
Quantum Ray Marching:
Reformulating Light Transport for

Quantum Computers

by

Logan Mosier

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Logan Mosier 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The use of quantum computers in computer graphics has gained some interest in recent
years, especially for the application of rendering. The current state of the art in quantum
rendering relies on Grover’s search for finding ray intersections in O(

√
M) forM primitives,

which is faster than the naive approach of O(M) but slower than O(logM) of modern
ray tracing with an acceleration data structure. Furthermore, this quantum ray tracing
method is fundamentally limited to casting one ray at a time, making it less attractive
even when quantum computers become much more mature in the future. We present a
new quantum rendering method, quantum ray marching, based on the reformulation of
ray marching as a quantum random walk. Our work is the first to provide a complete
quantum rendering pipeline capable of supporting light transport simulation and remains
fundamentally faster than non-quantum counterparts. Our quantum ray marching can
trace an exponential number of rays in polynomial cost and leverage quantum numerical
integration to converge in O(1/N) for N estimates. These unique properties make our
method asymptotically faster than Monte Carlo ray tracing on non-quantum computers
for the first time. We numerically verify the proposed quantum algorithm by rendering
both 2D and 3D scenes.

iii

Acknowledgements

Firstly, I am extremely grateful to my supervisor, Toshiya Hachisuka for all his help, advice,
and patience over the last 2 years. I would also like to thank Morgan McGuire for his help
on the project that forms the basis of this thesis. Without their insights this work would
not be what it is today.

I am also grateful to my girlfriend for all her proofreading, listening to me ramble about
quantum computers and always being there for me.

Finally, thanks to my parents for their love and support.

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

List of Figures viii

1 Introduction 1

1.1 Contributions . 3

1.2 Organization . 3

2 Physically Based Rendering 5

2.1 Models of Optics . 5

2.2 Light Propagation . 6

2.3 Physically Based Rendering . 7

2.4 Monte Carlo Integration . 9

2.5 Monte Carlo Rendering . 10

2.6 Variance Reduction . 10

2.7 Ray Marching . 12

2.7.1 Sphere Marching . 12

v

3 Quantum Computing 14

3.1 Basics of Quantum Computing . 14

3.1.1 Qubits . 14

3.1.2 Hilbert Space and Bloch Sphere . 15

3.1.3 Gates . 16

3.1.4 Quantum Circuit Diagrams . 18

3.2 Grover’s Search . 19

3.3 Amplitude Estimation . 20

3.4 Quantum Numerical Integration . 21

3.5 Quantum Walks . 22

3.5.1 Types of Quantum Walks . 22

3.5.2 Discrete Quantum Walks . 23

3.6 Quantum Computing in Computer Graphics 25

3.6.1 Grover’s Ray Tracing . 25

3.6.2 Quantum Super Sampling . 25

4 Quantum Light Transport 27

4.1 Overview . 27

4.2 Ray Marching as a Random Walk . 28

4.3 Quantum Ray Marching . 29

4.3.1 Coin Gates . 32

4.3.2 Quantum Evaluation of f(x) . 33

4.4 Implementation . 34

4.4.1 Encoding of Numbers . 34

4.4.2 Scene Representation . 34

4.4.3 Direction Look-up Table Construction 35

4.4.4 Coin Gate Construction . 35

4.4.5 Mean Estimation . 36

vi

5 Results 37

5.1 Fully Quantum 2D Light Transport . 37

5.2 Emulated 3D Light Transport . 39

5.3 Convergence Rates . 39

6 Arbitrary Materials 44

6.1 Motivation . 44

6.2 BRDF to Transition Matrix . 44

6.3 Transition Matrix to Circuit . 45

6.4 Implementation . 47

7 Discussion 49

7.1 Novelty in Quantum Computing . 49

7.2 Complexity Scaling of Quantum Circuit . 49

7.3 Quantum Primitive . 50

7.4 Limitations . 51

7.5 Future Work . 51

References 53

Appendix 58

vii

List of Figures

2.1 Three models of BSDFs. a) is a diffuse surface and scatters light uniformly
over the hemisphere. b) is a glossy BSDF and scatters the incoming light
in a cone out from the surface. c) is a specular BSDF and reflects the light
with no scattering . 8

2.2 Diagram for Equation (2.4) over point X for direction ωo 9

3.1 Bloch sphere. The |0⟩ and |1⟩ define the poles of the z axis. The |+⟩ = [1, 1]T

and |−⟩ = [1,−1]T states on the x axis are the result of applying 16

3.2 (a) The first controlled gate U0 only applies when the first qubit is 0. U1

is similarly only applied when the first qubit is 1. Similarly, U2 is only
applied when the control qubits are 10. (b) A simple circuit diagram the
equivalent mathematical representation of the gates applied in the circuit is
U1(U0 ⊗ I) |ϕ⟩ . 18

3.3 Diagram for Grover’s search / amplitude amplification 19

3.4 The probabilities of 1D random walk on the line after 50 steps with the
Hadamard coin. a) and c) are the result of stating with an initial direction of
|0⟩ or |1⟩ respectively. This leads to asymmetric walk due to the destructive
interface that occurs during the walk. b), on the other hand, is the result
of starting the walk with the state of |0⟩ + i |1⟩. This prevents destructive
interference from occurring during the walk, leading to a symmetric walk in
both the left and right directions . 24

viii

4.1 Overview of our ray marching circuit. The Init circuit initializes the posi-
tion and direction of the walk. Next, the Sample gate encodes the emitted
radiance and reflectance of the surface at the given position into a qubit
from the |Le⟩ and |Lr⟩ registers. After, the Coin gate scatters the ray in
superposition over the outgoing directions. Finally, the Shift gate steps one
unit along the ray. This process is repeated for each step of the walk. After
all the samples are taken, Path, expanded in figure 4.2, evaluates the samples
stored in |Le⟩ and |Lr⟩ to evaluate f(x) for all the paths in superposition. . 30

4.2 The internals of the Path gate for a three step walk. Each multi-controlled
X gate calculates one of the terms of the sum in equation 4.16. The ancillary
register, |Steps⟩ is used to select the term of the sum. 34

5.1 (a) The 8 × 8 light map of the 2D scene sampled at each point using a
quantum walk of three steps. (b) The same light map generated by tracing
exponential rays classically. (c) The mean square error of the classical and
quantum light maps. Besides some noise, the results match overall. (d) The
final higher-resolution image using the quantum light map 38

5.2 A modified Cornell box rendered with our method using 32 paths per pixel
(structural noise is due to limitations of simulation of quantum computing) 40

5.3 Different test scene of two spheres in a box with an overhead light rendered
by the same algorithm. While the result is very noisy due to the current lim-
itations of the quantum computing environment we used, the image shows
how shadows and some interreflections can be captured via a fully quantum
algorithm for the first time. 41

5.4 The convergence plot. Our quantum light transport simulation with quan-
tum ray marching (blue) converges asymptotically faster than classical MC
rendering (green). 43

6.1 Left: the original graph that we want to run a quantum walk over. Right:
the corresponding bipartite graph that is created to allow for the construc-
tion of a Szegedy’s walk . 46

ix

Chapter 1

Introduction

Though quantum computers are still very much in their infancy, work has already started
looking for potential practical applications they may one day serve. Due to the unique
nature of quantum computers, new algorithms are available to solve problems that were
not possible on classical computers. These new algorithms rely on the properties like
superposition to gain an advantage and run algorithmically faster than the current state
of the art on classical computers.

One such problem that can benefit from the quantum properties of quantum computers
is numerical integration. Quantum computers have been shown to gain an improvement
over their classical counterparts [14, 32]. Numerical integration on a quantum computer
or, quantum numerical integration, is an attractive alternative to Monte Carlo (MC) inte-
gration. This is because the answer converges to the correct answer (the root-mean-square
error decreases) in O(1/N) compared to the classical rate of O(1/

√
N) for N samples.

Another unique property of quantum numerical integration is that its error is inde-
pendent from the variance of the integrand. This difference makes quantum numerical
integration fundamentally different from MC integration, where the error is proportional
to the square root of the integrand.

A popular application of numerical integration is realistic image synthesis. This method
of image synthesis, typically called physically based rendering, is done by simulating the
paths that light takes through a 3D-scene. [27] Calculating how these light paths bounce
around the scene and ultimately lead to the color that is seen in the final image involves
solving a very high dimensional integral. As there is no analytical solution to this problem,
we must use numerical methods. Unfortunately, due to the dimensionality of the problem it
does not scale well with numerical methods that would typically be applied, like quadrature

1

methods, and thus we are left with using Monet Carlo integration which is not dependent
on the number of dimensions of the integrand.

Another aspect of rendering that makes evaluating the integral needed for the final
image difficult, is the effect of objects blocking light paths in the scene. This can cause
high variance in the integrand which will slow the already relatively slow convergence of
Monte Carlo integration. For these reasons, physically based rendering is a prime example
of a problem that could be sped up using quantum numerical integration

However, to fully utilize quantum numerical integration for light transport simulation,
you would need a method of sampling the light paths in the scene. This is typically done
via a method called ray tracing, which involves casting rays into the scene to simulate how
light propagates. Currently, ray tracing on quantum computers, which we will refer to as
quantum ray tracing, is said to be realizable based on Grover’s search algorithm [20, 3, 30].
Recently, Lu and Lin [24] pointed out a potential strength of light transport simulation
on quantum computers, which we call quantum light transport simulation: it can branch
a light transport path exponentially with a polynomial cost by utilizing the exponential
nature of qubits versus bits. This property has also been utilized in quantum numerical
integration [14, 32] where it assumes that the integrand can be evaluated against all the
possible inputs (e.g., an exponential number of branching paths) with polynomial cost. It
is in contrast to classical MC light transport simulation where it stochastically selects a
single path to avoid this exponential branching.

While all those properties sound attractive, we identified two fundamental issues in
this current formalism of quantum light transport simulation via quantum ray tracing.
The first issue is that each quantum ray tracing operation based on Grover’s search costs
O(

√
M) for M primitives. While this is faster than a naive classical approach of O(M), it

is still asymptotically slower than the O(log(M)) of ray tracing with a tree data structure
on classical (i.e., non-quantum) computers [38]. With this asymptotic performance gap,
even when quantum computers become as stable and fast as non-quantum computers in
the future, using quantum ray tracing over classical ray tracing will never be attractive.

The second issue is that the assumption that an exponential number of light transport
paths can be computed at a polynomial cost, with this particular quantum ray tracing
algorithm with Grover’s search, is in fact incorrect. The main theoretical issue is that
no quantum algorithm so far can run an exponential number of Grover’s searches in a
polynomial time [15]. While qubits might be able to store an exponential number of search
results at a polynomial storage cost, finding an exponential number of search results with
Grover’s search will still take an exponential computation time. Therefore, quantum light
transport simulation with Grover’s search will not bring any benefit over non-quantum MC

2

light transport simulation.

We propose a new formulation of quantum light transport simulation with a new quan-
tum ray marching algorithm to address these issues. Unlike the existing quantum ray
tracing with Grover’s search, our quantum ray marching employs ray marching. On the
first issue of scaling against classical algorithms, our quantum ray marching scales equiv-
alently to classical ray marching for the number of voxels. While this property alone is
neither good nor bad, quantum ray marching simultaneously solves the second issue and is
capable of handling an exponential number of light transport paths in a polynomial time.
In other words, our quantum ray marching is exponentially faster than classical ray march-
ing or quantum ray tracing with Grover’s search for tracing an exponential number of light
transport paths. Last but not least, being a fully quantum approach, our approach can
benefit from the faster convergence O(1/N) of quantum numerical integration. Our work
is thus the first to provide a full picture to implement quantum light transport simulation
with its fundamental advantages maintained over classical approaches. We demonstrate
the properties of our approach via both theoretical and numerical results.

1.1 Contributions

Our contributions are:

• Formulation of ray marching on quantum computers.

• Quantum light transport simulation algorithm based on quantum ray marching with
exponential branching.

• First full pipeline of quantum light transport simulation that is asymptotically faster
than MC light transport simulation.

1.2 Organization

Chapter 2 presents the necessary background from the field of computer graphics. The
chapter starts with the basics of optics and light transport under geometric optics. Then the
rendering equation is presented and the basics of Monte Carlo integration are introduced
as a means of numerically solving said equation to generate photorealistic images. Finally,
the method of ray marching for finding the intersection point between a ray and a surface
as an alternative to ray tracing is covered.

3

Chapter 3 covers the basics of quantum computing needed for this work. First, the
quantum circuit model will be presented covering the basics of qubits and quantum gates.
Building upon the basics of quantum computing, the needed quantum algorithms that
are of interest for quantum graphics are covered. Finally, the chapter will look at how
these quantum algorithms are being applied in the current state of the art in the field of
computer graphics.

Chapter 4 introduces our new framework for quantum light transport. Starting from
ray marching it shows how to produce an oracle circuit using a framework of quantum walks
to sample exponential light paths. This oracle circuit can then be used in conjunction with
quantum numerical integration to render an image.

Chapter 5 shows the results of our method applied in several problem settings to demon-
strate our method. We test the method in both 2D and 3D scenes. We also test the con-
vergence of our method to verify that our result benefits from the improved convergence
of quantum numerical integration.

Chapter 6 extends the result presented in the previous chapters to more arbitrary
materials. This indicates that the method is not limited to simple materials and scenes
but can instead be used on a much wider range of scenes.

Parts of the work present in this thesis are based on:

Logan Mosier, Morgan McGuire, Toshiya Hachisuka. “Quantum Ray Marching for
Reformulating Light Transport Simulation”, SIGGRAPH Asia, 2023

4

Chapter 2

Physically Based Rendering

2.1 Models of Optics

There are three models in the field of optics seeking to explain the nature of light and
how it interacts with the rest of the world. The difference between the models is how
exact they seek to model the nature of light. The most complete model of optics is known
as quantum optics. As the name would imply, this level of optics seeks to capture the
quantum behavior of light. In quantum optics, light is modeled as individual quantized
photons [26]. Though it is the most accurate model of light, most behaviors of light that
are of interest for the field of computer graphics are captured by more simplistic models.
Simulating light at this level of accuracy is impractical. Modeling scenes at the required
scale would be difficult, and the render times would be far too long, compared to other
methods. Thus, while quantum optics remains a fascinating theoretical framework for
studying light, it is currently beyond the scope of practical rendering applications

Physical optics is a more classical model of light compared to quantum optics, modeling
light as waves. When simulating physical optics, each wave length must be treated differ-
ently as they interact with the materials in a scene. Not only that, but the waves of light
can also interfere with each other in constructive and destructive ways [33]. Simulating
this behavior is important in accurately simulating light transport and some effects like the
shimmer of a CD surface, light dispersion through prisms or polarization require this level
of detail to be accurately simulated. Much like quantum optics, the added complexity,
and longer render times that come with simulating light as a wave often out weigh the
ability to properly render these physical effects. There has been recent work on wave optic

5

rendering that brings it into the realm of practicality but most renderers do not use wave
optics [33].

The most prevalent and widely adopted model for rendering is geometric optics. Geo-
metric optics offers a balance between simplicity and realism, modeling light as individual
rays. The two main assumptions that allow for geometric optics to be simulated more
easily than the previous models are that rays travel straight through the scene, until they
are scattered by a solid surface or participating medium, and that light travels instantly
through the scene. Fortunately, these assumptions do not prevent us from achieving highly
accurate renderings as the assumptions hold for scenes of typical interest and scale. As
a result, geometric optics remains the go-to choice for rendering realistic images due to
its ability to capture a significant portion of the visual effects required without excessive
computational overhead.

2.2 Light Propagation

Even though light is modeled as rays under geometric optics, for the purpose of simulating
the propagation of light it is useful to think of it as a single photon traveling through the
scene along the ray. Light starts from an emissive surface. The amount of light emitted
from a surface is defined by the function Le(x, ωo) where x is the position in the scene and
ωo is the direction that light is emitted in. Once light has been emitted into the scene it
travels in a straight line from x in the direction of ωo until it interacts with a medium or
surface in the scene. Typically, it is assumed that the scene is a vacuum as the atmosphere
has no noticeable effects on the scale that we are rendering. In this case, the surfaces are
the only thing that light interacts with.

Once the light hits a surface it will be either absorbed or scattered in a different direc-
tion. Both the material and geometric properties of the surface at the given point define
the behavior of the light. There are many models of materials but the standard proper-
ties that are of interset are the albedo, and bidirectional scattering distribution function
(BSDF), ρx. The albedo of a material is the probability that light will be scattered instead
of reflected. This is what defines the base color of the material as the reflected light is
what is viewed by an observer. Though it is not based on physical reality, this is often
defined using a vector of three values defining the amount of red, green, and blue (or RGB)
light that is reflected by the material. In reality, this is defined by the wave lengths that
are absorbed or reflected, but doing so would require simulating the different wave lengths
of light and thus moving towards physical optics. The albedo of the material defines if
the light is scattered but the BSDF defines the scattering behavior of the material. The

6

BSDF represents the nanoscale details of the surface that affect how the light is scattered
as modeling the scene at this scale would be impractical. A BSDF may be defined as:

ρ(x, ωi, ωo) =
dLr(x, ωo)

Li(x, ωi

|nx · ωi|dωi (2.1)

and is the ratio of light that came from direction ωi and is reflected out in ωo. This
ratio defines a probability distribution function, PDF, that we can then use to sample a
new direction from and continue propagating the light in that direction.

To be physically accurate, the BSDF must follow two properties. The first is that the
BSDF must be reciprocal,

ρ(x, ωi, ωo) = ρ(x, ωo, ωi) , (2.2)

the important thing to note is that this means that the BSDF is invariant to the direction
that the light is moving. This is a critical property allowing images to be efficiently rendered
[33], as we will see in the next section.

The other property is that the BSDF must conserve energy,∫
Ω

ρ(x, ωi, ωo)|nx · ωo|dωo ≤ 1 , (2.3)

this insures that the BSDF does not add energy to the scene.

BSDFs are often grouped into different categories based on how they scatter the light.
These categories are diffuse, glossy, and specular. Diffuse BSDFs are perfectly matte
surfaces that scatter light in many directions over the hemisphere. Ideal diffuse surfaces
are Lambertian and appear the same no matter the viewing direction. Specular BSDFs are
the opposite of diffuse in that they are mirror-like and reflect light back at the same angle
over the normal. In between diffuse and specular there are glossy BSDFs which reflect
light in a cone. Ideal versions of these materials are not often found in the real world, but
they make good building blocks for making more complicated materials.

2.3 Physically Based Rendering

The problem of physically based rendering seeks to produce realistic looking images of
virtual scenes. This is done in a similar idea to how a camera makes a realistic image of
a real scene. Cameras function by capturing and recording the radiance that hits their
film or sensor. In much the same way, a virtual camera is defined in the scene and the

7

(a) Diffuse (b) Glossy (c) Specular

Figure 2.1: Three models of BSDFs. a) is a diffuse surface and scatters light uniformly
over the hemisphere. b) is a glossy BSDF and scatters the incoming light in a cone out
from the surface. c) is a specular BSDF and reflects the light with no scattering

radiance at each pixel of the sensor must be captured. The standard approach to solve
for the radiance hitting a point on the sensor is to use geometric optics and the rendering
equation presented by Kajiya [18]. This equation defines the radiance that is leaving a
point x in the direction of ωo.

Lo(x, ωo) = Le(x, ωo) +

∫
Ω

ρx(x, ωi, ωo)Li(x, ωi)(ωi · n)dωi (2.4)

Equation (2.4) is a simplified version of the rendering equation that assumes a static scene
and non-spectral rendering. Lo is the light coming from point x in the direction of ωo. Lo

is equal to the light emitted from x, Le, plus the incoming light reflected in the direction
of ωo. The reflected light is calculated via an integral over the hemisphere above x with
normal n and is equal to the product of the ρx, the incoming light Li, and the cosine term
calculated by taking the dot product of the incoming light direction, ωi and n.

Equation (2.4) needs to be solved at all points seen from our virtual camera. As well,
this equation is recursive in nature as the radiance leaving each point depends on the
radiance coming in from all directions over the hemisphere. But the radiance coming in
depends on the light leaving the points visible in the direction of −ωi. To solve this, we
need to evaluate Equation (2.4) recursively at each point. This recursive nature makes
Equation (2.4) a very high dimension integral.

8

Figure 2.2: Diagram for Equation (2.4) over point X for direction ωo

2.4 Monte Carlo Integration

Monte Carlo (MC) integration is a stochastic method for solving integration problems in
the form of

F =

∫
D
f(x)dx, (2.5)

where D is the domain of integration and f(x) is a scalar function that does not have an
analytical expression for its integral F . To accomplish this, MC integration uses random
samples from the domain to estimate the integral. For N uniform samples xi, . . . xN the
estimation of F is:

F̄ =
1

N

N∑
i

f(xi) . (2.6)

The error of the estimation F̄ will converge to F in O(1/
√
N). This means to decrease

the error of our estimate by 2 times we will need to take 4 times the number of samples.

There are two properties that make MC integration appealing in many applications.
The first is that it is a relatively simple approach to implement compared to alternative
methods. All that is needed is the ability to sample the integrand f . The other, arguably
more important property is that the error does not scale with the number of dimensions
of D. Other deterministic methods, scale exponentially with the number of dimensions in
the domain of integration. Because of this, for complex domains with many dimensions,
MC integration is often the more appealing choice.

9

2.5 Monte Carlo Rendering

Rendering a photorealistic image involves solving Equation (2.4). Even in the simplified
domain of geometric optics, this is still a very complicated problem. An analytical solution
to the equation is impractical for a scene of even mild complexity, especially once the
visibility term is considered. Instead, we must use numerical methods to evaluate the
integral. This poses an issue as Equation (2.4) is a very high dimensional integral and most
numerical methods scale with the number of dimensions. For this reason, MC integration
has become the primary method to evaluate the rendering equation.

The most common method for generating samples is known as backwards ray tracing.
This involves casting rays from the camera position through a pixel and into the scene. The
rays are then propagated through the scene as described in Section 2.2 until they reach a
light source to generate a sample path. This saves effort compared to forward ray tracing,
where rays are cast from the light sources as it means we only sample paths that will reach
the camera. There are methods like bidirectional ray tracing [35] and photon mapping [13]
that make use of forward ray tracing as they allow for certain effects like caustics to be
captured more easily. We can then use MC integration to evaluate the sampled light paths
to generate an estimate for the pixel. This process is continued for each pixel until the
image is complete.

2.6 Variance Reduction

As well as being a very high dimensional integral, Equation (2.4) can have very high vari-
ance due to the visibility term. The error of MC integration will converge in O(1/

√
N)

samples, but this is in the limit as N goes to infinity. As sampling light paths is compu-
tationally expensive, we would like to ideally take as few samples as possible while still
keeping the error in our estimation to a reasonable level. The mean squared error for an
estimator is equal to its standard deviation [36]. For the MC estimator, Equation (2.6),
the standard deviation can be shown to be:

σ[FN] =
1√
N
σf(x) . (2.7)

For N <∞ the standard deviation of the integrand, and by extension the variance, effects
the error of our estimator. It can be shown that MC integration will eventually converge
to the correct value with enough samples regardless of the variance, but this does motivate
the idea behind variance reduction.

10

Since the error is dependent on the variance, if we can lower the variance, then we can
achieve lower error with a similar number of samples, or alternatively, depending on our
goal, the same error with fewer samples. A common technique for variance reduction is
known as importance sampling. The idea behind importance sampling is that not every
sample from the domain will be as important as other samples. With this in mind, we
can try to distribute our samples in the areas with more importance, that will contribute
more to the final value of the integral. This requires the modification of the MC estimator,
defined in Equation (2.6), to still maintain an unbiased estimator. If instead of uniformly
sampling we draw our samples proportionally to some function p(x) we get the estimator

F̄ =
1

N

N∑
i

f(xi)

p(xi)
. (2.8)

By choosing p(x) well, we can lower the variance of our estimate and thus reduce the error.
As an arguably hand-wavy proof of how this works, let us assume that we choose p(x) such
that p(x) ∝ f(x). This would be the ideal case but would require us to already know f over
the domain of interest and thus would defeat the purpose of using importance sampling.
Nonetheless, we have p(x) = cf(x) = 1∫

f(x)dx
. Then

f(xi)

p(xi)
=

1

c
=

∫
f(x)dx , (2.9)

would create an estimator that has zero variance. Unfortunately, this is not possible but
using our knowledge of the domain we can instead choose a p(x) that is close to the ideal
choice in a hope that the variance is decreased.

For rendering there are many ways to do this, but generally the approaches are based
on sampling proportionally to the easily calculable parts of Equation (2.4). A common
form of this is sampling proportionally to the BSDF. Another method is to sample in the
direction of the light sources. Nether of these methods are better than the other in every
case, and it may not be obvious which of these methods will be better suited based on the
scene. Instead of choosing one method or the other, the work of [36] introduced multiple
importance sampling (MIS), which enables gaining the benefits of both methods.

MIS requires that we yet again change the MC estimator. If we have two sampling
strategies pa(x) and pb(x) then our estimator becomes

F̄ =
1

Na

Na∑
i

f(xi)wa(xi)

pa(xi)
+

1

Nb

Nb∑
i

f(xi)wb(xi)

pb(xi)
. (2.10)

11

The new MC estimator is thus the sum of the two MC estimators with the addition of
the weighting function ws(xi). This term properly weights the samples so that they may
be combined without the variances adding together. ws(xi) weights the function by all
the ways that the sample could have been generated using all the sampling strategies. A
common choice for ws is the balance heuristic.

ws(x) =
Nsps(x)∑
iNipi(x)

(2.11)

2.7 Ray Marching

Ray marching is a method for determining the intersection point of a ray against some
scene. Unlike ray tracing, which solves for the intersection point of a ray with the object in
the scene analytically, ray marching takes an iterative approach. To enable ray marching
we need to be able to define a boolean function, S(x), that will define if a given point x
is inside an object. This function can take many forms, but as long as we can define such
a function we will be able to carry out ray marching. The goal of ray marching is to find
the first x in the direction of the ray such that S(x) is true.

S(x) =

{
1 if x is on the boundary of an object

0 otherwise
(2.12)

Ray marching functions by taking many steps through the scene to march the ray forward.
After a step is taken S(x) can be evaluated to check if a surface has been found. If a
surface has not been found then another step may be taken. This process continues until
the surface is found or another halting criteria, like a max number of steps, has been
reached.

The benefit of ray marching is that it allows for intersections to be found between rays
and otherwise difficult objects where an analytical solution would be infeasible.

2.7.1 Sphere Marching

The main issue that comes from using ray marching is setting the step size. Setting the
step size too low causes the ray to waste many steps in empty spaces far away from any
intersection points. Setting the step size too large means that there is a high chance that

12

you many miss finer details in the scene by stepping over them. Ray marching is rarely
used in this naive form because of this trade off.

Sphere marching is an extension of ray marching that seeks to address this issue [12].
Instead of only taking fixed sized steps, the size of the step is varied based on the distance
to the surface. As it relies on being able to easily evaluate the distance from any point in
the scene to the surface, sphere marching is most commonly used in combination with a
signed distance field (SDF). An SDF represents an implicit surface by either storing or in
some way representing the the distance from each point to the closest point on the scene.
More formally, an SDF is:

s(x) =

{
d(x, ∂Ω) if x ∈ Ω

−d(x, ∂Ω) if x ∈ Ωc
. (2.13)

The SDF, s(x), is a function that maps points x in the domain to the distance to the
boundary of Ω, ∂Ω, using some distance metric d. As well, if x is inside of Ω then the
negative of the distance is returned. This is the reason that it is referred to as a signed
distance field. Using an SDF, sphere marching is able to take larger steps in empty spaces
while not having to worry about stepping over a surface intersection when close to the
surfaces in the scene, even when very fine details are present. Though it solves many of
the issues with simple ray marching, sphere marching still can take many small steps when
a ray passes close to a surface without intersecting it.

13

Chapter 3

Quantum Computing

This chapter provides a brief overview of quantum computing to introduce basic concepts
and symbols before covering some of the more advanced topics that are of interest for this
thesis and the wider field of computer graphics. Though we hope to cover the topics in
enough detail so that any reader should be able to understand the work presented, this
will only be a high-level introduction to the topics of quantum computing. Readers who
are interested in gaining a deeper and more comprehensive understanding of quantum
computing may refer to Johnston et al. [15].

3.1 Basics of Quantum Computing

3.1.1 Qubits

The qubit is the quantum equivalent of the bit in classical computing [31]. Unlike a bit,
which can only be a 0 or 1, a qubit is represented by a complex vector, known as a state
vector. Each entry in this vector represents the amplitude of the corresponding state. The
equivalent of 0 and 1 for a qubit are

|0⟩ =
[
1
0

]
|1⟩ =

[
0
1

]
, (3.1)

for |0⟩ and |1⟩. This is bra-ket notation and is common in quantum computing literature.
A ket, |⟩, represents a complex column vector and is used to represent the state vector of
a quantum system. The bra,⟨|, is the conjugate transpose of the equivalent ket.

14

Since the state of a qubit is a vector, we can represent a mixture of states known as a
superposition. A superposition of the |0⟩ and |1⟩ states can be written in a general form as

|ψ⟩ =
√
1− α2 |0⟩+ α |1⟩ (α ∈ [0, 1]) (3.2)

where α is the amplitude of the |1⟩ state. This ability to have a superposition of states
is one of the unique properties that enables the new algorithms for quantum computers.
The superposition will last until it collapses into one of the possible states. This is done
when the qubit is measured. The amplitude α is a complex number, but for our purposes,
α can be simply thought of as the square root of the probability that a given state will be
measured. As such, the norm of a state vector must be 1. When working with n qubits
the state vector will have 2n entries.

A single qubit is not sufficient for doing much useful work. When working with a
register of multiple qubits, the state of the whole system can be represented as the tensor
product of the individual qubit states, i.e. |0⟩ ⊗ |1⟩. To simplify notation, the operator
is often dropped and the state written as |0⟩ |1⟩. This means that the state vector of a
system with n qubits will have 2n values. However, it is still required that the norm of this
vector be one.

We will utilize two approaches for representing values using qubits [40]. A binary value
may be encoded in a register of qubits in the same way as on a classical computer, this is
referred to as basis encoding [40]. When data is encoded in this way, the quantum state
used will be denoted as |v⟩. The nature of a qubit means that data can be encoded in more
than just the traditional way. One of the alternative methods of encoding data is amplitude
encoding. This method uses the amplitude of a state to store a value. The benefit of this
method is that it allows storing 2n values using only n qubits. Since the values are stored
in the amplitudes of the different states, they cannot be arbitrarily chosen. They must be
normalized before they can be used.

3.1.2 Hilbert Space and Bloch Sphere

The state of a quantum system is defined regarding a Hilbert space. A Hilbert space, by
definition, is an infinite dimension complex space with an inner product. Nowadays, that
definition is often loosened to include finite dimensional spaces. This is particularly useful
for quantum computing, as we will often work within Hilbert spaces of 2n dimension, where
n is the number of qubits in our quantum system. To visualize the state of the system,
a common method is the Bloch sphere. The Bloch sphere, as seen in Figure 3.1, is a
geometric way to represent the current state of a quantum system. All pure states in the

15

Figure 3.1: Bloch sphere. The |0⟩ and |1⟩ define the poles of the z axis. The |+⟩ = [1, 1]T

and |−⟩ = [1,−1]T states on the x axis are the result of applying

quantum system lie on the surface of a Bloch sphere. Many of the operations that can be
applied to a quantum system can be intuitively thought of as rotations around the Bloch
sphere.

3.1.3 Gates

There are several models of quantum computing and the most prevalent one for our work
is the quantum circuit model [8]. In the quantum circuit model, the state of the system
is evolved by the application of quantum gates, similarly to how logic gates are applied to
bits in non-quantum computers. Quantum gates are defined as matrices. Three gates that
will be relevant to our work are the X, Ry(θ) and H gates. The X or Pauli-X gate is the
quantum version of a bit flip, changing |0⟩ to |1⟩ and vice versa. This can also be thought
of as a reflection over the X axis of the Bloch sphere. The Ry(θ) gate, on the other hand,
does not have a classical counterpart. This gate applies a rotation around the Y -axis of
the Bloch sphere to a qubit. This is a more general version of the Pauli-Y gate, which
is equal to Ry(π). The H, or Hadamard, gate puts a qubit into an equal superposition
between the 1 and 0 states.

X =

[
0 1
1 0

]
(3.3)

Ry(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
(3.4)

H =
1√
2

[
1 1
1 −1

]
(3.5)

16

As quantum gates are limited to being unitary operations, we can define any possible single
qubit gates in the form:

U(ψ, θ, α, β) = e
iψ
2
i

[
eiα cos(θ) eiβ sin(θ)
−eiβ sin(θ) e−iα cos(θ)

]
. (3.6)

Gates are not limited to acting on a single qubit and can be applied to multiple qubits
at once. Controlled gates use such operations. These gates can be thought of as a version
of the non-controlled gate but only act on the target qubit when the control qubit is in
a desired state. If we have a quantum state that contains two qubits, |t⟩ and |c⟩ and a
unitary gate U ,

U =

[
u00 u01
u10 u11

]
. (3.7)

We wish to apply U to |t⟩ but only if |c⟩ is in the one state. Measuring |c⟩ would
collapse any potential superposition that the system may be in. Instead, we would need
to apply a controlled version of U , Uc:

Uc |c⟩ |t⟩ =


|c⟩ ⊗ |t⟩ if |c⟩ = 0

|c⟩ ⊗ U |c⟩ if |c⟩ = 1

.

(3.8)

Uc is constructed as follows:

Uc =


1 0 0 0
0 1 0 0
0 0 u00 u01
0 0 u10 u11

 . (3.9)

The construction of Uc depends on the order of qubits in the system. If instead |c⟩ was the
second qubit in the system, Uc would become

Uc =


1 0 0 0
0 u00 0 u01
0 0 1 0
0 u10 0 u11

 . (3.10)

Controlled gates allow for more complex logic to be implemented on a quantum computer
without having to measure the state of the quantum system.

There are physical restrictions on the types of gates that can be constructed in practice.
In particular, all gates must be physically realizable and must be consistent with the laws of

17

U0 U1

U2

(a)

U0

U1

(b)

Figure 3.2: (a) The first controlled gate U0 only applies when the first qubit is 0. U1 is sim-
ilarly only applied when the first qubit is 1. Similarly, U2 is only applied when the control
qubits are 10. (b) A simple circuit diagram the equivalent mathematical representation of
the gates applied in the circuit is U1(U0 ⊗ I) |ϕ⟩

quantum mechanics, meaning that all gates take the form of unitary matrices [4]. While it
may seem like a large restriction on the usefulness of quantum computers, it can be shown
that the Toffoli gate, a X gate with two control qubits, is universal [1] (i.e., anything we
can do with non-quantum computers can be done on quantum computers).

3.1.4 Quantum Circuit Diagrams

There area many ways to define and share quantum algorithms. A common way to rep-
resent quantum algorithms is using circuit diagrams. These are drawn very similarly to
regular circuit models and can map directly to the mathematical definitions of the circuit.
Each wire in the diagram represents a qubit or register of qubits. The x-axis represents the
execution time of the circuit. The gates applied to the qubits are shown as blocks along
the wires that they act on. Controlled gates are represented by black dots for the 1 state
and white dots for the 0 state with a wire running to the gate they control.

The mapping between the mathematical definition of an algorithm and the circuit
diagram is fairly straightforward. Gates that operate in parallel are equivalent between
the tensor product of both gates. The identity gate is implicitly applied to any qubit that
does not have a gate applied to it at each step. On the other hand, serial gates are the
multiplication of the two gates.

18

(a) (b)

Figure 3.3: Diagram for Grover’s search / amplitude amplification

3.2 Grover’s Search

Grover’s search [11] is one of the most well-known quantum algorithms that was shown
to solve a problem algorithmically faster than would be possible on classical computers.
Grover’s search solves the unstructured search problem in O(

√
N) instead of O(N) for a

database of N elements. The unstructured search problem is the problem of finding an
element in a set of N elements X for which f(x) = 1 for some function f : X → [0, 1].
Grover’s search, like many quantum algorithms, is a probabilistic algorithm. It functions
by creating a quantum state which when measured has a high probability of being in the
desired state. This is done using amplitude amplification and an oracle gate to evolve some
initial state into this desired state.

Q = (−IO0I†Of)
NoptimalI (3.11)

Equation (3.11) formally defines the full process of Grover’s search. I is the initialization
circuit to prepare the quantum state that will be searched over. In the standard example,
this is simply a Hadamard gate applied to each qubit to create a uniform superposition
but can be more complicated in practice. O0 is an oracle gate that applies a phase shift
of −1 to the 0 base state. −O0 is used in this case to apply the phase shift to all but the
0 state. Finally, Of is the oracle gate that applies phase shifts to the states that we are
searching for:

Of |ψ⟩ = (−1)f(x) |ψ⟩ . (3.12)

Amplitude amplification can be viewed as a rotation operator on a 2D subspace spanned
by |g⟩, the good state that we are searching for and |b⟩, all the other states. So initially,

the state of the system is |ψ⟩ =
√

M
N
|g⟩+

√
N−M
N

|b⟩.

19

This rotation amplifies the amplitude of |g⟩ from states by increasing the amplitude of

those states from sin(θ) =
√

M
N

to sin((2n+ 1)θ), for n applications of our circuit. This is

done without knowing the value of θ.

As the max value of sine is at sin(π
2
) we get that:

π

2
= (2n+ 1)θ (3.13)

π

2
= (2n+ 1) sin−1(

√
M

N
)

π

4 sin−1(
√

M
N
)
− 1

2
= n (M ≪ N =⇒ sin−1(

√
M

N
) ≃

√
M

N
)

π

4

√
N

M
− 1

2
= n .

Two interesting behaviors that the keen eyed reader may have noticed are that the number
of applications of amplitude amplification is dependent on the number of solutions that
are present and that the amplitude is a sinusoidal function. These two facts mean that
some problems will not be well suited for standard Grover’s search. Since in many search
problems, like those we will be interested in the next section, the number of good elements
is not known.

This means that we would only be able to guess at the number of iterations that would
be needed to most optimally be able to read out one of the desired states. This could work,
but if we select the wrong number of iterations we may apply amplitude amplification too
many times and actually reduce the amplitude of the desired states. Furthermore, in the
rare case that the number of desired elements is greater than half, applying

√
N iterations

will actually lower the chance of reading a desired element. To mitigate the issue of
using Grover’s search with an unknown number of elements, Boyer et al. [5] proposed an
algorithm that increases the number of iterations exponentially at each step until a desired
element is found. This algorithm can be shown to still scale O(

√
N) and allows for the

application of Grover’s search for an unknown number of target elements.

3.3 Amplitude Estimation

The problem of amplitude estimation is given a gate A, such that

A |0⟩ |0⟩ = |ψ⟩ =
√
1− α2 |ψb⟩ |0⟩+ α |ψg⟩ |1⟩ (3.14)

20

try and estimate the value of α. The naive approach for doing this would be to simply
create many versions of |ψ⟩, measure the state and make an MC estimate of α. As covered
in Chapter 2 this would give the standard MC error of O(1/

√
N). Unlike classical com-

puting though we can do better than this and can achieve a convergence of O(1/N). The
original method presented by Brassard et al. [6] was based on phase estimation and the
quantum Fourier transform (QFT). The version that we will be using in the latter chapters
is the more recent methods based on amplitude amplification. The reason that the am-
plitude amplification based versions have become more popular than the phase estimation
approaches is that the phase estimation approach requires significantly more qubits and
controlled gates than the amplitude amplification approaches.

Amplitude estimation by amplitude amplification functions by first noting that
√
1− α2 |ψb⟩ |0⟩+ α |ψg⟩ |1⟩ = cos(θα) |ψb⟩ |0⟩+ sin(θα) |ψg⟩ |1⟩ (3.15)

and that if we apply amplitude amplification to |1⟩, n times we can scale the amplitude
from sin(θα) to sin((2n+ 1)θα).

Though there are several approaches [25, 10, 32], the base idea is that after creating
an initial estimate of θα we can establish a confidence interval of [θalpha − δ

2
, θalpha +

δ
2
] for

some error δ. We then run the same circuit again, but this time amplitude amplification
is used to scale the error range such that the error range is scaled. Next, the new value
is estimated by creating and measuring the state many times. This new value will be
an estimation of sin((2n + 1)θα). As n is known, this new estimation may be used to
create an estimation for θα by scaling the value with an error of δ2. How the samples are
post-processed to determine the error ranges and the scaling that must be applied differs
between the different approaches.

3.4 Quantum Numerical Integration

An application of amplitude estimation is quantum numerical integration. Quantum nu-
merical integration is a new set of algorithms that seeks to leverage the unique properties
to gain an algorithmic speed-up over classical techniques. Quantum numerical integration
is solving the same problem as MC integration. The added restriction is that F ∈ [0, 1].
If this is not the case f(x) may be scaled so that this condition is met without loss of
generality.

In quantum numerical integration, a quantum circuit computes f(x) for input qubits,
x, representing all possible values of x given the representation of numbers (e.g., 32-bit

21

floating-point numbers). Given such a quantum circuit, it is easy to construct another
qubit

|F ⟩ =
√
1− F 2 |0⟩+ F |1⟩ . (3.16)

where it encodes the correct integral F up to the limit of the precision of x, with the
computation cost equivalent to evaluating f(x) for a single sample in MC integration.

Quantum numerical integration then uses multiple samples to estimate the amplitude
F since it is impossible to read F directly from |F ⟩ (i.e., instances of |F ⟩ must be made
and read out once for each to estimate F). Once this state has been created, we can apply
amplitude estimation to retrieve the value of F from the state vector.

There are two unique properties of quantum numerical integration. Firstly, it internally
encodes F and its estimation of F is independent of the variance of f(x). Its accuracy thus
depends solely on amplitude estimation of F as demonstrated by prior work [14, 32, 23].
MC integration requires more samples to reach the same error when the integrand f(x) has
a larger variance, and variance reduction techniques need to be employed. Such variance
reduction is fundamentally unnecessary in quantum numerical integration.

Secondly, quantum numerical integration achieves O(1/N) convergence for N evalua-
tions of F , in contrast to the O(1/

√
N) convergence of MC integration for N evaluations

of f(x). Note that they have the same computational complexity despite the differences
between F and f(x). Even with quasi-Monte Carlo integration, the best possible conver-
gence is O((logN)d/N) for a d dimensional integrand [21]. Quantum numerical integration
is thus asymptotically faster than non-quantum approaches.

3.5 Quantum Walks

Random walks are a common algorithmic framework that has been used As the name
implies, quantum walks are the quantum analogue to classical random walks. Much like
its classical counterpart, the quantum walk is a useful framework for designing all sorts of
algorithms.

3.5.1 Types of Quantum Walks

Quantum walks may also be split into two main groups, continuous and discrete walks.
The difference conceptually between the two is based on how the walker is thought to be
moving. In the case of a continuous walk, the walker is always on the move, at any given

22

moment the walk may move to any other position that is reachable from its current state
with some probability defined by the problem. On the other hand, the discrete walker only
moves at fixed intervals. Though the two types of walk are similar conceptually, they are
typically implemented in fairly different ways. For this work, we will only be working with
discrete time quantum walks, so we will not look at how continuous time walks function.
For those curious, Kempe [19] and Venegas-Andraca [37] provide more background on
discrete and continuous quantum walks.

3.5.2 Discrete Quantum Walks

The most basic discrete quantum walk is a 1D walk on a line. In this example, our walker
starts at the origin and can move either left or right. In a classical walk, this decision would
be made using some form of randomness, like a coin flip, to determine which direction to
take a step in. Then, once the decision has been made, the walker moves to the new
location and makes the same left or right decision again. This process continues until
stopping criteria is met. For the quantum walk this will be a predefined number. A
quantum walk does not have to make a choice, instead a Coin gate is used that creates
a superposition of both directions. Then when moving to the next step we end up in a
matching superposition.

A discrete quantum walk starts from an initialized quantum state with two registers,
|p⟩ for the current position and |d⟩ for the direction of the walker and a walk operator U
constructed as

U = S(C ⊗ I) . (3.17)

The two unitary operators, C and S, are encoded the dynamics of the walk in the circuit.
C serves as the coin gate, creating a superposition of the directions which we want to
travel in. There are many ways to implement this gate but a common and simple one is
the Hadamard coin. The Hadamard coin is simply a Hadamard gate.

C = H =
1√
2

[
1 1
1 −1

]
(3.18)

Using a Hadamard gate gives us an equal probability of stepping to the left or the right.
If we then measured the state of the system, we would find that, as expected, the system
is one step to either the left or the right. Continuing in this way, coin flip, step, measure,
repeat would lead to the same behavior as we see in classical walks. If instead we don’t
measure the system, preserving the superposition, we can see the unique properties of the
quantum walk.

23

(a) (b) (c)

Figure 3.4: The probabilities of 1D random walk on the line after 50 steps with the
Hadamard coin. a) and c) are the result of stating with an initial direction of |0⟩ or |1⟩
respectively. This leads to asymmetric walk due to the destructive interface that occurs
during the walk. b), on the other hand, is the result of starting the walk with the state of
|0⟩ + i |1⟩. This prevents destructive interference from occurring during the walk, leading
to a symmetric walk in both the left and right directions

As can be seen in Figure 3.4 the walk does not follow the standard probability distri-
bution that we would expect to find with a classical random walk. The walker seems to
spread out much faster than is seen classically. This trajectory is referred to as ballistic
[43]. As well, the initial state of the walker effects the direction of the walk, which is
another difference between the classical and quantum walks. This due to the nature of
how the Hadamard gate treats the |0⟩ and |1⟩ states differently, this leads to interference
between the different states of the walker. In some cases, the states destructively interfere,
canceling each other out, leading to this unequal probability.

To achieve a more classical walk behavior where the walker that is just as likely to be
found to the left or right from the origin, we need to avoid the destructive interference
between the states. There are two options to accomplish this task. This first is that we
can initialize the coin to some other initial condition besides |0⟩. For the Hadamard gate,
this is the state |0⟩+ i |1⟩. The alternative is that we could use a different gate with similar
scattering behavior, equal chance of going left or right, but does not lead to the destructive
interference. The Y -gate provides us with a symmetric walk without changing the initial
coin state.

Y =
1√
2

[
1 i
i 1

]
(3.19)

The unique properties of quantum walks have led to them being used to solve various
problems and, as such, is a quite well-studied area of quantum computing [17].

24

3.6 Quantum Computing in Computer Graphics

3.6.1 Grover’s Ray Tracing

Grover’s search was introduced to computer graphics by Lanzagorta and Uhlmann [20] as a
technique to efficiently solve various problems in computer graphics, including ray tracing.
Their ray tracing approach involves formulating the computation of the first intersection
between a ray and M primitives as a search problem to identify a single primitive with the
first intersection. Recent work by Alves et al. [3] has presented a practical implementation
of this approach for simple scenes with orthographic rays. The latest approach along this
line by Santos et al. [30] now supports arbitrary rays and Whitted ray tracing [41].

Though the work of Santos et al. [30] is quite impressive, there are several limitations
inherent in this method of quantum ray tracing due to the use of Grover’s search. The first
limitation is the run time of O(

√
M). Though this is faster than the naive approach on

classical computers, O(M) it is still slower than other common approaches using acceler-
ation data structure. For example, using a bounding volume hierarchy (BVH) [27] allows
ray intersections to be found in only O(log(M)). Santos et al. [30] make the argument that
their approach is thus better suited to dynamic scenes where the construction of the BVH,
which is O(M) would need to be done often. It may be possible that this is improved in
the future with a binary Grover’s search, but no such technique currently exists.

Another major problem of this approach is that it does not accelerate ray tracing of
multiple rays. Due to the probabilistic nature of Grover’s search, many measurements must
be made to find the primitive that intersects the ray, and even then, it is not guaranteed
that the correct primitive will be found. These measurements collapse the quantum state
each time, meaning that there is no hope of leveraging the inherent parallelism that could
be gained by using a quantum computer. Though it is slightly unfair to call this a limitation
of the method as the goal of the approach is not to handle multiple rays, it still prevents
the use of using this ray intersection method as part of any other quantum algorithm.

3.6.2 Quantum Super Sampling

The other quantum algorithm of interest in computer graphics has been quantum numeri-
cal integration. This was first introduced by Johnston [14], in the form of quantum supper
sampling, as a way to super sample images. An oracle was created that would create a
superposition of the subpixels in the image. Then quantum amplitude estimation, based
on phase estimation was used to find the average value for the pixel. Later Shimada and

25

Hachisuka [32] introduced a method that was better suited to the near term quantum
computers due to its simpler circuits. They were also the first to point out that rendering
would benefit from the use of quantum numerical integration due to its increased con-
vergence rate and the fact that the method is invariant to the variance of the integrand.
This is especially promising as the variance can be large due to the discontinuities of the
integrand because of the visibility term [27]. Unfortunately, creating an oracle circuit that
may be used to evaluate Equation (2.4) is far from trivial.

26

Chapter 4

Quantum Light Transport

This chapter covers the main contribution of this work, quantum ray marching. This is
the first work to present a fully working method to evaluate light paths on a quantum
computer.

4.1 Overview

We use ray marching as a basic building block in quantum light transport simulation. Our
algorithm takes a ray and the first intersection along it as input and outputs the resulting
radiance that is emitted from the intersection point in the inverse direction of the ray.
Figure 4.1 illustrates our quantum ray marching.

Unlike the classical counterpart or even quantum ray tracing with Grover’s search,
our quantum light transport can process an exponential number of paths in a polynomial
storage and computation cost because the states of ray marching are all superpositioned as
qubits. Our quantum ray marching scales competitively with non-quantum ray marching
for M voxels, which makes it a more feasible future option than quantum ray tracing with
Grover’s search.

Our quantum ray marching works as a quantum evaluation of the integrand f(x) which
allows us to take a superposition of all the possible paths x and construct the qubit |F ⟩. As
a result, our method can handle an exponential number of rays in a polynomial cost (both
storage and time) and simultaneously achieves faster O(1/N) convergence for N estimates,
both of which fundamentally outperform algorithms on non-quantum computers.

27

The above properties cannot be achieved by any of the combinations of classical and
quantum algorithms at the moment. For example, quantum ray tracing with Grover’s
search scales worse than non-quantum ray tracing, and it scales linearly to the number of
rays. One might consider running ray tracing classically, loading the results into qubits, and
performing quantum numerical integration to combine both. This hybrid of non-quantum
ray tracing and quantum numerical integration achieves better scaling for the number of
primitives, though the construction of the qubit |F ⟩ for quantum numerical integration
takes a prohibitive amount of computation (i.e., need to generate all the possible paths x
as an input to a quantum circuit to construct |F ⟩). Our approach is the first to provide
a full pipeline of quantum light transport simulation that would be fundamentally faster
than non-quantum counterparts.

4.2 Ray Marching as a Random Walk

Given a camera configuration and a pixel, we assume that we have already found the first
hit point of a ray through the pixel. This initialization step can be done on a non-quantum
or quantum computer using the existing methods. Though we could start the walk from
the camera, we choose to cast the ray on a classical computer for two reasons. The first
is that, since the air in the scene is not a participating media, it will have no effect on
the actual value that we hope to sample but will allow the walk to be much shorter as
we do not have to take all the initial steps that will not impact the sample. The second
reason that we do this is that it separates the initial rays from the effects of the rounding
to some extent. If we started the walk from the camera, then we would need to be able to
represent all the different rays that are sent through the camera. As the number of pixels
in the image increases, the difference between these rays becomes finer, thus many qubits
would be needed to differentiate between the rays that go through each pixel. By first
casting the ray classically we can side step this problem. The rounding process at the hit
point will affect the image, as close together pixels may still map to the same point and
direction when they should not. Casting the initial ray classically seeks to minimize the
impact of this to some extent as the rays may hit different points in the scene that they
would not have if the walk had started at the camera. Let us denote the position of this
first intersection point as x0 and the direction of the ray as ω0 and we start a random walk
process.

We define the state of our random walk as a position xi in the 3D space, and it moves
along the ray direction ωi at each step. A scattering event will change the direction to a
new sampled direction ωs if it hits a surface. In classical ray marching, each step i will be

28

formulated as

ωi+1 =

{
ωs (pi is on surface)

ωi (otherwise)
(4.1)

pi+1 = pi +∆V ωi+1 (4.2)

where ∆V is a distance along ωi to the next voxel. To implement this process on a quantum
computer, we naturally choose the equivalent of a random walk for quantum computing,
a quantum walk [2].

Both quantum and random walks transition from their current states to the new one
step by step. The key difference is that, instead of deciding on a single state to visit at
each step, a quantum walk creates a superposition of states at each step as if we were to
step in every possible direction at each xi. For instance, if we have n possible (discretized)
scattering directions, a quantum walk can take all the directions into account by construct-
ing a superposition of all the n directions and the next states can be similarly defined as
a superposition of all the n possible next positions. Each step of a quantum walk thus
becomes

|pi⟩ |ωi+1⟩ = C |pi⟩ |ωi⟩ (4.3)

|pi+1⟩ |ωi+1⟩ = S |pi⟩ |ωi+1⟩ . (4.4)

The unitary matrix C changes |ωi⟩ based on the position of the walker. Similarly, S is
another unitary matrix that moves the walker by ∆V ωi. We evolve the quantum walk
until a desired number of steps are taken, and then measure the resulting quantum state.

Once measured, this qubit collapses the superposition into a single state, giving us
a random state among all the possible paths visited by the walker, proportional to the
probability that the walker was in that state after our chosen number of steps. This
effectively allows for an exponential number of states to be visited by a walker with a
polynomial storage and computation cost.

4.3 Quantum Ray Marching

The ray marching oracle O is defined as

O = P (SCM)sR . (4.5)

29

s

s

p

d

. . .

. . .

. . .

. . .

Path, P

|f(x)⟩

|Le⟩
Sample,M

|Lr⟩

|x⟩
Init, R

Shift, S

|ω⟩ Coin, C

Repeat s times

|0⟩ |Lei ⟩

|0⟩ |Lri ⟩

Figure 4.1: Overview of our ray marching circuit. The Init circuit initializes the position
and direction of the walk. Next, the Sample gate encodes the emitted radiance and re-
flectance of the surface at the given position into a qubit from the |Le⟩ and |Lr⟩ registers.
After, the Coin gate scatters the ray in superposition over the outgoing directions. Finally,
the Shift gate steps one unit along the ray. This process is repeated for each step of the
walk. After all the samples are taken, Path, expanded in figure 4.2, evaluates the samples
stored in |Le⟩ and |Lr⟩ to evaluate f(x) for all the paths in superposition.

30

The first gate, R, initializes the state of the walker at the position and direction of the first
intersection of the ray that was cast classically. Once the initial state has been created,
the sample gate, M is applied. Unlike a regular walk, we are interested in sampling the
paths along the walk and not simply the final state. This means that we must store the
information at each position along the walk, x̃. Trivially storing each position along the
path in a separate register using controlled X,-gates would allow us to store the vertices
visited at each step but would mean that as the scene grew in size the number of qubits
needed would rapidly grow past what is currently possible to simulate. Instead, we need
to store the samples in a more qubit efficient way. As the values that we wish to store
are all normalized in the range of [0, 1], amplitude encoding is a natural fit for the storing
the samples. This motivates the construction of M . M encodes the light emitted, Le, and
reflected Lr, into two qubits via amplitude encoding the value in the 1 state of the qubit.
This is done using a series of controlled RY gates. Each gate is controlled by the current
position of the walker and applies a rotation of sin−1(

√
Lx).

M |x⟩ |0⟩ |0⟩ = |x⟩ (
√
1 + Le |0⟩+

√
Le |1⟩)(

√
1 + Lr |0⟩+

√
Lr |1⟩) (4.6)

The next two gates are the shift and walk gates and are defined similarly to that of
the coined quantum walks defined in Chapter 3. The coin gate governs the movement of
the rays through the scene. As the surface material, or lack thereof in the case of the air
in the scene, changes based on the position, the coins will be controlled by the position of
the walker.

C |x⟩ |ω⟩ = |x⟩ |ρ(x, ω)⟩ (4.7)

The coin must scatter the rays proportionally to the BSDF that is defined for the material at
the given position. This is done by transferring the amplitude from the incoming direction
to the outgoing directions. The coin operator may be defined as:

C =
∑
x∈X

|x⟩ ⟨x| ⊗ Cx (4.8)

where Cx is the coin that is defined for the given point in the scene. We present several of
these coins in the following section.

Finally, the shift gate, S moves the walker from its current position, represented in |x⟩
based on the direction in |ω⟩.

S |x⟩ |ω⟩ = |x+ ω⟩ |ω⟩ (4.9)

Implementing a quantum adder is not quite a solved problem and the representation of the
direction and position vectors will govern the implementation of the gate.

31

4.3.1 Coin Gates

Coins represent ray-surface (non)interactions in our quantum ray marching. We have three
different coins, one models the air, the other two coins model different surfaces. The air
coin models the non-participating medium that fills the space in the scene and is thus
simply the identity gate:

Cair = I . (4.10)

The first surface coin is the perfectly specular surface coin. As a perfectly specular
surface simply reflects incoming light at an angle depending on the normal of the surface,
this coin is fairly trivial. The coin will be dependent on the surface normal at the point
of the scene, but that is known at the construction time of the circuit, and thus we are
able to encode that in the gate directly. For a given surface normal, the specular coin is
then a permutation matrix that maps incoming directions to outgoing directions. Since
Permutation matrices are guaranteed to be unitary this gate can be implemented in the
circuit.

Cspecular(N) = P (4.11)

Pij =

{
1 if direction i is relected out in direction j

0 other wise
(4.12)

The behavior of the gate is such that it maps the incoming vector to the appropriate match-
ing reflected direction over the normal of the surface. This mapping can be precalculated
and a circuit constructed that carries out this mapping.

The final surface coin that we present is the Lambertian surface coin. Lambertian sur-
faces are perfectly diffuse surfaces. As such, they evenly scatter light in every direction,
and appear the same regardless which direction they are viewed from. Since these surfaces
scatter light uniformly, the resulting superposition of directions should be an even super-
position over the outgoing directions. The difficulty in this is that many ray directions may
map to the same resulting distribution of scattered rays. Since all quantum gates must be
reversible, it may seem like this scattering behavior should not be possible. One potential
solution would be to use a new register for the direction at each step. This would make
our circuits much wider than we would like as we would need an additional d qubits for
each step. Instead, we make use of the fact that the amplitude of a state may be negative.
This allows us to map the input ray directions to different quantum states by changing
the signs of the amplitudes. By mapping each incoming direction to a unique quantum
state in this fashion, we can construct a unitary matrix that enables the desired scattering
behavior while still being reversible.

32

4.3.2 Quantum Evaluation of f(x)

Just being able to sample a path x is not sufficient for a full pipeline of quantum light
transport simulation. We should evaluate the contribution function f(x) in a quantum
circuit where x is potentially a superposition of many paths represented as qubits.

The result of the previous step is a quantum state encoding the samples along the light
paths that have been traced.

s⊗
i=0

|Le
i ⟩ |Lr

i ⟩ (4.13)

Where |Le
i ⟩ and |Lr

i ⟩ are the qubits storing the emitted and reflected light at the ith step
of walk. Before we can apply any form of quantum amplitude estimation to this state,
we need to calculate f(x) using the values encoded in these qubits. To achieve this we
construct the circuit P ,

P |0⟩
s⊗

i=0

|Le
i ⟩ |Lr

i ⟩ = (

√
1− f(x)2 |0⟩+ f(x) |1⟩)

s⊗
i=0

|Le
i ⟩ |Lr

i ⟩ (4.14)

f(x) =
s∑

i=0

Le
i

i−1∏
k=0

Lr
k . (4.15)

Evaluating f(x) requires the ability to add and multiply the values encoded in the am-
plitude of the sample qubits. Our method for doing this can be seen in Figure 4.2. Our
approach takes inspiration from the work of Wang et al. [39]. Enough ancillary qubits are
used to basis encode the number of steps that the walk takes. These are used to create a
superposition over the number of steps that were taken in the walk, allowing us to control
which multiplication we are adding to the output qubit. We perform these multiplications
using multi-controlled X gates. Each gate will be controlled by the step number and all
the samples that are needed to compute that term of the sum. The resulting amplitude,
f ′(x), is

f ′(x) =
s∑

i=0

1

s
Le
i

i−1∏
k=0

Lr
k (4.16)

where s is the number of steps that were taken. This means the resulting mean estimation
value, F ′, will be scaled by a factor of 1/s but F may be recovered simply by multiplying
by s.

33

Le0 Le1 Le2 Le3

Lr0 Lr
[0,1]

Lr
[0,2]

00 01 10 11

|0⟩ |f ′(x)⟩

|Le⟩
|Lr⟩

|Steps⟩ H

Figure 4.2: The internals of the Path gate for a three step walk. Each multi-controlled X
gate calculates one of the terms of the sum in equation 4.16. The ancillary register, |Steps⟩
is used to select the term of the sum.

4.4 Implementation

We list several implementation details that we chose for our experiments. Other choices
are potentially feasible, but we explain the reasoning behind our choices below.

4.4.1 Encoding of Numbers

We encode the origin and direction via basis encoding, which can be thought of as fixed-
point binary encoding of values as states. Basis encoding allows us to perform essentially
the same class of computations on binary numbers as non-quantum computers can do.
Another option is amplitude encoding, which encodes a value as a magnitude of a specific
state, allowing us to represent a real number with an amplitude value. Arbitrary arithmetic
operations on amplitudes are considered more challenging. For origins, the integer part
represents a 3D voxel index, and the fractional part represents a sub-voxel location within
the corresponding voxel. For directions, rather than representing a direction vector as
three values, we tabulate a predefined set of directions as a 1D table of 3D vectors and
index it via one integer value. It is still considered a form of basis encoding since one state
corresponds to one direction. We found that this representation dramatically simplifies
stepping along the ray and scattering of rays.

4.4.2 Scene Representation

We choose to represent a scene as a voxel grid for simple lookup and indexing of the
needed scene information. At each voxel, we store the following material properties: emit-
ted radiance, reflectance, (averaged) surface normal, and type of that voxel. We make

34

two assumptions to simplify the circuit construction, the emitted radiance is uniform in
all directions and all surfaces are Lambertian. The voxel type defines how the rays are
scattered as described already. The scene description will need to be built as a quantum
circuit (conceptually the same as procedural modeling) since current quantum computers
have no model of memory or storage. It is, however, not a fundamental requirement of
our quantum ray marching, and we expect that a quantum storage will allow us to store a
scene description, similar to how a scene is stored in non-quantum computers.

4.4.3 Direction Look-up Table Construction

As quantum computers are still at the level of circuits, implementing complex algorithms
is difficult as operations that would normally be trivial, such as adding, require the con-
struction of specialized circuits. To help facilitate the construction of the circuits presented
above, some approximations were made to the standard ray marching that would be typi-
cally implemented on a classical computer. The main approximation that is made is that a
look-up table of directions must be defined before circuit construction. This lookup table
greatly simplifies the implementation of both the surface coins and the shift operator.

Our method does not rely on any particular implementation for defining this lookup
table, uniformly sampling of the unit sphere will be chosen for the results presented in
the following chapters, though empirically random sampling can provide better results
when the number of directions used is small. It is important to note that the resolution
of the lookup table effects the scaling of the circuit. The position of the walker must be
represented with a high enough resolution such that at any step the addition of any two
vectors will result in the walker arriving at a unique final location when starting from the
same initial location. Failing to do this, will result in the direction of the lookup table not
being accurately applied to the position of the walker. Also, the look-up of the appropriate
vector to apply at each step is linear in the number of directions since there are no efficient
memory lookups on quantum computers. This means that the depth of the circuit grows
linearly as the number of directions increases.

4.4.4 Coin Gate Construction

Once the lookup table is defined we can then construct the circuit based on the scene
and set of directions. The shift operator is implemented by controlled increment and
decrement gates that add the constant values to the position register, controlled by the
direction register. The coin operator is built out of the many controlled coin gates. Each

35

coin gate is controlled from the position of the walker based on what voxels the walker
is currently in. The coins function as a mapping from the incoming direction ID to a set
of outgoing IDs. For the air, each ID is mapped to itself. Since this operation has no
effect, these gates are skipped in the circuit construction, but it can be helpful to think of
them conceptually being the identity gate as then it may be treated the same as any other
coin present in the scene. The specular coin is a 1-to-1 mapping of directions whereas
the Lambertian coin is a 1 to many mapping. The exact directions that are elected for
the mappings may differ depending on how the set of directions that was used, but the
directions and weights must be selected such that they respect the properties of BSDF
that the coin is emulating.

4.4.5 Mean Estimation

The result of running our proposed circuit is a qubit that stores F ′ at the desired point
in the scene in the amplitude of the 1 state. To retrieve this value, we choose to use the
approach from Nakaji [25]. Though we are not limited to this specific approach, it offers
several features that complement our goals. Unlike the work by Johnston [14], the method
by Nakaji [25] is similar to the method by Shimada and Hachisuka [32] in that it does
not use phase estimation to accomplish this task. As identified by the prior work [32], we
found that the use of amplitude amplification instead of phase estimation allows us to cut
down on the number of qubits and multi qubit gates that are needed.

36

Chapter 5

Results

We conducted three numerical experiments to verify our method. First we verify that our
method is capable of simulating quantum light transport by rendering a 2D light map. We
then modified our method to simulate 3D scenes in a given limited framework for quantum
computing at the moment. Finally, we verified that our method can achieve the claimed
convergence rate of quantum numerical integration.

5.1 Fully Quantum 2D Light Transport

Unfortunately, even modern quantum computers are not yet robust enough to run our
complete circuit for general 3D scenes. We thus tested our method by simulating the
quantum circuit for 2D ray marching on a classical computer. We choose to test our
method on a 2D scene as simulating circuits of this complexity is very computationally
expensive and stepping down to 2D allows for modelling of more complicated scenes with
the same computational budget. We model the scene as a 8 × 8 grid. At each cell, we
store the same information that we would store in a 3D scene. The only change is that
the directions are now defined on a unit circle instead of a sphere. We use our method to
create a light map by sampling the incoming light at the center of every cell in the scene.
We then use the resulting light map to render a higher resolution image, using bilinear
interpolation to sample from the light map. Even in this simplified problem setting, this
approach takes roughly 5 days to finish simulating all the quantum circuits for the full
image.

Figure 5.1 shows the resulting images of our method. We can see that quantum ray
marching is capable of capturing both direct and indirect lighting in the scene. This is

37

(a) (b)

(c) (d)
Figure 5.1: (a) The 8 × 8 light map of the 2D scene sampled at each point using a
quantum walk of three steps. (b) The same light map generated by tracing exponential rays
classically. (c) The mean square error of the classical and quantum light maps. Besides
some noise, the results match overall. (d) The final higher-resolution image using the
quantum light map

38

best shown by the light being reflected off the colored walls causing some color to spill onto
the floor. Though this is a simple scene compared to modern standards, it shows that our
method can accurately simulate the complicated process of light transport.

5.2 Emulated 3D Light Transport

To evaluate our method on more complicated 3D scenes, we choose to take a different
approach. We developed a classical ray-marcher that samples the scene with the same dis-
cretization and scattering behavior as the quantum method. This yields the same samples
that would be used for the quantum walk but takes exponential time with the number of
steps instead of the linear time that would be taken on a quantum computer. These values
are then used directly in the quantum circuit simulation in place of the quantum walk. We
call this approach emulated to distinguish it from the fact that our 2D results are from
simulation of quantum computers. It allows us to validate the properties of our method,
and nothing has been fundamentally compromised, except that the actual running time is
now exponential.

To further simplify the quantum circuit, we limit the total number of paths that are
used. These paths are selected at random from the set of total paths and are then used to
initialize |Le⟩ and |Lr⟩. At this point, we can apply our path processing circuit to generate
the final path contribution. We then use the amplitude estimation method [25] to estimate
the final value.

Figures 5.2 and 5.3 show the results. The images still do contain noise due to the limited
number of paths used to keep runtimes at a reasonable length. Unlike previous quantum
ray tracing methods [24, 30], our approach easily handles paths with multiple bounces as
well as other effects such as soft shadows with no changes to the base implementation.

5.3 Convergence Rates

To compare convergence rates, we need a common metric for computation cost, which
is difficult as how the methods function are inherently different. We choose to use the
”number of samples” in MC integration or quantum amplitude estimation as the common
metric. This means, for the classical method, we will be using the number of paths traced,
and, for our method, we will use the number of times our ray marching circuit is executed.
We argue that this is a fair metric as it is the way in which both methods sample from

39

Figure 5.2: A modified Cornell box rendered with our method using 32 paths per pixel
(structural noise is due to limitations of simulation of quantum computing)

40

Figure 5.3: Different test scene of two spheres in a box with an overhead light rendered
by the same algorithm. While the result is very noisy due to the current limitations of
the quantum computing environment we used, the image shows how shadows and some
interreflections can be captured via a fully quantum algorithm for the first time.

41

the scene. We could have used the ”number of light transport paths” per evaluation where
our method will have exponentially many more paths for one evaluation, but we believe it
is unfair for MC integration since our quantum method cannot read out such a result F ′

directly.

Figure 5.4 shows that our method does converge with the expected behavior. The
classical MC method has the expected convergence with a slope of about −0.471. Our
method actually has a better than expected result with a slope of about −1.407. While
this convergence is better than the classical approach, the actual error of our method does
initially start higher than classical MC. The reason for this behavior is likely because the
first few samples are to simply generate an MC error bounds on the value. We do not
benefit from the improved convergence during this step of quantum mean estimation.

42

Figure 5.4: The convergence plot. Our quantum light transport simulation with quantum
ray marching (blue) converges asymptotically faster than classical MC rendering (green).

43

Chapter 6

Arbitrary Materials

6.1 Motivation

The work presented in previous chapters can be extended to allow the rendering of scenes
containing more arbitrary materials than purely specular or Lambertian materials. This
would make the method more useful and closer to a viable alternative to rendering on
classical computers. Being able to render arbitrary materials would mean that any scene
that can be represented as a voxel grid could be rendered with the method that we present

As presented in Chapter 2 the BRDF defines the properties of how light interacts with
a surface and scatters back into the scene. To render materials properly, the scattering
behavior of the BRDF must be represented in a method that can be used in the simulation.
These functions define a PDF over the hemisphere that governs the probability that an
incoming ray is scattered in any given direction. Thus, to be able to handle a broader
array of materials in this quantum ray marching framework, the corresponding PDF of the
material must be able to be represented in the framework. Since the operation will need
to run on a quantum computer, it must be a unitary operation. This poses a challenge
as it is not immediately obvious how to do this or if the PDF can even be converted to a
unitary operator.

6.2 BRDF to Transition Matrix

To create a method to that is capable of representing more arbitrary materials, it will be
helpful to reformat the BRDF and its PDF to a representation that more closely resembles

44

those presented in quantum computing literature. The first step in doing this is to discretize
the BRDF over the set of directions that will be used. This is done so that it may be
represented in the quantum walk. When doing this, it is important that the reciprocity
of the BRDF is preserved. Doing so may require modifications to the original BRDF as
not all possible directions that the BRDF was originally defined over will be represented.
Unlike on a classical computer, where failing to have a BRDF that is reciprocal would
just lead to images that are not physically accurate, for a quantum BRDF this is one of
the properties that allows us to efficiently implement the BRDF. As well, unlike in the
classical method, the BRDF should be defined over the hemisphere at a given point in the
scene. This impacts the directions that would typically be below the surface. This is not
of concern as long as the scene construction does not allow a surface to be intersected from
a direction that it should not be hit by. The scattering behavior of the directions that are
below the surface of the object can be defined in any way so long as it does not prevent
the unitary construction of the total BRDF coin.

Once the BRDF is discretized over the set of directions, obeying reciprocity and con-
servation of energy, it can then be converted into a quantum BRDF to be used in the
quantum ray marching process. Classically, the PDF is then sampled from using one of
a few techniques to choose the direction that light will be scattered in. In the quantum
version of light transport we instead wish to shift the amplitudes proportionally to this
PDF, representing the probability of light scattering in that direction directly.This repeated
scattering of light can be viewed as a Markov process. In this Markov process, the current
state of the system can be defined as the position and direction of the vector. Starting
in this initial state, we can then construct a transition matrix that defines the transitions
between any state in the scene.

6.3 Transition Matrix to Circuit

Using the transition matrix we can finally construct the circuit for the quantum walk.
Unfortunately, the transition matrix in general is not a unitary matrix. There is a large
amount of work on quantum walks for arbitrary graphs. The most relevant technique is
the work by Szegedy [34]. Szegedy’s quantum walks are the quantization of a classical
Markov process. Szegedy’s walks function similarly to coin-based walks but differ in the
way that the state space is extended from just the set of vertices. In the coin-based walk,
the state space is extended using the addition of the coin register. This register is used to
represent the direction that the walk will move in. In the Szegedy walk the state space
is instead extended by duplicating the set of vertices, creating two sets; the original set x

45

Figure 6.1: Left: the original graph that we want to run a quantum walk over. Right: the
corresponding bipartite graph that is created to allow for the construction of a Szegedy’s
walk

and the copy y. This second set of vertices are connected to the original such that they
create a bipartite graph between the two sets. The edges of the graph are replaced from
the original and instead the vertices in x are connected to the vertices in y that are the
copy of the vertex in x that would have been connected to. If there was an edge connecting
xi and xi+1 there would instead be an edge connecting xi with yi+1.

With this in mind, the state of the walker is represented by the two registers where |x⟩
is the current position of the walker and |y⟩ is the vertex that it will be at after the next
step of the walk. Much like the coin-based walks, the Szegedy’s walk is also constructed
using a combination of two gates.

U = R2R1 (6.1)

These two operations are reflections around the different vectors defining the basis sates
of the quantum walk. The operators are defined as

R1 = 2
∑
x∈V

|ϕx⟩ ⟨ϕx| − I (6.2)

R2 = 2
∑
y∈V

|ψy⟩ ⟨ψy| − I (6.3)

46

where

ϕx = |x⟩ ⊗
∑
y∈V

√
Pxy |y⟩ (6.4)

ψy =
∑
y∈V

√
Pyx |x⟩ ⊗ |y⟩ . (6.5)

Though they are different ways of framing the problem, it can be shown that the coined
walk and the Szegedy’s walk are equivalent [28]. Portugal [28] show that every step of the
Szegedy’s walk is equal to two steps of the coined walk. In fact, the operator R1 can be
shown to be equal to the coin operator in the coin-based walk. This is helpful as it provides
insight into how walks that would be difficult to design in the coin based quantum walk
can be implemented. Specifically, the work by Wong [44] presents a framework for building
coin-based walks over weighted graphs based on this relation between coined walks and
the Szegedy’s walks. The type of walk that is needed for quantum ray marching is similar
to those presented by Wong [44] and as such, the next section of work is heavily based on
that work.

6.4 Implementation

The circuit presented in Chapter 4 must be modified to allow for the new extension. Instead
of having a coin register that represents the direction of the positions in the scene, we must
instead represent the state of the walker as both its current position and direction. Then
the position and direction registers need to be duplicated to create the bipartite graph.
Thus, the state of the system is then

|x0, ω0⟩ |x1, ω1⟩ , (6.6)

where |x0, ω0⟩ is a position direction pair that represents the current state of the system
and |x1, ω1⟩ is the following state. From there our coin can be constructed as follows:

C = 2
∑

xi,ωi∈Ω

|ϕxi,ωi⟩ ⟨ϕxi,ωi | − I (6.7)

ϕxi,ωi = |xi, ωi⟩ ⊗
∑

xj ,ωj∈Ω

√
Pxi,ωi→xj ,ωj |xj, ωj⟩ (6.8)

47

where the shift circuit then simply becomes a swap gate between the two sets of registers.
This provides the benefit of being comparably simpler than the arithmetic circuits that
were previously used.

The rest of the circuit may be kept the same as in Chapter 4 for the sampling as
the register representing the current position and direction have not changed in their
representation.

Unfortunately, this method is significantly more computationally expensive to simulate
as it nearly doubles the number of required qubits. As simulating even the simple scene in
Figure 5.1 took a week, and the doubling of the number of qubits leads to an exponential
increase in the state space, simulating this method is currently impractical for even simple
scenes. For this reason, we choose not to run a simulation of this method. Though in the
future it would be worthwhile to try out this method.

48

Chapter 7

Discussion

7.1 Novelty in Quantum Computing

Though there has been limited work in the field of computer graphics, quantum numerical
integration been an active area of research in other fields. One of these fields is finance,
where the problem of pricing financial derivatives is classically done via MC integration.
Those prior works [22, 29, 42] have looked at the application of quantum mean estimation
methods for this problem. For these methods, the challenge of state preparation for quan-
tum numerical integration was side-stepped by assuming that the solution to the integral
is readily computable. While this assumption is impractical since this solution is what we
wanted to compute, it allows for such quantum methods to be tested and analyzed. Our
work, in contrast, shows how to exactly compute the integrand for the path integral for light
transport on quantum computers, and we numerically tested our method without making
this impractical assumption. The most similar work to our method is by Chakrabarti et al.
[7]. They proposed to use quantum random walks to estimate the volume of a given shape.
Their method uses continuous quantum walks and simulated annealing in contrast to our
approach that relies on discrete walks and mean estimation.

7.2 Complexity Scaling of Quantum Circuit

There are two metrics in which a quantum circuit can scale and both of them are important
for the usability of an algorithm. The first is the width of the circuit, or how many qubits
are needed. With current quantum computers being very limited in the number of qubits,

49

this is a large restriction in being able to run on physical devices. It is also an issue
for simulating the circuit on a classical computer as the size of the quantum state grows
exponentially in the number of qubits. Our approach scales in O(s + log(p) + log(d)) in
the number of qubits needed. That is, it scales logarithmically in the number of positions
p along an axis and directions d that can be represented in the scene, but linear in the
number of steps s needed.

This scaling could be improved to also be logarithmic, but it would require that the
light samples be stored via basis encoding. This is fine, but it means that the simple
controlled Ry gates used to encode the material properties of the scene would need to be
replaced with more complicated arithmetic circuits. This would greatly affect the other
important scaling dimension of circuit depth.

The other important metric is the depth of the circuit. Our proposed circuit scales in
depth by O(s(p3+d)). Scaling cubically in scene size is not ideal, but it is still viable. The
main issue is that quantum computers do not have any form of memory or storage that can
be referenced. This restriction means that each voxel must be represented in the circuit.
As there are p3 voxels, we get p3 gates at each step. This analysis is only in the worst case
though, as in practice there is often overlap in the material properties between different
voxels, allowing us to simplify the circuit to use fewer gates by combining gates. This
issue would be entirely negated if quantum random memory were to be invented [9]. In
that case, the material values could then be accessed in a similar method as on a classical
computer, removing the material lookup from the circuit depth.

7.3 Quantum Primitive

Computing a 3D translation (3 additions) via homogeneous matrix multiplication (16 mul-
tiplications and 12 additions) appears to be a remarkably inefficient design choice at first.
However, translations are pervasively computed this way in graphics. It offers two system-
wide advantages even though the individual unit appears suboptimal. Mapping translation
to a matrix product allows a single computational unit of abstraction to many different
operations rather than requiring bespoke hardware and APIs for each. By mapping those
operations to the common computational substrate of homogeneous matrix multiplica-
tion, it also allows end-to-end optimization and avoids conversion between domains (e.g.,
between matrices and individual vectors and quaternions for the operations).

Similarly, there is a value of having quantum primitives to combine into quantum cir-
cuits, even in cases where there is no efficiency gain for performing that primitive in the

50

quantum domain. It avoids a larger task having to leave the quantum realm, enables end-
to-end optimization, and allows reuse of generic quantum elements instead of requiring
bespoke ones. A foreseeable future would be to have a quantum co-processor, quantum
computing unit (QPU) [15], that acts like a GPU but performs quantum computation
in tandem with non-quantum processors. For the graphics community, the current state
of quantum computers would be reminiscent of the early stages of programmable GPUs
where the number of instructions were quite limited. This is a core system design issue.
We make observations for quantum-classical hybrid computation. It has also been seen
in (fiber-)optical-electrical switching in routers, GPU-CPU computation for rendering and
high-performance computing, tensor core-ALU for machine learning, and digital-analog for
signal processing. In each case, avoiding a domain switch for subunits is more critical for
net efficiency than having every subunit implemented in the individually most efficient
way. For example, when working on a machine learning pipeline, it is often more effi-
cient to remain in the deep neural net structure even for units of the pipeline for which
analytic solutions are known, because it allows end-to-end solutions entirely within one
computational framework.

7.4 Limitations

While our framework is quite general, there are some limitations that mostly come from
our current implementation. Foremost is its reliance on large many-qubit gates. Current
generation quantum computers only support a limited set of one and two qubit gates, so
these larger gates need to be decomposed into many gates, greatly increasing the depth
of the circuit. The increase in the depth in turn increases the amount of time the system
needs to stay coherent, and eventually leads to the chance of errors. The other limitation
is the use of angle encoding to store the sample values limits the light values that can be
defined. We thus need to have a separate scaling to represent a light value greater than 1.
It likely would be possible to use basis encoding for the samples but doing so would lead
to even more complicated circuits.

7.5 Future Work

Though we are only capable of modelling and rendering simple scenes currently, this is not
a fundamental issue of our method but instead a limitation on the current capabilities of

51

quantum computers (and quantum simulation). Being able to numerically test and verify
our method on more complex scenes with a broader set of materials would be interesting.

Ray marching was chosen as the method of finding the ray scene intersections for this
work, but the approach of generating light paths with a quantum walk should not limited
to ray marching. To extend the method to ray tracing, the shift operator in the discrete
quantum walk would need to be modified to compute the first intersection along the ray
direction. This change would save the method from having to make many steps before
hitting a surface. This would in turn greatly mean less steps of the quantum walk would
be needed. We are also interested in running our algorithm on actual quantum computers
once they became capable of running our 3D approach.

52

References

[1] Dorit Aharonov. A simple proof that toffoli and hadamard are quantum universal,
2003.

[2] Yakir Aharonov, Luiz Davidovich, and Nicim Zagury. Quantum random walks. Phys.
Rev. A, 48:1687–1690, Aug 1993. doi: 10.1103/PhysRevA.48.1687. URL https:

//link.aps.org/doi/10.1103/PhysRevA.48.1687.

[3] Carolina Alves, Lúıs Paulo Santos, and Thomas Bashford-Rogers. A Quantum
Algorithm for Ray Casting using an Orthographic Camera. In 2019 Interna-
tional Conference on Graphics and Interaction (ICGI), pages 56–63, 2019. doi:
10.1109/ICGI47575.2019.8955061.

[4] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman
Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Ele-
mentary gates for quantum computation. Phys. Rev. A, 52:3457–3467, Nov 1995. doi:
10.1103/PhysRevA.52.3457. URL https://link.aps.org/doi/10.1103/PhysRevA.

52.3457.

[5] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quan-
tum searching. Fortschritte der Physik: Progress of Physics, 46(4-5):493–505, 1998.

[6] Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude
amplification and estimation. Contemporary Mathematics, 305:53–74, 2002.

[7] Shouvanik Chakrabarti, Andrew M. Childs, Shih-Han Hung, Tongyang Li, Chunhao
Wang, and Xiaodi Wu. Quantum algorithm for estimating volumes of convex bodies.
ACM Transactions on Quantum Computing, 4(3), may 2023. ISSN 2643-6809. doi:
10.1145/3588579. URL https://doi.org/10.1145/3588579.

53

https://link.aps.org/doi/10.1103/PhysRevA.48.1687
https://link.aps.org/doi/10.1103/PhysRevA.48.1687
https://link.aps.org/doi/10.1103/PhysRevA.52.3457
https://link.aps.org/doi/10.1103/PhysRevA.52.3457
https://doi.org/10.1145/3588579

[8] D. Deutsch. Quantum computational networks. Proceedings of the Royal Society of
London. Series A, Mathematical and Physical Sciences, 425(1868):73–90, 1989. ISSN
00804630. URL http://www.jstor.org/stable/2398494.

[9] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random access
memory. Phys. Rev. Lett., 100:160501, Apr 2008. doi: 10.1103/PhysRevLett.100.
160501. URL https://link.aps.org/doi/10.1103/PhysRevLett.100.160501.

[10] Dmitry Grinko, Julien Gacon, Christa Zoufal, and Stefan Woerner. Iterative quantum
amplitude estimation. npj Quantum Information, 7(1):52, 2021.

[11] Lov K. Grover. A fast quantum mechanical algorithm for database search. In
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Comput-
ing, STOC ’96, page 212–219, New York, NY, USA, 1996. Association for Com-
puting Machinery. ISBN 0897917855. doi: 10.1145/237814.237866. URL https:

//doi.org/10.1145/237814.237866.

[12] John C Hart. Sphere tracing: A geometric method for the antialiased ray tracing of
implicit surfaces. The Visual Computer, 12(10):527–545, 1996.

[13] Henrik Wann Jensen. Realistic image synthesis using photon mapping, volume 364.
Ak Peters Natick, 2001.

[14] Eric R. Johnston. Quantum supersampling. In ACM SIGGRAPH 2016 Talks, SIG-
GRAPH ’16, page 1. Association for Computing Machinery, 2016. ISBN 978-1-4503-
4282-7. doi: 10.1145/2897839.2927422. URL https://doi.org/10.1145/2897839.

2927422.

[15] Eric R. Johnston, Nic Harrigan, and Mercedes Gimeno-Segovia. Programming Quan-
tum Computers: Essential Algorithms and Code Samples. O’Reilly Media, 2019. ISBN
9781492039631. URL https://books.google.ca/books?id=SKegDwAAQBAJ.

[16] Karthik S. Joshi, S. K. Srivatsa, and R. Srikanth. Path integral approach to one-
dimensional discrete-time quantum walk, 2018.

[17] Karuna Kadian, Sunita Garhwal, and Ajay Kumar. Quantum walk and its application
domains: A systematic review. Computer Science Review, 41:100419, 2021. ISSN
1574-0137. doi: https://doi.org/10.1016/j.cosrev.2021.100419. URL https://www.

sciencedirect.com/science/article/pii/S1574013721000599.

54

http://www.jstor.org/stable/2398494
https://link.aps.org/doi/10.1103/PhysRevLett.100.160501
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/2897839.2927422
https://doi.org/10.1145/2897839.2927422
https://books.google.ca/books?id=SKegDwAAQBAJ
https://www.sciencedirect.com/science/article/pii/S1574013721000599
https://www.sciencedirect.com/science/article/pii/S1574013721000599

[18] James T Kajiya. The rendering equation. In Proceedings of the 13th annual conference
on Computer graphics and interactive techniques, pages 143–150, 1986.

[19] J Kempe. Quantum random walks: An introductory overview. Contemporary physics,
44(4):307–327, 2003. ISSN 0010-7514.

[20] Marco Lanzagorta and Jeffrey K. Uhlmann. Hybrid quantum-classical computing with
applications to computer graphics. In ACM SIGGRAPH 2005 Courses, SIGGRAPH
’05, pages 2–es. Association for Computing Machinery, 2005. ISBN 978-1-4503-7833-8.
doi: 10.1145/1198555.1198723. URL https://doi.org/10.1145/1198555.1198723.

[21] Christiane Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling. Springer Series
in Statistics. Springer New York, 2009. ISBN 9780387781655. URL https://books.

google.ca/books?id=wj5OyydZ5bkC.

[22] Yongming Li and Ariel Neufeld. Quantum monte carlo algorithm for solving black-
scholes pdes for high-dimensional option pricing in finance and its proof of overcoming
the curse of dimensionality, 2023.

[23] Xi Lu and Hongwei Lin. Improved quantum supersampling for quantum ray tracing,
2022.

[24] Xi Lu and Hongwei Lin. A framework for quantum ray tracing, 2022.

[25] Kouhei Nakaji. Faster Amplitude Estimation. 20:1109–1123, 2020. ISSN 15337146,
15337146. doi: 10.26421/QIC20.13-14-2. URL http://arxiv.org/abs/2003.02417.

[26] Carlos Navarrete-Benlloch. Introduction to quantum optics, 2022.

[27] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Rendering: From
Theory to Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 3rd edition, 2016. ISBN 0128006455.

[28] Renato Portugal. Establishing the equivalence between szegedy’s and coined quantum
walks using the staggered model. Quantum Information Processing, 15:1387–1409,
2015.

[29] Patrick Rebentrost, Brajesh Gupt, and Thomas R Bromley. Quantum computational
finance: Monte carlo pricing of financial derivatives. Physical Review A, 98(2):022321,
2018.

55

https://doi.org/10.1145/1198555.1198723
https://books.google.ca/books?id=wj5OyydZ5bkC
https://books.google.ca/books?id=wj5OyydZ5bkC
http://arxiv.org/abs/2003.02417

[30] Lúıs Paulo Santos, Thomas Bashford-Rogers, João Barbosa, and Paul Navrátil. To-
wards Quantum Ray Tracing. 2022. URL http://arxiv.org/abs/2204.12797.

[31] Benjamin Schumacher. Quantum coding. Phys. Rev. A, 51:2738–2747, Apr 1995. doi:
10.1103/PhysRevA.51.2738. URL https://link.aps.org/doi/10.1103/PhysRevA.

51.2738.

[32] Naoharu H. Shimada and Toshiya Hachisuka. Quantum coin method for numerical
integration. Computer graphics forum, 39(6):243–257, 2020. ISSN 0167-7055.

[33] Shlomi Steinberg, Pradeep Sen, and Ling-Qi Yan. Towards practical physical-
optics rendering. ACM Transactions on Graphics, 41(4):1–13, Jul 2022. doi:
10.1145/3528223.3530119.

[34] M. Szegedy. Quantum speed-up of markov chain based algorithms. In 45th Annual
IEEE Symposium on Foundations of Computer Science, pages 32–41, 2004. doi: 10.
1109/FOCS.2004.53.

[35] Eric Veach and Leonidas Guibas. Bidirectional estimators for light transport. In
Photorealistic Rendering Techniques, pages 145–167. Springer, 1995.

[36] Eric Veach and Leonidas J Guibas. Optimally combining sampling techniques for
monte carlo rendering. In Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pages 419–428, 1995.

[37] Salvador Eĺıas Venegas-Andraca. Quantum walks: a comprehensive review. Quantum
information processing, 11(5):1015–1106, 2012. ISSN 1570-0755.

[38] Ingo Wald and Vlastimil Havran. On building fast kd-trees for ray tracing, and on
doing that in o (n log n). In 2006 IEEE Symposium on Interactive Ray Tracing, pages
61–69. IEEE, 2006.

[39] Shengbin Wang, Zhimin Wang, Guolong Cui, Lixin Fan, Shangshang Shi, Ruimin
Shang, Wendong Li, Zhiqiang Wei, and Yongjian Gu. Quantum Amplitude Arith-
metic. 2020. URL http://arxiv.org/abs/2012.11056.

[40] Manuela Weigold, Johanna Barzen, Frank Leymann, and Marie Salm. Data encoding
patterns for quantum computing. In Proceedings of the 27th Conference on Pattern
Languages of Programs, PLoP ’20, pages 1–11. The Hillside Group, 2022. ISBN 978-
1-941652-16-9.

56

http://arxiv.org/abs/2204.12797
https://link.aps.org/doi/10.1103/PhysRevA.51.2738
https://link.aps.org/doi/10.1103/PhysRevA.51.2738
http://arxiv.org/abs/2012.11056

[41] Turner Whitted. An improved illumination model for shaded display. In ACM Siggraph
2005 Courses, pages 4–es. 2005.

[42] StefanWoerner and Daniel J Egger. Quantum risk analysis. npj Quantum Information,
5(1):15, 2019.

[43] Daniel K Wójcik and JR Dorfman. Diffusive-ballistic crossover in 1d quantum walks.
Physical review letters, 90(23):230602, 2003.

[44] Thomas G. Wong. Coined quantum walks on weighted graphs. Journal of Physics A:
Mathematical and Theoretical, 50, 2017.

57

Appendix

Proof of Exponential Paths

To illustrate how our method can evaluate an exponential number of paths relative to the
number of steps in the walk, we apply our method to evaluate the integral along some
function f(x) on a 1D line. We choose to evaluate our method this way as this setting
allows for analysis of the paths traced by the walk compared to a more complicated domain
of light paths in a 3D scene.

To analyze the paths of the walk we will be following the work of Joshi et al. [16].
Beginning with an initial state

|ψ0⟩ = |x0⟩ ⊗ (α |↑⟩+ eiϕβ |↓⟩)
s⊗

|0⟩ , (1)

where x0 is the initial position of the walker. The direction register is set to (α |↑⟩+eiϕβ |↓⟩),
with α and β being real values, where |↑⟩ implies heading to the right and |↓⟩ is to the
left. The remaining qubits will be used to store the samples along the walk. In the full
rendering approach, 2s qubits would be needed as we sample 2 values at each step, but

only 1 sample is needed for this task. Evolving the system using a coin of C =

[
1 0
0 −1

]
results in

|ψ1⟩ = SCM |ψ0⟩ = (α |x1⟩ |↑⟩ |s0⟩ − eiϕβ |x−1⟩ |↓⟩ |s0⟩)
s−1⊗

|0⟩ . (2)

Joshi et al. [16] show that for a 1D walk, the number of potential paths doubles at each
step. This means the total number of paths after n steps will be equal to 2n giving us an
exponential number of paths that could be traced. Unlike most quantum walk works, our
method is interested in the result of the paths of the walk and not the vertices that are

58

reached at the end of the walk. As the walk progresses and the state evolves, we sample
the f(x) at each position visited by the walker using the M circuit described in the main
paper. This captures the path that was taken by the walker. The circuit M does not
depend on the walk, depending solely on the current position of the walker, so it is able to
capture the paths in the more complicated domain of rendering. Similarly to the 1D walk,
there will also be a similar exponential branching as the light is scattered at each diffuse
surface.

59

	Author's Declaration
	Abstract
	Acknowledgements
	List of Figures
	Introduction
	Contributions
	Organization

	Physically Based Rendering
	Models of Optics
	Light Propagation
	Physically Based Rendering
	Monte Carlo Integration
	Monte Carlo Rendering
	Variance Reduction
	Ray Marching
	Sphere Marching

	Quantum Computing
	Basics of Quantum Computing
	Qubits
	Hilbert Space and Bloch Sphere
	Gates
	Quantum Circuit Diagrams

	Grover's Search
	Amplitude Estimation
	Quantum Numerical Integration
	Quantum Walks
	Types of Quantum Walks
	Discrete Quantum Walks

	Quantum Computing in Computer Graphics
	Grover's Ray Tracing
	Quantum Super Sampling

	Quantum Light Transport
	Overview
	Ray Marching as a Random Walk
	Quantum Ray Marching
	Coin Gates
	Quantum Evaluation of f(x)

	Implementation
	Encoding of Numbers
	Scene Representation
	Direction Look-up Table Construction
	Coin Gate Construction
	Mean Estimation

	Results
	Fully Quantum 2D Light Transport
	Emulated 3D Light Transport
	Convergence Rates

	Arbitrary Materials
	Motivation
	BRDF to Transition Matrix
	Transition Matrix to Circuit
	Implementation

	Discussion
	Novelty in Quantum Computing
	Complexity Scaling of Quantum Circuit
	Quantum Primitive
	Limitations
	Future Work

	References
	Appendix

