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Abstract 

Traffic congestion has long become a major concern in many cities in Canada and around the world. 

It has been estimated that the annual total economic loss due to traffic congestion in major Canadian 

urban centers has reached nearly $4 billion. Real-time monitoring of traffic conditions and 

measurement of the performance of the underlying traffic management systems is a critical 

requirement for mitigating and minimizing the impact of traffic congestion in an urban road network.  

The latest advance in the Connected Vehicle (CV) technology has afforded a new opportunity for 

developing solutions that make use of high-resolution trajectory data for real-time urban traffic 

monitoring and performance measurement, such as Automated Traffic Signal Performance Measures 

(ATSPM). However, many critical issues still need to be addressed before the potential of CV can be 

fully realized.  For example, in the context of ATSPM, what traffic performance measures could be 

derived from the CV data? Can non-recurrent congestion be detected in real-time and at what latency?  

What would be the optimal spatial and temporal data aggregation resolutions of CV data?  What 

would be the effect of the CV market penetration rate on the reliability of specific performance 

measures? This research attempts to address some of these questions through a simulation study of a 

real-world signalized urban arterial corridor from Broward County, Florida, US, consisting of 17 

signalized intersections with a wide range of layouts and congestion levels. An extensive set of 

simulation experiments have been conducted under a range of scenarios varying by facility types 

(single intersection vs. corridor), congestion level (from undersaturated to oversaturated), CV market 

penetration rates (1%-25%), and signal timing plans. Under each scenario, samples of vehicles at 

specific market penetration rates are randomly drawn from the simulated traffic population to 

represent the CVs and their trajectory data are used to calculate various signal performance measures, 

including average overall delay, percentile queue length, percentage of stopped vehicles and an 

average number of stops, at the spatial aggregation levels of movements, approaches, intersections, 

and corridor. A sensitivity analysis is subsequently conducted to assess the accuracy and reliability of 

the performance measures derived from CV data as related to some specific external conditions and 

factors.  The results from the simulation experiments have underscored the significant potential of CV 

data, even under the current relatively low market penetration rate, for estimating various important 

traffic performance measures and detecting non-recurrent events or bottlenecks - a basic requirement 

for implementing ATSPM. 
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Chapter 1 
Introduction 

1.1 Research Background 

Traffic congestion has drawn major concern in many cities in Canada and around the world. The 

estimated total loss generated by unexpected congestion reaches nearly $4 billion every year in major 

Canadian urban centers. According to the Canadian Automobile Association (CAA), congestion in 

major Canadian cities collectively costs drivers over 11.5 million hours and drains an extra 22 million 

litres of fuel per year (CAA, 2021). In the Greater Toronto and Hamilton area, the social and 

economic costs of congestion were approximately $3.3 billion per year (Metrolinx, 2021). It is worth 

noting that the City of Toronto is the third among the top ten North American cities experiencing the 

most acute traffic congestion, as depicted in Figure 1-1 (INRIX, 2022). Traffic congestion has been a 

persistent source of disturbance in the operational aspects of traffic management within the city.  

Figure 1-2 shows the traffic conditions of diverse intersections operating at the highest capacity 

during AM peak hours and PM peak hours in the metropolitan city of Toronto (City of Toronto, 

2020). The unfavourable traffic conditions exert extremely negative influences on traffic efficiency 

and increase the travel time of each driver.  

 

Figure 1-1 The Top Ten Most Congested Cities in North America ( INRIX, 2022) 

https://www.caa.ca/app/uploads/2021/01/Congestion-solutions-Summary-ENG-V2.pdf
https://www.metrolinx.com/en/projects-and-programs/regional-transportation-plan
https://inrix.com/scorecard/
https://www.cbc.ca/news/canada/toronto/toronto-most-congested-spots-1.6716662
https://www.cbc.ca/news/canada/toronto/toronto-most-congested-spots-1.6716662
https://inrix.com/scorecard/
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Figure 1-2 Intersection Performance in Toronto during Peak Hours (City of Toronto, 2022) 

In response to the challenge of traffic congestion and the need to improve traffic performance, 

innovative technologies are being developed as important tools for real-time traffic monitoring and 

management. 

1.2 Real-time traffic monitoring and management systems and ATSPM 

Effective traffic management is crucial for mitigating and minimizing the influence of traffic 

congestion in urban areas. Central to any traffic management system is the ability to monitor traffic 

conditions and measure the performance of the underlying traffic management solutions such as 

signal control in real-time, which enables prompt detection and immediate response to variations in 

traffic conditions, especially under non-recurrent events. Through the continuous gathering and 

analysis of traffic data, real-time traffic monitoring and management systems can provide expeditious 

and precise information on traffic performance measurements and identifications of potential areas 

where traffic flow optimization is required.  

Traffic management systems deploy diverse strategies and solutions targeting congestion problems, 

such as adaptive signal control and incident management (Brandon Nevers et al., 2020). Among 

various types of urban traffic management solutions, the Automated Traffic Signal Performance 

Measure (ATSPM) is one of the most widely adopted technologies due to its effectiveness in 

identifying signal operational deficiencies, improving roadway capacity and managing signal timing, 

which is defined as a technology that uses performance measures, data collection and data analysis 

tools to support objectives and performance-based approaches to traffic signal operations, 

https://www.cbc.ca/news/canada/toronto/toronto-most-congested-spots-1.6716662
https://nap.nationalacademies.org/read/25875/chapter/1#iii
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maintenance, management and design to improve the safety, mobility and efficiency of signalized 

intersections for all users (Federal Highway Administration (FHWA), 2021). The ATSPMs contain 

five essential components as shown in Figure 1-3.  

ATSPMs encompass methods for analyzing real-time traffic data obtained through sensors and a data 

logging-capable traffic signal controller, which provide a range of functionalities, including the 

generation of real-time and historical data on measures such as vehicle delay, volume, speed, and 

travel time. This technology also allows for monitoring of various traffic performance measures, such 

as the platoon ratio, split failure, number of stops per mile and Green Occupancy Ratio (GOR). 

Among these measures, the platoon ratio represents the individual phase progression performance 

derived from the percentage of arrivals on green (Smaglik et al., 2007). Split failure is employed to 

identify instances where the intended allocation of green time to different phases of a traffic signal 

cycle deviates from expectations, resulting in an unexpected distribution of signal timings (Freije et 

al., 2014). The number of stops is a count of how many times vehicles come to a complete stop at a 

given location, such as a traffic signal intersection, which provides insights into the level of 

congestion, delays, and the overall efficiency of traffic movement at the intersection (Argote-

Cabañero et al., 2015). GOR is simply the ratio of the detector occupancy during the green phase to 

the total green available in the split (Dakic et al., 2017). These enhanced insights enable 

transportation agencies to consistently assess the performance of their traffic signal controllers and 

take proactive measures to optimize signal timing, reduce congestion, and enhance overall road safety 

and efficiency. 

 

Figure 1-3 Five Basic ATSPM System Components (USDOT, 2020) 

https://doi.org/10.17226/25875
https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1021&context=civilengfacpub
https://doi.org/10.3141/2439-03
https://doi.org/10.3141/2439-03
https://doi.org/10.1016/j.trc.2015.08.013
https://doi.org/10.1016/j.trc.2015.08.013
https://doi.org/10.1016/j.trpro.2017.03.055
https://ops.fhwa.dot.gov/publications/fhwahop20002/ch2.htm
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Conventional application approaches of ATSPMs are established on the collection and process of 

various data sources including radar data (Santiago-Chaparro et al., 2012), video surveillance data 

(Tang Hua et al., 2013), loop detector data (Shin-Ting Jeng et al., 2014), GPS data (P. Stuckmann et 

al., 2002; Christopher M. et al., 2008; Vaughan et al., 2013; Z. Arbi et al., 2017). However, the 

installation of loop detectors and radar devices can be costly, presenting a significant hurdle for 

widespread use. Meanwhile, GPS data, though widely available, may not provide sufficient resolution 

for certain applications, such as determining a vehicle's exact lane position.  

Continuing along this trajectory, the emergence of new technology in real-time traffic performance 

measurement has been a significant milestone in the evolution of ATSPMs, which allows for 

instantaneous traffic condition evaluations in comparison with the historic traffic data (Zaigham 

Mahmood, 2020). Connected Vehicle (CV) technology, which involves vehicles that can 

communicate with each other and with road infrastructure, has unlocked new possibilities in this 

regard. CV data can be leveraged to derive real-time performance measures, providing a more timely 

and dynamic understanding of traffic conditions. More importantly, CV data can offer critical, high-

precision information such as the exact positioning of a vehicle within a lane, its speed, direction, and 

heading. Furthermore, unlike loop detectors or radar systems, CV data collection has no requirement 

for pre-installed infrastructure. Instead, it leverages real-time vehicle-to-vehicle communications, 

making it potentially more scalable and cost-effective.  

This real-time functionality is particularly beneficial in situations that require swift action, such as the 

detection of non-recurrent congestion and traffic incidents. The ability to detect and respond to these 

events as they occur, rather than relying on historical trends, which can offer more granular insights 

into traffic operations, capturing the fine-scale variations in queue lengths (Peng Hao et al., 2014), 

space-mean speed (Ahsani et al., 2019), and vehicle density (Aljamal et al., 2020) that might be 

overlooked when using historical data alone. With the advances in CV technology, more measures are 

proposed. The arrival on the green is a depiction of vehicle arrival patterns at the movement of 

interest during green phase phases to identify the vehicle headway distributions (Howell Li et al., 

2016). CV data can also enable the comprehensive validation scheme for arterial travel time 

estimations (Xuechi Zhang et al., 2019). Split failure is proposed to indicate the allocated green time 

for a specific movement at an intersection is inadequate to accommodate the actual traffic demand 

(Saldivar-Carranza et al., 2021). However, the reliability of such measures is yet to be explored as the 

https://trid.trb.org/view/1280339
https://ieeexplore.ieee.org/abstract/document/6957957
https://ieeexplore.ieee.org/abstract/document/1040813
https://ieeexplore.ieee.org/abstract/document/1040813
https://doi.org/10.5703/1288284315333
https://doi.org/10.1016/j.joi.2013.04.005
https://ieeexplore.ieee.org/document/8071843
https://link.springer.com/chapter/10.1007/978-3-030-36167-9_1
https://link.springer.com/chapter/10.1007/978-3-030-36167-9_1
https://www.sciencedirect.com/science/article/abs/pii/S0191261514001118
https://www.researchgate.net/publication/328361354_Quantitative_analysis_of_probe_data_characteristics_Coverage_speed_bias_and_congestion_detection_precision
https://doi.org/10.3390/s20154066
https://ieeexplore.ieee.org/document/7795969
https://ieeexplore.ieee.org/document/7795969
https://journals.sagepub.com/doi/10.3141/2526-09?icid=int.sj-abstract.similar-articles.3
https://doi.org/10.1177/03611981211006725
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CV market penetration rates (CVMPRs) are unknown in the real-world practice of ATSPM 

applications in most circumstances. 

Meanwhile, concerns exist as the penetration rate of CVs has significant influences on the accuracy of 

such performance results, which has long been a subject of practice focus (Day et al., 2016, 2017). 

Recent research has revealed that the median CVMPR was approximately 4.5% according to a study 

on the state highway performance monitoring systems in Indiana, Ohio and Pennsylvania (Margaret 

Hunter et al., 2021). Therefore, the low CVMPR will remain to be an important factor influencing the 

reliability of ATSPM results. 

To enhance the accuracy and reliability of non-recurrent congestion identification, besides penetration 

rates, careful consideration of optimal spatial and temporal data resolutions becomes crucial. While 

some researchers have explored data resolutions in performance measure estimations (Juan Argote-

Cabañero et al., 2015), their investigations were limited to a specific analysis time interval and spatial 

aggregation, lacking a comprehensive understanding of the overall impact of data resolution. 

Moreover, the influence on the results of applying ATSPM derived from CV data to congestion 

detections has not yet been explored with optimized data resolutions.  

This research is motivated by the opportunity to integrate the new form of data from the emerging 

technology, namely CV, into ATSPM, focusing on some of the critical issues such as the accuracy 

and reliability of the derived performance measures, the effect of CVMPR, and optimal spatial and 

temporal aggregation of data. 

1.3 Research Problem 

Presently, a considerable amount of research is being conducted to investigate the viability of 

utilizing CV data for traffic performance measurements and state monitoring. This topic is elaborated 

upon in the subsequent chapter. However, there are still existing gaps in the following areas that 

necessitate additional exploration. 

1. Accuracy and reliability of performance measurements 

The measurements derived from CV data have the potential to estimate traffic performance, such as 

the estimations on vehicle space-mean speed, travel time and split failure (Howell Li et al., 2016, 

Xuechi Zhang et al., 2019, Saldivar-Carranza et al., 2021). However, the accuracy and reliability of 

these measurements remain to be illustrated as the real-world CVMPR is unknown (Saldivar-

https://doi.org/10.3141/2620-06
https://www.scirp.org/journal/paperinformation.aspx?paperid=111742
https://www.scirp.org/journal/paperinformation.aspx?paperid=111742
https://doi.org/10.1016/j.trc.2015.08.013
https://doi.org/10.1016/j.trc.2015.08.013
https://ieeexplore.ieee.org/document/7795969
https://journals.sagepub.com/doi/10.3141/2526-09?icid=int.sj-abstract.similar-articles.3
https://doi.org/10.1177/03611981211006725
https://doi.org/10.1177/03611981211006725
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Carranza et al., 2021), and the levels of congestion are limited (Howell Li et al., 2016, Xuechi Zhang 

et al., 2019). Further research and investigations are required to establish the validity of these 

estimates and their applicability in a broader range of traffic conditions and CVMPRs. 

2. Effect of CVMPR on the performance measurements 

The influence exerted by different CVMPRs is not fully understood in the reliability analysis of 

performance measurement results (Argote-Cabañero et al., 2015; Day et al., 2016, 2017), especially 

the low penetration rates. Specifically, the minimum requirements of CVMPR for different 

performance measurements are yet to be explored to attain accurate and reliable performance results. 

3. Optimal spatial and temporal data aggregation resolutions 

Determining the optimal resolutions for aggregating CV data is pivotal for accurate performance 

measurements. Essential factors, including suitable temporal and spatial consolidations for various 

scenarios, play a vital role in accuracy and reliability analysis. Presently, the scope of aggregation 

levels explored in current research remains limited (Argote-Cabañero et al., 2015), highlighting the 

potential for further enhancement of estimation accuracy. 

4. Feasibility of detecting non-recurrent congestion 

The application of CV data in non-recurrent congestion detection needs to be examined for the 

latency in evaluating the real-time traffic state. At present, the primary emphasis of congestion 

detection predominantly centers on identifying recurrent congestion patterns, such as traffic density 

estimations (Gayah et al., 2013), instances of intersection overflow (Hiribarren et al., 2014) and 

vehicle arrival depictions (Waddell et al., 2020). However, there exists a broader spectrum of 

congestion scenarios and underlying causes, ranging from event-driven congestion to unexpected 

incidents. The feasibility of detecting such congestions through performance measures has not yet 

been explored with the application of CV data. 

1.4 Research Objectives 

In light of the research gaps in the field of urban traffic performance management and monitoring 

based on Connected Vehicle technology, the main objective of this thesis is to address some of the 

critical issues for supporting Automated Traffic Signal Performance Measures (ATSPMs). Therefore, 

the specific objectives of this research are as follows: 

https://doi.org/10.1177/03611981211006725
https://ieeexplore.ieee.org/document/7795969
https://journals.sagepub.com/doi/10.3141/2526-09?icid=int.sj-abstract.similar-articles.3
https://journals.sagepub.com/doi/10.3141/2526-09?icid=int.sj-abstract.similar-articles.3
https://doi.org/10.1016/j.trc.2015.08.013
https://doi.org/10.3141/2620-06
https://doi.org/10.1016/j.trc.2015.08.013
https://doi.org/10.3141/2390-09
https://doi.org/10.1016/j.trb.2014.07.003
https://journals.sagepub.com/doi/10.1177/0361198120941847?icid=int.sj-full-text.similar-articles.2
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1. To explore the potential of CV data in obtaining various traffic performance measurements, 

including the average control delay, percentile queue length, percentage of stopped vehicles 

and average number of stops, which contains the accuracy and reliability assessment of such 

measures under different scenarios. 

2. To investigate the feasibility of real-time non-recurrent congestion detections using CV data 

and explore the latency in the detection process and implications for traffic state monitoring. 

3. To identify the optimal spatial and temporal data aggregation for CV data application in the 

context of ATSPMs, considering external factors such as congestion level and CV market 

penetration rates (CVMPR). 

4. To evaluate the effect of CVMPR based on the specific performance measurements derived 

from CV data in terms of its accuracy and determine the minimum requirements for CVMPR 

to achieve an accurate and reliable estimation of the proposed measurements. 

By addressing the above-mentioned objectives, the research aims to contribute to the current 

knowledge on the application of CV data in urban traffic performance measurements and state 

monitoring, which can present insights for practitioners and policymakers in the design and 

implementation of ATSPM tools. Moreover, the findings of this thesis can lay the groundwork for 

future research in the traffic engineering field, focusing on unlocking the potential of CV technology 

as well as addressing the challenges in the engineering practice. 

1.5 Thesis Structure 

this thesis is structured and organized into five chapters. The basic summary of each chapter is listed 

below. 

Chapter 1: Introduction 

This chapter summarizes the synopsis of the research background, as well as an introduction to the 

Automated Traffic Signal Performance Measures (ATSPMs) and real-time traffic monitoring and 

management systems. The research problems and gaps, research objectives and thesis structure are 

presented in this chapter. 

Chapter 2: Literature Review 
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In this chapter, the applications of CV data in traffic performance measurement and state monitoring 

are discussed through an overview of ATSPMs. Meanwhile, the existing research on CV data for 

traffic performance measurements is discussed to identify the research gaps and limitations existing in 

the current literature. 

Chapter 3: Methodology 

The methodology chapter is outlined for explanations of the proposed framework including 

procedures of data collection and data preprocessing. The calculation of proposed performance 

measurements derived from CV data and the error evaluation techniques are detailed as well.  

Chapter 4: Results and Analysis 

This chapter provides the accuracy and reliability analysis results based on the proposed performance 

measurements under the influence of CVMPR, ranging from 1% to 25%. Moreover, various spatial 

and temporal aggregations are applied to the investigation in the context of ATSPMs with time 

intervals of 5min, 10min, 20min, 30min and 60min and study subjects of movements, approaches, 

intersections, and the corridor. The sensitivity analysis is also conducted to evaluate the impact of 

different levels of congestion.  

Chapter 5: Discussion, Conclusion, and Future Work 

The final chapter discusses the major findings and contributions of this research, including the 

possible implications for practitioners and policymakers. Furthermore, the study limitations and 

research recommendations are presented, which focus on the prospective applications of CV data and 

the challenges associated with its widespread adoption in the field of traffic engineering. 
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Chapter 2 
Literature Review 

In this chapter, a comprehensive literature review and theoretical background are presented for the 

research conducted in this study. The subsequent sections delve into the application of Connected 

Vehicle (CV) data in the context of Automated Traffic Signal Performance Measures (ATSPMs), 

highlighting the challenges associated with applying CV data for traffic management. Firstly, the 

attempts to examine the influence of CV market penetration rates (CVMPRs) are discussed. 

Following this, an overview of the existing methodologies and techniques for assessing the accuracy 

and reliability of ATSPMs derived from CV data is provided, including the effects of CVMPRs and 

different levels of data aggregation. Additionally, the literature related to congestion detection 

approaches based on CV data is listed. This chapter ends with a summary of research gaps, setting the 

stage for the methodology and findings presented in the subsequent chapters. 

2.1 Studies on The ATSPM Derived from CV Data 

In recent years, a significant number of studies have investigated the potential of applying CV data in 

the context of ATSPMs based on the CV data collected from the real world. However, these studies 

often rely on specific assumptions that need further refinement to be effectively generalized for real-

world applications. Moreover, the reliability of such performance measure estimation results remains 

unknown as the CVMPR is undetectable on most occasions. Table 2-1 summarizes the performance 

measures proposed by researchers, which are derived from CV data. The definitions of each measure 

and the limitations of their studies are discussed in the table.  

Beyond the studies mentioned in the table, additional endeavours have emerged in the exploration of 

harnessing CV trajectories for performance measurement purposes. Zhang et al. (2019) developed a 

comprehensive validation scheme for measuring arterial travel time using GPS trajectories and 

Bluetooth data as two independent sources. While their approach is centred on travel time, it unveils 

potential for further exploration and expansion into broader performance measures. Khadka et al. 

(2022) presented traffic performance metrics with queue length and propagation, vehicle's actual 

delay time on arterials and time-space diagram (TSD) on arterials based on the Internet-Connected 

Vehicle (ICV) data. Despite encompassing data from approximately 10%-15% of all vehicles in 

motion, concerns about the data's representativeness persist due to the unknown nature of the real-

https://journals.sagepub.com/doi/10.3141/2526-09?icid=int.sj-abstract.similar-articles.3
https://www.osti.gov/pages/biblio/1855584-developing-novel-performance-measures-traffic-congestion-management-operational-planning-based-connected-vehicle-data
https://www.osti.gov/pages/biblio/1855584-developing-novel-performance-measures-traffic-congestion-management-operational-planning-based-connected-vehicle-data
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world CVMPR. Lloret-Batlle et al. (2023) utilized the trajectory data to estimate the arrival speed and 

traffic volumes for both undersaturated and oversaturated signalized intersections. However, their 

simulation primarily focused on scenarios with medium to high volume-to-capacity ratios, and the 

undersaturated scenario was disregarded. Wang et al. (2023) proposed algorithms for calculating 

different mobility measures indices including vehicle delay, number of stops, space-mean speed, and 

coordination measurements to evaluate urban traffic performance. However, their research was 

conducted in the real world as well without the exploration of the effect of CVMPRs. 

Table 2-1 Summary of Proposed Performance Measures in Literature 

Author Year Measures Definition Limitations 

Argote-
Cabañero 

et al. 
2015 

average speed the average speed of all CVs for all 
lanes in the observed direction 

The influence of 
CVMPRs, traffic 

scenarios and data 
resolutions has not 

been fully explored. 

average number 
of stops 

the average number of times that 
CVs traveling in the direction of 

interest have to halt forward motions 

average 
acceleration noise 

the standard deviation of a CV’s 
acceleration measurements along its 

trajectory 

average delay per 
unit distance 

a measure of the difference between 
the sampled average pace and the 

free-flow pace 

Day et al. 2016, 
2017 

control delay 

the difference between the time a CV 
arrives at the intersection and the 
time it can proceed through the 

intersection 

The study omitted the 
representation of 

overflow queues, and 
the effectiveness of 

their proposed 
methodology was 

examined under highly 
constrained data 

availability conditions, 
which requires at least 
2 weeks to collect data 
under the CVMPR of 

0.08%. 

travel time 
the duration it takes for a vehicle to 

travel between two specific points or 
along a certain route 

green occupancy 
ratio 

the proportion of time that a traffic 
signal phase displays a green signal 

within a specific period, typically the 
signal cycle length 

maximum queue 
length 

the longest line of vehicles that has 
formed and come to a complete stop 
on a roadway measured by the CV 

trajectory 

Li et al. 2016 

percent on green  
a measure of how many vehicles pass 

through an intersection during the 
green phase of a traffic signal 

The challenges arise as 
the limited real-world 

CVMPR falling 
between 0.6% and 3%. 

purdue 
coordination 

diagram  

a visual tool used to analyze the 
coordination and effectiveness of 

traffic signals along a corridor 

https://journals.sagepub.com/doi/10.1177/03611981221115073?icid=int.sj-abstract.similar-articles.1
https://doi.org/10.1177/03611981221115088
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arrival flow 
profile 

a graphic illustration of the rate at 
which vehicles arrive at a certain 

point over time 

Saldivar-
Carranza 

et al. 
2021 

split failure 
a reference of the inability of a 
signal's green phase to serve all 

queued vehicles The research has not 
yet revealed the real-

world CVMPR and its 
associated impacts, 

leaving the reliability 
of the performance 

measures in a state of 
uncertainty. 

downstream 
blockage 

a condition where vehicles cannot 
proceed through an intersection 

despite a green signal due to 
congestion downstream 

quality of 
progression 

a measure of the effectiveness of 
signal coordination in allowing 

vehicles to move through multiple 
intersections without stopping 

 
Given that gaining a complete and accurate understanding of the present CVMPR in real-world 

settings proves to be a challenging task, a simulation-based study can provide insight for applying 

performance measures under different CVMPRs as well as examining the effectiveness of proposed 

measures to estimate the traffic performance within a near real-time context, which has ample 

potential to be explored. As such, the accuracy and reliability of these measures often remain elusive, 

leaving gaps in the current knowledge base. Therefore, it becomes critical to conduct studies that 

delve into these areas, investigating the fidelity of these measures. 

2.2 Studies on The Effect of CVMPR 

Recently, a multitude of research initiatives have attempted to examine the effect of CVMPRs on 

traffic performance measurements. Recently, researchers have explored a wide array of 

methodologies and models to better understand how different CVMPRs influence performance 

measurements and condition monitoring. However, limitations still exist in the literature as discussed 

below. 

Much research has narrowed the focus to one single measure in their studies when examining the 

influence of CVMPRs. Comert and Cetin (2009, 2011, 2013) have developed various analytical 

models for cycle-by-cycle queue length estimation to examine the estimation errors under different 

CVMPRs with a dataset retrieved from CV trajectory through a simulation study. The proposed 

methodology is validated solely with consideration for the overflow queue. Peng Hao et al. (2014) 

have constructed Bayesian Network (BN) models for queue length estimation and explored the result 

accuracy under specific CVMPR. They have concluded that the Mean Absolute Error (MAE) is 2.8 

https://www.sciencedirect.com/science/article/abs/pii/S0191261514001118
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when the CVMPR is 5% based on the proposed methodology. However, their approach required 

travel time information to identify the traffic scenario before the queue estimation procedure. 

Bucknell et al. (2014) conducted an analysis of the influence of CVMPR on the accuracy of traffic 

flow estimation based on the travel time information. They have managed to figure out the optimal 

penetration rate and the minimum requirement of sampling frequency under the current CVMPRs, 

while neglecting a broader range of potential traffic scenarios. Liberis et al. (2016) conducted the 

estimation of traffic states based on the CV data to describe the dynamics of the percentage of CVs 

and employed a Kalman filter to determine the CVMPR. However, the methodology required the 

densities and flows of the CVs as known information at the studied location. Zheng et al. (2017) 

developed an approach to estimate traffic volume using GPS trajectory data from CV or navigation 

devices under low market penetration rates, while the investigation on the effect of different 

CVMPRs was limited. Gao et al. (2019) proposed a queue length sensing model through CV data, 

which consists of two sub-models based on shockwave sensing and backpropagation (BP) neural 

network sensing under different CVMPRs. However, the queue length sensing methodology required 

data from roadside units and the corresponding traffic volumes of the studied road network in the 

simulation experiment were not illustrated. Tang et al. (2020) proposed a non-parametric model based 

on Bayes' theorem and a resampling process to predict short-term urban link travel time under 

different CV market penetration rates. However, the efficiency of the proposed methodology was not 

proved in the undersaturated scenario and under the CVMPR of 25%. Majstorović et al. (2022) 

explored how the CV data can be used for the creation of Speed Transition Matrices (STMs) at an 

isolated intersection and analyzed the impacts of CVMPRs on the accuracy of the created STM. 

However, their research was specific to an isolated signalized intersection and limited traffic scenario, 

omitting performance measures at alternate spatial levels. Chen et al. (2022) developed a Connected 

Autonomous Vehicle (CAV) data-based trajectory reconstruction method for freeway traffic state 

estimations and validated the proposed method under different traffic densities and penetration rates 

of CAVs. However, their approach required assumptions on the location of non-CAVs based on the 

detection of CAVs, leading to estimation errors, particularly in undersaturated scenarios. 

Some research has succeeded in constructing performance metrics. Argote-Cabañero et al. (2015) 

presented estimation methods for performance measures, followed by an initial evaluation of different 

penetration rates’ impact on the estimation results in undersaturated and oversaturated conditions 

https://doi.org/10.1016/j.trc.2014.05.007
https://doi.org/10.1016/j.ifacol.2016.07.052
https://doi.org/10.1016/j.trc.2017.03.007
https://doi.org/10.3390/s19092059
https://doi.org/10.3390/s20010265
https://doi.org/10.1016/j.trpro.2022.09.029
https://doi.org/10.1080/15472450.2021.1955211
https://doi.org/10.1016/j.trc.2015.08.013
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based on the 15-minute time interval and movement-level analysis. However, the result was restricted 

to the extreme traffic scenarios and the data resolution was limited. 

In summary, the question of the effect of CVMPR on the accuracy and reliability of various 

performance measures has yet to be fully answered. Specifically, the minimum requirement of 

CVMPRs across diverse traffic scenarios and data resolutions remains further explorations for various 

traffic performance measures.  

2.3 Studies on The Congestion Detections Based on CV Data 

Recently, the detection of congestions based on the CV trajectory data has also been a focused topic 

in the traffic management area. Various approaches have been proposed to detect congestion based on 

estimations of queue length, traffic density, arrival profiles and travel time. However, these 

approaches can be challenging to implement, which require information from graphic profiles instead 

of providing direct estimations from trajectory data. The detection of different congestion types and 

the exploration of utilizing more measures derived from CV data are not yet fully understood. 

Liu et al. (2009) have proposed the real-time queue length estimation method for congested signalized 

intersections based on high-resolution data, while error exists when the arrival traffic is at a saturated 

flow rate. Argote-Cabañero et al. (2011) utilized the time-space diagram to determine the traffic 

conditions on urban signalized arterials for real-time applications. However, the variability in traffic 

conditions is not considered in their research. Gayah et al. (2013) presented a method to estimate the 

average vehicle densities in real-time, which was shown to be accurate only when the network is 

congested. Hiribarren et al. (2014) proposed a method to capture the traffic dynamics including traffic 

density and flow and predict the queue length at intersections and travel times along a road section at 

both congested and uncongested conditions based on trajectory data. However, the result is attained 

from limited scenarios and the effect of the CV market penetration rate is not examined. Hao et al. 

(2015) estimated the queue profile and maximum queue length of one cycle based on the short 

vehicle trajectories. However, limitations exist as the method is not validated under different traffic 

conditions. Wan et al. (2016) proposed an approach to reconstruct trajectories using sparse probe 

vehicle data with estimations on the travel time to small segments for congestion identification 

purposes, while the approaches rely on historic data and the statistics of estimated travel time require 

validation before practice.  

https://www.sciencedirect.com/science/article/pii/S0968090X09000230
https://ieeexplore.ieee.org/abstract/document/6083020
https://doi.org/10.3141/2390-09
https://doi.org/10.1016/j.trb.2014.07.003
https://doi.org/10.1016/j.trb.2015.10.002
https://doi.org/10.1016/j.trb.2015.10.002
https://doi.org/10.1016/j.trc.2016.01.010
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Generally, there is a need to explore a broader range of traffic scenarios and performance 

measurements to assess the feasibility of congestion detection more thoroughly. Remias et al. (2018) 

utilized the automated vehicle location data consisting of GPS-based vehicle trajectories to measure 

signal performance and coordination at urban corridors, as well as demonstrate the feasibility of 

identifying signal coordination issues. Ahsani et al. (2019) proposed a statistical analysis of speed 

data bias and investigated the accuracy and reliability of INRIX for congestion detection purposes. 

Cao et al. (2019) developed an improved queue length estimation method for vehicles in the left-turn 

bay based on a general queue length estimation method with CVs to detect congestion. Brennan et al. 

(2019) proposed the performance index of travel time inflation to characterize the corridor travel time 

and delay based on probe vehicle data. Zhao et al. (2019) proposed a novel method for scaling up the 

number of probe vehicles to estimate the queue length and traffic volumes at signalized intersections. 

The detection is conducted through the observation of the distribution of the vehicle stopping 

positions at the intersections to indicate the possible signal failure. Luo et al. (2019) proposed an 

analytical method for traffic flow estimation in urban arterial corridors to capture the vehicle delay 

and queuing dynamics based on CV trajectories collected through V2C communication. Waddell et 

al. (2020) quantified signal performance on 19 intersections in Michigan and Ohio to scale a 

performance assessment using crowdsourced trajectory data, which focused on capturing the vehicle 

arrival and departure to detect the congestions through signal effectiveness evaluations. However, 

these studies primarily focus on congestion stemming from signal timings. Yet in real-world 

scenarios, non-recurrent congestion—often triggered by events such as capacity loss and large-scale 

happenings—is also a common occurrence. This aspect merits equal consideration in our approach to 

effective traffic management. 

2.4 Summary 

From the prior section, most research is established on the reconstruction and analysis of real-world 

trajectories, while the CVMPR in the real world is unknown. Moreover, many existing studies have 

primarily focused on a single measure, rather than establishing a more comprehensive set of metrics 

derived from CV data. While some studies have sought to incorporate a wide range of CVMPR in the 

reliability analysis of ATSPMs with simulation-based experiments, it becomes evident that analysis 

under 25% CVMPR deserves more concentrated focus. Further, the specific performance measures 

https://journals.sagepub.com/doi/10.1177/0361198118794546?icid=int.sj-full-text.similar-articles.3
https://www.researchgate.net/publication/328361354_Quantitative_analysis_of_probe_data_characteristics_Coverage_speed_bias_and_congestion_detection_precision
https://journals.sagepub.com/doi/10.1177/0361198119837178?icid=int.sj-full-text.similar-articles.6
https://journals.sagepub.com/doi/abs/10.3141/2526-05?journalCode=trra
https://journals.sagepub.com/doi/abs/10.3141/2526-05?journalCode=trra
https://journals.sagepub.com/doi/10.1177/0361198119856340?icid=int.sj-abstract.similar-articles.5
https://journals.sagepub.com/doi/10.1177/0361198119842826?icid=int.sj-full-text.similar-articles.5
https://journals.sagepub.com/doi/10.1177/0361198120941847?icid=int.sj-full-text.similar-articles.2
https://journals.sagepub.com/doi/10.1177/0361198120941847?icid=int.sj-full-text.similar-articles.2
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that can be obtained from CVs to depict traffic performance at signalized corridors need further 

exploration. 

In traffic management practice, temporal and spatial aggregations are important factors for 

consideration in performance analysis. While most existing studies have acknowledged this to some 

extent, the detailed impacts of different levels of temporal and spatial aggregation on performance 

measurement and reliability are yet to be explored. For instance, further discussion is required on how 

different aggregation time intervals may influence the reliability of traffic performance 

measurements. In addition, the varying scenarios that might affect the impact of the CVMPR on result 

accuracy have not been comprehensively investigated. 

At present, congestion detection predominantly relies on queue length and traffic flow data. However, 

the estimation methods are often bound by specific assumptions about vehicle arrivals. The influence 

of CVMPRs on the reliability of congestion detection outcomes remains unexplored. In addition, 

while much of the current research focuses on signal failure detection, non-recurrent congestion 

stemming from capacity loss or demand fluctuations also represents a widespread issue that merits 

due attention in real-world contexts. Apart from the gaps already discussed, the potential of using CV 

data for detecting the onset and end of traffic congestions, especially, non-recurrent ones including 

the congestions generated by capacity-constraint conditions and event-driven conditions, across 

various scenarios and different CVMPRs is an important aspect of traffic condition monitoring in 

urban areas.   
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Chapter 3 
Methodology 

This section describes the research methodologies employed in the study, with particular emphasis on 

the approach of deriving Automated Traffic Signal Performance Measures (ATSPMs) from simulated 

Connected Vehicle (CV) trajectories and the steps involved in the design of simulation-based 

experiments. Firstly, the studied corridor is introduced, including a description of the characteristics 

of simulated CV data, as well as the intersection layout and turning movement counts. The details of 

the simulation experiment are then followed upon, discussing the calibration of the model and the 

sampling procedure. Subsequently, this chapter provides detailed definitions of the traffic 

performance measures derived from simulated CV data and their estimation processes. Lastly, the 

sensitivity analysis is demonstrated to investigate the impacts of external conditions and factors. 

3.1 Overview of the Proposed Methodology 

Accuracy evaluation of the performance measurement system using real-world CV data is 

considerably challenging, if not impossible, due to the unknown ground truth about real-world traffic 

operations. To address this issue, this research proposes a simulation-based study in which controlled 

experiments can be conducted with simulated CV data under a wide range of road traffic conditions, 

signal control options, and specific levels of CV market penetration rate (CVMPR) as shown in 

Figure 3-1.  

In the simulation study, random samples of vehicles are extracted from the simulated traffic (i.e., 

vehicle population) to represent the CV. The trajectories of the selected vehicles can be exported and 

used subsequently for calculating various performance measures such as control delay, 95th 

percentile queue length and percentage of stopped vehicles. The key procedure of this study includes: 

1. Preparation of a case-study signalized arterial corridor: In this step, an urban arterial corridor will 

be selected for the simulation study, which should have specific characteristics relevant to the 

research objectives, such as a set of signalized intersections, representative intersection 

configurations, and varying levels of traffic congestion. 
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2. Development of a simulation model: a simulation model will be built and calibrated for the study 

site identified in the previous step. The model incorporates relevant traffic parameters, signal timings, 

and vehicle dynamics to ensure a realistic representation of real-world conditions. 

3. Formulation of ATSPMs: With the simulation models in place, the appropriate traffic performance 

metrics that could be derived from the simulated CV data will be constructed for evaluating the traffic 

signal operations. These performance measures are designed to provide meaningful insights into the 

effectiveness of signal timing plans. 

4. Conduct simulation experiments: Simulation experiments will be performed using the developed 

models under various alternative scenarios. The experiments should be constructed in such a way that 

would allow exploration of the impact of the various factors on ATSPMs and the overall performance 

of the traffic management system. 

 

Figure 3-1 The General Framework of the Proposed Simulation-Based Study 
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5. Congestion detection: Non-recurrent congestions caused by special events will be simulated by 

introducing sudden influxes of demand at certain intersections along the corridor in the simulation 

model. The study will also investigate capacity loss due to events such as construction work and 

accidents.  

This setup allows for the exploration of the feasibility of non-recurrent congestion detection based on 

CV data, under realistic traffic scenarios. 

3.2 VISSIM Simulation Study 

This section provides the details of the VISSIM simulation study, including the study area and the 

simulation scenarios. The study corridor is first introduced with an introduction of the study area, 

followed by basic information on traffic conditions. One critical intersection is identified for further 

analysis. Finally, the simulation model is demonstrated in this section with the model calibration 

process and vehicle sampling procedures. 

3.2.1 The Broward Blvd 

The urban arterial corridor, West Broward Blvd., located in Broward County, Florida, U.S., was 

selected for the simulation modelling and analysis of this research due to the availability of real-world 

CV data for this area and other traffic-related data such as TMC and signal timings. A VISSIM 

simulation model was constructed based on the model imported from Synchro software provided by 

the County, which is introduced in the following subsection. The geometric layout of the studied 

corridor is shown in Figure 3-2. A sample of the real-world CV trajectories is illustrated in Figure 3-
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3. 

 

Figure 3-2 Overview of the Study Corridor 

 

Figure 3-3 A Sample of Real-World Vehicle Trajectories 

The Broward Boulevard corridor is a major thoroughfare located in the heart of Broward County, 

Florida. The study area holds numerous commercial buildings, residence locations and community 

service facilities, which generates a large amount of commuting demand every day.  
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To provide more detailed information about the intersection, the basic information of each 

intersection along the corridor is presented in the following section, including the intersection layout, 

volumes of different scenarios, and congestion levels. 

3.2.2 Basic Information on Traffic Conditions 

This West Broward Boulevard corridor consists of 17 intersections, as summarized in Table 3-1, 

including the minor street names and intersection types for each intersection. The traffic signal control 

is set as the fixed-time control with time-of-day plans. A common cycle length of 160 seconds is used 

for all intersections, which benefits the coordination along the arterial corridor. The signal timing plans 

and geometric layouts of each intersection are detailed in Appendix B and Appendix C respectively. 

Table 3-1 Summary of the 17 Intersections 

No. Minor Street Intersection Type 

1 W 24th Ave. Major to Minor 
2 SW 22nd Ave. Major to Major 
3 Highway Ramp 1 Major to Ramp 
4 Highway Ramp 2 Major to Ramp 
5 Highway Ramp 3 Major to Ramp 
6 W 18th Ave. Major to Minor 
7 W 15th Ave. Major to Minor 
8 SW 14th Ave. Major to Minor 
9 NW 11th Ave. / Palm Ave. Major to Minor 
10 W 9th Ave. Major to Minor 
11 W 7th Ave. Major to Major 
12 W 5th Ave. Major to Minor 
13 W 1st Ave. Major to Minor 
14 NS Andrews Ave. Major to Major 
15 NE 3rd Ave. Major to Major 
16 Federal Hwy 1 Major to Major 
17 SE 8th Ave. Major to Minor 

Figure 3-4 depicts the Average Annual Daily Traffic (AADT) data of the Broward Blvd. provided by 

the county (Florida Department of Transport, 2023). The statistics include the AADT data of several 

major intersections along the corridor, spanning the years from 2018 to 2022. The detailed AADT 

information is demonstrated in Table 3-2. Based on the AADT data, it is apparent that traffic volumes 

https://tdaappsprod.dot.state.fl.us/fto/
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experienced a slight decline after 2020 and have since stabilized starting in 2021.

 

Figure 3-4 Eastbound AADT of Several Major Intersections along The Broward Blvd. 

Table 3-2 Eastbound AADT of Several Major Intersections along The Broward Blvd. 

Street Name. 2018 2019 2020 2021 2022 
SW 22nd Ave. 3000 3000 1750 1750 1750 
NW 22nd Ave. 350 350 400 250 250 

Highway Ramp 1 11000 11000 10500 10500 10500 
Highway Ramp 2 11000 12500 12000 11000 11000 
Highway Ramp 3 9200 11000 10500 10500 10500 

W 7th Ave. 22000 22000 12400 12400 12400 
NS Andrews Ave. 16800 16800 11400 11400 11300 

NE 3rd Ave. 25500 24500 23500 23500 21400 
Federal Hwy 1 16800 16800 11400 11400 11300 

3.3 Simulation Experiments 

In this section, the design of simulation experiments is discussed for evaluating the performance of 

traffic signal operations using CV data. These experiments account for different facility types, 

congestion levels, and CVMPRs, which are critical factors influencing the accuracy and reliability of 

the derived traffic signal performance measures. The purpose of these experiments is to assess the 

effectiveness of performance measures derived from simulated CV data and identify optimal traffic 

management strategies under diverse conditions. 
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3.3.1 Simulation Experiment Design 

The simulation model has been derived based on the depicted sketch, as presented in Figure 3-5. This 

model is then showcased in the corridor view. 

 

Figure 3-5 Corridor Layout in the VISSIM Simulation Model 

To ensure a robust simulation experiment and reduce errors associated with varying simulation 

durations, the duration of each simulation run is kept consistent. In order to accurately simulate real-

world traffic conditions throughout a typical weekday, the duration of each simulation scenario is set 

to 9000 seconds including 1800 seconds of warm-up period at the beginning of the simulation. 

Excluding the warm-up period, each simulation run is divided into three distinct 2-hour periods, each 

representing a different traffic scenario. These include the weekday off-peak, weekday midday and 

weekday peak, representing undersaturated, medium-saturated, and oversaturated scenarios, 

respectively. Therefore, the corridor overall input volumes are set as three individual levels, including 

3 000 veh/h (weekday off-peak scenario), 6 000 veh/h (weekday midday scenario), and 10 000 veh/h 

(weekday off-peak scenario). 

Specifically, study locations are chosen according to total hourly traffic volumes (f) and degrees of 

saturation (x) to conduct the performance estimations at the movement and the approach levels under 

each traffic scenario, which are detailed in Table 3-3 and Table 3-4 separately.  

Table 3-3 The Traffic Volume of Different Scenarios at Movement Level 

Scenario Type Location 
Total Hourly 

Traffic Volume 
(veh/h) (f) 

Degree of 
Saturation 

(x) 

Off-peak Undersaturated SB right-turn of 
Intersection No.16 243 0.30 

Midday Medium-saturated NB through-movement of 
Intersection No.11 350 0.62 

Peak Oversaturated NB left-turn of Intersection 
No.16 250 1.05 
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Table 3-4 The Traffic Volume of Different Scenarios at Approach Level 

Scenario Type Location 
Total Hourly 

Traffic Volume 
(veh/h) (f) 

Degree of 
Saturation 

(x) 
Off-peak Undersaturated WB of Intersection No.9 1 188 0.32 
Midday Medium-saturated EB of Intersection No.1 2 423 0.63 

Peak Oversaturated EB of Intersection No.6 3 356 1.08 

Among all intersections, the critical intersection for the eastbound direction is identified as the one of 

W. Broward Blvd. and the Federal Hwy. 1 (Intersection No.16). The distribution of traffic volume at 

this intersection displays significant variation across its approaches and movements as shown in 

Figure 3-5. Therefore, the intersection-level analysis is conducted at the selected study objective and 

its traffic volume information is listed in Table 3-5. 

Given that the volume inputs for the entire corridor are different across each traffic scenario, the 

trajectories of each vehicle that traverses the eastbound and westbound directions through the corridor 

are collected as the subject of corridor-level analysis. And the total amount of such trajectories under 

each scenario is illustrated in Table 3-6. 

Table 3-5 The Traffic Volume of Different Scenarios at the Intersection Level 

Scenario Type Location 
Total Hourly 

Traffic Volume 
(veh/h) (f) 

Degree of 
Saturation 

(x) 
Off-peak Undersaturated 

Intersection No.16 
2 159 0.34 

Midday Medium-saturated 4 185 0.65 
Peak Oversaturated 6 761 1.05 

Table 3-6 The Number of Trajectories Collected from the Corridor Level 

Scenario Type 
Total Numbers of 

Trajectories 
(Eastbound) (vehs) 

Total Numbers of 
Trajectories 

(Westbound) (vehs) 

Degree of 
Saturation (x) 

Off-peak Undersaturated 813 764 0.33 

Midday Medium-
saturated 1 455 1 510 0.64 

Peak Oversaturated 2 102 1 984 1.01 

Therefore, the study location selected in this research is demonstrated at different levels of spatial 

aggregations. 



 

 24 

3.3.2 Simulation Model Calibration 

1. Turning volume 

In order to accurately model the traffic flow in the simulation study, the turning volumes are 

calibrated using real-world vehicle trajectories. The turning movement counts for each intersection 

are assigned based on the data provided in the Synchro model. 

Considering the inherent uncertainties associated with the real-world CVMPRs (Connected Vehicle 

Market Penetration Rates), the calibration of turning volumes is primarily based on the collected 

trajectories from different movements. This approach ensures that the simulation accurately reflects 

the observed traffic patterns and behaviour in the study area. 

2. Other Parameters 

Table 3-7 summarizes the settings of other essential parameters in the simulation model of the 

corridor, including the lane width, link behaviour, vehicle class, link speed, the velocity of reduced 

speed area and default random seed, which are validated through the simulation experiments. 

Table 3-7 The Simulation Settings of Other Parameters 

Parameter Settings 
Lane width 3.5m 

Link behavior Urban (Motorized) 
Vehicle class Car 
Link speed 60 km/h 

Reduced speed area 20 km/h 
Default random seed 112 

3. Number of runs 

To measure the performance reliability across different times of runs, an assessment was conducted 

based on the system delay and corridor delay. The robustness of simulation runs is assessed by 

comparing the results to 100 separate simulation runs, encompassing run times of 20, 40, 60, 80, and 

100 (Table 3-8). And the calculation is conducted based on the comparison of system delay and 

corridor delay between the values obtained from each simulation run setting and that from 100 run 

times. Equation 3-1 describes the calculation in detail. 
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Table 3-8 Number of Runs and Performance Reliability 

Run times (n) 
System delay (s) Corridor delay (s) 

Value R Eastbound Westbound 
Value R Value R 

20 3 287 170 -1.05% 244 -1.57% 195 1.68% 
40 3 346 139 0.76% 250 0.98% 193 0.74% 
60 3 314 833 -0.32% 249 0.34% 192 0.22% 
80 3 339 884 0.51% 247 -0.73% 191 -0.53% 
100 3 325 347 - 248 - 192 - 

𝑹 = !"#!$!"#"##
!"#"##

× 100%                                            (Equation 3-1) 

Where, Runn represents the system delay or corridor delay attained from total n run times; n=20, 40, 

60, 80, 100 in this research. Run100 represents the system delay or the corridor delay attained from 100 

run times.  

Based on the table above, it can be observed that as the number of simulation runs increases to 20 or 

more, the delay values obtained for both the system and the corridor exhibit only minor variations 

compared to the results obtained from 100 simulation runs. Therefore, the number of runs is set at 60 

times in this research to ensure robust and reliable results across different iterations. 

3.3.3 Vehicle Sampling Procedure and Result Analysis Techniques 

With the purpose of calculating the individual performance measure, all vehicle trajectories are 

exported from each simulation run to perform the CV sampling procedure, which includes two 

algorithms as discussed below. The identification of specific movement, approach and intersection is 

essential to investigate the optimal analysis interval and minimum CVMPR requirement for different 

spatial resolutions.  

1. The CV Sampling Procedure 

To study the effect of various CVMPRs on the reliability of different performance measures, the 

following sampling procedure is conducted to extract the desired amount of CV trajectories from the 

vehicle population: 

Step 1 Denote the set of all vehicles in the simulation run as V and the total number of vehicles as Nv 

= |V|. Define the CVMPR, denoted as p. In this research, p = 1%, 3%, 6%, 10%, 15%, and 25%. 
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Step 2 Select a subset C of vehicles from V such that the number of vehicles in C, denoted Nc, is equal 

to p ´ Nv. The selection is performed randomly to ensure a fair representation of all vehicles, where 

Nc = p ´ Nv and C ⊆ V. Therefore, the vehicles in C are treated as the connected vehicles. 

Step 3 Export the trajectory data of each CV from the VISSIM simulation platform. The original CV 

data contains information including timestamp, vehicle positioning, link identification and lane 

identification as shown in Table 3-9. 

Table 3-9 Key Output Variables from VISSIM CV Trajectory Data 

Variables Usage 

Vehicle ID Unique identifier for each vehicle. 

Timestamp The time when the data point was recorded. 

Position Indication of the distance that vehicle travels along its current link. 

Lane ID/Link ID Identifier for the lane or link (road segment) that the vehicle is on. 

Vehicle Type Type of the vehicle, such as car, truck, bus, etc. 

Lane Index The direction of the vehicle's movement at an intersection (left turn, right turn, 
straight ahead). 

2. Identification of the Specific Movement, Approach, and Intersection 

For each simulated CV, the trajectory TC is expressed through the geometric identifications G and 

detailed travel information P. Let the intersection be defined by a set of lanes L, approaches A, and 

movements M. The intersection geometry is represented as G = {L, A, M}, where L is determined by 

the vehicle Lane ID, and A is determined by the link ID obtained from the original simulated CV 

report. For each CV, the sequence of data packets is represented as P = {p1, p2, ..., pm …}, where each 

data packet pm  contains the information on at the data logging instance m, that is, pm = 

(𝑡%, 𝑥%, 𝑠%, 𝑎%),	where 𝑥% represents the vehicle position on the current link at 𝑡%; 𝑠% represents 

the vehicle speed at 𝑡%; and 𝑎% represents the vehicle acceleration at 𝑡%. 

To perform performance estimation at different spatial and temporal resolutions, the trajectory data 

TC is organized in a structured format suitable for analysis across various temporal intervals (denoted 

as K). In this research, K is set to 5 minutes, 10 minutes, 15 minutes, 20 minutes, and 60 minutes. 

Additionally, different spatial aggregation levels, such as movement, approach, or intersection, are 

considered. Repeat the entire procedure N times, where N represents the number of simulations 
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applied in this research. For each repetition, calculate the mean values of both the simulated 

population and the simulated CV samples and then compare them with the analysis technique as 

mentioned below. 

3. Measure of Estimation Errors 

To measure the difference between performance results attained at various CVMPRs and that 

calculated from the population, the Root Mean Square Error (RMSE) is introduced in this section as 

Equation 3-2.  

𝑅𝑀𝑆𝐸 = 6&
'
∑ (𝑀( −𝑀9())'
(*&                                    (Equation 3-2) 

where, 𝑀9( represents the value attained from the estimation method. 𝑀( represents the value of the 

entire population, RMSE ∈ [0, +∞ ). And the analysis is conducted based on the mean value attained 

from 60 simulation runs, N = 60 in this research. 

3.4 Performance Measure Calculation using CV Data from Simulation 

This section introduces the methods that are applied for determining the individual performance 

measures based on vehicle trajectory data. It starts with the methods for calculating the speed of a 

vehicle and identifying its state in terms of stopping, which are used in the later stage for determining 

other performance measures such as queue length and percentage of stopped vehicles. 

3.4.1 Identification of Deceleration Starting Point 

To identify the acceleration and deceleration points in the simulated CV trajectory data, a sequence of 

example CV reports collected from the simulation experiments is presented in Figure 3-6. In this 

figure, each CV trajectory is organized as the sequences of timestamps and locations attained from 

the individual reports in the simulation, which are denoted as “SIMSEC” and “POSITION” 

respectively. The speed and acceleration are derived from the timestamp and positioning in the 

simulated CV report. Thus, the identification hinges on the substantial shifts in vehicle acceleration. 

To calculate the acceleration of a connected vehicle, its trajectory data is first organized based on the 

vehicle ID, positioning on the link of interest and the corresponding timestamps. The travel 

information of each simulated CV is stored in the data packet P as mentioned in the previous sections, 

which can be obtained from the change in distance and time for each consecutive pair of data points, 

as given in Equation 3-3 and Equation 3-4.  
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Figure 3-6 CV reports in the Simulation 

𝑠( =
+$%"	–	+$
.$%"$.$

                                               (Equation 3-3) 

𝑎( =
/$%"	–	/$
.$%"$.$

                                               (Equation 3-4) 

Where, si+1 and si represent the vehicle speed associated with the time instance i+1 and i respectively; 

ai+1 and ai represent the vehicle acceleration at time instance i+1 and i; xi+1 and xi represent the vehicle 

position at the time instance i+1 and i. Note that in real-world CV trajectory reports, xi denotes the 

coordinate. In contrast, simulated trajectories offer relative distances on the link as vehicle positioning 

data. For clarity in subsequent sections, li will be used in place of xi to represent this vehicle 

positioning information at time instance i. 

The travel status of a vehicle (deceleration or acceleration) can be detected by assessing changes in 

vehicle acceleration over time. As the literature indicates (Quiroga et al., 1999), the identification of 

deceleration starting point is associated with the vehicle acceleration and speed in the original report 

https://doi.org/10.1061/(ASCE)0733-947X(1999)125:4(271)
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as shown in Figure 3-7. 

 

Figure 3-7 Time Sequence within An Individual Vehicle Trajectory 

According to the time sequence in the figure above, m and n represent the number of timestamps 

before and after the considered point, respectively. the average acceleration in the forward direction is 

calculated using (Equation 3-5) for a sequence of timestamp pairs (ti-m, ti-m+1), …, (ti, ti+1), (ti, ti+2), (ti, 

ti+3), …, (ti, ti+n). And the average speed of the studied vehicle before the deceleration timestamp is 

calculated according to Equation 3-6 based on the sequence of timestamp pairs generated before (ti, 

ti+1). If the absolute value of the average acceleration exceeds the threshold and the absolute value of 

the average speed is also below the threshold, it indicates significant deceleration at timestamp ti. In 

this case, ti is added to the set {TD}, indicating that a deceleration point is identified. 

𝑎(0 = <
𝑎( , 𝑖𝑓

&
#
?∑ 𝑎((1#

( ? > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
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($% ? ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
                                (Equation 3-6) 

In idealized trajectories, vehicle deceleration points can be interpreted as stopping points directly. 

However, in real-world scenarios, it is more accurate to consider the beginning of deceleration as the 

stopping point. Therefore, when the vehicle's speed and deceleration meet the identification criteria, a 

deceleration point is established, indicating that the vehicle has come to a stop. 

In the algorithm above, a threshold must be set in advance. Based on the findings in the literature, the 

threshold in Equation 3-5 is set as 2.0 m/s2 (Quiroga et al., 1999). The threshold in speed is set as 5 

km/h in association with vehicle speed (Argote-Cabañero et al., 2015). Given that the simulated CV 

data can capture the changes in the acceleration from consecutive points, the effective number of 

https://doi.org/10.1061/(ASCE)0733-947X(1999)125:4(271)
https://doi.org/10.1016/j.trc.2015.08.013
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points is examined in the subsection of sensitivity analysis to make further explanation on the 

determination of the acceleration threshold. 

3.4.2 Average Overall Delay 

Delay is generally defined as the difference between the travel time that would have occurred in the 

absence of the intersection control, and the travel time that results because of the presence of the 

intersection control (National Academies of Sciences, 2022). This thesis focuses on the average 

movement delay derived from the simulated CV data, which can then be used to estimate the average 

approach and intersection delay. Following the literature (Quiroga et al., 1999), the calculation of 

average movement delay is conducted based on the position and timestamp information in the CV 

trajectory to identify the crucial timestamps as demonstrated in Figure 3-8. To simplify the 

explanation, one vehicle trajectory is analyzed to attain the overall delay. 

 

Figure 3-8 The Time-Distance Diagram with Delay Terms at The Signalized Intersection 

In Figure 3-8, all delay terms are shown with the difference between the actual trajectory and the free 

flow speed trajectory. Generally, the movement delay can be calculated for one single vehicle 

trajectory as Equation 3-7.  

𝐷%234%4#. = 𝑡5 − 𝑡& −
6&$6"
7'

                                      (Equation 3-7) 

https://doi.org/10.17226/26432
https://doi.org/10.1061/(ASCE)0733-947X(1999)125:4(271)
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Where, t4 represents the timestamp that the vehicle passes the stop bar; t1 represents the timestamp 

that the vehicle starts to decelerate; l4 represents the position that the vehicle passes the stop bar; l1 

represents the position that the vehicle starts to decelerate; Sf represents the free flow travel speed on 

the movement of interest. Note that the l4 and l1 are obtained based on the position in the CV report. 

The average overall delay used in this research is obtained from simulated CV samples to estimate the 

delay experienced by the vehicle population at the specific movement of interest within the defined 

time intervals, which is attained from Equation 3-8. 

𝐷I%234%4#. =
&
'(
∑ 𝐷%234%4#.
'(
(*&                                  (Equation 3-8) 

Where NC represents the total number of CV trajectories in the sample. As the free flow speed usually 

varies among individual vehicles, an examination should be conducted to determine the vehicle free-

flow speed. Therefore, the speed of a CV is calculated based on the average speed of the studied 

vehicle before the ti as shown in the following calculations (Equation 3-9). 

𝑆8 =
&
%
× ∑ 𝑠((

($%                                              (Equation 3-9) 

Through the above-mentioned procedures, the calculations of average overall delay are demonstrated 

based on the individual trajectories. 

3.4.3 95th Percentile Queue Length 

The 95th percentile queue length is defined as the queue length (usually measured in vehicles or feet 

per meter) below which 95% of all observed queue length falls (National Academies of Sciences, 

2022). In this research, calculating the 95th percentile queue length from a sample of CV data is 

conducted based on the identification of vehicles in the queue.  

In Figure 3-9, the deceleration points of each vehicle at the spatial level of interest can be identified 

through the methodology described in 3.4.1. Thus, the distance between the last CV in the queue of 

interest and the stop bar can be calculated through the identification of the deceleration point of the 

last vehicle in the queue. After applying the filter procedure to all the simulated CVs at the spatial 

level of interest, the 95th percentile queue length is obtained based on the observations of maximum 

https://doi.org/10.17226/26432
https://doi.org/10.17226/26432
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queue length estimations. 

 

Figure 3-9 Identification of Acceleration and Deceleration Points in the Queue 

Under the CVMPR of p%, the vehicle distribution follows the successive Bernoulli trial (Papoulis A., 

1984), which can be represented by the vehicle geometric positions in the queue. Following this 

distribution, p can be considered as the probability of selecting a vehicle at a given position in the 

queue and the geometric distribution determines the number of vehicles between two consecutively 

sample vehicles, which can be expressed as Equation 3-10. Therefore, Equation 3-10 and Equation 3-

11 are utilized to determine whether a queue is forming on the lane of interest based on the 

identification parameter F, which acts as a threshold based on the likelihood of identifying a vehicle 

and the jam density of the movement.  

𝑃(𝑋 = 𝑘) = (1 − 𝑝)9$&𝑝.                                     (Equation 3-10) 

𝐹 = max	{ :
;#
, &
;#
}                                          (Equation 3-11) 

Where, X is a random variable representing the number of CVs in the queue. 𝜌0 is the jam density of 

the studied movement. 

Thus, the deceleration points of each CV trajectory are identified in the time sequence as shown in 

Equation 3-12. And the CVs involved in the queue are recognized as well. 
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𝑆 = {𝑐	|	𝑑( = |𝑙(1&𝑡(1&< − 𝑙(𝑡(<| > 𝐹}                           (Equation 3-12) 

Where, S represents the time sequence in the filtering process based on the deceleration point consists 

of elements c where the change in position (or deceleration) between two consecutive times exceeds 

the threshold F; di represents the  change in position or difference between two consecutive positions 

of a vehicle, which might be indicative of a deceleration or a stop; li+1 and li represent the positions of 

a vehicle at two consecutive times, with li+1 being the position at a later time and li at an earlier time; 

𝑡(1&<  and 𝑡(< represents the specific time instances related to the deceleration or change in position of 

the vehicle; |𝑙(1&𝑡(1&< − 𝑙(𝑡(<| calculates the difference between two consecutive positions of a vehicle, 

factoring in the associated times. The result is a measure of how much the vehicle has moved or 

decelerated between these two times. 

In Equation 3-12, the position of the last detected control vehicle (CV) in the lane of interest is 

utilized to determine whether the queue being formed extends beyond the current lane. This 

determination depends on the identification parameter defined by both the CV occurrence probability 

(attained from Equation 3-10) and the jam density described in Equation 3-11. 

After applying the filtering process to the trajectories of interest in the sample, all the vehicles in the 

queue are identified as: 

Z = W 0																			, 𝑆 = {∅}
{1,2, … , 𝑐}, 𝑜𝑡𝑒ℎ𝑟𝑤𝑖𝑠𝑒                             (Equation 3-13) 

Where Z represents the set of vehicles is observed in the queue at the spatial level of interest. Note 

that {TD} is the subset of {Z} and is obtained from the deceleration identification procedure and c 

represents the last CV in the queue, which is identified from the sequence of deceleration point in 

{Z}. 

Then, the 95th percentile queue length is calculated based on the sorted maximum queue length. Note 

that for idealized trajectories as shown in the figure above, vehicle deceleration points are identified 

as stopping point directly. However, in the practice, the start of deceleration should be considered as 

the stopping point. 

The maximum queue length estimation is applied in this paper to attain the 95th percentile queue 

length as in (16). 

𝐿]= = ?𝑥/ − 𝑥>
<$?                                     (Equation 3-14) 
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Where, 𝑥/ is the location of the stop bar, which is measured in meters per lane. 𝑥>
<$ is the last CV in 

the queue of interest. 

Therefore, sorting the {𝐿=) } in ascending order within the time analysis interval of interest, the 95th 

percentile queue length is calculated as (17). 

 𝐿=*+ = 𝐿=[0.95 × 𝑛]                                    (Equation 3-15)  

Then, the 95th percentile queue length is calculated based on the sorted queue length obtained from 

the movement and approach of interest. Furthermore, the vehicle headway's value also influences the 

performance measure estimation, a factor examined in the analysis section to determine the 

appropriate standstill distance. 

3.4.4 Percentage of Stopped Vehicles (PSV) 

The Percentage of Stopped Vehicles (PSV) is intended to assess the efficiency of signal timing at 

intersections. This metric is of particular interest, as multiple stops experienced by a vehicle can 

signify potential cycle failure in the existing signal timing plan. Such a situation arises when the green 

signal duration is insufficient, causing vehicles to halt multiple times. From the set of simulated CV 

trajectories, the average number of stops is attained from the identification of vehicle decelerations. 

These stopped CVs are denoted as 𝐶𝑉(
/.2? and stored in the set of CVstop as {CVstop

1, CVstop
2, …, 

CVstop
n}.  

Therefore, the percentage of stopped vehicles is calculated as Equation 3-16 for the spatial and 

temporal aggregation levels of interest. 

𝑃𝑆𝑉 = <
∑ AB$

,-./!
$0"

∑ AB$
1(
$0"

× 100%	(𝑁A ≠ ∅)

0																																			(𝑁A = ∅)
                        (Equation 3-16) 

Where, CV represents for the total number of CVs observed in the cycle of interest. In the context of 

this calculation, each 𝐶𝑉(
/.2? is counted as the individual connected vehicles that have experienced 

stopping within the temporal and spatial levels of interest by summarizing 𝐶𝑉(
/.2? to 𝐶𝑉#

/.2?. And the 

total number of connected vehicles under the same temporal and spatial level is calculated by 

summarizing CVi to CVN in the set of NC as obtained from the previous subsections. Note that the 

CVstop is a subset of NC. 
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3.5 Sensitivity Analysis 

The influence of different parameters on the performance results is evaluated through the examination 

of four aspects. These aspects encompass both system-wide and corridor-wide analysis, including 

system delay, system average speed, arterial westbound delay, arterial eastbound delay and the 95th 

percentile queue length of Intersection No. 7 Northbound. As the system average speed influences 

identification of vehicle stops, it is included as one of the aspects of analysis. The influence of the 

selected parameters is evaluated with the percentage of differences compared to the measure value 

attained from the default value. Initially, the sensitivity analysis focuses on the Wiedemann-74 

Standstill distance as shown in Figure 3-10.  

 

Figure 3-10 Impact of W-74 Standstill Distance 

The standstill distance represents the desired average distance between vehicles as they form a queue 

in front of the stop bar. Generally, a higher value corresponds to a larger standstill distance and 

potentially lower capacity. In Figure 3-10, as the standstill distance varies from 4ft. to 6.56ft. (default 

value) and from 6.56ft. to 9 ft., the system delay, corridor-level delay and movement-level delay have 

increased significantly. Based on ground truth observations, the median distance between stationary 

cars (inter-car following distance) in America is 8.51 ft (Houchin et al., 2015). For the purposes of 

this research, this standstill distance is rounded to 8.5 ft. The sensitivity analysis suggests that as the 

standstill distance approaches the observed 8.5ft median value, the delays across the system tend to 

escalate, underlining the importance of considering real-world inter-car distances in traffic modeling. 

https://core.ac.uk/reader/212847300
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To evaluate the impact of safety distance, the additive part and multiplicative part of safety distance is 

assessed separately for the sensitivity analysis in Figure 3-11 (a) and Figure 3-11 (b). Figure 3-12 

shows the impact of maximum deceleration (measured in m/s2). 

The default value of the additive part of the safety distance is initially set to 2 feet. However, when 

this value is increased to 3 feet, the average speed shows only minor variations. In contrast, the delay 

measure exhibits noticeable variations at different levels in response to the increased safety distance. 

Similar trends exist in the analysis of multiplicative part of safety distance when the default value of 

that is set to 3 feet. 

 

(a) Multiplicative Part                                                         (b) Additive Part 

Figure 3-11 Impact of W-74 Safety Distance (ft.) 

 

                      (a)Maximum Deceleration                                             (b)Identification Threshold 

Figure 3-12 Impact of Acceleration Threshold Settings 
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When the value exceeds 4.5 m/s2, the percentage difference becomes negligible. To reflect real-world 

traffic conditions, the additive safety distance is set to 2.5 ft for weekday off-peak scenarios and 2.0 ft 

for weekday peak and midday scenarios. These values are selected based on the analysis of 

percentage differences in delay, queue length, and vehicle speed compared to the default value. The 

chosen values of the additive safety distance ensure that the differences in performance measures are 

within 5% compared to the default setting. Similarly, the multiplicative part of the safety distance is 

set to 3.5 ft for weekday off-peak scenarios and 3.0 ft for weekday peak and midday scenarios. 

According to literature (Quiroga et al., 1999), the acceleration threshold should be set between 2.0 

m/s2 and 3.5 m/s2. Based on the findings in Figure 12(b), it can be observed that the rate of false 

positives for the deceleration point identification decreases as the threshold increases, reaching a 

minimum around the 2.0 m/s2 mark. Beyond this point, there's a slight increase or plateau in the rate 

for all three traffic conditions (peak, midday, and off-peak). 

Setting the threshold at 2.0 m/s2 appears to be the optimal choice as it minimizes the rate of false 

positives across different traffic conditions. This ensures that the deceleration point identification is 

most accurate, with the least number of false detections, during peak, midday, and off-peak times. 

  

https://doi.org/10.1061/(ASCE)0733-947X(1999)125:4(271)
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Chapter 4 
Analysis of Performance Measurement and Congestion Detection 

This chapter presents results derived from simulation experiments conducted to investigate the 

reliability and accuracy of the performance estimations obtained from simulated Connected Vehicle 

(CV) trajectory data. In the following sections, the accuracy of different measures is analysed under a 

variety of traffic scenarios, Connected Vehicle Market Penetration Rates (CVMPRs), and temporal 

aggregations. The discussions on the reliability of different measures are extended based on the 

results from different levels of spatial aggregations, including movements, approaches, intersections, 

and corridors. The feasibility of detecting different types of congestion is lastly explored. 

4.1 Performance Measure Accuracy Analysis 

As discussed previously, the accuracy and reliability of a performance measure derived from CV data 

are generally a function of CVMPRs, spatial and temporal aggregation levels, and traffic conditions. 

On the other hand, the required accuracy and reliability on a performance measure depends on the 

application of each derived performance measure, ranging from real-time condition monitoring to 

performance evaluation for the purpose of intersection planning, design and control. For the former, 

high temporal granularity would be required, that is, conditions are expected to be measured at a time 

interval of as low as 5-10 minutes. However, the spatial resolution could be lower, e.g., at the 

approach and intersection levels. In contrast, for the later applications, the common time interval is 15 

minutes as defined by HCM; however, the spatial resolution required would be higher, i.e., at the 

movement level. In the following section, the discussions are structured by four aspects: a) spatial 

aggregation levels (movement, approach, intersection and corridor) ; b) types of performance 

measures (overall delay, 95th percentile, …); c) temporal aggregation levels or analysis time interval 

(5-10 min vs. 15 min); d) CVMPR (current state (~3%) vs. future states). 

4.1.1 Results at the Movement Level 

Figure 4-1 presents the accuracy analysis of the performance measure estimations derived from the 

simulated CV data at the movement level. Generally, a CVMPR of 3%-6% is essential for the 

estimations obtained from the movement level according to the requirements of different measures 

when the temporal aggregation is set to 10 minutes and below. For the average overall delay, a 

minimum temporal aggregation of 10 minutes is essential during weekday peak scenario when the 
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CVMPR reaches 3% and above. If the CVMPR is 6% and below, the analysis interval should be set 

to 5 minutes and longer. For the 95th percentile queue length, a 10-minute analysis interval is 

recommended for performance estimations at the movement level. The detailed analysis is discussed 

as follows. 

• Average overall delay: 

o Under the weekday peak scenario (x = 1.05) with a 5-minute analysis interval, when the 

CVMPR increases from 3% to 6% and 10%, the Root Mean Square Error (RMSE) of the 

estimated average overall delay decreases from 6.83 s/veh to 6.37 s/veh and 5.63 s/veh, 

respectively, which correspond to the true overall delay of 68.82 s/veh. The 

corresponding relative errors are 9.81%, 9.23% and 8.16%, respectively. 

o The weekday midday scenario (x = 0.65) represents the moderately congested conditions 

with the true average overall delay of 44.33 s/veh. It was found that the temporal analysis 

interval should be 5 minutes at least to keep the relative estimation errors to 10% or 

lower. The corresponding RMSEs of the estimated average overall delay are 4.52 s/veh 

(6% CVMPR), 4.02 s/veh (10% CVMPR) and 3.57 s/veh (15% CVMPR). 

o Under the weekday off-peak scenario (x = 0.34) in which the true average overall delay is 

22.31 s/veh, a 10-minute analysis interval is required to achieve a relative estimation 

error of 10% and below. Under the CVMPR and analysis interval of interest, the RMSE 

decrease from 2.17 s/veh (6% CVMPR) to 2.02 s/veh (10% CVMPR) and 1.53 s/veh 

(15% CVMPR). The corresponding relative errors are 9.64% (6% CVMPR), 9.08% (10% 

CVMPR) and 6.84% (15% CVMPR). 

• 95th percentile queue length: 

o Under the weekday peak scenario (x = 1.05), the 95th percentile queue length attained 

from the population is 29.11 veh/lane with a 5-minute analysis interval. With the same 

interval, the errors vary from 4.65 veh/lane (6% CVMPR) to 3.59 veh/lane (10% 

CVMPR) and 3.13 veh/lane (15% CVMPR) with the relative errors below 10%. 

o Under the weekday midday scenario (x = 0.65), the actual value of queue length measure 

is 18.39 veh/lane when applying the temporal aggregation of 10 minutes. With a 10-

minute analysis interval, the errors vary from 1.78 s/veh (6% CVMPR) to 1.35 s/veh 
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(10% CVMPR) and 1.28 s/veh (15% CVMPR). And the relative errors are calculated as 

9.71% (6% CVMPR), 7.52% (10% CVMPR) and 6.91% (15% CVMPR). 

o Under the weekday off-peak scenario (x = 0.34), as the CVMPR increases and the 

temporal aggregation extends, the estimation error has minor changes. However, with the 

analysis interval of 10 minutes, it is still possible to obtain reliable estimations of the 

relative errors are 10% and below when the CVMPR is 10%. The corresponding RMSE 

is 0.85 veh/lane in comparison with the actual value of 9.63 veh/lane and the relative 

error is 8.66% when the CVMPR climbs to 10% under the 10-minute interval. 

• Percentage of stopped vehicles: 

o Under the weekday peak scenario (x = 1.05), there are 65.73% vehicles that are observed 

to have stopped before the stop bar when applying the 5-minute intervals when 

considering the entire population of interest. From the error evaluation results, when the 

CVMPR rises to 6%, this measure can provide estimation results with relative error 

below 10%. Under the 5-minute interval, the RMSEs are 6.82% (3% CVMPR), 6.09% 

(6% CVMPR) and 5.58% (10% CVMPR) respectively, and the corresponding relative 

errors are 10.32% (3% CVMPR), 9.29% (6% CVMPR) and 8.15% (10% CVMPR). 

o Under the weekday midday scenario (x = 0.65), after 3% CVMPR, the estimation error 

has evident drop with 10-minutes interval, with the relative errors below 10%. Under the 

CVMPR of 6% and the selected analysis interval, the RMSEs are 5.47% (3% CVMPR), 

5.19% (6% CVMPR) and 4.33% (10% CVMPR). And the relative errors are 9.92% (3% 

CVMPR), 9.42% (6% CVMPR) and 7.86% (10% CVMPR). 

o Under the weekday off-peak scenario (x = 0.34), generally a 10-minute analysis interval 

is intended to provide accurate results with relative errors below 10%. When the CVMPR 

escalates to 3% and above, the estimation error reduces significantly as the RMSEs are 

3.04% (6% CVMPR), 2.93% (10% CVMPR) and 2.76% (15% CVMPR), which are 

obtained in comparison with the ground truth of 30.55% under the analysis interval of 10 

minutes. Moreover, the relative errors are 9.91% (6% CVMPR), 9.58% (10% CVMPR) 

and 9.12% (15% CVMPR) respectively. 
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Figure 4-1 Movement-level Accuracy Analysis of Performance Measure Estimations 

From the analysis above, the average overall delay and percentage of stopped vehicles can obtain 

performance estimations with consistently low RMSE results based on a 5-minute analysis interval 

when the CVMPR becomes greater as 3% (average overall delay) or 6% (percentage of stopped 

vehicles) and above at the weekday peak scenario. For the weekday midday scenario and off-peak 

scenario, the CVMPR should be at least 6% (average overall delay) and 10% (percentage of stopped 

vehicles) to achieve the reliable performance estimations (relative error below 10%) under the 

analysis interval of 10 minutes at the movement level. However, the requirements for minimum 

CVMPR and analysis interval should be 6% and 10 minutes to obtain reliable estimations under the 

weekday peak scenario when applying the 95th percentile queue length measure. 

4.1.2 Result at the Approach Level 

In Figure 4-2, the requirements of minimum CVMPR and optimal temporal analysis interval are 

investigated at the approach level. Although the amount of simulated CV data collected from the 

approach level is higher than that from the movement level, in general, the estimation accuracy at the 
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approach level shows slight improvement compared to that at the movement level, particularly during 

the weekday off-peak scenario given that the variation in performance is larger at the approach level. 

However, the minimum CVMPR can be 10% and the temporal aggregation can be 10 minutes when 

the percentage of stopped vehicle measure is applied under the weekday off-peak scenario. More 

discussions are listed below.  

 

Figure 4-2 Approach-level Accuracy Analysis of Performance Measure Estimations 

• Average overall delay: 

o Under the weekday peak scenario (x = 1.08), when the temporal aggregation is set as 5 

minutes, the relative errors are observed as below 10% in comparison with the actual 

value of 54.17 s/veh, including 9.64 s/veh (6% CVMPR), 8.31 s/veh (10% VMPR) and 

7.09 s/veh (15% CVMPR). And the RMSEs are 5.32 s/veh (6% CVMPR), 4.72 s/veh 

(10% VMPR) and 3.87 s/veh (15% CVMPR).  

o Under the weekday midday scenario (x=0.63), the relative error reduces to 10% and 

below in comparison with the actual value of 32.29 s/veh when the CVMPR surpasses 
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3% and above under the analysis interval of 10 minutes. The relative errors are 9.32% 

(3% CVMPR), 8.31% (6% CVMPR) and 6.03% (15% CVMPR). Moreover, the RMSEs 

are 3.07 s/veh(3% CVMPR), 2.74 s/veh (6% CVMPR) and 2.07 s/veh (15% CVMPR) 

respectively. 

o Under the weekday off-peak scenario (x=0.32), the estimations are reliable when the 

CVMPR surmounts 6% and above with the analysis interval is set as 10 minutes given 

that the relative errors are 9.83% (6% CVMPR), 9.07% (10% CVMPR) and 8.81% (15% 

CVMPR). Meanwhile, the RMSEs are calculated as 2.11 s/veh (6% CVMPR), 2.07 s/veh 

(10% CVMPR) and 1.93 s/veh (15% CVMPR) in comparison with the actual value of 

21.27 s/veh. 

• 95th percentile queue length: 

o Under the weekday peak scenario (x = 1.08), the relative estimation errors are reduced to 

10% and below when the CVMPR is 6% and above with the analysis interval of 5 

minutes. Given the actual value of 31.37 veh/lane, the RMSEs are 2.91 veh/lane (6% 

CVMPR), 2.82 veh/lane (10% CVMPR) and 2.61 veh/lane (15% CVMPR). And the 

corresponding relative errors are 9.27% (6% CVMPR), 8.99% (10% CVMPR) and 8.33% 

(15% CVMPR). 

o Under the weekday midday scenario (x=0.63), estimations obtained from the 5-minute 

interval are regarded as reliable when the CVMPR increase % CVMPR) and 2.02 

veh/lane (15% CVMPR) and the relative errors are 9.90% (10% CVMPR) and 8.08% 

(15% CVMPR) respectively. 

o Under the weekday off-peak scenario (x=0.32), the relative estimation errors attained 

from 10-minute analysis interval are below 10% when the CVMPR overtakes 10% in 

comparison with the actual value of 11.87 veh/lane. The corresponding RMSEs are 1.16 

veh/lane (10% CVMPR) and the relative error is 9.78%. If the CVMPR passes 15%, the 

RMSE reduces to 1.03 veh/lane with the relative error of 8.69%. 

• Percentage of stopped vehicles: 

o Under the weekday peak scenario (x = 1.08), the error reduces significantly when the 

interval increases to 5 minutes and above. The RMSE is 7.63% (6% CVMPR), 6.89% 
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(10% CVMPR) and 6.02% (25% CVMPR), which is calculated based on the measure 

results attained from the population as 77.89%. The relative errors are 9.80% (6% 

CVMPR), 8.85% (10% CVMPR) and 7.63% (25% CVMPR) respectively. 

o Under the weekday midday scenario (x=0.63), the RMSEs are 3.96% (3% CVMPR), 

3.89% (10% CVMPR) and 3.50% (15% CVMPR) in comparisons with the actual value 

of 41.95% when applying 10-minute interval. Moreover, the relative errors are 9.47% 

(3% CVMPR), 9.19% (10% CVMPR) and 8.55% (15% CVMPR) respectively. 

o Under the weekday off-peak scenario (x=0.32), the values of RMSE have minor 

differences when the CVMPRs and temporal aggregations change. However, when the 

CVMPR rises above 10% and analysis interval extends to 10 minutes, the averaged 

RMSE is 2.33% in comparison to the actual value of 24.47%, where the relative error is 

calculated as 9.35%. If the CVMPR is 15%, the RMSE and relative error are 2.17% and 

8.91% respectively. 

In Figure 4-2 (a) and (c), the measures including average overall delay and percentage of stopped 

vehicles can provide accurate estimation when the CVMPR goes beyond 6% and the analysis time 

interval increases to 10 minutes under the weekday midday scenario. However, the 95th percentile 

queue length is less reliable as the penetration rates should reach at least 10% to attain accurate 

estimations when the temporal aggregation is extended to 20 minutes and above under the same 

scenario. 

Under the weekday peak scenario, the 3% CVMPR and a 10-minute analysis interval can be 

sufficient when applying the measure of average overall delay. When the percentage of stopped 

vehicles is taken into consideration, the 3% CVMPR and a 10-minute analysis interval are essential. 

4.1.3 Results at the Intersection Level 

In this subsection, the accuracy analysis of performance results attained from the critical intersection 

is conducted at multiple temporal aggregations and under various traffic scenarios (Figure 4-3). 

Generally, the 3%-6% CVMPR and a 10-minute analysis interval is necessary to guarantee accurate 

performance measurement estimations when applying the three measures under the weekday peak 

scenarios at the intersection level. Detailed discussions are listed as below. 

• Average overall delay: 
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o Under the weekday peak scenario (x = 1.04), the RMSEs of average overall delay have 

evident decrease from 5.03 s/veh to 4.79 s/veh when the CVMPR increases from 3% to 

6% under the 10-minute analysis interval in comparison with the actual value of 50.95 

s/veh. Meanwhile, the corresponding relative errors are 9.87% (3% CVMPR) and 9.67% 

(6% CVMPR). With the 10% CVMPR and the 10-minute temporal aggregation level, the 

RMSE is 3.66 s/veh as the relative error is 9.22%. 

o Under the weekday midday scenario (x=0.61), even with a CVMPR as low as 3%, 

accurate estimations can be achieved, provided that the analysis interval is set to 15 

minutes. However, if the temporal aggregation is limited to 10 minutes, a CVMPR of 6% 

becomes necessary to ensure reliability. The RMSE values are 3.29 s/veh (3% CVMPR, 

15 minutes) and 3.16 s/veh (6% CVMPR, 10 minutes), with corresponding relative errors 

of 9.83% (3% CVMPR, 15 minutes) and 9.77% (6% CVMPR, 10 minutes). 

o Under the weekday off-peak scenario (x=0.30), the 3% CVMPR can still provide reliable 

performance estimations with the analysis interval of 15 minutes. Under such conditions, 

the RMSE error is 1.52 s/veh, which is associated with the relative error of 9.69%. To 

perform real-time traffic monitoring, a 6% CVMPR is required with the 10-minute 

analysis interval as the relative error is 9.88% and the RMSE is 1.72 s/veh. 

• 95th percentile queue length: 

o Under the weekday peak scenario (x = 1.04), the temporal aggregations should be set to 

10 minutes when the CVMPR reaches 10% to obtain reliable estimations. As the actual 

value attained from the population of interest is 33.95 veh/lane, the RMSE is calculated 

as 3.24 veh/lane. And the corresponding relative error is 9.68%. If the CVMPR is 6%, the 

relative errors are 10.04% and 9.93% for the 10-minute and 15-minute analysis interval 

separately. The RMSE is 3.67 veh/lane (6% CVMPR, 10-minute) and 2.98 veh/lane (6% 

CVMPR, 15-minute). 

o Under the weekday midday scenario (x=0.61), when the CVMPR reaches 10%, a 10-

minute analysis interval is necessary for performance estimation. The RMSE is 1.69 

veh/lane based on the actual value of 17.44 veh/lane given the relative error of 9.71%. 

Meanwhile, reliable results can be achieved with a 6% CVMPR using only a 15-minute 

interval. The RMSE is 1.67 veh/lane. And the relative error is 17.66 veh/lane. 
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o Under the weekday off-peak scenario (x=0.30), the minimum requirement for temporal 

aggregation is 15 minutes when the CVMPR reaches 10% as the relative error reduces to 

9.51%, which indicates that the queue length measure cannot provide real-time 

monitoring at the intersection level. The RMSE is 1.22 veh/lane under 10% CVMPR and 

the 15-minute interval, which is calculated based on the actual value of 13.13 veh/lane. 

• Percentage of stopped vehicles: 

o Under the weekday peak scenario (x = 1.04), the performance estimations attained from 

the 10-minute analysis interval are reliable when the CVMPR is 3%. The relative error is 

calculated as 9.44% based on the actual value of 45.66%. Meanwhile, the RMSE is 

4.19%. When the CVMPR reaches 6%, a shorter analysis interval can still guarantee 

accurate results with relative error below 10% (9.24%). The RMSE is 4.33%. 

o Under the weekday midday scenario (x=0.61), the analysis interval can be set as 10 

minutes to attain reliable results with relative errors of 10% and below when the CVMPR 

ascend beyond 6%. The actual value is 36.81% and the RMSE is calculated as 3.52%. 

o Under the weekday off-peak scenario (x=0.30), when the CVMPR achieves 10%, it is 

possible to obtain accurate performance estimations with the analysis interval of 10 

minutes. The RMSE is calculated as 2.03% based on the actual value of 21.95%, which is 

associated with the relative error of 9.34%. 

Generally, the percentage of stopped vehicles perform better than the average overall delay and 95th 

percentile queue length given that its requirement for CVMPR is lower under the weekday off-peak 

scenarios. Under the weekday midday and the weekday peak scenario, the percentage of stopped 

vehicles can present estimation results close to the actual value with relative errors below 10% when 

the CVMPR reaches to 3% and above. The corresponding time analysis interval can be set as 5 

minutes or 10 minutes to conduct real-time traffic performance measurements. 

Moreover, the 95th percentile queue length can provide reliable results with relative errors below 10% 

under different traffic scenarios according to the specific requirements as discussed above. However, 

under the weekday off-peak scenario (undersaturated scenario), it is noticeable that the queue length 

measure is not suitable for real-time monitoring at the intersection level as its minimum requirement 

for analysis interval is 15 minutes when the CVMPR reaches 10%. 
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Figure 4-3 Intersection-level Analysis of Performance Measures Derived from Simulated CV Data 

4.1.4 Results at the Corridor Level 

To assess the impact of CVMPR and investigate the most suitable temporal aggregations, an analysis 

of estimation accuracy is conducted at the corridor level, as depicted in Figure 4-4. This analysis 

encompasses the simulated eastbound CVs that traverse the entire corridor in the simulation.  

Furthermore, as the queue length measure lacks relevance at the corridor level, the focus is narrowed 

to estimating only the average overall delay and the percentage of stopped vehicles along the corridor. 

• Average overall delay: 

o Under the weekday peak scenario (x = 1.12), the relative estimation errors decrease to 

10% and below as the CVMPR achieves 6% and above with the 5-minute analysis 

interval. The RMSEs under different market penetration rates are 10.66 s/veh (6% 

CVMPR), 9.89 s/veh (10% CVMPR) and 9.25 s/veh (15% CVMPR) respectively in 

comparison with the actual value of 108.91 s/veh. 
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o Under the weekday midday scenario (x = 0.67), when the CVMPR reaches 6% and 

above, the result shows the reliability of the relative error below 10% with a 10-minute 

analysis interval. The RMSE is 7.17 s/veh and the average relative error is 9.52%, which 

is calculated based on the actual value of 74.33 s/veh attained from the population of 

interest. 

o Under the weekday off-peak scenario (x = 0.35), the average overall delay can still 

provide reliable results when the CVMPR is 6% under a 15-minute interval. With the 

averaged RMSE of 3.47 s/veh, the corresponding relative error is calculated as 9.84% 

based on the results attained from the simulation experiments, in comparison with the 

actual value of 35.35 s/veh. 

• Percentage of stopped vehicles: 

o Under the weekday peak scenario (x = 1.12), with the 5-minute interval, the percentage of 

stopped vehicles can provide accurate estimations under even 3% CVMPR. Based on the 

actual value of 85.41%, calculations reveal that the RMSE is 8.19% and the relative error 

is 9.64%. 

o Under the weekday midday scenario (x = 0.67), when the CVMPR is 3%, a 10-minute 

analysis interval can be applied to guarantee reliable performance estimations. Based on 

the actual value of 51.12%, the RMSE is 5.08, which is associated with a relative error of 

9.97%. If the CVMPR rises to 6%, the RMSE is 4.99% with the relative error of 9.83%. 

o Under the weekday off-peak scenario (x = 0.35), the relative estimation error falls below 

10% when using a 10-minute analysis interval, provided that the CVMPR reaches 6%. In 

this scenario, performance estimations exhibit an absolute error of 2.73% (RMSE) and a 

relative error of 9.72% when compared to the actual value of 28.09%. 
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Figure 4-4 Corridor-level Analysis of Performance Measures Derived from Simulated CV Data 

4.2 Congestion Detection 

In this section, the feasibility of applying CV data in the congestion detections is explored based on 

the simulation experiments. Both recurrent congestion and non-recurrent congestion detections are 

conducted.  

The analysis first focuses on identifying recurring instances of traffic congestion. Specifically, the 

study examines congested traffic conditions arising from the daily commute within the urban area. 

This examination is conducted by modelling both weekday off-peak and weekday peak scenarios. 

Then, the analysis is conducted based on the non-recurrent congestions with capacity constraints and 

event-driven peak conditions, which is designed to explore the feasibility of applying traffic 

performance measures derived from the CV data. The settings of each scenario are detailed in the 

following subsections. 

The investigation of the feasibility of congestion detection is performed based on the performance 

measures attained from the simulated CV data collected under each scenario. The analysis is 

performed to detect both the recurrent and the non-recurrent congestions with a 5-minute analysis 

interval to observe the changes in performance estimations under various CVMPRs. 
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4.2.1 Detection of Recurrent Congestions 

During the simulation, the total traffic volume is gradually raised from 3,000 vehicles per hour to 

10,000 vehicles per hour. This change occurs precisely at the 30-minute mark (which corresponds to 

1 800 seconds) and ends at the 90-minute mark (or 5 400 seconds) within the overall 2-hour duration 

(equivalent to a 7200-second period). The traffic volume variations are detailed in Table 4-1. 

Table 4-1 Traffic Volume Variations during The Recurrent Congestion Detections 

Spatial level 0min-30min 30min-90min 90min-120min 

West Broward Blvd. 3 000 veh/h 10 000 veh/h 3 000 veh/h 

Intersection No.10 
Eastbound Right-turn 3 veh/h 9 veh/h 3 veh/h 

 

As depicted in Figure 4-5, the performance measure – average overall delay, 95th percentile queue 

length and percentage of stopped vehicles - extracted from the simulated CV data, considering 

various CVMPRs, effectively captures shifts in traffic performance. The performance estimations are 

obtained from the eastbound right-turning movement of Intersection No. 10, which includes a clear 

identification of the occurrence and dissipation of congestion as traffic volume fluctuates. The 

average hourly volume of the selected movement is 3 veh/h during 0min-30min, 9 veh/h during 

30min-90min and 3 veh/h during 90min-120min. 

Typically, the influence of changes in traffic volume becomes evident after the simulation has been 

running for 35 minutes, which has a 5-minute lag compared to the initiation of such changes. The 

alterations in traffic performance become discernible through these measures within a span of 10 

minutes when the traffic volume turns from 10 000veh/h to 3 000 veh/h.  

From Figure 4-5(a), the peak value of delay appears at 45 minutes (61.9 s/veh) and 85 minutes (61.12 

s/veh) with respect to the beginning of the simulation. When the CVMPR reaches 10% and above, the 

trend of performance changes is clearly reflected in the change of average overall delay. Despite a 

CVMPR of 6%, the delay measure successfully identifies the commencement and termination of 

recurrent congestion but falls short in accurately estimating the peak value. 

Referring to Figure 4-5(b), it is observed that the onset of congestion can be successfully detected 

when the CVMPR reaches 15% and above. However, the estimation still falls short at the 45-minute 
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mark. Notably, neither the 10% CVMPR nor the 6% CVMPR can effectively meet the requirement 

for detecting congestions with the 5-minute interval. 

In Figure 4-5(c), the performance estimations regarding the percentage of stopped vehicles effectively 

capture changes in traffic conditions, even with a CVMPR as low as 6%. Furthermore, it should be 

noted that a minimum CVMPR of 10% is required for the detection of the entire extent of recurrent 

congestion. 

 
 (a) Average Overall Delay 

 
(b) 95th Percentile Queue Length 

Figure 4-5 Recurrent Congestion Detections 
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(c) Percentage of Stopped Vehicles 

Figure 4-5 Recurrent Congestion Detections 

4.2.2 Detection of Non-recurrent Congestions under Capacity Constraints 

Table 4-2 summarizes the characteristics of the scenario to simulate congestions caused by capacity 

loss due to a hypothetical construction project at the eastbound direct along the West Broward Blvd. 

corridor.  

This capacity constraint scenario entails the closure of three lanes within the eastbound corridor 

stretch, spanning a total length of 350 meters. The affected area includes Intersection No.15 and 

Intersection No.16. 

To ensure the continuous flow of through movement traffic along the eastbound corridor, a 

modification is made: the eastbound left-turn at both Intersection No.15 and Intersection No.16 

transitions into a merged lane, accommodating both left-turn and through movements. The geometric 

alterations are visually depicted in Figure 4-6. For the newly merged lane, its capacity remains 

unchanged. However, the capacity distribution between the left-turn and through movements is 

determined based on the pre-alteration ratio of capacities for these two movements, which is 

demonstrated in Table 4-2 as well. 
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Table 4-2 Capacity Variations during The Capacity-Constraint Scenario 

Spatial level 
Capacity (veh/h) 

0s-1800s 1800s-7200s 

Intersection 

No.15 

Eastbound Left-turn 855 veh/h Eastbound Left-turn  283 veh/h 

Eastbound Through  1723 veh/h Eastbound Through 570 veh/h 

Eastbound Right-turn 314 veh/h Eastbound Right-turn 0 veh/h 

Total capacity loss 2039 veh/h 

Intersection 

No.16 

Eastbound Left-turn  513 veh/h Eastbound Left-turn  324 veh/h 

Eastbound Through 890 veh/h Eastbound Through 561 veh/h 

Eastbound Right-turn 374 veh/h Eastbound Right-turn 0 veh/h 

Total capacity loss 892 veh/h 

 

(a) Intersection No.15 

 
(b) Intersection No.16 

Figure 4-6 Graphic Illustration of the Capacity Constraint Scenario 
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(a) Average Overall Delay  

  
(b) 95th Percentile Queue Length  

  
(c) Percentage of Stopped Vehicles 

Figure 4-7 Non-recurrent Congestion Detection Using Simulated CV Data (Capacity-constraint 

Scenario) 



 

 55 

The congestion detection is conducted at the merged lane of Intersection No.15 with the performance 

measures derived from the CV trajectory data obtained from the simulation experiment.  In Figure 4-

7(a), the congestion caused by the capacity loss is forming gradually as the vehicles experiencing 

delay accumulate before the stop bar. On the movement of interest, even  at a CVMPR of as low as 

1%, 3% and 6% congestion can be detected with the variations in the average overall delay attained 

from CVs. To perform exact detection of the severity of the congestion, the CVMPR is required to be 

10% at least when the aggregated interval is 5 minutes to observe the onset of the congestion. 

In Figure 4-7(b), the utilization of the 95th percentile queue length measure proves effective in 

detecting the initiation of non-recurrent congestions once the CVMPR reaches 15% and above. 

However, it is important to note that the detection result of this measure might experience significant 

errors. Yet, its advantage lies in the fact that it avoids overestimating performance results. Despite 

these challenges, the queue length measure still manages to aptly depict variations in traffic demand 

under the CVMPR of 15% and above with the application of 5-minute analysis intervals. 

In Figure 4-7(c), the percentage of stopped vehicles measure effectively identifies the emergence of 

congestions, particularly in the capacity-constraint scenario with a 5-minute analysis interval. 

Notably, this measure adeptly captures variations in traffic demand when the CVMPR is at 10% and 

above, providing performance estimations that closely align with the actual values. 

4.2.3 Detection of Non-recurrent Event-driven Congestions 

Under the event-driven congestion condition, it is assumed that an event results in the increase of 

traffic demand at the Intersection No.16 with an influx of 3206 veh/h at a specific time. The 

congestion detection is conducted at the eastbound left-turn based on the proposed measure according 

to a 5-minute analysis interval with the performance measures derived from the simulated CV data. A 

detailed illustration on the traffic volume variations is listed in Table 4-3. 

Table 4-3 Traffic Volume Variations during The Event-driven Congestion Scenario 

Spatial level 
Traffic Volumes (veh/h) 

0s-2400s 2400s-6000s 6000s-7200s 

Intersection 

No.16 

Northbound 1416 6416 1416 

Southbound 1789 1789 1789 

Eastbound  1281 6281 1281 
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Westbound 1032 1032 1032 

 Total volume increase during event 1000 veh/h 

 

In the scenario with event occurrence, three individual measures are applied to detect the congestion 

with a 5-minute analysis interval as shown in Figure 4-8. From Figure 4-8(a) to Figure 4-8(c), a 

noticeable change is observed in the traffic demand, beginning around the 45-minute mark (2700 

seconds) and ending around the 110-minute mark (6600 seconds) with respect to the beginning of 

simulation. In contrast to the simulation experiment's configuration, the impact of heightened traffic 

demand takes approximately 5 minutes to manifest when the performance measures are employed to 

pinpoint these fluctuations. Moreover, the dissipation of the congestions takes approximately 10 

minutes as observed in the simulation experiment. 

Furthermore, during the window of 40 to 45 minutes, the average total delay, the 95th percentile of 

queue length, and the proportion of stationary vehicles exhibit lower values compared to those 

measured from 45 minutes onwards. Similarly, during the dissipation phase, spanning 100 to 110 

minutes, the performance measures manifest lower values than those recorded during the period 

preceding 100 minutes. Beyond the 110-minute juncture, congestion progressively diminishes over 

time. 

In Figure 4-8(a), the average overall delay effectively reflects the fluctuations in traffic demand when 

the CVMPR is 10% and above. To accurately represent the extent of delay, a minimum CVMPR of 

15% is necessary for reliable application.  

In Figure 4-8(b), the outcomes obtained from the queue length measure exhibit considerable errors, 

failing to capture the demand fluctuations accurately via queue changes. As the CVMPR increases to 

25%, a pronounced peak value of the queue is estimated using the CV data, potentially indicating the 

onset of severe congestion. While the 95th percentile queue length measure might not offer 

dependable detection capabilities, estimations derived from the simulated CV data of queue length 

measure can suggest potential traffic jams across the road network when the event happens along the 

corridor, even if not precisely quantified. 

In Figure 4-8(c), the performance estimations derived from the percentage of stopped vehicles 

become reliable when the CVMPR exceeds 10% and higher. Specifically, to accurately depict 

congestion peaks, a CVMPR of at least 15% is recommended. 
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(a) Average Overall Delay 

 
(b) 95th Percentile Queue Length  

 
(c) Percentage of Stopped Vehicles 

Figure 4-8 Non-recurrent Congestion Detection Using Simulated CV Data (Event-driven 
Scenario) 
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Chapter 5 Conclusions 

In this chapter, the key findings attained from the analysis in the previous chapters are presented 

accordingly with discussions on different performance measures and the optimal spatial and temporal 

data resolutions. Moreover, the impacts of CV market penetration rate (CVMPR) on the accuracy and 

reliability of the performance measures are summarized. And the feasibility of detecting congestions 

is summarized as well. Following this, the significance of this research is highlighted with 

recommendations for the future research. 

5.1 Summary of The Key Findings 

This research explored the potential of applying the Connected Vehicle (CV) data for traffic 

performance measurement and investigated the feasibility of detecting non-recurrent congestions 

through a simulation-based study. An extensive simulation study was conducted on a model of the 

Broward Blvd. arterial located in Florida, U.S., which includes three congestion scenarios of weekday 

off-peak, midday and peak periods. The analysis concluded with the following main findings: 

• On the reliability of different traffic performance measures:  

o For average overall delay, CV data of a wide range of market penetration rates was found 

to be sufficient in capturing traffic conditions across all levels of congestion at both 

movement and arterial levels. As the CVMPR increases, the accuracy of the estimate on 

the average overall delay improves, providing reliable measurements at the 10-minute or 

15-minute aggregation intervals. 

o For the 95th percentile queue length, it generally requires higher CVMPR and longer 

temporal aggregations for performance measurements. It was found that the 95th 

percentile queue length could not be estimated reliably using CV data during the low 

traffic scenarios (e.g., weekday off-peak) at the arterial-level analysis, thus not 

recommended for performance measurement propose. 

o The estimates on the percentage of stopped vehicles using CV data were shown to be 

more reliable than that of queue length. Furthermore, this measure shows acceptable 

accuracy even when the collected data amount is extremely low. 

• On the effects of spatial and temporal data resolution: 
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o Based on the movement-level analysis, insights into traffic performance during 

undersaturated scenarios can be obtained with as low as 3%-6% CVMPR when the 

temporal aggregation is set to 10 minutes and above with the application of average 

overall delay and percentage of stopped vehicles. For other performance measures, a 

higher CVMPR of at least 15% is required, and the analysis time interval should be 20 

minutes or longer under the low saturated scenario being examined (i.e., x = 0.34). For 

the intermediately saturated condition (i.e., x = 0.65), a CVMPR of 10% and an analysis 

time interval of 15 minutes are sufficient to estimate the average overall delay and 

percentage of stopped vehicles. 

o For the scenario of oversaturated conditions (i.e., x=1.05), a CVMPR of 6% is necessary 

to obtain reliable performance estimations at the approach level with an analysis interval 

of 10 minutes. These findings highlight the importance of a reasonable CVMPR and 

appropriate analysis time interval for accurate and meaningful performance assessment. 

o At the corridor level, an aggregation interval of 10 minutes is required to obtain reliable 

estimations for weekday peak scenario when the CVMPR reaches 6% or above with the 

performance measures of average overall delay and percentage of stopped vehicles. The 

CVMPR should be 10% or higher in order to achieve reliable estimations at the analysis 

interval of 15 minutes. 

o Typically, longer analysis intervals yield more reliable results than shorter ones. The 

results attained from the arterial level are more reliable than those from the movement 

level. Results obtained from the arterial level encompass a broader perspective, 

considering the collective behaviour of multiple movements and intersections. This 

aggregation reduces the impact of random variations and provides a more stable 

representation of overall traffic conditions, making the results more reliable compared to 

individual movement-level assessments. 

• On the feasibility of congestion detection: 

o The results from the simulation analysis suggest that it is feasible to detect the onset and 

dissipation of non-recurrent traffic congestions based on CV data at different spatial 

aggregation levels including movements, approaches, intersections, and the entire 

corridor. The detection requires appropriate temporal analysis resolutions and CVMPRs.  

• On the effect of CVMPR on performance measurement: 
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o Generally, the effect of CVMPR on performance measurement is evident from the 

analysis. Naturally, the minimum required CVMPR is different for different traffic 

conditions and required spatial and temporal resolutions. When the CVMPR increases to 

15% and above, the error in performance estimation can be reduced significantly for all 

scenarios with appropriate temporal resolutions, which can be considered acceptable for 

practical applications.  

5.2 Significance of the Study for Urban Traffic Monitoring and Management 

The use of connected vehicle (CV) data for automated signal performance measurements has 

significant implications for urban traffic monitoring and management. This study focuses on the 

potential of applying CV data for automated traffic signal performance measures (ATSPM). 

Firstly, the ability to capture changes in traffic patterns and performance using CV data enables 

transportation professionals to gain valuable insights into various traffic scenarios and their effects on 

signal performance. Traffic engineers can identify and respond to minor fluctuations in traffic flow or 

obtain a more generalized overview of traffic performance. Furthermore, the use of CV data in 

automated signal performance measurements can support the development of data-driven 

transportation policies and guidelines. By leveraging CV data, transportation agencies can better 

understand the impacts of various traffic scenarios on signal performance, enabling them to design 

more effective strategies and allocate resources more efficiently. 

Additionally, the real-time nature of CV data facilitates the identification of potential safety hazards, 

such as intersections with high accident rates or traffic flow patterns contributing to congestion. With 

the CV data, transportation agencies can continuously monitor traffic patterns and proactively address 

areas in need of improvement. For instance, by analyzing CV data, sudden changes in traffic flow that 

could lead to accidents can be detected. This information can then be used to adjust signal timings or 

implement other safety measures to minimize accident risk. 

Moreover, future advancements in connected vehicle technology, coupled with the integration of data 

from other sources, such as traffic sensors or social media, could further improve the accuracy and 

reliability of performance measures and congestion detection algorithms. This would enable 

transportation agencies to make more informed decisions, improving overall traffic flow and safety. 
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In conclusion, the utilization of CV data in automated signal performance measurements offers 

significant potential for improving traffic flow, reducing congestion, and enhancing safety on urban 

roads. By further exploring and implementing the applications of CV data, transportation agencies 

can make more informed decisions, leading to more efficient, safe, and sustainable transportation 

systems. 

5.3 Future Research Directions and Recommendations 

This study has provided valuable insights into the use of connected vehicle data for traffic 

performance measurement and congestion detection. However, there are still many potential venues 

for future research to further improve the understanding and application of connected vehicle data in 

transportation planning and management. Here, several research directions and recommendations are 

suggested for future work: 

1. Exploration of alternative performance measures: While this study focused on a select set of 

performance measures, future research could investigate additional or alternative performance 

measures that may provide more comprehensive insights into traffic conditions and the impact of 

connected vehicles. 

2. Integration of data from other sources: Combining connected vehicle data with data from other 

sources, such as traffic sensors, video cameras, or social media, could enhance the accuracy and 

reliability of performance measures and congestion detection algorithms. 

3. Development of advanced data processing and analysis techniques: Further research could focus on 

the development of new methodologies for processing and analyzing connected vehicle data, 

potentially utilizing machine learning, artificial intelligence, or big data techniques to improve the 

accuracy and efficiency of traffic performance measurements. 

4. Evaluation of the impact of connected vehicle technologies on traffic operations: As connected 

vehicle technologies continue to evolve, future studies should assess the impact of these technologies 

on traffic flow, safety, and overall transportation system performance. 

By pursuing these research directions, the understanding of the potential benefits and challenges 

associated with the use of connected vehicle data in transportation planning and management can be 

further enhanced, ultimately contributing to the development of more efficient, safe, and sustainable 

transportation systems. 
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5.4 Limitations 

This research has several limitations that could be explored in future research. Firstly, this study has 

focused primarily on evaluating the accuracy of various ATSPMs using average estimation errors 

(e.g., RMSE) as a performance indicator, future research should also investigate the reliability of the 

performance measures such as how the RMSE obtained from multiple experiments vary by variation 

in traffic demand, CVMPR and measurement errors. Secondly, the scenarios applied in the non-

recurrent congestion detections are limited as only the capacity-constraint conditions and event-driven 

conditions are considered. More research is needed to evaluate the feasibility of detecting a wider 

variety of non-recurrent events under varying road and traffic conditions.  Thirdly, the current study 

has assumed a maximum CVMPRs of 25%, which could be exceeded in near future with the current 

fast pace of CV development and adoption. Fourthly, the proposed methodology for performance 

measurements only considers signalized intersections, which should be extended to cover all types of 

intersections and road infrastructure. 
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Appendix A Code 

The code provided outlines the procedures for importing raw simulated Connected Vehicle data and 

subsequently aggregating the trajectories based on specific spatial and temporal criteria. Additionally, 

it calculates both the average relative error and the Root Mean Square Error (absolute error). 

import pandas as pd 

# Load the trajectory data 

data = pd.read_csv('trajectory_data.csv') 

# Define the intersection geometry 

intersection_geometry = {'lanes': ..., 'approaches': ..., 'movements': ...} 

# For each vehicle, trace the trajectory 

vehicles = data['vehicle_id'].unique() 

vehicle_trajectories = {} 

for vehicle in vehicles: 

    vehicle_data = data[data['vehicle_id'] == vehicle] 

    trajectory = list(zip(vehicle_data['x_coord'], vehicle_data['y_coord'], vehicle_data['timestamp'])) 

    vehicle_trajectories[vehicle] = trajectory 

# Identify approach and movement for each vehicle 

vehicle_approach_movement = {} 

for vehicle, trajectory in vehicle_trajectories.items(): 

    # Analyze the trajectory to identify the approach and movement 

    # This is a simplified placeholder - actual implementation can be complex 

    approach = identify_approach(trajectory, intersection_geometry) 

    movement = identify_movement(trajectory, intersection_geometry) 

    vehicle_approach_movement[vehicle] = (approach, movement) 

# Aggregate the data based on approach and movement 
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aggregated_data = {} 

for vehicle, (approach, movement) in vehicle_approach_movement.items(): 

    if (approach, movement) not in aggregated_data: 

        aggregated_data[(approach, movement)] = [] 

aggregated_data[(approach, movement)].append(vehicle_trajectories[vehicle]) 

import numpy as np 

# Define the total number of vehicles 

N_v = ... 

# Define the desired CV market penetration rate 

p = ... 

# Generate a random boolean mask for selecting vehicles 

mask = np.random.choice([True, False], size=N_v, p=[p, 1-p]) 

# Assume all_vehicle_data is a list of dictionaries, each representing a vehicle's data 

all_vehicle_data = ... 

# Select a subset of vehicles to be the connected vehicles 

cv_vehicle_data = [data for data, m in zip(all_vehicle_data, mask) if m] 

# Run the simulation and record trajectory data 

for data in cv_vehicle_data: 

    vehicle_id = data['id'] 

    # Run simulation for this vehicle and record data 

# Repeat the procedure for a specified number of simulations 

N = ... 

all_D = [] 

all_D_c = [] 
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for _ in range(N): 

    # Run simulation and calculate D and D_c 

    D = ... 

    D_c = ... 

    all_D.append(D) 

    all_D_c.append(D_c) 

# Calculate the mean values 

mean_D = np.mean(all_D) 

mean_D_c = np.mean(all_D_c) 

import pandas as pd 

import numpy as np 

# Load data into DataFrame 

data = pd.read_csv('your_data_file.csv') 

# Calculate the delay for each vehicle 

data['delay'] = data['entry_time'] - data['exit_time'] 

# Calculate the average overall delay 

average_delay = data['delay'].mean() 

# Calculate the 95th percentile queue length 

queue_length_95 = np.percentile(data['queue_length'], 95) 

# Identify stops based on velocity threshold (velocity should be in km/h) 

velocity_threshold = 3 

data['stopped'] = np.where((data['velocity'].shift(-1) <= velocity_threshold) & (data['velocity'] > 

velocity_threshold), 1, 0) 

# Calculate the percentage of stopped vehicles 
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percentage_stopped_vehicles = (data['stopped'].sum() / len(data)) * 100 

print(f"Average overall delay: {average_delay}") 

print(f"95th percentile queue length: {queue_length_95}") 

print(f"Percentage of stopped vehicles: {percentage_stopped_vehicles}") 

 

import numpy as np 

def calculate_rmse(actual_values, estimated_values): 

    n = len(actual_values) 

    squared_errors = [(actual - estimated)**2 for actual, predicted in zip(actual_values, 

estimated_values)] 

    mean_squared_error = sum(squared_errors) / n 

    rmse = np.sqrt(mean_squared_error) 

    return rmse 
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Appendix B Signal Timing of Each Intersection 

Figure B-1 The Signal Timing of Intersection No.1  

Figure B-2 The Signal Timing of Intersection No.2 

Figure B-3 The Signal Timing of Intersection No.3 

Figure B-4 The Signal Timing of Intersection No.4 

Figure B-5 The Signal Timing of Intersection No.5 

Figure B-6 The Signal Timing of Intersection No.6 

Figure B-7 The Signal Timing of Intersection No.7 
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Figure B-8 The Signal Timing of Intersection No.8 

Figure B-9 The Signal Timing of Intersection No.9 

Figure B-10 The Signal Timing of Intersection No.10 

Figure B-11 The Signal Timing of Intersection No.11 

Figure B-12 The Signal Timing of Intersection No.12 

Figure B-13 The Signal Timing of Intersection No.13 
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Figure B-14 The Signal Timing of Intersection No.14 

Figure B-15 The Signal Timing of Intersection No.15 

Figure B-16 The Signal Timing of Intersection No.16 

Figure B-17 The Signal Timing of Intersection No.17 
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Appendix C: Lane Configuration and Movements of the Individual 
Intersections 

 

 

 
Figure C The Geometric Layout of Each Intersection along The Broward Blvd. 
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Figure C The Geometric Layout of Each Intersection along The Broward Blvd. 


