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Abstract 
This article, the first in a two-part series, provides an introduction to machine learning in a nuclear 
medicine context. Part I addresses the history of machine learning and describes common algorithms with 
illustrations of when these algorithms can be helpful in nuclear medicine. Part II focuses on current 
contributions of machine learning to our field and addresses future expectations, limitations and provides 
a critical appraisal of what machine learning can and cannot do. 
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Learning Objectives 
 

1. Provide an introduction to machine learning (ML), neural networks and deep learning. 
 

2. Discuss common ML algorithms with illustrative examples/figures.  
 

3. Compare ML algorithms and provide guidance on selection for a given application. 
 
 

Knowledge Acquisition 
 
This paper should familiarize the reader with ML algorithms and differences between them.  



   
 

   
 

INTRODUCTION 

It seems that currently every conference hosts sessions on artificial intelligence (AI) and machine 

learning (ML) and that these terms are increasingly pervading our literature. However, AI and ML are not 

new. First described in 1956, Artificial Intelligence (AI) refers to computers that perform tasks normally 

requiring human intelligence (e.g. visual perception, decision making). Machine learning (ML), a branch 

of AI, dates to the electronic computing of the 1950s (1) and its application to medicine in the 1960s (2). 

 Broadly speaking, ML refers to algorithms that are programmed to learn from observations and 

can then make statistical inferences based on what has been learned, rather than being based on the 

explicit knowledge of the programmer. Traditionally, a programmer specifies all aspects of an algorithm 

and nothing further is learned beyond what has been written, like writing a detailed recipe for baking a 

cake. ML algorithms include parameters with unknown values at the time of programming that are 

learned by presenting the program with observations, like a novice chef using an incomplete recipe to 

bake a cake. The chef must decide what ingredients to use and in what proportion, based on observations.  

Why the rise in ML algorithms for medical imaging now? Reasons include: advances in theory 

(better algorithms) (3), microelectronics (better hardware) (4), and availability of massive amounts of 

training data (big data). Also, fields such as radiomics and radiogenomics have shows great promise (5). 

Radiomics refers to the extraction and quantification of mathematical descriptors (“features”) of image 

texture, shape, etc., which can be correlated with a variety of data, such as histophathologic findings and 

clinical outcomes (survival). Radiogenomics more specifically correlates radiomic features with genomic 

data. These new fields use ML to investigate scientific phenomena by identifying often previously 

unknown relationships. 

The aim of this article, the first in a two-part series on ML in nuclear medicine, is to introduce 

ML and discuss common algorithms highlighting differences between them. The second article will focus 

on ML in nuclear medicine, addresses future expectations, limitations and provides a critical appraisal of 

what ML can and cannot do. 

 



   
 

   
 

A BIRD’S EYE VIEW OF MACHINE LEARNING ALGORITHMS 

ML algorithms include core elements: a) a mathematical model, b) a cost function, and c) data. 

The art is identifying the mathematical model and cost function suitable to the task and finding access to 

sufficient data. 

 

Mathematical Model: A mathematical model is a way to explain relationships between data, and to 

translate input observations into outputs. For example, a mathematical model could be a function that 

translates input features from an image (e.g. the standardized uptake value ratio (SUVR) for an amyloid 

brain PET in a region of interest (ROI)) into an output decision (e.g. scan classification as positive or 

negative for amyloid deposition). The decision of which model to use is often based on tradeoffs between 

accuracy, suitability for the task, and practical implementation considerations. Problems where the 

model’s output observation is continuous-valued (e.g. amount of amyloid deposited) are known as 

regression problems; those with discrete-valued output observations or categories (e.g. amyloid positive 

or negative) are classification problems. Mathematical models vary and have different complexity and/or 

predictive capability. Many models have parameters called hyperparameters that are chosen prior to 

training but may be adjusted if performance is insufficient. For example, it might be initially stipulated 

that any given amyloid brain PET is classified as positive or negative for amyloid deposition (e.g. 2 

outcomes allowed); however training could suggest some scans are equivocal (e.g. 3 outcomes allowed). 

 

Cost Function: A cost function (or loss function) measures how close the model performance is to its 

intended result. For example, the cost function could be a misclassification rate or mean square error. 

 

Data: Just like physicians learn by reviewing cases, a ML algorithm is trained using data. Data may be 

image measurements (e.g. SUVRs for an amyloid PET), survival data, or a combination of these and other 

observations. Data are usually divided into training, validation and testing subsets. Training data is used 

to teach the model, validation data is used to fine-tune hyperparameters, and testing data is used to 



   
 

   
 

confirm performance of the trained model. Often the data includes known outputs. For example, a 

physician might have classified all available amyloid PET scans as amyloid positive or negative. 

Sometimes, outputs are unknown. For example, one might have all of the SUVRs for the ROIs but not 

know if the scan is amyloid positive or negative. Whether the data includes known outputs or not 

distinguishes two broad ML algorithm categories: supervised and unsupervised. 

 

SUPERVISED AND UNSUPERVISED LEARNING 

Supervised learning refers to ML algorithms that are trained using known outputs. For example, a 

ML algorithm could determine which SUVR/ROI amyloid PET combination best predicts neurological 

findings using knowledge of prior SUVR/ROI combinations and neurological findings. In a sense, 

supervised algorithms determine unknown values of a mathematical model that allow the model to 

approximate the training data in view of predicting outcomes for future test data. Examples of supervised 

ML algorithms, described below are: linear regression, support vector machines (SVMs), random forests, 

and artificial neural networks (ANNs). 

Unsupervised learning refers to ML algorithms that use training data where outputs are unknown. 

These algorithms often solve tasks such as identifying commonalities between data points  (e.g. clustering 

amyloid PET into amyloid positive or negative with no a priori knowledge of which category the PET 

scan belongs to) or finding ways to compress data (e.g. reducing the number of SUVR/ROIs needed). 

Examples of unsupervised ML algorithms, described below are: k-means clustering, principal component 

analysis and singular value decomposition.  

There are also ML algorithms that are not strictly supervised or unsupervised (e.g. reinforcement 

learning, competitive learning, and semi-supervised learning). These are beyond the scope of this paper. 

Figure 1 illustrates these concepts theoretically. In Figures 1A and 1B, the data points are 

classified into circles and triangles. In Figure 1C, the data points are not classified. If the purpose is to 

train a ML algorithm to appropriately classify data into circles and triangles, and the classification scheme 

is known, a supervised approach is preferred. For a scenario where the classification scheme is unknown, 



   
 

   
 

assigning data to categories requires an unsupervised approach. An observer might say there are two 

clusters of data points (bottom left and top right). However, another observer might group data points into 

more clusters. Ultimately, an initial educated guess on the number of categories might be necessary. 

Figure 1D-F shows potential models applied to each scenario. In Figure 1D, a straight line creates a 

delineation between circles and triangles. The mathematical model in this case is linear, namely y = ax + 

b and the ML algorithm must learn the values of a and b that minimizes the number of false 

classifications (according to the cost function). In Figure 1D, line ‘2’ has a lower cost than line ‘1,’ and an 

effective ML algorithm could adapt a and b towards the better solution. In Figure 1E, a linear model 

would inevitably lead to a high number of false classifications. Here, we might suggest a more complex 

model. In Figure 1F, the algorithm categorized data in 2 clusters. Several common ML algorithms, are 

discussed below and summarized in Table 1.  

 

COMMON MACHINE LEARNING ALGORITHMS 

There are many ML algorithms, typically programmed in languages such as R, Matlab and 

Python (6) that include built-in support (e.g. as libraries, toolkits or packages). Many aspects differentiate 

these algorithms, and the best algorithm to use often depends on the: a) task, b) data, and c) mathematical 

model complexity (e.g. number of operations such as additions and multiplications to be performed). 

 

Naïve Bayes Classification: A supervised algorithm for classification where features follow a simple 

probability distribution (e.g. Gaussian or multinomial), and assumptions of independence are made 

(allowing mathematical simplifications). The hyperparameters are the distribution parameters (e.g. mean 

and variance of feature values for each class). Classification is done by looking at features and computing 

the class that maximizes a probability function. The computational cost is low. For example, a 

retrospective study by Mehta et al. used a multinomial naïve Bayes classifier to predict response to 90Y 

radioembolization therapy from 18F-FDG PET/CT features (7). Using 22 training cases and 8 testing 

cases, the sensitivity for predicting response was approximately 80%.  



   
 

   
 

 

Linear regression: A supervised algorithm for regression problems where datasets contain n-dimensional 

continuous features, and the model is the n-dimensional hyperplane (hence the linearity) that best fits the 

dataset. The cost function is defined as the mean square error between the true outcomes and the model’s 

predicted outcome. The computational cost is low. 

 

Support Vector Machines (Figure 2): A supervised algorithm for binary classification, or less 

commonly regression. The algorithm identifies a curve (or “hypersurface,” if there are many dimensions) 

that best separates two classes in such a way that the curve is at maximum distance to the closest points in 

each class. The closest data points to the line are called the support vectors, hence the algorithm name. 

Once trained, SVMs tend to be computationally efficient, at least for smaller datasets (e.g. once trained, 

the algorithm need only determine which side of the curve a new data point is on). SVMs can also handle 

data where no clear linear separation (hyperplane) can be drawn between classes (Figure 1B), by moving 

to a higher-dimensional space, using a nonlinear data transformation, or minimizing the number of 

misclassifications. For example, Van Weehaeghe et al. used an SVM to classify subjects as Amyotrophic 

Lateral Sclerosis (ALS) versus healthy controls based on differences in brain metabolism on 18F-FDG 

PET (8). All PET data was spatially normalized and analyzed quantitatively using: 1. volume-of-interest 

(VOI) and 2. voxel-based analysis with statistical parametric mapping protocols. A cohort of 70 ALS and 

20 healthy subjects trained an SVM (linear model) using a voxel-based comparison and a brain mask 

defined by those voxels exceeding 50% of the mean of the 18F-FDG PET images. Subsequently 105 ALS 

subjects served as test data showing the SVM was 100% accurate for classification. Since ALS subjects 

had similar patterns of brain metabolism in both the training and testing data, the SVM was able to 

correctly classify subjects with ALS from healthy controls. There would have been little need to explore a 

more computationally intensive ML algorithm to solve this task. Of interest, 10 subjects with primary 

lateral sclerosis (PLS) were also recruited. Since brain metabolism in ALS and PLS was similar, these 

subjects could not be discriminated and further evaluation would be needed to classify these cases. 



   
 

   
 

 

Random Forest (Figure 3): A supervised algorithm that creates a collection of decision trees (e.g. forest) 

for classification or regression. For example, one might want to predict neurological findings by learning 

from a series of SUVR/ROIs on amyloid PET scans in patients with known neurological findings. To 

build each tree in the forest, the algorithm picks a random subset of cases, and a random subset of features 

(the sizes of these subsets are hyperparameters). In our example, the subset of cases is randomly chosen 

from the amyloid PET scans with clinical reads, and the subset of features is randomly chosen from the 

available ROIs. Each tree is recursively constructed starting at the root by identifying the feature (e.g. 

ROI) and feature value (e.g. SUVR) that best (according to misclassification rate) splits the subset’s cases 

into a left pile and a right pile; then, two branches are created in similar fashion: a left branch for the left 

pile and a right branch for the right pile. The end points of the trees represent the outputs, and are reached 

when a pile only has cases from one class (e.g. all negative or all positive); the end points can be classes 

(for classification problems) but may also be numerical (for regression problems). Each tree is different 

since it deals with different subsets of data. Once the forest has been created, new data is presented to 

each tree for categorization; the final result is the most common decision among all trees’ decisions. In 

our example, the final result could be the clinical finding (class) that is most common: positive or 

negative for amyloid deposition. As a recent study showed, a random forest with 2000 trees could be 

trained to predict subject mortality post 90Y radioembolization in a group of 366 subjects with intrahepatic 

tumors based on factors such as age at radioembolization, liver function and tumor burden (9). Here, the 

authors used a parameter ‘minimal depth’ (e.g. shortest distance in a tree from trunk to branch of first split 

in the variable) to identify predictive measurements: baseline cholinesterase and bilirubin. In particular, 

post procedural mortality was found to increase significantly once bilirubin levels exceeded 1.5mg/dl.   

 

Artificial Neural Networks (Figure 4): ANNs are typically (but not always) supervised and can be used 

for classification or regression problems. ANNs process data in steps (called layers). At each layer, 

several simple computation units called neurons (inspired by biology) process input data and convey 



   
 

   
 

results to neurons in the next layer (Figure 4A). A neuron’s computation typically involves a weighted 

summation of inputs and a bias, followed by a nonlinear transformation of the result (e.g. thresholding). 

An algorithm such as backpropagation (10) is used for training (e.g. learning values for weights). Among 

ML algorithms, ANNs tend to be the most powerful, but also the most computationally challenging. The 

computational cost comes from the fact that normally, every neuron in a layer is connected to every 

neuron in the subsequent layer. To illustrate how this can become problematic, consider an ANN that 

processes a 100x100-pixel image, e.g. with 10,000 inputs. If each layer has as many neurons as there are 

inputs, each layer requires 10,000x10,000 = 108 connections, each of which requires at least one 

multiplication and addition, hence the high computational cost per layer. In the earlier days of ML, ANNs 

were limited by this high computational cost (which could not be met by the microelectronic technologies 

of the time), and the fact that some problems remained unsolvable (although it could be argued they 

would have been solvable had the proper technology been available). Recent developments have allowed 

ANNs to overcome these barriers, and ANNs are now very popular.  

 Deep learning, first described in 1986 (11), was applied to ANNs in 2006 (12) to form deep 

neural networks (DNNs). DNNs are essentially ANNs with many layers (10-150, depending on the task). 

By having a large number of layers, DNNs are more computationally taxing, but are able to tackle 

complex problems. Also, each DNN layer is thought to treat data at a different level of abstraction. For 

instance, a DNN might devote a first layer to image segmentation and a subsequent layer to lesion 

identification within a segmented ROI.  

The high computational cost per layer can be reduced by using structures whereby each neuron 

connects to a subset of neurons in the subsequent layer. A method for image processing applications is 

convolutional neural network (CNN). CNNs are a form of DNNs where the main difference is the use of 

convolutional layers. Specifically, in a CNN, the outputs of neurons at one layer are considered to be an 

image; 2-dimensional convolution is applied to the image, followed by a nonlinear operation (called 

ReLU, for rectified linear unit), and pooling of pixel data (combining several pixels into one, which also 

reduces cost). Say a convolutional mask of size 10x10 is used in the example above, only 10,000x100 = 



   
 

   
 

106 multiplications and additions are required – a 100x savings. Figure 4B depicts a 2-layer CNN where 

each performs a convolution, ReLU, and pooling. After these layers, another layer of neurons (where each 

neuron is connected to every neuron in the previous layer) computes the output classification. Also, 

CNNs can be used to directly process images; but can also be used with pre-defined ROIs/VOIs. Thus, 

there is no need to decide which radiomic features to extract, as the CNN can make its own choice of 

features. In 2012, a breakthrough occurred with the introduction of a CNN called AlexNet5 (13) that 

outperformed prior ML algorithms in an open challenge called ImageNet.  

Together, DNNs and CNNs (indeed, there is little distinction between the two in the literature, 

and most ANNs today are both deep and convolutional, to the point where all three acronyms are nearly 

used interchangeably) paved the way for the current boom in ML. In general, deep learning requires less 

human input for training purposes than more traditional ML algorithms. Unfortunately, deep learning is 

also more complex and often requires a large amount of training data to be effective. For example, in the 

ImageNet challenge (13), more than one million annotated images were used. In medical imaging, it is 

often difficult to acquire such large numbers of training samples. To circumnavigate this limitation, 

researchers have tried to reduce requirements for training data by using data-augmentation techniques 

(14-16), reducing image dimensionality (16-19) and fine-tuning existing pre-trained DNNs (19-21). For 

example, in some cases the available data can be slightly varied, such as rotating images, flipping images 

or adding noise, to augment the data. Also, if layers of a network can be trained on a set of images with 

similar features to the images being studied, this learning might be transferred to the new task, known as 

transfer learning, decreasing the data needed to learn the new task. 

 CNNs have been used in several medical imaging settings. A nice example, includes the use of 

CNNs in conjunction with image preprocessing and random forests in an automated system to detect 

malignancy on mammograms (22). A sequence of image processing steps optimized by using genetic 

algorithms was used (Figure 4C). Mammograms were pre-processed using a technique called “contrast 

limited adaptive histogram equalization.” This was followed by two deep CNNs (each with at least 20 

layers) that processed images at two different scales, and then a random forest made a final prediction. A 



   
 

   
 

dataset with over 7,000 images divided into training, validation, and test sets reportedly resulted in a ML 

algorithm with comparable sensitivity and specificity to that of a radiologist.  

 

Principal Component Analysis (Figure 5): Principal component analysis (PCA) is an unsupervised 

algorithm for data simplification. The idea is to find linear combinations of building blocks (e.g. features) 

that can be used to reconstruct the initial data, where the combination of building blocks is simpler than 

the initial data and any initial data loss is minimized. PCA is often used for data compression. An 

example of PCA in nuclear medicine, is to reduce respiration artifact in PET scans (23). In this case, the 

task requires identifying the data that is most suggestive of breathing and using this information during 

the reconstruction process to reduce breathing artifact. The authors showed very high correlation between 

PCA and results obtained using costly external gating equipment. Linear discriminant analysis (LDA) is 

closely related to PCA. The fundamental difference is that LDA is a supervised algorithm that requires 

linear combinations of building blocks. 

 

K-means Clustering (Figure 6): An unsupervised algorithm for clustering data, where a “cluster” refers 

to a collection of data points that are close to each other, e.g., in terms of their measurements/feature 

values. K refers to the number of clusters and is specified by the programmer. The goal is to create K data 

clusters where every data point is assigned to the cluster with closest resemblance. The computer does 

this through iteration: 1. K cluster centers are chosen (i.e., random values chosen for each feature), 2. 

Each data point is assigned to the cluster whose center is closest, 3. The cluster centers are adjusted to be 

at the center of those data points that were assigned to it in step 2, 4. The process is repeated starting at 

step 2, and ends when no data points change clusters. Given the random nature of initially choosing the 

center of the K clusters, it is possible to produce different solutions each time the program is run. To 

illustrate, amyloid brain PET scans could be clustered into K=2 groups (e.g. amyloid positive versus 

negative) using known SUVR/ROI combinations for each scan. This, in turn, may suggest which 

SUVR/ROI combinations are most useful for clustering the scans. As another example, Blanc-Durand et 



   
 

   
 

al. used K-means clustering in 37 patients with 18F-fluoro-ethyl-tyrosine (FET) PET for newly diagnosed 

gliomas to suggest imaging features associated with progression and survival (24).  

 

Hierarchical Clustering (Figure 7): An unsupervised algorithm for clustering. Hierarchical clustering 

looks for data similarities, by grouping nearest neighboring data-points into pairs and clusters, until no 

free data points remain. The resulting structure is referred to as a dendrogram. In (25), Tsujikawa et al. 

used a dendrogram to suggest related features on 18F-FDG PET in subjects with cervical cancer. 

 

ISSUES TO CONSIDER 

 One of the questions that can be challenging is which ML algorithm to choose, or why a certain 

algorithm has been used in a publication. To start off with, each ML algorithm targets a specific task 

(classification, regression, dimensionality reduction, clustering, …). For instance, someone who wants to 

use an existing database of images and benign/malignant classifications to train an ML algorithm to 

classify future images might look to a supervised algorithm for classification, such as: naïve Bayes 

classification, random forests, SVMs, or CNNs. As it would be unlikely that the user would have a sense 

of the underlying probability distribution of the input data, a naïve classifier might be ruled out quickly. 

Next, the ML algorithm complexity, computational power and predictive capability must be considered. 

For example, is it desirable to perform the work on a desktop workstation or will more computing power 

be needed? Indeed, to move forward, the user may try out each of the options to see which works best 

(using an available pre-programmed toolkit), or possibly reach out to someone with more of a theoretical 

grounding in ML (e.g. statistician, mathematician, computer scientist or engineer) about next steps (these 

people will often welcome your data with open arms!). 

 Another important consideration to take into account prior to selecting a complex ML algorithm, 

in addition to the potentially high computational cost, is overfitting, which is a situation where the 

mathematical model too closely reflects minor variations in training data that are not predictive of 

validation and test data (e.g. where there is a lack of generalizability, for instance when the number of 



   
 

   
 

samples is too small). Consider for instance the data in Figure 5A; instead of unsupervised learning, had 

we seen this as a regression problem with y as the dependent variable, and had we tried to represent the 

data using an nth-order polynomial for an exact match, we would not necessarily have discovered the 

underlying (simpler and more representative) linear trend. A good model should be predictive, and might 

not necessarily exactly reproduce the training data. Although a detailed analysis of the signs of overfitting 

and strategies to reduce it is beyond the scope of this paper, it is useful to know that some ML algorithms, 

e.g. random forests, are more tolerant to overfitting. 

 This leads us naturally to the last issue in this article, namely the amount of data required to 

adequately train an ML algorithm, and the potentially high cost of acquiring sufficient data. As seen 

above, there are indeed ML algorithms that require very large datasets (especially when dividing them 

into training, validation, and testing subsets). However, many techniques have emerged to deal with this 

problem, including data augmentation. One pitfall is potential biases in data sets. In the early days of ML, 

there were ANNs unintentionally fooled by such innocuous issues as lighting conditions! The bottom line 

is that even the best augmentation techniques and the most tolerant ML algorithms will fail when 

subgroups are too small (which is, unfortunately, common in current radiology and nuclear medicine). 

 

FUTURE PROSPECTS  

Although ML has long existed, medical imaging applications are in their infancy (26). The advent 

of hybrid imaging (e.g. PET/MR), has brought enthusiasm to the field since this is ideally suited for the 

application of ML (due to different types of information that can be obtained simultaneously). However, 

several limitations remain. Typically, ML algorithms require large medical databases of sufficient quality 

to give reliable results.  In March 2018, Thrall et al. suggested AI medical imaging applications could 

benefit from: “(1) national and international image sharing networks, (2) reference datasets of proven 

cases against which AI programs can be tested and compared, (3) criteria for standardization and 

optimization of imaging protocols for use in AI applications, and (4) a common lexicon for describing 

and reporting AI applications”. (27) Standardization of imaging data acquisition is important since, the 



   
 

   
 

scanner model and protocol used to acquire imaging data can influence radiomic features. Further, 

although initial results in ML are exciting, standardization and methodologic transparency is needed to 

deliver reproducible results and speed clinical translation (28). Also, several topics require clarification as 

ML becomes ubiquitous in nuclear medicine, including the role of personal responsibility for patient care, 

fiduciary compact, data confidentiality, the need for bias free algorithms, the process for validating ML 

algorithms and the generalizability of results beyond a specific patient population where data exists, to 

name a few. Further discussion on this is beyond the scope (and word limit) of this paper. 

The second article in this series will address several key issues, with a focus on ML in nuclear 

medicine, and how this might impact our work flows. 
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Table 1. Key aspects of ML algorithms 

Algorithm Task Supervision? Model  Typical cost 
function 

Computational 
burden 

Assumptions / 
comments 

Naïve Bayes 
classification 

Classification Supervised Several e.g. 
Gaussian… 

Probabilistic Low Naïve 
probability 
distribution 

Linear 
regression 

Regression Supervised hyperplane MSE Low  

Support 
vector 
machine 

Classification Supervised 
 

hyperplane  Classification 
rate  

Moderate Handle complex 
problems  

Regression MSE 
Random 
forest 

Classification Supervised 
 

Tree  Classification 
rate 

Low-moderate Tolerant to 
overfitting 

Regression MSE 
Artificial 
neural 
network 

Classification 
or regression 

Supervised 
(typical); 
unsupervised / 
reinforcement 
learning (less 
common) 

Neurons 
connected in 
layers  

Classification 
rate, MSE 

High Used for 
complex 
problems; may 
be convolutional 
and/or deep 

k-means 
clustering 

Clustering Unsupervised Cluster 
centroid  

Distance to 
cluster center 

Moderate 
(depends on 
problem) 

Identifies 
centroids and 
assigns data to 
the nearest 
centroid 

Hierarchical 
clustering 

Clustering Unsupervised Dendogram Distance 
between data 
points 

Moderate 
(depends on 
problem) 

Clusters data by 
identifying data-
points that are 
similar 

Principal 
component 
analysis 

Dimensionality 
reduction 

Unsupervised Principal 
components 

 Moderate 
(depends on 
problem) 

 

MSE: Mean Square Error 

  



   
 

   
 

Figure 1. Machine learning tasks. A,B: Input measurements classified as circles or triangles for 

supervised learning (e.g. triangles could be positive cases, and circles be negative cases). C: 

Input measurements not classified (e.g. clinical information unknown). D. Classification using 

line ‘2’ is better fit than line ‘1.’ E. Classification requires nonlinear approach. F. Potential 

clustering. 
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Figure 2. Illustration of a support vector machine. A. Training dataset shown as a scatter plot. B. 

Solid line with maximum distance to closest data-points in each category; solid points indicate 

the closest points, known as support vectors. Note there are no data points in the region between 

the dashed lines.  
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Figure 3. Illustration of a random forest. A. Training dataset with 12 cases, each with 6 features, 

and an outcome for supervised training. B. 3 trees, each generated from 5 randomly selected 

cases and 3 randomly selected features; for trees 1 and 2, one feature is sufficient to fully 

separate the 5 cases, and for tree 3, two features are needed. C. New case where trees 1 and 3 

return Y, and tree 2 returns N, so the majority decision is Y. 

 

 

 

 

 

  

SUVmax diameter sex age height weight disease?

1 7.2 3.5 M 62 171 75 Y

2 2.1 2.0 M 78 165 76 N

3 6.0 2.0 F 71 162 70 Y

4 1.5 4.0 M 83 173 81 N

5 5.9 1.5 F 66 148 68 N

6 5.5 7.0 F 68 177 85 Y

7 4.4 7.5 F 59 166 64 N

8 8.9 6.5 F 88 146 61 Y

9 1.7 3.5 F 89 155 63 N

10 2.3 4.0 M 71 185 83 N

11 2.9 3.5 M 62 180 91 Y

12 5.8 4.0 F 66 170 71 Y

Tree 1
Cases: 1,3,9,10,12
Features: SUVmax,sex,weight

Tree 2
Cases: 2,5,6,9,11
Features: diameter,age,weight

Tree 3
Cases: 4,5,7,8,12
Features: SUVmax,diameter,height

SUVmax > 4.0
Y N

Y N

weight > 80
Y N

Y N

SUVmax > 5.1
Y N

Ndiam > 2.7
Y N

Y N

New case: SUVmax = 5.3, diameter = 3.5, sex = M, age = 62, height = 171, weight = 72
Tree 1: Y, Tree 2: N, Tree 3: Y, so decision is YES

A B

C



   
 

   
 

Figure 4. A. ANN with 4 layers, and neurons (circles). Arrows indicate values passed from one 

layer to another. B. Sample CNN for brain PET processing. Two layers each perform a 2D 

convolution followed by a rectified linear unit (ReLU) and pooling (taking the maximum value 

of every 4 pixels to reduce the total number of pixels). The resulting matrix (feature map) is 

“flattened” into a 1D array of neurons that are fully connected to another layer. A nonlinear 

operation (“soft max”) is performed to generate a classification. For simplicity we show a single 

input slice; however, CNNs can process higher-dimensional or multi-modality images. 

Parameters including: number of layers, number of pixels in a convolutional filter, convolution 

stride, and number of pixels pooled called hyperparameters. C. Image processing used in (23), 

with two paths processing images at different scales, each with contrast limited adaptive 

histogram equalization (CLAHE), a deep CNN, and a subsequent random forest. 
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Figure 5. Illustration of PCA. A. Training dataset shown as scatter plot. B. Spread of data is 

greater along rotated axis x’ than y’. C. Component y’ is removed since it is less important than 

x’. D. Data points are moved to closest point along x’ axis; compressed (lossy) data is 

represented by measurement along x’, rather than using x and y. 
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Figure 6: Illustration of K-means clustering. A. Training dataset shown as scatter plot (circles); 

stars indicate initial guesses for centers of two clusters. B. Solid line at midway point between 

stars separates data into two clusters (gray and white). C. Stars are moved to the centers of each 

cluster. D. Updated solid line at midway point between stars; one data point changes cluster. E. 

Stars are moved to updated centers; no data point changes cluster, so the algorithm converges. 
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Figure 7: Illustration of hierarchical clustering. A. Training dataset shown as scatter plot. B. 

Data-points E and F are similar, and are assigned to new cluster EF. C. Nearest neighbors are G 

and EF (G is closest to point F within EF), and are grouped into EFG. D. Data-points B and C 

are similar, and are assigned to new cluster BC. E. Nearest neighbors are A and BC (A is closest 

to point C within BC), and are grouped into ABC.  F. Nearest neighbors are D and EFG, so they 

are grouped into DEFG. G. Dendrogram indicating how clusters are hierarchically formed. 
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