto4, François Bénard3,6, Sandra E. Black7

*Contributed equally
1Departments of Medicine and Radiology, McMaster University, Hamilton, ON, Canada
2Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada
3PET Functional Imaging, BC Cancer, Vancouver, BC, Canada
4Translational Neuroimaging Lab, McGill University, Montreal, QC, Canada
5Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
6Department of Radiology, University of British Columbia, Vancouver, BC, Canada
7Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto,

Toronto, ON, Canada

Corresponding author:

Katherine Zukotynski

Departments of Medicine and Radiology

McMaster University, Hamilton, ON

Telephone: 905-521-2100 x76556

Fax: 905-546-1125

zukotynk@mcmaster.ca

Word Count: 6071

Disclosure: There is no conflict of interest that will directly or indirectly influence the content of the

manuscript submitted.

Running Title: Part 2: Neural networks

ABSTRACT

This article is the second part in our machine learning series. Part 1 provided a general overview of machine

learning in nuclear medicine. Part 2 focuses on neural networks. We start with an example illustrating how

neural networks work and a discussion of potential applications. Recognizing there is a spectrum of

applications, we focus on recent publications in the areas of image reconstruction, low-dose PET, disease

detection and models used for diagnosis and outcome prediction. Finally, since the way machine learning

algorithms are reported in the literature is extremely variable, we conclude with a call to arms regarding the

need for standardized reporting of design and outcome metrics and we propose a basic checklist our

community might follow going forward.

Keywords: Machine Learning, Nuclear Medicine, Neural Networks

Learning Objectives

1. Provide an introduction to neural networks.

2. Discuss potential applications of neural networks with illustrative examples and figures.

Knowledge Acquisition

Upon review of this paper, the reader should be familiar with neural networks and should have an

understanding of where they can be helpful in clinical practice.

INTRODUCTION

Part 1 in our series on machine learning (ML) in nuclear medicine (1) provided a general

overview of ML algorithms and their basic components. While applications of ML algorithms such as

random forests (2-4) and support vector machines (5,6) continue to proliferate, sophisticated ML

algorithms such as artificial neural networks (ANNs) are becoming ubiquitous. Further, ANNs using

radiomic data are increasingly common in nuclear medicine applications. Radiomic data typically refers

to quantitative data from medical images, such as texture values enabling assessment of tumour

heterogeneity, extracted either manually or using a computer-based approach (7). Part 2 provides an

expanded explanation of ANNs, one of the most powerful ML models used today. After a brief review of

ANN concepts introduced in Part 1, we illustrate how ANNs work using an example and follow this with

a brief discussion of clinical applications.

BRIEF REVIEW FROM PART 1

ANNs are advanced ML algorithms (Fig. 1) typically used in classification (discrete-output) or

regression (analog-output) applications. Although ANNs have existed for decades, they have only

recently become common in medical imaging, in part due to technological advances as well as access to

large datasets for training. Data input to an ANN is processed in steps, where each step consists of a layer

of neurons. A neuron is a computational unit that: 1. Produces a weighted summation of input data, 2.

Applies a bias, and 3. Computes a nonlinear transformation of the result. The output data from each layer

passes to the next layer until the final layer produces the output result. The architectural design of an

ANN describes the relationship between the various neurons and layers. ANNs are typically supervised,

using tagged data to learn weights and biases, and can be simple including only a few layers and one

output, or complex. More complex ANNs generally have greater capabilities but at higher computational

cost. Complex ANNs are used for deep learning. Designing an ANN of optimal complexity to solve a

specific task and obtaining access to sufficient high-quality input data, is challenging. Today, ANNs are

among the most common ML algorithms used in nuclear medicine and understanding how they work is

key.

In this text we try to convey the structure and purpose of an ANN. To illustrate, the next section

starts with an example of a simple ANN (with one layer) that could detect a handwritten letter from an

input image. We then discuss more complex ANNs and their applications in nuclear medicine. For

reference, common ML terms are summarized in Table 1. Further, when we write “nuclear medicine”

please note we implicitly include PET, PET/CT and PET/MR.

ANNs: UNDERSTANDING BY EXAMPLE

In this example, we design and train an ANN with only one layer to recognize a handwritten

image of the letter ‘X’ (Fig. 2). The input to the ANN is an 8x8 (2-dimensional) black-and-white image or

64-pixel array/vector (a1-a64), where each pixel has value: -1 (white) or 1 (black) (Fig. 2A and Fig. 2B).

The output (f) is an analog number between 0 and 1 that reflects the likelihood the input is letter ‘X’. For

example, if the input is an image of ‘X’, the output should be 1; if the input is another letter it should be 0.

Our ANN is trained using a dataset including several input images that have been tagged as representing

‘X’ or not (Fig. 2B). The ANN output is calculated by: 1. Multiplying each input by a corresponding

weight (w1-w64), 2. Adding the products together (assuming all biases are 0), and 3. Passing the result

through a nonlinear function (here a sigmoid function) called an activation function (Fig. 2C).

ANNs can have many types of activation functions, including a sigmoid function and a rectified

linear unit (ReLU) (Fig. 2D). Each activation function constrains the output in some manner, eg. the

sigmoid function constrains outputs to be between 0 and 1; the ReLU zeroes out negative numbers (Fig.

2E). These nonlinear functions are key for optimizing ANN performance.

Before the ANN can process new images, it must learn the values for the weights through

training. To do this, the algorithm uses a cost (or loss) function that calculates how closely the model

predicts the output for a particular training case. The ultimate goal of training is to minimize the cost

function. A common cost function is to compute the error (E) between the trained (ftrain) and desired

output (f), possibly the absolute difference between them (the square of the difference, and classification

accuracy, are also common cost functions):

E = |f – ftrain| (1).

The values of w1-w64 that give the best performance are obtained by iterating through the training cases:

The weights are initialized, a training case is input to the ANN, the error function is calculated, the

weights are adjusted to nudge the ANN towards a lower cost, and a new training case is presented to the

ANN. The process is done iteratively until the learned weights give a satisfactory cost.

Weight adjustment is often done using a gradient-descent algorithm, such as stochastic gradient

descent. The gradient of the cost function is calculated, essentially the partial derivative (ie. slope) of the

cost with respect to each weight. Once the partial derivatives are known, the weights are adjusted in the

direction of steepest descent. However, there is no guidance as to how much weight adjustment is needed.

Too little adjustment and little progress is made towards the end-goal; too much adjustment and the

output might degrade. Consider a function E(x), where we are trying to identify a minimal point (Fig. 3).

If we start from point A, we should move right. However, a large step (point D) moves us too far.

For our ANN to detect the letter “X”, we derive the partial derivative of E with respect to each

weight. First, we express the output f based on the input pixels ai and weights wi:

𝑓 = !

!"#!∑ #$%&$
'(
$)*

 (2)

Taking the partial derivative of (1) with respect to wi, gives:

$%
$&$

= ((+,#$-)()
%

(#!∑ #.&.
'(
.)*)

(!"#!
∑ #.&.
'(
.)*)/

𝑎+ (3).

Each partial derivative shows the amount by which its corresponding weight should be adjusted per

learning iteration.

We now train the ANN using 24 cases (handwritten samples): 12 of the letter ‘X’ and 12 of other

letters. After training, the weights look like the 8x8 matrix shown in Fig. 4. The grayscale representation

of weights in our ANN resembles an ‘X’ (Fig. 4A). This makes intuitive sense: since the weights reflect a

probability map, an image of the weights resembles what the ANN is trained to detect.

Complex ANNs: Number of Layers and Architecture Design

ANNs capable of deep learning typically have many layers (8). Consider the processing involved

with your brain reading this text as an example of this multi-step processing. It might go as follows: 1.

Input an image through your eyes to your brain, 2. Your brain identifies strokes and puts strokes together

determining how they form a pattern, 3. You recognize the pattern (or character), 4. You assemble

neighboring characters and identify words, 5. Words come together into sentences, 6. Meaning is

extracted from sentences, and 7. You process information and perform an analysis. While a programmer

interested in deep learning might create a complex ANN, the task done at each layer is often not

predefined by the programmer. Rather, the ANN operates for all intents and purposes as a “black-box”.

An ANN with more layers might be able to learn more but would also likely necessitate higher

computational power possibly using graphics processing units (GPUs) or a remote server over the cloud.

Some ANNs have over 100 layers, and millions of weights to optimize. The challenge is to build an ANN

to solve a problem with a small number of operations, through optimizing architectural design.

Convolutional Neural Networks

Convolutional neural networks (CNNs) are a type of ANN where layers are structured in such a

way that a convolutional kernel can be applied, which is important for image processing. A convolution is

a common mathematical function, and a kernel refers to a matrix of weights that can be either pre-set, or

more commonly learned in the case of a CNN with access to training data. CNNs take a series of medical

images, often single or multi-modality, as input, perform operations, calculate weights and biases for

different layers and optimize parameters to minimize cost based on the desired output. Typically, input

regions of interest (ROI) or features are not required. While simple ML algorithms can process images at

the pixel level, CNNs have greater capacity for complex decision making and often outperform them, eg.

in terms of classification accuracy.

Two common CNN architectural designs are illustrated in Fig. 5. For applications such as image

reconstruction or segmentation, where the desired output is an image, variations on an encoder-decoder

architecture are commonly used (Fig. 5A). An encoder reduces input data in a stepwise process to identify

components or features. This can be accomplished through the use of the concept of stride, defined in

Table 1 and illustrated in Fig. 6, or pooling defined in Table 1. A decoder then builds the output image

from the features using a stepwise process, possibly including interpolation or up-sampling to increase

resolution. Some architectures that follow this style include U-Net (2-dimensional data) and V-Net (3-

dimensional data). For applications such as disease detection where the output is a classification (eg.

disease present or absent), an ANN might only have an encoder phase where input data is reduced in a

stepwise process that leads to the output classification (Fig. 5B). Res-Net is one such architecture.

Hardware Aspects

 ANNs are typically programmed using software languages such as Matlab or Python. However,

the hardware on which these programs run can significantly affect their speed. Simple ANNs can easily

run on a standard laptop. However, more complex ANNs often need powerful hardware. GPUs have

emerged as an effective hardware solution for ANNs since they are capable of performing many simple

computations simultaneously, which improves speed. Sometimes, GPUs can be so powerful that they can

perform all of the computations required for a convolution operation simultaneously. When ANNs get to

be large enough that even a single GPU is insufficient, compute clusters (supercomputers often consisting

of banks of GPUs) in data centers accessed over the cloud, may be needed.

NEURAL NETWORKS IN NUCLEAR MEDICINE: A SPECTRUM OF APPLICATIONS

Complex ANNs are used across a spectrum of nuclear medicine applications. A search of

“machine learning” on PubMed returned 595 papers in 2009, 2402 in 2014, and 11297 in 2019, several

including the use of ANNs. ANNs can help with image reconstruction or to create standard-dose from

low dose images, as well as to improve scatter and attenuation correction (9-19). ANNs can also assist

with disease detection and segmentation (20-27), disease diagnosis and outcome predictions (28-33). In

this paper we have chosen to focus on a few applications with specific examples.

Neural Networks used for Image Reconstruction and Low-Dose PET

Signal noise is inherent in nuclear imaging and may be aggravated by using low-dose techniques

or reducing image acquisition time. CNNs can be used during image reconstruction to generate higher

quality images compared to conventional techniques and to improve the perceived quality of noisy

images. An array of architectural designs may be used (and details in the literature are often limited).

One approach, focussing on image reconstruction is illustrated by Häggström, et al. (11). The

authors programmed a CNN using an encoder-decoder architecture, similar to that presented in Fig. 5A,

to reconstruct PET images from data synthesized almost entirely using a combination of phantom,

simulation and augmentation techniques. The input to the CNN was PET sinogram data represented by a

288x289x1 matrix; the output was image data represented by a 128x128x1 matrix. The encoder reduced

the input data through sequential layers applying convolution kernels with decreasing kernel size and

stride 2, and activation functions including batch normalization and ReLUs. The decoder up-sampled the

data using sequential layers to apply convolution kernels, increase matrix size, and apply activation

functions including batch normalization and ReLUs to produce the final PET images. Several design

modifications were studied, including differing numbers of layers and kernel size, among others. The

CNN was able to generate PET images with higher quality compared to techniques such as ordered subset

expectation maximization (OSEM) or filtered back projection (FBP).

Often the CNN includes several layers with parallel paths (also referred to as parallel channels) to

apply a host of specific kernels to dissect out certain image features, and then combine feature

information through a series of layers to generate the noiseless output image. Sometimes the input is a

noisy image and the CNN is designed to reduce this input data to a series of low-resolution images that

identify abstract features such as edges, texture, etc., and then progressively reconstruct a noiseless output

image at the same resolution as the input image. These CNNs typically undergo supervised training using

pairs of noisy input and noiseless output images. The key is to ascertain no significant information is lost

or false information added.

As an illustration Chen, et al. (12) used a CNN with a U-Net architecture, similar to that

presented in Fig. 5A, to synthesize full-dose 18F-Florbetaben PET/MR images from low-dose images

obtained using 1% of the raw list-mode PET data. The quality of the synthesized images was subjectively

evaluated on a 5-point scale by 2 readers, while Bland-Altman plots were used to compare standardized

uptake value ratios (SUVRs). The authors found the synthesized images showed improved quality metrics

compared with low-dose images, with high accuracy for amyloid status and similar intrareader

reproducibility compared with full-dose images. A review of CNN approaches for handling low-dose PET

is given in (34).

Neural Networks used for Disease Detection and Segmentation

A common application of neural networks is disease detection and segmentation, for example to

quantify disease burden. A time-consuming task in practice, essentially, this is a pixel-wise classification

problem: each pixel must be tagged as normal/abnormal and joined to the region it belongs (e.g., liver,

spleen…). Typically, the output is an image(s) at the same resolution as the input image(s), with feature

information extracted by the neural network used to create overlying segmentation images. Similar to

denoising, input and output images are at the same resolution and training is usually supervised, using

combinations of raw and segmented images. Several papers have been written on lesion detection and

segmentation using neural networks (20-26) with differing architectural designs, although often a U-Net.

As illustration, consider the paper by Zhao et al. (27). The authors created CNNs with the aim of

automatically segmenting sites of disease on 68Ga-PSMA-11 PET/CT images, to provide a yes-no answer

as to whether a voxel reflected a lesion. The overall framework consisted of 2 components operating in

series: 1) 3 parallel CNN paths each designed to detect lesions in one of 3 different planes, and 2) per-

voxel final majority voting based on intermediate decisions from each plane’s CNN. The CNNs had a U-

Net structure consisting of an “encoding stack” followed by a “decoding stack” that fused feature maps

with original images, similar in structure to Fig. 5A. The encoding stack included 3x3 convolutions, 2x2

max pooling with stride 2 for down sampling, ReLU and batch normalization. The decoding stack

synthesized the information using a transposed convolution with kernel size 2x2 and stride 2, a

concatenation operation and 3x3 convolutions with ReLU and batch normalization. At the last layer of the

CNN, the sigmoid function helped map features to a segmentation probability map. The Dice similarity

coefficient (DSC) was used to evaluate the accuracy of anatomic segmentation. 68Ga-PSMA-11 PET/CT

scans from 193 men with metastatic castration-resistant prostate cancer (mCRPC) were randomly divided

into 130 training scans and 63 testing scans. All lesions in the pelvis were manually delineated (ie. 1003

bone lesions and 626 lymph node lesions, among others). A fivefold cross-validation was used for

optimization. Using the manually annotated images as ground truth, a lesion was considered to be

correctly detected when the overlap ratio exceeded a threshold of 10%. The detection accuracy, sensitivity

and F1-score (harmonic mean of accuracy and sensitivity) were 0.99, 0.99, 0.99 for bone lesions

respectively, and 0.94, 0.90, 0.92 for lymph nodes respectively. The image segmentation accuracy was

lower than the lesion detection accuracy. The overall model achieved average DSCs (65%, 54%), PPV

(80%, 67%) and specificity (61%, 55%) for bone and lymph node lesions respectively.

While the possibility of using ANNs for lesion detection and image segmentation has enormous

impact for clinical practice, manual assessment is still often used.

Neural Networks used for Disease Diagnosis and Outcome Prediction

ANNs can assist with disease diagnosis and outcome prediction (28-32). Often, only a small set

of input images/data are needed and models that input full-resolution images or several data sources

gradually reduce this to distill a diagnosis or outcome by the final layer. Typically, these are classification

problems, training is supervised and often a Res-Net architectural design is used, similar to that presented

in Fig. 5B. While early results are promising, rigorous evidence supporting ML models is lacking. A

systematic review by Nagendran at al. published this year found 1 randomized clinical trial related to

breast ultrasound and 2 non-randomized prospective studies investigating intracranial hemorrhage (35).

The field is young and it is important to remember to temper our claims of imminent clinical impact.

Mayerhoefer et al. provides an illustration of a neural network use for a predictive application

(33). Specifically, the authors proposed to determine if radiomic features on 18F-FDG PET/CT alone or in

combination with clinical, laboratory and biological parameters were predictive of 2-year progression-free

survival (PFS) in subjects with mantle cell lymphoma (MCL). A multilayer feed-forward neural network

was used, which relied on a back-propagation learning algorithm (8) in combination with logistic

regression analysis for feature selection. Few specific details are given, although we are told there was a

minimum of 1 hidden layer with a minimum of 3 neurons per hidden layer. The input included a guess of

weights for individual radiomic features and the classification step was repeated 5 times. The data

consisted of 107 18F-FDG PET/CT scans in treatment-naïve MCL patients with baseline and follow-up

data to the date of progression, death or a minimum of 2 years. Cases were randomly split into 75 training

and 32 validation cases for each classification step repetition. A semiautomatic process was used for

lesion delineation and several parameters were included for analysis: SUVmax, SUVmean, SUVpeak,

total lesion glycolysis (TLG) and 16 textural features derived from the grey-level co-occurrence matrix

calculated in 3D. Outcome measures included the area under the receiver operating characteristic (ROC)

curve (AUC) and classification accuracy. While radiomic features were not significantly correlated with

absolute PFS (in months), 2-year PFS status correlated with SUVmean (p=0.022) and Entropy (p=0.034)

in a multi-variate analysis. When SUVmean and Entropy values were input to the neural network, AUCs

for 2-year PFS prediction were 0.70-0.73 (median 0.72), with classification accuracies 71.0-76.7%

(median 74.4%) in training and 70.6-86.8% (median 74.3%) in validation cases, improving when

combined with additional clinical/laboratory/biological data.

Common Themes and a Call to Arms

Ultimately, we arrive at a few conclusions regarding ANNs in nuclear medicine:

1. Good performance is often achieved with less than 10 layers. Many papers use data from

small patient cohorts (~20-200) supplemented with data augmentation techniques to generate

larger training and/or cross-validation datasets or generate data using simulation software.

2. The computational cost of a ML algorithm is rarely reported yet should not be ignored as it

directly impacts reproducibility and clinical practicality. Those papers that do describe the

algorithm structure, often omit key information making it nearly impossible for a reader to

recreate the model. FLOPs, the cost metric commonly used by computer scientists and

engineers, is rarely reported.

3. There is a lack of well conducted, systematic studies, with few to no randomized clinical

trials evaluating applications in routine clinical practice.

We are in the early days of the application of ML to nuclear medicine, and it is becoming evident

there is a need for the community to come together and design standard elements of reporting needed for

the field’s evolution. This would make it easier to assess algorithm effectiveness, cost and appropriate use.

If we had the details, we could graph metrics of input, algorithm complexity and output to establish

algorithms that are most effective for a specific task. As a starting point for discussion, Fig. 7 portrays a

conceptual graph that could be plotted if standardized details of algorithms were reported, and which

would provide insight into trends. The graph uses the example of low-dose PET, and plots percentage

dose versus ML algorithm computational cost. Any paper that reports dose, computational cost, and

algorithm family, could be included as a point on the graph. As more data becomes available, we would

see trend lines emerge, such as the dashed lines shown representing constant classification accuracy for

algorithm family. Bounds on algorithm family capability might be inferred. For example, Minark et al.

(10) report performance results of a CNN at various image noise levels (analogous to percentage dose).

While the CNN performs well, the computational cost is not reported, and it difficult to exactly replicate

what was done. With additional information, we could have plotted several points on our graph, upon

which to base future work.

To gather insight into algorithms best suited for a given task, and the computational cost needed

to achieve a desired output, we advocate our community use a checklist for reporting ML algorithms.

Table 2 provides our top 5 points to include. We hope this represents a start for further discussion.

CONCLUSIONS

We are witnessing a potentially phenomenal development in clinical nuclear medicine. While

ANNs are becoming ever more common in nuclear medicine, new families of algorithms are being

developed. Further, as databases of shared images continue to be created, there will be expanding datasets

useful for training, validation and testing purposes. Several issues remain, notably those surrounding

ethics and privacy of data collection, de-identification and ownership. In some situations, it may prove

easier to download an algorithm to multiple sites instead of uploading multi-site data to a communal

database. Regardless, to understand where we are, a standardized practice for reporting ML algorithm

metrics would be helpful. We present a list of our top 5 items to include (Table 2) and suggest how data

could be compiled to generate graphs showing which family of ML algorithms might be best suited for a

given application. We hope this paper has provided insight into how ANNs work, the spectrum of clinical

tasks they can help with, and where we might go from here.

REFERENCES

[1] Uribe CF, Mathotaarachchi S, Gaudet V, et al. Machine learning in nuclear medicine: Part 1-

Introduction. J Nucl Med. 2019;60:451-458.

[2] Zukotynski K, Gaudet V, Kuo PH, et al. The use of random forests to classify amyloid brain PET.

Clin Nucl Med. 2019;44:784-788.

[3] Nuvoli S, Spanu A, Fravolini ML, et al. [123]Metaiodobenzylguanidine (MIBG) cardiac scintigraphy

and automated classification techniques in Parkinsonian disorders. Mol Imaging Biol. 2020;22:703-710.

[4] Perk T, Bradshaw T, Chen S, et al. Automated classification of benign and malignant lesions in 18F-

NaF PET/CT images using machine learning. Phys Med Biol. 2018;63:225019.

[5] Nicastro N, Wegrzyk J, Preti MG, et al. Classification of degenerative parkinsonism subtypes by

support-vector-machine analysis and striatal 123I-FP-CIT indices. J Neurol. 2019;266:1771-1781.

[6] Kim JP, Kim J, Kim Y, et al. Staging and quantification of florbetaben PET images using machine

learning: impact of predicted regional cortical tracer uptake and amyloid stage on clinical outcomes. Eur J

Nucl Med Mol Imaging. 2020;47:1971-1983.

[7] Mayerhoefer ME, Materka A, Langs G, et al. Introduction to radiomics. J Nucl Med. 2020;61:488-

495.

[8] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436-444.

[9] Xiang L, Qiao Y, Nie D, An L, Wang Q, Shen D. Deep auto-context convolutional neural networks

for standard-dose PET image estimation from low-dose PET/MRI. Neurocomputing. 2017;267:406-416.

[10] Minarik D, Enqvist O, Trägårdh E. Denoising of scintillation camera images using a deep

convolutional neural network: A Monte Carlo simulation approach. J Nucl Med. 2020;61:298-303.

[11] Häggström I, Schmidtlein CR, Campanella G, Fuch TJ. DeepPET: A deep encoder-decoder network

for directly solving the PET image reconstruction inverse problem. Med Image Anal. 2019;54:253-262.

[12] Chen KT, Gong E, de Carvalho Macruz FB, et al. Ultra-low-dose (18)F-florbetaben amyloid PET

imaging using deep learning with multi-contrast MRI inputs. Radiology. 2019;290:649–656.

[13] Gao F, Shah V, Sibille L, Zuehlsdorff S. An AI system to determine reconstruction parameters and

improve PET image quality. J Nucl Med. 2018;59:31.

[14] Hwang D, Kim KY, Kang SK, et al. Improving the accuracy of simultaneously reconstructed activity

and attenuation maps using deep learning. J Nucl Med. 2018;59:1624-1629.

[15] Leynes AP, Yang J, Wiesinger F, et al. Zero-echo-time and dixon deep pseudo-CT (ZeDD CT):

direct generation of pseudo-CT images for pelvic PET/MRI attenuation correction using deep

convolutional neural networks with multiparametric MRI. J Nucl Med. 2018;59:852–858.

[16] Hwang D, Kim KY, Kang SK, et al. Improving the accuracy of simultaneously reconstructed activity

and attenuation maps using deep learning. J Nucl Med. 2018;59:1624–1629.

[17] Spuhler KD, Gardus J 3rd, Gao Y, DeLorenzo C, Parsey R, Huang C. Synthesis of patient-specific

transmission data for PET attenuation correction for PET/MR neuroimaging using a convolutional neural

network. J Nucl Med. 2019;60:555-560.

[18] Torrado-Carvajal A, Vera-Olmos J, Izquierdo-Garcia D, et al. Dixon-VIBE deep learning (DIVIDE)

pseudo-CT synthesis for pelvis PET/MR attenuation correction. J Nucl Med. 2019;60:429-435.

[19] Gong K, Guan J, Kim K, et al. Iterative PET image reconstruction using convolutional neural

network representation. IEEE Trans Med Imaging. 2019;38:675-685.

[20] Belal SL, Sadik M, Kaboteh R, et al. Deep learning for segmentation of 49 selected bones in CT

scans: First step in automated PET/CT-based 3D quantification of skeletal masses. Eur J Radiol.

2019;113:89-95.

[21] Gsaxner C, Roth PM, Wallner J, Egger J. Exploit fully automatic low-level segmented PET data for

training high-level deep learning algorithms for the corresponding CT data. PLoS ONE.

2019;14:e0212550.

[22] Huang B, Chen Z, Wu PM, et al. Fully automated delineation of gross tumor volume for head and

neck cancer on PET-CT using deep learning: a dual-center study. Contrast Media Mol Imaging.

2018;2018:8923028.

[23] Zhao X, Li L, Lu W, Tan S. Tumor co-segmentation in PET/CT using multi-modality fully

convolutional neural network. Phys Med Biol. 2019;64:015011.

[24] Hatt M, Laurent B, Ouahabi A, et al. The first MICCAI challenge on PET tumor segmentation. Med

Image Anal. 2018;44:177–95.

[25] Bi L, Kim J, Kumar A, Wen L, Feng D, Fulham M. Automatic detection and classification of regions

of FDG uptake in whole-body PET-CT lymphoma studies. Comput Med Imaging Graph. 2017;60:3–10.

[26] Xu L, Tetteh G, Lipkova J, et al. Automated whole-body bone lesion detection for multiple myeloma

on 68Ga-pentixafor PET/CT imaging using deep learning methods. Contrast Media Mol Imaging.

2018;2018:11.

[27] Zhao Y, Gafita A, Vollnberg B, et al. Deep neural network for automatic characterization of lesions

on 68Ga-PSMA-11 PET/CT. Eur J Nucl Med Mol Imaging. 2020;47:603-613.

[28] Commandeur F, Goeller M, Razpour A, et al. Fully automated CT quantification of epicardial

adipose tissue by deep learning: A multicenter study. Radiol Artific Intell. 2019;1:e190045

[29] Eisenberg E, Commandeur F, Chen X, et al. Deep learning-based quantification of epicardial adipose

tissue volume and attenuation predicts major adverse cardiovascular events in asymptomatic subjects.

Circ Cardiovasc Imaging. 2020;13:e009829

[30] Hartenstein A, Lubbe F, Baur ADJ, et al. Prostate cancer nodal staging: using deep learning to

predict 68Ga-PSMA-Positivity from CT imaging alone. Sc Rep. 2020;10:3398.

[31] van Velzen SGM, Lessmann N, Velthuis BK, et al. Deep learning for automatic calcium scoring in

CT: Validation using multiple cardiac CT and chest CT protocols. Radiology. 2020;295:66-79.

[32] Huang Y, Xu J, Zhou Y, et al. Diagnosis of Alzheimer’s Disease via multi-modality 3D

convolutional neural network. Front Neurosci. 2019;13:509-520

[33] Mayerhoefer ME, Riedl CC, Kumar A, et al. Radiomic features of glucose metabolism enable

prediction of outcome in mantle cell lymphoma. Eur J Nucl Med Mol Imaging. 2019;46: 2760-2769.

[34] Zaharchuk G. Next generation research applications for hybrid PET/MR and PET/CT imaging using

deep learning. Eur J Nucl Med Mol Imag. 2019;46:2700-2707.

[35] Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: a systematic

review of design, reporting standards, and claims of deep learning studies. BMJ. 2020;368-379.

Figure 1. Venn diagram depicting the relationship of ML, AI and deep learning. Simple ML algorithms

such as random forests and K-means clustering are shown. Complex ML algorithms such as ANNs

extend beyond supervised deep learning (where they are primarily used). Algorithms that are neither

supervised nor unsupervised, e.g., reinforcement learning, are not shown.

Figure 2. A. Input: 8x8 matrix (a1-a64) of pixels where each pixel is -1 (white) or +1 (black). B. Examples

from a training dataset of handwritten letters mapped to a binary input. C. Single-layer neural network

with input shown in (A), 64-weights (w1-w64), sigmoid activation function, and one output (f) that is an

analog number between 0 and 1 reflecting the probability the input is ‘X’. D. Mathematical expressions

for activation functions. E. Graphs showing sigmoid (blue) and ReLU (red); for the sigmoid the output is

constrained to be between 0 and 1; for the ReLU, negative inputs are zeroed.

Figure 3. Starting from point (A), we wish to find the lowest point in function E(x), labeled (B). Suppose

we know the slope of E(x) at point (A), a gradient-based search suggests we move right to a lower point.

Ideally, we prefer a small step, to (C) rather than a large step, to (D).

Figure 4. A. Greyscale image of the matrix of weights (kernel) following 24 training cases. Darker

colouring represents pixels with higher weights. Notice the image resembles an ‘X’. B. New examples of

images of handwritten letters input to the trained ANN show the letter ‘X’ is identified with 92%

likelihood (ANN output f=0.92) and ‘O’ is not interpreted as ‘X’, with likelihood of 0% (f=0.00).

Figure 5. Illustration of ANN architectures. A. An encoder-decoder design is helpful for image

segmentation. In the encoder, the input image resolution is reduced while the number of images increases.

The first layer produces two images, the first by applying a 2x2 kernel using a convolutional operation

with a stride of 2, and the second by applying a different kernel. Since one image is input, we denote

these as 1x2x2 kernels. The second layer produces two output images, from two input images that are

treated as a volume, again using two different kernels, denoted as 2x2x2, with stride of 1. The third layer

applies four different 2x2x2 kernels with stride of 2, to generate four images that are input to the fourth

layer. In the decoder, up-sampling creates higher resolution images so the CNN input and output

resolutions are similar. A feedforward path adds data from earlier layers. The U shape gives rise to the

name U-Net. B. An encoder design is helpful for disease detection. Over consecutive layers, image

resolution is decreased, to identify features that are encoded into feature maps. The final layer is often

fully connected; the two outputs shown each use a weighted sum of every pixel from the preceding layer.

Res-Nets are an example of this.

Figure 6. Illustration of stride. A. Input 8x8 matrix is processed in a convolutional layer with a 3x3 kernel

(weights w1-w9). Each pixel in the output 8x8 matrix is calculated by multiplying the 9 nearest neighbors

to the corresponding input pixel by respective kernel weights. As illustration, the calculation for output

pixel f45 is shown. B. Using a stride of 2, every second output pixel is calculated in both dimensions,

resulting in a 4x4 output image.

Figure 7. Conceptual graph showing how classification accuracy (dotted curves) and counts might be

impacted by ML algorithm computational cost (and ability to learn complex tasks). Such graphs require

researchers provide specific details about their ML implementations.

Table 1. Common Terms Encountered Discussing Neural Networks

Term Explanation Comment
Fully
connected
layer

Each input to a layer is
used to compute each
output from the layer.

Fig. 1C illustrates a fully connected layer with 64 inputs
and 1 output. While the number of output data points
could be smaller than the number of input data points,
this is not required.

Kernel Matrix of numbers in a
CNN where the numbers
are typically learned
through exposure to a
training dataset.

3x3 kernels or 3x3x3 kernels are common.

Stride A number that represents
how many pixels a kernel
skips each time it processes
an image in a CNN.

Fig. 5 illustrates stride. The output image has fewer
pixels than the input image resulting in an output image
represented by a matrix of lower dimension.

Pooling

Operation in a CNN that
reduces image resolution by
averaging or taking a
maximum of a local region.

A pooling layer could have as input an image
represented by a 128x128 matrix and produce as output
an image represented by a 64x64 matrix. This could be
accomplished by dividing the input matrix into 2x2
blocks and then reducing each block of 4 numbers to one
number representing the maximum value.

FLOP FLOP stands for FLOating-
Point operation and
represents a measure of
computing power.

The FLOPs associated with a network typically refer to
the computing power needed for the network to run after
it has been trained. Using Fig. 1 as an illustration, there
are 64 multiplications and 63 pairwise additions,
representing 127 FLOPs (omitting the sigmoid
function). A CNN might require billions of FLOPs,
while a simple ML algorithm such as a random forest or
support vector machine might require thousands.

Table 2. Suggested checklist to include for ML-related algorithm reporting

Question Possible Metric Comment
1. ML algorithm?

Family of ML
algorithms

ie., CNN, random forest, support vector machine…

2. Architecture details?

Dependent on
algorithm

ie., for a CNN report number of layers, kernel size,
strides, and show a complete block diagram with
sufficient detail that the model could be independently
reconstructed.

3. Computational cost? Number of
parameters,
FLOPs

ie., while consulting a computing expert, similar to
consulting a statistician for clinical trials, is suggested,
authors may generate this themselves.

4. Data? Training,
validation,
testing

ie., data type, number of validation/testing cases, use of
cross-validation, data source (algorithms trained with
data from a single institution might not perform well
using data from another institution).

5. Figure of merit? Classification
accuracy, dose
reduction…

ie., key numerical performance results should be given
such as classification accuracy... ultimately this should
be standardized for a given application.

Artificial Intelligence

Machine Learning

Deep Learning

UnsupervisedSupervised

ANNs

e.g., Random
Forests

e.g., K-means
Clustering

B.A.

a1 a2 a3 a4 a5 a6 a7 a8

a9 a10 a11 a12 a13 a14 a15 a16

a17 a18 a19 a20 a21 a22 a23 a24

a25 a26 a27 a28 a29 a30 a31 a32

a33 a34 a35 a36 a37 a38 a39 a40

a41 a42 a43 a44 a45 a46 a47 a48

a49 a50 a51 a52 a53 a54 a55 a56

a57 a58 a59 a60 a61 a62 a63 a64

Handwritten

letter

Binary

image of

letter

‘X’ ‘L’ (i.e., not ‘X’)

+

C.

×
a1

w1
a1w1

×
a2

w2
a2w2

×
a3

w3
a3w3

×
ai

wi
aiwi

×
a63

w63
a63w63

×
a64

w64
a64w64

…
…

…
…

f

D.

!(#) = 1
1 + ()*

!(#) = +#, # > 0
0, # ≤ 0

Sigmoid:

ReLU:

x

f(x)

1

0.5

Sigmoid ReLU

E.

C

x

E(x)
A

B

D

‘X’ ‘O’ (i.e., not ‘X’)

f = 0.92 f = 0.00

A. B.

2x2x2 kernel
stride = 1

2x2x2 kernel
stride = 2

2x2x2 kernel
stride = 1

Input image
(8x8)

2 “images”
(4x4) from
1st layer

2 “images”
(4x4) from
2nd layer

4 “images”
(2x2) from
3rd layer

1x2x2 kernel
stride = 2

4 “images”
(2x2) from
4th layer

16x2
fully connected

layer

2 output
classes

4x2x2 kernel
stride = 1

Input image
(8x8)

2 “images”
(4x4) from
1st layer

2 “images”
(4x4) from
2nd layer

4 “images”
(2x2) from
3rd layer

Second kernel: 1x2x2
stride = 2

2x2x2 kernel
stride = 2

2 “images”
(4x4) from
5th layer

4 “images”
(2x2) from
4th layer

+
Feedforward path

Output
image (8x8)

+
Feedforward path

2x up-sampling
4x1x1 kernel

stride = 1

2x up-sampling
2x2x2 kernel

stride = 1

encoding layers
decoding layers

4x2x2 kernel
stride = 1

A.

B.

First kernel: 1x2x2
stride = 2

U-Net style

Res-Net style

w1 w2 w3

w4 w5 w6

w7 w8 w9

a38

a44 a45 a46

a52 a53 a54

a37a36

A.

a1 a2 a3 a4 a5 a6 a7 a8

a9 a10 a11 a12 a13 a14 a15 a16

a17 a18 a19 a20 a21 a22 a23 a24

a25 a26 a27 a28 a29 a30 a31 a32

a33 a34 a35 a39 a40

a41 a42 a43 a47 a48

a49 a50 a51 a55 a56

a57 a58 a59 a60 a61 a62 a63 a64

f1 f2 f3 f4 f5 f6 f7 f8
f9 f10 f11 f12 f13 f14 f15 f16

f17 f18 f19 f20 f21 f22 f23 f24

f25 f26 f27 f28 f29 f30 f31 f32

f33 f34 f35 f36 f37 f38 f39 f40

f41 f42 f43 f44 f45 f46 f47 f48

f49 f50 f51 f52 f53 f54 f55 f56

f57 f58 f59 f60 f61 f62 f63 f64

f45 = a36w1 + a37w2 + a38w3
+ a44w4 + a45w5 + a46w6
+ a52w7 + a53w8 + a54w9

f1 f3 f5 f7

f17 f19 f21 f23

f33 f35 f37 f39

f49 f51 f53 f55

B.
Input image Output image (8x8, stride = 1) Output image (4x4, stride = 2)

Kernel (3x3)

Computational Cost
(e.g., FLOPs or # parameters to be learned)

Counts or Dose
(expressed as a % of full counts or dose)

100%

10%

1%

100 101 102 103 104 105 106 107

80%

90%
95%

Human
only

(no ML)

CNNs?

Question: can the ML algorithm
do better than 100%?

80%

90%

Simple ML?

