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Abstract

Droplet microfluidics has emerged as an innovative technology enabling high-sensitivity,
high-resolution chemical and biological analyses via precise manipulation of picoliter-to-
microliter fluid droplets. The ideal end goal of this technology is a general-purpose droplet
microfluidics platform (DMP) composed of simple building blocks or modules that can
be configured to perform arbitrary manipulations and analyses of individual droplets au-
tonomously, returning desired outputs (e.g. nanoparticle synthesis) or insights (e.g. heavy
metal detection) to the end-user.

Although numerous innovations in droplet manipulation have emerged in the literature,
most existing techniques — broadly categorized as passive vs active — optimize for a single
application and act on continuous droplet trains, hence are difficult to generalize to arbi-
trary manipulation of individual droplets. Passive techniques rely on specific microfluidic
chip geometries to be designed by a skilled user to perform a fixed sequence of droplet ma-
nipulations, and thus cannot be used for individual droplet control. Most active techniques
embed custom actuators (electrodes, membranes, etc) within a passive system which only
allows individual droplet control in localized areas, limiting the precision and resolution of
droplet manipulations. A simpler and more generic technique is pressure-driven feedback
control, in which droplets are sensed visually within simple passive chip geometries (e.g.
T-junctions) and actuated by off-chip pumps that adjust chip inlet pressures in response to
visual feedback. This approach shows that individual droplets can be stabilized and driven
to arbitrary locations on-chip without the need for complex chip designs or embedded
actuators, opening the door to modular automation.

However, bridging the gap from this proof-of-concept to a fully automated modular
platform for non-expert users requires overcoming significant practicality and accessibility
challenges. Existing feedback control systems for droplet manipulation ignore time-varying
behavior in the system, which gradually degrades performance and reliability, necessitating
frequent manual tuning and calibration. Additionally, current software workflows require
the end-user to manually set up each droplet manipulation, which does not generalize to
longer manipulation sequences necessary for practical applications. Moreover, standard
pressure-driven flow generation methods are either too slow and imprecise for individual
droplet control, or too complex and costly to be effectively modularized.

This thesis aims to address these key challenges in feedback control, software workflow,
and droplet actuation to pave the way for modular automated DMPs that are practical and
accessible for end-users. On feedback control, a new adaptive control system is designed to
automatically perform model parameter identification online, compensating for changes in
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system dynamics as droplet manipulations are performed (Chapter 4). Regarding software,
a new DMP workflow is developed to allow end users to validate and execute arbitrary
manipulation sequences automatically (Chapter 5). For pressure-driven flow generation,
off-the-shelf piezoelectric micropumps are evaluated as a modular, low-cost alternative to
existing methods, demonstrating comparable performance in droplet manipulation (Chap-
ter 6).
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Chapter 1

Introduction

1.1 Motivation

The need to perform high sensitivity, high resolution chemical and biological analyses on
small sample quantities led to the development of microfluidics, the science and technology
for manipulating microliter to picoliter fluids in microscale channels [11].

The advantages of shrinking to micron scale include dramatic reductions in sample
volume, cost, and analysis time. As dimensions shrink, the dominance of surface forces
(e.g. surface tension, viscosity) over volume forces (e.g. gravity, inertia) leads to changes
in fluid behavior — importantly the prevalence of laminar flow — that are advantageous
in many circumstances [11].

The extension from single-phase to multi-phase flows consisting of at least two immis-
cible fluids (e.g. water and oil) allowed monodisperse microfluidic droplets to be generated
in a controlled manner [12]. This spurred the field of droplet microfluidics, finding appli-
cations in chemistry and biology including the production of polymer particles, emulsions,
and foams, as well as the isolation and confinement of cells and chemical reactions [13].

To facilitate these applications, various techniques have been devised for precise control
of the desired droplet manipulations (droplet generation, split, merge, sort, mix, etc) [13].
The challenge lies in precisely generating the necessary flow field for each manipulation in
real-time. Passive techniques generate a constant pressure-driven flow field to perform a
fixed sequence of droplet manipulations according to microchannel geometry [14], meaning
the performance of each manipulation depends on physical factors (e.g. fluid properties,
manufacturing tolerances, microchannel surface wettability [15]), and individual manip-
ulations cannot be performed on-demand. This necessitates the design, fabrication, and
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testing of custom application-specific microchannel architectures, making passive tech-
niques inaccessible to users without microfluidics expertise. Active techniques on the other
hand add external energy (e.g. electrical, mechanical, thermal) to modify the flow field
locally, facilitating on-demand manipulations [16]. However, this often requires custom ac-
tuators (electrodes, membranes, lasers, etc) and sensors to be manufactured and embedded
into the device [16], making it expensive and impractical for real-world use. Most active
techniques are also limited in the precision and types of manipulations they can control
[17], again requiring microfluidic expertise to build custom devices for each use-case. For
the potential of droplet microfluidics to be fully realized beyond the research lab, there
is a need to simplify these techniques to make them more practical and accessible for
non-expert users. Ultimately, a general purpose droplet microfluidics platform (DMP) is
envisioned that would enable users to perform a variety of chemical and biological analyses
with minimal user intervention or microfluidics expertise.

As elucidated by Prof. Whitesides, a luminary in the realms of microfluidics and
chemistry, simple technologies have a few defining characteristics [18]:

• Predictability and reliability — function is obvious and repeatable

• High performance-to-cost ratio — cheap enough to be compelling in its niche

• Stackability — can be combined/stacked as building blocks for higher abstraction
levels and broader application scopes (e.g. transistors to general-purpose computers)

Generate Split Merge Sort Store & Retrieve

Figure 1.1: Individual droplet manipulations using T-junction geometry

Following these guiding principles, the vision of a general-purpose DMP has been fur-
ther developed by Hebert [17]. The building blocks of droplet microfluidics applications
are the individual droplet manipulations, most of which can be performed with a simple
T-junction microchannel geometry (Figure 1.1). Thus one potential platform architecture
consists of a set of stackable modules, with each module based around a single T-junction
microchannel. This allows a single module to perform any individual droplet manipula-
tion while minimizing cost and complexity. For predictability and reliability, each module
would include some method for droplet actuation and sensing to ensure manipulations are
fully autonomous, thereby minimizing user error. By stacking/combining modules fluidi-
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cally/electrically/mechanically, arbitrary sequences of manipulations can be autonomously
executed, increasing the scope and complexity of applications. Additionally, stackability
would enable higher level user inputs that approach natural language, maintaining ease-
of-use as complexity grows [19]. Given these benefits, it’s evident that a modular and
automated approach will be key to realizing general-purpose DMPs that are practical and
accessible for end-users [17].

1.2 Progress and Challenges

As a first step toward fully automated droplet manipulation, Wong identified a droplet
motion model and designed a feedback controller around it to stabilize droplet interfaces
in T-junction microchannel networks and decouple droplet dynamics between junctions
[4]. Droplet actuation was performed by externally adjusting inlet pressures to produce
pressure-driven flow (as in passive microfluidics), and droplet sensing was performed for
feedback control (an active microfluidics approach) via digital microscopy. Combining
the benefits of passive (i.e. leveraging geometry for droplet manipulations) and active
techniques (i.e. real-time flow field control) enabled individual droplet manipulations on-
demand without the need for custom-built embedded actuators/sensors. Wong also devel-
oped a software application — RoboDrop — to provide a graphical user interface (GUI)
for individual droplet manipulations [4]. Further work by Hebert and Zablotny [20, 21]
implemented higher levels of automation and software abstraction, reducing the amount of
manual user intervention required to set up and execute individual droplet manipulations.
Lensless imaging techniques have also been applied by Zablotny to significantly reduce the
cost and complexity of droplet sensing hardware [22].

However, the use of the proposed platform in real-world physical and life science ap-
plications is still limited by practicality and accessibility challenges in software workflow,
control system tuning, and droplet actuation methods.

Applications of droplet microfluidics often require long droplet manipulation sequences
over extended time periods [23], but RoboDrop’s droplet manipulation workflow requires
the user to manually intervene at different key points to set up and execute each ma-
nipulation [20]. Each type of manipulation also has associated parameters that must be
fine-tuned by the user to ensure it is performed successfully [4]. Thus as droplet manip-
ulation sequences grow in length and complexity, this workflow becomes impractical for
end-users due to the lack of full automation and inability to generalize manipulations.

Additionally, previous feedback control systems using linear time-invariant (LTI) droplet
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models [4, 20, 21] neglect non-linear and/or time-varying dynamics (behavior near junc-
tions, accumulation of generated droplets, variability of microchannel surface wetting,
dust/defects, etc), degrading performance and reliability of longer droplet manipulation
sequences. Optimal model and controller parameters also require manual tuning by the
end-user for each application, limiting accessibility for users without controls background.

On droplet actuation, common methods [24] for pressure-driven flow generation are
impractical for the modular and automated nature of the proposed platform, being either
too slow and imprecise for controlling individual droplet manipulations (e.g. peristaltic/sy-
ringe pumps) or too complex to be modularized in a cost-effective way (e.g. pressure-driven
flow controllers).

1.3 Thesis Overview

This thesis aims to address the aforementioned challenges in control, software workflow,
and droplet actuation to make the envisioned DMP design more practical and accessible
for end-users.

To tackle the control challenge, we aim to apply adaptive control to automate the model
parameter identification process, as well as to automatically compensate for changes in
droplet dynamics over longer sequences of manipulations. Regarding software, our goal is
to develop a fully automated end-user workflow, allowing users to perform arbitrary manip-
ulation sequences without manual intervention. For droplet actuation, we will investigate
recent commercially available piezoelectric micropumps as a more practical (in terms of
cost, footprint, and portability) droplet actuation method for the proposed DMP.

Chapter 2 provides an overview of existing techniques in passive, active, and feedback-
controlled droplet microfluidics, as well as a brief background on droplet models and control
theory. Chapter 3 describes the hardware and software components used throughout this
thesis. Chapter 4 discusses the design and evaluation of an Adaptive Model Predictive
Controller (AMPC) for automated droplet manipulation. Chapter 5 details the design
of a new automated end-user workflow for designing and executing sequences of droplet
manipulations. Chapter 6 validates a low-cost, modular piezoelectric micropump design
for automated droplet manipulation. Chapter 7 summarizes the thesis and makes some
suggestions for improvements as well as future work.
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Chapter 2

Literature Review and Background

This chapter provides a review of the literature in the field of droplet microfluidics, specif-
ically focusing on the techniques developed for droplet manipulation. This is followed by
a brief background on modelling and control of droplet microfluidics systems.

2.1 Microfluidic Droplet Manipulation Techniques

The ability to control and manipulate droplets in microfluidic devices has been a corner-
stone in the advancement of the field. This has led to a myriad of applications demonstrated
in various domains [17], including cell biology (e.g. single [25] and multi-cell analysis [26]),
biochemistry (e.g. drug screening [27] and protein crystallization [28]), material synthesis
(e.g. nanoparticles [29] and emulsions [30]), and environmental monitoring (e.g. heavy
metals detection [31]).

2.1.1 Passive Microfluidics

Passive techniques rely on microchannel geometry and a fixed flow field to implement spe-
cific droplet manipulations (e.g. droplet generation through T or flow focusing junctions,
droplet trapping [32, 33]). The flow field is usually generated with regulated pressure
or flow sources such as pressure pumps or syringe pumps. These techniques have been
widely used due to their simplicity and reliability. However, they lack the flexibility and
adaptability provided by active techniques.
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2.1.2 Active Microfluidics

Active techniques, on the other hand, add external energy (e.g. electrical, mechanical,
thermal) to the flow field locally to control droplet manipulations. These techniques usually
require external actuators (e.g. pneumatic valves [34], piezoelectric actuators [35], electric
fields [36], heating elements [37], or lasers [38, 39]) to modify the flow field at specific
points.

Digital microfluidics, particularly electrowetting-on-dielectric (EWOD), has seen sig-
nificant advancements and applications in the past few decades. EWOD allows for the
manipulation of small liquid droplets on a two-dimensional surface, making it particularly
promising for portable systems due to its mechanical simplicity and low energy consump-
tion [40]. Li et al. (2019) introduced a novel method of droplet manipulation that uses
electrical signals to induce the liquid to dewet, rather than wet, a hydrophilic conductive
substrate [41]. EWOD has found commercial applications in areas such as optical devices,
including liquid lenses and reflective displays, and biomedical devices, such as DNA library
preparation and molecular diagnostics [42].

Surface Acoustic Wave (SAW) microfluidics is a technology that utilizes sound waves
to manipulate fluid droplets on a microscale. Franke et al. (2009) demonstrated the use
of SAW devices for directing the motion of droplets in microfluidic channels. This method
allows individual droplets to be directed along separate microchannel paths at high volume
flow rates, which is useful for droplet sorting [43].

Both SAW and EWOD offer high precision and flexibility, but they also require com-
plex setups and high energy inputs. Additionally for EWOD, droplet sizes are difficult
to vary, and minimum droplet volumes are fundamentally limited. Droplet evaporation
and contamination are also challenges, but can be resolved through the use of disposable
microfluidic chips.

Quake’s approach, often referred to as ”Quake’s valves,” leverages the soft nature of
polydimethylsiloxane (PDMS) to create on-chip valves. By combining a control and sample
layer, the valves can block or allow flow at specific points in each channel. The actuation
of multiple valves can confine small sample quantities similar to droplets, but in a purely
single-phase flow [44].

Other approaches similar to Quake’s valves have been investigated, including electroac-
tive polymer-based valves [45], pH-activated valves [46], and wax valves [47].

Garstecki’s research group developed an off-chip valve-based approach for the continu-
ous growth and monitoring of bacterial populations. Although the system is single-phase,
automated on/off valves allow accurate droplet splitting and manipulations via real-time
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video feedback. This method allows for parallel, long-term studies of microbial ecology,
physiology, evolution, and adaptation to chemical environments [48].

In another work, Garstecki’s group developed an active control method using in-line
solenoid valves. Unlike Quake’s parallel approach, these valves are directly integrated in
series with the flow source, avoiding complex multi-layer chip fabrication [49]. Furthermore,
the microflow involved is two-phase flow (i.e., droplet microfluidics) instead of single-phase
flow, which offers many advantages, including compartmentalization of reactions and high-
throughput without compromising uniformity. However, the in-line solenoid valve system
still requires involved user interaction to operate the system, and microfluidics knowledge
to set up and operate the actuation pressure behind each of the solenoid valves.

2.1.3 Feedback-Controlled Microfluidics

There have been many applications of feedback control in droplet microfluidics, but most
have been targeted toward digital microfluidics platform due to the ease of control. In more
traditional pressure-driven droplet microfluidics systems, feedback control has largely only
been applied to tune parameters in a passive droplet generation process, e.g. droplet size
and spacing between droplet trains [50, 51].

Wong’s approach was the first to aim toward a droplet microfluidics platform that could
perform a variety of required droplet operations on the same chip architecture. Utilizing
computer vision for droplet sensing, pressure-driven flow for droplet actuation, and a mul-
tiple T-junction microfluidic chip architecture, a feedback control system was created that
generated and stabilized droplets in each channel despite external disturbances and system
uncertainties [52, 53]. Unfortunately, the workflow was manual, requiring the user to break
down each droplet manipulation into the required objectives in each channel, defining each
objective by dragging a cursor over the channel.

Building on Wong’s work, semi-automated manipulations combining multiple interme-
diate objectives were realized [20], but manual intervention was still required for synchro-
nization.

Zablotny’s approach fully automates basic droplet manipulations (generation, splitting,
merging, sorting, move) by autonomously completing sequences of low-level objectives or
”instructions” [21]. Unfortunately, the droplet manipulations are prone to error and can be
easily destabilized by transients or unmodelled dynamics, necessitating significant manual
tuning of model/controller parameters and instruction sequences.
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An overarching challenge of the aforementioned feedback control techniques is the dif-
ficulty of modelling the inherently non-linear and time-varying dynamics encountered in
droplet microfluidics.

2.2 Microfluidic Droplet Models for Control

In modeling physical systems, the ideal model is often the one that most accurately explains
the relationship between input and output data. In contrast, feedback control relaxes the
objective to merely identifying a model-controller combination that ensures a stable closed-
loop system while meeting desired control specifications (e.g. rise time, overshoot, control
effort) [54].

2.2.1 Interface Displacement Models

We start with Poiseulle flow, common in microfluidics, which involves a steady-state,
pressure-driven flow of a single phase incompressible fluid in a long, straight, rigid channel
[55]. The analytical solution of the Navier-Stokes equation for Poiseulle flow shows that
pressure drop ∆P across this channel is directly proportional to the volumetric flow rate
Q [55], producing the Hagen-Poiseulle law

∆P = RhydQ (2.1)

analogous to Ohm’s law (∆V = RI), with Rhyd being the hydraulic resistance.

As with previous approaches, visual detection of droplet position is used for feedback.
Simplistically, we can model droplet displacement d as the integral of Q, analogous to
electric charge.

The relevant dynamic equation becomes:

Q = ḋ =
1

Rhyd

∆P (2.2)

or in Laplace domain:

d(s) =
1

Rhyds
P (s) (2.3)
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However, integrators tend to be non-ideal and leaky in physical systems due to un-
modelled dynamics from non-ideal components. In microfluidics, a physical source of this
leakage comes from the gutter flow (Figure 2.1) present in microchannels with non-circular
cross-sections (common due to their ease of fabrication), as the thin film between the
droplet and channel walls has a non-uniform width.

Figure 2.1: Droplet flow through circular vs rectangular cross-section microchannel, gutter
locations indicated [1]

As an analogy consider a cylindrical bucket with cross-section area A being filled with
liquid at a volumetric flow rate of w. Its height h would be given by integrating the flow,
i.e.

ḣ =
w

A
(2.4)

If a hole is added to the bottom of the bucket, there is now a leakage flow rate that depends
on liquid height due to gravity. As a first order approximation let’s assume this leakage flow
rate is directly proportional to height with a factor τA, the relevant differential equation
becomes:

ḣ =
w

A
− τh (2.5)

or in Laplace domain:

h(s) =
1/A

s+ τ
w(s) (2.6)
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In the same way, we can assume this gutter flow removes a constant but small proportion
τ � 1 of the ideal droplet displacement d from the overall flow, producing the relevant
dynamic equation:

Q = ḋ =
1

Rhyd

∆P − τd (2.7)

or in Laplace domain:

d(s) =
1/Rhyd

s+ τ
P (s) (2.8)

Now we will extend this model to a multi-input, multi-output (MIMO) system, using
the ubiquitous T-junction droplet generator as an example (Figure 2.2).

Q1

Pc
R3R2

R1

P1

P2 P3

Q2 Q3

Figure 2.2: T-junction microchannel network and equivalent circuit

Hagen-Poiseulle law with leak modification gives the dynamic equations:

ḋ1 = Q1 = −τ1d1 +
P1 − Pc
R1

(2.9)

ḋ2 = Q2 = −τ2d2 +
P2 − Pc
R2

(2.10)

ḋ3 = Q3 = −τ3d3 +
P3 − Pc
R3

(2.11)

To convert to state-space form

ẋ = Ax+Bu (2.12)

y = Cx+Du (2.13)
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we’ll use x =

d1

d2

d3

 as the state vector, u =

P1

P2

P3

 as the control input vector, and

y =

d1

d2

d3

 as the output vector.

The state matrices A, C, and D are obvious:

A =

−τ1 0 0
0 −τ2 0
0 0 −τ3



C =

1 0 0
0 1 0
0 0 1



D =

0 0 0
0 0 0
0 0 0


To find an expression for B, we’ll use superposition. Each input pressure and output

position relation is found by setting all other input pressures to 0, producing

B =

 R2+R3

R1R2+R1R3+R2R3

−R3

R1R2+R1R3+R2R3

−R2

R1R2+R1R3+R2R3
−R3

R1R2+R1R3+R2R3

R1+R3

R1R2+R1R3+R2R3

−R1

R1R2+R1R3+R2R3
−R2

R1R2+R1R3+R2R3

−R1

R1R2+R1R3+R2R3

R1+R2

R1R2+R1R3+R2R3


This is a highly simplistic model that doesn’t account for channel compliance (hydraulic

capacitance), fluid inertia (hydraulic inductance), as well as external components of the
system, such as pump and tubing dynamics. However, in the microfluidics context (i.e.
small pressure gradient, low Reynolds number, laminar flow), the integral action has been
shown to dominate the droplet displacement response in feedback controlled systems [21].
Additionally, unnecessary model parameters can cause the model order to grow very quickly
as microchannel networks become more complex due to coupling effects between channels.
This can lead to ill-conditioned models [21] that are much more sensitive to numerical
precision and model parameter variations, making it harder to design robust controllers
that can meet performance specifications.
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2.2.2 Optimal Control Objectives

Linear Quadratic Regulation (LQR)

With our state-space droplet displacement model, our objective now is to drive the trajec-
tory of each state xa to any user-defined reference trajectory xd. Additionally, a common
objective is to minimize actuator effort u, which can reduce power consumption and pro-
long the lifetime of the actuator. We can convert this trajectory tracking and control
effort problem to an optimization problem by defining the appropriate cost function. Let
E(t) = xa(t)− xd(t) be the state trajectory error (i.e. difference between actual state and
desired state), and Q and R be constant positive semidefinite weight matrices. Then we
can define an infinite-horizon (i.e. acting over all time) quadratic cost function:

J =

∫ ∞
0

(ETQE + uTRu)dt (2.14)

Minimizing this cost function produces the optimal state, output, and input trajectories
given the reference trajectory xd(t). In a perfect world, applying the optimal input trajec-
tory in open-loop (without feedback) will produce the optimal output trajectory. However,
real systems have uncertainties (e.g. actuator/sensor noise, unmodelled plant dynamics)
that cause both output and state trajectories to diverge from optimality over time. By
closing the loop, i.e. measuring the current state trajectory through state feedback (assum-
ing the system is stabilizable and detectable), the optimal input trajectory becomes robust
to noise and disturbances. Solving the associated Riccati equation produces the optimal
state feedback gain K and associated control law (for infinite-horizon cost) relating current
state to control input known as the linear quadratic regulator (LQR):

u = −Kx (2.15)

Because LQR optimizes over the entire time horizon without constraining inputs/out-
puts, the resulting control law has guaranteed stability margins independent of the plant
[56].

Linear quadratic Gaussian (LQG)

In linear physical systems we can often model uncertainties as additive white-noise Gaus-
sian distributions Bvv(t),w(t):

ẋ(t) = Ax(t) +Bu(t) +Bvv(t) (2.16)

y(t) = Cx(t) + w(t) (2.17)
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the cost functional becomes the expected value of the LQR cost:

J = lim
T→∞

1

T

∫ T

0

E
[
(ETQE + uTRu)

]
dt (2.18)

Minimizing this cost functional is known as the linear quadratic Gaussian (LQG) problem.
Assuming the system is stabilizable and detectable, minimizing J produces the optimal
state feedback control law. This is equivalent to minimizing the steady-state mean square
error:

lim
t→∞

E
[
(ETQE + uTRu)

]
(2.19)

In many physical systems, only output feedback is available (i.e. some states cannot be
directly measured). Thus we can apply the separation principle to split the LQG problem
into a linear quadratic estimator (LQE or Kalman filter) and LQR problem that can be
independently solved as two LQR problems due to duality [57]. Two Riccati equations are
derived, the solutions of which produce an observer law (Kalman gain) and control law
(state feedback gain).

This is an elegant solution, but the lack of perfect state feedback means stability margins
are no longer guaranteed [56].

State and Disturbance Estimation

Since our model has no unmeasurable states, we could directly apply state feedback without
state estimation. In practice, a state estimator is still beneficial here. Apart from filtering
measurement noise, it can compensate for delays or outliers in measurements by relying
on the predicted output of its internal model.

Specific to this system, one physical phenomena that is not directly measured is the
Young-Laplace pressure, a pressure differential generated across a droplet interface due to
interfacial tension [55].

Along a channel with a fixed cross-section, Laplace pressure remains constant, pro-
ducing a constant flowrate and a linearly increasing displacement. But near junctions or
situations where channel cross-sections change, Laplace pressure can change non-linearly,
making it difficult to identify the exact value of Laplace pressure in any particular scenario.
Thus we will model this as a ramp disturbance scaled by some Gaussian white noise, i.e.

yod = 1/s2wod, wod ∼ N(0, 1), yod ∼ N(0, t2/2) (2.20)
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or in state-space:

ẋod(t) = Aodcxod(t) +Bodcwod(t) =

[
0 0
1 0

]
xod(t) +

[
1
0

]
wod(t) (2.21)

yod(t) = Codcxod(t) +Dodcwod(t) =
[
0 1

]
xod(t) (2.22)

(2.23)

This will allow the state estimator to more accurately predict random ramp disturbances
caused by Laplace pressure and other non-linearities so the controller can better reject
them.

As our control system will be implemented on a digital computer, we need to discretize
all prediction models to match some desired sampling period T . The standard approxi-
mation to obtain a discrete equivalent model is the zero-order-hold (ZOH), where model
inputs and outputs are held constant between samples. Using this approach, the discrete
disturbance model is given in state-space as:

xod(k + 1) = Aodxod(k) +Bodwod(k) (2.24)

= eAodcTxod(k) +

∫ T

0

eAodcτdτBodcwod(k) (2.25)

≈ (I + AodcT )xod(k) +

∫ T

0

[
1
τ

]
dτwod(k) (2.26)

=

[
1 0
T 1

]
xod(k) +

[
T

T 2/2

]
wod(k) (2.27)

yod(k) = Codxod(k) +Dodwod(k) (2.28)

=
[
1 0

]
xod(k) (2.29)

We can also model the measurement uncertainty wn as Gaussian white noise:

xn(k + 1) = Anxn(k) +Bnwn(k) = 0 (2.30)

yn(k) = Cnxn(k) +Dnwn(k) = wn(k) (2.31)

wn(k) ∼ N(0, 1) (2.32)

For brevity only the single-input single output (SISO) — i.e. single channel — distur-
bance and measurement noise models are described. In reality a MIMO system is modelled,
meaning these SISO models are duplicated for each channel, and cross-coupling between
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channels are considered (disturbances in a single channel couple to all other connected
channels).

Now we can augment the plant (T-junction) model with our disturbance and noise
models. Let’s discretize the original plant so it can be used by the estimator (the calculation
for Bpu becomes quite complex, so we’ll represent each element using Rij):

xp(k + 1) = Apxp(k) +Bpuu(k) (2.33)

≈ (I + AT )xp(k) +

∫ T

0

eAνdνBu(k) (2.34)

=

1− τ1T 0 0
0 1− τ2T 0
0 0 1− τ3T

xp(k) +

 R11 −R12 −R13

−R21 R22 −R23

−R31 −R32 R33

u(k) (2.35)

yp(k) = Cpxp(k) +Dpuu(k) (2.36)

=

1 0 0
0 1 0
0 0 1

xp(k) (2.37)

The combined prediction model is then defined:

xc =

[
xp
xod

]
, uo =

 u
wod
wn

 (2.38)

xc(k + 1) =

[
Ap 0
0 Aod

]
xc(k) +

[
Bpu 0 0
0 Bod 0

]
uo(k) (2.39)

y(k) =
[
Cp Cod

]
xc(k) +

[
Dpu Dod Dn

]
uo(k) (2.40)

with plant states xp, disturbance states xod, combined states xc, and combined inputs
uo (including both controlled and uncontrolled inputs).

Model Predictive Control (MPC)

Infinite-horizon LQR/LQG finds a single optimal state/output trajectory over all time,
and the corresponding optimal input trajectory. However, in physical systems one must
consider the presence of input/output constraints, as well as input slew rate limitations.
The addition of these constraints make the optimization problem non-linear and much
more difficult to solve over the entire time horizon.

15



Alternatively, we can find an input/output trajectory that is optimal for a finite pre-
diction horizon starting at each point in time a new measurement is received, reducing the
problem to a series of convex optimizations (if constraints are linear). This technique is
known as linear Model Predictive Control (MPC). Because the control law does not neces-
sarily use the measurement for feedback directly, MPC is essentially solving a sequence of
open-loop optimization problems, with the current measurement only providing the initial
conditions (indirect feedback) [57].

The cost function for the linear MPC optimization problem is very similar to LQR, but
only optimizes over the prediction horizon p:

J =

p−1∑
i=0

{
ETQE + uTRu

}
(2.41)

while satisfying input, input slew rate, and output constraints:

ymin ≤y[k + i|k] ≤ ymax|i = 1 : p (2.42)

umin ≤u[k + i− 1|k] ≤ umax|i = 1 : p (2.43)

∆umin ≤∆u[k + i− 1|k] ≤ ∆umax|i = 1 : p (2.44)

Given that the cost function is quadratic with linear constraints, a quadratic program-
ming (QP) problem can be formulated at each time step to find the optimal input trajectory
[58].
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Chapter 3

Methodology

This chapter describes each hardware and software component involved in the operation of
the proposed feedback-controlled droplet microfluidics platform (DMP). These components
are organized into subsystems, with the flow of information between them shown in Figure
3.1.

Supervisory Control Microfluidic ChipProgram Genera�on

Droplet Actua�on

Droplet Sensing

Figure 3.1: Overview of feedback-controlled DMP subsystems
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3.1 Hardware

3.1.1 Microfluidic Chip

A microfluidic chip consists of a network of micrometer- to millimeter-width fluid channels
where droplets can be generated and manipulated. Droplet microfluidics requires at least
two phases of fluid to be present: dispersed phase (which make up the droplets) and con-
tinuous/carrier phase (which surround the droplets). In many applications, the dispersed
phase is aqueous and thus hydrophilic, meaning microchannels must be hydrophobic to
prevent dispersed phase droplets from wetting channel walls. Additionally for many mi-
crofluidics applications and feedback control especially, microchannels must be transparent
to ensure droplets are observable.

In this thesis, Polydimethylsiloxane (PDMS) and glass microfluidic chips are utilized.
Both PDMS and glass are transparent to light, can be modified to become hydrophobic,
and their use in microfluidic chip construction is quite mature. PDMS chips (Dow Corn-
ing Sylgard 184) are fabricated in-house using standard soft lithography techniques [59].
Unfortunately, the porous nature of PDMS causes contamination, and poor long-term hy-
drophobicity degrades the performance of droplet manipulations over time, rendering each
chip as single-use for practical applications. As an alternative, glass chips are obtained off-
the-shelf from Dolomite Microfluidics, who fabricate them through a wet-etching process
common in the semiconductor industry [60]. Glass chips have higher up-front cost, but can
be readily cleaned and reused, providing a long-term platform for droplet manipulations.

The most fundamental manipulation, droplet generation, is commonly implemented
using the T-junction. By combining multiple T-junctions, additional sequences of manip-
ulations can be performed on the generated droplets (Figure 1.1). To demonstrate droplet
manipulations, deionized (DI) water and 5 [cSt] Silicone oil (Sigma-Aldrich) are used as
the dispersed and continuous phases.

3.1.2 Droplet Sensing

Droplet sensing is achieved by integrating an inverted microscope (Nikon Eclipse Ti-E),
machine vision camera (Andor Zyla 5.5 sCMOS), and laptop PC (Figure 3.2).

The microscope objective is selected to provide the optimal magnification to observe
the Region-of-Interest (ROI) for a given chip. The camera then captures and sends frames
within the ROI at 40 [Hz] to the PC over USB 3.0. Finally, an image processing algorithm

18



1

2
3

Figure 3.2: Droplet sensing setup (1) microscope (2) machine vision camera (3) laptop PC

runs on the PC to track droplet positions in real-time. The implementation of the droplet
tracking algorithm is detailed in Appendix B.

3.1.3 Sample Transport

Before droplets can be actuated on-chip, we need a way to bring the dispersed and continu-
ous phases to the ROI. Fluids of each phase are collected in an array of reservoirs (Fluigent
Fluiwell) and connected via perfluoroalkoxy (PFA) tubing (Sigma-Aldrich) to each inlet of
the microfluidic chip (parts 2 and 3 in Figure 3.3).

Providing a robust, leak-free interface (i.e. the macro-micro interface) between tubing
and chip is a common problem in microfluidics. For PDMS chips, the elastic nature of
PDMS allows tubing to be directly plugged into chip inlets without leakage (Figure 3.3).
For glass chips, an external connector is required to provide a leak-free seal while interfacing
external tubing to the chip (Figure 3.4).
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Figure 3.3: Droplet actuation and sample transport setup (1) pressure source (2) reservoir
array (3) microfluidic chip

Figure 3.4: Macro-to-micro interface for Dolomite glass microfluidic chip [2]

3.1.4 Droplet Actuation

To drive the fluid phases to the ROI, each reservoir is pneumatically pressurized by a
variable pressure source through Silicone tubing (part 1 in Figure 3.3). Since the pressure
source is only in contact with air, there is no contamination between the actuator and
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sample. By modulating each pressure source, droplets are provided the maximum degrees
of freedom.

Unless otherwise stated, the pressure source used is a commercial pressure pump
(Fluigent MFCS-EZ). The pump is provided with a fixed input pressure of 1.3 [bar], and
communicates with the laptop PC over USB. Fluigent provides a public application pro-
gramming interface (API) to interface custom software to the pump [61]. When a pressure
command is sent to the pump, it uses internal pressure feedback to drive the input pressure
to the desired pressure.

3.2 Software

3.2.1 Supervisory Control

The supervisory controller is composed of a high-level supervisor and low-level feedback
controller. Both the supervisor and controller are implemented in MATLAB/Simulink,
and deployed to a laptop PC via C++ code generation.

The controller is based on a LTI state-space model derived in Chapter 2 that captures
the dynamics of the system, where inputs represent chip inlet pressures, and outputs
represent droplet positions. Based on this model, an Adaptive Model Predictive Controller
(AMPC) is used to drive the outputs according to the trajectories provided. The AMPC
implementation is detailed in Chapter 4.

The supervisor is given a list of waypoints and generates a trajectory to be tracked
by the controller. The supervisor implementation is detailed within the software workflow
developed in Chapter 5.

3.2.2 Program Generation

At the highest level, the user will issue a list of commands that correspond to a sequence
of fundamental droplet manipulations. Each fundamental droplet manipulation is broken
down into a list of necessary waypoints to be reached in each microchannel. Thus any
sequence of droplet manipulations can be converted to a list of waypoints to be given to
the supervisor, analogous to compilation of a high-level programming language to low-level
assembly,

Implementation of the program generation method is detailed within the software work-
flow developed in Chapter 5.
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Chapter 4

Adaptive MPC Design for Droplet
Control

4.1 Introduction

Stable feedback control of droplet interfaces is challenged by unavoidable non-linear and
time-varying dynamics that occur during droplet manipulation. Each stage of droplet
generation (Figure 4.1) locally alters the pressure field around the junction in a highly non-
linear manner [3]. As each droplet is detached, it also contributes a persistent local pressure
drop in its associated channel due to interfacial tension between different fluid phases [62].
Over time, changes in microchannel hydrophobicity [15], manufacturing defects, and debris
can affect the pressure field locally or over large parts of the microchannel network. Each
change in the local pressure field contributes to a change in the overall hydraulic resistance
of the corresponding microchannel.

Figure 4.1: Stages of droplet generation in T-junction microfluidic chip [3]
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Since the majority of non-linear dynamics appear when droplet interfaces are near
the junction, the prevalent approach [4, 21] for droplet control — gain scheduling — is to
identify a set of models and controllers at different operating points in the system (far from
the junction) and switch between them when specific conditions are met (e.g. junction
crossing occurs). In this approach, the non-linear dynamics are treated as temporary
disturbances to be rejected when switching controllers (e.g. when droplet interfaces cross
the junction into a new microchannel). Thus each model is approximated as linear time-
invariant (LTI), greatly simplifying the associated controller design.

On the other hand, time-varying effects can permanently alter system dynamics, in-
creasing the risk of instability as model errors accumulate over longer droplet manipulation
sequences. Moreover, any change in tubing diameter/length, channel width, fluid viscos-
ity, etc will require model parameters to be manually updated and tuned to match the
physical system. Crucially, aside from trial and error, end-users without system identifica-
tion expertise cannot determine if the current model parameters are adequate for droplet
manipulation in their specific system.

The need for manual tuning by a skilled end-user and the inability to model time-
varying dynamics limit the accessibility and practicality of this feedback control strategy.
In this chapter, an adaptive model predictive control (AMPC) strategy is proposed to
address these limitations.

Model predictive control (MPC) produces optimal control signals for trajectory track-
ing while taking input and output constraints into consideration. However, large changes
in system dynamics can cause significant performance degradation due to inaccurate pre-
dictions from its internal model. AMPC augments linear MPC with an online parameter
estimator, allowing model parameters to quickly converge to those of the true physical
system without user intervention. We show that AMPC is able to maintain droplet trajec-
tory tracking performance despite large changes in system dynamics, while the equivalent
non-adaptive MPC massively deteriorates in performance.

4.2 AMPC Design

4.2.1 Overview

The overall AMPC architecture is shown in Figure 4.2 below. The plant encompasses
all DMP components, including pump, sample transport, and microfluidic chip dynamics.
The DMP model, linear MPC and state estimator formulation are derived in Chapter 2.
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Trajectory generation produces a smooth path to drive droplets to desired positions under
feedback control, and is discussed in detail in Chapter 5.

Plant

State
Es�mator

Trajectory
Genera�on

MPCParameter
Es�mator

Figure 4.2: Adaptive model predictive controller architecture

4.2.2 Online Parameter Estimator Design

In this section, we derive the parametric model, associated estimation model, and recursive
least squares (RLS) adaptive law for online estimation of DMP model parameters.

Model Parametrization

For the i-th microchannel in an n-channel, single junction microfluidic chip, the state space
model of droplet interface displacement vs pressure is given by (Chapter 2):

xi,k = Aixi,k−1 +Biuk−1 (4.1)

= (1− τi)xi,k−1 +
[
−bi,1 −bi,2 · · · bi,i · · · −bi,n

]
uk−1 (4.2)

yi,k = Cixi,k = xi,k (4.3)

We can form a static parametric model (SPM) [63] by a linear combination of param-
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eters θ and regressors ψ (moving all signs to the regressor ψ for convenience):

zi,k = xi,k − xi,k−1 (4.4)

=
[
−xi,k−1 −u1 −u2 · · · ui · · · −un

]


τi
bi,1
bi,2
...
bi,i
...
bi,n


= ψTi,kθi (4.5)

Extending to multiple channels:

zk = xk − xk−1 =


ψT1,k

ψT2,k
. . .

ψT3,k



θ1

θ2
...
θn

 = ψTk θ (4.6)
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ψk =



−x1,k−1

u1,k−1

−u2,k−1
...

−un,k−1

−x2,k−1

−u1,k−1

u2,k−1
...

−un,k−1

. . .

−xi,k−1

−u1,k−1

−u2,k−1
...

ui,k−1
...

−un,k−1

. . .

−xn,k−1

−u1,k−1

−u2,k−1
...

un,k−1



, θ =



τ1

b1,1

b1,2
...
b1,n

τ2

b2,1

b2,2
...
b2,n

...
τn
bn,1
bn,2

...
bn,n



(4.7)

Recursive Least Squares Estimation

The online parameter estimator is implemented by a recursive least squares (RLS) algo-
rithm with modifications for robustness [54, 64].

Given a linearly parameterized plant model (with measured output z, regressor vector
ψ, true parameter vector θ)

zk = ψTk−1θ,
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and associated estimation model (with estimated output ẑ, regressor vector ψ, estimated
parameter vector θ̂)

ẑk = ψkθ̂k−1,

least squares regression aims to find the θ̂ that minimizes a weighted sum of squared
differences between z and ẑ as defined by the cost function

θ̂k = arg min
θ

k∑
r=0

β(k, r) (zr − ẑr)2 .

To perform this regression online, θ̂ is updated at each time step k according to an
adaptive law with adaptation gain Lk and estimation error εk = zk − ẑk:

θ̂k = θ̂k−1 + Lk (zk − ẑk)

Knowledge of physical constraints in the system allows us to constrain parameter es-
timates using parameter projection. The equations for adaptive gain and parameter pro-
jection are detailed in Appendix A. The adaptive law is implemented in MATLAB and
Simulink, and C++ code generation is used to deploy it to the physical system.

4.2.3 MPC Tuning

Linear MPC minimizes a quadratic cost function with linear constraints over a finite pre-
diction horizon p and control horizon m by solving a quadratic program (QP) at each time
step. For convenience, the QP solver used is the KWIK algorithm [65] implemented in
MATLAB’s MPC Toolbox.

The MPC’s internal model structure is derived in Chapter 2, with the output variable
(OV) being droplet position in each channel, and manipulated variable (MV) being the
inlet pressures set by external pressure pumps.

We select the standard cost function J defined in MATLAB’s MPC Toolbox, the ob-
jectives being the minimization of OV trajectory tracking error (Jy), MV magnitude (Ju),
and MV slew rate (J∆u):

J = Jy + Ju + J∆u (4.8)
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At each time step k, the relevant objective costs for a single channel/pump are defined
as:

Jy =

p∑
i=1

w2
y (rk − yk)2 (4.9)

Ju =

p−1∑
i=0

w2
u (uk − ūk)2 (4.10)

J∆u =

p−1∑
i=0

w2
∆u (uk − uk−1)2 (4.11)

with relevant tuning weights wy, wu, w∆u.

Weights are tuned via iterative closed-loop simulation to maximize robustness by pe-
nalizing aggressive control moves, i.e. penalizing MV slew rate more than OV tracking or
MV magnitude. For each channel being controlled, the weights are:

wy = β

wu = β

w∆u = T/β

β = 0.13534

1/T is the MPC update rate, set to 40 [Hz] to match the sampling rate of droplet sensing
(Chapter 3). β is an overall adjustment factor tuned to maximize closed-loop robustness.

Furthermore, a prediction horizon p of 20T [s] and control horizon m of T [s] was found
to maintain adequate performance without significant computational overhead, with an
estimated maximum memory requirement of only 160 [kB] when executing on the physical
system.

Finally, OV constraints of 0 to 4.8 [mm] are set from droplet sensing field-of-view limits
while conservative MV constraints of 0 to 30 [mbar] are set from pressure pump output
range limits (Chapter 3).

4.3 Methodology

4.3.1 Materials and Hardware

A T-junction PDMS (Dow Corning Sylgard 184) microfluidic chip with rectangular 200
[µm] x 200 [µm] microchannel cross-section is fabricated from a 3D-printed (Formlabs)
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master. Deionized (DI) water and 5 [cSt] Silicone oil (Sigma-Aldrich) are used as the
dispersed and continuous phases. Refer to Chapter 3 for detailed description of supporting
hardware.

4.3.2 Parameter Estimation

To compare the performance of adaptive vs non-adaptive MPC, the same internal model
structure (Chapter 2) is used for both, with parameter estimation performed online vs
offline.

Offline Parameter Estimation

Following standard open-loop system identification procedure [54], a pressure excitation
signal is applied to the microfluidic chip at each inlet to obtain input-output data for
training. For excitation, a pseudorandom binary sequence (PRBS) is designed in MATLAB
(10th order, sampling rate of 40 [Hz] with clock period of 4) to provide uniform excitation
to all inputs within a conservative frequency range between 0 and 5 [Hz]. Given the model
structure (Chapter 2) and training data, model parameters are identified using prediction
error minimization (PEM) in MATLAB’s System Identification Toolbox [54].

For model validation, a different PRBS excitation is used to generate input-output
validation data. To measure the percent goodness of fit fitgof between simulated model
output ŷ and measured validation data output y, we use normalized root mean square
error (NRMSE), defined as follows for each output:

NRMSE =
‖y − ŷ‖

‖y −mean(y)‖
(4.12)

fitgof = (1− NRMSE)× 100% (4.13)

Further, residual analysis is used to find the causes of model residuals — parts of the
validation data the model cannot explain. Model residuals at each time step are defined as
the difference between ŷ and y assuming both started at the same location in the previous
time step. Auto-correlation of residuals at any time lag except 0 indicates a correlation
between past and future outputs that the model has not explained. Cross-correlation of
residuals with inputs indicate a correlation between past inputs and future outputs that
the model has not explained [54].
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Online Parameter Estimation

Online parameter estimation is performed by applying the RLS algorithm to the param-
eterized estimation model, both derived in Section 4.2.2. The online parameter estimator
is implemented in MATLAB/Simulink and deployed to the physical system via C++ code
generation. Relevant codes and simulation files can be found in the associated GitHub
repository (https://github.com/KevinHQChen/autoDMP).

4.3.3 Droplet Trajectory Tracking

The droplet trajectory tracking performance of both controllers are evaluated for a prede-
fined trajectory (Figure 4.3). To evaluate robustness to time-varying dynamics, we apply
a 4x reduction in pump output for an unobserved channel to emulate resistance increase
over time, then repeat the same droplet trajectory.
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Figure 4.3: Droplet interface reference trajectory for controller validation

Controllers are validated on a simulated plant before deploying to the physical sys-
tem. To simulate the true system, a physical microchannel model based on the electric
circuit analogy is built in Simulink (Figure 4.4) with parameter values taken from system
identification results in previous work [4].

A T-junction is modelled based on the microchannel model, and actuator/sensor noise
is added (Figure 4.5).
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Figure 4.4: RLC model of single microchannel [4]

Figure 4.5: RLC T-junction model with actuator and sensor noise

Adaptive MPC and regular MPC Simulink blocks are used to design and test feedback
control of the plant in simulation, then C++ code generation is used to deploy each con-
troller to the physical system. Relevant codes and simulation files can be found in the
associated GitHub repository (https://github.com/KevinHQChen/autoDMP).

4.4 Results and Discussion

This section analyzes offline vs online parameter estimation results as well as associated
non-adaptive vs adaptive closed-loop trajectory tracking performance.

4.4.1 Parameter Estimation

Parameter estimation is performed on a T-junction geometry with two visible droplet
interfaces, thus the model structure requires 3 inputs and 2 outputs.
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Offline Parameter Estimation

From Section 4.2.2, the relevant state-space model is

[
x1,k

x2,k

]
=

[
1− τ1 0

0 1− τ2

] [
x1,k−1

x2,k−1

]
+

[
b11 −b12 −b13

−b21 b22 −b23

]u1,k−1

u2,k−1

u3,k−1

 (4.14)

[
y1,k

y2,k

]
=

[
1 0
0 1

] [
x1,k

x2,k

]
(4.15)

Based on the state space model structure above, offline parameter estimation shows
good fit to validation data (Figure 4.6) with NRMSE under 21%.
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Figure 4.6: Model output prediction, goodness-of-fit labelled (as defined in Equation 4.13)

Model residuals and associated 99% confidence intervals are shown in Figure 4.7. Resid-
uals are mostly uncorrelated with themselves, indicating residual distribution is similar to
white noise and any correlations between past and future outputs are well-modelled. There
are some slight cross-correlations between residuals and pump inputs, indicating additional
dynamics that our simplified model structure may not be able to capture. However in prac-
tice this did not significantly impact closed-loop control performance.
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Figure 4.7: Model residual correlation with 99% confidence intervals

Online Parameter Estimation

From the state-space model above, the parameterized estimation model becomes (from
Appendix A):

[
ẑ1,k

ẑ2,k

]
=

[
x1,k

x2,k

]
−
[
x1,k−1

x2,k−1

]
=



−x1,k−1

u1,k−1

−u2,k−1

−u3,k−1

−x2,k−1

−u1,k−1

u2,k−1

−u3,k−1



T


τ̂1

b̂11

b̂12

b̂13

τ̂2

b̂21

b̂22

b̂23


Results of online parameter estimation on the parameterized system are shown in Figure

4.8. All parameters reached near converged values in under 10 seconds, with parameter
projection ensuring negative parameters were immediately corrected.

Output estimation error ε = y − ŷ (Figure 4.9) also drops to acceptable values after
roughly 15 seconds.
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Figure 4.8: Convergence of online parameter estimates
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Figure 4.9: Output estimation error

4.4.2 Droplet Trajectory Tracking

Closed-loop droplet trajectory tracking performance of both controllers are shown in Fig-
ures 4.10 and 4.11. Adaptive MPC is given an additional 10 seconds before the trajectory
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is performed for parameter estimates to converge.

Non-adaptive MPC is able to perform droplet trajectory tracking under normal condi-
tions (Figure 4.10a), although some steady-state error persists due to the lack of integral
action in the controller. However, a simulated 4x reduction in channel 3 pump pressure
u3 significantly degrades tracking performance, as the MPC’s predictions of u3’s effect on
droplet position become highly inaccurate (Figure 4.10b).
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Figure 4.10: Non-adaptive MPC trajectory tracking of droplet interface position

On the other hand, once parameter estimates converge, adaptive MPC is able to
smoothly track output trajectories with almost zero steady-state error, even in the ab-
sence of integral action (Figure 4.11a). When a reduction in u3 is applied, parameter
estimates are updated to account for the increase in control effort required on channel 3,
producing almost identical tracking performance (Figure 4.11b).

4.5 Summary

In this chapter we designed an adaptive law based on RLS with parameter projection and
used it to implement an adaptive MPC controller for droplet trajectory tracking. Despite
using the same model structure and controller design as linear MPC, the addition of on-
line parameter estimation results in significant improvement in droplet trajectory tracking
performance and reduction in steady-state error without the need for integral action. Us-
ing RLS, adaptive MPC is able to learn the current model parameters faster and more
accurately compared to offline techniques, and update them as conditions change. Au-
tomating the parameter estimation process and improving robustness to changes in system
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Figure 4.11: Adaptive MPC trajectory tracking of droplet interface position

dynamics will improve the practicality and accessibility of the proposed DMP platform for
end-users.
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Chapter 5

Development of an Automated
Droplet Manipulation Software
Workflow

5.1 Introduction

Software is crucial in the automation of advanced scientific workflows, enabling researchers
to perform experiments and analyses accurately and repeatably with minimal manual inter-
vention. A general definition of a workflow is ”a network of tasks with rules that determine
the (partial) order in which the tasks should be performed” [66]. In software workflows,
there is often a tradeoff (Figure 5.1) between simplicity (accessibility to a wide audience)
and generality (applicability to a wide variety of use-cases).

special-
purpose
software

SIMPLICITY

GENERALITY

configurable
special-
purpose
software

libraries
and APIs

full
programming

languages
. . .

Figure 5.1: Simplicity vs generality in software environments [5]
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A software wizard which guides the user through a fixed sequence of simple tasks is
easy to use but hard to generalize. A full programming language allows much more flexible
workflows, but requires the user to gain proficiency in that language to realize any gains
in productivity. Balancing simplicity and generality in software workflows requires us
to understand how much complexity should be abstracted away vs exposed to the user.
Exposing more details of the workflow gives users more power and flexibility but also
requires a deeper level of understanding — with great power comes great responsibility.

From Lamprecht [5], we identify some key requirements of scientific software workflows:

• Domain-specific abstraction — implementation-specific and domain-specific as-
pects of the workflow are separated via a software abstraction layer, with only
domain-specific details exposed to the user, commonly via a graphical user inter-
face (GUI)

• Workflow modelling — a set of data flows (transformations of input data through
relevant software services to produce meaningful output data) and control flows
(structures that define the order and conditions in which tasks are executed) are
defined to characterize each workflow, allowing highly complex workflows to be mod-
elled from simple reusable components

• Workflow validation/verification — users can validate that the modelled work-
flow is physically realizable and produces the desired outputs at model-time (via
unit testing, simulation, etc), and verify that the modelled workflow is correctly ex-
ecuted at run-time (via fault detection, error handling, real-time feedback, etc) on
the physical system

Previous work on the proposed DMP platform have seen workflows shift from a fixed
flowchart of tasks manually performed by the user for each manipulation [53] to a library
of instruction templates that can be arbitrarily combined and automatically executed [21].
This shift from simple to general workflows is important for the proposed platform to sup-
port a wider range of real-world droplet microfluidics applications [23]. However, many
aspects of previous DMP workflows still present practicality and accessibility barriers to
potential users. Existing workflows require ad-hoc open-loop procedures to handle non-
linearities (e.g. necking in droplet generation) or discontinuities (e.g. droplet leaving/en-
tering a ROI), as well as significant manual tuning and calibration to ensure successful
manipulations [4, 20, 21]. Moreover, due to inadequate workflow modelling, users can-
not validate DMP workflows before running them on the physical system, increasing the
likelihood of failed manipulations which can cost time and material.

This chapter addresses the identified challenges in workflow automation and modelling
to develop a generic model-based software workflow for automated droplet manipulation.
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A program generation method and associated software platform is developed to convert a
high-level user-defined workflow into sequences of low-level droplet manipulation objectives.
Using a model-driven approach, a supervisor is designed to generate droplet trajectories to
reach each objective. To generate smooth trajectories between potentially discontinuous
manipulation objectives (e.g. multiple droplet generation, droplet storage/retrieval), a
new trajectory planning method is developed which removes the need for ad-hoc open-
loop commands. AMPC (Chapter 4) is applied to ensure trajectory tracking with minimal
error, with online parameter estimation eliminating the need for manual calibration and
model parameter tuning.

We evaluate the DMP workflow for automating the fundamental manipulation —
droplet generation, showing that each stage of droplet generation is automatically exe-
cuted as defined by the user, with close correlation between simulated and experimental
performance.

5.2 Supervisor Modelling

Figure 5.2 shows an overview of supervisor components in context.

Program Genera�on

AMPC

Trajectory
Genera�on

Event Handler

Supervisor

Microfluidic Chip

Droplet Actua�on

Droplet Sensing

Figure 5.2: Simplified supervisor architecture

Program generation (Section 5.4) converts a user-designed workflow to a sequence of
droplet manipulation objectives/events to the supervisor. The supervisor implements ob-
jective/event handling as a state machine that passes the current event to the trajectory
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generator, and requests new events when the current one is completed. Trajectory gener-
ation produces a smooth trajectory between each objective, and the optimal control law
(AMPC) minimizes trajectory tracking error.

The supervisor is designed using a model-driven approach, in which a model is developed
based on the specified architecture and validated in simulation (Simulink). To simulate
arbitrary droplet manipulation sequences, the RLC microchannel model (detailed in Chap-
ter 4) is augmented with a simplified model of junction behavior (based on zero-crossing
detection with hysteresis) dictating how droplet interface measurements pass through junc-
tions to other channels. Code generation tools (Simulink Coder) are used to produce a
matching C++ implementation based on the model which can be deployed to hardware.
A simplified overview of the supervisor simulation model is provided in Figure 5.3.

Figure 5.3: High level overview of supervisor simulation environment

This approach drastically reduces the number of development iterations, as well as the
lines of code written by hand during development (over 3x reduction relative to RoboDrop
[4]), minimizing the likelihood of error. Using this approach, we can rigorously define how
the supervisor interfaces with external software (i.e. type and size of each input/output).
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This allows the supervisor to be safely integrated into any user-facing software applications
(see Appendix C), and signals within the model to be easily monitored in real-time to verify
proper operation.

The accompanying source files can be found at https://github.com/KevinHQChen/autoDMP.

5.3 Trajectory Planning

This section describes a general framework to generate smooth trajectories for droplet
manipulations in the presence of discontinuous droplet interface measurements.

5.3.1 Trajectory Generation

Given desired droplet interface locations from program generation (Section 5.4) and current
droplet interface locations from droplet sensing, a smooth trajectory can be defined to drive
droplets to desired positions. For simplicity a trapezoidal velocity profile (Figure 5.4)
is defined in MATLAB (Robotics System Toolbox) to provide constraints on maximum
velocity and acceleration in the trajectory.
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Figure 5.4: Trapezoidal velocity profile and corresponding displacement profile

5.3.2 Interface Measurement Framework

To fully control droplet manipulations, ideally the entire pressure/flow field throughout
the microfluidic chip can be measured for feedback. In practice, only visible droplet inter-
faces provide any clue as to the current state of the system, and channels without visible
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interfaces are completely unobservable. Previous work handled this by defining a set of
state-space models corresponding to all combinations of observable channels, and used
gain-scheduling control to switch between them automatically as needed [4, 20, 21]. How-
ever, this causes discontinuous jumps when droplet interfaces cross junctions or leave the
region of interest, necessitating additional compensation techniques or special open-loop
commands to smooth these transitions.

Here a new interface measurement framework is developed that attempts to maintain
measurement continuity as much as possible. First, we define two types of measurements
for each channel, direct and inferred. Direct measurements in any channel can be made
whenever an interface is present in that channel, denoted as negative in our coordinate
system (Figure 5.5). Once the interface crosses a junction, it is no longer directly mea-
surable in the original channel, but we can infer an equivalent measurement (denoted as
positive in our coordinate system) based on measurements in all other channels connected
to that junction. In a single-junction, n-channel geometry, this framework allows a single
interface to be represented as a continuous (direct or inferred) measurement vector y ∈ Rn

regardless of which channel it happens to be in.

Using this framework, any droplet manipulation that doesn’t create new interfaces can
be modelled as a series of continuous trajectories, including droplet move, hold, and sort.
An example droplet sorting trajectory is simulated in Figure 5.5, showing smooth junction
crossings (i.e. zero-crossings).
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Figure 5.5: Simulated droplet sorting trajectory in T-junction

To capture manipulations like droplet generation, splitting, or merging where interfaces
are created/combined (causing discontinuous measurement offsets), we define a primary
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and secondary measurement vector yα =
[
y1α y2α . . . ynα

]T
and yβ =

[
y1β y2β . . . ynβ

]T
in Rn that each represents a continuous interface measurement. Initially both vectors are
identical, but whenever any component of one vector crosses the junction, we reset the
other vector to the interface closest to the junction. Two sets of measurement vectors
allow us to fully characterize the motion of all individual droplet manipulations, provid-
ing the maximum amount of information to the supervisor at all times. As an example,
primary and secondary direct measurements for different stages of droplet generation are
shown in Figure 5.6.

a) Pre-gen b) Gen c) Post-gen1 d) Post-gen2

Figure 5.6: droplet generation waypoints for yα (green) and yβ (red)

The full implementation of the droplet measurement framework is detailed in Ap-
pendix B.

5.3.3 Online Modification of Control Objectives

Although yα and yβ fully characterizes individual droplet manipulations, we need a way
to provide the most relevant measurement for the current control objective. Since the two
measurement vectors will diverge over longer manipulation sequences, abruptly switching
measurements will appear to the controller as a large output disturbance which it will try
to reject, potentially causing significant overshoot and oscillation.

Wong’s approach [4] relied on applying a measurement offset to remove any disconti-
nuities from the controller’s perspective. However, this approach is impractical for longer
and more complex sequences of droplet manipulations as the offsets can become very large
and difficult to keep track of. Instead, the new measurement framework is used to provide
both primary and secondary measurements to the controller at all times, but at any time
only weighing the most relevant measurements in the MPC cost function by tuning wy
(Chapter 4).
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Consider the waypoints involved in droplet generation (Figure 5.6). After the droplet
is generated (i.e. Gen to Post-gen1), the only direct measurement in yα is y3α, which
is just a fixed offset from y3β. Clearly, the primary measurement is no longer providing
enough information for the controller. Thus to ensure the most relevant outputs are being
weighted, the MPC can smoothly decrease wy,α and increase wy,β as soon as the droplet
is generated. This can be applied to any droplet manipulation where there are multiple
interfaces of interest in a single channel. For example, the overall reference trajectory with
output weight modification for droplet generation is shown in Figure 5.7.
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Figure 5.7: Simulated droplet generation trajectory in T-junction, with output weight
modification using sigmoid function
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5.4 Program Generation

Using the new measurement framework, we can break down complex trajectories into a
set of simple objectives/waypoints that can be executed without opening the control loop.
Similar to Zablotny’s approach [21], each objective is encoded in a standardized instruction
containing the following components:

• rα ∈ Rn: Primary waypoint vector

• rβ ∈ Rn: Secondary waypoint vector

• Tpre: Initial hold time

• Tmove: Move time

• Tpost: Final hold time

The waypoint vectors hold the desired droplet interface positions (any element set to 0
means there is no objective for that channel — i.e. unweighted in MPC cost function).
Additionally, we specify a move time between waypoints which the trajectory generator
can use to solve for the constant acceleration and max velocity required to reach the target
waypoint. A hold time is also defined to hold droplet interfaces in position for the specified
amount of time before or after the instruction. Arbitrary droplet manipulation sequences
can be encoded as lists of instructions (i.e. programs) to be fed to the supervisor.

A single instruction can capture any manipulation that does not produce new interfaces
(e.g. move, hold, mix, sort). For example, the droplet sorting trajectory in Figure 5.5 is
defined by the following program:

rα [µm] rβ [µm] Tpre [s] Tmove [s] Tpost [s]
(−300, 0, 0) (0, 0, 0) 0 10 0

(42, 0, 0) (0, 0, 0) 0 10 0
(0,−300, 0) 0, 0, 0) 0 10 0

(0, 42, 0) 0, 0, 0) 0 10 0
(0, 0,−300) 0, 0, 0) 0 10 0

(0, 0, 42) 0, 0, 0) 0 10 0

Table 5.1: Example droplet sort program corresponding to Figure 5.5

In general, we can describe and generate these instructions using higher level functions
with syntax that approaches natural language (e.g. Python):
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1 # move interface in channel 1 to dest in tau seconds

2 move(ch=1, destination=dest , moveTime=tau , hold=false)

3 # move interfaces in channels 2 and 3 to dest1 and dest2 in tau seconds

4 move(ch=[2, 3], destination =[dest1 , dest2], moveTime=tau , hold=false)

For operations that change the total number of interfaces (e.g. generation, merge,
split), we can define sets of instructions to be executed in order. For example, the droplet
generation trajectory in Figure 5.7 is defined by the following instruction set:

rα [µm] rβ [µm] Tpre [s] Tmove [s] Tpost [s]
(0,−42,−200) (0, 0, 0) 0 10 2
(0, 84,−200) (0, 0, 0) 0 8 0

(0, 0, 0) (−84, 0,−450) 0 12 0
(0, 0, 0) (42, 0,−675) 0 8 0

Table 5.2: Example droplet generation program corresponding to Figure 5.7

More generally, we can define a parameterized droplet generation instruction set (de-
tailed derivation in Appendix D):

rα rβ Tpre Tmove Tpost

(0,−wch/2,−Ld) (0, 0, 0) τpre pre-gen τpre-gen τpost pre-gen

(0, δneck,−Ld) (0, 0, 0) τpre gen τgen τpost gen

(0, 0, 0) (δjunc, 0,−δdrop) τpre post-gen τpost-gen τpost post-gen

Table 5.3: Generic T-junction droplet generation instruction set

with the following parameters:

• Ld - controls length of generated droplet

• wch - channel width

• δneck - additional displacement (from junction) required to completely detach the
droplet neck

• δjunc - additional displacement (from junction) required to completely plug the junc-
tion

• δdrop - controls spacing between generated droplet and next droplet
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wch, δneck, and δjunc can be calculated from geometry with relatively minor tuning, so
the only necessary parameters for user-tuning are Ld and δdrop. This also allows us to easily
describe and generate these instructions sets using a higher level language (e.g. Python):

1 # generate 3 droplets sourced from channel 1 to channel 3 with lengths L_d1 , L_d2

, L_d3 , spacing delta_d

2 generate(qty=3, src_ch=1, dest_ch=3, length =[L_d1 , L_d2 , L_d3], delta=delta_d)

Similar instruction sets can be derived for merge, split, etc, but due to time constraints
will not be discussed.

Combining individual instructions and instruction sets allows custom user-defined pro-
grams that realize complex droplet manipulation workflows.

5.5 User Interface

A custom user interface is developed to allow users to set up and execute droplet manipu-
lation programs. The typical layout is shown in Figure 5.8, with setup steps highlighted.

The setup process involves the following:

1. Image capture and image processing

(a) Select camera source in config file (config/setup.toml) — currently supported
sources: generic webcam, generic USBcam, Andor Zyla 5.5

(b) Select junction(s) and channel(s) in Image Capture Window (or click Load Im-
Proc Config to load existing config from file)

2. Chip priming and interface balancing

(a) Select pump type in config file (config/setup.toml) — currently supported
pumps: Bartels mp6, Fluigent MFCS

(b) Manually drive continuous phase channel through the microfluidic chip via Pump
Setup Window until fully primed

(c) Similarly, manually drive dispersed phase channel through the microfluidic chip
until it is visible in Image Capture Window

3. Upload user program and run supervisory controller through Ctrl Setup Window

Furthermore, an embedded Console Window and Real Time Plot Window show the
current status, warnings/errors, and hardware faults.
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5.6 Experimental Evaluation

In this section, we simulate and experimentally verify an automated droplet generation
workflow on a T-junction microfluidic chip (setup identical to Chapter 4).

The workflow is defined by the following program:

rα [µm] rβ [µm] Tpre [s] Tmove [s] Tpost [s]
(−1500, 0, 0) (0, 0, 0) 0 5 2
(−500, 0, 0) (0, 0, 0) 0 5 2
(−1500, 0, 0) (0, 0, 0) 0 5 2

(210, 0, 0) (0, 0, 0) 0 7 0
(0,−210,−1000) (0, 0, 0) 0 10 2
(0, 350,−1000) (0, 0, 0) 0 7 0

(0, 0, 0) (−420, 0,−2000) 0 12 0
(0, 0, 0) (210, 0,−3200) 0 7 0

Table 5.4: Droplet generation evaluation program

The initial single-channel instructions provide excitation for online parameter estima-
tion by the AMPC and sets up the interface for droplet generation. The remaining multi-
channel instructions perform the droplet generation.

The program execution is validated on the simulated supervisor model, then uploaded
via the user interface to the software application (Appendix C) to be executed on the DMP
platform. The resulting simulated vs experimental droplet trajectory for a typical program
execution is shown in Figure 5.9, with snapshots of each multi-channel instruction shown
in Figure 5.10.

The AMPC is given 10 seconds of excitation to identify model parameters, and we
observe trajectory tracking error decrease significantly afterwards. On trajectory tracking,
experimental performance deviates from simulated performance at junction crossings (at
∼45 to 50 [s]), which is expected as the plant model does not simulate the additional
non-linear dynamics. Notably, the AMPC was able to maintain stability and produced
adequate manipulation outcomes in both simulation and experiment.

To evaluate experimental droplet generation accuracy and precision, the program was
run repeatedly for different droplet lengths. The resulting droplet length distribution is
shown in Figure 5.11.
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Figure 5.9: Simulated vs experimental trajectory tracking for automated droplet generation

Generated droplets achieve under ±5% error relative to calibrated reference, with
slightly higher error at lower droplet lengths. The minimum achievable droplet length
under fully automatic control was 460 [µm], or a droplet length-to-width aspect ratio
of ∼2.3:1 with 200 [µm] channel width (compared to ∼1.5:1 for semi-automated methods
[20]). The monodispersity is calculated for each cluster of generated droplets via coefficient
of variation, with an average value of 2.12%, similar to the 2% value reported using passive

50



1 mm

t = 40 s t = 45 s t = 60 s t = 65 s

Figure 5.10: Experimental droplet generation waypoints corresponding to instruction set
in Table 5.4 and trajectory in Figure 5.9
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Figure 5.11: Droplet length distribution using automatic droplet generation workflow,
calibrated via linear regression with best-fit line y = 1.21x− 383
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droplet microfluidics techniques [67].

Some of these limitations can be attributed to the simplistic control model used by the
AMPC, meaning that transient disturbances (seen in the experimental trajectory in Figure
5.9) cannot be predicted and rejected as effectively.

The vision system also contributes slightly to these limitations. The resolution of the
combined microscope and camera system is 5 [µm] per pixel. Assuming optimistically
that measurements are pixel-accurate, the worst-case error of ±0.5 pixels contributes up
to ±0.5% relative error at the minimum achievable droplet length (460µm).

Another contributing factor is the chip fabrication method. Due to time constraints,
T-junction PDMS chips were fabricated using 3D-printed masters (Formlabs), which lim-
ited the achievable junction quality compared to traditional soft lithography techniques.
However, results show that cheaper and lower quality chips can still achieve precision com-
parable to previous semi-automated methods [20] (in the shared range of droplet aspect
ratios) without the significant calibration and model parameter tuning required in previous
fully automated methods [21].

To demonstrate the flexibility of the proposed workflow, we extend the droplet gen-
eration program to generate variable length droplet trains (full instruction set and video
provided in Appendix D) with the following pseudocode:

1 # generate 3 droplets sourced from channel 1 to channel 3

2 # with calibrated lengths 640 [um], 700 [um], 825 [um], and 4200 [um] spacing

3 generate(qty=3, src_ch=1, dest_ch=3, length =[640 , 700, 825], delta =4200)

5.7 Summary

We have leveraged a new droplet measurement framework along with AMPC to enable
smooth control of droplet interfaces when performing automated droplet manipulation
workflows. Software modelling and program generation techniques resulted in improved
robustness and practicality in longer instruction sequences, and will be crucial for future
work in scaling up DMP workflows to more complex applications.

Due to time constraints, move times were not optimized and conservative values were
selected to ensure stability, resulting in slow manipulation throughput. But much lower
move times are possible by using higher quality chips, smaller microchannel widths, and
higher order control models. Preliminary evaluation on circular cross-section glass mi-
crofluidic chips (Dolomite) showed more ideal behavior (closer to the control model used),
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potentially allowing much faster droplet manipulations with the existing control system.
Moreover, experiments run on glass chips over a period of multiple months show minimal
channel surface degradation (with proper cleaning/storage), as opposed to PDMS whose
channel surface degrades over a period of days to weeks.

Other soft parameters can also be further optimized, such as the AMPC forgetting
factor, which is related to how fast system dynamics change. Most applications of adaptive
control are valid when system dynamics change slowly, allowing the parameter estimator
to forget older data at a constant rate specified by the forgetting factor. However for
applications like droplet generation or splitting, there is a large change in dynamics before
and after the operation. One possible solution is variable forgetting factor (VFF), i.e.
updating the forgetting factor to discount older data faster if the system is highly volatile,
and slower if the system is near steady state.
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Chapter 6

Evaluating Piezoelectric Micropumps
for Automated Droplet Manipulation

6.1 Overview

Visual feedback control is a promising technique for modular, general-purpose droplet
microfluidics platforms (DMP), allowing arbitrary manipulation of individual droplets.
To facilitate arbitrary droplet manipulation, droplet actuation methods must be fast and
responsive. The most performant methods use pressure-driven flow control (more simply
referred to as pressure pumps). This typically involves modulating a fixed external input
pressure by applying pressure feedback to high precision proportional valves (Figure 6.1
top), pressurizing sample reservoirs and driving droplet motion in the microfluidic chip
through pressure-driven flow.

However, the requirement for regulated external pressure and high precision valve con-
trol contributes to high cost, complexity, and bulkiness, limiting their practical application
in modular DMP’s.

In this study, piezoelectric (PZT) diaphragm micropumps are applied to meet both the
pressure source and control requirements for arbitrary droplet manipulation. We evaluate
this pumping method as it is well-studied and widely available, with a balance of fast
response, simple structure, and reliability.

We show that piezoelectrics have a more predictable and linear pressure response that
removes the need for pressure sensing (a necessity in conventional pressure pumps) for
the purposes of automated droplet manipulation. The PZT pump is integrated into the
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Figure 6.1: Conventional (top) vs portable (bottom) pressure control systems [6]

automated DMP workflow (Chapter 5), demonstrating adequate automated droplet ma-
nipulation accuracy and repeatability. The pump design is shown to be significantly more
modular, portable, and cost-effective compared to conventional high performance pressure
control systems. These findings suggest that PZT micropumps are a viable alternative to
conventional pressure pumps for the proposed automated DMP platform.

6.2 Introduction

By combining pressure-driven flow control with vision-based feedback on a simple passive
droplet generator architecture (T-junction), repeatable on-demand droplet manipulations
(generation, trapping, merging, splitting, sorting) were demonstrated [52, 53]. Building
on this work, semi-automated manipulations combining multiple intermediate steps were
realized [20].

Visual-feedback-based droplet manipulation requires micropumps that actively and pre-
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cisely control the pressure and flow field in a microchannel network. The most popular
standalone micropumping systems include syringe pumps and pressure pumps [24]. Syringe
pumps are simple, low-cost and relatively portable, but are hindered by slow response
time and steady-state flow oscillations [68]. Energy-transfer-based pumping techniques
(e.g. electro-osmotic, electrohyrodynamic) are another option, but for a variety of reasons
(e.g. complex fabrication protocols, very high voltage requirements) are not yet mature
enough for practical adoption [7]. Pressure pumps overcome these limitations by producing
pressure-driven flow based on pressure feedback, utilizing a variety of valves and pressure
regulators to modulate a fixed pressure source [69, 70]. Thus pressure pumps have been
applied to visual-feedback-based droplet control [52, 53, 20] due to their high bandwidth,
output range, and stability relative to common pumping techniques.

However, conventional pressure pumps that meet the requirements for visual-feedback-
based droplet control are complex, nonportable and expensive, often requiring advanced
pressure feedback mechanisms and external pressure sources [71, 69, 70].

More recently, a portable pressure pump design has been introduced (Figure 6.1 bot-
tom) that claims comparable performance to conventional pressure pumps. Although little
information is given on its cost, complexity, and actuation method, it highlights the increas-
ing need for practical modular micropumps that are more easily integrated into existing
microfludics systems.

The diaphragm-driven pump is one such pump architecture that requires much fewer
components and generates pressure internally. Diaphragm-driven pumping is a well-studied
technique that combines an oscillating diaphragm with valves to produce directed flow
(Figure 6.2).

Valves can be actively controlled (allowing bidirectional flow), but most designs use
passive check valves for simplicity (preventing backflow). A variety of diaphragm driving
methods are available [7], but piezoelectrics have emerged as the most mature technique
due to its ability to generate large deflections while maintaining a fast response time (Figure
6.3, Table 6.1).

PZT micropumps have previously been applied to active droplet sorting [72] and droplet
generation [73, 74]. Pressure-feedback-based PID control has also been applied to PZT
pumps for droplet generation [75]. Commercial PZT pumps have also been used to build
smart, standalone pumping systems [76].

However, the PZT pumps used are often limited to unidirectional flow due to the
use of passive check valves, which hinders the ability to change droplet direction in all
channels, a requirement for performing arbitrary droplet manipulations. The proposed
solution combines a PZT pump (Bartels mp6-gas+) and solenoid bleed valve to allow full
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Figure 6.2: Diaphragm micropumping stages: a) undeflected, b) expansion, c) contraction
[7]

Figure 6.3: Pressure and response time scale for various micropump driving methods [8]

pressurization and depressurization of the chip, enabling arbitrary vision-based droplet
control within each microchannel. Results show the proposed pump architecture is suitable
for feedback-controlled droplet manipulation at a much lower price point compared to
conventional high-performance pressure pump systems.
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Thermal Electro-
static

Electro-
magnetic

Shape-
memory

Piezoelectric-
stack

Piezoelectric-
film

Load Small Small Small Medium Large Small
Stroke Medium Small Large Large Small Medium
Response Medium Short Medium Long Short Short
Flowrate Medium Low High Medium Low High
Pressure Medium Small Large Medium Large Small
Frequency Low High Medium Low High Medium
Structure Simple Simple Complex Simple Simple Simple
Reliability Medium Excellent Good Poor Good Good
Anti-interference Weak Strong Weak Weak Strong Strong

Table 6.1: Comparison of different micropump driving methods [10]

6.3 Working Principle

Diaphragm pumps are a type of mechanical displacement pump that operate by expand-
ing/contracting a flexible diaphragm at high frequency and using check valves to rectify
the direction of flow [7]. The generated pressures and flowrates are inversely related, with
max pressure occurring at zero flowrate and vice versa (Figure 6.4)

Figure 6.4: Typical flowrate vs pressure and flowrate vs frequency relationship in di-
aphragm pumps [9]

However, in visual-feedback-controlled applications, flowrates are relatively low (under
1 µ L/min range), allowing us to operate diaphragm pumps near max pressure. Max
pressure also depends on fluid compressibility κ and diaphragm deflection (measured as
a volume reduction ratio ∆V

V0
, V0 being the pump chamber volume when diaphragm is at

rest) [7]:

∆Pmax =
1

κ

∆V

V0
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Thus for our intended application, generated pressure is directly proportional to diaphragm
deflection amplitude.

Diaphragm deflection frequency also corresponds to flowrate/pressure amplitude and
stability up to the bandwidth of the diaphragm material (Figure 6.4 right). PZT di-
aphragms have relatively fast response times, allowing deflection frequencies up to tens of
kHz. The inverse piezoelectric effect, which converts an applied electric field to mechanical
deformation, enables large deflections to be produced given corresponding input voltages,
generating relatively high pressures [10]. Additionally, multiple diaphragm pumps can be
connected in series or parallel to increase both the maximum flow rate and maximum back
pressure.

Diaphragm pumps are typically limited to unidirectional flow due to the use of passive
check valves, but active valves can be added to enable various bidirectional flow configu-
rations [10].

6.4 Methodology

6.4.1 Pump design

The proposed pump design is shown in Figure 6.5 based on the architecture in Figure
6.1 (bottom). A unidirectional PZT pump (Bartels mp6-gas+) is used as the controlled
pressure source. A normally closed 5V solenoid air valve (0520D) is used for depressuriza-
tion and to enable bidirectional flow in the feedback-controlled DMP. All components are
combined into a stackable 3D printed PLA case without the need for fasteners.

The PZT pump is actuated by a high voltage waveform generator (Bartels Highdriver4)
that applies up to a ±250 [V] 800 [Hz] sine wave across each PZT element. A laptop PC
powers the entire pump assembly and issues commands to a microcontroller (Arduino
Pro Micro) which controls amplitude and frequency of the waveform generator over I2C
(detailed schematics can be found in Appendix E).

6.4.2 Pump characterization

Pressure Response

Figure 6.6 shows the schematic for characterizing pressure response for both a commercial
pressure pump (Fluigent MFCS-EZ) and the proposed modular design.
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Figure 6.5: Proposed pump design exploded CAD assembly and 4-pump stack

P

U

Pump Under Test

Figure 6.6: Pressure response characterization schematic

To isolate pump dynamics from chip dynamics, pressure response is evaluated up to the
chip inlet, which includes pneumatic Silicone tubing, liquid reservoirs (Fluigent 4C), and
liquid PFA+ tubing (Idex 1902L). 5 [cSt] Silicone oil (Sigma-Aldrich) is used as the single
phase fluid. Air pressure is measured (Honeywell HSCDRRN001BDSA3) at the reservoir
for the pumps under test.
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The liquid tubing is plugged at the chip inlet to maintain zero flowrate for the pumps un-
der test. This approximation is valid as standard flowrates for feedback-controlled droplet
microfluidics are much lower than passive microfluidics, which are already quite low (typ-
ically on the order of uL/min).

A laptop PC (Thinkpad P51) is used to issue commands to both pumps over USB.
The pressure pump is also provided with 1.3bar regulated pressure, and powered by a 12V
supply.

Fluid Interface Response

Combining pump and chip dynamics, the fluid interface displacement response is evaluated
by fully pressurizing a microfluidic chip, the schematic of which is shown in Figure 6.7.

ROI
y

Figure 6.7: Droplet interface displacement response characterization schematic

Here the pumps under test are combined with a T-junction PDMS chip (fabricated
using 3D-printed masters), and two immiscible fluid phases - 50 [cSt] Silicone oil, deionized
water (Sigma-Aldrich) - produce a visible interface for measurement. By plugging all
inlets/outlets except one inlet/outlet pair, the interface can be displaced within a single
microchannel.

Since interface displacement integrates the effect of pump pressure (Chapter 2), time
domain analysis is less straightforward, so frequency domain analysis is used instead. A
zero-mean pseudo-random binary (PRBS) signal (sampling rate 40 [Hz], clock period 4,
order 10) is designed to excite the system equally between 0 and 5 [Hz].

Droplet interface detection is performed through a real-time droplet tracking algorithm
(see Appendix D).
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6.4.3 Pump integration

Figures 6.8 and 6.9 shows the integration of a PZT pump array into the feedback-controlled
DMP.

 

Figure 6.8: Piezoelectric pump integrated into automated DMP

Outside of actuation, the platform consists of a microfluidic chip (T-junction PDMS
chip), sample transport mechanism (Fluigent Fluiwell 4C), supervisory controller (PC),
and vision system (Nikon Eclipse Ti-E, Andor Zyla 5.5).

Each pump under test is connected to each inlet/outlet to fully pressurize the microflu-
idic chip, allowing bidirectional droplet control. Pump communications and power are
provided identically to the previous section.

6.4.4 Automatic Droplet generation

The methodology for automatic droplet generation follows that of Chapter 5, with the only
difference being the replacement of the pressure pump with the PZT pump.

Inlets/outlets are selected by filling the appropriate reservoirs with continuous (5 [cSt]
silicone oil, Sigma Aldrich) and dispersed phase (deionised water, Sigma Aldrich) fluid.
The microfluidic chip is primed with continuous/carrier phase fluid until it appears at the
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Figure 6.9: Complete setup

outlet reservoir. The dispersed and carrier phases are then balanced by adjusting pump
ratios until the interface is stable and detected in the region of interest.

6.5 Results and Discussion

6.5.1 Cost

The proposed pump system is over an order of magnitude cheaper than the conventional
pressure pump used for evaluation. A 4-channel array costs $650 USD using manufacturer-
supplied pump drivers, but more cost-effective pump driver designs may further reduce
this amount. Comparatively, high performance pressure pumps that match the channel
count can exceed $10K USD. Even with cheaper off-the-shelf components, BOM costs
for conventional pressure pump architectures are still $3000 USD for the same number of
channels [71].
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6.5.2 Power consumption

The selected PZT pumps each consume 150 [mW], while each solenoid valve was measured
to consume 250 [mW] (5 [V], 50 [mA]) in the open state. Thus a 4-channel array will have
a worst-case power draw of 1.6 [W], or a current consumption of 320 [mA] at 5 [V]. Given
the max current specification of 1.5 [A] for USB 3.0 ports that support dedicated charging,
a pump array of up to 18 channels can be powered from a single USB port. Note that since
the system is fully pressurized during operation, all valves can remain in their normally
closed states most of the time, drawing no power.

6.5.3 Portability

Each pump module takes up ∼50 [cm3] in volume (roughly the size of a matchbox), requires
no external pressure source, and can be powered from compact battery banks like Li-ion.
The pump drivers used are from evaluation kits and are standalone, but alternatives exist
that integrate the driver into the pump with minimal increase in footprint.

6.5.4 Open-loop Performance

Pressure Response

Figure 6.10 shows the pressure step response of both pressure pump and the proposed pump
design using the test setup shown in Figure 6.6. Rise time and approximate bandwidth
are shown in table 6.2.

Parameter Pressure Pump PZT Pump
Rise Time [s] 0.05 2.2

Bandwidth [Hz] 7 0.16

Table 6.2: Comparison of 10-90% Rise Time and First-Order Bandwidth Approximation
for Pressure Response of Pumps Under Test

The pressure pump response is much faster, with a 10-90% rise time of ∼50 [ms], which
at a first-order bandwidth approximation would be ∼7 [Hz] (f3dB = 0.35

τr
). However, the

non-linear behavior near the setpoint complicates the response, likely due to the proprietary
internal control systems involved. The response for the PZT pump on the other hand is
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Figure 6.10: Pressure step response under load for pumps under test showing 10 - 90 %
rise time thresholds

Figure 6.11: Piezopump pressure step response first order fit

clearly linear and can be modelled as first-order (Figure 6.11) with a bandwidth of 1 [rad/s]
or 0.16 [Hz].

The pressure response comparison obviously favors the pressure pump, as modulating a
proportional valve is faster than actuating a diaphragm multiple times to achieve the same
pressure. However, for the purposes of feedback control, the linear and predictable response
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of the PZT pump may be more desirable — especially for lower throughput applications —
as it would lead to a simpler controller design that is more robust to model uncertainties.

Displacement Response

The interface displacement response in time and frequency domain for both pumps (using
test setup in Figure 6.7 are shown in Figure 6.12 and 6.12. Estimated -3dB bandwidth for
pumps under test are shown in table 6.3.

Parameter Pressure Pump PZT Pump
Bandwidth [Hz (rad/s)] 3.09 (19.4) 0.88 (5.54)

Table 6.3: Estimated -3dB bandwidth based on displacement response of pumps under
test

Although there was a large difference in pressure response between pumps under test,
the displacement response is more comparable due to the effect of the dominant poles in
the overall system. Pressure pump dynamics appear to contribute to resonance in the
overall system (Figure 6.13), which can amplify oscillations and introduce instability in
feedback control.

6.5.5 Closed-loop Performance

As with the conventional pressure pump in Chapter 5, the droplet generation evaluation
program (Table 5.4) was executed repeatedly for different droplet lengths using the PZT
pump design. The resulting droplet distribution is shown in Figure 6.14.

Generated droplets achieve under ±5% error relative to calibrated reference, but ex-
ceeds those bounds at the minimum achievable droplet length of ∼600 [µm], or a droplet
length-to-width aspect ratio of ∼3:1 with 200 [µm] channel width. The monodispersity is
calculated for each cluster of generated droplets via coefficient of variation, with an average
value of 3.45%.

PZT-generated droplets were generally less monodisperse than pressure-pump-generated
droplets (Figure 5.11), but their monodispersity was more consistent across the range of
lengths tested, likely owing to their more predictable response. A contributing factor to
the inconsistency of pressure pumps is the need for calibration of internal pressure sensors,
which have been observed to drift over the duration of an experiment. The linear response
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Figure 6.12: Input-output data (top) and Bode plot (bottom) of interface displacement
response (with -3dB bandwidth marked) for proposed pump design

of PZT’s obviates the need for pressure sensing, contributing to a more consistent response
across droplet lengths.

The lower precision and larger minimum droplet length can be mostly accounted for
by hardware limitations. The particular PZT pump driver used (Appendix E) has dead
zones throughout the input voltage range, adding additional variability at the point where
droplet generation occurs. As well, its upper frequency of 800 [Hz] limits the pressure
stability especially at higher amplitudes due to increased pulsatility of diaphragm-driven
flow, contributing to a reduction in droplet generation precision.
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Figure 6.13: Input-output data (top) and Bode plot (bottom) of interface displacement
response (with -3dB bandwidth marked) for pressure pump

6.6 Summary

Droplet microfluidic platforms have the potential to be modular and general-purpose, allow-
ing automated arbitrary manipulation of individual droplets via visual feedback. However,
the technology is limited in accessibility and practicality in part by the cost and complexity
of suitable pumping mechanisms.

This study addressed these limitations by applying low-cost commercial PZT diaphragm
micropumps to visual-feedback-controlled droplet manipulation. The proposed pump de-
sign was able to reliably perform automated droplet generation on the DMP platform while
being simpler, highly portable, and significantly more cost-effective compared to conven-
tional high performance pressure pumps. These findings further improve the viability of
automated DMP platforms.
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Figure 6.14: Droplet length distribution using automatic droplet generation workflow,
calibrated via linear regression with best-fit line y = 0.79x− 25.7

As a future direction, it may be worthwhile to evaluate higher frequency/resolution
voltage waveform generators (e.g. using techniques like direct digital synthesis) to further
improve pressure stability and reduce flow pulsatility. More performant PZT architectures
(e.g. PZT standing wave generators) should also be evaluated to improve the maximum
pressure/flowrate of individual pumps.
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Chapter 7

Conclusion

7.1 Summary

Microfluidics has undeniably driven innovation in the natural sciences. As the field has
matured, the need for precise droplet manipulation techniques has continued to grow, lead-
ing to the development of more responsive, performant, and robust droplet microfluidics
platforms utilizing feedback control. However, full automation of these platforms is impos-
sible without a stable hardware and software foundation to stand on. In this thesis, these
more mundane challenges are tackled through the enhancement of controller robustness via
online parameter estimation, the development of a practical/accessible software workflow,
and the evaluation of more cost-effective modular micropump architectures.

By resolving these issues, future development can be focused on realizing the impact
of fully automated DMP’s in real-world applications.

7.2 Future Work

Further development of the automated DMP platform should aim toward practical appli-
cations.

One promising area of focus is the encapsulation of loose cell aggregates (spheroids)
in hydrogel droplets to support their growth into organoids (3D self-organized cell clus-
ters) [77, 78]. Hydrogels are three-dimensional scaffolds that accurately mimic the cell’s
natural environment, allowing them to support cell growth into organoids. However,
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conventional encapsulation methods, such as the pipetted hanging droplet method, are
not high-throughput and may lead to unreliable results, due to the lack of repeatability
[79]. Droplet microfluidics has the potential to improve the spheroid encapsulation process
[80]. However, passive techniques cannot reliably encapsulate individual spheroids without
also generating a large number of droplets which are either empty or contain too many
spheroids. This necessitates additional downstream sorting techniques which add signifi-
cant complexity and sample waste. The proposed DMP platform could offer an alternative
approach in which droplets are only generated when a spheroid is present, and continuous
phase fluid without spheroids are passed to a waste channel. This would ensure output
droplets only contain a single spheroid, removing the need for additional sorting.

On modularity and portability, the major components for a truly portable automated
DMP have now been validated. By combining lensless imaging for droplet sensing, PZT
micropumps for actuation, an embedded processor (e.g. Raspberry Pi), and a portable
power source, modules can be made fully portable, allowing much more flexibility in com-
bining them. The next challenge to overcome would be droplet travel between modules, as
droplet sensing is currently limited to a single region of interest on a single chip. Analogous
to programs that are compiled differently on a sequential (i.e. CPU) vs parallel (i.e. GPU)
processor, instructions in droplet manipulation programs would need to be distributed in
a way that utilizes all available modules and synchronizes their inputs/outputs. Thus a
communication protocol would need to be designed such that modules only produce or
consume droplets as necessary for their operation.

Another practical problem is the macro-to-micro interfacing problem inherent to all
microfluidic devices. The sample transport has long been a challenge in feedback control, as
each additional path the sample must flow through adds additional dynamics to the system
for the controller to stabilize. A method of combining all sample transport components
could remove all unnecessary tubing in the system, significantly improving droplet response.

A more theoretical area of investigation is whether robust control can be applied to
reject the unpredictable and non-linear fluctuations in droplet dynamics by modelling
them as uncertainties. This would allow controllers that don’t require online optimization,
significantly reducing the computational requirements of the processors used.

Since junction dynamics have a clear and significant impact on droplet manipulation
precision, another approach to improve precision might be combining pressure-driven flow
with localized actuation at the junction, for example with EWOD which has seen extensive
use in digital microfluidics.
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Appendix A

Adaptive Law

A.1 Recursive Least Squares

For estimation, we create an estimation model from the parametric model. For a single
channel,

ẑi,k = ψTi,kθ̂i,k−1 =



−xi,k−1

u1,k−1

u2,k−1
...

ui,k−1
...

un,k−1



T 
τ̂i
b̂i,1
b̂i,2
...

b̂i,n

 (A.1)

The estimation model can be updated recursively with an adaptive law (with adaptive
gain Lk and estimation error εk) generally of the form

θ̂k = θ̂k−1 + Lkεk = θ̂k−1 + Lk(zk − ψTk θ̂k−1) (A.2)

More specifically, using the discrete-time recursive least squares (RLS) algorithm [54],
the adaptive gain is derived as

Lk = Pkψk =
Pk−1ψk

λk + ψTk Pk−1ψk
(A.3)
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with parameter estimation covariance

Pk =
1

λk

[
Pk−1 −

Pk−1ψkψ
T
k Pk−1

λk + ψ>k Pk−1ψk

]
(A.4)

Pure RLS algorithms can suffer from covariance wind-up, in which the covariance matrix
can become arbitrarily small [63]. We can alleviate this by tuning the forgetting factor
λk. In a discrete-time system with sampling period T = 0.025 [s], λk can be selected by
tuning the memory horizon τm [s], which specifies how quickly older samples are discounted
(larger memory horizons will remember older samples for longer) [54]:

τm =
T

1− λ
(A.5)

The forgetting factor is calculated from memory horizon:

λ = 1− T

τm
(A.6)

Iterative tuning in simulation found a 10 [s] memory horizon was adequate, producing
a forgetting factor of 0.9975.

Another issue to consider is the problem of persistence of excitation. If ψk is persistently
exciting, the parameter estimation error will converge to 0 over time. Given that each
channel has n + 1 regressors, for ψi,k to be persistently exciting, the input signal must
contain at least n+1

2
frequencies [63]. However, this condition conflicts with the objective

of the optimal control law, which is to regulate the output trajectory tracking error to 0.
Because our plant is stable, in steady state there is no input excitation.

A.2 Parameter Projection

To mitigate the loss of persistence of excitation, a group of techniques known as robustness
modifications have been developed [63, 64] to guarantee the adaptive law is robust to non-
ideal parameter estimation conditions. Here we will consider only the parameter projection
modification due to its simplicity.

From the parametric model derived in Equation 4.7, physical constraints in the system
dictate that the sign of each model parameter in θ must be positive. To elaborate, if τi
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becomes negative, the eigenvalues of the plant become unstable. This does not match
reality as droplet position is at worst marginally stable within a microchannel. On the
other hand, the sign of bi,j is determined by geometry. Any bi,j becoming negative would
indicate that an input/output relationship has been inverted, which is physically impossible
during operation.

Parameter projection can be used to augment the RLS adaptive law with these param-
eter constraints:

θ̂k =

{
θ̂k−1 + Pk−1ψkεk, if θ̂k ∈ S0 or θ̂k ∈ δ(S) and (Pk−1ψkεk)

T∇g ≤ 0

θ̂k−1, otherwise
(A.7)

Pk =

 1
λk

[
Pk−1 −

Pk−1ψkψ
T
k Pk−1

λk+ψT
k Pk−1ψk

]
, if θ̂k ∈ S0 or θ̂k ∈ δ(S) and (Pk−1ψkεk)

T∇g ≤ 0

1
λk
Pk−1, otherwise

(A.8)

The allowed parameter space is defined as S = {θ ∈ Rn | g(θ) 6 0}. Its boundary and
interior are defined as δ(s) = {θ ∈ Rn | g(θ) = 0} and S0 = {θ ∈ Rn | g(θ) < 0} respec-
tively.

Given the constraint θi ≥ 0, we can define g(θi) = −θi, ∇g = −1. Thus for the i-th
parameter, the parameter space is constrained to:

Si = {θi ∈ R | g (θi) = −θi 6 0} = {θi ∈ R | θi > 0} (A.9)
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Appendix B

Droplet Measurement Framework

B.1 Overview

For feedback controlled droplet microfluidics, ideally we would be able to provide the
entire pressure/flow field throughout the microchannel network for feedback. In practice,
only the fluid interface provides any clue as to the dynamics of the system, and these
interfaces may only be present in certain channels, leaving the state of other channels
completely unobservable. Previously this problem was resolved by removing those states
from the overall state-space model [4]. However, this leads to discontinuous jumps when
droplet interfaces cross between different channels, necessitating additional compensation
techniques to smooth these transitions [4].

Instead we try a new approach that attempts to maintain measurement continuity as
much as possible. First, we define two types of measurements for each channel, direct
and inferred. Direct measurements in any channel can be made whenever an interface is
present in that channel. As the interface leaves a channel, it is no longer directly measur-
able. However, analogous to Kirchoff’s Current Law, or more specifically conservation of
charge, that same interface must now appear as an interface in another channel or multiple
interfaces in a number of other channels. Thus we can make an inferred measurement of
interface position in that channel based on the direct measurements of interfaces in all
other channels.

Now that we have an overview of the approach, we will now describe the algorithms
for direct and indirect interface measurement in detail.
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B.2 Directly measured interfaces

Given an n channel, single-junction network where m channels have one or more visible
interfaces, we can define m lists L1, L2, . . . , Lm of direct interface locations.

To obtain Li, we first apply background subtraction to obtain interface positions in the
foreground. Morphological operations (dilation + erosion + skeletonization) are applied
to close any openings in the interface, producing a smooth boundary between the fluid
phases. Then the foreground is segmented into individual channels based on specified
bounded boxes. The foreground pixels in the center of channel i is obtained, then the
mean of each pixel cluster is found and appended to Li (Figure B.1).

Figure B.1: Raw and processed frame
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B.3 Inferred interfaces

We can define n−m lists K1, K2, . . . , Kn−m of inferred interface locations for the remaining
n−m unmeasured channels.

Because multiple interfaces can be present in Li, multiple inferred interface locations are
possible. This makes the resulting algorithm slightly more involved, as each combination
of direct interface locations must be evaluated to produce the list of all possible inferred
interface locations. The resulting algorithm is shown below.

Algorithm 1 Find Inferred Droplet Interface Locations

1: Input:
L1, L2, . . . , Lm (m lists of direct interface locations for m measured channels)
n (total number of channels)
m (number of measured channels)

2: Output:
K1, K2, . . . , Kn−m (n−m lists of inferred interface locations for n−m unmeasured

channels)
3: for j = 1 to n−m do
4: Kj ← ∅ . Initialize inferred list for j-th unmeasured channel
5: for all combinations C = [c1, c2, . . . , cm] where ci ∈ Li do
6: IC ← −1

n−1

∑m
i=1 ci . Compute inferred measurement for combination C

7: Append IC to Kj

8: end for
9: end for
10: return K1, K2, . . . , Kn−m

A limitation of this algorithm is the fact that it currently only applies to single-junction
microchannel networks. However, a shift in reference frame should make it compatible with
arbitrary microchannel networks.

B.4 Interface re-identification

Now that we have a list of all measured and inferred interface locations, we need to narrow
down the specific interfaces of interest. We do this by initializing the measurement with the
closest interface to the junction, then re-identifying that interface as it moves throughout
the microfluidic chip.
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To re-identify droplet interfaces between frames, we find the direct/inferred measure-
ment in each channel closest to the previous value.

The result of this approach is that a single interface can now be represented in Rn as a
continuous measurement (direct/inferred) vector y, regardless of which channel it happens
to be in.

B.5 Capturing interface discontinuities

The above algorithm works well when the interface is smooth, but many droplet manip-
ulations (generate, split, merge) create discontinuities in the interface (Figure 1.1). The
difficulty in capturing this behavior boils down to the limited degrees of freedom in the
system. Within each channel, there is only a single degree of freedom - along the channel.
But if we want to perform more complex sequences of droplet operations, at some point
we will have to switch our measurement to any new interfaces that are produced.

To capture this in our measurement, let’s define a primary and secondary measurement

vector yα =


yα1

yα2
...
yαn

 and yβ =


yβ1

yβ2
...
yβn

 in Rn that each represent a continuous interface.

When the measurement begins, both vectors will be identical to each other. However,
whenever any component of one vector crosses the junction, we will reset the other vector
to the interface closest to the junction, which provides a much more useful measurement
for feedback control (Figure 5.6).

Two sets of measurement vectors allows us to fully characterize the motion of each
fundamental droplet operation, providing the maximum amount of information for the
controller at all times. It also gives the supervisory controller the flexibility to switch
between measurements on the fly.
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Appendix C

Software Design

The source code for the software application is found at https://github.com/KevinHQChen/autoDMP.

C.1 Software Architecture

Figure C.1 shows the software architecture for the automated DMP.

Four major software subsystems are identified:

1. Image capture - updates shared frame buffer from machine vision camera

2. Image processing - detects droplet locations and updates shared droplet position
queue

3. Supervisor - given current state from prediction model and current waypoint of de-
sired trajectory, produces optimal control signals for droplet actuation

4. User interface - renders GUI windows to visualize data in each software subsystem,
and provides a method for users to input waypoint sequences as plain text files

Each subsystem can be run as a standalone application, or in parallel with other subsys-
tems. Interfaces between subsystems are clearly defined, with thread-safe buffers/queues
used for all shared data structures, minimizing the risk of race conditions and deadlock.
This modular multi-threaded architecture enables easier testing, maintainability and ex-
tensibility.
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Figure C.1: Multi-threaded software architecture

C.2 Software Infrastructure

Software infrastructure starts from the operating system (OS) running on the bare metal
processor, includes the compiler toolchain that builds, compiles, and packages the appli-
cation (and its dependencies), and at the highest level involves cloud platforms (although
those are irrelevant for our application).

Instead of manually keeping track of these large complex pieces of software, we can
package together only the parts that are needed for our application. This technique is
known as containerization (Figure C.2).

Unlike virtual machines which bundles an entire operating system, containers run on top
of any OS, packaging only the application and its dependencies. This makes them much
more light-weight and performant, enabling applications like real-time image processing
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Figure C.2: Non-containerized vs containerized application

and control, while also being more accessible to users running the application on different
platforms (e.g. Windows, MacOS).

A popular containerization tool is Docker, which solves the previously discussed chal-
lenges by allowing the user to define every part of the infrastructure (application dependen-
cies, compilers, hardware drivers) within a configuration file. The first time the application
is built, Docker builds the package using the configuration file as the recipe. This package
becomes an immutable image (template) from which containers (instances) can be created.
As the image will not change often, it can be uploaded to a shared repository (e.g. Docker
Hub), allowing other users to immediately have access to the application along with all
required software infrastructure.

To further improve accessibility, open-source tools are preferred when possible, such
as the OS (Ubuntu Linux), compiler toolchain (GCC), and the containerization tool itself
(Docker). The use of Linux-based operating systems enables the software platform to run
on much lower-end x86 and ARM processors (e.g. Raspberry Pi), further reducing the
barrier to entry.
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Appendix D

Droplet Train Generation

The instruction set for a single droplet generation (Table 5.3) can be repeated to generate
custom droplet trains:

rα[µm] rβ[µm] Tpre[s] Tmove[s] Tpost[s]
(−1500, 0, 0) (0, 0, 0) 0 5 2

(210, 0, 0) (0, 0, 0) 0 7 0
(0,−210,−850) (0, 0, 0) 0 10 2
(0, 467,−850) (0, 0, 0) 0 7 0

(0, 0, 0) (−420, 0,−2000) 0 12 0
(0, 0, 0) (210, 0,−3200) 0 7 0

(0,−210,−950) (0, 0, 0) 0 10 2
(0, 467,−950) (0, 0, 0) 0 7 0

(0, 0, 0) (−420, 0,−2000) 0 12 0
(0, 0, 0) (210, 0,−3200) 0 7 0

(0,−210,−1050) (0, 0, 0) 0 10 2
(0, 467,−1050) (0, 0, 0) 0 7 0

(0, 0, 0) (−420, 0,−2000) 0 12 0
(0, 0, 0) (210, 0,−3200) 0 7 0

Table D.1: Droplet train generation evaluation program

The associated video file ”autoDropTrainGen.mp4” shows the execution of this pro-
gram.
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Appendix E

Piezoelectric Pump Electronics

The piezoelectric pump is actuated by a high voltage waveform generator (Bartels High-
driver4) that applies up to a ±250 [V] 800 [Hz] sine wave across each piezoelectric element.
A laptop PC powers the entire pump assembly and issues commands to a microcontroller
(Arduino Pro Micro) which controls amplitude and frequency of the waveform generator
over I2C, as well as on/off state of each solenoid valve via GPIO.

The schematic in Figure E.1 shows the electrical connections between components.
All electrical connections are facilitated through a carrier board (Bartels Mp-Multiboard)
shown in Figure E.2.

92



PC

Figure E.1: Piezoelectric pump driver hookup schematic for 4 pumps
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Figure E.2: Piezoelectric pump driver PCB assembly
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