
Quantifying, Characterizing, and
Leveraging Cross-Disciplinary

Dependencies
Empirical Studies from a Video Game Development Setting

by

Gengyi Sun

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Gengyi Sun 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Continuous Integration (CI) is a common practice adopted by modern software orga-
nizations. It plays an especially important role for large corporations like Ubisoft, where
thousands of build jobs are submitted daily. The CI process of video games, which are
developed by studios like Ubisoft, involves assembling artifacts that are produced by per-
sonnel with various types of expertise, such as source code produced by developers, graphics
produced by artists, and audio produced by musicians and sound experts. To weave these
artifacts into a cohesive system, the build system—a key component in CI—processes each
artifacts while respecting their intra- and inter-artifact dependencies. In such projects,
a change produced by any team can impact artifacts from other teams, and may cause
defects if the transitive impact of changes is not carefully considered.

Therefore, to better understand the potential challenges and opportunities presented by
multidisciplinary software projects, we conduct an empirical study of a recently launched
video game project, which reveals that code files only make up 2.8% of the nodes in the
build dependency graph, and code-to-code dependencies only make up 4.3% of all depen-
dencies. We also observe that the impact of 44% of the studied source code changes crosses
disciplinary boundaries, highlighting the importance of analyzing inter-artifact dependen-
cies. A comparative analysis of cross-boundary changes with changes that do not cross
boundaries indicates that cross-boundary changes are: (1) impacting a median of 120,368
files; (2) with a 51% probability of causing build failures; and (3) a 67% likelihood of
introducing defects. All three measurements are larger than changes that do not cross
boundaries to statistically significant degrees. We also find that cross-boundary changes
are: (4) more commonly associated with gameplay functionality and feature additions that
directly impact the game experience than changes that do not cross boundaries, and (5)
disproportionately produced by a single team (74% of the contributors of cross-boundary
changes are associated with that team).

Next, we set out to explore whether analysis of cross-boundary changes can be leveraged
to accelerate CI. Indeed, the cadence of development progress is constrained by the pace at
which CI services process build jobs. To provide faster CI feedback, recent work explores
how build outcomes can be anticipated. Although early results show plenty of promise,
prior work on build outcome prediction has largely focused on open-source projects that are
code-intensive, while the distinct characteristics of a AAA video game project at Ubisoft
presents new challenges and opportunities for build outcome prediction. In the video game
setting, changes that do not modify source code also incur build failures. Moreover, we
find that the code changes that have an impact that crosses the source-data boundary are
more prone to build failures than code changes that do not impact data files. Since such

iii

changes are not fully characterized by the existing set of build outcome prediction features,
state-of-the-art models tend to underperform.

Therefore, to accommodate the data context into build outcome prediction, we propose
RavenBuild, a novel approach that leverages context, relevance, and dependency-aware fea-
tures. We apply the state-of-the-art BuildFast model and RavenBuild to the video game
project, and observe that RavenBuild improves the F1-score of the failing class by 46%,
the recall of the failing class by 76%, and AUC by 28%. To ease adoption in settings
with heterogeneous project sets, we also provide a simplified alternative RavenBuild-CR,
which excludes dependency-aware features. We apply RavenBuild-CR on 22 open-source
projects and the video game project, and observe across-the-board improvements as well.
On the other hand, we find that a näıve Parrot approach, which simply echoes the previous
build outcome as its prediction, is surprisingly competitive with BuildFast and RavenBuild.
Though Parrot fails to predict when the build outcome differs from their immediate pre-
decessor, Parrot serves well as a tendency indicator of the sequences in build outcome
datasets. Therefore, future studies should also consider comparing to the Parrot approach
as a baseline when evaluating build outcome prediction models.

iv

Acknowledgements

I would like to thank my supervisor, Professor Shane McIntosh, for his pivotal role in
my academic journey, from accepting me as a master’s student to providing internship
opportunity and offering a position as a Ph.D. student in his research group. He is always
passionate about his work and passes on a positive attitude to his students. I will learn
from the attitude and keep going.

I’m profoundly thankful to Dr. Sarra Habchi for her mentorship and guidance. Her
comments are accurate and pinpointing to the core concept, and always lead me to improve
the work.

Special thanks to Professor Chengnian Sun and Professor Pengyu Nie for being my
thesis readers and providing constructive feedback to this thesis.

My sincere thanks go to Xueyao and Zhili for their companionship during the challeng-
ing times of the pandemic. To Mahtab, Adrian, and Albert, who supported me when I
am stressed. To Nimmi, Farshad, Mehran, and all my SWAG labmates, your encourage-
ment was a constant source of motivation. To Yangyang, Zhuoran, Zhuo and Xiya, for our
friendship since high school and every Christmas holiday we spent together since then. To
Huilong, for supporting me going further in academics.

I would like to thank my parents, who support me at all time and in all ways since I
was born. My life would not have been so wonderful without you respect and trust me
making my life decision when I was only 13. Special thank to my mother, you are my life
example as a wise and strong woman.

v

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements v

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Problem Statement . 2

1.2 Thesis Overview . 2

1.3 Thesis Contributions . 4

1.3.1 Empirical Contributions . 4

1.3.2 Technical Contributions . 4

2 Background and Definitions 5

2.1 Build System . 5

2.1.1 Build Dependency Graph . 5

2.2 Build Outcome Prediction . 6

2.3 Characteristics of Project X . 7

vi

2.4 Challenges of Applying Build Outcome Prediction to Project X 9

2.5 Chapter Summary . 10

3 Related Work 12

3.1 Dependency Analytics . 12

3.1.1 Dependency Analytics In Code Reviewer Recommendation 13

3.1.2 Dependency Analytics for the Acceleration of Continuous Integration 13

3.2 Benefit and Cost of CI . 15

3.3 Build Prediction Features . 15

3.4 Chapter Summary . 16

4 Quantifying Cross-Boundary Changes 17

4.1 Introduction . 17

4.2 RQ1: What is missed by a typical code-only dependency graph? 20

4.3 RQ2: How often does the impact of a change cross disciplinary boundaries? 21

4.4 RQ3: How risky are cross-boundary changes? 23

4.5 Chapter Summary . 24

5 Characterizing Cross-Boundary Changes 25

5.1 Introduction . 25

5.2 RQ4: Which activities are performed during cross-boundary changes? . . . 26

5.3 RQ5: Who produces cross-boundary changes? 30

5.4 Practical Implications . 31

5.5 Threats to Validity . 32

5.5.1 Construct Validity . 32

5.5.2 Internal Validity . 32

5.5.3 External Validity . 33

5.6 Chapter Summary . 33

vii

6 Context, Relevance, and Dependency-Aware Build Outcome Prediction:
RavenBuild 34

6.1 Introduction . 34

6.2 RavenBuild On Project X . 35

6.2.1 Approach . 35

6.2.2 Results . 39

6.3 RavenBuild-CR on Open-Source and Project X 40

6.3.1 Approach . 41

6.3.2 Results . 41

6.4 An Introspective Look at the State of Build Outcome Prediction 43

6.4.1 Approach . 44

6.4.2 Results . 45

6.5 Threats to Validity . 47

6.5.1 Construct Validity . 47

6.5.2 Internal Validity . 48

6.5.3 External Validity . 48

6.5.4 Reliability Validity . 49

6.6 Data Availability . 49

6.7 Chapter Summary . 49

7 Conclusion 51

7.1 Contribution and Findings . 51

7.2 Opportunities for Future Research . 52

7.2.1 Measuring the Riskiness of Files with Dependency Analytics 52

7.2.2 Investigating Contributor Awareness and Communication of Impact
of Cross-Boundary Changes . 53

References 54

viii

List of Figures

1.1 An overview of the scope of this thesis. 3

2.1 Characteristics of Project X build system. 6

4.1 Example of a file-level multidisciplinary dependency graph, with green nodes
representing data nodes, pink nodes representing code nodes, and orange
nodes representing boundary nodes. Extracting a multidisciplinary depen-
dency graph of this scale requires extensive knowledge of Project X. . . . 19

4.2 Example of a video game dependency graph, with the boundary node lie
between code and data nodes. 21

4.3 The daily occurrence of cross-boundary changes (blue y-axis on the left) and
code changes that do not cross boundaries (black y-axis on the right). . . . 23

5.1 Organization graph of the contributors that committed at least one change
during the studied period. 28

6.1 Builds triggered on the same commit ID are merged into one data point. . 40

6.2 The parrot approach repeats the previous build outcome as its prediction,
achieving accuracy, precision, and recall of .60. 43

6.3 RavenBuild (Project X), RavenBuild-CR, and BuildFast cannot consistently
outperform the parrot approach. 44

ix

List of Tables

2.1 Build failure rates and the number of impacted nodes of non-code and code
changes. non-code builds also incur build failures. Cross-boundary changes
are more prone to build failures than other code changes. 10

4.1 Number of nodes and edges and their percentages in the multidisciplinary
graph . 20

4.2 Build breakage rates and the number of impacted nodes of non-code and
code changes. 21

5.1 Percentage of changes associated with a tag or a file action. 27

6.1 Build outcome features adopted by BuildFast. 36

6.2 RavenBuild Features . 38

6.3 Performances of BuildFast, RavenBuild, and the improvements on Project X 39

6.4 Open-Source projects and Project X Statistics 42

6.5 Performances of BuildFast and RavenBuild-CR on Open-Source projects
and Project X. 43

6.6 The number of builds that have the same outcome as their immediate pre-
decessor in the passing and failing class, the total number of builds in the
passing and failing class, and the percentage of the builds that have the same
build outcome as their immediate predecessor in all builds in the passing and
failing class. 46

6.7 The performance of Parrot, BuildFast, and RavenBuild. Values in boldface
fonts indicate the best performance among the three. 47

x

Chapter 1

Introduction

Software organizations adopt continuous integration (CI) [19] to automate the build and
test jobs as modern software development becomes increasingly complex. While source code
is an essential component, it does not represent the entirety of artifacts within software
systems. Non-code artifacts, such as machine learning models, multi-media files, and
infrastructure specification files are also commonly part of software systems. These artifacts
must be assembled while respecting their intra- and inter-dependencies. To weave these
artifacts into a cohesive system, build systems specify and resolve the internal and external
dependencies and their usage conditions. In addition, build systems preprocess, compile,
assemble, link, analyze, and package software artifacts into deliverables according to a
dependency graph, i.e., a directed graph with nodes representing software entities and
directed edges indicating dependencies between artifacts.

At Ubisoft, dependency graphs are composed of artifacts that are produced by personnel
with various types of expertise, such as source code produced by developers, graphics
produced by artists, and audio produced by musicians and sound experts. Meidani [50]
showed that nodes from different disciplines are connected through a special type of node
that lies on discipline boundaries (i.e., boundary nodes), resulting in a multidisciplinary
dependency graph.

Rapidly developed software requires more frequent CI repetitions. CI enables rapid
feedback by invoking build and test jobs for the change sets that development teams
produce. For large organizations, adopting CI can accelerate development [72], but it
is not without costs. The execution of a slow CI job can delay time-to-feedback [25],
forcing developers to perform a mentally taxing context switch [85] to another task or
remain effectively idle. Moreover, CI execution consumes a large quantity of computational

1

resources [32, 34], which can quickly accrue annual costs on the order of millions of dollars
[35]. Ubisoft heavily invests in the execution of builds for its games. For example, for
Project X (the latest installment in a ten-year video game franchise), thousands of build
jobs are submitted daily, consuming an average of 49 build hours on the main branch. The
build duration for Project X ranges between 10 to 30 minutes, delaying developers from
receiving immediate feedback and incurring expensive computational costs.

1.1 Problem Statement

Since a multidisciplinary build dependency graph shows the intra- and inter-dependency
relationships among artifacts produced by teams with different expertise, it can be used
to measure the change impact on other artifacts, providing insights into the riskiness of a
change set:

Thesis Statement: The presence and magnitude of cross-boundary change can be
leveraged to enhance Continuous Integration.

In a multidisciplinary context, it is not unexpected for change sets to have impacts
that cross disciplinary boundaries; however, the frequency of cross-boundary changes and
their implications are not well understood. Thus, we conduct an empirical analysis of
cross-boundary changes.

Dependency analytics can provide estimates of the impact of changes on interconnected
files [7, 74], which can potentially be leveraged to assist CI acceleration. To demonstrate
the application of dependency analytics, we propose RavenBuild, which predicts the build
outcome with features that are context, relevance, and dependency-aware.

1.2 Thesis Overview

Figure 1.1 provides an overview of the scope of this thesis. We first provide the background,
definitions, and related work of our topic:

Chapter 2: Background and Definitions
Before discussing the work in this thesis, we first provide the readers with
background information on dependency graphs, cross-boundary changes, and
build outcome prediction.

2

Topics Cross-Boundary Change Analysis Enhancing Build Outcome Prediction

Studies Chapter 4
Quantifying Cross-Boundary Changes

Outcomes The Riskiness of Cross-Boundary
Changes

Chapter 5
Characterizing Cross-Boundary

Changes

Chapter 6
Context, Relevance, and Dependency-

Aware Build Outcome Prediction

Recommended Practice to Address
Cross-Boundary Changes RavenBuild

Background Chapter 2
Background & Definitions

Chapter 3
Related Work

Theme
Accelerating Continuous Integration with Dependency Graph Data

Figure 1.1: An overview of the scope of this thesis.

Chapter 3: Related Work
In this chapter, we discuss how dependency analytics can assist in prior soft-
ware engineering research and prior work on build outcome prediction.

Chapter 4: Quantifying Cross-Boundary Changes
In this chapter, we present our quantitative analyses on multidisciplinary
dependency graphs. We study the missing information of a code-only depen-
dency graph and the occurrence of code changes that have an impact that
crosses the disciplinary boundaries. Finally, we discuss the impact scale and
the riskiness of changes that do or do not cross discipline boundaries.

Chapter 5 Characterizing Cross-Boundary Changes
In this chapter, we present our characterization of cross-boundary changes.
We study the activities performed by cross-boundary changes and the con-
tributors that produce cross-boundary changes.

Chapter 6: Context, Relevance, and Dependency Aware Build Outcome Prediction
In this chapter, we propose RavenBuild, which enhances build outcome pre-
diction with file type-agnostic and dependency-aware features that accom-
modate change sets containing non-code files only to complement the prior
works.

3

1.3 Thesis Contributions

This thesis has both empirical contributions as described below:

1.3.1 Empirical Contributions

This thesis demonstrates that:

1. In our video game development setting, the vast majority of nodes (97.2%) and edges
(95.7%) will be missed if non-code artifacts are excluded from the dependency graph
(Chapter 4).

2. Changes crossing disciplinary boundaries are a common daily occurrence that rep-
resents 44% of code changes and 6% of overall changes, moreover, they impact a
significantly larger amount of nodes compared to other changes (Chapter 4).

3. Cross-boundary changes tend to break builds and induce defects with significantly
greater rates than changes that do not cross boundaries (Chapter 4).

4. Cross-boundary changes are more often associated with GamePlay, Feature, and
UI tags, as well as file additions and updates, whereas code changes that do not
cross boundaries are more often associated with Tools and bugfix tag. Non-code
changes are rarely tagged (Chapter 5).

5. Cross-boundary changes are from the Programming group only, while non-code changes
have various group origins. Contributors from one team commit most of the cross-
boundary changes (Chapter 5).

1.3.2 Technical Contributions

The technical contribution of this thesis is build outcome prediction with features that are
context, relevance, and dependency-aware, namely RavenBuild. We apply the state-of-the-
art BuildFast model [13] and our proposed RavenBuild enhancements to Project X, and
observe that RavenBuild improves BuildFast by 46% in the F1-score of the failing class, 76%
in the recall of the failing class, and 28% in AUC. We also provide a simplified alternative,
RavenBuild-CR, which only adopts context-aware and relevance-aware features. We apply
RavenBuild-CR on 22 open-source projects and Project X, and observe across-the-board
improvements as well (Chapter 6).

4

Chapter 2

Background and Definitions

In this chapter, we introduce the background and definitions of this thesis. First, we de-
scribe a build system and a build dependency graph. Then we talk about the characteristics
of a video game project and the challenges of applying build outcome prediction to the
project.

2.1 Build System

A build system is a software tool used to automate the process of compiling, linking, and
packaging computer program source files into an executable. It is an essential part of the
software development process, especially in large software organizations where projects are
complex and involve files from multiple disciplines, internal and external dependencies, and
platform-dependent configurations.

2.1.1 Build Dependency Graph

A build dependency graph is a visual or logical representation of the dependencies between
various components in the software build process. It specifies the relationships between
different files, such as source codes, libraries, and modules that are necessary to successfully
build the final executable.

The build dependency graph is a directed acyclic graph where nodes represent build
targets and edges represent dependencies. The build system processes build targets in the
dependency graph in topological order.

5

2.2 Build Outcome Prediction

Build outcome prediction is the process of anticipating the outcome of a software build
process before its execution. It involves using historical data, machine learning models, or
rules to forecast the outcome of a build.

The goal of build outcome prediction is to save time and resources by taking appropriate
execution strategies to address the anticipated outcome. For example, the passing builds
can be either skipped or run in a batch to save executions, and the failing builds can be
preflighted (i.e., build locally before merging into the codebase) to avoid breaking build
pipelines.

Code Change #0

Code Change #2

Code Change #5

Code
Changes

...

Non-Code
Change #1

Non-Code
Change #3

Non-Code
Change #4

Non-Code
Changes

...

General Change Data

Build System

Build #5

1 2 2 ... N

Pass Fail Pass ... Pass

Step

Result

Pass

Non-Code
Graph

Code
Graph

Dependency
Parser

Import ...
Import ...

Dependency Graph

Boundary
Node

= Code Change #5 + Non-Code Change #4

Figure 2.1: Characteristics of Project X build system.

6

2.3 Characteristics of Project X

Project X is the most recent installment of a popular video game in a franchise that
was first released more than ten years ago by Ubisoft. Project X contains millions of
production files, including source code, graphical assets, and audio samples. Throughout
its development history, more than 10 million build steps have been logged, providing a
rich source of build data.

Project X is rapidly evolving. Thus, to mitigate concept drift [46], we select a sample
of 4,640 consecutive code and non-code builds from a recent 80-day period. During the
period, an average of 58 build jobs were submitted daily, each taking an average of 21
minutes to execute. Each build in Project X is executed and logged in a stepwise fashion.
On average, each build comprises 27 steps, with each step taking an average of 46 seconds
to execute. In total, the code and non-code build jobs on the main branch of Project X
consume 21 build hours daily. This excludes builds that are performed on other branches in
Project X and the other games being developed by Ubisoft. With this in mind, it becomes
clear why opportunities to reduce the project and organizational build workload are being
actively explored by Ubisoft.

General Change Data: Every change made to Project X is logged in the General
Database, and is indexed by a change number. The database includes typical change meta-
data, such as the author, timestamp, and updated file lists. The General Database provides
the necessary data to compute process features for build outcome prediction, such as the
number of lines of code added/edited/deleted, file revisions, committer identity, and file
types.

Both code and non-code changes are stored in the General Database. At build time,
the change will take the most recent successfully built change from the other discipline to
assist the build process. Figure 2.1 shows an example of the build process, code change #5
triggers build #5 that is built on non-code change #4, which already passed its build #4.

Build System: The build process of video games is particularly complex due to the
size of the game project and the variety of file types that each must be transformed and
assembled in a precise (and often unique) manner. Depending on the complexity of the
change set, and the corresponding build, it may invoke hundreds of steps. To extract the
build outcome, we first group the build steps in the Build Step Log Database by their
change numbers and step names, as shown in Figure 2.1.

Builds can fail for many reasons. For example, network failures or bandwidth limits can
introduce non-deterministic build failures even if the code and artifacts are not to blame. If
a step fails, the Project X build system may automatically re-invoke it. Thus, the existence

7

of a failing step does not necessarily indicate that the build outcome is a failure. Olewicki
et al. [58] refer to these non-deterministic build outcomes as “brown builds”. To mitigate
the noisy influence of brown builds, we label builds with failure outcomes only when the
latest invocation of a build step that is associated with the build is failing.

Multidisciplinary Dependency Graph: Video games are composed of a broad
mix of digital artifacts in addition to source code [54], such as images, textures, and other
so-called assets. Since these other digital artifacts are rapidly changing in tandem with
the source code, and their representations are often in binary form, traditional software
engineering features like code churn cannot always be collected for change sets in this
context. To better describe the non-code changes, we extract the dependency graph of
Project X with the non-code artifacts.

Similar to dependencies among code modules, other digital artifacts in video games
also depend on each other in compositional and hierarchical ways, e.g., a city is composed
of buildings, each of which being composed of building frames, doors, and windows, which
may inherit properties like the texture weight and hardness of their composing materials.
Therefore, dependency graphs can be constructed from non-code artifacts as well. In
this way, dependency graphs of video games are multidisciplinary, i.e., they combine the
work products of software engineers (code), artists (texture, images), game designers (level
design artifacts), and many more.

The complete dependency graph of Project X is not directly generated by the game
engine (a critical component used in the development and build process of a video game).
To construct a multidisciplinary dependency graph of Project X, Meidani [50] analyzed
the binary file outputted by the game engine, which contains dependency information of
the non-code artifacts, and the compile commands of the source codes, which contain the
code dependency information. Therefore, each dependency graph of Project X consists of
a code dependency sub-graph and a non-code dependency sub-graph. At the disciplinary
boundaries, code and non-code nodes interact with each other through boundary nodes.
Boundary nodes do not exist as files, instead, they are generic and game-specific compu-
tational nodes provided by the developers for the artists to integrate their work into the
game.

8

2.4 Challenges of Applying Build Outcome Predic-

tion to Project X

A close inspection of the Project X setting reveals two characteristics that hinder the
application of build outcome prediction.

Challenge 1: Changes to non-code files often break the build In video game
development, non-code files are essential components that define the game’s content, be-
havior, and appearance. The name “non-coe file” is a general name for textures, models,
animations, etc. In Project X, there are more non-code files than source files (e.g., .cpp
and .h) in the repository. As an example, the latest multidisciplinary dependency graph
in our dataset contains 1,104,037 nodes in total, while code nodes only account for 30,675
of them (2.8%).

In addition to the large quantity, in Project X, non-code files are modified more fre-
quently than code files. Indeed, of the 277 types of modified files, header files (.h) and
source code (.cpp) rank as the 11th and 14th most frequently modified file types, respec-
tively.

If builds are triggered by changes that only modify non-code files, they are referred to
as non-code builds. Just like builds triggered by code changes, non-code builds in video
game development can also fail, since non-code builds also involve compiling the various
non-code files into a format that the game engine can efficiently use during gameplay as
specified by their dependencies. Indeed, build failures incurred by non-code builds account
for 61% of all the build failures in our dataset.

Non-code builds and their failures pose a challenge for traditional build outcome pre-
diction approaches because prior build outcome features are mainly designed to represent
code changes (e.g., using the number of changed source code lines) that do not apply to
non-code files. It is also impractical to design such features on non-code files since there
are too many non-code file types.

Challenge 2: Code changes with a cross-boundary impact break the build
more often than code changes that have a code-only impact In video game devel-
opment, the interaction between code and non-code files defines the game functions, man-
ages the game assets, and determines the player experience of the game. Cross-boundary
changes occur when a code change updates a code file that is depended upon by non-code
files. The impacted nodes refer to the nodes that are dependent on the changed node.

Table 2.1 shows that cross-boundary changes impact a substantial amount of nodes in
the dependency graph with a mean of 212,104 and a median of 120,368 nodes impacted,

9

Table 2.1: Build failure rates and the number of impacted nodes of non-code and code
changes. non-code builds also incur build failures. Cross-boundary changes are more
prone to build failures than other code changes.

Total Fail Cross Boundary Total Fail Mean Impact Median Impact

Non-Code 4,010 11% N/A N/A N/A 452 2

Code 630 46%
Yes 278 51% 212,104 120,368
No 352 41% 49 0a

a Impacted nodes counts exclude the directly changed nodes.

whereas non-code changes and changes that do not cross boundaries only impact a mean of
452 and 49 nodes, and a median of 2 and 0 nodes, respectively. The statistical significance
of the discrepancies is confirmed by Mann-Whitney U tests (two-tailed, unpaired α = 0.05),
yielding Holm-Bonferroni corrected p-values of 2.2 × 10−162 and 1.5 × 10−107, respectively.

In addition to a larger scale of impact, Table 2.1 also shows that 278 cross-boundary
changes account for 44% of the code changes, with 51% of cross-boundary changes and
41% of the changes that do not cross boundaries being implicated in build failures. The
statistical significance of this discrepancy is confirmed by Boschloo’s Exact test, yielding
a p-value of 0.008. Therefore, cross-boundary changes are more likely to break the build
pipeline than those changes that do not cross boundaries.

While cross-boundary changes do not (strictly speaking) present a challenge for the
adoption of build outcome prediction in the Project X setting, they do present an opportu-
nity that previous approaches have not yet exploited. Since changes that cross boundaries
are significantly more likely to fail than changes that do not cross boundaries, we believe
that leveraging this association will improve build outcome prediction in the Project X
setting, and more broadly across Ubisoft.

2.5 Chapter Summary

In this chapter, we introduce the core concepts of build systems, build dependency graphs,
and build outcome prediction. Additionally, the chapter outlines the distinct characteristics
and challenges of video game development, highlighting complexities of applying build
outcome prediction on such projects.

10

In the next chapter, we will describe the prior research on dependency analytics and
application of dependency analytics such as code reviewer recommendation and CI accel-
eration. We also introduce prior research on CI and build outcome prediction.

11

Chapter 3

Related Work

In this section, we situate our work with respect to the literature on dependency analytics
(Section 3.1), the benefits and costs of CI (Section 3.2), and the sets of features that are
typically used for build outcome prediction (Section 3.3).

3.1 Dependency Analytics

Dependency graphs have long been at the heart of software build systems. For example,
Feldman [23] introduced the Make build system, which uses a depth-first search of the file-
level dependency graph to keep program deliverables up to date with their dependencies.
Other researchers proposed methods to construct and symbolically analyze dependency
graphs that are extracted from build tools statically [51, 70]. Inspired by this work, we
incorporate static code analysis to extract the nodes that connect the non-code and code
graphs to each other.

There is also research that leverages dependency graphs to tackle other software engi-
neering challenges. For example, Zimmermann et al. [84] used complexity metrics extracted
from dependency graphs to predict subsystem failures. Cao et al. [12] forecast the duration
of the build based on the changed nodes in the dependency graph.

In this section, we discuss the previous research that has incorporated dependency
graphs, and future work that could benefit from incorporating dependency analytics with
respect to two existing software engineering challenges.

12

3.1.1 Dependency Analytics In Code Reviewer Recommendation

Code Reviewer Recommenders (CRRs) assist in the code review process by automatically
suggesting potential reviewers for a given code change. CRRs recommend individuals who
have the relevant expertise to review the code changes using (meta)data about a change,
the review(er) tendencies of the modified files, and/or the relationship among reviewers
and reviews.

Research on various approaches and their potential benefits for CRRs have long been
explored. Some studies leverage the reviewer’s experience and review history on changed
files as a basis for recommendation [10, 15, 59, 71, 81]. Others focus on file paths [22, 76]
or social network graphs [59, 64, 80]. Hirao et al. [37] demonstrated the performance of
CRRs tend to improve if the linkage between reviews is considered. Zhang et al. [82]
take a graph neural network learning approach called CORAL, which learns from a socio-
technical graph constructed using reviewer experience, reviewer history, and changed file
relations extracted from comment and review history. In addition to the existing works, our
multidisciplinary dependency graph can be incorporated within such socio-technical graphs
to provide direct dependencies among files, file authors, and reviewers, further enhancing
the representativeness of the graph.

To assess the usefulness of CRRs and identify valuable factors in selecting code review-
ers from the perspective of developers, Kovalenko et al. [43] conducted a survey of the
considered factors when developers are selecting code reviewers. The results showed that
working in an area that is dependent on and depended upon by the changed files ranked
4th and 6th, respectively. These factors highlight the importance of selecting reviewers
with experience in dependency-related areas.

Indeed, dependency analytics can be a valuable tool in enhancing automated CRRs by
providing the accurate impact of changes on interconnected files. Unlike relying on common
file paths or co-change frequencies, dependency analysis considers the relationships between
files. In this paper’s context, when the change impact crosses boundaries and impacts a
large set of files, relying on the file paths would omit review input from experts in other
domains.

3.1.2 Dependency Analytics for the Acceleration of Continuous
Integration

Continuous Integration (CI) acceleration refers to the optimization of CI processes in soft-
ware development, including automated build, test, and deployment. It aims to reduce the

13

time-to-feedback for developers and save resources while ensuring software quality.

Jin and Servant [77] conducted an evaluation of existing techniques for Continuous
Integration (CI) acceleration and synthesized the design decisions that proved effective in
accelerating CI processes. One extensively studied topic in CI acceleration is the concept of
build skipping, which involves skipping builds either entirely (build selection) or partially
(test selection).

To skip a build entirely, a model is employed to infer change information and predict
the build result before the code change is processed by the build system. This model can
be rule-based [5, 41, 66] or trained using statistical or machine learning approaches [4,
13, 30, 31, 39, 60, 67, 78]. Similar rules and features can be crafted from to exploit the
multidisciplinary dependency graph. For example, as shown by Chapter 2, cross-boundary
changes impact a substantial amount of nodes and incur more build breakages than changes
that do not cross boundaries. We suspect that an indicator of cross-boundary impact will
improve build outcome prediction, and have begun to explore its applications within the
Ubisoft context.

Partial build skipping can be achieved through regression test selection [21], which in-
volves selecting a subset of tests from the existing test suite to execute, thereby reducing
feedback time and resource usage. Dependency analytics can also assist in test selection.
The file-level dependencies captured in the dependency graph allow for effective regres-
sion test selection. Gligoric et al. [27] developed Ekstazi—a test selection approach that
analyzes dependencies to decide which tests must be executed. Gligoric et al. also dis-
cussed the limitation of FaultTracer [83], which constructs an extended call graph (i.e.,
method-level) and identifies the suspicious changes and the impacted tests. Gligoric et al.
conducted experiments to compare dependency granularities at the method, class, and file
levels, concluding that using the file-level dependencies, i.e., the same granularity as our
multidisciplinary dependency graph operates is the safest because it also captures external
file dependencies.

Furthermore, by adopting dependency analytics, the build system can identify un-
affected files and artifacts, avoiding duplicate builds on unchanged binaries. This can
substantially reduce waste in the build process. Indeed, Gallaba et al. [24] showed that
unaffected build steps could be effectively skipped by caching the build environment and
inferring file dependencies.

Dependency analytics can indeed assist CI acceleration by providing the accurate im-
pact of changes on interconnected files. In this paper’s context, resources spent on re-
generating deliverables for changes that do not have a large-scale impact (e.g., non-code
changes and those that do not cross boundaries in our project) could be potentially saved.

14

We are actively pursuing follow-up work on making such improvements at Ubisoft.

3.2 Benefit and Cost of CI

CI is widely adopted in modern software organizations [35] to automate integration and
release routines [45, 72]. Prior work reports that developers face trade-offs [34] when
adopting CI. As the software evolves, the cost of maintaining [49] and executing [35] build
tools tend to grow. Therefore, researchers have invested in reducing the time-to-feedback
and resource consumption.

To accelerate CI feedback, build outcome prediction has been proposed [31, 66, 67].
Hassan and Zhang [30] use decision trees to predict the outcome of certification testing.
To conserve computational resources, Jin and Servant [5, 38, 39, 41] propose to skip passing
builds using machine learning classifiers. A less aggressive approach is to select and only
(re-)execute the tests that failed in prior builds [20, 32, 52, 60] and/or skip the tests that
are unaffected (i.e., likely to pass) [21]. Gallaba et al. [24] propose Kotinos—a CI service
that skips unaffected build steps in a technology-agnostic fashion. Jin and Servant also
propose HybridCISave [40], which skips the entire builds, as well as tests within builds,
that are anticipated to pass.

The context-aware, relevance-aware, and dependency-aware enhancements that we pro-
pose in this paper complement and enhance build outcome prediction. In addition, while
prior work has focused on the code and test aspects of change sets, to the best of our
knowledge, this paper is the first to expand build outcome prediction to accommodate the
data changes.

3.3 Build Prediction Features

Features that are extracted for build outcome prediction can be classified into those that
characterize: (1) current build data, (2) previous build data, (3) historical data, and (4)
the relevance between the last and the current build. Hassan and Wang [31] use features
that characterize current and previous builds. Chen et al. [13] use current, previous, and
historical features to provide faster time-to-feedback. To execute as many failing builds as
early as possible, Jin and Servant [39] propose SmartBuildSkip that predicts the first builds
in a sequence of build failures and the consequent build failures separately with current
build data. To the best of our knowledge, only Ni and Li [56] use the relevance features

15

and refer to them as “connection to last push”. Our proposed RavenBuild features differ
in that RavenBuild characterizes the change-level relevance between the current build and
its immediate predecessor, rather than the status of source or configuration files in the last
build.

In addition to build outcome prediction features, Abdalkareem et al. [4, 5] use CI-skip
rules to determine which build to skip. PreciseBuildSkip [41] also proposes CI-run rules
to overrule skip rules for safety improvements. PreciseBuildSkip is not a suitable baseline
for video-game repositories like Project X. Indeed, 61% of the build failures of Project
X are due to changes made to data files only, which are not well-handled by the ruleset of
PreciseBuildSkip. For example, according to the rule “NoSrcFileChange”, all data changes
should be skipped. Developing such rules for the data files would be impractical because
there are numerous types of data files, each requiring deep subject matter expertise to
formulate effective and safe CI-skip and CI-run rules.

3.4 Chapter Summary

In this chapter, we introduce the prior work on dependency analytics that can potentially
improve (1) code reviewer recommendation and (2) CI acceleration. Additionally, we
outline the advantages and drawbacks of CI and presenting strategies, like build outcome
prediction, to mitigate CI costs.

Indeed, dependency analytics can be leveraged to assist other software engineering
researches. The next chapter will feature our analysis of build dependency graphs within
a video game project.

16

Chapter 4

Quantifying Cross-Boundary
Changes

An earlier version of the work
in this chapter has been
submitted to ICSE-SEIP 2024.

4.1 Introduction

Project of a multidisciplinary team should be represented by a multidisciplinary depen-
dency graph. For example, a code change to the source file that reposition an object.
This repositioning may have a transitive impact on other objects within the location in
the game. To trace the impact of that change, we need a graph that captures intra-
dependencies within each domain, as well as inter-dependencies among all of the other
digital assets involved. While dependency graphs have been explored in the general devel-
opment context [7, 33, 84], the multidisciplinary context (of which ‘AAA games’ serve as
an exemplar) introduces challenges in the extraction and analysis of dependency graphs
that need to be addressed.

In this chapter, we present our quantitative analyses with respect to three research
questions.

17

RQ1: What is missed by a typical code-only dependency graph?
Motivation: Non-code artifacts play an important role in video game development as they
can also introduce build breakages and runtime issues. While it is clear that excluding
these non-code artifacts will produce an incomplete graph, it is unclear the degree to
which dependency analytics will be impacted. Therefore, to better understand their po-
tential impact, we first set out to study the prevalence of non-code artifacts and their
dependencies in the multidisciplinary dependency graph.
Results: In our context, non-code artifacts account for 97.2% of nodes, and edges connected
to non-code artifacts account for 95.7% of edges. Hence, excluding non-code artifacts will
likely have a large impact on dependency analytics.

RQ2: How often does the impact of a change cross disciplinary boundaries?
Motivation: In an interdisciplinary context, it is not unexpected for changes to cross dis-
ciplinary boundaries; however, the frequency of cross-boundary changes and their impact
are not well understood. Thus, we set out to explore the prevalence and scope of cross-
boundary changes to evaluate their importance in a multidisciplinary setting.
Results: In our context, cross-boundary changes occur at similar rates as changes that
do not cross boundaries, but their impact is higher. On average, cross-boundary changes
impact 212,104 nodes, with a median impact of 120,368 nodes. Statistical tests confirming
the differences are significant (Mann-Whitney U test, α = 0.05).

RQ3: How risky are cross-boundary changes?
Motivation: Our results from RQ2 show that cross-boundary changes typically impact a
significantly larger number of nodes than changes that do not cross boundaries. This im-
plies that cross-boundary changes may be riskier since they tend to have a more widespread
effect on the system. To understand whether that risk manifests in concrete ways, we set
out to study whether cross-boundary changes are more prone to introducing build break-
ages and defects than changes that do not cross-boundaries.
Results: Cross-boundary changes introduce build breakages (51% of the time) and defects
(67% of the time) more frequently than changes that do not cross boundaries (44% and
37% of the time, respectively). Statistical tests confirm that both differences are statisti-
cally significant (Boschloo’s test, α = 0.05).

For each research question, we present our approach to addressing it and the results
that we observe.

18

Figure 4.1: Example of a file-level multidisciplinary dependency graph, with green nodes
representing data nodes, pink nodes representing code nodes, and orange nodes represent-
ing boundary nodes. Extracting a multidisciplinary dependency graph of this scale requires
extensive knowledge of Project X.

19

4.2 RQ1: What is missed by a typical code-only de-

pendency graph?

Approach: Using a dependency graph based on the most recent change set in our studied
period as an example, we count the nodes and edges of different types in the graph. Though
the numbers of nodes and edges fluctuate from change to change, we have confirmed with
the project manager that the studied period is undergoing regular and steady development.
Therefore, the graph is not as volatile as it would be in early development periods.

Table 4.1: Number of nodes and edges and their percentages in the multidisciplinary graph

Type Number % of Total

Node

Code 30,675 2.8
Non-Code 1,072,017 97.1
Boundary 1,345 0.1
Total 1,104,037 100%

Edge

(Code, Code) 141,412 4.30
(Boundary, Code) 2,057 0.06
(Non-Code, Boundary) 47,924 1.46
(Non-Code, Non-Code) 3,097,819 94.18
Total 3,289,212 100%

Results: Table 4.1 presents the numbers of the three types of nodes and the four types of
edges in the graph. Figure 4.2 provides an overview of the graph from a visual perspective,
where green nodes represent the non-code files, pink nodes represent the code files, and
orange nodes represent the boundary nodes that connect code and non-code nodes.

Observation 1: Non-code artifacts are prevalent, constituting 97.2% of all nodes in the
dependency graph, and the edges connecting to non-code nodes account for 95.7% of all
edges. Among the 1,104,037 nodes in the dependency graph, only 30,675 nodes represent
code files, while a substantial majority of 1,072,017 nodes represent non-code files. Ad-
ditionally, 1,345 nodes facilitate the connection between code and non-code nodes across
disciplinary boundaries (a.k.a. boundary nodes).

The dependency graph consists of a total of 3,289,212 edges. Among these edges, only
141,412 (4%) intra-connect code nodes to other code nodes, while the other 3,147,800
edges connect non-code or boundary nodes. The vast majority of edges (3,097,819 or 94%)

20

connect non-code nodes to other non-code nodes. Additionally, 2,057 edges connect code
nodes to boundary nodes, and 47,924 edges connect boundary nodes to non-code nodes.

In our video game development setting, the vast majority of nodes (97.2%) and
edges (95.7%) will be missed if non-code artifacts are excluded from the dependency
graph.

Table 4.2: Build breakage rates and the number of impacted nodes of non-code and code
changes.

% of Total
Build

Breakage (%)
Defect

Inducing (%)
Cross

Boundary
% of CB

Mean
Impact

Median
Impact

Build
Breakage (%)

Defect
Inducing (%)

Non-code 86 11 N/A N/A N/A 452 2 N/A N/A

Code 14 46 50
Yes 44 212,104 120,368 51 67
No 56 49 0a 41 37

a Counts of impacted nodes exclude the directly changed nodes.

4.3 RQ2: How often does the impact of a change cross

disciplinary boundaries?

Code

Non-
Code

Boundary Non-
Code

Non-
Code

Code

Code

Changed

Impacted

Boundary

Code

Figure 4.2: Example of a video game dependency graph, with the boundary node lie
between code and data nodes.

Approach: We extract the dependency graph of changes on the main branch that span
11 weeks of development and locate the nodes that correspond to the list of committed
files in each change. For each changed node, we traverse its incoming edges transitively to
obtain a set of its dependent nodes in the graph. Then we compare the node type (i.e.,
file type) of the changed node and the dependent nodes.

21

We categorize changes into two types: if a change adds, updates, or deletes any code
files, we call it a code change, whereas changes that only modify non-code files are called
non-code changes. We label changes as cross-boundary if any of the dependent nodes are
of a different node type than the changed nodes, as shown in Figure 4.2.

Results: Table 4.2 compares the numbers of the dependent nodes associated with each
change. Figure 4.3 plots the number of cross-boundary (CB) changes and code changes
committed each day. The left y-axis shows the number of cross-boundary changes commit-
ted each day in blue, while the right y-axis shows the number of code changes committed
each day. The x-axis indicates the progression of days. To enhance the clarity of the trend,
we plot the trends using LOESS smoothing.

Observation 2: 44% of the code changes have a large cross-disciplinary impact that
affects 212,104 nodes on average. We find that 6% of the analyzed commits have an
impact that crosses disciplinary boundaries. While this is a small proportion of the overall
commits, it accounts for 44% of the commits that change the source code. In addition, we
find that none of the cross-boundary changes are non-code changes since the dependency
flow is from non-code to code, i.e., non-code nodes depend on code nodes. The comparison
in Table 4.2 reveals that cross-boundary changes tend to affect a substantial number of
nodes. Specifically, the mean number of impacted nodes for cross-boundary changes is
212,104, with a median of 120,368. In contrast, non-code changes and changes that do not
cross boundaries have a substantially smaller impact, with means of 452 and 49 nodes, and
medians of 2 and 0 nodes, respectively. These findings highlight the large difference in the
scale of impact between cross-boundary changes and other types of changes.

The order of magnitude difference in the number of nodes impacted suggests that the
multidisciplinary graph adds an important new perspective for analytics. The statisti-
cal significance of the discrepancies is confirmed by Mann-Whitney U tests (two-tailed,
unpaired, α = 0.05), yielding Holm-Bonferroni corrected p-values of 2.2 × 10−162 and
1.5 × 10−107, respectively.

Observation 3: Cross-boundary changes are not isolated incidents, but rather frequently
occur during the development process. In Figure 4.3, the LOESS smoothed curves repre-
senting the frequencies of committed cross-boundary changes and changes that do not cross
boundaries closely align with each other. This alignment suggests that changes crossing
disciplinary boundaries are a common occurrence that follows to the number of committed
code changes that do not cross boundaries on a daily basis.

Changes crossing disciplinary boundaries are a common daily occurrence that rep-
resents 44% of code changes and 6% of overall changes, moreover, they impact a
significantly larger amount of nodes compared to other changes.

22

0 10 20 30 40 50
Days

0

5

10

#C
ro

ss
-B

ou
nd

ar
y

Ch
an

ge
s

10

20

#C
od

e
Ch

an
ge

#CB Changes
Loess(0.2) #CB Curve

#Code Changes
Loess(0.2) #Code Curve

Figure 4.3: The daily occurrence of cross-boundary changes (blue y-axis on the left) and
code changes that do not cross boundaries (black y-axis on the right).

4.4 RQ3: How risky are cross-boundary changes?

Approach: We study two types of risk: that of introducing build breakages and that of
being implicated in defect-inducing commits. A build breakage occurs due to errors or test
failures, while a defect-inducing commit occurs when a developer unintentionally introduces
a defect or design flaw while making changes to the codebase, which is later discovered and
fixed by another commit. Since non-code changes do not cross the disciplinary boundaries,
we focus our comparison on cross-boundary changes and code changes that do not have
an impact on non-code nodes (i.e., code changes that do not cross boundaries). For build
failures, we mine the build logs to extract build results for each change. As for defect-
inducing commits, we rely on information from the CLEVER database [55] at Ubisoft,
which identifies the defect-inducing commits with the SZZ algorithm presented by Kim et
al. [42]. To assess the significance of the observed differences, we apply Boschloo’s Exact
test on the build-breaking and fix-inducing rates of cross-boundary changes and changes
that do not cross boundaries.

Results: Table 4.2 shows the rates of build failures and defect introduction in cross-
boundary changes and code changes that do not cross boundaries. While the table also
reports build failure rates in non-code changes, the defect introduction rates of non-code

23

changes cannot be computed since the SZZ algorithm cannot be applied to non-code
changes.

Observation 4: Cross-boundary changes introduce build breakages at a greater rate than
changes that do not cross boundaries (10 percentage points or 24% more). 51% of cross-
boundary changes introduce build breakages, whereas 41% of code changes that do not
cross boundaries and 11% of non-code changes introduce build breakages. The statistical
significance of this discrepancy is confirmed by Boschloo’s Exact test, both yielding a
p-value smaller than 0.01.

Observation 5: Cross-boundary changes introduce defects at a greater rate than changes
that do not cross boundaries (30 percentage points or 81%). Table 4.2 shows that 67% of
cross-boundary changes and 37% of changes that do not cross boundaries introduce defects.
The statistical significance of this difference is confirmed by Boschloo’s Exact test, yielding
a p-value of 8.0 × 10−15.

The notable disparity observed in the build breakage and defect introduction rates
indicates that cross-boundary changes have a greater tendency to break the build pipeline
and introduce defects. We suspect that this increased risk can be attributed to the fact
that cross-boundary changes impact a larger number of interconnected nodes within the
dependency graph, exposing a larger proportion of the system to change, which in turn
increases their riskiness.

Cross-boundary changes tend to break builds and induce defects with significantly
greater rates than changes that do not cross boundaries.

4.5 Chapter Summary

In this chapter, we present the quantitative analysis of cross-boundary changes, empha-
sizing the need for a multidisciplinary dependency graph. We demonstrate that (1) code
nodes represent less than 3% of the graph, (2) cross-boundary changes occur regularly with
a large-scale impact on the development process, and (3) these changes are risky in terms
of build breakages and inducing defects.

24

Chapter 5

Characterizing Cross-Boundary
Changes

An earlier version of the work
in this chapter has been
submitted to ICSE-SEIP 2024.

5.1 Introduction

Acknowledging the common occurrence and associated risks of cross-boundary changes in
video game development, it it crucial to understand the context in which these changes are
implemented. For instance, repositioning an object is more likely to have cross-boundary
impacts than implementing a helper function that performs arithmetic operations. Under-
standing the common context in which these changes are implemented helps with proposing
treatments to mitigate potential risks.

In this chapter, we present our characterization of cross-boundary changes with respect
to two research questions.

RQ4: Which activities are performed during cross-boundary changes?
Motivation: To explore why cross-boundary changes tend to be riskier, we set out to char-
acterize the activities that are performed when changes cross disciplinary boundaries. Un-
derstanding the nature of these activities can provide valuable insights into the potential

25

effects and consequences of these changes, allowing stakeholders to take appropriate mea-
sures to address any associated risks more effectively.
Results: 43%, 68%, and 26% of the tagged cross-boundary changes are associated with
gameplay functionality, feature additions, and file additions, respectively, whereas 36% and
68% of the tagged changes that do not cross boundaries are associated with tools and their
configuration, as well as bug fixes. Non-code changes are rarely tagged.

RQ5: Who produces cross-boundary changes?
Motivation: Having gained an understanding of cross-boundary changes as a common and
risky type of change in multidisciplinary development, our focus shifts to identifying the
teams responsible for cross-boundary changes. We are particularly interested in determin-
ing whether contributors of cross-boundary changes are concentrated within a single team
or dispersed across multiple teams. Identifying these contributor tendencies can help man-
agement to better account for the potential risks associated with cross-boundary changes
through, e.g., raising awareness of inter-team impact during code review.
Results: We find that 74% of the contributors of cross-boundary changes are members of a
single team. Indeed, cross-boundary changes within the studied game tend to be concen-
trated rather than dispersed.

For each research question, we present our approach to addressing it and the results
that we observe.

5.2 RQ4: Which activities are performed during cross-

boundary changes?

Approach: When a commit is focused on a specific topic, it is common for the contributors
at Ubisoft to apply tags to those commits. These tags help to organize the related commits,
making it easier to track changes and understand the collective purpose behind them.

To address our research question, we focus on the @Category and @Type tags. The
@Category tag describes the aspect of the game being modified (e.g.,GamePlay, Tools),
whereas the @Type tag describes the development action being taken (e.g., feature, bug-
fix). Contributors may apply multiple tags to their changes, therefore, the tags are not
mutually exclusive. These tags are not a mandatory component of the commit, and hence,
are unspecified for the bulk of the commits within our studied period.

26

Table 5.1: Percentage of changes associated with a tag or a file action.

(%)
Tag/

Action
Code

Non-Code
CB Non-CB

@Category

GamePlay 43 21∗∗∗ 28
Tools 13 36∗∗∗ 28

AI 28 27 22
UI 13 5∗ 25

Scripts 4 3 0
Graphics 1 5 0
Servers 3 9 0
DevOps 0 2 0

Tagged 38 33 1∗∗∗

@Type

Feature 68 22∗∗∗ 56
Bugfix 24 68∗∗∗ 37

Refactor 7 6 0
Test 1 4 0

Nodes 5 2 0
BuildSystem 0 4 4

Doc 0 0 7

Tagged 30 30 1∗∗∗

File Action
Addition 26 11∗∗∗ 36∗∗∗

Update 97 89∗∗∗ 81∗∗∗

Deletion 8 5 16∗∗∗

Tags and actions are not mutually exclusive.
Statistical significance of Boschloo’s Exact test:
∗p < 0.05;∗∗ p < 0.01;∗∗∗ p < 0.001; otherwise p ≥ 0.05

27

Level 1
Level 2
Level 3
Level 4
Level 5
Level 6
Level 7
Level 8
Level 9
Level 10Non-Code-Contributor

Code-Contributor
CB-Contributor Less Than 10 Changes
Non-Contributor
CB-Contributor More Than 10 Changes

Figure 5.1: Organization graph of the contributors that committed at least one change
during the studied period.

In addition to tags, we also compare the file actions (i.e., add/ update/ delete) among
cross-boundary changes, code changes that do not cross boundaries, and non-code changes.
To assess the significance of the observed differences between cross-boundary changes and
others, we apply Boschloo’s Exact test to the collected statistics.

Results: Table 5.1 shows the rates of occurrence and the statistical test results for the
studied tags and action types.

Observation 6: Gameplay, Tools, and UI categories interact with whether or not
changes cross boundaries. Table 5.1 shows that 38% of cross-boundary changes and 33% of
code changes that do not cross boundaries are tagged with categories. Although there is a
difference of five percentage points, Boschloo’s test indicates that the null hypothesis (i.e.,
that the rate of tagging is not significantly different between cross-boundary changes and
code changes that do not cross boundaries) cannot be rejected. The Gameplay, Tools,
and UI @Category tags show a significant disparity between cross-boundary changes and
code changes that do not cross boundaries. Indeed, cross-boundary changes are more likely
to be associated with gameplay and UI. Table 5.1 shows that there is a statistically signif-
icant 22 and 8 percentage point increase being observed between cross-boundary changes
and code changes that do not cross boundaries. On the other hand, cross-boundary changes
are less likely to be associated with Tools. Table 5.1 shows that there is a statistically
significant 23 percentage point decrease being observed between cross-boundary changes
and code changes that do not cross boundaries. Finally, we observe that only 1% of non-
code changes are tagged with a @Category, hence we refrain from comparing their tag
distribution with the one of code changes.

Observation 7: Feature additions are more often associated with cross-boundary changes,
whereas bug fixes are more often associated with code changes that do not cross boundaries.
Table 5.1 shows that 30% of code changes are tagged with types. There is no rate differ-

28

ence between cross- and non-cross-boundary code changes, and Boschloo’s test indicates
that the null hypothesis (a.k.a. that the rate of tagging is not significantly different be-
tween cross-boundary and code changes that do not cross boundaries) cannot be rejected.
The feature and bugfix @Type tags show substantial disparities in rates across cross-
boundary and non-cross-boundary changes. Indeed, we observe that feature tags are
more prevalent among cross-boundary changes, with a statistically significant 46 percent-
age point increase in the rates compared to code changes that do not cross boundaries. On
the other hand, we observe that bugfix 1 tags are more prevalent among code changes
that do not cross boundaries. Table 5.1 shows that there is a statistically significant 44
percentage point decrease in the rates of bugfix tags among cross-boundary changes com-
pared to code changes not crossing boundaries. Finally, similar to the @Category tag, we
observe that non-code changes are rarely tagged with a @Type.

Observation 8: File additions and updates are more prevalent among cross-boundary
changes than code changes that do not cross boundaries. Table 5.1 shows that 26% and
97% of cross-boundary changes include file additions and updates, while 11% and 89% of
code changes that do not cross boundaries include file additions and updates, respectively.
There is a statistically significant 15 and 8 percentage point difference in rates of file
additions and file updates among cross-boundary and non-cross-boundary code changes.
Although there is a 3 percentage point difference in the rates of file deletions between the
two code change categories, Table 5.1 shows the difference is statistically insignificant.

Observation 9: File additions and deletions are more prevalent among non-code changes
than cross-boundary changes, whereas file updates are less prevalent among non-code changes
than cross-boundary changes changes. Table 5.1 shows that 36% and 16% of non-code
changes include file additions and deletions, while 26% and 8% of cross-boundary changes
include file additions and deletions, respectively. In terms of file updates, 81% of non-code
changes include file updates, while 97% of cross-boundary changes include file updates.
There are statistically significant differences in rates of file additions, deletions, and up-
dates among non-code changes and cross-boundary changes.

Cross-boundary changes are more often associated with GamePlay, Feature,
and UI tags, as well as file additions and updates, whereas code changes that do
not cross boundaries are more often associated with Tools and bugfix tag. Non-
code changes are rarely tagged.

1The defect-fix pairs are many-to-many relationships [18, 42, 68].

29

5.3 RQ5: Who produces cross-boundary changes?

Approach: In collaboration with the human resources team, we extract the organizational
graph of contributors who committed at least once during the study period. Starting from
the contributors, we traverse the graph upwards to their direct managers and continue
transitively until all contributors share at least one common manager. The levels are
defined from the bottom of the tree structure to the top. In this context, the leaf node is
considered level 1, while the root node is placed at level 10. Nodes from the same sub-tree
(i.e., those who share a manager below level 10) are considered to be members of the same
team.

It is important to note that the abstracted levels mentioned in this paper do not di-
rectly correspond to the actual employee levels within Ubisoft. To protect the privacy
of contributors, their personal data are no longer recorded once they lose access to the
project. Consequently, in this study, the data of contributors who have left the project are
omitted. Further details regarding the potential impact of this omission on the validity of
our conclusions will be discussed in Section 5.5.

Results: Figure 5.1 presents the complete graph, with the gray circle-shaped nodes rep-
resenting the direct managers. The green triangle-shaped nodes represent the contributors
who committed at least one code change. The yellow hexagon-shaped nodes represent
the contributors who committed more than at least one cross-boundary change. The
orange diamond-shaped nodes represent contributors who committed more than ten cross-
boundary changes. Finally, the blue pentagon-shaped nodes represent the contributors
who committed non-code changes.

Observation 10: Non-code changes are committed by individuals from various job groups,
while code changes, specifically, cross-boundary changes, are exclusively committed by pro-
grammers. The contributors involved in the study are dispersed across six distinct job
groups: IT, Programming, Quality Management, Animation, Audio, Game and Level De-
sign, and Art. Contributors from the Quality Management, Animation, Audio, Game, and
Level Design, and Art groups exclusively contribute to non-code changes, as represented
by the blue pentagon in Figure 5.1. On the other hand, contributors from the IT and
Programming groups have a more diverse range of contributions, including both non-code
and code changes. It is important to note that during the studied period, the IT group
contributed a negligible fraction (0.4%) of all changes, and only the Programming group
contributes cross-boundary changes, as represented by the yellow hexagons and orange
diamonds in Figure 5.1.

The contributors who have committed cross-boundary changes, namely cross-boundary

30

contributors (i.e., CB-contributor in Figure 5.1), are a subset of the contributors who have
committed at least one code change, namely code contributors. 73% of code contributors
are also cross-boundary contributors.

Observation 11: 74% of cross-boundary contributors originate from the same team.
Figure 5.1 shows that 35 of the 47 cross-boundary contributors are from the same sub-tree
at level 6. Additionally, 82% of cross-boundary changes are from this level 6 team. The
other 12 cross-boundary contributors who produced 18% of cross-boundary changes can
be traced back to five sub-trees at level 6.

Cross-boundary changes are from the Programming group only, while non-code
changes have various group origins. Contributors from one team commit most of
the cross-boundary changes.

5.4 Practical Implications

In this section, we discuss the potential benefits of dependency analysis in the broader
software engineering context.

(1) Dependency graphs should be expanded to include the multidisciplinary
context. Observation 1 shows that code files only represent a small fraction of de-
pendency graphs that we extract. Thus, graphs that omit non-code artifacts will
provide a narrow and skewed perspective when dependency analytics are performed.
Observations 2 and 3 show that code changes frequently impact non-code artifacts
(i.e., cross-boundary changes), indicating non-code files are interacting with code
files even when they are not modified. Moreover, non-code changes also incur build
breakages. Therefore, non-code files should not be left out when analyzing depen-
dency graphs. While the context of AAA game development, is somewhat unique,
we suspect that this is not the only context where multiple disciplines interact to
produce software systems (e.g., operating systems with multimedia components [84],
vehicle software systems with hardware involvements). Taking a multidisciplinary
perspective on dependency analytics in such contexts will likely also increase the
value of the results.

(2) Cross-boundary changes should receive additional scrutiny during the
code review process. Observation 4 shows that changes that cross boundaries
are more likely to break builds than changes that do not. Furthermore, Observation

31

5 shows that changes that cross boundaries are more likely to be implicated in fu-
ture defect-inducing commits than changes that do not. Therefore, to mitigate these
potential risks, we believe that additional QA rigour should be applied during the
integration process of cross-boundary changes. The natural first step in the software
process at Ubisoft is to flag these changes during the code review process.

5.5 Threats to Validity

Below, we present the threats to the validity of our study.

5.5.1 Construct Validity

The process of extracting code dependencies at the file level involves reading the content
of source files and identifying import statements. However, the import statements may be
located within conditional statements, e.g., when platform-dependent libraries are loaded
to accelerate graphics on PC or console platforms. As a result, our liberal approach may
introduce additional nodes and edges to the graph. while we are developing improvements
to address these overestimates, we find that they are relatively rare in our practical setting.
Moreover, the overestimates do not impact the fundamental concepts that we present in
this paper.

5.5.2 Internal Validity

Since the graphs generated for each revision are large enough to present practical traversal
challenges, we have restricted our study to revisions generated within an 11-week period.
Also, the graph example that we use to count nodes and edges is only one slice of the
development process. While there could be alternative explanations for the observations
presented in this paper, such as the occurrence of a maintenance period or frozen devel-
opment branches, our communication with project managers indicates that our studied
period aligns with regular and steady development.

In addition, due to privacy concerns, we omit cross-boundary contributors who no
longer have commit access from our analysis. While this omission may affect the observed
percentages in Section 5.3, it is important to note that the majority of the cross-boundary

32

changes originate from a team that shares a common manager six levels up in the orga-
nization chart. Therefore, we suspect the impact of this omission on our conclusions is
minimal.

5.5.3 External Validity

The results for the research questions are derived from a AAA game at Ubisoft. This limited
scope may impact the generalizability of the study’s findings to a broader context. It does
not affect the concept of the multidisciplinary dependency graphs and its implications for
future research and practical tools. Nonetheless, replication studies may strengthen the
generalizations that can be drawn.

5.6 Chapter Summary

In Chapter 4 and 5, we demonstrate the importance of multidisciplinary dependency
graphs. While our observations are drawn from the context of the development of a AAA
game at Ubisoft, we conjecture that similar observations may hold in other domains that
involve multidisciplinary teams. We observe that changes having an impact that crosses
disciplinary boundaries are a regular occurrence and tend to be associated with a greater
risk of build breakage and defect introduction than changes that do not cross boundaries.
Moreover, we show that cross-boundary changes are more commonly associated with game-
play functionality, feature additions, and UI-related development than changes that do not
cross boundaries, which are more commonly associated with tool implementation and bug
fixes than cross-boundary changes. Finally, the vast majority of cross-boundary changes
are contributed by a single team rather than dispersed across the organization.

These findings have laid the foundation for improvements to dependency analytics at
Ubisoft. We are actively developing solutions that leverage the multidisciplinary depen-
dency graph to improve code reviewer recommendations and accelerate CI processes.

33

Chapter 6

Context, Relevance, and
Dependency-Aware Build Outcome
Prediction: RavenBuild

An earlier version of the work
in this chapter has been
submitted to FSE 2024.

6.1 Introduction

Continuous Integration (CI) [19] enables rapid feedback by invoking build and test jobs for
the change sets that development teams produce. For large organizations, adopting CI can
accelerate development [72], but it is not without costs. The execution of a slow CI job
can delay time-to-feedback [25], forcing developers to perform a mentally taxing context
switch [85] to another task or remain effectively idle. Moreover, CI execution consumes a
large quantity of computational resources [32, 34], which can quickly accrue annual costs
on the order of millions of dollars [35].

Ubisoft heavily invests in the execution of builds for its games. For example, for Project
X (the latest installment in a ten-year video game franchise), thousands of build jobs are
submitted daily, consuming an average of 49 build hours on the main branch. The build

34

duration for Project X ranges between 10 to 30 minutes, delaying developers from receiving
immediate feedback and incurring expensive computational costs.

Although early results show plenty of promise, the distinct characteristics of Project
X present new challenges for build outcome prediction. Prior work on build outcome
prediction has largely focused on open-source projects that are code-intensive. As such,
many features adopted by these studies are code-specific, e.g., the number of lines changed
in source code. In the Project X setting, non-code artifacts and changes therein are more
prevalent than source code and code changes. These non-code artifacts play a crucial part
in the game experience. The game engine compiles the non-code artifacts with source
code in an order-sensitive manner that respects the specified dependencies. Therefore, if
non-code artifacts are corrupted, or dependencies are not respected, non-code changes will
incur build failures.

6.2 RavenBuild On Project X

In this section, we present a set of new features designed for build outcome prediction
on Project X, and an evaluation of the performance of the state-of-the-art BuildFast [13]
model on Project X before and after adopting our features.

6.2.1 Approach

Table 6.1 shows the build outcome prediction features adopted by BuildFast. In addition
to adopting BuildFast features, we engineer features that are file type-agnostic to better
accommodate the context of video game development into build outcome prediction. Table
6.2 provides an overview of RavenBuild features, which characterize three aspects of a
change set.

Context-Aware Features Change sets are typically submitted with the intention of
integrating new features or bug fixes. This context transitively applies to the builds that
are invoked to test a change set. We infer the context of a build from the metadata of
its change set, such as commit messages, file types, and prior build activity. We classify
change sets according to five intention categories using the keyword list that was originally
proposed by Hindle et al. [36] and updated by Nayrolles and Hamou-Lhadj [55]. In addition
to the intention of changes, we classify the studied changes based on the types of files being
modified. Change sets can be code-only, data-only, or a mix of both. Finally, we implement
a feature to detect if any of the commits in the change set being built have been built before.

35

Table 6.1: Build outcome features adopted by BuildFast.

BuildFast Features

Current
Build

C1 src churn C2 test churn C3 src ast diff
C4 test ast diff C5 line added C6 line deleted
C7 files added C8 files deleted C9 files modified
C10 src files C11 test files C12 config files
C13 doc files C14 class changed C15 met sig modified
C16 met body modified C17 met changed C18 field changed
C19 import changed C20 class modified C21 class added
C22 class deleted C23 met added C24 met deleted
C25 field modified C26 field added C27 field deleted
C28 import added C29 import deleted C30 commits
C31 fix commits C32 merger commits C33 committers
C34 by core member C35 is master C36 time interval
C37 day of week C38 time of day

Previous
Build

P1 pr state P2 pr compile error P3 pr test exception
P4 pr tests ok P5 pr tests fail P6 pr duration
P7 pr src churn P8 pr test churn

Historical
Builds

H1 fail ratio pr H2 fail ratio pr inc H3 fail ratio re
H4 fail ratio com pr H5 fail ratio com re H6 last fail gap
H7 consec fail max H8 consec fail avg H9 consec fail sum
H10 commits on files H11 file fail prob max H12 file fail prob avg
H13 file fail prob sum H14 pr src files H15 pr src files in
H16 pr test files H17 pr test files in H18 pr config files
H19 pr config files in H20 pr doc files H21 pr doc files in
H22 log src files H23 log src files in H24 log test files
H25 log test files in H26 team size

36

For example, in the Project X setting, builds can go through a preflight build before it is
merged. In open-source settings, it is also possible for a commit to be built during the
review of a pull request, and that same commit will be built again when the PR is merged.

Relevance-Aware Features In the development process, a set of builds may relate
to a single task. For example, when an initial build error occurs and subsequent failing
builds are attempts to fix it; or when a large task is decomposed into a series of incremental
change sets. Therefore, the features that exploit the status or context of a previous build
should be constrained to the context when the prior and current builds are part of the
same task. Thus, we propose features to suggest to the model when the previous build
features are relevant for the current prediction, and when they should be ignored.

We compare the current build to its immediate predecessor to extract the relevance-
aware features that are shown in Table 6.2. R1, R2, and R4 are binary features, while R3 is
computed as len(set(current actions) − set(previous action)). (R5): Path relevance mea-
sures the similarity between the modified directories of the previous and current builds.
A pair of builds that modify files in the same location is more likely to build on inter-
dependent targets than a pair of builds changing files in completely different locations.
The path length is measured by counting the sub-directories in that common path. We
then compute the relevance score as the length of the longest common path between the
file paths of the previous (LCMprev) and current builds (LCMcur) divided by the sum of
len(LCMprev) and len(LCMprev).

Path Relevance Score =
len(LCMprev,cur)

len(LCMprev) + len(LCMcur)

We compute the sum instead of the max because the longest common path of the build
also provides a perspective on the dispersion across the changed files. A shorter LCM
suggests that changed files are spread across multiple sub-directories, while a longer LCM
suggests that the changed files are located in the same sub-directory. We want to detect
whether a low path relevance score is due to the broad dispersion of changed files, or due to
changed files being from completely different sub-directories, e.g., consider two cases where
in the first case len(LCMprev) = 3, len(LCMcur) = 4, and len(LCMprev,cur) = 1, whereas
in the second case len(LCMprev) = 3, len(LCMcur) = 1, and len(LCMprev,cur) = 1. We
can differentiate the two cases using sum, while using max, the path relevance score for
both cases would be the same.

Dependency-Aware Features Modifying files that are depended upon by a large
number of files is riskier than modifying a file that has no dependents. For example,
changing a popular library function will propagate that change to its many use points, and
is inherently more risky than changing a short script that calls a function from the library.

37

Table 6.2: RavenBuild Features
ID Name Description

Context

T1 Is Corrective If the commit message has ‘fix’, ‘bug’, ‘wrong’, ‘fail’, and ‘problem’
T2 Is Additive If the commit message has ‘new’, ‘add’, ‘requirement’, ‘initial’, and ‘create’
T3 Is Non-Functional If the commit message has ‘doc’ and ‘merge’
T4 Is Perfective If the commit message has ‘clean’ and ‘better’
T5 Is Preventive If the commit message has ‘test’, ‘junit’, ‘coverage’, and ‘assert’
T6 Built-Before If any of the commits in the current build have been built before (preflight)
T7 Change Type The modified files are source files only, non-code files only, or a mix of both.

Relevance

R1 Committer Changed The pair of builds are submitted by different developers.
R2 Type Changed The pair of builds have different change types (i.e., T7).
R3 Action Changed The pair of builds have different actions.
R4 Is Same Intention The pair of builds are of the same intention (i.e., T1 − T5)
R5 Path Relevance The similarity between the modified directories of the pair of builds

Dependency

D1 Is Cross Boundary Is a cross-boundary change
D2 #Impacted Number of nodes impacted by the changed nodes
D3 #Impacted Non-Code Number of non-code nodes impacted by the changed nodes
D4 #Impacted Code Number of code nodes impacted by the changed nodes
D5 #Impacted Boundary Number of boundary nodes impacted by the changed nodes

Therefore, we propose a set of features that we extract from build dependency graphs
as shown in Table 6.2. Our multidisciplinary approach to dependency graphs enables us
to compute dependency-aware features on all types of files. We detect if the impact of a
change set crosses the code-data boundary (i.e., D1), the total number of nodes impacted
(i.e., D2), and the number of data/code/boundary nodes impacted (i.e., D3 − D4). In
the context of Project X, since non-code files also have dependencies, examining the set
of impacted nodes provides an additional perspective on the riskiness of the change sets,
which is not captured by any of the prior features.

Model Description To isolate the contribution of the new features, we adopt the
original BuildFast model architecture and its hyper-parameters. BuildFast [13] uses an
adaptive prediction mechanism that consists of two XGBoost [14] models: (1) one is trained
on the previously passed builds and currently failing builds, and (2) the other is trained on
the previously failing builds and currently failing builds. During the training phase, the
previous-passing model adopts Information Gain [44] as the feature selection method to
select the top 25 features, whereas the previous-failing model adopts Chi-Square Testing
[28] to select the top 30 features. At inference time, BuildFast predicts the build outcomes
based on their immediate predecessor’s outcome, i.e., if the previous build failed, BuildFast
predicts the current build outcome using the previous-failing model, while if the previous
build passed, BuildFast predicts the current build outcome using the previous-passing
model.

38

Table 6.3: Performances of BuildFast, RavenBuild, and the improvements on Project X

BuildFast RavenBuild Improvement

F1-fail .430 .628 +.198
F1-pass .961 .968 +.007
Recall-fail .319 .563 +.244
Recall-pass .984 .979 -.005
Precision-fail .662 .710 +.048
Precision-pass .938 .959 +.021
AUC .687 .881 +.194

Benefit 298.4 286.6 -11.8
Cost 81.9 46.5 +35.4
Gain 216.5 240.2 +23.7

Model Evaluation To respect the chronological order of builds, the most recent one-
third of our dataset is held out as the testing set, with the prior two-thirds being used for
training. Table 6.3 shows the performance of BuildFast and RavenBuild, and the difference
between the two in F1-fail, F1-pass, recall-fail, recall-pass, precision-fail, precision-pass,
and AUC when applied to Project X. We also compute the benefit, cost, and gain metrics
that were proposed by Chen et al. [13]. Benefit is the number of build hours that would
have been saved by skipping the correctly predicted passing builds. Cost is the number of
unnecessary build hours that would have been spent due to incorrectly predicted failing
builds. Gain is the difference between benefit and cost, i.e., Benefit− Cost.

6.2.2 Results

Observation 1: RavenBuild improves BuildFast on Project X in F1-score,
recall, precision, and AUC, with a negligible decrease in recall-pass. Table
6.3 shows that after adopting the context-aware, relevance-aware, and dependency-aware
features, RavenBuild improves BuildFast in all failing classes, by 19.8 percentage points
in F1-fail, 24.4 percentage points in recall-fail, and 4.8 percentage points in precision-fail.
Though RavenBuild also incurs a 0.5 percentage point penalty in recall-pass, RavenBuild
improves BuildFast by 0.7 percentage points in F1-pass, 2.1 percentage points in precision-
pass, and 19.4 percentage points in AUC.

Observation 2: Although RavenBuild does not save as much as BuildFast,
it makes fewer mistakes when recommending builds, leading to a better over-

39

all gain score. Table 6.3 shows that RavenBuild accrues 11.8 fewer build hours of savings
when compared to BuildFast. We suspect that this is due to the fact that RavenBuild has
a slightly lower recall-pass score. On the other hand, RavenBuild reduces costs by 35.4
build hours by more accurately predicting the failing class. The overall perspective shows
that RavenBuild improves the net gain of build outcome prediction in the Project X setting
by 23.7 build hours.

RavenBuild outperforms the state-of-the-art approach to build outcome prediction
in the Project X setting by a substantial amount.

6.3 RavenBuild-CR on Open-Source and Project X

While dependency-aware features are promising a new direction for build outcome pre-
diction, the dependency graphs from which they are extracted are expensive to construct
and require project-specific knowledge to be reliably produced. Therefore, we present an
alternative RavenBuild-CR that employs the context-aware and relevance-aware features
and excludes dependency-aware features. In this section, we evaluate the performance of
the simplified RavenBuild-CR model on Project X. In addition, since the need for deep
knowledge of dependency structures has been relaxed, we also evaluate RavenBuild-CR on
a sample of active open-source projects.

Commit #1

Commit #2

Commit #3

Build #1 Pass

Build #5 Fail

GitHub Circle CI

Build #2 Pass

Build #3 Fail

Build #4 Fail

Dataset

Data #1 Pass

Data #2 Fail

Data #3 Fail

Figure 6.1: Builds triggered on the same commit ID are merged into one data point.

40

6.3.1 Approach

Studied Open-Source Projects Gallaba et al. [25] provide a large dataset that contains
23,330,690 builds that were performed using Circle CI [16], spanning 7,795 projects that
are implemented in 40 different languages. To be consistent with BuildFast, we exclude
all repositories for which Java is not the primary language (i.e., GitHub uses the Linguist
library 1 to determine the primary language). Then, for each such project, we collect its
build data from Circle CI. Since Circle CI does not retain data about all of the past builds,
we filter out the repositories that have fewer than 100 builds available at the time of our
analysis, resulting in a dataset with 45,247 builds from 22 projects.

Circle CI is a versatile platform. As such, the studied projects configure the platform
in various ways to meet their needs. For example, we observed that some projects trigger
multiple builds with different parameter settings on the same change set to, e.g., execute
test cases in parallel. Since many features are extracted at the change set level, we avoid
duplicate entries in our dataset by merging builds that are triggered on the same commit
ID as shown in Figure 6.1. We consider that the merged entry has a passing build outcome
if and only if all of the merged entries have passing outcomes. The duration of the merged
build is calculated by summing up the durations of each of the merged entries. Finally,
to ensure that previous build features can be computed, we exclude the first build of each
project, since it will not have a predecessor from which the features can be extracted.
Table 6.4 provides an overview of the 22 studied open-source projects and Project X. To
foster future replication efforts, we make our data collection scripts and raw data available
online (see Section 6.6).

6.3.2 Results

Observation 3: With only the context-aware and relevance-aware features,
RavenBuild-CR still outperforms BuildFast on Project X. Without the dependency-
aware features, Table 6.5 shows that RavenBuild-CR still outperforms BuildFast in the
Project X setting by 11.2 percentage points in F1-fail, 11.1 percentage points in recall-fail,
7.2 percentage points in precision-fail, and 12.9 percentage points in AUC. RavenBuild-CR
also improves slightly on the performance in the passing class as well.

In terms of time-to-feedback, RavenBuild-CR leads to 20.9 hours less in Cost, with
a negligible 0.2 hours reduction in Benefit, resulting in 20.7 more hours of Gain than
BuildFast. Though RavenBuild-CR improves both precision and recall on Project X, the

1https://github.com/github-linguist/linguist/

41

Table 6.4: Open-Source projects and Project X Statistics
ID Project Durationa Pass Fail ID Project Name Durationa Pass Fail

1 atlasdb 37 2,135 1,021 12 interlok 7 120 29
2 auth0-java 2.3 328 29 13 java-jwt 3 274 55
3 cassandra 117 313 180 14 micrometer 18 322 76
4 cbioportal 29 58 217 15 opennms b 1 244 37
5 client java 4 87 18 16 react-native-share 12 24 41
6 conjure-java-runtime 7 354 83 17 rskj 18 844 198
7 docker-compose-rule 4 105 131 18 spring-cloud-aws 5 419 265
8 fresco 11 79 559 19 spring-cloud-security 2 113 366
9 gradle-baseline 8 378 111 20 Strata 16 136 27
10 gradle-git-version 6 96 37 21 styx 9 109 81
11 grakn 20 106 13 22 testcontainers-java 2 1018 16
X Project X 21 3,898 743

ain minutes. bopennms-provisioning-integration-server.

improvements in the passing class are relatively small. Since the benefit is calculated by
summing up the execution time of the correctly predicted passing builds, we suspect the
minor decrease in benefit is due to the build duration of the correctly predicted passing
builds of RavenBuild-CR being slightly shorter than the passing builds that are correctly
predicted by BuildFast.

Observation 4: RavenBuild-CR outperforms BuildFast on all metrics in
the open-source setting in all metrics. Table 6.5 also shows that RavenBuild-CR
outperforms BuildFast in the open-source setting by 2.1 percentage points in F1-fail, 1.8
percentage points in F1-pass, 1.9 percentage points in recall-fail, 0.3 percentage points in
recall-pass, 2.9 percentage points in precision-fail, 5.8 percentage points in precision-pass,
and 1.9 percentage points in AUC. In terms of time-to-feedback, RavenBuild-CR saves a
total of 13.9 hours more than BuildFast. As RavenBuild-CR also incurs 19.2 hours less in
Cost than BuildFast, the net gain is improved by 33.1 hours.

Without dependency-aware features, although a negligible reduction in Benefit was
observed, RavenBuild-CR still outperforms the state of the art in the Project X
setting. Moreover, RavenBuild-CR is general enough to apply to the open-source
setting, where across-the-board improvements with respect to the state of the art
were observed.

42

Table 6.5: Performances of BuildFast and RavenBuild-CR on Open-Source projects and
Project X.

Open-Source Project X

BuildFast RavenBuild-CR Improvement BuildFast RavenBuild-CR Improvement

F1 fail .447 .468 +.021 .43 .542 +.112
F1 pass .753 .771 +.018 .961 .966 +.005

Recall fail .552 .571 +.019 .319 .43 +.111
Recall pass .745 .748 +.003 .984 .985 +.001

Precision fail .439 .468 +.029 .662 .734 +.072
Precision pass .793 .851 +.058 .938 .948 +.01

AUC .717 .736 +.019 .687 .816 +.129

Benefit 229.4 243.3 +13.9 298.4 298.2 -.2
Cost 138.1 118.9 +19.2 81.9 61 +20.9
Gain 91.3 124.4 +33.1 216.5 237.2 +20.7

6.4 An Introspective Look at the State of Build Out-

come Prediction

Build
#1

Build
#0

Build
#2

Build
#3

Build
#4

Build
#5

Build
#6

Build
#7

Build
#8

Build
#9

Pass

Parrot
Prediction

Build
Outcome

N/A

Pass Pass Fail Fail Fail Pass Pass Fail

Pass Pass Fail Fail Fail Pass PassPass Fail

Fail

Build
#10

Fail

Pass

Figure 6.2: The parrot approach repeats the previous build outcome as its prediction,
achieving accuracy, precision, and recall of .60.

Although RavenBuild and RavenBuild-CR improve on the state-of-the-art BuildFast
model, we find that a näıve “parrot” approach to build outcome prediction that simply
echoes the previous build as a prediction for the current one can perform as well as these
state-of-the-art approaches.

In this section, we evaluate the performance of Parrot in comparison to BuildFast,
RavenBuild, and RavenBuild-CR.

43

BuildFast0.0

0.2

0.4

0.6

0.8

1.0

Pa
rro

t

Precision Fail

BuildFast

Pa
rro

t

Precision Pass

BuildFast

Pa
rro

t

Recall Fail

BuildFast

Pa
rro

t

Recall Pass

0.0 0.2 0.4 0.6 0.8 1.0
RavenBuild

0.0

0.2

0.4

0.6

0.8

1.0

Pa
rro

t

Precision Fail

0.0 0.2 0.4 0.6 0.8 1.0
RavenBuild

Pa
rro

t

Precision Pass

0.0 0.2 0.4 0.6 0.8 1.0
RavenBuild

Pa
rro

t

Recall Fail

0.0 0.2 0.4 0.6 0.8 1.0
RavenBuild

Pa
rro

t

Recall Pass

OSS
X

Figure 6.3: RavenBuild (Project X), RavenBuild-CR, and BuildFast cannot consistently
outperform the parrot approach.

6.4.1 Approach

Figure 6.2 provides an example application of Parrot. We use Parrot as a benchmark
to which we compare the performance of BuildFast, and RavenBuild-CR on the studied
open-source projects, and BuildFast and RavenBuild on Project X.

Figure 6.3 plots the performance of the parrot approach (y-axis) against that of Build-
Fast and RavenBuild/RavenBuild-CR (x-axis) in terms of precision-fail, precision-pass,
recall-fail, and recall-pass, respectively. Each open-source project is represented by a point,
and Project X is denoted by a diamond-shaped point. To visually compare the performance
of BuildFast and RavenBuild with the Parrot approach, we divide the coordinate space
with a diagonal line into unshaded and shaded regions. Points falling in the unshaded
region indicate that the Parrot approach yields better results, whereas points falling in the
shaded region indicate that the other approach is performing better.

To further refine the comparison, we include two lines adjacent to the diagonal line,
which denote a 5% confidence interval. We consider points that fall within the confidence
interval to have a performance within the margin of error, and the difference between the
model and Parrot is likely indistinguishable. Conversely, points that fall outside of the

44

confidence interval are considered to have performance that is distinguishable between the
state-of-the-art models and the parrot approach. Therefore, by counting the number of
points falling in the unshaded region, we can infer how often Parrot outperforms state-of-
the-art build outcome prediction models.

To study why näıve predictions that simply echo the previous build outcome achieve
comparable performance to the state of the art, we count the number of builds that have
the same outcome as their immediate predecessors. Table 6.6 shows the total number of
passing and failing builds, the number of passing and failing builds that have the same
outcome as their immediate predecessors, and the relative percentages in each category for
the studied open-source projects and Project X.

6.4.2 Results

Observation 5: The näıve Parrot outperforms both BuildFast and RavenBuild
in terms of time-to-feedback. Table 6.7 shows the performances of Parrot, BuildFast,
and RavenBuild(-CR). While both BuildFast and RavenBuild(-CR) outperform Parrot in
F1-fail, recall-fail, precision-fail, and AUC in the open-source context, and in recall-pass,
precision-fail, and AUC in the Project X context, Parrot outperforms both approaches
in terms of Gain. More specifically, Parrot achieves better Gain scores by improving the
Benefit score in the open-source context, and by reducing the Cost score in the Project X
context.

Observation 6: BuildFast, RavenBuild, and RavenBuild-CR often under-
perform with respect to Parrot in terms of precision and recall. Figure 6.3 shows
11, 11, 7, and 8 points in the four sub-graphs associated with BuildFast performance, and
9, 8, 7, and 9 points in the four sub-graphs associated with RavenBuild performance, fall in
the unshaded regions, indicating that the parrot approach can outperform BuildFast and
RavenBuild in at least one of the evaluation metrics (i.e., precision-fail, precision-pass,
recall-fail, and recall-pass) in at least seven of the studied projects. Overall, BuildFast and
RavenBuild underperform with respect to the parrot approach in 39% and 35% of the 92
evaluation cases (i.e., 23 projects × 4 evaluation metrics).

Indeed, a project-level inspection reveals that though Parrot does not outperform Build-
Fast and RavenBuild in all evaluation metrics, Parrot outperforms BuildFast and Raven-
Build in, respectively, 10 and 6 of the 23 studied projects in 3 of the 4 evaluation metrics.

In the cases where build outcome prediction models outperform the Parrot approach,
the difference in performance is often within the margin of error. Figure 6.3 shows BuildFast
and RavenBuild only outperform the Parrot approach by more than the margin of error in

45

6–12 projects, of the 23 projects in terms of precision-fail, precision-pass, recall-fail, and
recall-pass. In 62% and 60% of the evaluated cases, BuildFast and RavenBuild do not
significantly outperform the Parrot approach.

We suspect that Parrot takes advantage of the repeated build outcomes and provides
predictions that offer little practical value. For example, if the testing set contains True
labels only, a näıve model can achieve perfect performance in all evaluation metrics by
simply predicting True, whereas it would be much harder for any model to score 100%
in all evaluation metrics. Though Parrot outperforms both BuildFast and RavenBuild,
Parrot fails to capture the scenarios when a build outcome flips from passing to failing or
failing to passing, which are the scenarios that provide developers with the most insight.
Therefore, Parrot outperforming BuildFast and RavenBuild does not imply the build out-
come prediction work is meaningless. Instead, Parrot provides a baseline of the natural
tendency of the build outcome prediction dataset.

Table 6.6: The number of builds that have the same outcome as their immediate predecessor
in the passing and failing class, the total number of builds in the passing and failing class,
and the percentage of the builds that have the same build outcome as their immediate
predecessor in all builds in the passing and failing class.

Open-Source Project X

Passing Failing All Passing Failing All

Samea 6,302 2,229 8,531 3,587 744 4,031
Total 7,662 3,590 11,252 3,898 743 4,640

% 82% 62% 76% 92% 59% 82%
a Builds that have same outcomes as their immediate predecessor.

Observation 7: Build outcomes tend to repeat their previous outcome. The
fact that the Parrot approach achieves performance that is comparable to or better than the
state-of-the-art models reveals build outcomes tend to repeat their previous outcome. In-
deed, Table 6.6 shows that 76% of builds from open-source projects have the same outcome
as their previous builds. More specifically, 82% of the passing builds and 62% of the failing
builds have the same outcome as their immediately preceding build. In terms of Project
X, 87% of all builds, 92% of the passing builds, and 59% of the failing builds have the same
outcome as their immediately preceding build. Our finding aligns with the observation of
Jin and Servant [39], and demonstrates that a bias towards the previous build outcome
exists not only in open-source contexts but also in AAA video game projects like Project X.

46

Table 6.7: The performance of Parrot, BuildFast, and RavenBuild. Values in boldface
fonts indicate the best performance among the three.

Open-Source Project X

Parrot BuildFast RavenBuild-CR Parrot BuildFast RavenBuild

F1 fail .421 .447 .468 .657 .43 .628
F1 pass .797 .753 .771 .967 .961 .968

Recall fail .422 .552 .571 .652 .319 .563
Recall pass .797 .745 .748 .968 .984 .978

Precision fail .420 .439 .468 .662 .662 .71
Precision pass .798 .793 .851 .967 .938 .959

AUC .610 .717 .736 .810 .687 .881

Benefit 336.3 229.4 243.3 292.7 298.4 286.6
Cost 158.3 138.1 118.9 39.1 81.91 46.5
Gain 178 91.3 124.4 253.6 216.5 240.2

Despite the improvements achieved in build outcome prediction, both RavenBuild
and BuildFast are often outperformed by the näıve Parrot approach. However, Par-
rot cannot capture the flip cases that developers need to be notified of. Future build
outcome prediction work should consider Parrot performance as a tendency indica-
tor when evaluating.

6.5 Threats to Validity

Below, we describe the threats to the validity of our study.

6.5.1 Construct Validity

Construct validity concerns may creep into our study if our measurements are misaligned
with the phenomena we set out to study. In our work, these threats could be related to the
selection of evaluation metrics. We rely on cost metrics from state-of-the-art studies [13]
to ensure a fair comparison between RavenBuild and BuildFast [13], and other baseline
approaches. Nevertheless, the cost measured by these metrics might still not reflect the

47

real cost incurred by build outcome prediction in practice. In particular, deployments that
aggressively pursue savings, negative side effects may emerge when these approaches are
actually adopted. To capture such costs, we would need to deploy the studied approaches
in a live CI service and measure costs that are actually impacting practitioners and stake-
holders. Unfortunately, this evaluation is not feasible at this stage given the critical role
that CI services play in production pipelines at Ubisoft.

6.5.2 Internal Validity

One potential threat to our internal validity is the existence of flaky builds in the studied
datasets. Flaky builds are builds that fail intermittently due to non-deterministic factors in
the system under test, the CI service, or the deployment environment. At Ubisoft, failing
build steps are automatically retried. Therefore, to mitigate the effect of flaky builds on
our study and datasets, we consider a build step to be passing as long as it has one passing
execution.

Another threat to internal validity has to do with the use of machine learning in the
studied approaches, especially the steps of feature selection in the BuildFast model ar-
chitecture. Some features might be left out in the feature selection process. Through
project-level inspection, we confirm that the RavenBuild features are selected to train the
models in the feature selection step.

In addition, the dependency-aware features are collected from the multidisciplinary
dependency graphs, which take time to be fully extracted. To address the issue, we propose
to use the previous version of the dependency graph. Indeed, our analysis shows that only
34% of the studied changes alter edges within the graph, but those changes only affect
one side of the dependency (i.e., the files that the added files are depending on), and
thus would not invalidate dependency analyses performed on the prior graph state. The
changes that do alter the graph structure in analysis-invalidating ways are easily identified
by scanning for differences in the import section of the edited files, which can be used to
prevent incorrect dependency analysis results from being adopted by the model. However,
future work needs to address the cases where the prior dependency graph is invalidated for
analysis.

6.5.3 External Validity

Threats to external validity have to do with the generalizability of our results to other
systems. To ensure consistency with BuildFast, we sample Java projects from GitHub to

48

construct the open-source dataset. The performances of RavenBuild might differ when
applied to other projects, but the key insights of the context-ware, relevance-aware, and
dependency-aware features remain the same, as these features are extracted from change
information that does not depend on the platform or programming languages.

6.5.4 Reliability Validity

Reliability validity threats may impact the replicability of this study. Due to legal con-
straints, we cannot share our dataset from Project X, since datasets collected on a pro-
prietary project may leak confidential information. We conduct our evaluation of state-of-
the-art approaches on 22 open-source projects as well as Project X. This selection of the
same language of subject systems as prior work [13] ensures consistency when comparing
results.

6.6 Data Availability

The presented dataset and results, as well as data collection scripts for open-source projects,
are available in our replication package 2.

6.7 Chapter Summary

In this chapter, we describe the unique characteristics of AAA video game project devel-
opment that make build outcome prediction particularly challenging. In the context of
Project X, we observe that non-code changes that do not modify source code also incur
build failures, as non-code artifacts should be compiled in an order-sensitive manner that
respects the specified dependencies. Moreover, code changes that have an impact that
crosses the source-data boundary are more prone to build failures than code changes that
do not impact non-code files. The method by which we construct the multidisciplinary de-
pendency graph forges a new direction for the extraction of features for build outcome pre-
diction. To better accommodate the non-code changes into build outcome prediction, and
to exploit the abundant and rich dependency data, we propose features that are context,
relevance, and dependency aware. We incorporate those features into RavenBuild—a novel
solution for build outcome prediction. We find that RavenBuild outperforms BuildFast by

2https://zenodo.org/record/8388161

49

a substantial amount on Project X. While extracting the dependency graphs requires
extensive project-specific understanding, we provided an alternative to RavenBuild that
only adopts the context-aware and relevance-aware features, namely RavenBuild-CR. We
find that RavenBuild-CR outperforms BuildFast in both the open-source and Project X
settings. Surprisingly, however, we find that neither BuildFast nor RavenBuild can consis-
tently outperform a näıve Parrot approach that simply echoes the previous build outcome
as predictions. Though Parrot fails to capture the important flip cases, the comparable
performance of Parrot reveals that build outcomes tend to repeat their immediate predeces-
sor. Therefore, future build outcome prediction work should consider Parrot performance
as a tendency indicator when evaluating.

50

Chapter 7

Conclusion

Dependency graphs are at the core of build systems—a key component of the CI process.
While nodes representing source code are essential components of dependency graphs,
nodes representing non-code files also exist, and can even dominate the graph in projects
that require contributions from personnel with different expertise. To weave the artifacts
into a cohesive system and generate rapid feedback, build systems are adopted by modern
software organizations to execute build and test jobs. In addition, since the code and non-
code nodes are interconnected through boundary nodes in dependency graphs, changes to
one type of node may have an impact on other types of nodes.

7.1 Contribution and Findings

In this thesis, we conduct an empirical analysis of the cross-boundary changes in a video
game project, which (1) quantifies the frequency and riskiness of cross-boundary changes,
and (2) characterizes the context of cross-boundary changes being committed. Finally, we
propose RavenBuild, which (3) leverages dependency analytics to enhance build outcome
prediction. We claim that:

Thesis Statement: The presence and magnitude of cross-boundary change can be
leveraged to enhance Continuous Integration.

1. Quantifying Cross-Boundary Changes (Chapter 4)
Through quantitative analysis, we reveal that non-code nodes and edges con-
necting to non-code nodes dominate in the dependency graph, and code

51

changes frequently have a cross-boundary impact. Moreover, cross-boundary
changes are more prone to build breakages and more frequently implicated in
defect-inducing commits.

2. Characterizing Cross-Boundary Changes (Chapter 5)
To understand the circumstance in which changes cross disciplinary bound-
aries, we analyze the commit messages and the contributors of cross-boundary
changes. We discover that cross-boundary changes are more commonly as-
sociated with gameplay functionalities and feature addition, and they are
produced disproportionally by a single team of developers.

3. Context, Relevance, and Dependency Aware Build Outcome Prediction (Chap-
ter 6)
We complemented the prior build outcome prediction work and proposed
RavenBuild, which leverages context-aware, relevance-aware features, and de-
pendency analytics in build outcome prediction, and RavenBuild-CR, which
only uses context-aware and relevance-aware features to ease the adoption
process.

7.2 Opportunities for Future Research

Our research demonstrates that dependency analytics can be leveraged to enhance build
outcome prediction. To further exploit the dependency analytics, we present two future
research paths:

7.2.1 Measuring the Riskiness of Files with Dependency Analyt-
ics

We believe that when assessing the riskiness of code changes, it is crucial to consider the
transitive dependencies of the changed files. These dependencies can create a domino
effect where a change in one file can impact multiple other files. Failure to account for
transitive impact could lead to an incomplete assessment of risks. For instance, without
considering these dependencies, a change initially accessed to be low-risk might transitively
impact high-risk files, leading to an inaccurate estimation of the overall risk of the change.
Therefore, we can leverage the dependency data to enhance change risk estimation.

52

7.2.2 Investigating Contributor Awareness and Communication
of Impact of Cross-Boundary Changes

A video game project consists of code files contributed by developers and non-code files
contributed by experts of other domains. Our analysis of the video game project reveals
that cross-boundary changes carry higher risks compared to changes that do not impact
non-code files. However, it is unclear whether the developers are aware of the risk. We will
conduct a survey to understand the developers’ level of awareness regarding cross-boundary
changes. We believe that cross-team communication may lower the risk of cross-boundary
changes. We will also investigate the level of communication between developers and
experts of other domains regarding cross-boundary changes.

53

References

[1] Json compilation database format specification.

[2] Mtl material format (lightwave, obj).

[3] Snowdrop game engine. Accessed: August 10, 2023.

[4] Rabe Abdalkareem, Suhaib Mujahid, and Emad Shihab. A machine learning ap-
proach to improve the detection of ci skip commits. IEEE Transactions on Software
Engineering, 47(12):2740–2754, 2021.

[5] Rabe Abdalkareem, Suhaib Mujahid, Emad Shihab, and Juergen Rilling. Which
commits can be ci skipped? IEEE Transactions on Software Engineering, 47(3):448–
463, 2021.

[6] Mithun Acharya and Brian Robinson. Practical change impact analysis based on static
program slicing for industrial software systems. In 2011 33rd International Conference
on Software Engineering (ICSE), pages 746–755. IEEE, 2011.

[7] Bram Adams, Herman Tromp, Kris De Schutter, and Wolfgang De Meuter. Design
recovery and maintenance of build systems. 2007 IEEE International Conference on
Software Maintenance, pages 114–123, 2007.

[8] Jafar M. Al-Kofahi, Hung Viet Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen,
and Tien N. Nguyen. Detecting semantic changes in makefile build code. In 2012
28th IEEE International Conference on Software Maintenance (ICSM), pages 150–
159, 2012.

[9] Robert S Arnold. Software change impact analysis. IEEE Computer Society Press,
1996.

54

[10] Vipin Balachandran. Reducing human effort and improving quality in peer code
reviews using automatic static analysis and reviewer recommendation. In 2013 35th
International Conference on Software Engineering (ICSE), pages 931–940, 2013.

[11] Moritz Beller, Georgios Gousios, and Andy Zaidman. How (much) do developers test?
In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
volume 2, pages 559–562. IEEE, 2015.

[12] Qi Cao, Ruiyin Wen, and Shane McIntosh. Forecasting the duration of incremental
build jobs. In 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), pages 524–528. IEEE, 2017.

[13] Bihuan Chen, Linlin Chen, Chen Zhang, and Xin Peng. Buildfast: History-aware build
outcome prediction for fast feedback and reduced cost in continuous integration. In
2020 35th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 42–53, 2020.

[14] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, page 785–794, New York, NY, USA, 2016. Association
for Computing Machinery.

[15] Moataz Chouchen, Ali Ouni, Mohamed Wiem Mkaouer, Raula Gaikovina Kula, and
Katsuro Inoue. Whoreview: A multi-objective search-based approach for code review-
ers recommendation in modern code review. Applied Soft Computing, 100:106908,
2021.

[16] CircleCI. Circleci, 2023. Accessed on Date,September 26, 2023.

[17] Jürgen Cito, Gerald Schermann, John Erik Wittern, Philipp Leitner, Sali Zumberi,
and Harald C Gall. An empirical analysis of the docker container ecosystem on github.
In 2017 IEEE/ACM 14th International Conference on Mining Software Repositories
(MSR), pages 323–333. IEEE, 2017.

[18] Daniel Alencar da Costa, Shane McIntosh, Weiyi Shang, Uirá Kulesza, Roberta
Coelho, and Ahmed E. Hassan. A Framework for Evaluating the Results of the SZZ
Approach for Identifying Bug-Introducing Changes. IEEE Transactions on Software
Engineering, 43(7):641–657, 2017.

[19] Paul M Duvall, Steve Matyas, and Andrew Glover. Continuous integration: improving
software quality and reducing risk. Pearson Education, 2007.

55

[20] Sebastian Elbaum, Gregg Rothermel, and John Penix. Techniques for improving
regression testing in continuous integration development environments. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2014, page 235–245, New York, NY, USA, 2014. Association for
Computing Machinery.

[21] Daniel Elsner, Roland Wuersching, Markus Schnappinger, Alexander Pretschner,
Maria Graber, René Dammer, and Silke Reimer. Build system aware multi-language
regression test selection in continuous integration. In 2022 IEEE/ACM 44th Interna-
tional Conference on Software Engineering: Software Engineering in Practice (ICSE-
SEIP), pages 87–96, 2022.

[22] Miko laj Fejzer, Piotr Przymus, and Krzysztof Stencel. Profile based recommendation
of code reviewers. Journal of Intelligent Information Systems, 50, 06 2018.

[23] Stuart I Feldman. Make—a program for maintaining computer programs. Software:
Practice and experience, 9(4):255–265, 1979.

[24] Keheliya Gallaba, John Ewart, Yves Junqueira, and Shane McIntosh. Accelerating
continuous integration by caching environments and inferring dependencies. IEEE
Transactions on Software Engineering, 48(6):2040–2052, 2022.

[25] Keheliya Gallaba and Shane McIntosh. Use and misuse of continuous integration
features: An empirical study of projects that (mis)use travis ci. IEEE Transactions
on Software Engineering, 46(1):33–50, 2020.

[26] GitHub. Github rest api documentation, 2023. Accessed on Date, September 26, 2023.

[27] Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Practical regression test selection
with dynamic file dependencies. In Proceedings of the 2015 International Symposium
on Software Testing and Analysis, ISSTA 2015, page 211–222, New York, NY, USA,
2015. Association for Computing Machinery.

[28] Priscilla E Greenwood and Michael S Nikulin. A guide to chi-squared testing, volume
280. John Wiley & Sons, 1996.

[29] Jason Gregory. Game engine architecture. AK Peters/CRC Press, 2018.

[30] Ahmed E. Hassan and Ken Zhang. Using decision trees to predict the certification
result of a build. In 21st IEEE/ACM International Conference on Automated Software
Engineering (ASE 2006), 18-22 September 2006, Tokyo, Japan, pages 189–198. IEEE
Computer Society, 2006.

56

[31] Foyzul Hassan and Xiaoyin Wang. Change-aware build prediction model for stall
avoidance in continuous integration. In 2017 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM), pages 157–162, 2017.

[32] Kim Herzig, Michaela Greiler, Jacek Czerwonka, and Brendan Murphy. The art of
testing less without sacrificing quality. In Proceedings of the 37th International Con-
ference on Software Engineering - Volume 1, ICSE ’15, page 483–493. IEEE Press,
2015.

[33] Yoshiki Higo and Shinji Kusumoto. Enhancing quality of code clone detection with
program dependency graph. In 2009 16th Working Conference on Reverse Engineer-
ing, pages 315–316. IEEE, 2009.

[34] Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and Danny Dig.
Trade-offs in continuous integration: Assurance, security, and flexibility. In Pro-
ceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2017, page 197–207, New York, NY, USA, 2017. Association for Comput-
ing Machinery.

[35] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny Dig. Usage,
costs, and benefits of continuous integration in open-source projects. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE ’16, page 426–437, New York, NY, USA, 2016. Association for Computing
Machinery.

[36] Abram Hindle, Daniel M. German, and Ric Holt. What do large commits tell us? a
taxonomical study of large commits. In Proceedings of the 2008 International Working
Conference on Mining Software Repositories, MSR ’08, page 99–108, New York, NY,
USA, 2008. Association for Computing Machinery.

[37] Toshiki Hirao, Shane McIntosh, Akinori Ihara, and Kenichi Matsumoto. The review
linkage graph for code review analytics: A recovery approach and empirical study. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2019, page 578–589, New York, NY, USA, 2019. Association for Computing Machinery.

[38] Xianhao Jin. Reducing cost in continuous integration with a collection of build selec-
tion approaches. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,

57

ESEC/FSE 2021, page 1650–1654, New York, NY, USA, 2021. Association for Com-
puting Machinery.

[39] Xianhao Jin and Francisco Servant. A cost-efficient approach to building in continu-
ous integration. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, ICSE ’20, page 13–25, New York, NY, USA, 2020. Association
for Computing Machinery.

[40] Xianhao Jin and Francisco Servant. Hybridcisave: A combined build and test selection
approach in continuous integration. ACM Trans. Softw. Eng. Methodol., dec 2022. Just
Accepted.

[41] Xianhao Jin and Francisco Servant. Which builds are really safe to skip? maximizing
failure observation for build selection in continuous integration. J. Syst. Softw., 188(C),
jun 2022.

[42] Sunghun Kim, Thomas Zimmermann, Kai Pan, and E. James Jr. Whitehead. Auto-
matic identification of bug-introducing changes. In Proceedings of the 21st IEEE/ACM
International Conference on Automated Software Engineering, ASE ’06, page 81–90,
USA, 2006. IEEE Computer Society.

[43] Vladimir Kovalenko, Nava Tintarev, Evgeny Pasynkov, Christian Bird, and Alberto
Bacchelli. Does reviewer recommendation help developers? IEEE Transactions on
Software Engineering, 46(7):710–731, 2020.

[44] Changki Lee and Gary Geunbae Lee. Information gain and divergence-based feature
selection for machine learning-based text categorization. Information Processing &
Management, 42(1):155–165, 2006. Formal Methods for Information Retrieval.

[45] Marko Leppänen, Simo Mäkinen, Max Pagels, Veli-Pekka Eloranta, Juha Itkonen,
Mika V. Mäntylä, and Tomi Männistö. The highways and country roads to continuous
deployment. IEEE Software, 32(2):64–72, 2015.

[46] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, Joao Gama, and Guangquan Zhang. Learning
under concept drift: A review. IEEE Transactions on Knowledge and Data Engineer-
ing, 31(12):2346–2363, 2018.

[47] Sasu Mäkinen, Henrik Skogström, Eero Laaksonen, and Tommi Mikkonen. Who needs
mlops: What data scientists seek to accomplish and how can mlops help? In 2021
IEEE/ACM 1st Workshop on AI Engineering-Software Engineering for AI (WAIN),
pages 109–112. IEEE, 2021.

58

[48] Shane McIntosh, Bram Adams, Meiyappan Nagappan, and Ahmed E. Hassan. Identi-
fying and Understanding Header File Hotspots in C/C++ Build Processes. Automated
Software Engineering, 23(4):619–647, 2016.

[49] Shane McIntosh, Bram Adams, Thanh H.D. Nguyen, Yasutaka Kamei, and Ahmed E.
Hassan. An empirical study of build maintenance effort. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11, page 141–150, New York,
NY, USA, 2011. Association for Computing Machinery.

[50] Mehran Meidani. Towards an Enhanced Dependency Graph. Master’s thesis, Univer-
sity of Waterloo, 200 University Ave. W., Waterloo, ON, Canada, December 2022.

[51] Mehran Meidani, Maxime Lamothe, and Shane McIntosh. Assessing the Exposure of
Software Changes: The DiPiDi Approach. Empirical Software Engineering, page To
appear, 2023.

[52] Atif Memon, Zebao Gao, Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siemborski,
and John Micco. Taming google-scale continuous testing. In 2017 IEEE/ACM 39th
International Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP), pages 233–242, 2017.

[53] Andre N. Meyer, Laura E. Barton, Gail C. Murphy, Thomas Zimmermann, and
Thomas Fritz. The work life of developers: Activities, switches and perceived produc-
tivity. IEEE Transactions on Software Engineering, 43(12):1178 – 1193, 2017.

[54] Emerson Murphy-Hill, Thomas Zimmermann, and Nachiappan Nagappan. Cowboys,
ankle sprains, and keepers of quality: How is video game development different from
software development? In Proceedings of the 36th International Conference on Soft-
ware Engineering, ICSE 2014, page 1–11, New York, NY, USA, 2014. Association for
Computing Machinery.

[55] Mathieu Nayrolles and Abdelwahab Hamou-Lhadj. Clever: Combining code metrics
with clone detection for just-in-time fault prevention and resolution in large industrial
projects. In 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR), pages 153–164, 2018.

[56] Ansong Ni and Ming Li. Cost-effective build outcome prediction using cascaded clas-
sifiers. In 2017 IEEE/ACM 14th International Conference on Mining Software Repos-
itories (MSR), pages 455–458, 2017.

59

[57] Matthew O’Connell, Cameron Druyor, Kyle B Thompson, Kevin Jacobson, William K
Anderson, Eric J Nielsen, Jan-Reneé Carlson, Michael A Park, William T Jones,
Robert Biedron, et al. Application of the dependency inversion principle to multi-
disciplinary software development. In 2018 Fluid Dynamics Conference, page 3856,
2018.

[58] Doriane Olewicki, Mathieu Nayrolles, and Bram Adams. Towards language-
independent brown build detection. In Proceedings of the 44th International Con-
ference on Software Engineering, ICSE ’22, page 2177–2188, New York, NY, USA,
2022. Association for Computing Machinery.

[59] Ali Ouni, Raula Gaikovina Kula, and Katsuro Inoue. Search-based peer reviewers
recommendation in modern code review. In 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 367–377, 2016.

[60] Cong Pan and Michael Pradel. Continuous test suite failure prediction. In Proceedings
of the 30th ACM SIGSOFT International Symposium on Software Testing and Analy-
sis, ISSTA 2021, page 553–565, New York, NY, USA, 2021. Association for Computing
Machinery.

[61] Partha Sarathi Paul, Surajit Goon, and Abhishek Bhattacharya. History and com-
parative study of modern game engines. International Journal of Advanced Computed
and Mathematical Sciences, 3(2):245–249, 2012.

[62] Maksym Petrenko and Václav Rajlich. Variable granularity for improving precision
of impact analysis. In 2009 IEEE 17th International Conference on Program Com-
prehension, pages 10–19. IEEE, 2009.

[63] Vaclav Rajlich and Prashant Gosavi. Incremental change in object-oriented program-
ming. IEEE software, 21(4):62–69, 2004.

[64] Guoping Rong, Yifan Zhang, Lanxin Yang, Fuli Zhang, Hongyu Kuang, and He Zhang.
Modeling review history for reviewer recommendation: A hypergraph approach. In
Proceedings of the 44th International Conference on Software Engineering, ICSE ’22,
page 1381–1392, New York, NY, USA, 2022. Association for Computing Machinery.

[65] Barbara G Ryder and Frank Tip. Change impact analysis for object-oriented pro-
grams. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop on Program
analysis for software tools and engineering, pages 46–53, 2001.

60

[66] Islem Saidani, Ali Ouni, Moataz Chouchen, and Mohamed Wiem Mkaouer. Bf-
detector: An automated tool for ci build failure detection. In Proceedings of the
29th ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, ESEC/FSE 2021, page 1530–1534,
New York, NY, USA, 2021. Association for Computing Machinery.

[67] Islem Saidani, Ali Ouni, and Mohamed Wiem Mkaouer. Improving the prediction of
continuous integration build failures using deep learning. Automated Software Engg.,
29(1), may 2022.

[68] Jacek Sliwerski, Thomas Zimmermann, and Andreas Zeller. When do changes induce
fixes? SIGSOFT Softw. Eng. Notes, 30(4):1–5, may 2005.

[69] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N. Nguyen. Build
code analysis with symbolic evaluation. In 2012 34th International Conference on
Software Engineering (ICSE), pages 650–660, 2012.

[70] Ahmed Tamrawi, Hoan Anh Nguyen, Hung Viet Nguyen, and Tien N Nguyen.
Symake: a build code analysis and refactoring tool for makefiles. In 2012 Proceedings
of the 27th IEEE/ACM International Conference on Automated Software Engineering,
pages 366–369. IEEE, 2012.

[71] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula,
Norihiro Yoshida, Hajimu Iida, and Ken-ichi Matsumoto. Who should review my
code? a file location-based code-reviewer recommendation approach for modern code
review. In 2015 IEEE 22nd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), pages 141–150, 2015.

[72] Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and Vladimir
Filkov. Quality and productivity outcomes relating to continuous integration in github.
In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineer-
ing, ESEC/FSE 2015, page 805–816, New York, NY, USA, 2015. Association for
Computing Machinery.

[73] Shuying Wang and Miriam AM Capretz. A dependency impact analysis model for web
services evolution. In 2009 IEEE International Conference on Web Services, pages
359–365. IEEE, 2009.

[74] Ruiyin Wen, David Gilbert, Michael G. Roche, and Shane McIntosh. BLIMP Tracer:
Integrating Build Impact Analysis with Code Review. In Proc. of the International
Conference on Software Maintenance and Evolution (ICSME), page 685–694, 2018.

61

[75] Mark Werner. Barriers to a collaborative, multidisciplinary pedagogy [software devel-
opment teams]. In Proceedings 1996 International Conference Software Engineering:
Education and Practice, pages 203–210. IEEE, 1996.

[76] Xin Xia, David Lo, Xinyu Wang, and Xiaohu Yang. Who should review this change?:
Putting text and file location analyses together for more accurate recommendations.
In 2015 IEEE International Conference on Software Maintenance and Evolution (IC-
SME), pages 261–270, 2015.

[77] Francisco Servant Xianhao Jin. What helped, and what did not? an evaluation of the
strategies to improve continuous integration. CoRR, abs/2102.06666, 2021.

[78] Zheng Xie and Ming Li. Cutting the software building efforts in continuous integration
by semi-supervised online auc optimization. In International Joint Conference on
Artificial Intelligence, 2018.

[79] Zhao Xu, Yang Zhang, and Xiayan Xu. 3d visualization for building information
models based upon ifc and webgl integration. Multimedia Tools and applications,
75(24):17421–17441, 2016.

[80] Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang. Reviewer recommendation for
pull-requests in github. Inf. Softw. Technol., 74(C):204–218, jun 2016.

[81] Motahareh Bahrami Zanjani, Huzefa Kagdi, and Christian Bird. Automatically rec-
ommending peer reviewers in modern code review. IEEE Transactions on Software
Engineering, 42(6):530–543, 2016.

[82] Jiyang Zhang, Chandra Maddila, Ram Bairi, Christian Bird, Ujjwal Raizada, Apoorva
Agrawal, Yamini Jhawar, Kim Herzig, and Arie van Deursen. Using large-scale hetero-
geneous graph representation learning for code review recommendations at microsoft.
In 2023 IEEE/ACM 45th International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pages 162–172, 2023.

[83] Lingming Zhang, Miryung Kim, and Sarfraz Khurshid. Faulttracer: A change impact
and regression fault analysis tool for evolving java programs. In Proceedings of the
ACM SIGSOFT 20th International Symposium on the Foundations of Software Engi-
neering, FSE ’12, New York, NY, USA, 2012. Association for Computing Machinery.

[84] Thomas Zimmermann and Nachiappan Nagappan. Predicting subsystem failures us-
ing dependency graph complexities. In The 18th IEEE International Symposium on
Software Reliability (ISSRE’07), pages 227–236. IEEE, 2007.

62

[85] Manuela Züger and Thomas Fritz. Interruptibility of software developers and its
prediction using psycho-physiological sensors. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems, CHI ’15, page 2981–2990, New
York, NY, USA, 2015. Association for Computing Machinery.

63

	Author's Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Thesis Overview
	Thesis Contributions
	Empirical Contributions
	Technical Contributions

	Background and Definitions
	Build System
	Build Dependency Graph

	Build Outcome Prediction
	Characteristics of Project X
	Challenges of Applying Build Outcome Prediction to Project X
	Chapter Summary

	Related Work
	Dependency Analytics
	Dependency Analytics In Code Reviewer Recommendation
	Dependency Analytics for the Acceleration of Continuous Integration

	Benefit and Cost of CI
	Build Prediction Features
	Chapter Summary

	Quantifying Cross-Boundary Changes
	Introduction
	RQ1: What is missed by a typical code-only dependency graph?
	RQ2: How often does the impact of a change cross disciplinary boundaries?
	RQ3: How risky are cross-boundary changes?
	Chapter Summary

	Characterizing Cross-Boundary Changes
	Introduction
	RQ4: Which activities are performed during cross-boundary changes?
	RQ5: Who produces cross-boundary changes?
	Practical Implications
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Chapter Summary

	Context, Relevance, and Dependency-Aware Build Outcome Prediction: RavenBuild
	Introduction
	RavenBuild On Project X
	Approach
	Results

	RavenBuild-CR on Open-Source and Project X
	Approach
	Results

	An Introspective Look at the State of Build Outcome Prediction
	Approach
	Results

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability Validity

	Data Availability
	Chapter Summary

	Conclusion
	Contribution and Findings
	Opportunities for Future Research
	Measuring the Riskiness of Files with Dependency Analytics
	Investigating Contributor Awareness and Communication of Impact of Cross-Boundary Changes

	References

