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1. Introduction

Fee structures in the hedge fund industry have been the subject of much recent discussion and innovation.
Traditional fee structures, in which the manager charges a 2% fee for assets under management and keeps 20%
of profits as an incentive fee (the so-called 2 and 20 structures) have been criticized both for resulting in fees
that are too high, and for incentivizing risk taking on the part of the fund manager. For further discussions, see
Kouwenberg and Ziemba (2007), and Hodder and Jackwerth (2007).

Recent innovations include first-loss and shared loss structures, in which the insurer provides some down-
side protection to fund investors in return for a higher percentage of upside participation. As compensation for
paying the losses first, the incentive fee is usually higher, typically about 40%. He and Kou (2018) compared
the first-loss and traditional fee structures by solving utility maximizing problems for the hedge fund manager,
and found that under certain parameter assumptions, the utilities of both the investor and the fund manager were
improved. Djerroud et al. (2016) studied shared-loss fee structures from an option pricing perspective; Meng
et al. (2019) considered the risk-return tradeoff for both investors and managers with shared-loss fee structures;
Bhaduri et al. (2018) considered both pricing and risk-management for related hedge-fund fee structures, with
payoffs to investors resembling those of asset-backed securities, or high-yield bonds.

In this paper, we study the optimal stopping problem arising from an investor determining the optimal time
to withdraw from a hedge fund investment with a first-loss or shared-loss fee structure and a positive fee for
assets under management. The optimal solution is characterized as the first exit time of the fund value from a
bounded region with upper and lower stopping boundaries. In the infinite horizon case, we present the complete
solution to the optimal stopping problem, while in the finite horizon case we derive a pair of coupled integral
equations for the stopping bounds, and present an asymptotic analysis of the stopping boundaries for small
time.

The paper closest to the current work is Chen et al. (2020). In that paper, the authors studied the investor’s
(optimal stopping) problem of when to withdraw the investment from the fund under the assumption that
the fund assets follow a geometric Brownian motion, with no penalty for withdrawal, or fee for assets under
management. The infinite horizon optimal stopping problem was solved explicitly, and various properties of
the finite horizon problem, including the existence and convexity properties of optimal stopping boundaries
were studied. This paper builds on that work in three main ways. First of all, it introduces a running fee
for assets under management. Adding this realistic feature to the model adds significant complexity (it is
analogous to introducing a dividend rate in the American option pricing problem), with even the solution of
the infinite horizon problem being more complicated. Secondly, we derive an early exercise decomposition of
the value of the investor’s position, and use this to obtain a pair of coupled integral equations for the optimal
stopping boundaries. Finally, we perform an asymptotic analysis of the small-time behaviour of the boundaries,
employing a strategy of comparison with related “European” prices and boundaries due to Lamberton (1995).
The analysis is significantly more complicated in our case however, owing to the existence of two stopping
boundaries, and the lack of global convexity of the payoff function.

1.1 Managerial Implications

A critical aspect of the management of investments in hedge funds with first-loss fee structures is the ability
of the investor to time the withdrawal of their money. Barr (2011) states that “[t]he downside for managers is
that, if they suffer a big monthly loss, they lose their own capital quickly. And first-loss capital providers can
pull their money fast to protect their investment”. Weiss (2018) notes that billionaire hedge fund manager John
Paulson resorted to employing first-loss fee structures in order to attract investors; again, the possibility of early
withdrawal of investors’ funds was crucial: “[w]hile Prelude and its two peers supply most of the capital in
first-loss strategies, they almost never lose any of it. That’s because they can shut down an account once most
of the hedge fund manager’s capital is gone.”

The optimal stopping strategies determined in this paper can be directly applied by investors in hedge funds
with the new fee structures (e.g. managers of funds of funds), governing their decisions of the time to shut
down their accounts. Interestingly, although the articles in the financial press cited above mainly focus on
the withdrawal of funds in the event of significant losses, we find that there are two stopping boundaries, one



corresponding to large losses, and the other to large gains. The situation is similar to that which arises with
American continuous installment options (see, e.g. Ciurlia and Roko (2005), Kimura (2009)). There is an
obvious incentive to withdraw when there are substantial losses, as the insurance against investor losses has
basically been exhausted (this is analogous to exercising the option when it is in the money). However, when
gains are very large, the cost of the performance fee, which may be interpreted as an option that the fund
investor has provided to the fund manager, becomes too large, and the probability of the investor’s downside
protection taking effect becomes miniscule. At this point, the investor would be better off under another fee
structure (this is analogous to the situation when a continuous installment option is exercised/cancelled because
the ongoing installment fees are too expensive when the option is very deep out of the money, and unlikely to
expire with a positive payoff). Recall, as noted above that while a 20% performance fee is standard in traditional
fee structures, performance fees of 40%, or even 50%, can be present in first-loss structures.

Depending on the technical sophistication of the investor, and the nature of the fee contract, the results of
this paper could be used in two ways. The simplest would be to use the semi-analytical formulas for the early
exercise boundaries in the infinite horizon case, outlined in Section Three. This requires only the solution of
a system of two nonlinear equations. The more advanced approach, given that the investment contract has a
finite horizon, would be to solve numerically the coupled integral equations presented in Section Four (perhaps
employing the asymptotic results of Section Five in order to specify the small-time behaviour), and to use the
resulting numerical boundaries to determine the best time to withdraw from the hedge fund investment.

1.2 Structure of the Paper

The remainder of the paper is structured as follows. The second section introduces notation, presents the in-
vestor’s payoff in the shared and first-loss hedge fund fee structures, and defines the optimal stopping problem.
The third section presents the solution of the infinite horizon optimal stopping problem. The fourth section
gives an analysis of the finite horizon problem, including properties of the stopping boundaries, the early ex-
ercise decomposition, and the integral equations for the boundaries. The fifth section presents the small-time
asymptotic analysis of the stopping boundaries.

2. Investor Payoffs and Optimal Stopping Model

In this paper, we assume the hedge fund assets follow a geometric Brownian motion,

dXx
t = (r−δ )Xx

t dt +σXx
t dWt , Xx

0 = x, t > 0, (2.1)

Xx
t = xexp{(r−δ − 1

2
σ

2)t +σWt}.

where r > 0 is the risk-free rate, δ > 0 is the fee rate for assets under management, σ > 0 is the volatility and
W is a standard Brownian motion under the risk-neutral measure Q. We employ the standard right-continuous
completion of the filtration generated by W ; when we consider stopping times, they are with respect to this
filtration, which we denote by F. We consider the problem of finding the investor’s optimal withdrawal time by
optimizing the present value of the expected payoff in a risk-neutral world.1

For the infinite horizon problem, the value function becomes:

V (x) = sup
τ∈T

EQ[e−rτ g(Xx
τ )], (2.2)

where T is the set of all F-stopping times. On the other hand, if the hedge fund has a maturity date T , then the

1In general, the assets of a hedge fund may not be directly tradable, and so the assumptions required for risk-neutral valuation may be
questioned. However, first-loss investors often provide capital to funds that invest in relatively liquid strategies. Weiss (2018) notes that
“[f]irst-loss providers also generally prefer to back strategies whose assets can be easily sold should the trades sour”. Exploration of the
optimal stopping problem under the real-world measure and a model for fund investor preferences is a possible subject for future research.



value function at the current time (taken to be 0) is:

V (x,T ) = sup
τ∈T[0,T ]

EQ[e−rτ g(Xx
τ )], (2.3)

where τ ∈ T[0,T ] is the set of all F-stopping times such that 0 6 τ 6 T , and g(x) is the payoff function for the
first-loss and shared-loss fee structures.

2.1 Hedge Fund Fee Structures

Chen et al. (2020) explain the various payoff functions g(x) for first-loss and shared-loss fee structures in detail.
In this section, we briefly summarize the payoffs for each fee structure. Roughly speaking, the manager has
two ways to provide downside protection for the investor. First, she can set up an escrow account, which sets
aside funds to compensate the investor’s losses. Second, she can invest her own money in the fund and insure
the investor’s losses from her own share. In both cases, the investor’s loss is paid in full unless the escrow
account or the manager’s share is wiped out.

2.1.1 First-Loss First, suppose the manager sets up an escrow account and let c, 0 < c < 1 be the escrow
amount, a percentage of the initial investment x. Then the payoff function to the investor is

g(Xx
T ) =


αXx

T +(1−α)Xx
T , Xx

T > x,

x, (1− c)x6 Xx
T 6 x,

cx+Xx
T , Xx

T 6 cx,

(2.4)

Next, the manager contributes her own capital into the fund. Let ω ∈ (0,1) be the proportion of the investor’s
initial capital contributed by the manager, so that the total initial investment is (1+ω)x. Then the payoff to the
investor is

g(Xx
T ) =


αXx

T +(1−α)Xx
T , Xx

T > x,

x, 1
1+ω

x6 Xx
T 6 x,

(1+ω)Xx
T , Xx

T 6
1

1+ω
x.

(2.5)

2.1.2 Shared-Loss For the shared-loss fee structure, the manager covers the proportion θ of the investor’s
losses from an escrow account. If c> θ , which implies that the escrow account cannot be exhausted, the payoff
to the investor is

g(Xx
T ) =

{
αXx

T +(1−α)Xx
T , Xx

T > x,

θ +(1−θ)Xx
T , Xx

T 6 x.
(2.6)

If c < θ , then the payoff to the investor is

g(Xx
T ) =


αXx

T +(1−α)Xx
T , Xx

T > x,

θ +(1−θ)Xx
T , (1− c

θ
)x6 Xx

T 6 x,

cx+Xx
T , Xx

T 6 (1− c
θ
)x.

(2.7)



The final case is when the manager invests ωx in the fund and covers the proportion θ of the investor’s losses
from her own share. The payoff is

g(Xx
T ) =


αXx

T +(1−α)Xx
T , Xx

T > x,

θ +(1−θ)Xx
T ,

θ

ω+θ
x6 Xx

T 6 x,

(1+ω)Xx
T , Xx

T 6
θ

ω+θ
x.

(2.8)

Without loss of generality, we assume the investor’s initial contribution is 1. Then, as in Chen et al. (2020),
under both the first-loss and shared-loss fee structures, the payoff function g(x) can be written in the following
form

g(x) =


A+Bx, 06 x6 κ

q+(1−q)x, κ 6 x6 1,
p+(1− p)x, 16 x,

(2.9)

where B> 1> q > A> 0, p ∈ (0,1) and κ = (B− (1−q))−1(q−A).

3. Optimal Withdrawal Time: Infinite Horizon Case

In this section, we derive the value function V (x) in (2.2) for the infinite horizon case. The results here gen-
eralize those of Chen et al. (2020, Section 2). We begin by establishing some properties of V (x) and showing
that V (x) is the unique viscosity solution of a variational inequality. We then propose a solution and verify that
it solves the variational inequality. By uniqueness, the proposed solution is our desired value function V (x).
Some numerical examples are also presented.

3.1 Definitions and Properties

It is well-known that under quite general assumptions, the value function V of the the infinite horizon prob-
lem (2.2) is a viscosity solution of the following variational inequality:

min
(

rV −LV,V −g
)
= 0, (3.1)

where L is the infinitesimal general of the process X . For convenience, we recall here the definition of a
viscosity solution in this context (see, e.g. Reikvam (1998), Pham (2009, Definition 4.2.1, Page 63) or Touzi
(2013, Definition 6.3, Page 68)). Let L be the infinitesimal generator of the process X , which operates on
smooth functions W as

LW (x) = (r−δ )x
∂W
∂x

+
σ2x2

2
∂ 2W
∂x2 .

Definition 3.1. Let W ∈C([0,∞),R). Then,

1. W is a viscosity super-solution of (3.1) if

min
(

rW (x0)−Lϕ(x0),W (x0)−g(x0)
)
> 0 (3.2)

for all smooth functions ϕ and all x0 ∈ (0,∞) such that W −ϕ attains a local minimum at x0.



2. W is a viscosity sub-solution of (3.1) if

min
(

rW (x0)−Lψ(x0),W (x0)−g(x0)
)
6 0 (3.3)

for all smooth functions ψ and all x0 ∈ (0,∞) such that W −ψ attains a local maximum at x0.

W is called a viscosity solution of (3.1) if it is both a viscosity super-solution and a viscosity sub-solution.

Proposition 3.1. Consider the value function V (x) in (2.2). The following properties hold:

a. For x ∈ [0,∞), V (x) is non-decreasing, Lipschitz continuous, and limx→∞
V (x)
g(x) = 1.

b. If p> q, then V (x) = g(x).

Proof. The monotonicity and Lipschitz continuity of V are standard, and follow from the fact that g is increas-
ing and Lipschitz. Since V > g, liminfx→∞ V (x)/g(x)> 1. Chen et al. (2020) show that V0 ∼ g as x→∞, where
V0 is the value function when δ = 0. Since V 6V0, V ∼ g follows. (b) follows from the fact that e−rtSt is a Q
supermartingale, and when p> q, g is increasing and concave.

Theorem 3.1. The value function V (x) in (2.2) is the unique viscosity solution of

min
(

rV −LV,V −g
)
= 0. (3.4)

satisfying V (0) = A and V ∼ g as x→ ∞.

Proof. From part (a) Proposition 3.1, V satisfies a linear growth condition. Then, by Pham (2009, Theorem
5.2.1, Page 97-99), V is the unique viscosity solution of (3.4). �
By Theorem 3.1, we know that solving (2.2) is equivalent to finding a function satisfying (3.4). The remainder
of the section is devoted to finding a more explicit form for V (x). Given Proposition 3.1, we only consider the
case q > p.

We divide the interval [0,∞) into the stopping region S and the continuation region C :

S = {x|V (x) = g(x)}, C = {x|V (x)> g(x)}.

By Theorem 2.1, we can easily deduce that V satisfies the Cauchy-Euler equation rV − LV = 0 (see Pham
(2009, Lemma 5.2.2, Page 100)) in C .
Now, consider the equation

LW − rW = 0, (3.5)

with initial conditions W (x0) = z0 and W ′(x0) = z1. Let β = 2r
σ2 > 0 and γ = 2δ

σ2 > 0. The general solution of
(3.5) is of the form,

W (x) =C1xm1 +C2xm2 , (3.6)

where

m1 =
−(β − γ−1)+

√
(β − γ−1)2 +4β

2
, m2 =

−(β − γ−1)−
√

(β − γ−1)2 +4β

2
,



and

C1 = x−m1
0

x0z1− z0m2

m1−m2
, C2 = x−m2

0
z0m1− x0z1

(m1−m2)
. (3.7)

Remark 3.1. From (3.7), we obtain,

W ′′(x) =C1m1(m1−1)xm1−2 +C2m2(m2−1)xm2−2.

It is easy to show that m1 > 1, m2 < 0, and hence if either C1 > 0,C2 > 0 or C1 > 0,C2 > 0 holds, then W (x)
is strictly convex on (0,∞).

Proposition 3.2. Suppose that q > p, then,

a. [0,κ]⊆S .

b. 1 ∈ C .

c. If a < 1 and a ∈S , then [0,a]⊆S .

d. If b > 1 and b ∈S , then [b,∞]⊆S .

Proof. a. Note that e−rtXx
t is a positive supermartingale, and g(x) 6 A + Bx. Thus, on [0,κ] we have

V (x)6 A+Bx = g(x), so [0,κ]⊆S .

b. Suppose 1 ∈S . Consider test functions of the form ϕ(x) = 1−Mn +Mn exp(n(x−1)), where Mn =
ξ

n
and ξ ∈ (1− q,1− p). Clearly, ϕ(1) = 1 = g(1), and ϕ(x) < g(x) for x close to 1, ϕ ′(1) = ξ , and
ϕ
′′
(1) = nξ . By the super-solution property, we should have rϕ(1)−Lϕ(1)> 0, but

rϕ(1)−Lϕ(1) = r− (r−δ )ξ − 1
2

σ
2nξ < 0

for n large enough. Hence 1 ∈ C .

c. If a 6 κ , [0,κ] ⊆ S implies [0,a] ⊆ S . So we only consider the case when κ < a < 1. Suppose
x̃ = sup{x ∈ C ,x 6 a} exists. Then V (x̃) = g(x̃) = q + (1− q)x̃ and V ′(x̃) = g′(x̃) = 1− q (Touzi,
2013, Theorem 4.9, page 48). Also, from (2.8) and (2.9), V (x) =C1xm1 +C2xm2 in the component of C
containing x̃− ε for some ε > 0, where

C2 =
x̃−m2((q+(1−q)x̃)m1− x̃(1−q))

m1−m2
=

x̃−m2(q+(1−q)(m1−1)x̃)
m1−m2

> 0.

By Remark 2.1, V (x) is strictly convex and will always be above its tangent line. Because q+(1−q)x>
g(x) for x6 x̃, x ∈ C for x < x̃, contradicting κ ∈S .

d. Suppose x̃ = inf{x > b|x ∈ C } exists. Then V (x̃) = p+(1− p)x̃ and V ′(x̃) = (1− p). Again, V (x) =
C1xm1 +C2xm2 in the component of C containing x̃+ ε for some ε > 0. As above, it is easy to verify
C1 > 0, C2 > 0 and hence V (x) is strictly convex. Again, by the continuity and strict convexity of V (x),
it follows that x ∈ C for all x > x̃. But,

lim
x→∞

V (x)
g(x)

= lim
x→∞

C1xm1 +C2xm2

p+(1− p)x
= lim

x→∞

C1m1xm1−1 +C2m2xm2−1

1− p
= ∞.

contradicting V ∼ g as x→ ∞.



From Proposition 3.2, we can define the stopping boundaries as follows:

S1 := inf{x ∈ [κ,1)|V (x)> g(x)}, S2 := sup{x > 1|V (x)> g(x)},

with κ < S1 < 1, S2 > 1, C = (S1,S2) and S = [0,S1]∪ [S2,∞]. In the next section, we will show S2 < ∞ and
derive the value function V (x) when q > p.

3.2 The Value Function

For the case without dividends, Chen et al. (2020) proved that the continuation region starts either at S1,κ 6
S1 < 1 with the smooth-fit condition or at κ without satisfying the smooth-fit condition. The analogue of these
results in our case is given by the following Proposition. V ′(x+) is the derivative from the right at x (which
exists due to the continuity and monotonicity properties proved earlier).

Proposition 3.3. (Smooth-Fit Condition) If κ < S1 < 1, then V ′(S1) = g′(S1). If S2 < ∞, V ′(S2) = g′(S2). If
S1 = κ , then V ′(S1+) ∈ [1−q,B].

Proof. The only part of the Proposition that does not following immediately from standard results (Touzi, 2013,
Theorem 4.9, page 48) is the case when S1 = κ . In this case, the fact that V ′(S1+)> 1−q follows from V > g.
The assumption that V ′(S1+) > B leads to a contradiction by constructing a test function in a manner similar
to the proof that 1 ∈S (part (b) of Proposition 3.2).

Next, we introduce some notation. Let W (x;x0,v0), C1(x0,v0) and C2(x0,v0) denote W (x) =C1xm1 +C2xm2

with initial values W (x0) = q+(1− q)x0 and W ′(x0) = v0. The proof of the following result requires only
elementary calculus.

Lemma 3.1. a. For x0 ∈ (0,∞), C1(x0,1− q) is decreasing in x0, C2(x0,1− q) is increasing in x0 and
W (x;x0,1−q) is a strictly convex function on (0,∞). For 0 < x1 < x2, W (x;x1,1−q) >W (x;x2,1−q)
for all x> x2.

b. For (q+(1−q)κ)m2
κ

6 v0 6
(q+(1−q)κ)m1

κ
, W (x;κ,v0) is a strictly convex function on (0,∞). In particular,

W (x;κ, qm1+(1−q)κm1
κ

) = κ−(m1−1)(1−q+ q
κ
)xm1 > g(x). Moreover, for x > κ , W (x;κ,v0) is increasing

in v0.

According to Proposition 3.3, either S1 > κ , and smooth fit holds, in which case V agrees with W (x;S1,1−
q) on (S1,S2) with W ′(S2;S1,1−q) = 1− p (assuming S2 < ∞), or S1 = κ and V agrees with W (x;S1,v0) with
v0 ∈ [1−q,B) on (S1,S2) again with W ′(S2;S1,v0) = 1− p. The following Proposition allows us to distinguish
between these two cases (and show that S2 < ∞), thereby providing an explicit characterization of the value
function V . The proof is given in the appendix.

Proposition 3.4. Suppose p < q, and let h(x) =W (x;κ,1−q)− (p+(1− p)x).

a. There exists a unique x∗ > κ such that h′(x∗) = 0.

b. If h(x∗)> 0, there exists a unique solution (S1,S2) ∈ [κ,1)× (1,∞) to W (S2;S1,1−q) = p+(1− p)S2,
W ′(S2;S1,1−q) = 1− p.

c. If h(x∗) < 0, there exists a unique solution (v0,S2) ∈ (1− q,1− p)× (1,∞) to W (S2;κ,v0) = p+(1−
p)S2, W ′(S2;κ,v0) = 1− p.

Last, in the following theorem, we provide the explicit form of V (x) and show that it is indeed the viscosity
solution to (3.4).

Theorem 3.2. Suppose p < q.



a. If h(x∗)> 0, then the value function V (x) is

V (x) =


g(x), x ∈ [0,S1],

W (x;S1,1−q), x ∈ (S1,S2),

g(x), x ∈ [S2,∞).

(3.8)

where (S1,S2) ∈ [κ,1)× (1,∞) is the unique solution of W (S2;S1,1−q) = p+(1− p)S2, W ′(S2;S1,1−
q) = 1− p.

b. If h(x∗)< 0, then the value function V (x) is

V (x) =


g(x), x ∈ [0,κ],
W (x;κ,v0), x ∈ (κ,S2),

g(x), x ∈ [S2,∞),

(3.9)

where (v0,S2)∈ (1−q,∞)×(1,∞) is the unique solution of the W (S2;κ,v0)= p+(1− p)S2, W ′(S2;κ,v0)=
1− p.

Proof. For V as defined above, V > g by the convexity of W . The verification is standard except at x = κ . Since
V (κ) = g(κ), the sub-solution property holds immediately at κ . Suppose ψ is a smooth test function satisfying
ψ >V and ψ(κ) =V (κ). Then:

B =V ′(κ−) = lim
x→κ−

g(x)−g(κ)
x−κ

6 lim
x→κ−

ϕ(x)−ϕ(κ)

x−κ
= ϕ

′(κ−) = ϕ
′(κ)

V ′(κ+) = lim
x→κ+

V (x)−V (κ)

x−κ
> lim

x→κ+

ϕ(x)−ϕ(κ)

x−κ
= ϕ

′(κ+) = ϕ
′(κ),

which leads to the inequality B 6 ϕ(κ) 6 v0. However V ′(κ+) 6 1− p < 1 6 B. Therefore, no such smooth
function ϕ exists and the super-solution condition holds vacuously.

3.3 Numerical Examples

In this section, we investigate how the parameters of the optimal stopping problem affect the stopping bound-
aries and the value function. By Theorem 3.2 we conclude with the following steps to solve for V (x) when
q > p for the infinite horizon case.

1. Solve h′(x∗) = 0 and calculate h(x∗).

2. If h(x∗)> 0, then V (x) is of the form (3.8) and (S1,S2) are solutions of W (S2;S1,1−q) = p+(1− p)S2,
W ′(S2;S1,1−q) = 1− p.

3. If h(x∗) < 0, then V (x) is of the form (3.9) and (v0,S2) are solutions of W (S2;κ,v0) = p+(1− p)S2,
W ′(S2;κ,v0) = 1− p.

The following figures are obtained by fixing any two of the three parameters r, δ , σ and letting the re-
maining parameter change in its reasonable range. From the Figures, we can observe that the value function
increases and the continuation region becomes wider as r decreases or σ increases in all the fee structures,
while δ has a relatively small impact on the value function.



FIG. 1. Escrow First-loss
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FIG. 2. Escrow First-loss
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FIG. 3. Escrow First-loss
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4. Optimal Withdrawal Time: Finite Horizon Case

4.1 Introduction

In this section, we study the optimal stopping problem in (2.3) for the finite horizon case. Similar to the
previous section, we first derive several properties of the value function V (x,T ). Next, we prove monotonicity
and continuity properties of the early exercise boundaries. Finally, motivated by Ciurlia and Roko (2005);
Detemple (2005); Kimura (2009), we derive the early exercise premium representation.

4.2 Definitions and Properties

Similar to the infinite horizon case, V (x,T ) solves the variational inequality

min
(

rV −LV +
∂V
∂T

,V −g
)
= 0. (4.1)

in the viscosity sense, for which we use the following standard definition.

Definition 4.1. Let W ∈C([0,∞)× [0,∞),R). Then,

1. W is a viscosity super-solution of (4.1) if

min
(

rW (x0, t0)−Lϕ(x0, t0)+
∂ϕ

∂T
(x0, t0),W (x0, t0)−g(x0)

)
> 0, (4.2)

for all smooth functions ϕ and all (x0, t0) ∈ (0,∞)× (0,∞) such that W −ϕ attains a local minimum at
(x0, t0).

2. W is a viscosity sub-solution of (4.1) if

min
(

rW (x0, t0)−Lψ(x0, t0)+
∂ψ

∂T
(x0, t0),W (x0, t0)−g(x0)

)
6 0, (4.3)

for all smooth functions ψ and all (x0, t0) ∈ (0,∞)× (0,∞) such that W −ψ attains a local maximum at
(x0, t0).

W is called a viscosity solution of (4.1) if it is both a super-solution and sub-solution.

The proof of the following is identical to that of the corresponding result in Chen et al. (2020).

Proposition 4.1. For x∈ [0,∞). The value function V (x,T ) is increasing in x, increasing in T and limT→∞ V (x,T )=
V (x).

Recall that V (x) = g(x) when p> q. Then, Proposition 4.1 implies g(x) =V (x)>V (x,T ) = g(x). Again,
we only need to consider the case when q > p. The following Theorem connects (4.1) to our optimal stopping
problem (2.3).

Theorem 4.1. The value function is the unique viscosity solution of

min
(

rV −LV +
∂V
∂T

,V −g
)
= 0, (4.4)

satisfying V (x,0) = g(x), V (0,T ) = A, V (x,T )∼ g(x) as x→ ∞ for all T > 0 and limT→∞ V (x,T ) =V (x).



Proof. From Proposition 4.1, we can easily obtain that V (x,T ) is locally bounded for all (t,x)∈ [0,∞)× [0,∞).
By Touzi (2013, Theorem 7.7, Pages 96-99), V (x,T ) is the unique viscosity solution of (4.4). �
Next, define the sections of the stopping region and continuation region at each time T as follows:

ST = {x|V (x,T ) = g(x)}, CT = {x|V (x,T )> g(x)}.

The following properties of these sets generalize the case δ = 0 from Chen et al. (2020), and can be proved in
the same way.

Proposition 4.2. Suppose that q > p, then,

1. [0,κ]⊆ST .

2. 1 ∈ CT .

3. If a < 1 and a ∈ST , then [0,a]⊆ST .

4. If b > 1 and b ∈ST , then [b,∞]⊆ST .

By Proposition 4.2, we can define the two stopping boundaries at maturity T as follows:

S−(T ) := inf{x|V (x,T )> g(x)}, S+(T ) := sup{x|V (x,T )> g(x)}.

Next, we summarize some basic properties of S−(T ) and S+(T ).

Lemma 4.1. 1. S−(T ) and S+(T ) are continuous functions.

2. limT↓0 S−(T ) = limT↓0 S+(T ) = 1.

3. The smooth-fit condition holds on the upper boundary, limx→S+(T )V (x,T ) = g′(S+(T )) = 1− p. Further-
more, if S1 > κ , the smooth fit condition holds on the lower boundary as well, i.e. limx→S−(T )Vx(x,T ) =
g′(S−(T )) = 1−q.

Proof. The first two results can be proved using the argument in Theorem 3.1 in De Angelis (2015), while the
third result can be proved following the same strategy as for the American put, see Peskir and Shiryayev (2006,
pages 381–382).

4.3 Early Exercise Representation and Integral Equations

We now derive the early exercise representation for V , and a pair of coupled integral equations for S±(T ).
Throughout, we assume that q > p, and S1 > κ . From the above, we have that V solves:

V (x,0) = g(x),

limx→S−(T )V (x,T ) = q+(1−q)S−(T ),

limx→S−(T )Vx(x,T ) = 1−q,

limx→S+(T )V (x,T ) = p+(1− p)S+(T ),

limx→S+(T )Vx(x,T ) = 1− p.

(4.5)

Along with the information that S−(T ) and S+(T ) never intersect with each other and are locally bounded
and continuous, we can find a representation for V (x,T ) by applying the change-of variable formula on curves
(Peskir, 2005).



Theorem 4.2. V defined by (2.3) satisfies:

V (x,T ) =Ve(x,T )+δ

∫ T

0
xe−δ (T−τ)

(
B+(1−q−B)Φ(d1(x,κ,T − τ))

− (1−q)Φ(d1(x,S1(τ),T − τ))+(1− p)Φ(d1(x,S2(τ),T − τ))
)

dτ

+ r
∫ T

0
e−r(T−τ)

(
A(1−Φ(d2(x,κ,T − τ)))

+q(Φ(d2(x,κ,T − τ))−Φ(d2(x,S1(τ),T − τ))+ pΦ(d2(x,S2(τ),T − τ)))
)

dτ, (4.6)

where Φ(·) is the standard normal cumulative distribution function,

d1(x,y, t) =
log(x/y)+(r−δ +σ2/2)t

σ
√

t
, d2(x,y, t) = d1(x,y, t)−σ

√
t.

and Ve(x,T ) := EQ[e−rT g(Xx
T )] is the corresponding European-style value function.

Proof. Note that the variable T is time to maturity, which implies that our time is running backward. Since it is
convenient to apply the change-of-variable formula when time is running forward, we introduce the following
notation. Define

Ṽ (x, t;T ) :=V (x,T − t), Z̃(x, t;T ) := e−rtV (x, t;T ),

S̃−(t) := S−(T − t), S̃+(t) := S+(T − t),

where Ṽ (Xt , t;T ) is the value process at the current time t, 0 6 t 6 T and Z̃(Xt , t;T ) is the discounted value
process at time t, 06 t 6 T . Applying Peskir’s change-of-variable formula (Peskir, 2005, Theorem 2.1, Remark
2.3 and Remark 2.5) on Z̃(Xt , t;T ) leads to

Z̃(XT ,T ;T ) =Z̃(X0,0;T )+
∫ T

0

∂ Z̃(Xt , t;T )
∂ t

1{Xt /∈{S̃−(t),S̃+(t)}}dt

+
∫ T

0

∂ Z̃(Xt , t;T )
∂x

1{Xt /∈{S̃−(t),S̃+(t)}}dXt

+
1
2

∫ T

0
σ

2X2
t

∂ 2Z̃(Xt , t;T )
∂x2 1{Xt /∈{S̃−(t),S̃+(t)}}dt

+
1
2

∫ T

0
(

∂Z(Xt+, t;T )
∂x

− ∂Z(Xt−, t;T )
∂x

)1{Xt=S̃−(t)}d`
S̃−
t

+
1
2

∫ T

0
(

∂Z(Xt+, t;T )
∂x

− ∂Z(Xt−, t;T )
∂x

)1{Xt=S̃+(t)}d`
S̃+
t (4.7)

where

`
S̃±
t := P

[
lim
ε↓0

1
2ε

∫ t

0
1{S̃±(s)−ε<Xs<S̃±(s)+ε}σ

2X2
s ds
]
, i = 1,2 (4.8)

is the local time of Xs at the curve S̃i(s) for s ∈ [0, t]. Furthermore, note that

∂ Z̃(Xt , t;T )
∂x

= e−rt ∂Ṽ (Xt , t;T )
∂x

,
∂ 2Z̃(Xt , t;T )

∂x2 = e−rt ∂ 2Ṽ (Xt , t;T )
∂x2 ,



∂ Z̃(Xt , t;T )
∂ t

=−re−rtṼ (Xt , t;T )+ e−rt ∂Ṽ (Xt , t;T )
∂ t

.

Substituting the above into (4.7), we can verify that

e−rT Ṽ (XT ,T ;T ) =Ṽ (X0,0;T )+
∫ T

0
e−rt ∂Ṽ (Xt , t;T )

∂x
1{Xt /∈{S̃−(t),S̃+(t)}}dXt

+
∫ T

0
e−rt(

σ2X2
t

2
∂ 2Ṽ (Xt , t;T )

∂x2 − rṼ (Xt , t;T )+
∂Ṽ (Xt , t;T )

∂ t
)1{Xt /∈{S̃−(t),S̃+(t)}}dt. (4.9)

Next, knowing that Ṽ (Xt , t;T ) = g(Xt) on the stopping region,

Ṽ (Xt , t;T ) =1{Xt6κ}(A+BXt)+1{κ<Xt6S̃−(t)}(q+(1−q)Xt)

+1{S̃−(t)<Xt<S̃+(t)}V (Xs,s)+1{Xt>S̃+(t)}(p+(1− p)Xt).

For simplicity, we define

f1(x, t) := 1{x<κ}(A+Bx)+1{κ<x<S̃−(t)}(q+(1−q)x)+1{x>S̃+(t)}(p+(1− p)x)

∂ f1(x, t)
∂x

:= 1{x<κ}B+1{κ<x<S̃−(t)}(1−q)+1{x>S̃+(t)}(1− p).

Then it is easy to obtain the following expressions,

Ṽ (Xt , t;T )1{Xt /∈{S̃−(t),S̃+(t)}} = f1(Xt , t)+1{S̃−(t)<Xt<S̃+(t)}Ṽ (Xt , t;T ), (4.10)

∂Ṽ (Xt , t;T )
∂x

1{Xt /∈{S̃−(t),S̃+(t)}} =
∂ f1(Xt , t)

∂x
+1{S̃−(t)<Xt<S̃+(t)}

∂Ṽ (Xt , t;T )
∂x

= 1{Xt<κ}B+1{κ<Xt<S̃−(t)}(1−q)

+1{S̃−(t)<Xt<S̃+(t)}
∂Ṽ (Xt , t;T )

∂x
+1{Xt>S̃+(t)}(1− p), (4.11)

∂ 2Ṽ (Xt , t;T )
∂x2 1{Xt /∈{S̃−(t),S̃+(t)}} = 1{S̃−(t)<Xt<S̃+(t)}

∂ 2Ṽ (Xt , t;T )
∂x2 , (4.12)

∂Ṽ (Xt , t;T )
∂ t

1{Xt /∈{S̃−(t),S̃+(t)}} = 1{S̃−(t)<Xt<S̃+(t)}
∂Ṽ (Xt , t;T )

∂ t
. (4.13)

Substituting (4.10), (4.11), (4.12) and (4.13) into (4.9), we have

e−rT Ṽ (XT ,T ;T ) =Ṽ (X0,0;T )+
∫ T

0
e−rt(

∂ f1(Xt , t)
∂x

+1{S̃−(t)<Xt<S̃+(t)}
∂Ṽ (Xt , t;T )

∂x
)dXt

+
∫ T

0
e−rt

(
σ2X2

t

2
1{S̃−(t)<Xt<S̃+(t)}

∂ 2Ṽ (Xt , t;T )
∂x2

− r
(

f1(Xt , t)+1{S̃−(t)<Xt<S̃+(t)}Ṽ (Xt , t;T )
)
+1{S̃−(t)<Xt<S̃+(t)}

∂Ṽ (Xt , t;T )
∂ t

)
dt

=Ṽ (X0,0;T )+
∫ T

0
e−rt ∂ f1(Xt , t)

∂x
dXt

+
∫ T

0
1{S̃−(t)<Xt<S̃+(t)}e

−rt(r−δ )Xt
∂Ṽ (Xt , t;T )

∂x
dt

+
∫ T

0
1{S̃−(t)<Xt<S̃+(t)}e

−rt
σXt

∂Ṽ (Xt , t;T )
∂x

dWt



+
∫ T

0
1{S̃−(t)<Xt<S̃+(t)}e

−rt(σ2X2
t

2
∂ 2Ṽ (Xt , t;T )

∂x2 − rṼ (Xt , t;T )+
∂Ṽ (Xt , t;T )

∂ t

)
dt

−
∫ T

0
re−rt f1(Xt , t)dt

=Ṽ (X0,0;T )+
∫ T

0
e−rt(r−δ )Xt

∂ f1(Xt , t)
∂x

dt +
∫ T

0
e−rt

σXt
∂ f1(Xt , t)

∂x
dWt

+
∫ T

0
1{S̃−(t)<Xt<S̃+(t)}e

−rt
(
(r−δ )Xt

∂Ṽ (Xt , t;T )
∂x

+
σ2X2

t

2
∂ 2Ṽ (Xt , t;T )

∂x2 − rṼ (Xt , t;T )+
∂Ṽ (Xt , t;T )

∂ t

)
dt

+
∫ T

0
1{S̃−(t)<Xt<S̃+(t)}e

−rt
σXt

∂Ṽ (Xt , t;T )
∂x

dWt −
∫ T

0
re−rt f1(Xt , t)dt. (4.14)

Note that on the continuation region, V (x,T ) satisfies the PDE LV − rV −VT = 0, so Ṽt +LṼ − rṼ = 0. Thus,
we can further simplify (4.14) as follows,

e−rT Ṽ (XT ,T ;T ) =Ṽ (X0,0;T )+
∫ T

0
e−rt(r−δ )Xt

∂ f1(Xt , t)
∂x

dt +
∫ T

0
e−rt

σXt
∂ f1(Xt , t)

∂x
dWt

+
∫ T

0
1{S̃−(t)<Xt<S̃+(t)}e

−rt
σXt

∂Ṽ (Xt , t;T )
∂x

dWt −
∫ T

0
re−rt f1(Xt , t)dt. (4.15)

Taking expectations and applying Fubini’s Theorem on (4.15), we obtain,

E[e−rT˜̃V (XT ,T ;T )] =Ṽ (X0,0;T )+
∫ T

0
(r−δ )e−rtE

[
∂ f1(Xt , t)

∂x
Xt

]
dt−

∫ T

0
re−rtE[ f1(Xt , t)]dt

=Ṽ (X0,0;T )−δ

∫ T

0
e−rtE

[
∂ f1(Xt , t)

∂x
Xt

]
dt

+ r
∫ T

0
e−rt

(
E
[

∂ f1(Xt , t)
∂x

Xt

]
−E[ f1(Xt , t)]

)
dt.

Note that Ṽ (XT ,T ;T ) = g(XT ), so E[e−rT Ṽ (XT ,T ;T )] = E[e−rT g(XT )]. After rearranging terms, the value
function V (x,0;T ) has the early exercise premium integral representation:

Ṽ (x,0;T ) =Ve(x,T )+δ

∫ T

0
e−rtE

[
∂ f1(Xt , t)

∂x
Xt

]
dt

+ r
∫ T

0
e−rt

(
E[ f1(Xt , t)]−E

[
∂ f1(Xt , t)

∂x
Xt

])
dt. (4.16)

Now, we can calculate the expectations in (4.16) separately. First, we write down each expectation explicitly

Ve(x,T ) =e−rT (E[1{XT<κ}(A+BXT )]+E[1{κ<XT<1}(q+(1−q)XT )]

+E[1{XT>1}(p+(1− p)XT )]), (4.17)

E
[

∂ f1(Xt , t)
∂x

Xt

]
= E[1{Xt<κ}BXt +1{κ<Xt<S̃−(t)}(1−q)Xt +1{Xt>S̃+(t)}(1− p)Xt ], (4.18)

E[ f1(Xt , t)] =E[1{Xt<κ}(A+BXt)+1{κ<Xt<S̃−(t)}(q+(1−q)Xt)+1{Xt>S̃+(t)}(p+(1− p)Xt)]

=E[1{Xt<κ}A+1{κ<Xt<S̃−(t)}q+1{Xt>S̃+(t)}p]+E
[

∂ f1(Xt , t)
∂x

Xt

]
. (4.19)



Note that since Xt follows a log-normal distribution, we can easily obtain:

E
[

∂ f1(Xt , t)
∂x

Xt

]
= xe(r−δ )t

(
B+(1−q−B)Φ(d1(x,κ, t)− (1−q)Φ(d1(x, S̃−(t), t))

+(1− p)Φ(d1(x, S̃+(t), t))
)
, (4.20)

E[ f1(Xt , t)]−E
[

∂ f1(Xt , t)
∂x

Xt

]
= A(1−Φ(d2(x,κ, t)))

+q(Φ(d2(x,κ, t))−Φ(d2(x, S̃−(t), t))

+ pΦ(d2(x, S̃+(t), t))). (4.21)

Next, substituting (4.20) and (4.21) into (4.16) yields the following integral representation for Ṽ (X0,0;T ):

Ṽ (X0,0;T ) =Ve(x,T )+δ

∫ T

0
xe−δ t

(
B+(1−q−B)Φ(d1(x,κ, t)

− (1−q)Φ(d1(x, S̃−(t), t))+(1− p)Φ(d1(x, S̃+(t), t))
)

dt

+ r
∫ T

0
e−rt

(
A(1−Φ(d2(x,κ, t)))

+q(Φ(d2(x,κ, t))−Φ(d2(x, S̃−(t), t))+ pΦ(d2(x, S̃+(t), t)))
)

dt. (4.22)

After reverting to our original notation, this is the desired result. �
Thus, by Theorem 4.2 and the boundary conditions (4.5), the optimal stopping boundaries S−(T ) and S+(T )
satisfy the following coupled pair of integral equations:

q+(1−q)S−(T ) =Ve(S1(T ),T )+δ

∫ T

0
S−(T )e−δ (T−τ)

(
B+(1−q−B)Φ(d1(S−(T ),κ,T − τ)

− (1−q)Φ(d1(S−(T ),S1(τ),T − τ))+(1− p)Φ(d1(S−(T ),S2(τ),T − τ))
)

dτ

+ r
∫ T

0
e−r(T−τ)

(
A(1−Φ(d2(S−(T ),κ,T − τ)))

+q(Φ(d2(S−(T ),κ,T − τ))−Φ(d2(S−(T ),S1(τ),T − τ))

+ pΦ(d2(S−(T ),S2(τ),T − τ))
)

dτ (4.23)

p+(1− p)S+(T ) =Ve(S2(T ),T )+δ

∫ T

0
S+(T )e−δ (T−τ)

(
B+(1−q−B)Φ(d1(S+(T ),κ,T − τ)

− (1−q)Φ(d1(S+(T ),S1(τ),T − τ))+(1− p)Φ(d1(S+(T ),S2(τ),T − τ))
)

dτ

+ r
∫ T

0
e−r(T−τ)

(
A(1−Φ(d2(S+(T ),κ,T − τ)))

+q(Φ(d2(S+(T ),κ,T − τ))−Φ(d2(S+(T ),S1(τ),T − τ))

+ pΦ(d2(S+(T ),S2(τ),T − τ))
)

dτ. (4.24)



5. Exercise Boundaries Near Maturity

In this section, we study the asymptotic behaviour of the stopping boundaries S±(T ) for small T . In particular,
we show that as T ↘ 0:

S±(T )∼ 1±σ
√

T (− logT ) (5.1)

We follow the strategy employed by Lamberton (1995) in the case of the American put. Translated into our
context, this consists of the following steps:

• Show that for the European option with payoff g, and price V e(x,T ) = EQ[e−rT g(Xx
T )], and for T >

0 small enough, there exist two boundaries Se
−(T ) < 1 < Se

+(T ) such that V e(Se
−(T ),T ) = g(Se

−(T )),
V e(Se

+(T ),T ) = g(Se
+(T )).

• Derive the small-time behaviour of Se
±(T ).

• Show that for small T , the boundaries S±(T ) are close to Se
±(T ). In particular, for T small enough, there

exists a C > 0 such that:

06 Se
−(T )−S−(T )6C

√
T , 06 S+(T )−Se

+(T )6C
√

T . (5.2)

• Infer the asymptotic behaviour of S±(T ) from that of Se
±(T ).

Implementing the strategy in this case is significantly more complicated than in the case of the American put
covered by Lamberton (1995), for two main reasons. First of all, we need to deal with two boundaries rather
than a single one. Secondly, our payoff function is more complicated; in particular it lacks the convexity that
aids in the analysis of the American put.

We need the following simple results, whose proofs are omitted (the first is a straightforward calculation,
while the second and third follow from elementary calculus).

Lemma 5.1. Let Xx
t = xexp{(r−δ + σ2

2 )t +σWt}. Then, for 06 a6 b < ∞,

Q[a < Xx
t < b] = Φ(d2(x,a, t))−Φ(d2(x,b, t)), (5.3)

EQ[1{a<Xx
t <b}X

x
t ] = xe(r−δ )t(Φ(d1(x,a, t))−Φ(d1(x,b, t)), (5.4)

where Φ is the standard normal cumulative distribution function,

d1(x,y, t) =
log(x/y)+(r−δ +σ2/2)t

σ
√

t
, and d2(x,y, t) = d1(x,y, t)−σ

√
t.

Lemma 5.2. Let C(x,K,T ) = EQ[e−rT max(Xx
T −K,0)] denote the price of a European call option with strike

price K, maturity date T , and current stock value x. Then as T ↘ 0:

C(x,K,T )−max(x−K,0) =

{
O(
√

T ), if x = K

o(
√

T ), if x 6= K.
(5.5)

Lemma 5.3. a. Suppose the function f1(x) is smooth on the interval [a1,b1]. If the following conditions
are satisfied

1. f1(a1)< 0, f1(b1)> 0, f ′1(a1)> 0, f ′1(b1)> 0.

2. f1(x) has a unique inflection point x2 ∈ (a1,b1) satisfying f
′′
1 (x2) = 0. Moreover, f ′′1 (x) < 0 for

x < x2 and f ′′1 (x)> 0 for x > x2.



3. For any point x1 ∈ (a1,b1) such that f ′1(x1) = 0, f1(x1)< 0.

Then f1(x) = 0 has a unique solution on the interval (a1,b1).

b. Suppose the function f2(x) is smooth and strictly convex on the interval [a2,∞) with f (a2) > 0. If there
exists a constant b2 such that f2(x)6 0 for all x> b2, then the equation f2(x) = 0 has a unique solution
on the interval (a2,∞).

Proposition 5.1. There exists Te > 0 such that for all T ∈ (0,Te], Ve(1,T ) > 1, and there exists a unique
Se
−(T )∈ (κ,1) and a unique Se

+(T )∈ (1,∞) satisfying Ve(Se
−(T ),T )= g(Se

−(T )) and Ve(Se
+(T ),T )= g(Se

+(T ))
respectively.

Proof. Noting that g(x) = (A+Bx)− (B−1+q)(x−κ)++(q− p)(x−1)+, we have:

Ve(x,T ) = Ae−rT + xe−δT B− (B−1+q)C(x,κ,T )+(q− p)C(x,1,T ). (5.6)

Let uT (x) =Ve(x,T )−q− (1−q)x. Recalling that κ = (q−A)(B−1+q)−1 and using (5.5), we have:

uT (κ) = Ae−rT +κBe−δT −q− (1−q)κ− (B−1+q)C(κ,κ,T )+(q− p)C(κ,1,T )

6 Ae−rT +κB−q− (1−q)κ− (B−1+q)C(κ,κ,T )+(q− p)C(κ,1,T )

= Ae−rT −q+κ(B−1+q)− (B−1+q)C(κ,κ,T )+(q− p)C(κ,1,T )

= A(e−rT −1)− (B−1+q)C(κ,κ,T )+(q− p)C(κ,1,T ). (5.7)

By (5.5) and the fact that e−rT −1 = O(T ), it can be verified that C(κ,κ,T ) = O(
√

T ) converges slower than
the other terms for T sufficiently small. Since C(κ,κ,T ) is always positive, we must have uT (κ)< 0 for some
T small enough. Similarly, we also have

uT (1) =Ae−rT +(Be−δT −1)− (B−1+q)C(1,κ,T )+(q− p)C(1,1,T )> 0 (5.8)

for T sufficiently small (implying Ve(1,T ) > 1). Therefore, we can conclude that there must exist a T1 small
enough such that for all T 6 T1, uT (κ) < 0 and uT (1) > 0. Next, differentiating uT (x) with respect to x, we
obtain,

u′T (x) = B(e−δT −1)+(B−1+q)(1− e−δT
Φ(d1(x,κ,T ))

+(q− p)e−δT
Φ(d1(x,1,T )) (5.9)

from which it immediately follows that u′T (κ) > 0 and u′T (1) > 0 for T small enough. Now, differentiating
with respect to x again, we have,

u′′T (x) =−(B−1+q)
e−δT

σx
√

T
ϕ(d1(x,κ,T ))+(q− p)

e−δT

σx
√

T
ϕ(d1(x,1,T )). (5.10)

Noting that d1(x,1,T ) = d1(x,κ,T )+C1(T ), where C1(T ) =
logκ

σ
√

T
< 0, we have:

u′′T (x) =
e−δT ϕ(d1(x,κ,T ))

σx
√

T

(
− (B−1+q)+(q− p)e−C1(T )d1(x,κ,T )− 1

2C1(T )2
)
. (5.11)

Now, let hT (x) =−(B−1+q)+(q− p)e−C1d1(x,κ,T )− 1
2C2

1 , so that roots of hT are the same as those of u′′T . It can



easily be verified that limx→0+ hT (x)=−(B−1+q)< 0, limx→∞ hT (x)=∞ and hT (x) is strictly increasing in x.
So, for each fixed T , we must have a unique root x2(T ) ∈ (0,∞) such that hT (x2(T )) = 0. Letting C2 =

q−p
B−1+q ,

a simple calculation yields

x2(T ) = κ
1
2 exp

(
−
(

r−δ +

(
1
2
− logC2

logκ

)
σ

2
)

T
)
. (5.12)

Moreover, since κ < κ
1
2 < 1 and x2(T ) converges to κ

1
2 as T → 0, there must exist a T3 small enough such

that x2(T ) ∈ (κ,1) for all T 6 T3. Taking Te = min(T1,T2,T3), we have that uT (κ)< 0, uT (1)> 0, u′T (κ)> 0,
u′T (1) > 0, and u′′T is strictly negative on (κ,x2(T )), and strictly positive on (x2(T ),1) for T 6 Te. Finally,
substituting u′T (x1(T )) = 0 into the definition of uT (x) and simplifying yields:

uT (x1(T )) = q(e−rT −1)− (q−A)(1−Φ(d2(x1(T ),κ,T )))

− (q− p)e−rT
Φ(d2(x1(T ),1,T ))< 0 (5.13)

Lemma 5.3 (a) implies that uT (x) = 0 must attain a unique root on (κ,1) for every fixed T 6 Te, i.e. there is a
unique Se

−(T ) such that Ve(Se
−(T ),T ) = g(Se

−(T )).
To prove Ve(x,T ) = g(x) attains a unique root on (1,∞), we let vT (x) =Ve(x,T )− p− (1− p)x. Note that

uT (1) = vT (1). So, vT (1)> 0 for T 6 Te. Since v′′T (x) = u′′T (x), v′′T (x)> 0 on (1,∞) and vT (x) is strictly convex
on (1,∞) for all T 6 Te. Moreover, since Ve(x,T )6V (x,T ) = g(x) for x> S+(T ) and 1 < S+(T )6 S2 < ∞, it
can be easily verified that vT (x) =Ve(x,T )− p− (1− p)x6 0 for all x> S+(T ). By Lemma 5.3 (b), we obtain
that there exists a unique root Se

+(T ) ∈ (1,∞) satisfying Ve(Se
+(T ),T ) = g(Se

+(T )) for all T 6 Te.

The following depends only on the fact that V (x,T )>Ve(x,T ).

Lemma 5.4. For T 6 Te:
S−(T )6 Se

−(T )6 Se
+(T )6 S+(T ) (5.14)

Proof. Since V (x,T )>Ve(x,T ), we have g(S−(T ))=V (S−(T ),T )>Ve(S−(T ),T ) and g(S+(T ))=V (S+(T ),T )>
Ve(S+(T ),T ). Since V e > g on (Se

−(T ),S
e
+(T )), we must have we must have Se

−(T ) > S−(T ) and Se
+(T ) 6

S+(T ).

We next give a rough result on the rate of convergence of the boundaries Se
−(T ) and Se

+(T ) to one in
small-time (Lamberton (1995, Lemma 2.2) proves an analogous property for the American put).

Lemma 5.5.

lim
T→0+

Se
−(T )−1√

T
=−∞, lim

T→0+

Se
+(T )−1√

T
= ∞.

Proof. By the previous Lemma, we have

1 = lim
T→0+

S−(T )6 lim
T→0+

Se
−(T )6 lim

T→0+
Se
+(T )6 lim

T→0+
S+(T ) = 1. (5.15)

Next, note that for T small enough, we have a unique Se
−(T ) such that q+(1−q)Se

−(T ) =Ve(Se
−(T ),T ). Then,

by (5.6), and a simple rearrangement, we obtain

A(e−rT −1)+Se
−(T )B(e

−δT −1)+(q− p)C(Se
−(T ),1,T )

− (B−1+q)
(

C(Se
−(T ),κ,T )− (Se

−(T )−κ)
)
= 0 (5.16)



Using put-call parity (with dividends), we obtain from (5.16):

1−Se
−(T )√
T

e−δT =
A(e−rT −1)
(q− p)

√
T

+
BSe
−(T )(e

−δT −1)√
T

+
EQ

[
e−rT max

(
1−X

Se
−(T )

T ,0
)]

√
T

+
e−δT − e−rT
√

T
−

(B−1+q)
(
C(Se

−,κ,T )− (Se
−(T )−κ)

)
(q− p)

√
T

(5.17)

By Lemma 5.2 and elementary calculus, all the terms on the right hand side of the above equation tend to zero,
except for the “put-option” term. Thus:

η1 := liminf
T→0+

1−Se
−(T )√
T

= liminf
T→0+

e−rT
√

T
EQ

[
max

(
1−X

Se
−(T )

T ,0
)]

= liminf
T→0

1√
T
EQ

[
max

(
1−Se

−(T )exp
(
(r−δ − σ2

2 )T +σ
√

T ·Z
)
,0
)]

> EQ

max

liminf
T→0+

1−Se
−(T )√
T

+ lim
T→0+

Se
−(T )

(
1− exp

(
(r−δ − σ2

2 )T +σ
√

T ·Z
))

√
T

,0


where Z ∼ N(0,1), and we have used Fatou’s Lemma. If η1 ∈ [0,∞) then we get η1 > EQ[max(η1−σZ,0)],
which leads to a contradiction as Q({η1−σZ < 0}) > 0 implies EQ[max(η1−σZ,0)] > η1−σEQ[Z] = η1.
Thus η1 = ∞. The proof for Se

+(T ) is similar.

Theorem 5.1. For T > 0, let

ψ1(T ) =
− logSe

−(T )

σ
√

T
, ψ2(T ) =

logSe
+(T )

σ
√

T
.

As T ↘ 0:

ψ1(T )2e
ψ1(T )

2
2 ∼ (q− p)σ

(rq+(1−q)δ )
√

2πT
, ψ2(T )2e

ψ2(T )
2

2 ∼ (q− p)σ
(rq+(1−q)δ )

√
2πT

, (5.18)

and furthermore,

1−Se
−(T )∼ σ

√
T (− logT ), and Se

+(T )−1∼ σ
√

T (− logT ). (5.19)

Proof. Let y(T ) = Se
−(T ) for convenience. A simple rearrangement of V e(y(T ),T ) = q+(1−q)y(T ) yields:

EQ[e−rT g(Xy(T )
T )] = qe−rT +(1−q)y(T )e−δT +EQ[e−rT (1

{Xy(T )
T 6κ}

(A−q+(B−1+q)Xy(T )
T )

)
]

+EQ[e−rT (1
{Xy(T )

T >1}
(p−q+(q− p)Xy(T )

T )
)
]. (5.20)

So:

q(1− e−rT )+(1−q)y(T )(1− e−δT ) = EQ[e−rT (1
{Xy(T )

T 6κ}
(A−q+(B−1+q)Xy(T )

T )
)
]

+EQ[e−rT (1
{Xy(T )

T >1}
(p−q+(q− p)Xy(T )

T )
)
]. (5.21)



Noting that q(1− e−rT )+ (1−q)y(T )(1− e−δT )∼ (rq+(1−q)δ )T and limT→0+ EQ[e−rT
(
1{XT6κ}(A−q+

(B−1+q)Xy(T )
T )

)
]/T = 0, (5.21) becomes

(rq+(1−q)δ )T
q− p

∼ EQ[e−rT (Xy(T )
T −1)+]. (5.22)

Now, let

α1(T ) =
− logSe

−(T )− (r−δ − σ2

2 )T

σ
√

T
.

By Lemma 5.5, we have limT→0+ α1(T ) = ∞ and limT→0+
√

T α1(T ) = 0, from which we obtain:

(rq+(1−q)δ )T
q− p

∼ EQ[(eσ
√

T Z− eσ
√

T α1(T ))+]. (5.23)

with Z ∼ N(0,1). Next, let

f (T ) := EQ[(eσ
√

T Z− eσ
√

T α1(T ))+] = EQ[
(
eσ
√

T Z− eσ
√

T α1(T )
)
1{Z>α1(T )}]. (5.24)

Using the inequality |ex−1− x|6 x2

2 e|x|, we get:

| f (T )−EQ[σ
√

T (Z−α1(T ))1{Z>α1(T )}]|

6
σ2T

2
EQ[Z2eσ

√
T |Z|1{Z>α1(T )}]+

σ2T α1(T )2

2
eσ
√

T |α1(T )|Q[Z > α1(T )]. (5.25)

Since limT→0+ α1(T ) = ∞ and limT→0+
√

T α1(T ) = 0, both terms in (5.25) are o(T ) and we have | f (T )−
EQ[σ

√
T (Z−α1(T ))1{Z>α1(T )}]|= o(T ). Then, from (5.23), we have:

(rq+(1−q)δ )T
(q− p)

∼ EQ[σ
√

T (Z−α1(T ))1{Z>α1(T )}]

=
σ
√

T√
2πα1(T )2eα1(T )2/2

∫
∞

0
xe
−x− x2

2α1(T )
2 dx. (5.26)

Since limT→0+
∫

∞

0 xe
−x− x2

2α1(T )
2 dx =

∫
∞

0 xe−xdx = 1,

(rq+(1−q)δ )T
(q− p)

∼ σ
√

T√
2πα1(T )2eα1(T )2/2

. (5.27)

So:

ψ1(T )2e
ψ1(T )

2
2 ∼ α1(T )2e

α1(T )
2

2 ∼ (q− p)σ
(rq+(1−q)δ )

√
2πT

. (5.28)

where we have used that ψ1(T )−α1(T ) = O(
√

T ). and limT→0+ α1(T )→ ∞. Since limT→0+
ψ1(T )

logψ1(T )
= ∞, it

is then elementary that 1− y(T )∼− log(y(T ))∼ σ
√

T (− logT ). Again, the proof for Se
+(T ) is similar. �

To conclude, we must show that S−(T ),S+(T ) are sufficiently close (within
√

T ) to the corresponding



“European” boundaries Se
−(T ),S

e
+(T ). To accomplish this, we need the following bounds on the derivative of

V , whose proof is given in the appendix.

Lemma 5.6. For small T > 0:

sup
(S−(T ),Se

−(T ))

∂

∂x
V (·,T )6 (1−q)+o(1) (5.29)

sup
(Se

+(T ),S+(T ))

∂

∂x
V (·,T )6 (1− p)+o(1) (5.30)

Proposition 5.2. There exist constants C > 0 and T ′ > 0 such that for all 0 < T 6 T ′,

06 Se
−(T )−S−(T )6C

√
T , (5.31)

and

06 S+(T )−Se
+(T )6C

√
T . (5.32)

Proof. Note that V (x,T ) is a classical solution of VT = LV −rV on (S−(T ),S+(T )) and ∂V
∂x (S−(T ),T ) = 1−q.

Taylor’s formula yields:

V (Se
−(T ),T ) = q+(1−q)Se

−(T )+
(Se
−(T )−S−(T ))2

2
∂ 2V
∂x2 (ξ1(T ),T ),

=Ve(Se
−(T ),T )+

(Se
−(T )−S−(T ))2

2
∂ 2V
∂x2 (ξ1(T ),T ).

where ξ1(T ) ∈ (S−(T ),Se
−(T )). The early exercise premium representation (4.6), together with the facts that

06Φ 6 1 and κ < Se
−(T )6 1 yields:

(Se
−(T )−S−(T ))2

2
∂ 2V
∂x2 (ξ1(T ),T ) =V (Se

−(T ),T )−Ve(Se
−(T ),T )6 KT (5.33)

for some K > 0. Using S−(T )< ξ1(T )< Se
−(T ) and ∂V

∂T (x,T )> 0 gives:

∂ 2V
∂x2 (ξ1(T ),T ) =

2
σ2ξ1(T )2

(
∂V
∂T

(ξ1(T ),T )− (r−δ )ξ1(T )
∂V
∂x

(ξ1(T ),T )+ rV (ξ1(T ),T )
)

>
2r

σ2ξ1(T )2 ((V (ξ1(T ),T )−ξ1(T )
∂V
∂x

(ξ1(T ),T )))

>
2r

σ2ξ1(T )2 (q+(1−q)ξ1(T )−ξ1(T )
∂V
∂x

(ξ1(T ),T ))> c > 0.

for T small enough, by Lemma 5.6. Thus

(Se
−(T )−S−(T ))2 6C1T ⇒ Se

−(T )−S−(T )6C1
√

T , (5.34)

for some C1 > 0 and 0 < T 6 T1. The proof of (5.32) is similar.



Finally, by Theorem 5.1, we can easily obtain

σ
√

T (− logT )∼ 1−S−(T ), σ
√

T (− logT )∼ S+(T )−1. (5.35)

6. Conclusion

This paper analyzes an optimal stopping problem for a investor with a piecewise linear payoff function, where
the underlying follows a geometric Brownian motion, corresponding to a hedge fund with a continuous fee for
assets under management deducted (or, equivalently, the price process for a stock paying a continuous dividend
yield). We present a complete solution of the problem in the infinite horizon case. In the finite horizon case,
we describe the shape of the continuation region, characterize the stopping boundaries using a coupled pair of
integral equations, and present an asymptotic analysis of the boundaries in small time.
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A. Appendix

Proof of Proposition 3.4: Let H(x,z) = W (x;z,1− q)− (p+ (1− p)x). Then h(x) = H(x,κ), Hx(x,z) =
Wx(x;z,1− q)− (1− p) and Hxx(x,z) = Wxx(x;z,1− q), so that H(·,z) is a strictly convex function for each
z ∈ [κ,1], Hx(κ,z) 6 Hx(z,z) = (p− q) < 0, and Hx(·,z)→ ∞ as x→ ∞. Thus, for each z ∈ [κ,1] there is a
unique minimizer x̃(z) of H(·,z), at which Wx(x̃(z);z,1−q) = 1− p. Taking x∗ = x̃(κ) proves a). Furthermore,
note that by the strict convexity of W , when z ∈ [κ,1), H(x,z)> 0 for x ∈ [κ,1].

Define ũ(z) = H(x̃(z),z) = infx∈[κ,∞) H(x,z). Then ũ is continuous, strictly decreasing, and ũ(κ) = h(x∗),
ũ(1)< 0. If h(x∗)> 0, then there exists a unique z̃ ∈ [κ,1) such that ũ(z̃) = 0. Taking S1 = z̃, S2 = x̃(S1) then
yields b). (Since ũ(z̃) = H(x̃(z̃), z̃) = 0, and z̃ ∈ [κ,1), we must have S2 = x̃(z̃)> 1.)

If h(x∗) < 0, define G(x,v) = W (x;κ,v)− (p+(1− p)x). As before, for v < 1− p, G is strictly convex,
with Gx(κ,v)< 0 and Gx(x,v)→∞ as x→∞, so that there exists a unique x̂(v) at which Gx(x̂(v),v) = 0, and G
is minimized. Letting, û(v) = G(x̂(v),v), we have that û(1−q)< 0, and û is continuous and strictly increasing.
For v large enough, û(v) is positive, so there exists a unique v̂ at which û(v̂) = 0. Taking S2 = x̂(v̂) then yields
c). Convexity again implies that S2 > 1.



Proof of Lemma 5.6

Proof. Note that V is increasing and Lipschitz continuous in x (uniformly on any [0, T̄ ]) by Touzi (2013,
Proposition 4.7, pages 46-47). Let x,y ∈ (S−(T ),Se

−(T )) with x > y. By the Dynamic Programming Principle
(Touzi (2013, page 41)), for any stopping time θ ∈T[0,T ]

V (x,T ) = sup
τ∈T[0,T ]

EQ[1τ<θ e−rτ g(Xx
τ )+1τ>θ e−rθV (T −θ ,Xx

θ )]

so that

V (x,T )−V (y,T )6 sup
τ∈T[0,T ]

EQ[1τ<θ e−rτ(g(Xx
τ )−g(Xy

τ ))

+1τ>θ e−rθ (V (T −θ ,Xx
θ )−V (T −θ ,Xy

θ
))]. (A.1)

Define:
θ = inf{t > 0, Xx

t = 1 or Xy
t = κ}, (A.2)

to obtain:

V (x,T )−V (y,T )6 (x− y)(1−q)+C(x− y)Q(θ 6 τ)6 (x− y)(1−q)+C(x− y)Q(θ 6 T ).

where C is the Lipschitz constant of V , and we have suppressed the dependence of θ on x and y. Take η > κ .
Then since S−(T )→ 1, for T small enough

θ > θ̄ = inf{t > 0, X
Se
−(T )

t = 1 or Xη

t = κ} (A.3)

and θ̄ does not depend on the choice of x,y. Thus:

V (x,T )−V (y,T )
x− y

6 (1−q)+CQ(θ̄ 6 T ). (A.4)

The final term is bounded by the constant C multiplied by the sum of the probabilities that the process X started
at η hits κ before T , and that X started at Se

−(T ) hits 1 before T . Both of these probabilities can be shown to be
o(1) using the explicit form of the hitting time distribution of a geometric Brownian motion (the first trivially,
and the second using the estimate (5.19)). The proof for x,y ∈ (Se

+(T ),S+(T )) is again similar.


