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Abstract

We consider the utility-based portfolio selection problem in a continuous-time setting. We assume the market
price of risk depends on a stochastic factor that satisfies an affine-form, square-root, Markovian model. This
financial market framework includes the classical geometric Brownian motion, CEV model, and Heston’s
model as special cases. Adopting the BSDE approach, we obtain closed-form solutions for the optimal
portfolio strategies and value functions for the logarithmic, power, and exponential utility functions.
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1. Introduction

We consider a utility-based continuous-time port-
folio selection problem in a model in which the mar-
ket price of risk depends on a stochastic factor that
satisfies a CIR diffusion process. This framework
includes the geometric Brownian motion, constant
elasticity of variance (CEV), and Heston model as
special cases. We derive closed-form expressions for
the optimal investment strategy and the optimal value
using the backward stochastic differential equation
(BSDE) approach to stochastic control for logarith-
mic, power, and exponential utility functions. The
solutions are obtained by solving a system of ODEs
involving a Riccati ODE with constant coefficients.
The boundedness of the solution to this Riccati ODE
is critical for this solution technique, and we show
that boundedness holds in the problem.

Our paper was motivated in part by [7], in which
the mean-variance investment-reinsurance problem
is considered for the same market model. Another
related paper is [6], in which the investment prob-
lem is formulated taking into account the effect of
stochastic volatility. [1] is another related paper,
which studies portfolio optimization under stochas-
tic volatility, considered as a perturbation of the
complete market constant volatility model, under
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both fast and slow mean-reverting volatility. Our re-
sults cover (particular cases of) both stochastic and
local volatility models. We note that most of the lit-
erature concerning utility maximization investment
problems adopting the BSDE approach only consid-
ers the existence and uniqueness of solutions to the
corresponding BSDE without presenting closed-form
solutions. Furthermore, in typical applications of
the BSDE approach to portfolio optimization, the
solution (Y,Z) to the BSDE is considered under the
requirement that Y is a uniformly bounded process.
Our work relaxes the boundedness assumption on Y .

The remainder of this paper is structured as fol-
lows. Section 2 presents the financial market model
and required assumptions. Section 3 formulates and
solves the utility maximization problems. Some tech-
nical lemmas and proofs are presented in the Ap-
pendix.

2. Model Formulation and Preliminary Anal-
ysis

2.1. Financial Market Model

An agent, with initial wealth x0 > 0, invests cap-
ital in a risk-free bond B and a risky asset S with
price processes as follows:{

dBt = rtBtdt,

dSt = µtStdt+ σtStdW
(1)
t ,

where rt is the risk-free short rate at time t, µt is the
growth rate of the risky asset at time t and σt is the
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instantaneous volatility of the risky asset at time t.
We assume that the market price of risk θt := µt−rt

σt
,

0 6 t 6 T , is related to a stochastic factor process
α := {αt}06t6T as follows:

θt = θ̄
√
αt, ∀t ∈ [0, T ], θ̄ ∈ R \ {0},

where the stochastic factor process {αt}06t6T satis-
fies the following SDE

dαt = κ (φ− αt) dt

+
√
αt

(
ρ1dW

(1)
t + ρ2dW

(2)
t

)
,

αt|t=0 = α0 > 0.

(1)

W := {(W (1)
t ,W

(2)
t ), t > 0} is a standard Brow-

nian motion on R2 under the physical measure P
defined over a probability space (Ω,F). We use
F := {Ft, t > 0} to denote the P-augmentation of the
natural filtration generated by the Brownian motion
W . We impose the following two assumptions:

H1. κφ > 0;

H2. rt = 0 for 0 6 t 6 T .

Remark 2.1. H1 is imposed to ensure αt > 0 for
all t ∈ [0, T ]. Notice that we do not impose the Feller
condition for strict positivity of α, i.e. 2κφ > ρ2

1 +
ρ2

2 in our case; for further details see Chapter 6 of
[3]. H2 follows most references concerning utility
maximization using the BSDE approach; see [2] and
Chapter 6 in [4]. If H2 is not imposed, the utility
maximization problem can be considered in terms of
the discounted wealth instead of the terminal wealth.

The above financial model was studied in [7] in
the context of solving a mean-variance investment-
reinsurance problem. It covers several well-known
models including the geometric Brownian motion
model, the CEV model, the Heston’s model, as well
as other non-Markovian models.

Example 2.1. (CEV Model). If µt = µ, σt = σSβt ,
rt = r, with µ > r > 0, σ > 0 and β ∈ R, then the
risky asset price is given by the CEV model:

dSt = St

[
µdt+ σSβt dW

(1)
t

]
,

where β is called the elasticity parameter of the risky

asset. If we set αt = S−2β
t , κ = 2βµ, φ = (β+ 1

2 )σ
2

µ ,

ρ1 = −2βσ, ρ2 = 0 and θ̄ = µ−r
σ , then

dαt = dS−2β
t

= 2βµ

[(
β +

1

2

)
σ2

µ
− S−2β

t

]
dt− 2βσS−βt dW

(1)
t

= κ (φ− αt) dt+
√
αt

(
ρ1dW

(1)
t + ρ2dW

(2)
t

)
.

If we set β = 0, then the CEV model reduces to the
classical geometric Brownian motion framework.

Example 2.2. (Heston’s Model). If rt = r, µt =

r + θ̄νt, σt =
√
νt, ρ1 = σ0ρ and ρ2 = σ0

√
1− ρ2

where r > 0, θ̄ ∈ R \ {0}, σ0 > 0 and ρ ∈ (−1, 1),
then the risky asset price is given by Heston’s model:

dSt = St

[(
r + θ̄νt

)
dt+

√
νtdW

(1)
t

]
,

where νt = αt for 0 6 t 6 T satisfies

dνt = κ (φ− νt) dt

+ σ0
√
νt

(
ρdW

(1)
t +

√
1− ρ2dW

(2)
t

)
.

Example 2.3. Set µt = rt + θ̄
√
αt · σ̂(α[0,t]) and

σt = σ̂(α[0,t]) for some functional σ̂ : C(0, t;R) →
R+, where α[0,t] := {αs}s∈[0,t] is the restriction of
α(·) ∈ C(0, T ;R) to C(0, t;R), i.e. the space of real-
valued, continuous functions defined on [0, t]. Then
the risky asset price is given by a path-dependent
model:

dSt = St

[(
rt + θ̄

√
αt · σ̂(α[0,t])

)
dt+ σ̂(α[0,t])dW

(1)
t

]
,

and αt satisfies (1). This is a special case of the
more general non-Markovian risky asset price model
in [8].

Lemma 2.2. If two deterministic functions m1(t)
and m2(t) are uniformly bounded on [0, T ], then the
stochastic exponential process defined by

exp

{
−1

2

∫ t

0

(
m2

1(s) +m2
2(s)

)
αsds

+

∫ t

0

m1(s)
√
αsdW

(1)
s +

∫ t

0

m2(s)
√
αsdW

(2)
s

}
is a Ft-adapted martingale.

Proof. See Appendix A

3. Utility Maximization

In the sequel, the logarithmic, power, and expo-
nential utility cases will be indicated by the subscript
i = 1, 2, 3 respectively. We consider a finite invest-
ment time horizon [0, T ] with T > 0. Let wt denote
the proportion of total wealth invested in the risky
asset at time t, assuming the total wealth remains at
a strictly positive level within the investment hori-
zon. With the trading strategy w := {wt, 0 6 t 6
T}, the portfolio value process Xw

t follows:

dXw
t = Xw

t

[
wtµtdt+ σtwtdW

(1)
t

]
, t > 0. (2)
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For exponential utility maximization, we work with
the amount of wealth πt invested in the risky asset
at time t. With the trading strategy π := {πt, 0 6
t 6 T}, the portfolio value process Xπ

t follows:

dXπ
t = πtµtdt+ σtπtdW

(1)
t , t > 0. (3)

The trading strategies π and w are F-progressively

measurable and they satisfy E
[∫ T

0
σ2
tw

2
t dt
]
< ∞

and E
[∫ T

0
σ2
t π

2
t dt
]
<∞ respectively, so that unique

strong solutions exist for the SDEs (2) and (3). We
let S denote the set of trading strategies w satisfying
the above conditions. Further, for constant M > 0,
we write SM as the set of trading strategies π satisfy-
ing the above conditions and such that the collection
{e−ηXπτ +Mατ : τ is a stopping time valued in [0, T ]}
is a uniformly integrable family.

Definition 3.1. For power and logarithmic utility,
a trading strategy w := {wt, 0 6 t 6 T} is called
admissible with initial wealth x0 > 0 if it belongs to
the following set:

A1(x0) = A2(x0) := {w ∈ S : Xw
0 = x0,

and Xw
t > 0, a.s., ∀ 0 6 t 6 T}.

For exponential utility, a trading strategy π := {πt, 0 6
t 6 T} is called admissible with initial wealth x0 > 0
if it belongs to the following set:

A3(x0) :=
{
π ∈

⋃
M>M0

SM : Xπ
0 = x0,

and Xπ
t > 0, a.s., ∀ 0 6 t 6 T

}
,

where M0 is a positive constant.

Remark 3.1. A similar problem is studied in [2] in
an incomplete market setting. For exponential util-
ity, they imposed the additional regularity condition:

{e−ηX
π
τ : τ is a stopping time valued in [0, T ]}

is a uniformly integrable family. This assumption
enables them to prove the optimality of the their ob-
tained strategy. In our case, due to the difference be-
tween their formulation and our general framework,
we consider an admissible set such that π satisfies a
stronger condition.

The utility maximization problems for logarith-
mic and power utility then become sup

w∈Ai(x0)

E [Ui (Xw
T )]

subject to (Xw
t , wt) satisfying (2) for t > 0,

(4)

where U1(x) = log(x) for logarithmic utility, and
U2(x) = xγ

γ , γ < 1 and γ 6= 0 for power utility. For
exponential utility, the problem is: sup

π∈A3(x0)

E [U (Xπ
T )] = E

[
−e−ηX

π
T

]
,

subject to (Xπ
t , πt) satisfying (3) for t > 0.

(5)
Now, for i = 1, 2, 3, we introduce the following

BSDE: 
dYt = hi

(
θt, Z

(1)
t , Z

(2)
t

)
dt

+ Z
(1)
t dW

(1)
t + Z

(2)
t dW

(2)
t ,

YT = 0,

(6)

where h1(p, z1, z2) = −p
2

2 for logarithmic utility,

h2(p, z1, z2) =
γp2 + 2γpz1 + z2

1 − (γ − 1)z2
2

2(γ − 1)

for power utility, and

h3(p, z1, z2) =
p2

2η
+ pz1 −

ηz2
2

2

for exponential utility. In equation (6), θt is the
market price of risk at time t and is modelled by
θt = θ̄

√
αt with αt satisfying (1).

Proposition 3.2. A solution pair (Y,Z) to BSDE
(6) is given by

Yt = gi(t)αt + ci(t),

Z
(1)
t = ρ1

√
αtgi(t),

Z
(2)
t = ρ2

√
αtgi(t),

(7)

where g(t) and c(t) satisfy

dci(t)

dt
+ κφgi(t) = 0, ci(T ) = 0 (8)

and

dgi(t)

dt
−κgi(t) =


− 1

2 θ̄
2, i = 1

−
[

1
2(1−γ)ρ

2
1 + 1

2ρ
2
2

]
g2
i (t)

+ θ̄ρ1γ
γ−1 gi(t) + θ̄2γ

2(γ−1) , i = 2

−ηρ
2
2

2 g2
i (t) + θ̄ρ1gi(t) + θ̄2

2η , i = 3

(9)
with gi(T ) = 0, and i = 1, 2, 3 for logarithmic, power,
and exponential utility, respectively.

Proof. The proof is a straightforward application of
Itô’s formula with (7).
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The following assumption is sufficient to ensure
boundedness of the solutions of the Riccati equations
that appear above.

H3. If γ ∈ (0, 1), we impose κ + θ̄ρ1γ
γ−1 > 0 and

κρ1
θ̄
≤ −1.

Proposition 3.3. A solution to the system of ODEs
(8) and (9) is given by

g(t) = g (t;Ai, Bi, Ci) ,

c(t) = c (t;Ai, Bi, Ci, κφ)

where

Ai =


− θ̄

2

2 i = 1,
θ̄2γ

2(γ−1) i = 2,
θ̄2

2η i = 3,

Bi =


κ i = 1,

κ+ θ̄ρ1γ
γ−1 i = 2,

κ+ θ̄ρ1 i = 3,

Ci =


0 i = 1,
ρ21

2(1−γ) +
ρ22
2 i = 2,

ηρ22
2 i = 3,

and g(t; ·, ·, ·) and c(t; ·, ·, ·, ·) are given in Lemmas
B.1 and B.2 respectively. Furthermore, g(t) is bounded
for t ∈ [0, T ].

Proof. Applying Lemmas B.1 and B.2 yields the so-
lution. The boundedness of the solution g(t) can be
proved by applying Lemma C.1.

Remark 3.4. For the power utility case, the bound-
edness of the solution can be proved by using assump-
tion H3 and Lemma C.1. The analogous bounded-
ness result is obtained in Lemma 3.4 in [7] by im-
posing other assumptions.

3.1. Optimal Solutions and Optimal Values

Proposition 3.5. Let (Y,Z) be a solution to (6).

1. For logarithmic utility, the optimal solution w∗t
to (4) and the optimal value v(x0) are given by:

w∗t =
θt
σt
, v(x0) = ln(x0) + Y0. (10)

2. For power utility, the optimal solution w∗t to
(4) and the optimal value v(x0) are given by:

w∗t =
1

1− γ

[
θt
σt

+
Z

(1)
t

σt

]
, v(x0) =

xγ0
γ
eY0 .

(11)

3. For exponential utility, the optimal solution π∗t
to (5) and the optimal value v(x0) are given by:

π∗t =
1

σt

[
θt
η

+ Z
(1)
t

]
, v(x0) = −e−η(x0−Y0).

(12)

Proof. 1. Define Jwt := ln(Xw
t )+Yt, so that Jw0 =

J0 = v(x0) is independent of w and given by
(10). For all w ∈ A1(x0),

Jwt = J0 +

∫ t

0

(
wsµs −

1

2
w2
sσ

2
s −

1

2
θ2
s

)
ds

+

∫ t

0

(
wsσs + Z(1)

s

)
dW (1)

s +

∫ t

0

Z(2)
s dW (2)

s .

Observe that:

E
[ ∫ T

0

(σtwt + Z
(1)
t )2dt+

∫ T

0

(Z
(2)
t )2dt

]
6 2E

[ ∫ T

0

σ2
tw

2
t dt+

∫ T

0

(
(Z

(1)
t )2 +

(Z
(2)
t )2

2

)
dt
]

6 2E
[ ∫ T

0

σ2
tw

2
t dt+

∫ T

0

cαtdt
]

= 2E
[ ∫ T

0

σ2
tw

2
t dt
]

+ 2c

∫ T

0

[
α0e
−κt + φ(1− eκt)

]
dt

< ∞

where c = (ρ2
1 +

ρ22
2 ) supt∈[0,T ] g

2(t), the first
equality follows from Fubini’s Theorem and
the last inequality follows from the definition
of A1(x0). Therefore, the stochastic integral{∫ t

0

(
wsσs+Z

(1)
s

)
dW

(1)
s +

∫ t
0
Z

(2)
s dW

(2)
s

}
t∈[0,T ]

is a martingale.
Moreover, for all w ∈ A1(x0) and w∗ as in (10),
we have that for each t ∈ [0, T ],

0 = w∗t µt−
1

2
(w∗t )2σ2

t−
1

2
θ2
t > wtµt−

1

2
w2
t σ

2
t−

1

2
θ2
t .

Therefore, {Jwt }t∈[0,T ] is a supermartingale and

{Jw∗

t }t∈[0,T ] is a martingale, which implies that

E[JπT ] 6 J0 = v(x0) = E[Jπ
∗

T ].

2. Define Jwt :=
(Xwt )γ

γ eYt . Then Jw0 = J0 =

v(x0), where v(x0) is defined in (11). For w ∈
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A2(x0), we write Jwt = Awt M
w
t with

Awt =
xγ0
γ

exp
{∫ t

0

(
γwsµs −

1

2
γw2

sσ
2
s

− f(s, Z(1)
s , Z(2)

s ) +
1

2
(γwsσs + Z(1)

s )2

+
1

2
(Z(2)

s )2
)
ds
}
,

Mw
t = exp

{∫ t

0

(γwsσs + Z(1)
s )dW (1)

s

− 1

2

∫ t

0

(γwsσs + Z(1)
s )2ds

}
× exp

{∫ t

0

Z
(2)
t dW (2)

s − 1

2

∫ t

0

(Z(2)
s )2ds

}
,

and f = −h2 is the negation of the drift coef-
ficient term of the BSDE of Y defined in (6).
It can be easily verified that {Mw

t }t∈[0,T ] is a
local martingale. Thus, there exists a sequence
of stopping times satisfying lim

n→∞
τn = T a.s.

such that {Mw
t∧τn}t∈[0,T ] is a positive martin-

gale for each n. For all w ∈ A2(x0) and w∗

defined in (11), if γ ∈ (0, 1), we have for each
t ∈ [0, T ]:

P (wt) := γwtµt −
1

2
γw2

t σ
2
t − f(t, Z

(1)
t , Z

(2)
t )

+
1

2
(γwtσt + Z

(1)
t )2 +

1

2
(Z

(2)
t )2

6 P (w∗t ) = γw∗t µt −
1

2
γ(w∗t )2σ2

t − f(t, Z
(1)
t , Z

(2)
t )

+
1

2
(γw∗t σt + Z

(1)
t )2 +

1

2
(Z

(2)
t )2 = 0,

while γ < 0, P (wt) > P (w∗t ) = 0. Thus,
{Awt }t∈[0,T ] is a non-increasing process. So,
for t > s,

E[Jwt∧τn |Fs] = E[Awt∧τnM
w
t∧τn |Fs]

6 Aws∧τnE[Mw
t∧τn |Fs] = Aws∧τnM

w
s∧τn = Jws∧τn .

Note that {Jwt }t∈[0,T ] is bounded below by 0.
Passing to the limit and applying Fatou’s Lemma
yields that {Jwt }t∈[0,T ] is a supermartingale. It

remains to show that {Jw∗

t }t∈[0,T ] is a martin-
gale with w∗ as defined in (11). Note that
Aw

∗

t = xγ0 and

Mw∗

t = exp
{
− 1

2

∫ t

0

(
m2

1(s) +m2
2(s)

)
αsds

+

∫ t

0

m1(s)
√
αsdW

(1)
s

+

∫ t

0

m2(s)
√
αsdW

(2)
s

}
,

where m1(t) = γθ̄
(1−γ) + ρ1

(1−γ)g(t) and m2(t) =

ρ2g(t). By Lemma 2.2, {Mw∗

t }t∈[0,T ] is a pos-

itive martingale, and so is {Jw∗

t }t∈[0,T ]. Then,

E[JwT ] 6 J0 = v(x0) = E[Jw
∗

T ].

3. Define Jπt := −e−η(Xπt −Yt). Then Jπ0 = J0 =
v(x0), where v(x0) is defined in (12). For all
π ∈ A3(x0), we write Jπt = AπtM

π
t , where

Aπt =− exp
{
− η

∫ t

0

(
πsµs + f(s, Z(1)

s , Z(2)
s )

− η

2
(σsπs − Z(1)

s )2 − η

2
(Z(2)

s )2
)
ds
}
,

Mπ
t = exp

{
− η

∫ t

0

(σsπs − Z(1)
s )dW (1)

s

− η2

2

∫ t

0

(σsπs − Z(1)
s )2ds

}
× exp

{∫ t

0

ηZ
(2)
t dW (2)

s − η2

2

∫ t

0

(Z(2)
s )2ds

}
,

and f = −h3 is the negation of the drift coef-
ficient term of the BSDE of Y defined in (6).
It is easy to see that {Mπ

t }t∈[0,T ] is a local mar-
tingale. Thus, there exists a sequence of stop-
ping times satisfying lim

n→∞
τn = T a.s. such

that {Mπ
t∧τn}t∈[0,T ] is a positive martingale for

each n. Moreover, for all π ∈ A3(x0) and π∗

as in (12), we have for each t ∈ [0, T ],

0 = π∗t µt + f(t, Z
(1)
t , Z

(2)
t )

− η

2
(σtπ

∗
t − Z

(1)
t )2 − η

2
(Z

(2)
t )2

> πtµt + f(t, Z
(1)
t , Z

(2)
t )

− η

2
(σtπt − Z(1)

t )2 − η

2
(Z

(2)
t )2.

Therefore, {Aπt }t∈[0,T ] is a non-increasing pro-
cess. Hence, for t > s,

E[Jπt∧τn |Fs] = E[Aπt∧τnM
π
t∧τn |Fs]

6 Aπs∧τnE[Mπ
t∧τn |Fs] = Aπs∧τnM

π
s∧τn = Jπs∧τn .

That is, for any A ∈ Fs, we have E[Jπt∧τn1A] 6
E[Jπs∧τn1A]. Further, for two constants c and

M , |Jπt∧τn | 6 |J
π
τn | 6 ce−ηX

π
τn

+Mατn holds for
any π ∈ SM . Thus, the uniform integrabil-
ity of Jπt∧τn follows from that of e−ηX

π
τn

+Mατn .
Thus, passing to the limit yields that {Jπt }t∈[0,T ]

is a supermartingale.
It remains to show that {Jπ∗

t }t∈[0,T ] is a mar-

tingale with π∗ as in (12). Note that Aπ
∗

t = −1
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and

Mπ∗

t = exp
{
− 1

2

∫ t

0

(
m2

1(s) +m2
2(s)

)
αsds

+

∫ t

0

m1(s)
√
αsdW

(1)
s

+

∫ t

0

m2(s)
√
αsdW

(2)
s

}
,

where m1(t) = −θ̄ and m2(t) = ηρ2g(t). By
Lemma 2.2, {Mπ∗

t }t∈[0,T ] is a positive martin-

gale, and so is {Jπ∗

t }t∈[0,T ]. Then, E[JπT ] 6
J0 = v(x0) = E[Jπ

∗

T ].
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A. Proof of Lemma 2.2

The proof is adapted from Lemma A1 in [7] and
Lemma 4.3 in [9].

Firstly, from the boundedness of both m1 and
m2, we can find an M such that 0 < M < ∞ and
1
2

(
m2

1(t) +m2
2(t)

)
6 M for all t ∈ [0, T ]. Then for

any T0 ∈ [0, T ], we define κ− = max{0,−κ},

f(t) := exp

{
−
[
2M + 2κ− +

1

2
(ρ2

1 + ρ2
2)

]
(t− T0)

}
,

and

F (t) :=
1

2

(
m2

1(t) +m2
2(t)

)
+ f ′(t)− κf(t)

+
1

2
(ρ2

1 + ρ2
2)f2(t)

6M − f(t)

[
2M + 2κ− +

1

2
(ρ2

1 + ρ2
2)

]
− κf(t)

+
1

2
(ρ2

1 + ρ2
2)f2(t)

= M [1− 2f(t)]− |κ| · f(t)

− 1

2
(ρ2

1 + ρ2
2)f(t)[1− f(t)] =: H(t).

It is obvious that H(t) < 0 for t ∈ [T0, T0 +h] where
h = ln 2

2M+2κ−+ 1
2 (ρ21+ρ22)

> 0. Therefore, F (t) < 0 for

t ∈ [T0, T0 + h] as well.
Now, for t ∈ [T0, T0 + h], we denote

G(t) := exp
[ ∫ t

T0

1

2

(
m2

1(s) +m2
2(s)

)
αsds+f(t)αt

]
> 0.

Applying Itô’s formula to G(t) gives

dG(t) = G(t)
[

(κφf(t) + F (t)αt) dt

+ ρ1
√
αtf(t)dW

(1)
t + ρ2

√
αtf(t)dW

(2)
t

]
.

Taking expectations on both sides yields

E [G(t)|FT0
]

= E
[
eαT0 exp

{
κφ

∫ t

T0

f(s)ds+

∫ t

T0

F (s)αsds
}

× exp
{
− 1

2
(ρ2

1 + ρ2
2)

∫ t

T0

f2(s)αsds

+ ρ1

∫ t

T0

√
αsf(s)dW (1)

s

+ ρ2

∫ t

T0

√
αsf(s)dW (2)

s

}∣∣∣FT0

]
6 eαT0 exp

{
κφ

∫ t

T0

f(s)ds

}
6 eκφ(t−T0)+αT0

<∞, a.s.,
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where the last equality follows from the fact that
F < 0 on [T0, T0 +h] and the supermartingale prop-
erty of stochastic exponentials. Therefore,

E
[
e
∫ t
T0

1
2 (m2

1(s)+m2
2(s))αsds|FT0

]
6 E[G(t)|FT0

] 6 eκφ(t−T0)+αT0 <∞, a.s.

This means that, for t ∈ [T0, T0 + h], the stochastic
exponential process defined by

exp
{
− 1

2

∫ t

T0

(
m2

1(s) +m2
2(s)

)
αsds

+

∫ t

0

m1(s)
√
αsdW

(1)
s +

∫ t

T0

m2(s)
√
αsdW

(2)
s

}
is a martingale.

Lastly, for any t ∈ [0, T ], we find a partition of
the interval [0, t], i.e. 0 = t0 < t1 < · · · < tn =
t such that n = d the and tk+1 − tk = t

n 6 h for
k = 0, 1, · · · , n− 1, where dxe is the smallest integer
greater than or equal to x. Then

E
[
exp

{
− 1

2

∫ t

0

(
m2

1(s) +m2
2(s)

)
αsds

+

∫ t

0

m1(s)
√
αsdW

(1)
s +

∫ t

0

m2(s)
√
αsdW

(2)
s

}]
=E

[
n−1∏
k=0

exp

{
−1

2

∫ tk+1

tk

(
m2

1(s) +m2
2(s)

)
αsds

+

∫ tk+1

tk

m1(s)
√
αsdW

(1)
s

+

∫ tk+1

tk

m2(s)
√
αsdW

(2)
s

}]

=E

{
E

[
n−1∏
k=0

exp
{
− 1

2

∫ tk+1

tk

(
m2

1(s) +m2
2(s)

)
αsds

+

∫ tk+1

tk

m1(s)
√
αsdW

(1)
s

+

∫ tk+1

tk

m2(s)
√
αsdW

(2)
s

}∣∣∣Ftn−1

]}
=E

[
n−2∏
k=0

exp

{
−1

2

∫ tk+1

tk

(
m2

1(s) +m2
2(s)

)
αsds

+

∫ tk+1

tk

m1(s)
√
αsdW

(1)
s

+

∫ tk+1

tk

m2(s)
√
αsdW

(2)
s

}
× 1

]
= · · · = 1.

B. Solution to ODEs involving Riccati Equa-
tion

The proof of the next lemma can be seen in [5].

Lemma B.1. Consider the following Riccati equa-
tion:

dg(t)

dt
+ a2g

2(t)− a1g(t) = a0, g(T ) = 0 (B.1)

where a0, a1 and a2 are three constants. The solu-
tion has the form:

g(t) =
R2(τ)

R1(τ)

where τ := T − t and the vector (R1(τ), R2(τ))>

follows the ODE:

d

(
R1(τ)
R2(τ)

)
=

(
0 −a2

−a0 −a1

)(
R1(τ)
R2(τ)

)
dτ

where R1(τ)|t=T = 1 and R2(τ)|t=T = 0. More pre-
cisely, let ∆ = a2

1 + 4a0a2 and δ = 1
2

√
|∆|. An

explicit solution g(t) =: g(t; a0, a1, a2) is given as
follows:

g(t; a0, a1, a2) := g(t)

=



−a0
δ sin(δτ)

cos(δτ) + a1
2δ sin(δτ)

if ∆ < 0,

−a0τ

1 + a1
2 τ

if ∆ = 0,

−a0
δ sinh(δτ)

cosh(δτ) + a1
2δ sinh(δτ)

if ∆ > 0.

(B.2)

The proof of the following result is elementary
and thus omitted.

Lemma B.2. Suppose g(t) follows the Riccati equa-
tion in (B.1) and c(t) satisfies:

dc(t)

dt
+ a3g(t) = 0, c(T ) = 0 (B.3)

where a3 is a constant. Let ∆ = a2
1 + 4a0a2 and

δ = 1
2

√
|∆|. A solution c(t) =: c(t; a0, a1, a2, a3)

to (B.3) is given as follows:

1. If a2 6= 0,

c(t; a0, a1, a2, a3) := c(t)

=


−a3
a2

[
−a1τ2 + ln

∣∣cos(δτ) + a1
2δ sin(δτ)

∣∣] , if ∆ < 0,
−a3
a2

[
−a1τ2 + ln

∣∣1 + a1
2 τ
∣∣] , if ∆ = 0,

−a3
a2

[
−a1τ2 + ln

∣∣cosh(δτ) + a1
2δ sinh(δτ)

∣∣] , if ∆ > 0.

2. If a2 = 0 and a1 6= 0,

c(t; a0, a1, a2, a3) := c(t) =
a0a3

a1

[
e−

a1τ
2

sinh(δτ)

δ
−τ
]
.

3. If a2 = 0 and a1 = 0,

c(t; a0, a1, a2, a3) := c(t) = −a0a3

2
τ2.
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C. Boundedness of the Solution to the Ric-
cati Ordinary Differential Equation

Lemma C.1. For the Riccati equation (B.1), the
following results hold:

1. If a2 = 0, then the solution g(t; a0, a1, a2) given
in (B.2) is bounded on t ∈ [0, T ].

2. If a0 > 0 and a2 > 0, then the solution g(t; a0, a1, a2)
given in (B.2) is bounded on t ∈ [0, T ].

Proof. 1. In this case, we simply substitute a2 =
0 and then the solution reduces to

g(t; a0, a1, 0) =

{
a0
a1

(e−a1τ − 1), if a1 6= 0,

−a0τ, if a1 = 0,

where τ = T − t. Obviously, g(t; a0, a1, a2) is
bounded on [0, T ].

2. In this case, we can also verify that the solution
adopts the following form:

g(t; a0, a1, a2)

=


a0
a1

(e−a1τ − 1), if a1 6= 0, a0 = 0

−a0τ, if a1 = 0, a0 = 0,
−a0
δ sinh(δτ)

cosh(δτ) + a1
2δ sinh(δτ)

if a0 6= 0,

where τ = T − t and δ = 1
2

√
a2

1 + 4a0a2 >
0. It is obvious that for the first two cases
g(t; a0, a1, a2) is bounded on [0, T ]. For the
third case, it can be verified that

0 ≤ |g(t; a0, a1, a2)| ≤ a0

2δ
(e2δτ − 1).

Therefore, g(t; a0, a1, a2) is bounded on [0, T ].
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